
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2022

IMPROVING NETWORK POLICY ENFORCEMENT USING NATURAL IMPROVING NETWORK POLICY ENFORCEMENT USING NATURAL

LANGUAGE PROCESSING AND PROGRAMMABLE NETWORKS LANGUAGE PROCESSING AND PROGRAMMABLE NETWORKS

Pinyi Shi
University of Kentucky, pinyi.shi@uky.edu
Author ORCID Identifier:
https://orcid.org/0000-0002-3691-2656
Digital Object Identifier: https://doi.org/10.13023/etd.2022.365

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Shi, Pinyi, "IMPROVING NETWORK POLICY ENFORCEMENT USING NATURAL LANGUAGE PROCESSING
AND PROGRAMMABLE NETWORKS" (2022). Theses and Dissertations--Computer Science. 122.
https://uknowledge.uky.edu/cs_etds/122

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It
has been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Pinyi Shi, Student

Dr. Zongming Fei, Major Professor

Dr. Simone Silvestri, Director of Graduate Studies

IMPROVING NETWORK POLICY ENFORCEMENT USING NATURAL LANGUAGE

PROCESSING AND PROGRAMMABLE NETWORKS

DISSERTATION

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in the

College of Engineering

at the University of Kentucky

By

Pinyi Shi

Lexington, Kentucky

Co-Directors: Dr. Zongming Fei, Professor of Computer Science

and Dr. James Griffioen, Professor of Computer Science

Lexington, Kentucky

2022

Copyright c© Pinyi Shi 2022

ABSTRACT OF DISSERTATION

IMPROVING NETWORK POLICY ENFORCEMENT USING NATURAL LANGUAGE

PROCESSING AND PROGRAMMABLE NETWORKS

Computer networks are becoming more complex and challenging to operate, manage,

and protect. As a result, Network policies that define how network operators should

manage the network are becoming more complex and nuanced. Unfortunately, network

policies are often an undervalued part of network design, leaving network operators to

guess at the intent of policies that are written and fill in the gaps where policies don’t exist.

Organizations typically designate Policy Committees to write down the network policies in

the policy documents using high-level natural languages. The policy documents describe

both the acceptable and unacceptable uses of the network. Network operators then take

the responsibility of enforcing the policies and verifying whether the enforcement achieves

expected requirements.

Network operators often encounter gaps and ambiguous statements when translating

network policies into specific network configurations. An ill-structured network policy

document may prevent network operators from implementing the true intent of the policies,

and thus leads to incorrect enforcement. It is thus important to know the quality of the

written network policies and to remove any ambiguity that may confuse the people who

are responsible for reading and implementing them. Moreover, there is a need not only to

prevent policy violations from occurring but also to check for any policy violations that may

have occurred (i.e., the prevention mechanisms failed in some way), since unwanted packets

or network traffic, were somehow allowed to enter the network. In addition, the emergence

of programmable networks provides flexible network control. Enforcing network routing

policies in an environment that contains both the traditional networks and programmable

networks also becomes a challenge.

This dissertation presents a set of methods designed to improve network policy

enforcement. We begin by describing the design and implementation of a new Network

Policy Analyzer (NPA), which analyzes the written quality of network policies and outputs a

quality report that can be given to Policy Committees to improve their policies. Suggestions

on how to write good network policies are also provided. We also present Network Policy

Conversation Engine (NPCE), a chatbot for network operators to ask questions in natural

languages that check whether there is any policy violation in the network. NPCE takes

advantage of recent advances in Natural Language Processing (NLP) and modern database

solutions to convert natural language questions into the corresponding database queries.

Next, we discuss our work towards understanding how Internet ASes connect with each

other at third-party locations such as IXPs and their business relationships. Such a graph

is needed to write routing policies and to calculate available routes in the future. Lastly,

we present how we successfully manage network policies in a hybrid network composed of

both SDN and legacy devices, making network services available over the entire network.

KEYWORDS: Network Policy, Policy Violation, Policy Quality, Software-Defined Network,

Natural Language Processing

Pinyi Shi
Student’s signature

AUG 2, 2022

Date

IMPROVING NETWORK POLICY ENFORCEMENT USING NATURAL LANGUAGE

PROCESSING AND PROGRAMMABLE NETWORKS

By

Pinyi Shi

Dr. Zongming Fei

Co-Director of Dissertation

Dr. James Griffioen
Co-Director of Dissertation

Dr. Simone Silvestri
Director of Graduate Studies

AUG 2, 2022

Date

ACKNOWLEDGMENTS

I would like to thank the following people, who have advised and helped me in the process

of completing this dissertation.

First, I would like to thank my advisor, Dr. Zongming Fei. Dr. Fei led me to the field

of networking research when I had little research experience. His guidance and suggestions

inspired me to find a research topic that I am interested in. The valuable feedback from

him also helped me improve my work. At the same time, Dr. Fei also provided me with the

opportunities to help with the organization of workshops and to serve as a journal reviewer.

I gained a lot of professional experience during these opportunities.

Next, I would like to thank Dr. James Griffioen for serving as the co-chair of my

committee. Dr. Griffioen led me in several large NSF research projects, where I worked

as a research assistant. Under his supervision, I gained practical experience designing and

implementing networks and systems. Not only his leadership but also the way he thinks

about problems impressed me a lot. His constant feedback, support, and encouragement

helped me a lot during my Ph.D. study.

Then, I would like to thank the rest of the members of my committee, Dr. Hank

Dietz and Dr. Tingting Yu. Their feedback on my qualifying exam and final dissertation

helped me improve my work. Also, I would like to thank former and current directors of

graduate studies, Dr. Miroslaw Truszczynski, Dr. Zongming Fei, and Dr. Simone Silvestri

for answering my general questions about the degree.

I would also like to express my thanks to my colleagues (Sergio Rivera, Yongwook

Song, Mami Hayashida, Lowell Pike, Hussamuddin Nasir, and Charles Carpenter). The

discussion with them motivated me to think from different perspectives and come up with

new research ideas. I also sincerely thank the National Science Foundation for funding the

research in this dissertation under grants ACI-1642134, ACI-1541426, and CNS-1551453.

Lastly, I would like to thank my parents for supporting my decision on pursuing a

Ph.D. degree. Without their support, I would not have been able to make it.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . vii

List of Figures . viii

Chapter 1 Introduction . 1

1.1 Types of Network Policies . 2

1.2 Example Network Policies . 4

1.3 Writing, Enforcing and Monitoring Network Policies 9

1.3.1 How Network Policies Are Written? 9

1.3.2 Network Policy Enforcement and Monitoring 10

1.4 Interpreting the Intent of a Network Policy 13

1.5 Tools That Help Network Policy Enforcement 16

1.6 Dissertation Contributions . 17

1.7 Dissertation Organization . 19

Chapter 2 Related Work . 21

2.1 Traditional vs. Modern Network Architectures 21

2.1.1 Traditional Networks . 22

2.1.2 Software-Defined Networks . 23

2.1.3 Intent-Based Networks . 25

2.1.4 Transition Challenges from SDN to IBN 27

2.2 Tools for Network Policy Management . 28

2.2.1 Taking Actions on Network Traffic 28

2.2.2 Middleboxes in the Network . 29

2.2.3 Network Monitoring Tools . 30

2.3 Related Work in Network Policy Enforcement 30

2.3.1 Intent Definition Language . 30

2.3.2 SDN-Based Solutions . 33

2.4 Related Work in Network Policy Testing/Verification 37

2.4.1 Control Plane Verification/Testing 37

2.4.2 Dataplane Verification/Testing . 38

2.5 Related Work in Natural Language Processing 40

2.6 Related Work in Adapting SDN in Traditional Networks 44

2.7 Summary . 46

Chapter 3 NPA: A System to Check Ambiguity in Network Policies 47

iv

3.1 Introduction . 47

3.2 Relating Network Policy Statements to Network Policy Enforcement 49

3.2.1 The Principles Behind Information Collection 50

3.2.2 The Selection of Tags for the NLP Model 53

3.3 System Architecture . 57

3.3.1 The Entity Extraction Module . 57

3.3.2 The Policy Analyzing Module . 59

3.4 Implementation and Evaluation of NPA . 61

3.4.1 Collecting and Screening Network Policies 61

3.4.2 NLP Training . 62

3.4.3 Accuracy of the Policy Quality Report 63

3.5 Network Policies and Use Cases . 65

3.5.1 Ambiguity in Traffic Description and Amount 65

3.5.1.1 Policies about Protocols . 65

3.5.1.2 Policies about Bandwidth Usage 68

3.5.1.3 Policies about Network Scanning 69

3.5.2 Ambiguity in Action . 70

3.5.3 Ambiguity in Location . 72

3.6 Suggestions on Writing Good Network Policy 72

3.7 Discussion . 74

Chapter 4 NPCE: A Chatbot to Check Network Policy Violations 77

4.1 Motivation . 78

4.2 Design Goals . 79

4.3 Approach: Using NLP and Modern Database Solutions 81

4.3.1 System Architecture . 82

4.3.2 The Mapping Layer . 84

4.3.3 Tools for Implementation . 86

4.4 Examples and Use Cases . 90

4.4.1 Insecure Application Protocol Policies 91

4.4.2 Policies about Prohibited Services 93

4.4.3 Access Control Policies . 95

4.4.4 Port Scanning Policy . 95

4.4.5 IP source routing policy . 97

4.5 Discussion . 99

4.6 Summary . 99

Chapter 5 Understanding the Internet Topology with IXP Data to Support Future

Internet Routing Policies . 101

5.1 Introduction . 101

5.2 Peering on Internet . 103

5.2.1 Peering Benefits . 103

5.3 IXP Traffic Data . 105

5.4 Representing IXPs in the Internet Topology 107

5.4.1 The Obstacles to Understand Internet Peering Relationships 107

5.4.2 Dataset and Approach . 110

5.4.3 Prototype Internet Topology Graph and Example Queries 113

v

5.5 Summary . 119

Chapter 6 Managing Network Policies in a Hybrid SDN/Legacy Network 120

6.1 Operational Concerns . 121

6.1.1 SDN Deployment and Solution . 121

6.1.2 Shared Control and Trust in a Hybrid Network 122

6.1.2.1 Principles of Cooperation 123

6.1.2.2 Including Non-SDN Switches as a Part of SDN 125

6.2 Extending VIP Lanes to Legacy Networks 126

6.2.1 VIP Lanes, A Motivated SDN Service for High-Speed Flows 127

6.2.2 VIP Lanes Software . 129

6.2.3 Policy-Based Routing . 131

6.3 Experiment Setup and Results . 132

6.3.1 East-West Flow Experiment . 132

6.3.2 North-South flow experiment . 135

6.4 Summary . 137

Chapter 7 Summary and Future Work . 139

7.1 Dissertation Summary . 139

7.2 Future Work . 140

Appendices . 142

Appendix A List of Abbreviations . 142

Appendix B Other Policies and Discussion 144

Appendix B.1 Explanation for the Extracted Information 145

Appendix B.2 Tools For Traffic Detection 146

Bibliography . 147

Vita . 157

vi

LIST OF TABLES

2.1 An Example OpenFlow Table . 25

3.1 Tags for Named Entity Recognition in NPA 54

3.2 Number of Network Policies in Different Categories 62

3.3 Entity Extraction Results: Average Metrics for Entity Extraction during 20

Tests with Different Training Samples using Batch Size=16 and Dropout=0.3 64

3.4 Average Accuracy for Different Sections in the Quality Report 65

4.1 Identifiers and example values of the mapping layer 85

5.1 Elements in the Internet Topology Graph 112

6.1 Throughput comparison to different sites using Normal and SDN paths . . 137

vii

LIST OF FIGURES

1.1 Network Policy Generation, Translation and Enforcement Workflow 9

2.1 Software-Defined Network Architecture . 23

2.2 Intent-Based Network Architecture . 26

3.1 NPA System Architecture . 58

3.2 Precision, Recall, F1 score and NER Losses for a Single Training 63

3.3 NPA Output for a Policy about Insecure Protocols 67

3.4 NPA Output for a Policy about P2P Applications 67

3.5 NPA Output for a Policy about FTP and Telnet 68

3.6 NPA Output for a Policy about Bandwidth Usage 69

3.7 NPA Output for a Policy about Network Scanning 70

3.8 NPA Output for a Policy about the Use of Telnet 71

3.9 NPA Output for a Policy with Ambiguous Location Information 73

3.10 SpaCy Debug Data Result . 75

4.1 NPCE System Architecture . 82

4.2 Dialogflow Entity Input Example (from https://dialogflow.cloud.google.com/) 87

4.3 Dialogflow Intent Training (from https://dialogflow.cloud.google.com/) . . . 88

4.4 Broadcast packets (x.x.x.255) found in the Elasticsearch NetFlow logs using

Filebeat . 89

4.5 Workflow for Checking Policy Violation against Web Traffic 90

4.6 Question and Extracted Entities for FTP and Telnet Traffic 92

4.7 Elasticsearch Query to Check FTP and Telnet Traffic 92

4.8 Questions and Extracted Entities for the Policy about Rogue Servers 94

4.9 Elasticsearch Query to Check the Existence of Rogue Servers 94

4.10 Question and Extracted Entities for the Policy about Campus Printer . . . 95

4.11 Elasticsearch Query for Campus Printer Access Policy 96

4.12 Question and Extracted Entities for the Policy about Port Scanning 97

4.13 Elasticsearch Query Example for Port Scanning Traffic 97

4.14 Question and Extracted Entities for the policy regarding IP source routing 98

4.15 Elasticsearch Query for IP Source Routing Packets 98

5.1 Internet Transit vs. Peering . 104

5.2 Real-time Traffic Stats on Seattle IX Website 106

5.3 CAIDA AS Type Example . 111

5.4 CAIDA AS Relationship Example . 111

5.5 Cypher Query Showing the Top Ten Cities Hosting highest numbers of IXPs 114

5.6 Cypher Query Showing the Top Five IXPs with Most Peering Members . . 115

viii

5.7 Cypher Query Showing the Top Five ASes with Most Peering ASes 115

5.8 Snippet of IXPs in Chicago and Members of the Coresite-Any2-IXP 117

5.9 Capacities for Multiple Paths between AS 24482 and AS 327814 118

5.10 Multiple Paths between AS 24482 and AS 327814 118

6.1 Traditional Campus Network . 128

6.2 Campus Network with SDN Deployed . 128

6.3 Extend the SDN Functionality to Legacy Routers/Switches 129

6.4 VIP Lanes Control Software . 129

6.5 An Example Configuration for Policy Based Routing 132

6.6 Campus-like hybrid topology prototype . 133

6.7 Iperf result between la2-pc1 and la3-pc1 (log scale) 134

6.8 Iperf result between Cisco-host and la3-pc1 (log scale) 134

6.9 Sample part of campus network topology 135

ix

Chapter 1: Introduction

Computer networks are becoming more and more complex. The explosive growth in the

number of devices, and the types of devices being attached to the network has dramatically

increased the variety of types of network traffic being generated. Organizations regulate how

they want the network resources to be used by defining Network Policies. Network policies

are the set of rules that organizations use to describe the acceptable and unacceptable

uses of network resources. These policies are usually defined in network policy documents,

sometimes called Acceptable Use Policies (AUPs). Organizations such as universities often

publish these documents online making them available for the users to read. Users of the

networks are expected to follow these rules when they are using the network resources.

However, policy violations may still occur due to misunderstandings or neglect of policies.

Network administrators, who manage the networks, are responsible for continuously

ensuring that organizations’ networks are running in a way that strictly follows the rules

described in the network policy documents. On one hand, they have to ensure the usability

of the networks, making sure the quality of the network service provided to users meets

the desired operational goals. On the other, they have to ensure there are no unwanted

types of traffic in the network as described in the policy documents. Network operators

must use their knowledge to configure network devices (e.g., switches, routers, firewalls,

servers/services), to detect and prevent those unwanted types of network traffic. Taking

advantage of various network monitoring tools, network administrators can detect policy

violations and make adjustments accordingly.

Policies recorded in the policy documents are important. Users of the network

read the network policies to understand how they should use the network. For network

1

administrators, they rely on the network policy documents to set up a network environment

that not only provides high-quality network services to the users but also can detect and

deal with policy violations. However, organizations typically appoint a special group of

people, known as Policy Committees to compose the network policies in natural languages.

The challenge is to make these policy documents clear enough for both the users of the

networks and network administrators to understand.

This chapter introduces network policies from the perspective of how they are

composed and enforced. First, we give real-world examples of network policies written

in natural languages that we found on various university websites to illustrate the types of

network policies in use today. Then, we discuss how these network policies are enforced on

network devices and how network operators check whether these policies are implemented

correctly. After that, we describe the nature of network policies and policy writing

and implementation to illustrate why network policy management is complex. Once the

problems are listed, we present our effort and contributions to address the related problems

that exist in network policy management. At the end of the chapter, we discuss the overall

structure of the dissertation.

1.1 Types of Network Policies

Network policies define the acceptable and unacceptable use of the network. These policies

reflect the organization’s goals and must be designed and implemented with a great deal of

care and accuracy. The implementation of network policies can be considered a process of

taking action on certain types of network traffic under specific circumstances. We categorize

the network policies in this dissertation into the following groups based on the description

of the network traffic or packets.

• Policies regarding network traffic with clear packet header information:

The network policies in this group mainly focus on preventing traffic of a certain

type, either because the network owner does not want to support certain types of

2

traffic/activity, or to block malicious traffic that is considered a security risk. For

example, the Policy Committees may write in the policy document that “FTP traffic

is prohibited in the network” to prevent the use of FTP (an insecure file transfer

protocol). The protocols used are directly reflected in the packet header information

and the policies can be enforced to “block” such traffic simply based on the packet

header information.

• Policies regarding network traffic that needs further processing: Some

network policies may require further processing of the network traffic described in the

policies. They require certain types of network traffic that must go through a specific

middlebox. For example, Policy Committees may write, “All incoming network traffic

from the Internet must go through the Firewall.” The middleboxes mentioned here

are designed to examine, filter, convert or somehow analyze/process the traffic. Ex-

ample types of middleboxes include firewalls, intrusion detection/protection systems

(IDS/IPS), traffic shapers, load balancers, network address translators (NAT), and

application gateways. The action to perform on the traffic type mentioned in the

policy is based on the result of the middlebox analysis results.

• Policies regarding network traffic that requires network state information:

Sometimes, network packet information is not enough to match the network traffic

described in the policies. Additional network state information is required to detect

and match such network traffic. For example, “Block the account if the number of

failed login attempts is greater than ten.” In this example, the number of failed login

attempts surpassing a threshold of ten is the triggering event for blocking an account.

Catching these types of events is often complicated by the need to maintain state

information, as opposed to other types of policies that simply need to look for the 5-

tuple values (Protocol, source IP, destination IP, source port number, destination port

number) in the packet header information. As a result, more complex mechanisms

are required to detect the existence of such events.

3

• Policies with exceptions: The network policies published in the AUPs are usually

focusing on the general rules of how network resources should be used. However, the

existence of these policies may sometimes restrict the work that has been recognized

and approved by the organizations. For example, universities may have policies that

the normal network traffic on campus should go through the middleboxes for security

checks. University researchers working on big data transfer may request exceptions to

the policies because the Deep Packet Inspection applied at these middleboxes greatly

slow down the transfers. As a result, organizations often have network policies with

exceptions to satisfy the potential needs. These exceptions will be carefully reviewed

by the organization’s authorities. The Vip Lanes system [1] deployed at the University

of Kentucky allows a restrictive set of network traffic from pre-approved machines to

be routed directly to the campus edge router without going through the middleboxes

on campus.

1.2 Example Network Policies

• Policy 1: “Applications which transmit sensitive information over the

network in clear text, such as telnet and ftp, are prohibited and will be

blocked. [2]”. In the policy, the action to take is “block”, and the signature of

the traffic is traffic transmitted in clear text such as telnet and ftp. Enforcing such

a policy is straightforward if the network operators know the low-level details (e.g.,

packet header field values) of the traffic pattern, such as the transport layer protocol

and the destination port number these protocols use. The network operators can also

use passive monitoring to see whether traffic has ever appeared. This policy belongs

to the first policy group as we defined earlier since protocols such as telnet and ftp

match directly to the packet header information.

• Policy 2: “The University Wireless Network should not be misused; in

particular, you should not use the network to: run peer-to-peer (P2P)

4

file sharing software, e.g., BitTorrent. [3]”. This policy is also simple; in

particular, it requires that the BitTorrent traffic should be blocked. Similar to the

previous policy, it can be enforced and monitored using the low-level details associated

with the BitTorrent protocol. It also falls in the first policy group due to the existence

of the BitTorrent protocol.

• Policy 3: “For a computer system to be managed securely, functional unit

technicians must: Disable or secure remote access from system-to-system

(e.g., rlogin) [4]”. This policy is also categorized into the first policy group due to

the description of the protocol rlogin. Network operators use the low-level details of

the Rlogin protocol to enforce and monitor the policy.

The three network policies listed above are straightforward since the policy statements

clearly define the action to take on traffic with specific signatures. They also provide

explanations or give specific examples of the meaning of the policy statements. Taking

the first policy, for example, network traffic that transmits information in cleartext

uses protocols such as telnet and FTP. So the network operators clearly understand

that they need to keep an eye on the traffic associated with the protocols mentioned

above.

• Policy 4: “Network usage judged appropriate by the University is per-

mitted. Some activities deemed inappropriate include, but are not limited

to: Attaching unauthorized network devices, including but not limited to

wireless routers, gateways DHCP or DNS servers; or a computer set up

to act like such a device [5]”. This policy contains a combination of ill-defined

terms/phrases and well-defined examples. For example, when the network operators

want to implement this policy, they would not understand the meaning of the term

“unauthorized network devices.” They need a clearer definition of how to represent

the “unauthorized network devices” so that they can translate it into the low-level

5

identifiers that they are familiar with. In this case, there are some well-defined

examples that the network operator would be familiar with like ”wireless routers,

gateways, DHCP or DNS servers,...”. These help with the implementation of the rule,

but do not fully specify all types of ”unauthorized network devices”. This policy can

also be categorized into the first policy group since the policy’s goal is to block the

traffic from unauthorized wireless routers, gateways, DHCP or DNS servers. In short,

the network operator needs words and phrases that have a clear and precise meaning

in order to be able to implement a policy.

• Policy 5: “Most network services through non-standard ports are not

supported. Services through non-standard ports may be restricted to a

limited number of subnets or hosts. For example, WWW access via the

standard HTTP port will be permitted, but via some other arbitrary port

number may not be permitted [6]”. This policy also aims to block certain types of

network traffic. It gives HTTP traffic running on a non-standard port as one example

of the types of traffic that should be blocked. However, the statement’s phrase “most

network services” is ambiguous. Had it said ”Any network service” running on a non-

standard port, it would have been a more clear and more precise policy statement

with the potential to be implemented correctly by an operator. It should be clearly

defined which services are being defined/described by the policy.

The above two network policies both contain words or phrases that can be understood

differently by different network operators. Even though the examples they provide to

some extent help with the explanation, it is still not enough for network operators to

get the true intent behind these network policies without any misunderstanding. We

still need a mechanism to eliminate the potential ambiguity of the policy statements.

• Policy 6: “Campus printers should not be exposed to the public Internet.

[7]”. Undoubtedly, it can be categorized into the first policy group. However, it is

6

still unclear what the phrases “campus printers” and “the public Internet” mean and

what types of low-level identifiers we should use to represent these phrases.

• Policy 7: “Port scanning or security scanning is expressly prohibited

unless prior notification to Information Technology Security is made [8]”.

This network policy fits in the third policy group. The phrases “port scanning” and

“security scanning” are still ambiguous since they are not precisely defined in a way

that all network operators agree with. There have been various IDS tools analyzing

port scanning but their implementations and definition of port or security scanning

are not necessarily the same. For example, one possible definition for such traffic is

“a connection that tries to send traffic to more than M ports within N seconds.” The

traffic patterns are more complex to match than the ones that only use the values in

a packet header’s 5-tuple since it requires the network state information such as the

amount of such traffic reaching a specific number as a triggering event. The policy

also falls in the last policy group since it has exceptions that the scanning will be

allowed once approved by the ITS.

• Policy 8: “The following services or features must be disabled: All source

routing and switching [9]”. Except for the phrase “source routing and switching”,

this network policy statement is easy to understand. It is clearly in the first policy

group. However, the characteristic of the source routing traffic should be described

by a specific packet header, e.g., the IP option field, which is beyond the scope of

the regular 5-tuple fields. Once the low-level details are specified, it will be easy for

network operators to enforce or monitor such policies.

The above three network policies involve networking terms that need to be clarified

further in their low-level details. But unlike network traffic defined simply by the

application layer protocols, the traffic to match here is more complicated. They can

refer to a list of IP addresses, the count of port numbers exceeding a number as the

7

triggering event, or an ill-defined source switching signaling protocol. The special

terms or phrases in these policies need to be specified more carefully.

• Policy 9: “Individual or blocks of IPv4/IPv6 addresses not observed to

be in use for a period of time, such as six months, are subject to be

reclaimed and reassigned by NS with notice to the affected person, group,

or place [10]”. There is no network action to take in this policy; rather there is

a communication action that must be taken. This policy is in the last policy group,

and the network state information required here is that the IP address is not used for

more than six months. Given a list of IP addresses covering the IP range of a campus

network and the meaning of the phrase ”not used” (which needs to be defined), one

should be able to find such IP addresses if they exist.

• Policy 10: “All external and wireless connections to University networks

must pass through a network firewall [11]”. We found this network policy

on the website of Loyola University Chicago. This policy can be categorized into

the second group which involves the middlebox firewall. It requires that network

operators redirect all traffic coming from the addresses outside the campus network

to the firewall for further processing. The definition of the word “external” is not

well-defined and needs to be clarified to be correctly implemented.

In addition to the written policies, there may be implied policies, such as the need to

provide full connectivity between all end systems on the network (i.e., all hosts should be

able to reach one another). These ”implicit rules”, although not formally mentioned in

most network policy documents, are often known to network operators who automatically

include them as part of the list of network policies.

1.3 Writing, Enforcing and Monitoring Network Policies

Organizations require network policies to ensure the desired behavior of their networks.

Network policies not only protect the organizations from security attacks but also define

8

which services and traffic the organization wants to enable and support (or prevent). Thus,

network policies are of great importance to the organizations and need careful management

from being written to being enforced. In other words, there are two parts of network

policies that make them difficult to manage: (1) How the network policies are written and

(2) How the written network policies are implemented and how network operators monitor

the network to find any existing policy violation.

In Figure 1.1, the lifecycle of a network policy is shown.

Figure 1.1: Network Policy Generation, Translation and Enforcement Workflow

1.3.1 How Network Policies Are Written?

To ensure that the network is running smoothly and safely, organizations typically designate

various Policy Committees to design and write the network policies in policy documents

available to network operators and possibly to the network users. An Acceptable Use

Policy, which is also known as an AUP, is typically a document that specifies both the

acceptable and unacceptable uses of the properties of an organization [12]. A network AUP

works as a contract between the university and the campus network users at the university

level. It outlines the terms and conditions by specifying what the users cannot do and

the consequences of violations. An AUP is usually drafted by a committee composed

9

of stakeholders from different units and job levels. It ensures that ideas from different

perspectives will be considered in the composition of an AUP.

1.3.2 Network Policy Enforcement and Monitoring

A network is composed of devices connected by links and services/protocols running on those

devices. Devices can roughly be categorized as end systems (personal desktops/laptops,

cellphones, work stations, servers, etc.), connection points (switches, routers, wireless access

points, etc.), and middleboxes (Firewall, IDS/IPS, etc.). Each type of device serves a distinct

role and has a distinct set of functionalities. It is the services running on these devices

and the protocols that they use to communicate over the network that tend to be the

object of network policies. In this dissertation, we will mainly focus on the configuration

of the connection points and middleboxes needed to enforce the network policies. Note

that policy enforcement can also occur at the end systems, but often involves application-

level configurations such as web server configurations, file server configurations, printer

configurations, etc. But note that end systems can also run firewalls that block or redirect

certain traffic which could be considered to be a middlebox-type capability (but running on

the end system). In that sense, our approach applies to end systems as well, but network

operators might not have the necessary access to configure/place network policies in end

systems.

Assuming network operators take full control over the switches and routers in the

network (noting that they may not have control over the end systems such as clients and

servers), there are several steps they need to go through to enforce network policies. Once

they have access to the network policy documents, they should check whether there are any

ambiguous statements related to the content, action, or conditions for policy enforcement

and tell the policy writers if the policies are not precise enough to be implemented. They

should also notify the policy writers if some policies are not implementable. It is possible

that the available monitoring systems in the network cannot detect certain types of network

10

traffic, (e.g., checking certain packet headers requires Deep Packet Inspection (DPI), which

may be unavailable).

Next, the network operators may insert rules into the network to block, reroute

or rate limit network traffic described by the network policies. In a traditional network,

network operators use the tools provided by the vendors to configure the devices. For

example, to set up configurations on devices such as Cisco routers or switches, network

operators have to master the skills of using the Cisco IOS CLI tool, which requires a

detailed understanding of the syntax of the commands to be typed in the terminal for the

configuration for each protocol. Other switch vendors (e.g., Aruba, Juniper, Dell, IBM, etc)

each have their own switch operating system and commands. Often network operators have

to understand how to create Access Control Lists (ACL) using the command and make

changes as necessary. Since these tools are vendor-specific, network operators inevitably

find it difficult when the network is composed of devices from different vendors. The

coordination among these devices is vital to ensure that network policies are correctly

enforced everywhere in the network. If even a single connection point fails to enforce

the policies, the overall network could be vulnerable to attack or misuse. Under some

circumstances, the configurations need to change dynamically, creating additional exposures

to attacks or misuse. In short, it is challenging and difficult for network operators to

implement policies on devices from different vendors since it requires coordination across

different platforms. Note that if a network consists of homogeneous devices, the network

vendor can provide features to help network operators maintain configurations across

devices, but the potential for errors or mistakes still exists.

After the network policies have been implemented/deployed into the network,

network operators need to verify whether the configurations they set up are correct or

not. Traditionally, they can take advantage of either the monitoring functionalities that

come with the middleboxes (e.g., Firewall, IDS/IPS) or those applications that capture

the network traffic on the interfaces of the connection points (e.g., routers, switches).

11

For example, IDS solutions such as Snort [13], Suricata [14], and Zeek/Bro [15] provide

mechanisms to monitor traffic for the signature of certain (undesirable) traffic patterns.

Network operators can set alerts based on the traffic type they want to monitor, and when

these types of network traffic are detected, an alert will be promptly sent to the network

operators. The use of such IDS systems is often necessary since some policies require instant

action when a violation is found. The alerts help the network operators react quickly and

adjust or modify the network configuration to do a better job enforcing network policy.

Traffic capturing tools such as NetFlow [16] and Tcpdump [17] can also be used to

find whether certain types of traffic exist in the network. However, this process also requires

adeptness in using such tools and the ability to find the target network traffic or packets

from the redundant packet trace or flow log files. In particular, network operators need to

appropriately pre-configure these tools using the low-level details they translate from the

network policy documents and keep an eye on the traffic they want to monitor. Using these

types of passive monitoring tools has several disadvantages:

• All settings must be correctly set up in advance. It is not practical to dump

all the log files of network traffic since (1) the volume of those files is huge and (2)

Network administrators will need to filter the information they want from the often

redundant log files. Based on the types of network traffic network administrators

want to monitor, they will have to correctly set the filters and keep the log files that

only record that traffic. Consider the example where a network administrator wants to

know the packets arriving on an interface of a device for a period of time, they can run

tools such as Tcpdump to capture and analyze those packets. However, if they only

want to focus on the packets of specific protocols such as ARP, there is completely no

need for them to dump the information of all the packets. Instead, they may want to

pre-configure the Tcpdump command and only record those packets of their interest.

In this case, the settings have to be accurate and precise. If anything is missing,

network operators will not be able to find the existence of certain types of network

12

traffic that is described in the network policy documents.

• The use of any single tool does not satisfy all the potential needs. Tools

such as IDS systems, packet capture systems, and flow monitors often have different

and limited functionality. For example, when one wants to check a specific field in

the packet header, most IDS tools and flow capturing tools such as Netflow cannot

accomplish the task. Tools such as Ping and Traceroute provide a different type

of functionality from packet capture or flow analysis and are able to debug the

connectivity failures. But the type of packets they can generate using these tools

is quite limited.

1.4 Interpreting the Intent of a Network Policy

Another challenge is checking whether network policies are correctly interpreted and

implemented. This requires getting to the intent of the network policy statements and

then implementing it across multiple levels of the network stack.

• The challenge of getting the real intent behind the policies: Since network

policies are written in high-level natural languages, it is sometimes difficult for network

administrators to get the true intent behind these policies and what configurations

they need to set up to fulfill the intent. First of all, the imprecise definition of network

policies always makes it difficult for people to understand them. Network policies are

often written to express a high-level goal (e.g., cleartext passwords are not allowed on

the network) without describing the protocols that would violate this goal and saying

these protocols should be blocked by the network. Alternatively, the intent of a policy

might be misunderstood because it uses terms or phrases that cause misunderstanding.

Consider the following network policy, “Most network services through non-standard

ports are not supported.” The confusion the network operators may have is that

“What does most network services mean?” Of course, network operators may take

advantage of their knowledge and write down a list of all the network services they

13

have in mind. However, they cannot know the specific intent – i.e., the exact list

of network services this network policy refers to, which could cause problems in the

network when they overcommit or miss specific critical configurations. While these

types of network policies are imprecise, network operators often have some idea of

what to do.

There exist some network policies that are written with high-level goals that network

operators do not know what to do with. Consider the following network policies, “The

deployment of network applications should be secured” and “The university should

provide users with a secured network”. Note that both network policies contain high-

level goals but have no indication of how to achieve the goal (i.e., what to do). Network

operators have to translate the goals into specific configurations and the large gap

makes the configuration error-prone.

• Complicated Network Environment: Network policies exist on different layers

of the Network infrastructure. On one hand, organizations have network policies

that govern the internal network, e.g, intra-domain policies. Within the network

of an organization, different types of network devices may co-exist. For example,

universities may at the same time own both conventional switches and SDN-capable

devices. In such a hybrid network, knowing how to manage both the legacy devices

together with SDN-capable devices becomes a question. The source of the difficulties

comes from the fact that the functionalities provided by both types of devices are

different. For the traditional network switches and routers, network administrators

have to use the command-line interface (CLI) to configure each device. This is

not convenient especially when the rules or the configurations have to be changed

frequently. For example, “on-demand exceptions” may occur when network users

require rules to configure them in a timely manner but only need them for a short

period of time. Network administrators may not be available all the time and cannot

configure the rules immediately after the users’ request. SDN-capable devices can be

14

programmed, making it easier to change the configuration on-demand (e.g., when an

exception is needed). However, if the network consists of both conventional switches

and SDN-capable switches, making programmatic changes across the entire network so

that policies are enforced correctly everywhere is challenging. Such networks require

careful design before actual implementation. Besides the policies that govern the

internal network, organizations also need to consider the traffic to and from the

outside networks, e.g, inter-domain policies. Network operators need to know how

to provide users with high-quality network services to connect to the Internet while

thinking about whether there are any security issues. All of these are aspects that an

organization needs to consider and write them down when composing formal network

policy documents.

• Complexity in network monitoring/verification: Suppose the network operators

have finished setting up the configurations based on the network policy statements;

they must also figure out whether the configurations they set up are correct or not.

In general, there are two approaches to verifying correctness. The first approach is

static verification, which focuses on checking whether they comply with the network

policies. However, this approach is heavily dependent on the specific tools they use.

The second approach is to use a snapshot of the data plane traffic for verification.

One can capture the network traffic and analyze whether certain types of traffic that

violate the network policies have appeared. One can also actively generate test packets

and force them to go through the network devices and see how the packets are dealt

with. We will provide a review of related work in later chapters, but for now, will

simply list some of the challenges in verification monitoring. First, the tools to use

for monitoring (e.g., IDS) or analysis (e.g., network configuration files) are limited

by the rules or mechanisms that come along with the tools. For example, if we use

an IDS tool to monitor network traffic, we are confined by its functionality and may

not be able to detect certain types of intrusions/attacks. If we analyze a Cisco router

15

configuration file, we cannot use the same approach for HP Aruba router configuration

files. Second, the data plane is where network traffic is transmitted. The network

traffic generated by the monitoring or active probing/testing may affect the network

performance. Network operators should carefully plan such additional services to

maintain network performance. In particular, they should consider the questions such

as “When and where should the monitoring be performed?”, “What tools should be

used as the monitoring facility?”, “How much network traffic will be generated and

is it a great portion of the normal network traffic?”, “What tools/techniques should

be used to generate the correct test packet?” and “How can we specify the path and

force the packet to follow the path?”. These example questions are the ones that

network operators should ask themselves when developing a way to verify whether

the network policies have been correctly implemented.

1.5 Tools That Help Network Policy Enforcement

As discussed in the above sections, the main obstacles that lie in the enforcement of natural

language network policies can be described as (1) the difficulties in understanding the

network policies completely and accurately and (2) the limitation of tools and techniques

for network policy enforcement and verification in the complex and volatile network

environment to satisfy various needs of the organization. We introduce two popular

technologies used in this dissertation that can address the aforementioned problems.

• Natural Language Processing (NLP) To deal with network policies that are

written in high-level natural languages, Natural Language Processing (NLP) is a

feasible solution that satisfies the needs of “understanding” the policy text. Named

Entity Extraction is a technique in NLP to extract useful information from the given

text. To analyze a network policy and get the intent behind it, we can create

named entity extraction models to fetch useful information and filter the redundant

information. The output can be used by other applications to achieve the final goals.

16

• Software-Defined Network (SDN) The mechanisms used to control and manage

traditional networks have limitations. Inflexibility is one of the most noticeable

limitations. The emergence of SDN to some extent solves the problem. The separation

of the data plane and the control plane provides flexible control of the network devices

since users can write customized applications that are in charge of how the traffic

will be handled by the network. This can be used by network operators to insert

fine-grained policy rules into the network that otherwise might not be supported by

conventional network devices. At the same time, SDN also provides a bird’s eye view

of the entire network and thus can provide insights into whether policies are being

violated.

1.6 Dissertation Contributions

In this dissertation, we extend earlier work of translating network policies into network

configurations with exceptions. We address the problems in network policy enforcement

with the following contributions.

• A system to analyze the quality of written network policy: The ambiguous

terms or phrases in the network policies significantly influence whether they will be

enforced correctly. We propose Network Policy Analyzer (NPA), a system that can

generate a quality report for any given network policy. NPA mimics the questions

that network operators may have in mind when reading and implementing a network

policy. It focuses on the 5-Tuple (source IP address, destination IP address, source

port, destination port, protocol) and checks if there is any word in the policy that

is ambiguous or missing for the mapping to the 5-tuple. Based on the NPA results,

Policy Committees can improve the quality of the network policies so that network

operators will have less confusion during the enforcement process. At the same time,

people who use the network will also be clear about the violations and regulate their

behaviors using the networks after reading the well-written policies.

17

• A Chatbot to check network policy violation: The gap between the natural

language policies and the low-level implementation details is making the process

tedious and error-prone to check whether a policy has been correctly enforced. We

propose Network Policy Conversation Engine (NPCE), a chatbot for the users to check

for network policy violations in the network. Key to NPCE is a natural language

mapping layer that extracts the valuable information from the user’s questions and

generates the corresponding database queries to find the existence of certain types

of network traffic. NPCE captures the network traffic using NetFlow and Tcpdump

and imports the log files of the captured traffic into Elasticsearch, which is a fast and

scalable search engine that can be used as the database. The system then utilizes the

extracted information to compose Elasticsearch queries and issue them to the database

to get the raw data of all the traffic that satisfies the filter as the query response. It

generates the final response based on the questions of the users and returns to them

exactly what they want to know.

• Visualizing the Internet topology to support future routing policies:

Current Internet routes network traffic based on the destination addresses. Source

routing, even though mostly banned nowadays due to security issues, may make

Internet routing more flexible. As a first step towards supporting future Internet

routing based on source addresses, we investigate the Internet topology using Internet

Exchange Point (IXP) data. Internet peering is a popular way that ASes choose to

connect. The process involves three participants, the two ASes who want to peer and

the representatives from the third-party facilities, namely Internet Exchange Points

where the peering occurs. Network operators of IXPs need to manually configure the

routing tables of the IXPs to let the traffic flow through after the two customers reach

an agreement. As a first step to understanding Internet peering, we implemented an

Internet topology graph by placing the IXPs at the center of the graph. We collected

data from IXP websites and other data sources showing how ASes connect at IXPs

18

and their business relationships. Users can issue cypher queries in the graph database

to fetch the peering information and available routes per their interests.

• Managing network policies in a hybrid SDN/legacy network: The mecha-

nisms used to control and manage legacy networks and SDN networks are different.

Managing a hybrid network composed of both legacy devices and SDN-capable devices

thus becomes difficult. VipLanes [1] is a network service where users can get faster

big data file transfer speed by setting up SDN rules that make the file transfer path

bypass the campus middleboxes. We propose an approach where users, even if their

devices are connected to the legacy devices rather than the SDN devices, can still take

advantage of the SDN service such as VipLanes. With the help of SNMP, the network

connection information such as the port numbers and the IP address of the adjacent

devices can be detected. Using Policy Based Routing, the routing table on the legacy

devices will be modified and route users’ traffic to the SDN network, making the SDN

service available to them.

1.7 Dissertation Organization

The rest of the dissertation is organized as follows:

• Chapter 2 discusses the background and existing work in the field of network policy

management.

• Chapter 3 presents a system that analyzes the quality of written network policies and

generates reports for the ambiguity in network policy documents.

• Chapter 4 introduces a chatbot that can be used by network operators and

policymakers to ask natural language questions to check policy violations.

• Chapter 5 develops an approach to understanding Internet topology connection points

(IXPs) and the implications on network routing policies.

19

• Chapter 6 discusses the management of network policies in a network environment

composed of both SDN and legacy devices, making a SDN-oriented service available

over the entire network.

• Chapter 7 summarizes our contributions and discusses the future directions of the

research.

20

Chapter 2: Related Work

In this chapter, we dive into the details of the related work of network policy management.

We focus on the innovative tools and techniques beneficial to network policy management

and the ongoing research in the field for network policy enforcement and network

testing. In particular, we start with two popular network architectures, namely Software-

Defined Network (SDN) and Intent-Based Networking (IBN). We show how these network

architectures can help with network automation, policy enforcement, and testing. Then, we

introduce the network devices and tools that network operators commonly use for network

management. Next, we focus on the related work that aims to simplify network policy

enforcement, from the proposal of an intent-definition language to other abstractions that

work between the network policy specification and detailed policy implementations. After

that, we discuss the related work in network testing/verification, e.g., to know whether the

network is configured correctly based on the network policies. Finally, we end by talking

about the appearance of various artificial intelligence techniques such as Natural Language

Processing (NLP) and different machine learning models and how these AI techniques help

in network policy management.

2.1 Traditional vs. Modern Network Architectures

The mechanisms used to enforce network policies have been evolving. In traditional

networks, network policies tend to be implemented on middleboxes while with modern

programmable networks, controller programs can be written to implement network policies

on those programmable switches and routers. We first compare the traditional network

21

architecture with the new programmable network architectures. We also show how these

newly-added features help in the process of building a self-driving network.

2.1.1 Traditional Networks

Imagine that you are the person to manage a computer network composed of various

devices such as switches/routers, middleboxes, and Firewalls. Implementing/deploying a

network policy onto the network involves several steps. First, you have to understand what

functionalities these network devices provide by default. Suppose that devices of the same

type come from the same vendor, you may only need to look at one to understand them

all. Then, you may associate what network policies you want to enforce with the existing

functionalities provided by these devices. Understanding how to use these functionalities

to reflect what policies the network should enforce is essential. When everything is clear,

the last step is to understand how to implement the configurations on each device with

different commands. The entire process requires a lot of manual effort and may result in

misconfigurations in the network due to the limitations of a traditional network.

First, vendor-specific configurations require the development of multiple configura-

tions, one for each vendor’s device in order to enforce policies network-wide. This means

that network operators have to understand the usage of the devices from different vendors.

The differences between command-line interfaces (CLIs) from different vendors can be

significant. Network operators must carefully configure each device and ensure there are no

configuration errors.

Second, traditional network device functionality is static. As a general rule, new

functionality cannot be (dynamically) added to traditional network devices. Thus, if new

network functions are required, network operators have to utilize other tools to achieve the

goals, which not only increases the number of devices in the network but also adds a burden

to the management of the entire network due to the unique mechanisms of the tools.

22

2.1.2 Software-Defined Networks

As its name indicates, a software-defined network (SDN) is based on the software that

governs how the network should behave. Unlike a traditional network, which uses firmware

that is difficult to update/change, the SDN architecture enables the network operators to

set up rules on various devices in a timely, efficient manner. The SDN architecture is shown

in Figure 2.1.

Figure 2.1: Software-Defined Network Architecture

One of the key ideas of Software-defined networking (SDN) is separating the logical,

software-based control of network switches from the hardware/firmware used to implement

packet forwarding. The infrastructure (hardware) layer is at the bottom of the architecture,

composed of various network devices such as switches and routers. The control layer in the

middle is an SDN controller(s), which determines how the packets will be processed based

on the network policies. The SDN controller is often programmed in the form of match-

action rules applied on the switches in the infrastructure layer. SDN-enabled switches use

the rules to forward, drop, or modify packets as they arrive on the switches in the data

plane. The Controller is working as the brain of the entire network, and it provides a birds’

eye view of the network to ensure that network policies are correctly enforced everywhere

23

in the network. SDN’s ability to control the entire network from a central point (i.e.,

the controller) simplifies how network operators manage and monitor the network [18].

SDN controllers typically utilize the popular Southbound Interface (SBI) protocol such as

OpenFlow [19] or Open vSwitch Database (OVSDB) [20] to send or receive instructions to or

from the SDN-capable switches. The application layer at the top of the SDN architecture

increases the flexibility of the network. Network operators can program the network by

writing customized applications to instruct the SDN controller regarding the SDN rules to

create on the SDN-capable network devices.

Each OpenFlow switch maintains a set of flow tables. A flow table contains flow

entries–basically the set of rules governing how the targeted network traffic will be routed.

We show an example flow table in Table 2.1. The table contains four flow entries. Starting

from the bottom, the row that has a matching value of “*” represents the match for all the

network traffic. This flow entry has the lowest priority and drops all the matching traffic.

It mimics what a Firewall does, which is to block the incoming traffic by default. The entry

with priority 1 deals with the ARP packets, and the action is “go to table 1”. The “go to

table” instruction explains which table will be the table to follow in the next processing

pipeline. Since this entry has a higher priority than the “drop all” rule, the matching ARP

traffic will thus follow this “go to table” action. Above that, in the table there is an entry

with priority 2, which deals with the DNS traffic. In the matching field, DNS response

packets are being identified by the use of UDP and source port 53 can be used to determine

that the targeted traffic is the DNS response traffic. The action “output to controller”

means the traffic will be sent to the controller for further analysis. Customized applications

can be written to extract the rich information contained in a DNS response packet. The

hard timeout for this entry is 180 seconds which means that the rule will only exist for 180

seconds after being created. At the top of the table is an entry that matches the source

and destination address along with the traffic incoming port. The action to perform on the

matching traffic is to send it to another specific port.

24

Table ID Priority Packets Match Actions/Instructions Timeouts

0 3 500

in port:3
eth type:ipv4
ipv4 src:10.10.1.1
ipv4 dst:10.10.1.2

apply actions:
output:4

0

0 2 3
eth type:ipv4
proto: udp
udp src: 53

apply actions:
output: controller

hard timeout:
180 seconds

0 1 1
in port:3
eth type:arp

goto table:1 0

0 0 1000 * apply actions: drop 0

Table 2.1: An Example OpenFlow Table

Even though Software-Defined Network (SDN) provides flexibility in network

management, network operators still have to figure out which low-level details they need

to place in the match-action rules. In other words, network operators have to manually

translate the intents they have in mind into low-level configurations, a process that is

tedious and error-prone. Historically, network operators have to provide low-level details

associated with the network policies to either enforce a network policy or to monitor it. For

example, when using an Access Control List (ACL), network operators have to use the low-

level details such as the 5-tuples to fulfill the intent to “allow” or “block” certain types of

network traffic. From the perspective of network policies written in natural languages, the

SDN architecture helps in the automated implementation of the policies. But the processes

of understanding a network policy and verifying whether the configurations that have been

set up reflect the contents in a policy statement still involve human intervention, making

it questionable whether the policies are correctly enforced in the network. To address this,

there has been interest in supporting the architecture of Intent-Based Networks.

2.1.3 Intent-Based Networks

Intent-Based Network (IBN) can be considered an advanced version of SDN since it takes

advantage of the capabilities of the SDN architecture. It also adds additional components

to make the management of network policies fully automated. As shown in the following

figure, IBN is composed of a three-phase life cycle to realize network policies, namely the

25

translation phase, the deployment phase, and the verification/analytic phases [21]. The

architecture of IBN is shown in Figure 2.2.

Figure 2.2: Intent-Based Network Architecture

The translation phase in IBN translates the high-level intents into the policies.

In this phase, the intent definition language may be proposed as an intermediate layer

between the high-level intents network operators want to implement and the resulting

network policies with low-level details. Due to the nature of network policies or intents

(written in natural languages), AI techniques such as NLP can be used to interpret the

intents. Similar to an SDN controller, the orchestrator in the deployment phase takes

into account various requirements and deploys the policies on the devices. The last phase,

the verification/analytics phase, is essential in the IBN architecture. With the help of

SDN, network operators can quickly deploy a network policy. However, they still have to

develop mechanisms to check whether the policies are deployed correctly, e.g., whether

the SDN rules are correct and whether they are implemented on the correct devices.

The verification/analytics phase takes advantage of the fact that the SDN controller can

retrieve the most up-to-date network status to verify whether the desired policies have

26

been correctly installed on the devices and whether these policies conflict with any existing

policy. These additional functional components ensure that (1) a network policy is correctly

interpreted (translated into the SDN rule with the correct low-level details) and (2) a

network policy is correctly implemented on the network devices (no violation is found under

such configurations). Such additional functionalities are making it closer to the realization

of a self-driving network, where the network itself can understand, implement and verify

network policies automatically, noting that it is still not a complete solution in the sense

that network policies must be manually converted into the intents that drive this approach.

2.1.4 Transition Challenges from SDN to IBN

Even though the current technologies and designs of SDN and IBN show a promising future,

there are still quite a lot of challenges. As has been discussed in [22], there are several

requirements to make the network truly “Human-Defined”.

1. The network should be automatic and intelligent. This means the system should be

capable of fixing the potential conflicts (e.g, conflicts between network policies) auto-

matically. Such a smart system always involves building blocks from understanding

the intent to verifying whether the network is behaving as expected.

2. The network should be able to understand the commands from network operators

even if the commands are in the format of a human-like language. When network

operators express what they want to achieve in the language they speak daily instead

of the network-specific commands, the network should have some kinds of mechanisms

to convert the expression into the configurations the network can understand. NLP

modules can work as a building block in the entire system to deal with the intent of

the network administrators or network policies.

Unlike the matured mobile ”app stores”, there is no unified app store for SDN

platforms. The reason is that SDN controllers from different vendors offer differing sets of

underlying services. Even if a vendor has its own SDN app store, the applications available

27

in the store typically only provide support for a small set of the network functions required.

So they are not enough to satisfy every need of the network operators. As a result, network

operators often have to add the desired features to the applications or they just build the

customized applications from scratch.

When commercial software packages are in production, updates are provided

continuously to make the applications better. It is the same for network systems. The

challenges include how to make the control plane and data plane highly synchronized and

how to verify the correctness of the updates to ensure security and availability.

2.2 Tools for Network Policy Management

We introduce tools and services that are helpful in network policy management. In

particular, we start by introducing tools such as Access Control List (ACL) and iptables.

We then focus on the locations where these rules can be implemented. Except on

switches/routers, the middleboxes such as Firewall and IDS/IPS systems are the appropriate

locations to enforce such policies. Then, we introduce the network monitoring tools and

programmability that ease policy management. We show the ongoing research about

network policy enforcement and verifications. We also discuss how AI technologies can

be used in network management.

2.2.1 Taking Actions on Network Traffic

Network operators often want to take different actions based on the type of network traffic.

So it is natural that we divide the intents of the network operators into two parts: the action

and the match. Similar to the structure of an OpenFlow rule which is in the match-action

format, an Access Control List (ACL) [23] can also determine how network traffic should

be handled. The action part can be either “permit” or “deny” while the matching part has

a variety of available fields based on the type of the ACL. In the early implementations of

ACLs, the match was quite limited since the standard ACL only supported the match on

the source IP address. Later on, with the increasing need for the richness of network traffic,

28

extended ACLs came into play and supported matching on the destination IP address,

source/destination port numbers, and protocol [24]. These fields make up the well-known

5-tuple to identify the specific types of network traffic. The 5-tuple has been used in various

network management tools.

In addition to ACLs, network operators may also want to specify the route certain

types of network traffic should take. Network operators can use the command “IP route”

to specify the interface or the next-hop address for a specific type of network traffic to go

through [25]. This capability allows the network operator to control the path that packets

take (i.e., to determine the routing policies).

2.2.2 Middleboxes in the Network

Except for the switches and routers, middleboxes are where essential network functions

are often placed. Common middleboxes include Firewalls, Intrusion Detection/Protection

Systems (IDS/IPS), NAT boxes, Load balancers, and Deep Packet Inspection facilities.

Firewalls are usually placed at the edge of the network to prevent unauthorized

access from the outside network or to constrain the set of allowable (outgoing) destinations

(e.g., blocking access to social media sites from the corporate network). The basic idea for

preventing network traffic is similar to that of an Access Control List (ACL). However, a

Firewall may offer more extensive functionalities based on its type. One can consider that

an ACL matches on a packet level, which is stateless. Matching on the flow level requires

state information, but can provide a higher level view of the network traffic. Firewalls often

support state and can be used to record or block flow-level activity. Firewalls can be either

software Firewalls or hardware Firewalls. Examples of popular software Firewalls include

pfSense [26], ipfirewall [27], PF [28], and iptables [29]. Examples of popular hardware

Firewalls include Palo Alto Networks [30], Cisco Next-Generation Firewall (NGFW) [31],

Sonicwall [32], and the Barracuda Firewall [33]. Advanced firewalls can often support up

to layer seven of the network OSI model. In contrast, a stateless ACL, even an extended

one, will typically only support up to layer four – i.e., the transport layer. Such Firewalls

29

are popular since they raise the level of abstraction and can provide support for various

applications which traditional solutions cannot deal with.

IDS/IPS are the other types of middleboxes where security mechanisms are placed.

In particular, IDS tools can capture certain types of network traffic specified in advance by

network operators and send alerts to them promptly. The most well-known IDS, such as

Snort [13], Suricata [14] and Zeek/Bro [15] all have different IDS mechanisms/capabilities,

and members in the community have developed various extension modules to support

multiple traffic types in the application layer, ranging from the regular network traffic

to the traffic generated by security attacks. Using these tools, network operators better

understand what is happening in the network.

2.2.3 Network Monitoring Tools

Packet analyzers such as Tcpdump [17] and Ethereal [34] are often used to analyze the

header of each network packet. However, it is not efficient to capture every packet on every

interface. Another way to analyze traffic is to look at network traffic at the flow level

instead of the packet level. The records of packets are aggregated if their headers have the

same values. For example, packets that have the same source IP address and destination

IP address can be used to calculate the total number of packets in a flow that traverses

between these two addresses. Flow-level analysis tools such as NetFlow [16], sFlow [35],

and IPFIX [36] can be used to understand what is happening in the network using a higher-

level view. Both types of monitoring tools are valuable since the network traffic specified

in network policy documents can target both the flow-level and the packet-level.

2.3 Related Work in Network Policy Enforcement

2.3.1 Intent Definition Language

The gap between the network policies written in high-level natural languages and the

corresponding low-level configurations makes the translation process tedious and error-

prone. To reduce this gap, researchers are proposing different approaches, such as intent-

30

definition languages or other abstractions, to get the intents of the network policies or

network administrators accurately.

Most notably, Nile, an intent definition language proposed in [37], can accurately

capture the intent of the network operators. Network operators still express what they

want to do with the network in natural languages, but in a constrained way. The system

utilizes natural language understanding platforms such as Google Dialogflow [38] to extract

the valuable information within the intent. The authors took advantage of a sequence-

to-sequence learning model [39], which was composed of two recurrent neural networks

and a Long Short-Term Memory (LSTM), to map the user’s statements into Nile. As an

important step in the entire workflow, the result was sent back to the network operators

for confirmation and thus increase the translation accuracy. Even though Nile provides

an excellent template to understand the intents of network operators, we argue that the

grammar of Nile still has room for improvement. The action field in the language was

only limited to “allow” and “block” so it would be helpful only when dealing with network

security policies that focus on “denying” certain types of network traffic. The match fields

were simply the 5-tuple. So it could not deal with network policies that describe the traffic

using information beyond the 5-tuple.

The work in [40] modified Nile by adding constructs to the language structure to

make it suitable in the P4 environment. Their point was that an association between the

intents and the corresponding action on the P4 program’s template should be established.

So they added the action library and the parameters in the intent that will trigger action

on the P4 code. This idea is helpful in the network policy definition since some network

policies are context-based. These types of context-based policies are the ones that will be

triggered under certain circumstances, not the ones that only have one state. For example,

“if the number of bad connection attempts is greater than five, send the suspicious traffic

to the IPS system.” Nile does not cover the intent for this type of network policy since

both the action and the match miss the real action “send-to” and the actual match “bad

31

connection attempts greater than five.”

There is also other work proposing intent definition languages. POLANCO proposed

in [41] provides an intermediate language that the network operators can use to map the

network policies – written in high-level natural languages in network policy documents such

as the Acceptable Use Policy. Compared with Nile, POLANCO provides more choices on

the selection of actions and matches on the traffic patterns. The language was based on the

Business Rule Management System, or more specifically, the Drools rule in the format of

“When...then...”. This syntax ensures that the language can map a variety of intents of the

policy statements. One of the potential drawbacks of the approach was that it still required

the human intervention of network operators to translate the network policy statements

into POLANCO, which can sometimes be error-prone.

Language for ACL Intents (LAI) was another intent definition language proposed

in [42] to solve problems related to ACL updates. The language focused on three different

aspects, including the region (e.g., the network domain and devices to look at), the

requirement (e.g., update ACL configuration or packet reachability), and commands (e.g.,

whether network operators want to check, fix or create new ACLs). It was related to network

policy enforcement, but since ACLs are most commonly used for network security policies,

the proposed language could not cover every type of network policy defined in the policy

documents. Yet, for both POLANCO and LAI, network operators have to learn the syntax

of the intent definition language, the translation process, which is considered tedious and

error-prone.

Even though some high-level programming languages such as Pyretic [43] have been

proposed, they are still unable to satisfy today’s Intent-Based Network. In [44], the authors

proposed an Open Software-Defined Framework (OSDF), which involves an intent-based

interface for network operators to express the policies. The framework deals with different

types of services based on their locations and functions. The locations mean whether it is

inter-domain or intra-domain and the actions include route, alert, and QoS Provisioning.

32

This service reads the policies from the database and filters them based on the types. Then

the policies are parsed and translated into the potential forwarding rules for the incoming

traffic and finally, the rules are automatically installed on the set of devices using the

information fetched from other modules such as the topology service module. One of the

highlights of this paper is that the OSDF framework includes the policy conflict module,

which deals with the detection of conflicts and recommended fixes. One of the aspects

that may improve in the paper is that they provide the syntax of the policy but do not

give an example to show how elegant the language is. Network operators have to learn

the syntax of the proposed policy language so that it has to be easy to understand. Also,

the scalability has to be investigated further, especially when considering the fact that the

network is dynamic and policies have to be enforced possibly at any time on any device in

the networks of any size.

2.3.2 SDN-Based Solutions

The work proposed in Policy Graph Abstractions (PGA) [45] allowed network operators to

express network policies in the abstraction of graphs. The work focused on the scenarios

where different network operators can create and modify network policies using graphs

simultaneously. PGA has a mechanism to check and fix the potential conflicts among

graphs. The result of such a process provided a single graph containing all the composed

network policies without any conflict. Later, Janus, a framework proposed in [46] extended

PGA by adding the support for Quality of Service (QoS) policies, dynamic policies, and

temporal policies, which had a time constraint. These works provided new mechanisms to

express network policies, but they still required network operators to learn how to use such

tools.

Existing SDN frameworks also have additional modules acting as the intent-based

Northbound interfaces (NBI) that support the definition of network policies, even though

these modules serve different purposes. The ONOS intent framework [47] provides users

with the opportunities to turn their intents into specific SDN rules. An intent is modeled

33

as an object that contains network resources, constraints, criteria, and instructions. Then

the framework compiles the intent object into the specific FlowRule object, and the SDN

rules are installed on the corresponding network devices. The framework allows the users to

express their ideas by creating an intent application on the command-line interface (CLI)

or through the REST API.

In [48], the authors proposed extensions to the existing framework which optimize

the path selection based on the real statistics of the network state with multiple intents

considered jointly. One advantage of this extended framework is that there is no need

for modifying the code of the original framework and the module works as an external

application that optimizes the routing. They call it intent monitor and reroute service

(IMR). This application interacts with the intent manager in the intent framework as well as

the flow manager to get the current statistics of the flows generated due to the acceptance of

intents. IMR exposes rest APIs to retrieve data such as the counter of the flow (size, number

of packets that go through the flow) and the lifetime of the flow. The system computes

a route that is good for most cases. They used Clustered Robust Routing (CRR), which

took advantage of the historical data collected over a time period to feed an optimization

model. They compared the maximum link utilization of the original SDN-IP application

in ONOS with the extended clustered robust routing version. The difference between these

two applications is that the original SDN-IP always picks up the shortest paths, while the

extended version will change the routing configuration over time, based on the data collected

and the output of the CRR. The results showed that the extended version of the application

decreased maximum link utilization compared with the original SDN-IP application, which

was a satisfactory result. This work was added to the ONOS codebase.

In [49], the authors adopted the existing ONOS intent-based framework and proposed

a new NBI architecture that allows different users/applications to express their requirements

and policies. For a complex composite intent, the divide-and-conquer technique should be

used. The composite intent was decomposed into subproblems and after the solution to each

34

subproblem was found, these solutions were built together to form a complete solution.

In the prototype implementation, they built their own Dynamic Resource Management

(DRM). DRM was first implemented on the Floodlight controller. In the prototype, they

applied a three-layer architecture to the application and used it on the ONOS controller.

The simulation network, which was composed of 40 switches and 122 links, was implemented

in Mininet. Their test results showed that they were not only able to apply the proposed

architecture to the DRM application but also the application was successfully running on

the ONOS system. They checked different intents through the ONOS UI to see whether the

calculated paths along with the average usage ratio were returned so they knew whether

the intents had been implemented and monitored.

The OpenDayLight controller (ODL) also has a Network Intent Composition (NIC)

interface [50] that expresses the user’s intents in the format of the desired network states.

The Interface supports actions such as “allow”, “block”, and “redirect” or even the QoS

intents. An intent is expressed as a set of commands composed of subjects, actions, and

constraints. Users can easily add, remove and modify any intent as they want.

The ODL Nemo project [51] proposed the Nemo intent language to express the

intents. The action list is rich and involves different verbs to convey different meanings.

The network is represented as links and nodes using the keywords Node and Link, and the

policy is defined using keywords “Policy” and “Action”. However, it is still unclear what all

the available statements are that can follow the keyword “Condition” in a policy to express

the match of traffic patterns or any other constraints.

iNDIRA [52] is a tool that interacts with the SDN northbound interface to make

intent-based networking possible. In particular, the goal of the tool was to let the users

express their intents for big data transfer from one endpoint to another in an easy way.

As a result, the language used for the intents was mostly about the connectivity (connect

or disconnect as action) and the bandwidth constraints. They considered these actions as

“services” and other information as “conditions.” They also showed that the iNDIRA tool

35

could answer users’ queries as the tool could remove the redundant information and keep

only the valuable information. Since they didn’t give the syntax of the language and based

on the example, which only focused on the situation for data transfer, it was hard to say

that the intermediary covered the needs for the entire set of network policies since it only

dealt with QoS policies and reachability policies.

Domain science applications often suffer poor performance because they do not

have the capability to do self-correction in real-time to do the trouble-shooting based

on the current state of the network. In this scenario, the authors of [53] implemented a

smart ecosystem: Software Defined Network for End-to-end Networked Science at Exascale

(SENSE). A new architecture has been implemented to make the system intent-based,

interactive throughout the service, real-time, and end-to-end. In a “smart” network

ecosystem, the network service plane should have at least the following two key features:

intent and interaction. Interaction, which is necessary for the subsequent phases, means

that the applications/users should be able to keep in contact with the network to know the

current status of the network. Even smarter, they should know the available services and

resources in case there is any interruption in the current service so that it can be used as a

backup plan. In the implementation, the SENSE project provides services such as knowing

the bandwidth in a certain block, guaranteed bandwidth in duration, and the product of

time and bandwidth. Users of the system are able to immediately provision the network,

and they can also negotiate with the system to know what possible resources are available.

The system also provides quality of service for layer 2 and layer 3 flows.

Summary of the intent-based solutions: Intents refer to what the users want

to do and how they want to deal with certain types of network traffic. These intent-based

solutions either provide an intermediate intent definition language or use NLP to process

the intents. However, none of the solutions covered the entire set of network policies since

the intent was scenario-based. Also, it is still unclear whether the translations from the

network policies to these intents are correct, and the process still requires the intervention

36

of network operators.

2.4 Related Work in Network Policy Testing/Verification

A critical step after implementing network policies is to check whether the configurations

that have been set up correctly reflect the intents of network policies. In this section, we go

over the related work in network testing and verification. In particular, we categorize

the work into two groups: (1) Control plane verification/testing and (2) Dataplane

verification/testing.

2.4.1 Control Plane Verification/Testing

First of all, we need to understand what the control plane is. The control plane and the

data plane are not separated in traditional networks. So when we talk about the control

plane, we are referring to the protocols being exchanged such as BGP and OSPF. In an SDN

network, the control plane refers to the applications sitting on top of the SDN controller.

The control plane verification tries to find the errors in the configuration files and the errors

in the code of the SDN applications.

Analyzing the network configuration files is an approach to detecting network

configuration errors. Earlier work such as the tool RCC proposed in [54] to find the

corresponding configuration errors in the BGP configurations came up with high-level

correctness specifications for the BGP configurations, or in particular, the path visibility

and route validity faults. The tool tested the conditions using static analysis and allowed

network operators to test the potential faults before deploying the configurations.

Arc, the high-level abstraction proposed for the control plane in [55] can analyze the

control plane failures under any circumstances. They generated the abstraction from the

configuration files, and thus, the control plane was abstracted as weighted graphs. They

tested the scenarios using a variety of invariants such as “always blocked/isolated/reach-

able/traverse waypoint.” They showed that the verification took less than 1 second in most

cases, which was much faster than other solutions.

37

ERA, which was a tool proposed in [56], aimed to verify the reachability problem.

A step process was deployed. First, they proposed a model that considered the router a

function of the routing announcement it received and the announcement it sent to the

neighbors. They expressed the routing announcement using binary decision diagrams

(BDD)[57] and grouped these announcements using equivalent classes. Then they analyzed

the reachability problem utilizing the index of these equivalent classes. The evaluation

showed that ERA could perform analysis in near real-time and scale well.

Minesweeper proposed in [58] used constraint-based graphs and combinatorial search

to present a model that could encode the stable states of a network as a satisfying assignment

to a satisfiability modulo theories (SMT) formula. They showed that they could check

various network configurations using this model.

Batfish proposed in [59] involved both the control plane and data plane verification

techniques. In particular, in the control plane, it was able to simulate the behavior of all

distributed protocols using a control plane model and get the data plane model. Then

it utilized the data plane verifier described in [60] to analyze the data plane model and

simulate the counterexample packet for network operators to find the error and repair it.

In SDN networks, systems such as Kuai [61] and Vericon [62] were proposed. Their

goal was to verify the SDN programs by either checking the model or proving the theorem.

For example, in [61] the first-order logic was used to check the network invariants.

Control plane testing aims to generate test cases from the programs using models

such as finite state machines. NICE proposed in [63] was a tool that utilized model checking

and symbolic execution to test the OpenFlow programs automatically. The results showed

that it could find bugs that resided in the SDN programs.

2.4.2 Dataplane Verification/Testing

Dataplane is the layer where network traffic is transmitted. The verification and testing in

the data plane aim to find whether the snapshot of the network state satisfies the network

policies.

38

Anteater [64], NOD [60], VNM [65] and SymNet [66] are several examples of data

plane verification. More specifically, Anteater [64] dealt with network invariants such as

“loop-free forwarding”, “connectivity,” and “consistency.” It collected data from the network

devices in the data plane and modeled the corresponding behaviors into a satisfiability (SAT)

problem. The system checked these behavior instances using an SAT solver and reported

cases that violated certain network policies. It could find potential errors that existed in

ACLs and Virtual Local Area Network (VLAN) tags.

NOD [60] was developed based on the concept of Datalog [67]. The paper started

with the “network beliefs” and checked whether they were violated. It provided a policy

template where different network beliefs were categorized into different sets. Then it used

the features included in Datalog language such as the definition of set, negation, and boolean

predicate to deal with the related problems. It extended the Datalog language and made it

able to scale in larger header spaces.

Verification for Middlebox Network (VMN) [65], as its name indicated, focused on

the verification of networks with middleboxes. The middleboxes were modeled using a

simple forwarding abstraction they proposed along with the packet classes. They proposed

the forwarding model using the behavior of the middleboxes. Finally, they took advantage

of logical formulas to model the network invariants and utilized Z3 [68], an SMT solver, to

check whether these network invariants were held. Similarly, SymNet [66] also had a model

for network middleboxes. A new language, SEQL, was proposed to describe the behavior in

the network data plane. Using symbolic execution, SymNet was able to verify the stateful

network data plane.

Unlike data plane verification, data plane testing can find the problems such as

whether the intents of the network policies are violated or whether there are any hardware

failures or congestion issues, where some of these problems cannot be answered by the data

plane verification. In general, the approach for data plane testing is to generate probe test

packets and compare the monitoring result with the original intents.

39

The most notable works under this category include ATPG [69], Monocle [70],

Rulescope [71], and BUZZ [72]. Automatic Test Packet Generation, or ATPG [69] in

short, was a systematic approach that the network operators can use to test and debug

the network. What ATPG did was it could generate a model after it read the network

configuration files from the routers. The model included definitions for packets with ports

and headers, switches as transfer functions, rules represented as how ports and headers

would be modified, rule history as the history of packet port and headers, and topology as

the pairs of connected ports. ATPG also had an algorithm that tried to generate as few

packets as possible. Their evaluation results showed that ATPG could generate several test

packets to test the real-world network on Internet2 and the Stanford backbone.

Monocle [70], a monitoring and testing module lying in the middle of the SDN

controller, sent probes to test whether the forwarding table satisfied the view of the SDN

controller. More specifically, the problem was modeled as a SAT problem and different

types of rules such as unicast rule, drop rule, or multicast rule were treated separately. The

timescale Monocle used was also defined in milliseconds.

Based on Monocle, RuleScope [71] focused on checking whether the rule priority in

the flow table was correct or not. The forwarding behavior was also inspected by sending

probes. BUZZ proposed in [72] focused on the context-based policies where these policies

had special triggering events. It first provided an abstraction for the data unit, which

involved additional fields other than the typical 5-tuple values covering all the potential

matches. Then it used symbolic execution to generate abstract test traffic and used a

translation mechanism to turn the abstract traffic into concrete test traffic.

2.5 Related Work in Natural Language Processing

The primary goal of Natural Language Processing is to understand the semi-structured

language that people use based on the context. The use of NLP has been extended to a

variety of areas, such as Named Entity Extraction, text classification, sentiment analysis,

40

and so on. In this section, we focus on the work that utilize NLP in the networking area,

query translation, and policy document analysis.

Lumi [73] is a system that deals with network policy enforcement. The authors

developed a natural language interface where network operators can express their intent

to implement network policies. The natural interface collected the user’s intent and

extracted useful information from the intent using a Bi-LSTM architecture. The fragmented

information was then assembled and mapped into the intermediate intent definition language

Nile [37]. One of the highlights of their work was that they added the feedback of the

network operators in the loop. Even though the system achieved relatively high translation

accuracy, it was not ensured that the assembled intent was exactly the same as what the

network operators wanted to do. The addition of feedback made the accuracy approach

one hundred percent. The system also provided a chatbot interface where the missing or

wrong extraction could be pointed out by the network operators. Such chatbots made it

convenient for network operators to verify their intent was correctly captured. Though the

system contributed to the ongoing effort in Intent-Based Network, it could not be directly

used to deal with network policies that are written in only natural language. The intent,

compared with natural language network policy, is shorter in length and simpler in format.

It still requires that network operators fully understand the network policy documents and

refine the intent of the network policies. This process itself is tedious and error-prone.

Net2text [74] is a system where network operators can ask questions to understand

the network forwarding behavior. In the query, the network operators can include multiple

features of the traffic they want to know, for example, the ingress/egress port, the

destination for specific traffic, and so on. The query types supported were also rich, which

included “yes or no” questions, or the summarization of the count of traffic and the paths

it traversed. The network traffic statistics data and path data were stored in the database

and questions from the network operators were translated into standard SQL queries. The

response was summarized based on the result of the SQL query response and returned to

41

the users. The system focused more on how to summarize the result from the network state

information or traffic statistics in the database. However, there is no evaluation on the NLP

part what is the accuracy they achieved for the information extraction. The examples they

provided, such as “How is Google traffic being handled?” or “Does all traffic to New York

go through Atlanta?” were quite simple queries. The entities in these queries for example,

“Google” and “New York”, are well-known entities that could be easily extracted by the

NLP libraries that come with pre-trained models. “Google” can be mapped to “org” and

“New York” will be mapped to “location”. Also, natural language network policies are

considered more complex than these queries, since they not only involve the description of

the network traffic but also involve the actions to take on the traffic which implements the

policy.

In [75], the authors proposed a network task abstraction layer. In particular, they

abstracted common tasks that were fulfilled by the popular SDN controllers such as the

Floodlight controller [76] and the Ryu controller [77]. These tasks are usually done through

the REST API of the controllers using HTTP verbs such as POST, GET and DELETE.

Each task had a struct that represented the structure of the task. Based on the input of

the users, which is either a query or a command, the struct of the task will be generated

which contained information about the endpoints, keywords, extra info, and type. For

example, a query input “Is h1 connected?” would be abstracted as endpoint (h1), the

keyword (connected), and REST API type (GET). A command input “allow h4 to talk to

h5” would be abstracted as endpoints (h4,h5), the keyword (reach), and REST API type

(POST/DELETE). However, the paper did not present the evaluation results about how

well the information was extracted. In the examples they provided, both the queries and the

commands were expressed using quite simple natural language. The information extraction

approach they used in the paper would not be flexible enough to deal with the natural

language network policies due to the fact that natural language network policies have more

diverse patterns and complex structures.

42

Question answering (QA) systems have the ability to generate immediate responses

to the questions of users. These systems utilize Natural Language Processing techniques and

allow users to express their questions using the natural languages they use daily. Answers are

generated based on what the users ask and where those “facts” are stored. For example,

users can ask specific questions about a text paragraph written in English and the QA

system finds the answer within that paragraph. Another example of the QA systems is the

relational database, which uses the relations among the data points and stores the data in

different tables. Structured Query Language (SQL) is a structured programming language

used to write or retrieve information to or from those relational databases. The use of NLP

techniques to translate users’ queries into SQL has thus become a popular research topic.

In [78], the authors proposed Seq2SQL, a deep neural network to translate natural

language questions into SQL queries. Consider a simple SQL query “SELECT a FROM

TABLE name WHERE a equals number”. Their approach analyzed the structure of SQL

queries and divide the query into three sections, namely the column pointer (a in the

example above), the aggregation pointer (such as COUNT if the user asks “how many”),

and the where clause pointer/decoder (a equals number). Given a single table, they assumed

that answers to the users’ questions could be found in the table and they needed to locate

the column and the conditions described in the “WHERE” clause. Similarly, TypeSQL [79]

took advantage of the slot filling techniques to find what information should be inserted into

different slots in a SQL query. They used the WikiSQL dataset and showed that TypeSQL

could achieve higher translation accuracy as compared to previous works.

Some other works utilize NLP to understand privacy policies. The Usable Privacy

Project [80] aims to use NLP techniques and different privacy models to help people

understand websites’ data practices. Most notably, the authors proposed a framework

in [81] to help mobile application developers to check the consistency between the code and

the published privacy policies. It is important since sometimes the actual data collected

by the applications can be different from what is declared in the privacy policies. They

43

created mappings between commonly used privacy phrases and the Android application

API methods and checked the existence of violations if the collected data was not described

in the policies. The results showed that they were able to detect policy violations for

different Android applications.

The work described in [82] focused on analyzing the ambiguities in privacy policies.

They used NLP techniques along with the ground theories to define and detect vagueness.

They proposed a scoring system that dealt with policies that had conditional terms,

generalization terms, modality terms, and numeric quantifiers. They measured the privacy

policies of large companies using the proposed scoring mechanism. At the end of the paper,

they also provided suggestions on how to write good privacy policies from the linguistic

perspective. However, they only focused on the policies themselves other than how the

policies were implemented or used. The vagueness that appeared could still lead to other

fields such as how privacy information (data) was collected by those companies. So the

scoring mechanism can be improved with more factors considered.

2.6 Related Work in Adapting SDN in Traditional Networks

Much work has been proposed to introduce the advantages of easy network management

provided by SDN to traditional networks. Some of the work focuses on the architecture and

design problem, while others focus on the virtualization problem such as building controllers

for hybrid networks.

Panopticon [83] is a network architecture proposed by Levin et al. In this

architecture, legacy switches, and SDN-capable switches were interconnected to form a

logical SDN network. The insight behind this work was to realize the benefits of SDN

by ensuring there was at least one SDN-capable switch on each source-destination path,

without fully deploying SDN. So as to make this happen, they proposed a key mechanism

called waypoint enforcement. With the help of VLAN, every packet that traverses the path

was forced to go to an SDN-capable switch. When the packet arrived on the SDN-capable

44

switch, the SDN controller handles it in the same way as is in a pure SDN environment.

They also introduced the concept of SDN-controlled ports (SDNc), which were the access

ports connected to the logical SDN network. Panopticon ensures that each packet going in

or out of the SDNc selected by the network operator always goes through a safe path, with

at least one SDN-capable switch on it. Their results suggested that when as few as 10% of

the distribution switches are SDN-capable, most portion of the enterprise network can be

operated as a single SDN network.

HybNET [84] is a network framework that automates the management in a hybrid

network environment. In the framework, there exists a configuration mechanism that

translates the legacy network configuration into OpenFlow configuration. From the

perspective of the controller, there is no distinction between SDN switches and legacy

switches. By means of virtualization, SDN switches in the framework were mainly

responsible for the network management job, along with the controller, while legacy switches

were only used as the devices to forward traffic. The virtualization was realized using

VLANs.

Telekinesis [85] is a network controller that provides fine-grained control over legacy

paths. Since in an SDN network the controller can instruct the switches where to send the

packet, they took advantage of this fact and introduced LegacyFlowMod, a flow control

primitive, to send a packet with a MAC address to a special interface on the legacy switch.

Since the legacy layer-2 switches run MAC address learning, the forwarding tables will be

updated on the legacy switch. However, this mechanism suffered from drawbacks such as

the coarse-grained path control due to the fact that routing was only destination-based in a

legacy network. The frequent update of the forwarding tables also caused the transmitting

path unstable. To overcome these problems, they proposed Magneto [86] in their later

work, which introduced the concept of the Magneto MAC address to reduce the frequency

of changes in the forwarding tables, make the transmitting path stable.

ClosedFlow [87] is a network controller proposed by Hand et al. In their work, they

45

took advantage of the fact that each node in a network running Open-Shortest-Path-First

(OSPF) has complete visibility over the entire network. They enabled remote logging from

the legacy devices to the controller, which allowed the topology to update. Remote access

tools such as SSH/Telnet were also used to log in to the devices and configure fine-grained

rules using Policy-Based Routing (PBR).

2.7 Summary

In this chapter, we described the related work in the field of network policy management.

Different network architectures and technologies can be applied to network policy enforce-

ment and verification. SDN and IBN are the first steps toward the automation of network

policy enforcement. Applications can be written to enforce or verify the correctness of

the implementation. To understand the meaning of natural language network policies,

NLP techniques are undoubtedly a promising approach. We also showed the limitation of

current/past research that addresses network policy management. In the following chapters,

we present how we used NLP and SDN to improve network policy enforcement.

46

Chapter 3: NPA: A System to Check Ambiguity in Network Policies

3.1 Introduction

Network policies are usually composed and recorded in the network policy documents

such as Acceptable Use Policy documents written in human-readable natural language.

These documents are often available online to the users of the network, for them to

understand what they can do or cannot do when using the network resources. Sometimes,

due to a misunderstanding of policies (or even policies not read by the users), unwanted

types of traffic may occur in the network. As a result, besides ensuring the basic

network connectivity, network administrators take responsibility for enforcing the policies

described in these policy documents to deal with the network traffic. Historically,

network administrators manually translate the high-level policy statements in the policy

documents into the corresponding low-level network configurations that implement the

policies. However, there is still a gap between the high-level network policy statements

and the low-level detailed network configurations that enforce the policies. In other words,

this manual translation process can be tedious and error-prone since there is a potential

not only to misinterpret the intent behind the policy statements, but also a potential for

human errors when configuring the devices in a complex network environment which can

lead to incorrect enforcement of the policies.

While recent advances in Artificial Intelligence have made it possible to simplify

the translation process, it is still inevitable that network administrators be involved in the

loop to translate the network policies into specific formats that can be used as the input

for the system. Even in Intent-based networking systems that are capable of generating

configurations based on intents, network administrators still have to manually translate

47

the statements in the policy documents to the desired intents. Errors can occur during

this translation phase due to a variety of reasons, one of which is the ambiguities of the

network policy statements. The ambiguities in a policy statement may arise if ambiguous

terms are used, or the crucial information for the implementation is missing. Undoubtedly,

ambiguities will confuse network administrators when they enforce the policies.

Policymakers and network administrators are both the stakeholders of the network.

Consequently, they need to cooperate and reach a final agreement on exactly what should

be enforced and the corresponding consequences. Policymakers, who compose the policies,

do not usually have the same level of network expertise as network administrators.

Consequently, policymakers often lack the knowledge needed to understand the difficulties

in enforcing each network policy, or the potential conflicts among implementing various

policies. If the terms or phrases they use in the policy statements are ambiguous to

the network administrators, it potentially increases the chances that these policies will be

implemented incorrectly, either in part or entirely. Network administrators want network

policies in a clear and precise format that can be directly translated into low-level network

configurations. If a policy statement is ambiguous, network administrators may also wish

to give feedback to the policymakers about the ambiguities and the missing elements in

it. Besides confirming the intent of the policy, they may also want to report the potential

problems when enforcing the policies, such as the conflicts among the policy statements.

Aiming at the ambiguities in network policy documents, we propose Network Policy

Analyzer (NPA), a system with which policymakers and network administrators can

coordinate to improve the quality of a written network policy document. The proposed

system takes as input a network policy document and starts from the perspectives of network

administrators, mimicking what they are thinking about when enforcing the given network

policies, and returns any ambiguous or missing elements in a policy statement that should be

improved for the correct enforcement. For example, consider the following natural language

network policy statement:

48

“It is inappropriate to run insecure protocols in the residence halls”.

When network administrators see this policy, there may be several questions that

will come up to their mind. First, what is the action that should be used to deal with traffic

that is insecure? In the policy statement, it mentions “inappropriate” but says nothing

about whether the network traffic should be blocked or not. Second, what does the term

“insecure protocols” mean? Although network administrators may have an idea about which

network protocols may be considered insecure, they may still have questions about whether

all these kinds of protocols should be considered. Third, what is the network information

that corresponds to physical buildings (i.e., residence halls)? Or, more specifically, what IP

address range represents “the residence halls”? Such questions not only provide insights into

the concerns that network administrators may have during the actual enforcement process,

but also reflect the ambiguities of the policy itself. With such information, policymakers

can rewrite the ambiguous network policy statement, still keeping it as a comparatively

high-level description but make it more understandable to the network administrators.

In this chapter, we introduce our proposed Network Policy Analyzer system that can

determine whether a given network policy statement contains ambiguous terms and whether

any important information required for the enforcement is missing. The approach is driven

by the recent advances in Natural Language Processing (NLP) techniques. With the help of

NLP techniques, a network policy statement can be fragmented into small pieces including

the pattern of the network traffic described in the policy and the action to perform on the

targeted traffic.

3.2 Relating Network Policy Statements to Network Policy Enforcement

Network administrators care about what network traffic to deal with and what actions

to perform on the targeted traffic. Knowing how to extract related information from

the network policy statements and map it to a well-structured format that can be fully

understood by the network administrators is important.

49

3.2.1 The Principles Behind Information Collection

Network policies must eventually be translated into low-level network configurations. But

what do these configurations look like on a network device? Consider the following access

control rule on a Cisco device that uses Access Control List to block the ftp traffic:

router# access-list 101 deny tcp any any eq ftp [23]

In this rule, the access list named 101 is used to deny the traffic from any source

to any destination address with destination port number equals to ftp port (port 21). The

basic format of this rule consists of an action, (deny in this case) and the other fields to

match the network traffic. The 5-Tuple, which includes source IP address, source port,

destination IP address, destination port, and the transport layer protocol, is commonly

used to match the traffic. Recent advances in SDN make it possible to enrich the packet

header fields that can be used for the match as well as the actions that can be taken. For

example, OpenFlow version 1.5 allows more than 40 flow matching fields [88]. It makes the

devices capable of dealing with various types of network traffic.

Based on the format of the rule a network policy will be translated into, we list five

questions that network administrators would ask when enforcing the policy.

• What is the description of the network traffic in the policy? The description

is essential since it has to be translated into the 5-Tuple or even more diverse matching

fields in the rule. Furthermore, some types of network traffic are described using the

“amount” other than the values in the packet headers. If the description is ambiguous,

network administrators will find it difficult to put the correct/exact values in the

matching fields or to use other tools to detect the specified traffic. As a result, the

implementation may be incomplete if it deals with fewer traffic types than expected,

or it will incorrectly deal with more types of network traffic than the ones described

in the policy statements. Such “overkill” will of course influence the normal use of

the network.

50

• What is the action to take on the matching flow? There are various actions

that may occur in the network policies. The basic actions include allow(permit) or

block(deny) that address the security issues of the network. However, because network

policies are high-level statements, the words “allow or block” do not necessarily

directly appear in the policies. For example, “It is inappropriate to run BitTorrent

applications on campus”. This policy does not specify the action, and network

administrators need to guess whether the word “inappropriate” means “blocking”

such traffic. Other actions such as rate-limit or route-to can be also implied by the

policy. Network administrators need to find out whether it is correct to use such

actions for the implementation. Besides the content of the action, some policies may

describe how long these actions should last. In other words, it is the duration of the

rule. SDN rules have an optional field called timeout to specify the duration that a

rule should exist after being inserted to the switches.

• Which location of the network resources should be focused on? Network

administrators need to consider on which devices the configurations/rules should be

set up. If no location information is mentioned in the policy, network administrators

may wonder about the scope the policies apply to. Considering the fact that the

network policies focused on in this chapter are mainly university network policies,

we can roughly think of the locations as either on-campus or off-campus. For those

policies about on-campus network resources, which network devices (e.g, switches and

routers) should the rules be placed on? For the traffic that flows between on-campus

locations and off-campus locations, what rules should be placed on the Firewalls?

The location information not only determines where the rules are to be placed but

also the relevant information to be placed in the description match. For example, if

locations such as “campus residential network” are mentioned, network administrators

may think about (1) whether they should set up rules on each switch/router on the

campus residential network and (2) the IP address range that represents campus

51

residential network since it will appear as either the source or destination address in

the matching fields of the rule.

• What is the direction of the network traffic? The 5-Tuple contains source

and destination address or ports which explicitly requires the direction of the traffic

to be considered. The direction can be either single-way or bi-directional based on

the interpretation of the policies. For example, some policies that mention specific

protocol names have directions implied by the port number (destination) used by the

protocol. Other policies differ in the direction part based on the context.

• Whether network state information is required for the match? This

question, along with traffic direction, is closely related to the description of the

network traffic. We give examples of the network policies in which network traffic

is described using the protocol names (e.g. FTP). For this type of network traffic, the

corresponding low-level details are known beforehand and can be translated into the

5-Tuple. However, if a policy talks about traffic like “port scanning traffic”, it cannot

be described simply by the 5-Tuple since it requires the network state information that

counts the number of network connections from the same source to different ports over

time. To deal with such policies, network administrators need to understand what

network state information is available to them and which sophisticated tools, such

as intrusion detection systems they can use to capture such traffic. Nowadays, many

network devices have the ability to detect traffic on a higher layer such as the traffic

generated by different applications. For example, a layer-7 switch is a switch that

not only possesses the basic switching/routing capabilities as other devices but also

collects the information on the application layer. As a result, rules can be set up

saying “Route the traffic in this way based on the content of the HTTP requests”.

It is important to understand what functionalities are provided by the tools that can

analyze the application layer behavior and the format of the output.

52

3.2.2 The Selection of Tags for the NLP Model

Based on the principles discussed above, we show the tags that the NPA system uses to

train the NLP model that aims to retrieve all the valuable information from a given network

policy. The tags are placed in different categories with example values as shown in Table 3.1.

As has been discussed above, the key information that are required for the successful

enforcement include:

(1)The description of the network traffic

(2)The action to be taken on the observed traffic

(3)The location of the network to focus on

(4)The direction of the traffic and

(5)The network state information if known.

Here we discuss them separately and further divide them into different categories.

First, to illustrate the diverse patterns of the network policies that express the same intent,

consider the following group of policies:

“Port scanning is not allowed on the network.”

“Students should not scan the network with port scanners.”

“Applications such as port scanners are prohibited on the network.”

All these policies aim at the traffic generated by the behavior of port scan but use

different words/phrases to describe the intent. Considering the diversity of the policies, we

list example tags and values and categorize them. We assign either “.clear” or “.unclear”

to these terms to indicate whether they are considered ambiguous or not (see Table 3.1).

• TrafficDescription: Because network policies can be composed in various patterns,

NPA utilizes different types of tags to capture the content of the target network

traffic. The network traffic can be described using high-level terms such as “cleartext

protocols.” or, more specifically, the names of the protocols, such as “FTP”. The

53

Category Example Tags Example Values

TrafficDescription

Protocol.unclear Cleartext protocol, insecure protocol
Protocol.clear ftp, telnet, rlogin
P2P.unclear Peer-to-peer, p2p, file sharing
P2P.clear BitTorrent, eDonkey
Scan.unclear Security scan, vulnerability scan
Scan.clear Port scan
Unauthorized.unclear Unauthorized, personal

App/Devices.unclear
Application, program,
Software, device

TrafficAmount
Amountmany.unclear

Excessive, many, disproportionate,
High portion

Bandwidth.clear Bandwidth, capacity
AmountUnit.clear Mbps, Gbps, MB, GB

TrafficDirection
DirectionADJ.clear inbound/outbound, internal/external,
DirectionPREP.clear From/to {NetworkLocation.clear}

Action

AuxNot.clear Must not, may not, should not
NegativeNoun.clear Violation, abuse, misuse, prohibition
NegativeVerb.clear Prohibited, forbidden
NegativeADJ.unclear Inappropriate, improper, unsuitable
PositiveVerb.clear Allowed, permitted

Action.clear
Ban, disable, terminate, block,
not {PositiveVerb.clear}

Action.unclear Restrict, limit, constrain

ActionDuration DurationUnit.clear Second, minute, hour

Location
NetworkLocation.clear

Campus/university network,
Data network, residence hall,
Computer labs, Internet

Resources.unclear
Computing resources,
Information systems

Firewall.clear Firewall, perimeter

Exception
Condition.clear Unless, except

PolicyException.clear
Prior notification/authorization,
Approval

Other

Examples Examples of, such as, for example
Traffic Network traffic, packet, flow
People Students, staff, employees
Comparison Not, other than, greater/less than
Tools Packet sniffers, network monitor

Equipment
Switch, hub, router,
wireless access point

Table 3.1: Tags for Named Entity Recognition in NPA

54

use of such high-level terms without explanation will increase the ambiguities in the

policies and they are tagged as “.unclear” Besides the protocol names, the traffic

content can also be inferred through the behavior implicitly. The behavior usually

consists of a verb and a noun in syntax depicting “do something.” and the consequence

of the behavior is the generation of the traffic network administrators want to take

action on. So in this category, we mainly focus on the traffic that is closely related to

5-tuples which can be either represented using the port number or the IP address.

• TrafficAmount: Some types of network policies focus on the traffic that is

represented by the amount of the traffic. For example, the traffic that is related

to bandwidth usage. The adjectives used to describe bandwidth usage are often

ambiguous as they do not have a specific number for clarification. For example, in the

phrase “a disproportionate amount of network bandwidth”, how do people know their

usage is disproportionate? So these ambiguous adjectives are tagged as “.unclear”.

Besides these adjectives, if the policy mentions specific numbers that explain how

the bandwidth is classified as “excessive”, such as greater than 1Gbps, NPA can also

recognize these numbers along with the unit. Network administrators can set the

value as a filter and find the traffic that consumes excessive network bandwidth.

• Traffic Direction: The direction of the traffic is also important since it determines

whether the collected IP address and port numbers will be used as the source or

the destination. We collected some commonly used adjectives such as “inbound-

/outbound” and preposition phrases such as “from. . . to. . . ” that may represent the

direction of network traffic for the implementation.

• Action: Network policies are written in purely human-readable natural language.

This nature determines that the keywords can be replaced by synonyms to express

similar meanings. It has to be clear what specific action should be placed in the rules

that implement the policies. However, clear actions such as “allow”, “block”, or “rate

55

limit” do not necessarily directly appear in the policies. The action sometimes has

to be inferred depending on the “tone” of the policy, which is closely related to the

words (verbs, adjectives, and adverbs) that are used in the policy. The uncertainty of

the inference increases the ambiguities. We list these words or phrases and assign the

tags based on their attributes and whether they are clear or not.

• Action Duration: When the action of the rule is determined, the duration of

the action is another option to consider. By default, if the duration is not specified,

the rule is considered effective permanently until changes are made. The specific

“timeout” can be declared along with the action to specify how long the action of the

rule will exist.

• Location: Network policies can be either explicit or implicit on where the rules

should be placed. The university firewall is a unique location where various rules

are set up to protect the internal campus resources. Typically, universities have

separate documents titled “Firewall Policies” that centrally manage the policies to

be implemented at the firewalls. Besides the specific location such as the firewall

mentioned above, network policies may also have implications on the location. The

university network is composed of various sub-networks, which means that a feasible

solution is to place the rule on the border switch/router that manages the subnet.

For example, if “residence hall” appears in a network policy, the low-level details such

as the subnet IP address of the residence hall may be used in the description of the

traffic as well to illustrate the traffic to or from that location.

• Exception: Some network policies are considered “flexible” since they have excep-

tions when certain conditions are triggered. NPA can capture conditional words

such as “unless” and explicit exceptions. Network administrators can consider it as

additional information for when they should deal with the mentioned network traffic

differently.

56

• Other: The tags and values in this category are generally used as the support for NPA

to better understand the patterns of the network policies so that no useful information

is missed. We only listed a few in the table, but these recognized words may be useful

to network administrators for the implementation. For example, if a policy focuses

on the student group, network administrators can set up rules that only affect that

group.

3.3 System Architecture

Network Policy Analyzer (NPA) is a system that utilizes the recent advances in NLP to

analyze the quality of network policies written in natural language. The main components of

NPA include the entity extraction module, and the policy analyzing module. After network

administrators use network policy documents as input to NPA, the system will generate a

quality report for all the policies in the input file, showing whether they are well-written

or not based on the detected ambiguous (or missing) terms they have in each group. The

architecture of NPA is shown in Figure 3.1

3.3.1 The Entity Extraction Module

Named Entity Recognition (NER) is one of the sub-tasks in the field of Natural Language

Processing. The purpose of NER is to extract useful information from any given text and

map the extracted information into pre-defined tags so the system understands that the

specific term is in the text and it belongs to a specific category. Currently, there are many

mature NLP libraries that can be used. For example, NLTK [89] and DialogFlow [38] come

with pre-trained models that can recognize entities such as the name of a person, a city,

and so on. However, these models do not perform quite well on domain-specific information

extraction. Taking network policy analysis, for example, the use of network domain-specific

terms, various patterns of the policies makes it difficult to extract the information accurately

with the pre-trained models. To achieve a high detection accuracy, these libraries utilize

57

Figure 3.1: NPA System Architecture

large amounts of training examples for specific purposes. We do not find any existing corpus

in the area of network policies.

Systems like NPA have requirements on the accuracy of the extracted information

since this is the very first step to analyze the quality of a written network policy.

We collected real-world network policies from various university websites and manually

annotated them. They are then used to train the Named Entity Recognition (NER) model.

The goal NPA wants to achieve is to check whether there is any ambiguous or missing

element in a network policy that will create ambiguities for network administrators when

they enforce the policy. Based on the need, we add either “clear” or “unclear” as the postfix

to some training tags of the NLP model. As has been discussed in the previous section, the

training tags have been categorized based on the criteria required to know the quality of a

written policy. This process is essential since it makes it convenient for NPA to process the

extracted information. It checks each category for ambiguity and puts them together as a

58

network policy quality report indicating what should be modified and improved.

3.3.2 The Policy Analyzing Module

Users of NPA input network policies. Once the entity extraction module finishes extracting

the information from the policies, the entities along with the tags will be passed to the policy

analyzing module to generate the quality report for the input network policy document. The

policy analyzing module deals with the entities using a set of rules and the procedure it

follows is shown in Algorithm 1.

The procedure takes three inputs, namely the network policy text, the extracted

entities along with the tags and the pre-defined groups these tags belong to. The entities

are extracted in the same order as they appear in the network policies. The procedure checks

for each group whether there is any recognized entity with a tag that ends with “.unclear”

and appends the entity to the result of that group. Once the procedure goes through all the

extracted entities, it formulates the report for each group and checks the pre-defined groups

for the missing elements. Note, NPA considers the groups of direction, exception, and other

as optional groups. These groups do not necessarily need to appear in the network policies

but if they do appear, NPA is able to recognize them. Network traffic can be described

using the terms in the TrafficDescription group or the TrafficAmount group. NPA checks

the ambiguity of these groups if they exist and assumes that there is no missing value for

the description of the traffic. But for the action group and the location group, NPA checks

both groups for both ambiguous and missing values. Based on the ambiguous terms and

missing elements detected, NPA generates a policy quality report showing whether the input

network policy is well-written or not. In the report, a detailed analysis for each group is

also presented for the users to understand why a policy needs improvement. It provides a

convenient way for the users to locate the problematic part of the policy.

59

Algorithm 1 GenerateQualityReportForPolicy

1: procedure getReport(Entities, Policy,Groups)
2: for entity ∈ Entities do
3: if entity.tag contains “.unclear” then
4: Text = “The term {entity.text} is unclear”
5: group = Groups.findTag(entity.tag)
6: group.quality = 0
7: group.report.append(Text)
8: else if entity.tag contains “Protocol.clear” then
9: group = Groups.findTag(entity.tag)

10: group.quality = 1
11: group.report.clear()
12: direction.quality =1
13: direction.report.append(“implied by {entity}”)
14: else
15: group = Groups.findTag(entity.tag)
16: group.quality = 1 AND group.quality
17: end if
18: end for
19: for group in [action, location] do
20: if group.quality = 0 then
21: overallQuality = 0
22: Report.append(group.report)
23: else if group.quality = None then
24: overallQuality = 0
25: Report.append(“{group} is missing”)
26: end if
27: end for
28: if overallQuality = 0 then
29: Report.prepend(“Policy needs improvement.”)
30: Return policyReport
31: else
32: Report.prepend(“Policy is well written.”)
33: Return Report
34: end if
35: end procedure

60

3.4 Implementation and Evaluation of NPA

In this section, we discuss the data and the processes that NPA takes to train the Named

Entity Recognition (NER) model. Evaluation results are provided based on the metrics such

as F1 score, precision, and recall. We also show the use cases for various types of network

policies and provide suggestions on how to write network policies with fewer ambiguities.

3.4.1 Collecting and Screening Network Policies

Universities typically publish network Acceptable Use Policy (AUP) documents publicly

available online. These documents are given different titles based on the content. For

example, policies about network security are listed in network/information security AUPs.

Policies about wireless devices will be posted in wireless device AUPs. However, not all the

policies listed in the AUPs are related to network traffic, especially those policies targeting

password and encryption are difficult to analyze.

We focused on the network policies that describe the generation of network traffic.

We first investigated general network policy documents from several university websites

and then picked the ones that involved network traffic generation. After we had an initial

categorization of the policies, we then googled these categories on different university

websites. As a result, we finally collected 300 network policies in total from various

university websites by taking out the ones that fit into the categories from the AUPs of each

university. We categorized the policies based on their topics and the number of policies for

each category is shown in Table 3.2.

We first downloaded the web pages that contained these policies and saved them as

local files. For some websites that disabled text selection, we wrote a program to convert

them into text files so that our applications could read the content of those files. Each

policy is composed of either one or two sentences. The collected dataset has 7303 total

words, and 1253 of them are unique.

61

Category Number of Policies % of Total (300)

P2P File Sharing 20 6.67%

Port Scanning/Probing 45 15%

Network Monitoring 25 8.33%

Network Service/Disruption 30 10%

Firewall 10 3.33%

Bandwidth Usage 45 15%

Unauthorized IP 25 8.33%

Unauthorized Devices 70 23.33%

Games 5 1.67%

Insecure Protocols 20 6.67%

Domain Registration 5 1.67%

Table 3.2: Number of Network Policies in Different Categories

3.4.2 NLP Training

We first manually annotated the policies using the tags discussed in the previous section. We

preprocessed and generated the data into a format that could be recognized by spaCy [90],

the NLP library we used to train the model. There are other NLP libraries there but we

chose spaCy as it provides an easy API for users to prepare the training data and performs

fast in Name Entity Recognition (NER).

We divided the data, e.g, the collected network policies into the training and

validation sets using different ratios to see how the ratio would affect the accuracy of the

system. Then we used the CLI tool provided by spaCy version 3 to train the model and to

evaluate the validation set. The best models were saved for further testing. A difference

between spaCy version 3 and previous versions is that we can set up different variables(e.g.,

batch size, dropout) inside a config file and use that file in a single command for the

training. The results were returned in a table showing the metrics such as precision, recall,

F1 score and NER Losses for each training epoch. In general, the values of precision, recall,

and F1 score increase while the value of NER Losses decreases. SpaCy CLI includes an

early stop function that stops the training process before the model overfits. We plot the

62

terminal results in Figure 3.2 showing the typical training results with batch size equals

to 16 and dropout ratio equals to 0.3. The optimizer used was Adam V1, with a learning

rate of 0.001. The data were randomly divided into 80%-20% for the training set(240) and

validation set(60).

Figure 3.2: Precision, Recall, F1 score and NER Losses for a Single Training

Because we only have 300 total samples, which is small for machine learning, we

divided the data using different ratios and checked whether the training results would be

improved as more data was used as the training set. We divided the data using 60%-40%,

70%-30%, 80%-20%, 90%-10% for the training/validation set and ran 20 tests for each

division. The results shown in Table 3.3 indicate that with larger numbers of network

policies as the training set, the overall F1 score NPA increases.

3.4.3 Accuracy of the Policy Quality Report

Entity extraction is only the first step toward generating a quality report for the input

network policy. The metrics shown above explain how well NPA can extract the important

terms and phrases from policies, but not how accurate the final reports are. We evaluate

63

Metrics/Ratios 60%-40% 70%-30% 80%-20% 90%-10%

Average F1 0.7952 0.8179 0.8260 0.8383

Highest 0.8148 0.8430 0.8738 0.8915

Lowest 0.7673 0.7933 0.7972 0.8026

Table 3.3: Entity Extraction Results: Average Metrics for Entity Extraction during 20
Tests with Different Training Samples using Batch Size=16 and Dropout=0.3

the accuracy of the quality report generated by NPA in Table 3.4. A policy quality report

is made up of the assessment and the details. The assessment answers whether the policy

is well-written or needs to be improved. The accuracy was calculated by comparing how

many assessments generated by NPA were exactly the same as the ones generated by us

manually. The details include the analysis of the entities based on the groups they fall into.

We evaluated each section in the quality report using the percentage of the appearance of

the correct statements(i.e., our manual annotations vs. using the NLP model). The ground

truth statements were the ones generated using our manual annotations and they were used

to compare with the results of the NPA system to see whether they were exactly the same.

If so, they were considered “correct” statements. We conducted 20 tests and each test

evaluated 60 validation policies that were randomly selected.

As the results indicate, the accuracy of the assessment is 95%. NPA generates

the assessment based on any existence of ambiguous or missing terms in the groups of

description, action, and location. The high assessment accuracy is due in large part to

the fact that most policies have some ambiguity in one of those key three fields, and we

accurately detect the ambiguity in one of the three fields in 95% of the cases. The individual

accuracies of TrafficDescription, TrafficAmount, action, location and direction remain above

80%, while the accuracy of other, which represented the terms or phrases that were not

technical or domain-specific is comparatively low. Erroneous extraction may occur across

groups, e.g, a term recognized incorrectly into a wrong group, which will influence the

accuracy of both groups. The results also indicate that terms in the group other are not

64

Quality Report Sections Total Appearance Accuracy(%)

Assessment 1200 95.0

TrafficDescription 1200 86.21

TrafficAmount 180 85.37

Action 1200 88.32

Location 1200 85.04

Direction 306 84.66

PolicyException 225 92.0

Other 249 73.42

Table 3.4: Average Accuracy for Different Sections in the Quality Report

recognized as accurately as other groups by NPA.

3.5 Network Policies and Use Cases

In this section, we illustrate the use of NPA by providing examples of output quality reports

for various network policies. We used displacy, a visualizer of the spaCy library to render

the results in Jupyter Notebook. NPA outputs the quality reports of the input network

policies, which contain ambiguous terms and missing groups.

3.5.1 Ambiguity in Traffic Description and Amount

3.5.1.1 Policies about Protocols

In a network policy, the traffic that network administrators need to deal with can usually be

described clearly with low-level packet header information (say the 5-tuple). However, the

”description” in the network policy often contain high-level terms that cause ambiguities.

There are a significant number of network policies that are intended to describe

network protocols but do not mention the specific protocol names. This causes ambiguities

since network administrators may need to guess which protocols the policy refers to and

whether they are exactly the ones network policy writers are talking about. For example,

consider the following two network policies:

65

“Superseded or insecure protocols and cipher suites should not be used unless

there is an approved exception in place” [91]

“P2P applications are not allowed on the University of Memphis network.” [92]

We can notice that the first policy focuses on the protocols and cipher suites that

are “superseded or insecure”. Network administrators may have questions about which

protocols and cipher suites are considered “superseded or insecure”.

We show the NPA output for the first policy about insecure protocols and cipher

suites in Figure 3.3. The word “superseded” is not recognized by NPA since it only appears

once in the entire dataset. This also reflects that we need more training data to increase the

system’s accuracy. NPA considers the uncontracted modal verbs such as must not, should

not, may not as the same while in fact, according to RFC 2119 [93], there is still a difference

in the requirement levels of these keywords. NPA prints the detailed debug information for

each element group of the policy. This policy does not mention anything about the network

location, and also it has the word “unless,” which makes this policy a conditional policy.

Similarly, in the second policy, the subject is “P2P applications”. The output of

the NPA system for this policy is shown in Figure 3.4. Unlike the previous policy, the action

and location in this policy are quite clear, while only the description part has problems. As

a result, NPA also considers it an ambiguous policy.

To demonstrate policies that are well-written, consider the following two policies.

“Applications which transmit sensitive information over the network in clear

text, such as telnet and ftp, are prohibited and will be blocked.” [2]

“The University Wireless Network should not be used inappropriately; in

particular you should not use the network to: run peer-to-peer (P2P) file sharing

software, e.g., BitTorrent.” [3]

66

Figure 3.3: NPA Output for a Policy about Insecure Protocols

Figure 3.4: NPA Output for a Policy about P2P Applications

Due to space limitations, we only show the NPA output for the first of the above

two policies in Figure 3.5. The first policy uses specific protocol names as the subjects or

examples for the explanation so that the description becomes clear.

67

Figure 3.5: NPA Output for a Policy about FTP and Telnet

3.5.1.2 Policies about Bandwidth Usage

Network bandwidth is a shared resource. If some users overuse the network bandwidth,

it may potentially degrade the performance and affect others. Universities have policies

that regulate bandwidth usage. However, many policies have ambiguous descriptions about

the “threshold” that will cause violations. Consider the following policy that mentions

bandwidth:

“Providing services or running applications which consumes excessive bandwidth

on the HMS network without authorization is prohibited.” [94]

The action and network location in this policy are clear. It is also conditional

where “getting the authorization” is an exception for the policy. NPA detects the word

“excessive”, and thinks it to be unclear. From the perspectives of network administrators,

they will have questions about when to take action or to what extent the bandwidth usage

68

of a user will degrade the network performance of other users. The NPA output for this

policy is shown in Figure 3.6.

Figure 3.6: NPA Output for a Policy about Bandwidth Usage

3.5.1.3 Policies about Network Scanning

Scanning the network is an approach to get information about the network, such as “which

host is active?” and “which port is open?” Nmap [95] is considered as one of the most

commonly used tools to perform network scanning. Due to security issues, university policies

often restrict or disallow such behavior. Consider the following port scanning policy:

“Port scanning or security scanning is expressly prohibited unless prior

notification to Information Technology Security is made.” [8]

The NPA output for this policy is shown in Figure 3.7. The action is clear while

the location is missing. The policy is also conditional where making notification to the

69

ITS will be considered as an exception. NPA detects two phrases, “port scanning” and

“security scanning”. “Port scanning” is a well-known term which is a behavior of sending

network traffic to different ports to detect which ports are open, while the scope for the term

“security scanning” can be large. As a result, network administrators may wonder which

behavior is considered as “security scanning” and what type of network will be generated?

The ambiguities increase the risk of false enforcement.

Figure 3.7: NPA Output for a Policy about Network Scanning

3.5.2 Ambiguity in Action

Unlike the low-level network configurations, which may explicitly contain actions such as

block, allow or rate limit, network policies written in natural language may not necessarily

contain these words. The use of verbs or even adjectives may sometimes represent an unclear

action to be taken on the targeted traffic. Consider the following policy with an ambiguous

action and the associated NPA output for this policy in Figure 3.8.

“The use of telnet is ordinarily unnecessary and not recommended.” [96]

70

Figure 3.8: NPA Output for a Policy about the Use of Telnet

This policy is relatively short. The target of the network traffic is clear, which is the

telnet protocol. However, the policy uses an unclear adjective “unnecessary” to describe

the protocol and uses “not recommended” to express the “attitude” toward it. Network

administrators will be confused about the policy since they do not know exactly whether

they should block the telnet traffic or not if they observe it. Consequently, NPA thinks

the policy to be ambiguous based on the two ambiguous terms detected. The location is

missing as well.

Such ambiguous terms for the action can be found in some other network policies.

Below are two example policies with unclear actions. The highlighted terms are considered

weak in a formal network policy statement. These ambiguous terms will increase ambiguities

since they do not provide enough information to the network administrators on what actions

to take on the traffic types mentioned in the policy.

“Grenfell Campus cannot make any assurance of privacy for data that is

sent over the Internet. We recommend that you watch for secure web pages

71

(“https”, and a padlock-icon) whenever you transmit sensitive information.

Instead of “telnet”, consider ”ssh” to log onto remote servers.” [97]

“Users of telnet, rlogin, ftp, and other connectivity programs may not realize

that their password and data is transmitted across the network unencrypted and

can be intercepted by hackers. Use of these ”clear text” protocols is therefore

strongly discouraged.” [98]

3.5.3 Ambiguity in Location

Some examples shown above mention “Location is missing” in the quality reports of the

network policies. This is because the scope of the policies is not mentioned. For some

policies, even if the location appears, network administrators still find it difficult to enforce

the policy due to the ambiguity of the terms used. Consider the following policy with an

imprecise location specification:

“The use of peer-to-peer file sharing applications on Campbell University

computing resources is strictly prohibited.” [99]

We can see in the policy that “Campbell University computing resources” is

mentioned. However, this phrase is ambiguous as it does not explain whether such

“resources” include all the resources such as computers in the labs or residence halls and

whether it applies to the resources off-campus. Network administrators need to consider

different cases separately, which increases the difficulties for the enforcement. The output

of NPA for this policy is shown in Figure 3.9. Similar to the examples that have “unclear”

description, the phrase “peer-to-peer file sharing applications” is ambiguous but the action

“prohibited” is clear.

3.6 Suggestions on Writing Good Network Policy

We propose suggestions on how the network policies composed contain fewer ambiguities.

The goal of these suggestions is to benefit all the stakeholders of network policies. Network

72

Figure 3.9: NPA Output for a Policy with Ambiguous Location Information

administrators will have less confusion during the enforcement process. Users of the network,

potentially the readers of the policies, may also understand the violations better and use

the network resources properly.

• Add Examples for Better Explanation. In the use cases, we showed that

phrases like “Insecure protocols” and “P2P applications” may confuse the network

administrators. If examples such as “FTP and Telnet”, or “BitTorrent” are added

to explain these phrases, the policies will become much clearer for enforcement. This

general suggestion also applies to other sections of the policies reflected by the quality

report.

• Use Strong Terms for Action. Some policies do not clearly state the actions to

be taken to implement the policies. Network administrators will be confused whether

they should “allow or block” such traffic. Terms or phrases such as “must not” or

“prohibited” are expected to appear in the policies so that network administrators

will have no doubt about the action.

73

• Define the Policy Scope. NPA output shows “location is missing” for several

policies in the use cases above. People may have questions about whether the policies

apply to all the network resources or only a small portion of them. It is helpful

if the scope of the policy is defined. For example, a policy document can define

“The policy applies to the entire campus network” at the beginning where people

will understand the scope. At the same time, if the location is specified in the policy,

check the terms that are used. Terms such as “computing resources” and “information

systems” are ambiguous. The first suggestion would apply that examples are provided

for the explanation. For example, “computing resources refer to all the computers on-

campus” so that network administrators can understand that they need to manage

the on-campus network.

• Provide Support for Exception. Many network policies have exceptions since cer-

tain behavior will become allowable under special conditions. Approval/authorization

from the University ITS is necessary to make this happen. However, if the policy is

available online, it should be clear how to make such requests. In the policies with

exceptions, there should be additional links showing the process of how to fill out the

requests either in forms or emails. Thus, it will be clear to network users they are

following the policies and for network administrators, they know whether to see and

review such requests.

• Avoid the Ambiguous Conditions. Some network policies have ambiguous

conditions. For example, the use of phrases such as “whenever possible”, “if necessary”

undoubtedly increases the ambiguities of the policies. Avoid the use of such terms or

phrases and clearly specify the conditions.

3.7 Discussion

In this chapter, we presented Network Policy Analyzer, a system that can analyze the quality

of written natural language network policies. Network policymakers can take advantage of

74

the NPA output to improve the policies and reduce the possibility of confusion when network

administrators enforce the policies. However, there are some improvements that NPA can

make and extend in the future.

Lack of training examples: In NPA, the total number of sample network policies

is 300. This number is considered insufficient in the field of machine learning. This is also

mentioned by the spaCy command-line tool when we train the NLP model. In Figure 3.10,

spaCy suggests using at least 2000 examples for the training. More network policies need

to be collected as training examples so that the accuracy of NPA can increase.

Figure 3.10: SpaCy Debug Data Result

The influence of NPA on policy implementation: NPA checks whether a

network policy is well-written based on the ambiguous or missing terms in the policy

statement. However, there is still a step toward the fully automatic implementation of the

network policies. This is because of the diverse types of network traffic that may appear

in the network and the tools available to the network administrators to detect the network

traffic. For example, if a network policy talks about specific protocols, the low-level details

can be recorded in prepared alias files so that the implementation can be fully automatic.

This is clear since we know the characteristics of such traffic in advance. But what if, we

do not know the traffic type or what tools can be used to capture traffic. Consider the

following network policy:

“Students are not allowed to install personal wireless routers on campus.”

75

The question remains there “what is the traffic that network operators should deal

with for this policy?” Another example is:

“Denial-of-Sevice attacks are expressly prohibited.”

So what tools can network administrators use to find out the network traffic

generated by the behavior of “Denial-of-Service attacks”? Some switches/ routers may

have application layer functions to detect such traffic while others do not. We need an extra

mechanism to map the network traffic and the corresponding tools to use for detection. For

example, if network administrators use the Snort IDS, there should be a mapping between

the alert output in Snort and the related network traffic type. Thus the IDS output can be

used for further processing, resulting in a fully automatic implementation of the network

policies.

76

Chapter 4: NPCE: A Chatbot to Check Network Policy Violations

As discussed in earlier sections, network security policies include high-level directives that

help keep an organization’s network secure. These policies are composed by various

Policy Committees and recorded in network policy documents in the format of human-

readable natural language. Network operators come up with detailed configurations for

network devices, such as switches and routers, to enforce the policies, which satisfy the

organization’s security requirements. However, this process is typically manual where

network operators need to understand the policy documents and make the translations

by themselves. Considering the fact that computer networks are evolving at a fast pace

nowadays, it is even more difficult for network operators to correctly enforce the policies

due to the complexity of the network as well as the misinterpretation of policy documents

and other human errors in the translation process. Furthermore, members of the Policy

Committees often lack sufficient domain-specific knowledge in the networking area which

makes it difficult for them to evaluate whether network policies are correctly enforced. The

low-level details such as the characteristics of network traffic and the syntax of the database

queries can prevent them from generating the correct queries to get the answer about the

current status of the network.

In this chapter, we introduce the design and implementation of a system called

Network Policy Conversation System (NPCE) which takes advantage of the advances in

(1) Natural Language Processing (NLP) techniques to better understand a network policy

and (2) network traffic capturing techniques to collect the network traffic and (3) modern

database solutions to store the collected network traffic. Users of the system are expected

to be able to ask any question related to the network status, whether it is a question about

77

the general statistics of network behaviors, or a specific question about whether a network

policy has been violated. NPCE provides a natural language mapping layer that can extract

and refine the useful information inside the questions from the users and the system is able

to build the correct database queries based on the extracted information. After the query

is generated, NPCE issues it to the network traffic database and gets the query response

in the raw data format. Based on the extracted information from the user’s questions, the

system analyzes what specific answer the users want and sends exactly the answer to what

they are interested in.

4.1 Motivation

Translating network policies into network configurations that enforce the policy with 100%

accuracy is almost impossible. In other words, there will be traffic that gets through

that is not compliant with the network policies. This can occur because the network

configuration mechanisms are not able to fully implement the policy, meaning the network

hardware/software is not able to support the policy. In addition, network configurations

are often large in scope and complexity which greatly increases the potential for errors

to be introduced in the translation process. Moreover, as noted earlier, the potential for

misinterpretation of a policy can also occur if it is not well-written. All of the above results

in non-compliant traffic being allowed to enter/traverse the network.

As a result, it is critically important to be able to examine the network traffic to see

if there is any traffic that violates the network policies. Network administrators (and also

possibly non-technical Network Policy writers) need tools to be able to ask questions about

the traffic that is traversing the network to see if any non-compliant traffic is present.

Note that there are tools to monitor network traffic and alert operators to traffic

that might be concerning. However, these tools are not designed to help answers questions

about network policy compliance and tend to focus more on potential attacks and threats

to the network. IDS tools such as Snort, Suricata, and Zeek/Bro all have the ability to

78

monitor network traffic for security issues. Snort, the oldest one among these three IDSs,

has the ability to alert network operators of potential security threats by looking at packet

traces and offers a wide range of modules that deal with various types of attack traffic,

many of the modules being contributed by the community. Zeek/Bro can log the network

traffic and categorizes them based on the protocols they use. Not only can Zeek/Bro identify

potential security threats, but it can monitor for unusual activity from normal processes and

detect when the network is not operating effectively. Suricata has its own ruleset and most

of which are compatible with Snort’s rules. The advantage of Suricata is the capability

of processing network traffic faster by using multi-threaded processes, while Snort only

supports single-threaded processes.

4.2 Design Goals

As has been discussed in the related work, there is no existing tool that can be directly

used by the network operators to check whether a policy violation occurred in the network.

If they choose to use an existing monitoring tool, they have to translate the network

policies into low-level packet capture specifications needed to collect and analyze the

network traffic for potential policy violations. Our goal, on the other hand, is to design

a system that can (1) understand policy violation questions from network operators, (2)

capture the network traffic required to answer policy violation questions, and store the

collected traffic information, including packet headers and flow statistics in a searchable

database/analytics engine, and (3) provide a mechanism to automatically translate the

policy violation questions into database queries to fetch the answer from the network traffic

database. With such a system, users can directly ask policy violation questions using natural

language, and the intelligent system will answer them.

The gap between policy violation questions written in natural language and the

corresponding low-level database queries is huge. Consequently, it is a significant challenge

to translate network policy violation questions into packet capture specifications to be

79

used in the network management tools and ultimately into database queries to search for

violations. Ideally, the system should perform the translation process fully automatically.

To support the automatic translation of policy violation questions into packet capture and

database query specifications, we proposed a natural language mapping layer in the middle

to better understand what the network operators are asking about and how the useful

information should be used in the network management tools in the format of the low-level

details.

As an intermediary, the mapping layer should possess the following attributes:

1. The mapping layer should be able to recognize both the high-level natural language

terms as well as the terms with low-level details about traffic. Network policy questions

will often be written using high-level conceptual language rather than low-level packet

header terms. For example, a policy question may be written as ”Is there any web

traffic?”, when the more precise low-level question would be ”Is there any port 80

traffic?” The mapping layer should be able to capture both terms such as “web traffic”

and “port 80 traffic” so that no matter how the questions are asked, it can give an

answer.

2. The mapping layer should be able to return the type of information the user is

expecting rather than the raw network traffic data. We continue using the example

“Is there any web traffic?”. Suppose the system finds all the web traffic from the

database, the system should not return all the data to the user since that is not what

the user is expecting. In this particular example, the user is expecting the amount of

web traffic based on the phrase “Is there any”. So the system should be able to parse

the raw network traffic data and return only “Yes or No” based on the count of such

traffic.

3. The mapping layer should have a clear categorization so that the system will

understand which parts of the question are not needed and which parts of the question

80

should appear in the body of a database query. The logic behind this attribute is

important in that not every word in the question is useful. For example, “Can you

let me know the amount of FTP traffic?”. In this question, “Can you let me know” is

absolutely an irrelevant part of the question that should be neglected. Also based on

the fact that network management tools, including the network traffic database, use

ONLY the low-level details to manage or filter the traffic, the mapping layer should

filter out the parts of the question that should appear in these tools. In this case,

“FTP traffic” is the only information that should appear in the database query.

For capturing and storing network traffic, the principle is that it has access to all the

traffic (whether previously captured, or live traffic) and that it needs to be able to filter the

traffic to identify a specific flow or packet.

For the selection of databases, the requirements include (1) excellent search speed

and scalability and (2) a human-readable query language that eases the translation. One

goal of the system is to finally translate a natural language question into a database query.

Since we are expecting that the users may ask any type of question, the system should

provide a reliable mapping mechanism between the content of the questions and the format

of the database queries. In other words, if we consider the query with a single match

statement, the questions with additional information such as aggregation, comparison, and

logical negation should also have their own corresponding query templates for them to use

so that the system can automatically pick the correct query template based on the output

of the mapping layer.

4.3 Approach: Using NLP and Modern Database Solutions

In this section, we introduce the architecture of Network Policy Conversation Engine

(NPCE). We show the functionalities of each working module and discuss the workflow

of the system. As an important component of NPCE, the mapping layer determines the

81

correctness of the interpretation of the question. We discuss the design of the mapping layer

and illustrate how it helps reduce the translation gap between the questions and queries.

4.3.1 System Architecture

To achieve the goals mentioned in the motivation section, the Network Policy Conversation

Engine (NPCE) is composed of three working modules, namely the question interpretation

module, the query generation module, and a network database. The architecture of NPCE

is shown in Figure 4.1.

Figure 4.1: NPCE System Architecture

The Question Interpretation Module: Once NPCE takes the user’s policy

violation question as input, the first task of the system is to understand what is the valuable

information in the question. Fortunately, recent advances in Natural Language Processing

(NLP) provide us with opportunities to better understand natural language sentences in

a more systematic manner. Most notably, entity extraction is an important technique in

the NLP field. It aims to identify and extract the words or phrases that are determined

to be valuable based on a predefined entity set, which is a collection of tagged words or

82

phrases used to train NPCE. In the predefined entity set, each entity value is given a label

of the entity type. For example, we may define “object” as the entity type for the word

“traffic”. The details of the entity set will be discussed in a later section. So each time

the system recognizes the word traffic, it understands that “traffic” is the “object” in the

question that the user is interested in. The entity extraction starts from the beginning of

the sentence which follows the order these entities appear. The order of these words can

be used to understand information such as what the direction of the network traffic is, or

more specifically whether the traffic is coming out of a device or entering an interface of a

switch. This is important since, in the most popular low-level identifiers such as the 5-tuple,

the value of IP address or the port number should be placed correctly in the corresponding

source or destination IP/port. Once NPCE understands where the traffic comes from, it

can label the detected IP or port numbers as either source or destination IP/port numbers.

We also defined lists of synonyms for each type of entity. When the user asks questions

using either the exact same word or phrase or similar ones, NPCE is able to recognize them,

which increases the expressiveness of the system.

The Query Generation Module: The Query Generation Module also plays a

role in converting the natural language questions into the corresponding database queries.

Taking the output from the Question Interpretation module as the input, the role of the

Query Generation module, as its name indicates, is responsible for the generation of the

corresponding database query. Based on the output from the Question Interpretation

module, the Query Generation module takes the extracted entities and places them in the

correct fields to form a database query. How the query will look like is totally dependent on

what entities have been extracted. For example, if NPCE detects the value of an IP address

of a server, along with the traffic direction to be incoming, the Query generation module will

place the resolved IP address in the field of the destination IP address within the 5-tuple.

Since the system prepares a template library for various extracted entity combinations, it

understands which query template to use based on which entities are extracted. The final

83

output of this module to the database is a query that searches for a certain type of network

traffic or packet. It will issue the query to the database through REST API and wait for the

response. After receiving the response, the module parses the query response and processes

it using the information about what the user is expecting and returns to the users ONLY

what they ask about.

The Network Database: This subsystem actually involves two capabilities, the

ability to capture network traffic and the ability to store it. For traffic capture, many

tools have been developed to satisfy this purpose. Tools designed for capturing flows, such

as NetFlow, do processing on the flow-level. They aggregate the records of the packets

whose headers have the same value in the same field. By doing this, the tools provide

network operators with a higher view of what is happening in the network instead of giving

them information about the behavior of each packet. However, sometimes checking network

policy violations may require information on the packet-level. So tools such as Tcpdump

that capture every packet are helpful for analyzing the packet headers.

4.3.2 The Mapping Layer

As has been discussed in the motivation section, the mapping layer should help with the

understanding of the natural language questions as well as the generation of database

queries. It also provides guidelines for what entities should be trained and collected as

a predefined entity set for the Question Interpretation Module. Table 4.1 shows examples

of the identifiers and values in the mapping layer.

The Five W’s [100] is a concept that the system can use to ask questions to itself to

better understand the natural language sentences. In particular, it uses the following five

keywords (who, when, what, where, why). The questions the system can ask itself include

“What network information are we dealing with?” and “When and where does the network

event happen?”. We consider other information as descriptions.

The Object identifier covers the subject of the question, representing “what” we

are dealing with. The Device identifier specifies the place where network events actually

84

Identifiers Example Values

Object Traffic, Packet, Flow, Byte

Device
Host, Switch, Router,
Firewall, Server, Printer

Timestamp
’in the last’ ’number’:value
(minute, hour, day, month)

Attribute <Protocol>, ’IP’:value, ’Port’:value

Protocol
HTTP, FTP, BitTorrent, Telnet,
TFTP, Rlogin, DNS, DHCP

Traffic Direction incoming, outgoing, bi-directional

Comparison Operator
equal to, greater than (or equal),
not equal to, less than (or equal)

Aggregation max, min, average, count, unique count

Special Terms
the Internet, non-standard port, port scanning,
IP source routing, campus <Device>,
authorized <Protocol>servers, etc.

Answer
(True, False), the number of <Object>,
<Attribute>

Object Description
<Attribute>, <Traffic Direction>,
<Comparison Operator>, <Aggregation>,
<Special Terms>

Device Description
<Attribute>, <Comparison Operator>,
<Aggregation>, <Special Terms>

Table 4.1: Identifiers and example values of the mapping layer

85

occurred, representing “where”, and the Timestamp identifier shows the time period,

representing “when”. If people include low-level identifiers such as the 5-tuple values in

the questions, these details will be considered as descriptions. They are covered by the

Object Description identifier and the Device Description identifier. Both identifiers involve

low-level network identifiers such as the protocol, the IP address, and the port number.

With the help of the information about traffic direction, they can be mapped to either

source or destination IP or port numbers. The Special Terms identifier represents the

high-level networking terms which can also be described using the corresponding low-level

network identifiers.

In the body of database queries, it is a fact that only the low-level identifiers will

show up. With the help of alias files, which we refer to as the files where the low-level details

of the special terms are recorded, the system can automate such translation processes. The

low-level details recorded in the alias file are fetched each time when the special terms are

recognized. As has been noted earlier, the questions are categorized into different groups.

The Answer identifier reflects the type of the answer to be returned to the users. Then we

only need to find the answer that matches the descriptions given in the Object Description

and the Device Description identifiers. We analyze the type of questions and categorize

them based on the answers they are expecting.

4.3.3 Tools for Implementation

We set up our topology in the Global Environment for Network Innovations (GENI) [101],

which is a platform that researchers can use to do experiments at scale. To implement

the Question Interpretation Module, we take advantage of the popular Natural Language

Understanding Platform, Google Dialogflow [38]. The reason we pick up Dialogflow out of

many other popular platforms is that it can be integrated with many popular messaging

applications so that users can use their cellphones to ask questions and check network policy

violations. The entity sets are trained in Dialogflow based on the identifier lists provided by

the mapping layer. We implement the Query Generation Module using Flask and store the

86

network traffic in Elasticsearch [102], which is a fast and scalable search engine standing at

the core of the ELK stack [103]. The network traffic data is collected using both NetFlow

and Tcpdump and the log files of these tools are imported to Elasticsearch for analysis.

Dialogflow is a popular Natural Language Processing platform where users can train

their chatbot interfaces. The platform provides a user-friendly GUI where users can tag

the entities easily. Furthermore, it also comes with APIs with which users can write their

code and integrate the trained chatbot into other popular applications that people use daily.

These applications include but are not limited to messaging applications such as Facebook

Messenger, Slack, etc. We show an example Dialogflow interface where users can type

their training entities in Figure 4.2. Under the tag which is “object to measure”, users can

type in words along with their synonyms such as packets, bytes, and traffic. Besides using

synonyms, users can further use regular expressions to express the entities they want to

capture. The Dialogflow system also provides system default entities such as number and

date, so that users can directly tag and use them.

Figure 4.2: Dialogflow Entity Input Example (from https://dialogflow.cloud.google.com/)

Once the users have all the required entities, they continue training under the tab

“Intents”. An intent shows what users want to do. Users can train the example sentences

with different intents. An intent training example is show in Figure 4.3. In this example, the

name of the intent is “get user’s query” where users can put all the training examples here

that belong to this intent. If a user wants to know “the number of pkts in the network in

the last 30 minutes”, then they can manually select the terms or phrases and assign tags to

87

them. Here, “the number of ” is considered as “counter”, “pkts” is the “object to measure”,

“in the network” is tagged as “devices”, which means all the switches and routers in the

network, and “last 30 min” is tagged as “time period” which further uses the system default

entity sys.date-time for processing. With enough training examples, the system will be able

to extract entities from users’ intents.

Figure 4.3: Dialogflow Intent Training (from https://dialogflow.cloud.google.com/)

Elasticsearch is a modern search and analytics platform. The combination use of

Elasticsearch and the database provides users with the opportunities to query the network

statistics and visualize the data using different dashboards. The log files of NetFlow and

TcpDump can be imported to Easticsearch using Beats [104] such as Filebeat [105] and

Packetbeat [106]. Besides the user-friendly interfaces, Elasticsearch also provides different

APIs for the users to query the data with their custom code. In Figure 4.4, we show

an example of how users can find whether there is any occurrence of an IP broadcast

88

packet. The database is the NetFlow log file imported by Filebeat. Users can use tools

such as Ping [107] to send out a broadcast message to all the hosts in the network using

the broadcast address that ends with a “.255” in the IP address. NetFlow captures such

behavior and stores the data. Then in Elasticsearch, users can simply set the destination

address and the time period as the filters and find the result.

Figure 4.4: Broadcast packets (x.x.x.255) found in the Elasticsearch NetFlow logs using
Filebeat

89

4.4 Examples and Use Cases

In this subsection, we provide multiple example translation processes related to some

network policies we listed in the introduction chapter and show how questions can be asked

and then translated to Elasticsearch Queries. As a starting point, we use an example to

illustrate the entire workflow of the system in Figure 4.5.

Figure 4.5: Workflow for Checking Policy Violation against Web Traffic

If network operators want to know the existence of “web traffic”, they can post

questions like “Is there any web traffic in our network?” Once NPCE receives the question,

the NLP module will analyze the question and output the corresponding resolved values

along with the identifiers these values belong to. In this case, “Is there any” belongs to the

answer identifier. “Web traffic” belongs to the special terms identifier under description.

90

“Traffic” is the main object that the system needs to deal with and “in our network”

represents the device where the scope is ANY device in the network. Then the system will

ask the question to itself “What is in the Description?” Based on the detected information

which is “web traffic”, NPCE looks up the corresponding information about “web traffic”

in the alias file where all the low-level details are recorded. The “web traffic” uses TCP

as the transport layer protocol and port 80 as the destination address. The protocol and

port information will be used to generate the ELK query issued to the database. The

response from the database contains all the details such as the amount of traffic, and the

source/destination IP addresses, but not all of them are required by the user. In this case,

the user only wants to know “Is there any”. So NPCE constructs the answer based on the

amount of “web traffic” detected and returns to the user the expected answer containing the

amount. Based on the result, network operators can continue to examine why the policies

are not correctly enforced.

4.4.1 Insecure Application Protocol Policies

“Applications which transmit sensitive information over the network in clear

text, such as telnet and ftp, are prohibited and will be blocked. [2]”.

“The University Wireless Network should not be used inappropriately;

in particular you should not use the network to: run peer-to-peer (P2P) file

sharing software, e.g. BitTorrent. [3]”.

“For a computer system to be managed securely, functional unit tech-

nicians must: Disable or secure remote access from system-to-system (e.g.,

rlogin) [4]”.

These three policies are all about application layer protocols. All these protocols

have security weaknesses and hackers can take advantage of these vulnerabilities to get

information about the content transmitted. As a result, these protocols should be

completely forbidden or restricted with exceptions. The question and extracted entities

91

for the first policy are shown in Figure 4.6. The key component in the final ELK query is

shown in Figure 4.7.

Figure 4.6: Question and Extracted Entities for FTP and Telnet Traffic

Figure 4.7: Elasticsearch Query to Check FTP and Telnet Traffic

For this type of network policy, network administrators or policymakers can ask

similar questions below to check policy violations.

“Is there any ftp or telnet traffic in the network?”

In the question, only the protocol names are used to describe the traffic. Since there

is no timestamp or location mentioned. The system assumes that the user wants to check

on every device throughout the network traffic data stored in the database. When the

protocol names are detected, NPCE will look at the corresponding alias file and finds the

92

low-level details related to the protocols. Here, in this case, are the transport layer protocol

and destination port number. Then NPCE utilizes these low-level details and generates the

Elasticsearch query. Once the response of the query is returned, NPCE counts the number

of the found traffic and generates the answer, and sends it back to the user.

4.4.2 Policies about Prohibited Services

Some network policies regulate the types of servers that are allowed on campus. Consider

the following two policies:

“Network usage judged appropriate by the University is permitted. Some

activities deemed inappropriate include, but are not limited to: Attaching

unauthorized network devices, including but not limited to wireless routers,

gateways DHCP or DNS servers; or a computer set up to act like such a

device [5]”.

“Most network services through non-standard ports are not supported.

Services through non-standard ports may be restricted to a limited number

of subnets or hosts. For example, WWW access via the standard HTTP

port will be permitted, but via some other arbitrary port number may not be

permitted [6].”

The translation process and final query for the first policy are shown in Figure 4.8

and Figure 4.9. The question contains “not” and correspondingly in the Elasticsearch

database, the match phrases are then placed in the “must not” field. The IP addresses

of the authorized server are provided in the alias file. A rogue server is an unauthorized

server. To know the existence of such servers, NPCE relies on the alias file to understand

which servers are considered the authorized ones. So if there is any similar network traffic

that does not come from these authorized servers, NPCE knows the existence of such rogue

servers.

For the second policy, users can ask:

“Is there any campus server that has incoming traffic on non-standard ports?”

93

Figure 4.8: Questions and Extracted Entities for the Policy about Rogue Servers

Figure 4.9: Elasticsearch Query to Check the Existence of Rogue Servers

94

“Campus server” will be recognized as the special term and NPCE will look up those

“non-standard ports” in the alias file and use them as the destination due to the fact that

the term “incoming” implies the direction.

4.4.3 Access Control Policies

“Campus printers should not be exposed to the public Internet. [7]”.

IP address ranges for the campus are provided in the alias file so that the system

will be able to find the IP addresses of the public Internet, which are expressed as addresses

other than the ones used for the campus address. The IP range in CIDR is processed

using regular expressions in the query. Then other fields are similar to the ones in previous

examples.

Figure 4.10: Question and Extracted Entities for the Policy about Campus Printer

The translation process and final result can be found in Figure 4.10 and Figure 4.11.

4.4.4 Port Scanning Policy

“Port scanning or security scanning is expressly prohibited unless prior

notification to Information Technology Security is made [8]”.

Similar to previous examples, users can ask questions like:

“Is there any port scanning traffic in the network?”

In this particular example, we need to understand the features port scanning traffic

has and then record the features in the alias file. A little bit different from previous examples,

95

Figure 4.11: Elasticsearch Query for Campus Printer Access Policy

the match in this example is based on the statistics of network traffic, rather than a specific

field. To deal with the numbers and compare them, we utilize aggregation and bucket

selector to form the correct Elasticsearch query. If the users understand what port scanning

is, they can also include details in the question. For example,

“Is there any host in the network that sent packets to

more than 500 ports in the last minute?”

Such questions are based on how port scanning is defined. Users can add the details

as they want and NPCE will also be able to recognize these low-level details.

The translation process and final ELK query can be found in Figure 4.12 and

Figure 4.13.

96

Figure 4.12: Question and Extracted Entities for the Policy about Port Scanning

Figure 4.13: Elasticsearch Query Example for Port Scanning Traffic

4.4.5 IP source routing policy

“The following services or features must be disabled: All source routing and

switching [9]”.

IP source routing is a feature provided by the IP protocol. The sender of the network

packet can specify the specific path how they want the packet to be routed to the destination.

97

In this example, we need to describe the features of the IP source routing packet.

Figure 4.14: Question and Extracted Entities for the policy regarding IP source routing

Figure 4.15: Elasticsearch Query for IP Source Routing Packets

The translation process and final query can be found in Figure 4.14 and Figure 4.15.

The IP option field in the packet header of the IP source routing packets is recorded in the

alias file. There are two types of IP source routing, strict source routing (SSR) where the

IP option value is 137, and loose source routing (LSR) where the IP option value is 131.

The difference between the types is that strict source routing specifies the entire path that

a packet should traverse, while loose source routing only specifies an address on the path

that the packet should pass through.

98

4.5 Discussion

We presented Network Policy Conversation Engine (NPCE), a chatbot for users to ask

natural language questions about policy violations. NPCE demonstrated its ability to

return to the users what they want to know about the network traffic statistics. However,

there is still room for improvement, especially in the following areas:

• The expressiveness of the mapping layer. Every NLP model requires certain

amounts of training examples to achieve the desired accuracy. In the mapping layer,

we only provided example identifiers and values that we used to train our model.

The model was able to deal with questions of certain types, but there is no assurance

that if the users change the way how they ask questions, NPCE would still correctly

extract the information and generate the query. Another step that can be done is to

find more network policies and investigate which terms are the most commonly used

ones. After the addition of these terms in the mapping layer, NPCE will be able to

react to more questions about network policy violations.

• The approach for collecting network traffic. To collect network traffic details

of different granularities, we used both NetFlow and TcpDump. This means that on

every interface of network switches/routers we need to run multiple programs to collect

and analyze network traffic. When the scale of the network is large, such programs

will certainly add burdens to the network traffic load. Algorithms are necessary to

determine where to run those applications so that network monitoring will introduce

minimum impact on the normal operations of the campus network.

4.6 Summary

In this chapter, we presented Network Policy Conversation Engine (NPCE), which is a

system that can be used by people to check network policy violations by asking natural

language questions. NPCE is able to extract useful information from the questions and

99

translate them into database queries. The mapping layer not only provides guidelines

for what information should be extracted but also categorizes the identifiers to make the

translation to database queries straightforward and verifiable. We evaluated NPCE by

asking questions related to various network policies found on the websites of different

universities, and the results show that NPCE is able to understand these questions but

also can generate queries and get the answers from the database.

100

Chapter 5: Understanding the Internet Topology with IXP Data to Support

Future Internet Routing Policies

The Internet is made up of many Autonomous Systems (ASes). Based on their business

models, ASes often have multiple connection points to the rest of the Internet to provide

Internet services to their customers. The Internet routes network traffic based on the

destination addresses via the BGP protocol. Routing based on the source address, which

is mostly banned nowdays, is becoming a needed capability for the future Internet for

reliability, security, and performance. The capability to select how the traffic is routed

not only provides users with a better service experience but also enables ISPs to realize

economic benefits, i.e, by selling the unused bandwidth along different routes. As a first

step toward supporting future Internet routing policies, we focus on how the Internet is

connected and what the available routes are. In this chapter, we investigate the topic of

AS peering. We target third-party locations called Internet Exchange Points (IXPs) where

one AS sets up connections with others. We collected data of both IXPs and ASes to

implement an Internet topology graph to understand how ASes peer with each other. The

graph can be used to calculate available routes between two ASes and allows future network

policy writers to define routing policies describing which routes the users can choose and

the economic benefits that ISPs have by providing such routes.

5.1 Introduction

The Internet infrastructure is a large network that connects other “small” computer

networks all over the world. Organizations such as companies and universities manage their

own networks that are considered as Autonomous Systems (ASes). To centrally manage and

provide identities to each network that connects to the Internet, Internet Assigned Number

101

Authority (IANA) appoints different Regional Internet Registries (RIRs) for assigning IP

addresses and AS numbers to these Autonomous Systems based on their location [108]. The

assigned IP address and AS numbers become the unique identifiers for these Autonomous

Systems to exchange traffic on the Internet.

The Autonomous System are operated by different Internet Service Providers (ISPs).

Based on the size, the ISPs can be divided into three tiers. The first tier, tier-one ISPs

are the largest service providers that have access to all other networks on the Internet.

According to DrPeering website [109], in the United States, tier-one ISPs include AT&T,

Verizon, Sprint, Century Link, Level 3, NTT, and Cogent. The tier-two ISPs are usually

the regional or the national providers. They purchase Internet access from tier-one ISPs or

peer with other tier-two providers to gain access to the Internet resources. Tier-three ISPs,

on the lowest layer of the hierarchy, are usually the providers that provide service to the

end-users. They purchase services from other providers so that their customers can have

access to the rest of the Internet.

As has been mentioned above, there are two types of main interconnection methods

that Autonomous Systems can select to exchange network traffic and gain access to Internet

resources:

• Through Transit Providers. Considered an “indirect” connection method, two

Autonomous Systems can connect with each other through a third Internet Service

Provider (ISP). For example, two tier-two ISPs can purchase Internet transit from

tier-one ISP so that the network traffic from the tier-two ISPs can reach each other

and also the rest of the Internet that the tier-one ISP has access to.

• Through Peering. An alternative approach for two Autonomous Systems to connect

is to peer. By setting up physical connections, two Autonomous Systems can exchange

network traffic in a “direct” manner. Compared with connecting through transit

providers, peering is considered more economic since Autonomous Systems do not

102

need to pay transit fees. The cost of peering depends on how Autonomous Systems

agree to peer.

5.2 Peering on Internet

Peering provides an alternative way for the Autonomous Systems to connect with others

and the rest of the Internet. ISPs have their own business models that are used to fulfill

their goals based on the scale of the networks as well as their roles on the Internet. However,

even though peering has its advantages, it also has its drawbacks in satisfying the diverse

needs of Autonomous Systems. In this section, we discuss both the benefits and problems

brought by peering.

5.2.1 Peering Benefits

Based on tiers, Internet Service Providers may pick different ways to connect to the Internet

and provide services to their customers. We show the difference between transit connection

and peering in Figure 5.1. Starting from the bottom of the graph, tier-three ISPs, usually

the local or regional ISPs, provide Internet services to the end-customers. Since these ISPs

are comparatively small in size and do not have direct access to the rest of the Internet,

they have to purchase transit services from ISPs of a higher-tier. In the middle, tier-two

ISPs, are larger in the sizes of the networks. They sell transit services to the tier-three

ISPs and at the same time, they also purchase transit from tier-one ISPs. Consequently,

end-users connected to the tier-three ISPs will get access to the rest of the Internet using

this path.

However, one tier-two ISP can also choose to peer with another tier-two ISP with a

similar size at a third-party location such as an Internet Exchange Point. There are benefits

that peering has over purchasing transit services from ISPs of a higher-tier due to cost and

the direct control of network traffic.

• Cost. ISPs consider profits when they provide Internet services to their customers.

According to the Internet transit price published on DrPeering website [110], at the

103

Figure 5.1: Internet Transit vs. Peering

end of the year 2015, the Internet transit prices had dropped to 0.63 US dollars per

Mbps, while the peering cost per month was 10000 US dollars. Using the data, it can

be calculated how much network traffic an ISP should carry to get a cheaper price on

the selection of peering or purchasing the transit services. Many papers [111, 112, 113,

114, 115] have compared and analyzed the difference between transit and peering, and

proposed economic models for peering. ISPs can benefit from these works to reduce

their cost and still provide high-quality network services to their customers.

• More control over the traffic. Each Autonomous System has the policies that

govern how the incoming network traffic is routed, typically based on the destination

address. This means that when an ISP purchases transit from a larger ISP, it has no

control over how the network traffic is routed. The ISPs who sell the transit service

will be solely responsible for routing the network traffic from their customers. With

104

the existence of Internet Exchange Points, Autonomous Systems can peer with each

other which means that the route of the traffic can be optimized with more available

paths to choose from, thus cutting down the inefficient paths.

5.3 IXP Traffic Data

Autonomous Systems and Internet Exchange Points play an important role in the Internet

topology. The data provided by the IXPs can show the traffic that flows between peers.

The traffic volume is important since it may determine for each Autonomous System

whether peering at IXPs is economical compared with purchasing transit services from

other providers. We examined various IXP websites and tried to find information about

such network traffic exchanges between peers. At the same time, knowing how ASes are

connected is also important In this section, we introduce how we collected data about

Internet Exchange Points traffic and showed how the Autonomous Systems peer at these

IXPs. We generate an Internet topology graph composed of both ASes and IXPs and

examine the number of IXPs on the shortest paths between any pair of two ASes.

Much work related to IXP research has been proposed. From the perspectives of the

data used, there are two types of data that appeared in those works (1) Simulated data and

(2) Real-time IXP data. For example, in [116, 117] when the authors wanted to identify the

elephant flows in IXPs, they did not use the real IXP data. Instead, they created topologies

similar to real IXPs, such as AMS-IX [118] which is one of the world’s largest IXPs, and

used iperf [119] to send simulated traffic. For the second type of data, it is available on the

websites of individual IXPs. The data available on individual IXP websites is represented

by the time series graphs with the x-axis being the time series and the y-axis being the

throughput. These graphs are usually provided on HTML pages in the format of .png files

created by rrdtool [120]. There are numbers on the graphs in the format showing the current

data, the max data, and the average data. An example of the real-time traffic stats of the

Seattle IX [121] can be found in Figure 5.2.

105

Figure 5.2: Real-time Traffic Stats on Seattle IX Website

Such network traffic data can be important since the data can not only fit into models

to calculate the economic benefits of peering versus transit but also be used to check the

potential peering policy violations. Some of the peering policies have requirements for the

lowest bandwidth usage. However, there are some challenges getting the correct data from

the individual IXP websites.

• Graphs as the only available sources: Some IXP websites only provide visualized

graphs as the data source of the network traffic stats. To get the numbers out of these

graphs, an additional step is necessary. For example, the authors of [122] implemented

an OCR (optical character recognition) software to fetch numbers out of these traffic

stats graphs. Even though different OCR libraries are available, people may still need

to look at specific graphs due to the different formats of the graphs. The numbers may

appear following the names of different acronyms as the descriptions. For example in

Figure 5.2, the terms such as “cur in” and “cur out” need further processing to be

automatically understood as the “current inbound and outbound traffic”.

• Aggregated data rather than per-interface data: By looking at the individual

website of the IXPs ordered by peak traffic on the Packet Clearing House (PCH)

website [123], we found some IXPs in the USA that provide data in text format so

that they could be directly used, such as Seattle IX [121]. However, the data was

106

aggregated data, representing all the network traffic sent/received by other peers.

Because peering policies focus on the traffic between the two involved Autonomous

Systems, traffic stats on each interface or port would be useful. The aggregated traffic

stats may not be useful for this type of peering policy. Some European IXPs such as

NIX [124] provides data on a specific interface which is helpful in analyzing the traffic

going to a specific AS.

5.4 Representing IXPs in the Internet Topology

In this section, we introduce how we figure out where the IXPs are within the context of

the Internet topology. We collected IXP and AS data from four data sources and created a

graphical representation that could be easily queried, processed, and visualized. The graph

was implemented in the graph database Neo4J, where different queries could be issued by

the users to get the information about IXPs and ASes.

5.4.1 The Obstacles to Understand Internet Peering Relationships

Research on the evolution of Internet topology has been carried out for a long time. The

key factors that prevent people from getting an accurate Internet topology graph include:

(1) the lack of specialized protocols

(2) inadequate data available

(3) the fast-changing Internet itself.

Different abstraction levels have been used to describe an Internet topology graph

such as the AS-level, the point of presence POP-level, the router-level, and the interface-

level, the most popular among which is AS level. To draw an AS-level graph, the main

tools/techniques used include the BGP data, the traceroute data, and the Internet Routing

Registry (IRR) database as introduced in [125]. When it comes to the effect of IXPs on the

Internet topology, the authors of [126] provided detailed information about the most popular

data source corresponding to the above techniques and tools. Five data sources/projects in

107

total were mentioned including The Route Views project [127], CAIDA Ark/Skitter [128],

DIMES [129], IXP Mapping [130] and Packet Clearing House [123].

University of Oregon’s Route View project collects BGP information at IXPs. The

BGP table of the route server can be downloaded from the archive directory and we can

get human-readable data with tools such as bgpdump. The tables include useful information

such as the IP address of the peer, the AS number of the peer, target prefix, AS path, the

next-hop IP address, and so on. The AS links in the table are used for the AS relationship

inference for the entire Internet topology. One problem with the data is the accuracy.

When a link fails, the BGP convergence time determines how long it takes the connection

to recover. On the website of the Route Views Project, the routing information base (RIB)

files are dumped every two hours and are updated every 15 minutes.

CAIDA Ark/Skitter and DIMES are the two projects which made use of the tool

traceroute [131]. In the CAIDA Ark project, probing ICMP packets were sent to random

prefixes within a set of prefixes. The AS relationship data described whether two ASes are

peer-to-peer relationships or provider-to-customer relationships. In the DIMES project,

individual users all over the world participated in the traceroute measurement. These

projects tried to depict the AS-level Internet topology but did not put much emphasis on

IXPs.

The works described in [132, 133] focused on how to identify whether IXPs were

on the path between two ASes. An IXP can be considered as a network assigned with IP

prefixes. Different ASes participate in the IXP network by connecting to different interfaces

which also have IP prefixes. So when a traceroute is performed from one AS to another, if

the IP prefix of the IXP is available in the traceroute result, then we know that both the

ASes peer at the IXP. Additional information such as the IP prefixes of the ASes may also be

available in the traceroute result so it can be inferred whether two ASes (AS M and AS N)

peer at IXP by relating the IPs of the ASes to the AS numbers. However, this method also

has some drawbacks. First, we need to know the IP prefix of the IXP. Even though sources

108

such as Packet Clearing House [123] and PeeringDB [134] provide information about IP

addresses of the IXPs they have on file, the information is not completely consistent based

on the number of IXPs. Second, when a traceroute is performed, it is often the case that

some routers on the path may be unable to show their identities (not respond or respond with

an alternative address) and the consequence is that we see a “*” symbol in the traceroute

result or get wrong inferring results mapping using the alternative address. So the source

and destination ASes of the traceroute have to be carefully planned and selected. In [130],

the authors used data from multiple data sources and carefully selected the source/target

looking glass servers to ensure the reliability of the results. Sample looking glass servers

can be found in [131] where traceroute can be performed.

The authors of the paper [135] proposed a model which was quite different from the

previous works. It set the IXPs as the center of the model and argued that the internet can

be modeled as a bipartite graph where IXPs represent one set of nodes and ASes represent

the other. The key assumption based on a bipartite graph was that no node within the same

set was adjacent which meant there was no link between any two ASes or IXPs. This was

not true on the AS level since two ASes could have private links. While the fact was that

using their model, the data selection becomes quite clear and simple. There was no need to

consider the BGP tables anymore and only the datasets from Packet Clearing House [123]

and PeeringDB [134] were enough where the merged lists of IXPs and AS members of each

IXP were used to construct the bipartite graph. This ensured the accuracy of the result

since the process was simple and straightforward. After the data was processed, attributes

were assigned to different nodes. For example, IXP nodes would have the location attribute

and AS nodes were classified into whether they are content delivery networks (CDN), ISPs,

or organizations. Then it can be analyzed for an IXP which type of ASes had the highest

number of connections to it. It also explored how many IXPs were there on the shortest

path between two ASes. This paper showed from a different perspective where the positions

of IXPs were in the entire Internet topology.

109

5.4.2 Dataset and Approach

To build an Internet topology graph that connects both the IXPs and ASes, we first used

an approach similar to that described in [135], which was to generate a basic bipartite

graph composed of the IXPs as a separate set of nodes and ASes as another set of nodes.

The assumption was that in a bipartite graph, no two nodes in the same set could be

adjacent. The two basic data sources we used were PeeringDB [134] and Packet Clearing

House [123]. To show the potential links between ASes and enrich the types of connections

and information about nodes, we added data from another two data sources, namely the

AS classification data and AS relationship data from the CAIDA website [136].

• PeeringDB Data: We used the three REST APIs to collect and process the

data from PeeringDB, namely the /api/list ix/, /api/retrieve ixlan/ and /api/re-

trieve netixlan/. The first API was used to get the list of IXPs associated with the

PeeringDB IDs. Once we had the IDs, we used them as the parameters in the other

two APIs to get the result about the connections of IXPs and their members. We

show below an example of the final data after processing. It means AS number 20940

is connected to the SIX Seattle Internet Exchange (PeeringDB ID=13) at IP address

206.81.80.113. The SIX Seattle Internet Exchange is located in Seattle, the US, and

the connection link has an MTU of 1500 and a capacity of 100000M with an open

peering policy.

“20940, 206.81.80.113, SIX Seattle: MTU 1500, US, Seattle, 13, 100000, Open”

• Packet Clearing House Data: PeeringDB has rich information about the IXPs

and the connected ASes. However, simply inspecting data from one data source does

not ensure the accuracy and correctness of the data. We also collected data from

Packet Clearing House, but mainly used the data as a filter. Basically, to eliminate

the inconsistency between the PeeringDB data and the Packet Clearing House data,

we examined the IXPs which were listed as “active” to see whether they also existed

110

in the PeeringDB data. If both data sources contain the IXP, we checked whether

the subnets and IP prefixes for them were the same. As a result, we only kept the

data that appeared consistently in both PeeringDB and Packet Clearing House.

• CAIDA AS Data: To enrich the information of the ASes, we also collected data

from the CAIDA [136] website. For the CAIDA AS Type data, an example is shown

in Figure 5.3. The data clearly shows the AS number, how the data source type is

inferred, and the inferred type. The inferred type of an Autonomous System can

be content provider, enterprise, and transit/access provider. We also collected the

CAIDA AS Relationship data. The data format is shown in Figure 5.4 and two ASes

can have two types of relationships, namely peers (0) or customer-provider (-1). The

first example means AS 1 and AS 3549 are peering ASes, concluded from the BGP

data. The second example means AS 2 is the provider of AS 6147, also concluded

from the BGP data.

Figure 5.3: CAIDA AS Type Example

Figure 5.4: CAIDA AS Relationship Example

111

Graph Elements Attributes Examples Source

Nodes

AS
Name AS Numbers PDB+PCH

InferredType
Transit/Access
Content
Enterprise

CAIDA AS Type

IXP
Name IXP Names PDB+PCH
City Some City PDB+PCH
Country Some Country PDB+PCH

Edges
AS-[r:connectsto]->IXP

IP IXP Interface IP PDB+PCH

Policy
Open
Selective
Restrictive

PDB

Speed Link Speed PDB

AS-[r:hasInferredRelationship]->AS Type
Peer-to-peer BGP/MLP

Provider-to-Customer BGP
CAIDA AS Relationship

Table 5.1: Elements in the Internet Topology Graph

A graph is made up of nodes and edges. In the Internet topology graph that we

tried to visualize, we have ASes and IXPs as nodes and the connection between them as

the edges. We included additional information from the data source and load them into the

graph database Neo4J [137] using the Python library py2neo [138]. The summary of the

graph can be found in Table 5.1.

The names of the ASes are the AS numbers and the InferredType shows whether the

AS is a transit provider, a content provider, or an enterprise. IXPs have the attributes of

names and where they are located in the format of city and country pair. IXPs and ASes are

the nodes in the graph. For the edges, there are two types representing whether ASes and

IXPs are connected, and the potential relationships between ASes. The links between ASes

and IXPs show the information such as the peering type (open, selective, or restrictive) of

the corresponding IXP, the IP address of the IXP interface connected, and the speed of

the link. The links between the ASes show the inferred relationship whether they are peers

or provider-customer. Finally, we produced a graph consisting of 9939 nodes (640 IXPs,

9299 ASes) and 229804 edges (24851 AS-IXP links and 204953 inferred-relationship links

between ASes).

112

5.4.3 Prototype Internet Topology Graph and Example Queries

Once we have the Internet topology graph in the graph database, various tools can be used

to query the statistic results about the nodes and edges. The Neo4j [137] database provides

convenient ways to query the data using the Cypher Query Language. The graphical user

interface of the Neo4j Desktop is user-friendly for the users to visualize and query the graph.

Here we provide some examples showing how to get the information about IXPs and ASes

using the Cypher Query Language in Neo4j Desktop.

• The locations of IXPs: IXPs spread all over the world. To get information about

which cities host a large number of IXPs, users can issue the query as shown in

Figure 5.5. The query returns the top ten cities that host the highest number of IXPs

in the world. As the results show, Jakarta in Indonesia, Bangkok in Thailand host the

highest numbers of IXPs (7), and New York, Frankfort, Tokyo, and Dallas host the

same number of IXPs (6). Using the result, researchers can propose location-based

economic models for IXPs.

113

Figure 5.5: Cypher Query Showing the Top Ten Cities Hosting highest numbers of IXPs

• The scales of IXPs: Users may wonder which IXPs are the largest IXPs in the

world. The scale of an IXP can be measured by the number of ASes that peer at the

IXP. In the graph, it can be measured using the number of incoming links to the IXP.

Users can issue the query as shown in Figure 5.6 to get the largest IXPs and then go

to individual IXP websites to get the network traffic data for further analysis.

• ASes ranked by the number of peers: Autonomous Systems can choose to peer

with other ASes at IXPs. In the Internet topology graph we created, ASes are only

represented by their AS numbers and the inferred type. However, these attributes do

not reflect who these ASes are and how these ASes connect with each other. Users

may wonder which ASes have the largest number of peers. Users can issue similar

queries as shown in Figure 5.7 to fetch the peering information of an AS.

114

Figure 5.6: Cypher Query Showing the Top Five IXPs with Most Peering Members

Figure 5.7: Cypher Query Showing the Top Five ASes with Most Peering ASes

115

If the users are interested in what these ASes shown in the table are, they can further

find the information of the AS online. For example, AS 6939 is the AS number for

Hurricane Electric, which is one of the largest Internet Backbone and Colocation

Provider [139].

• Who are peering at an IXP: Simply looking at the members of an IXP does not

answer the question of whether all of them peer with each other. The Neo4j database

provides an easy way for people to know the pairs of ASes that peer at an IXP. In

Figure 5.8, we show a snippet of the Internet topology graph we have created. The

query returns all the IXPs located in the city of Chicago. Only five nodes marked in red

are returned meaning there are five IXPs located in Chicago. We use Coresite-Any2-

Chicago IXP as an example by clicking the “expand” button of the node and then

the graph shows the members of the selected IXP. The purple edges indicate which

Autonomous Systems are the members of the IXP, using a “connectsto” relation.

The green edges show the inferred relationship between ASes using the CAIDA AS

Relationship dataset. If two ASes are both the members of an IXP and at the same

time, they have an inferred relationship of “peer-to-peer”, then we consider both the

ASes peer at this IXP.

116

Figure 5.8: Snippet of IXPs in Chicago and Members of the Coresite-Any2-IXP

• Multiple paths with different capacities between two ASes: In the produced

graph, users can find out all the available paths between any pair of ASes. These

available routes enable the possibility for ASes to provide flexible routing options

and write the corresponding network routing policies. In Figure 5.9, we show the

snippet of a query that calculates an AS that has multiple paths (with different link

capacity) to AS 24482. The corresponding graph is shown in Figure 5.10. AS 24482

and AS 327814 have an inferred relationship of peering members. The two ASes peer

at several IXPs which means that multiple paths are available for the network traffic

to flow between the two ASes. In such a graph, the capacity of each link between

the AS and the IXP will influence the available maximum bandwidth of the entire

path. For example, if the capacity of the link between AS 24482 and IXP LINX

LON1:Main is 10000mbps while the capacity of the link between AS 327814 and IXP

LINX LON1:Main is only 1000mbps, the available capacity for the entire path (AS

24482 to IXP LINX LON1:Main to AS 327814) will be 1000mbps which is the smaller

value of the two links. By calculating the capacity of the entire path, we can see that

117

for different paths the capacities are different as well. In the table result shown in

Figure 5.9, if the traffic from AS 24482 to AS 327814 goes through the two LINX

IXPs, the capacities for both routes are 1000mbps while if the traffic goes through the

other two IXPs, e.g, France-IX Paris or BCIX: the capacities become 100mbps.

Figure 5.9: Capacities for Multiple Paths between AS 24482 and AS 327814

Figure 5.10: Multiple Paths between AS 24482 and AS 327814

The above examples provide guidance on how to fetch IXP and AS related

information from the Internet topology graph. The graph database can be further used

to calculate the paths between ASes. For example, if the users are interested in “how many

118

IXPs are there on the shortest path between any pair of ASes?”, they can use not only the

Cypher Queries but also other graph libraries such as NetworkX [140] for the calculation.

The graph can be also used as an SDN application for the automatic management of peering

policies at IXPs.

5.5 Summary

In this chapter, we made the first step toward supporting future Internet routing policies.

To understand what routes are available to enable routing based on the source addresses,

we investigated IXPs and Internet peering. We collected data from various data sources

and created an Internet topology graph in the graph database Neo4j. The graph shows

the business relationships between ASes and the IXPs where ASes peer with each other.

By issuing different Cypher Queries in the database, users can understand the Internet

topology on different granularities. Different routes can be calculated to support future

Internet routing policies based on source addresses.

119

Chapter 6: Managing Network Policies in a Hybrid SDN/Legacy Network

The emergence of Software-Defined Networks (SDN) provides users with the ability to

control and monitor the network in a fine-grained way. Network services can be deployed

using various SDN applications. One of the key differences between SDN and the traditional

network is the separation of the control plane and the data plane. Due to the different ways

in which SDN networks and traditional networks are managed, network administrators

need to spend more effort managing a network that is composed of both the SDN-capable

devices and legacy devices (switches and routers), which we refer to as a hybrid SDN/Legacy

network.

Enterprises and universities are deploying SDN networks. However, there are a few

reasons that make organizations reluctant to upgrade/replace their existing network into

a whole SDN-capable network all at once. It is often cost-prohibitive to apply changes on

a large scale since the cost includes not only the expenses to purchase new devices, but

also the expenses to train the employees on how to use a different type of network. A

compromise solution is to deploy SDN incrementally in the network. The challenge is how

to provide the SDN services network-wide rather than only a small portion of the network

that is composed of SDN-capable devices.

In this chapter, we describe the challenge from two aspects. First, SDN-based

services provide programmatic control over the network, which at the same time leads to the

questions such as “whether university network administrations should let the researchers

use such services on demand?” and “how much permission should be given to such network

services that change the route of the traffic?” Second is the question of how such SDN-based

services can be extended throughout the legacy part of the network? For the first problem,

120

we argue that with the cooperation of the campus IT and researcher, proper permission

can be delegated to researchers running such network services. These SDN-based services

can be designed to cause no harm to the normal campus network services. For the second

problem, we use Policy-Based Routing (PBR) [141] and a graph database to extend our

VIP Lanes [1] service, which is SDN-based, to the legacy part of our campus network. Our

simulation results in a campus-like topology testbed show that we can provide customers

with the VIP Lanes services even though the end-hosts do not have a direct connection to

the SDN switches.

6.1 Operational Concerns

The emergence of SDN has enabled both simplified and centralized control of the network.

However, to deploy SDN, traditional switches and routers should be replaced and upgraded

to those that have SDN-capabilities. There are two main concerns (1) Should the network be

upgraded to fully SDN-capable all at once? (2) What is the consequence of SDN deployment

and whether networks will become more difficult to manage? To answer the above questions,

we analyze SDN deployment and network management in a hybrid SDN/legacy network.

6.1.1 SDN Deployment and Solution

Despite the advantages SDN has, problems occur when we actually deploy SDN in enterprise

or campus networks. One important topic is how to coordinate SDN with the existing

traditional network, which is composed of many legacy network switches and routers.

Campus IT groups generally have constrained budgets that limit their ability to deploy

SDN [83]. The costs include not only hardware but also “hidden” costs such as the need to

train network operators to manage an SDN network. Another factor is the time required

for the enterprises to reap the benefits after deploying SDN. Return on Investment (ROI)

is what every enterprise cares about. For example, B4 [142], a software-defined WAN that

connects Google’s data centers actually took years to be deployed; such a long payback

period is unaffordable for most enterprises.

121

Incremental deployment of SDN on the campus networks results in a hybrid network,

which is composed of both legacy network devices and SDN-capable devices. There

are several advantages of a hybrid network. First, from the perspective of budget, the

deployment of a hybrid network eases this concern since legacy network devices are replaced

and upgraded to SDN-capable devices gradually. Second, upgrading to a SDN-capable

network is based on the need of the organizations. If the find-grained control is only required

on a small part of the network, there is no need to upgrade all the network devices [143].

A hybrid network is quite suitable in this scenario since it can receive the benefits of SDN

without fully deploying it.

6.1.2 Shared Control and Trust in a Hybrid Network

Within the environment of a hybrid network, legacy devices, and SDN-capable devices

coexist. For network management, these devices should be treated differently. The SDN

controller has a bird’s-eye view of the entire network topology, which only includes the

SDN-capable devices, such as OpenFlow-enabled switches. In other words, we manage the

SDN-capable devices by programming the SDN controller, while for the legacy devices we

use other mechanisms as network administrators do today.

SDN provides opportunities for researchers to write their customized applications.

These applications can be used to either change the forwarding tables of the switches and

routers or get the network stats information, which means that these SDN applications

may have control of the entire network if full permission is given to the researchers and

their SDN applications. Network administrators have the responsibility to ensure that the

networks are running smoothly and reliably. It is also the case that network administrators

are responsible for policy exceptions. Some network policy documents say that exceptions

to route/send certain types of network traffic require getting approval from the campus

administrations. However, these approvals typically take time to be processed, which

is contradictory to one of the advantages brought by SDN, which is the ability to be

set up/configured dynamically in real-time. It has been a challenge to persuade campus

122

administrations to allow researchers to create and deploy customized network services using

SDN in the campus production network, in part because they want time to analyze and

approve custom configurations and any exceptions to the rules. One thing to note is

that the default programs/applications that come along with the SDN controllers from

different vendors only have limited basic capabilities. The applications written by the

researchers which aim at changing the way network traffic is routed are the ones that

campus administrations may have concerns about.

6.1.2.1 Principles of Cooperation

To address the issues mentioned above and to build mutual trust between the researchers

and campus administrations, we develop a cooperative model that assures the campus

administrations that giving certain permissions to network researchers to create customized

flows on demand will cause no harm to the normal operations of the campus network.

A first step toward cooperation is to establish that campus IT will only approve

certain network traffic types that can be directly controlled by the researchers.

The campus network traffic will continue to be controlled by IT following the

policies and existing procedures. Only the network traffic approved by the IT can

be controlled by researchers and their SDN applications.

We consider the type of network traffic that will be approved by the campus IT to

be an “exception” group of traffic since compared with other types of network traffic that

may appear on campus, the “exception” group is not required to be handled by default

network rules, but rather can be programmed/controlled by users. Most of the traffic is

still operated by the network administrators in the same way as it is managed. There is no

change in general and the “exception” group is taken out for careful review.

The match and action pair in an OpenFlow rule can be used to implement such

a principle. That is, a rule that matches all types of traffic using the symbol “*” will be

forwarded using the default path with the lowest priority (0). All the other types of network

123

traffic approved by IT will appear as flows with higher priorities, which will override the

default rule if the match happens. As a result, if the traffic does not match any flow

approved by the IT, it will be processed using the default rule, which works in exactly the

same way as how non-SDN switches process it.

However, it is not simple to implement the principle because (1) SDN switches,

typically OpenFlow-based, may not support such a default rule that matches “ALL” the

network traffic and output it to a specific port. (2) The default rule has the lowest priority

and matches “ALL” the network traffic, implying that all traffic handled by the switch must

be handled by the (potentially limited) bandwidth of the OpenFlow processing mechanism.

Considering the fact that the amount of such “normal” traffic is huge since it consists of the

majority of network traffic on campus, such a match may potentially incur a performance

penalty on the “normal” traffic. The majority of the network traffic managed by IT should

be treated in the same way as it is managed daily. As a result, it is important to identify

which OpenFlow switches support this kind of “normal” rule at a fast speed.

A second step toward cooperation involves stating how we deal with the special

groups of flows approved by IT.

IT approved flows will appear as SDN rules with higher priorities so that the

matched packets will be processed according to these rules instead of the “normal”

rule. So the approved flows will not influence other regular flows.

Network administrators still manage the switches like they usually do. The SDN packets

are processed separately from the majority of network traffic using flows with different

priorities. In other words, the network administrators do not need to keep in touch with

SDN researchers and reply to their requests on demand. The approval will be made in

advance and the researchers set up SDN rules that are allowed to be set up.

The third step toward cooperation regulates the format of the approved flows.

124

The match fields in SDN processing rules are limited to the format of the 5-

tuple, (source IP, destination IP, source port, destination port, transport layer

protocol).

In the project, we cooperated with the campus IT and got approval for certain types

of network traffic that can be controlled by the SDN applications. Campus IT could delegate

a portion of flow space to departmental IT staff and students. The ability to give out specific

portions of the flow space, in the granularity of flows, allows campus IT to be assured that

only limited types of network traffic will get approval to be controlled by the researchers

and their SDN applications, which will not influence the normal operation of the campus

network.

There are several actions that are allowed in the OpenFlow specification. To assure

the campus IT that our control software will not cause harm to the network, we describe

the fourth principle:

Our control software only applies limited actions on the matching flows, and

these actions are pre-approved by IT.

For example, in the VIP Lanes project, most of the flows are redirected using the action

“output to port” allowed by IT. Only the VLAN and the destination MAC address may

have to be rewritten.

6.1.2.2 Including Non-SDN Switches as a Part of SDN

Due to the different mechanisms used by SDN and traditional networks, one of the challenges

of such a hybrid network is how to take control of the entire network, using the capabilities

provided by the SDN controller. We proposed an approach, where the SDN controller can

also have certain control of the legacy network switches. As a result, the SDN controller is

able to manage the entire network in a unified manner, which makes it possible to create

SDN services that are available to the network users even if they are not directly connected

to the SDN-capable switches.

125

The SDN controller has a bird’s-eye view of the SDN portion of the network,

composed of SDN-capable switches. The control is based on the protocols such as OpenFlow.

However, legacy routers may not support such protocols. Their basic capabilities are to

drop and redirect packets, which are only the functionalities in the data plane. SDN has

separated the control plane and the data plane, making the control more flexible through

different applications. This is not applicable on legacy routers due to the lack of support

for protocols like OpenFlow.

Many legacy switches support policy-based routing, which makes it possible for

network administrators to define policies that override the default routes computed by the

routing protocols such as OSPF. At the same time, most legacy switches support Access

Control Lists (ACLs), where special access groups are created matching specific types of

packets. The ACLs are used to drop certain packets when the packets are found based

on the match. We can leverage these functionalities provided by the legacy devices to

make automatic control over legacy devices through SDN controllers possible. Basically,

the communication between the SDN controller and the legacy switches can be achieved in

two aspects. First, we can use SNMP to discover the topology by detecting how the legacy

switches are connected with the SDN-capable devices. Next, we can write SDN applications

that can ssh into the command line interface (CLI) of legacy switches to implement policy-

based routing on-demand. Thus the automatic control of the entire network is achieved.

SDN network services are available to users of the network regardless of their locations.

6.2 Extending VIP Lanes to Legacy Networks

Nowdays the need for big data transfer is increasing. However, campus networks have

different middleboxes such as IDS, NAT, and Firewall that may be considered obstacles

to the big data transfer since at the same time these middleboxes provide services, they

also require packets to be strictly checked, causing performance to decrease. To address

the needs, we introduce VIP Lanes [1], an SDN service provided to researchers that can

126

route the data in a path that bypasses these middleboxes. Only trusted users can create

pre-approved flows on demand when they transfer the data. However, what if a user is

connected to a legacy switch rather than an SDN switch? How can we make the service

available to them as well?

6.2.1 VIP Lanes, A Motivated SDN Service for High-Speed Flows

To enable such network services on the production network on campus, both hardware

deployment and software control are necessary. We first introduce how VIP Lanes was

deployed on campus. Then we discuss the architecture of control software that actually

control the SDN-capable devices.

Traditional campus networks consist of a set of campus core routers that connect the

edge with the router/switch of buildings (A, B, C, D, and E.) as shown in Figure 6.1. For

the users who are connected to the traditional campus networks, the performance of the

big data transfer may be degraded since all the packets have to go through the middleboxes

such as IDS systems and Firewalls no matter which building they are in. These middleboxes

lie on the only path where users can get resources from the Internet.

We have seen SDN networks are gradually deployed on the campus network. We

cannot use the SDN networks to replace the campus core network, but they are running

parallel to the original core networks as shown in Figure 6.2. The structure can provide

high-speed paths for researchers to perform big data transfer experiments only when they

are connected to SDN-capable switches. If they are located in building A or building E, the

path for the big data transfers still goes through the campus core switch with middleboxes

on it.

In order to extend the service to the legacy routers and switches, we connect the

legacy ones with the SDN core as shown in Figure 6.3. The dotted lines are the new links

that connect legacy switches to the SDN-portion of the network. By writing customized

SDN applications, traffic can be redirected to the SDN portion of the network and thus gets

the benefits of a high-speed flow path.

127

Internet

Campus
Core

Firewalls
Edge Router

Middleboxes

Bldg
B

Bldg
A

Bldg
D

Bldg
C

Bldg
E

Figure 6.1: Traditional Campus Network

Internet

Campus
Core

Firewalls
Edge Router

Middleboxes

Bldg
B

Bldg
A

Bldg
D

Bldg
C

Bldg
E

SDN
Core

Figure 6.2: Campus Network with SDN Deployed

128

Internet

Campus
Core

Firewalls
Edge Router

Middleboxes

Bldg
B

Bldg
A

Bldg
D

Bldg
C

Bldg
E

SDN
Core

Figure 6.3: Extend the SDN Functionality to Legacy Routers/Switches

6.2.2 VIP Lanes Software

The system architecture of VIP Lanes is shown in Figure 6.4.

Figure 6.4: VIP Lanes Control Software

129

The major components of the VIP Lanes system include a front-end VIP Lanes

server, the path service library, the graph database, the Policy Based Routing (PBR)

module, and the VIP Lanes modules in the format of SDN applications. To use VIP

Lanes, big data researchers (1) use the front-end VIP Lanes server for a flow request. After

the authentication for credentials, he/she inputs the 5-tuple (source IP address, destination

IP address, protocol, destination port) along with the timeout on the user-friendly GUI. (2)

The delegation tree regulates what IP address ranges can be used by each group of users.

The VIP Lanes server authenticates the source IP address based on the group. It will return

the message on the GUI if users used source IP addresses that they are not allowed to use (3)

Once the authentication is finished, the VIP Lanes server wraps up and sends the requests

from the GUI to the back-end systems. The path service library communicates with the

graph database to fetch the information of the entire topology. Then it puts together the

requests from the VIP Lanes server and the topology information to calculate a path that

bypasses the middleboxes. This path may include those legacy switches that connect the

researcher to the campus network. (4) The path service library calls the module on the

controller using the REST API to insert SDN rules on all the SDN switches on the path,

and the PBR module to install policy-based routing policies on legacy routers. For each

calculated path, two VIP Lanes are created for both the forward traffic and reverse traffic.

The user can also specify the timeout of the SDN rules based on how much data he/she is

going to transfer. The policies installed on legacy routers have to be removed explicitly by

the PBR module when they are no longer needed.

We extend the existing VIP Lanes system to a hybrid network environment. To

help the SDN controller gain the view of the entire network topology including the legacy

switches and connected hosts, we made use of static JSON-encoded files as well as the

graph database, Neo4j. A graph is composed of vertices and edges. In a network graph,

network devices (e.g., switches and routers) and hosts are considered vertices while the

links among them are the edges. The path service library first loads the topology from the

130

controller and creates a base graph in Neo4j. Then it takes advantage of the Simple Network

Management Protocol (SNMP) [144] along with Cisco Discovery Protocol (CDP) [145] to

search the information of the legacy layer-3 switches based on the IP address provided in the

static files (alias files). It also queries the ARP table [146] of the legacy switches to find the

information of the potential hosts. After all the required information of the legacy network

is collected, (including the information of the legacy L3 switches, the hosts connected to the

L3 switches, and the links), a new graph is created based on this information and is added

to the Neo4j graph database as a complement to the base graph. So the graph in Neo4j

represents a complete hybrid network. The path service library on the SDN controller then

has a bird’s-eye view of the entire hybrid network, including all the potential hosts that may

use the VIP Lanes system. With the view of the entire topology, the path service library

is able to compute a hybrid SDN path for the hosts that are connected to a legacy switch.

To redirect traffic from a legacy network to SDN network, we make use of bash script that

implements Policy Based Routing (PBR) and apply it on the legacy L3 switches.

6.2.3 Policy-Based Routing

Policy-Based Routing [141], as its name indicates, can route network traffic based on the

policy defined. Access Control List (ACL) and route-map are the two components of the

PBR. Route-map matches the traffic based on the groups defined in the access control list.

Then it defines the action, for example, setting the next-hop address. Once a PBR policy

is created, it needs to be applied to the specific interface of a switch. Then the packets

arriving on the interface will be routed following the policy. Considering the fact that users

of the VIP Lanes system specify both the source IP address and the destination IP address

when they request to create flows on the server, we then decide to use the extended ACL

(which allows the match beyond the source IP address as in the standard ACL) so that the

settings on the legacy devices have the same fields to match the traffic.

Figure 6.5 shows a sample configuration of PBR and the application on an interface.

The access control list permits the TCP traffic from source IP address 172.23.7.194 to

131

destination IP address 172.23.7.178. The route map defines an action for this class of

traffic, which is “sending the matching traffic to the next-hop address of 10.1.5.1”. Once

the route map is set up, it is applied to a specific interface (VLAN16 in this example) acting

as an IP routing policy. As a result, when the traffic with source IP address 172.23.7.194

and destination IP address 172.23.7.178 arrives on interface VLAN16, it will be routed to

the next-hop address 10.1.5.1, as directed by the PBR policy.

Figure 6.5: An Example Configuration for Policy Based Routing

6.3 Experiment Setup and Results

To examine whether the PBR module works to introduce the VIP Lanes services to

the legacy part of the network, we performed two types of experiments to measure the

throughput with the VIP Lanes service on and compare it with the throughput when traffic

is routed under a normal path on campus. In the first experiment, we used the iperf [119]

tool to send test traffic between two machines on campus (i.e., east-west flows). Then, in

the second experiment, we analyzed the behavior of flows from machines on the campus

network to various Internet2 sites (i.e., south-north flows) using the perfSONAR [147] tool.

6.3.1 East-West Flow Experiment

For this experiment, we set up a laboratory testbed as shown in Figure 6.6. The SDN

portion of the testbed is composed of Aruba 3800 series switches with OpenFlow enabled,

132

running in hybrid mode. The legacy network has a Cisco L3 switch, or more specifically,

Cisco 3750 running Cisco IOS version 12.2(55)SE7, to which the host named cisco-host is

connected.

Figure 6.6: Campus-like hybrid topology prototype

We first measured the throughput for flows between la2-pc1 and la3-pc1, which were

connected directly to the SDN network.

We used iperf to send TCP traffic between these two machines and compared the

results between the default route (going through the Core switch) and SDN route by turning

VIP Lanes on/off. The result was plotted in Figure 6.7 and shows that the performance

over the default route between these two hosts under default conditions was severely limited

by the bottleneck links (dashed lines in Figure 6.6) connected to the Core switch (data

fluctuating around 10 Mbps). When VIP Lanes was turned on, the result increased to

around 510 Mbps.

Similarly, to check the communication between the machines in the legacy portion

133

and the SDN portion, we performed another experiment to measure the throughput between

the Cisco-host and la3-pc1 in the figure. In this case, the key difference was that one of

the endpoints (the cisco-host) was attached to the legacy portion of the testbed. As the

result in Figure 6.8 shows, the default throughput was around 10 Mbps while the VIP Lanes

throughput got closer to the result we obtained in our previous experiment, showing that

VIP Lanes which involves setting up PBR entries to reroute flows from the Cisco L3 switch

to the SDN network did not influence the transfer performance and the traffic was correctly

routed into the SDN network using the PBR policy we set up.

Figure 6.7: Iperf result between la2-pc1 and la3-pc1 (log scale)

Figure 6.8: Iperf result between Cisco-host and la3-pc1 (log scale)

134

6.3.2 North-South flow experiment

The VIP Lanes system has been deployed on the campus production network for the

researchers to bypass the bottlenecks and thus make big data transfer to/from cloud

storage faster. In this experiment, we designed test cases and measured on the real campus

production network to see whether shared trust and control can be realized on the hybrid

campus network. In other words, we examined whether hosts connected to the legacy

portion of the campus network can take advantage of the VIP Lanes service as the SDN

users do.

Figure 6.9: Sample part of campus network topology

Figure 6.9 shows the difference between how SDN traffic and normal traffic get out

of campus and reach the Internet. If we do not use VIP Lanes, when the traffic arrives on

SW2, it will be directed to SW6 and then forwarded to the normal campus network, going

through the middleboxes that limit the performance, the campus edge router, and finally

delivered out to the Internet. We notice that the middleboxes on this normal path will

reduce the big data transfer performance. If the VIP Lanes system is used, the traffic will

135

go directly from SW3, SW4 to the campus edge router. As a result, the path it traverses

bypasses the middleboxes. Similar to our previous experiment, we applied PBR on the

Cisco-L3 switch to redirect flows towards the SDN core (SW4).

The reason for applying Policy Based Routing on the Cisco-L3 switch was to make

sure that the traffic matching on the policy, such as the trusted flows, would be redirected

to follow a path that contains at least one SDN-capable switch.

To fulfill the goal, we took advantage of SW5, which was a switch connected to the

SDN-capable switch SW3. The path from Cisco-L3 to SW5 was configured as a trunk for

the same VLAN so that the interface on SW5 (marked red) could be used as the next-hop

IP address in Policy-Based Routing. This was the configuration we used without modifying

the existing topology. By default, the traffic would go through the normal campus network.

After applying PBR, the traffic was redirected to SW5 where the SDN-capable switch SW3

was on the path. When the traffic arrived on SW3, it followed the SDN rules installed and

was redirected to SW4. So the path control has been realized by means of Policy-Based

Routing and SDN rules.

In the experiment, we measured the throughput from a host machine at the

University of Kentucky (UK) campus network to four remote sites at Internet2. The selected

sites include chic-pt1.es.net (Chicago), atla-pt1.es.net (Atlanta), hous-pt1.es.net

(Houston) and ga-pt1.es.net (San Diego). The tool we used for the tests was perfSONAR,

which actually runs iperf3 for the measurement. For each site, we compared the throughput

for traffic that goes through both the UK campus core network and the SDN network

that bypasses the middleboxes. Both end systems were equipped with a 10Gbps network

interface card (NIC). For both the normal path going through the UK campus network and

the middlebox-free SDN path, we ran 10 tests to each of the four remote sites, the duration

per test was 30 seconds.

In Table 6.1, the average performance for the traffic going through the SDN

middlebox-free path provided by VIP Lanes was much better than that of the traffic going

136

Table 6.1: Throughput comparison to different sites using Normal and SDN paths
Sites Normal (Gbps) SDN (Gbps)

Mean SD Mean SD Speedup

San Diego, CA 1.28 0.26 7.97 0.01 6.2x
Houston, TX 1.90 0.29 8.78 0.46 4.6x
Atlanta, GA 1.97 0.28 8.74 0.31 4.4x
Chicago, IL 2.59 0.36 9.52 0.30 3.6x

to the campus core network. The best average performance we got was for the flow sent

to the Chicago site being 9.52Gbps. This number is very close to the maximum speed

supported by the network interface card. The San Diego site was the one to which we got

the lowest performance for both the SDN network and the normal campus network. Even

though it was expected, because San Diego is away from the UK campus, this site yields

the highest speedup factor across the four sites. For the standard deviation, the results for

the SDN path and the normal path did not vary significantly, remaining to be consistent

with the measurements we presented in our initial prototype.

6.4 Summary

In this chapter, we discussed network policy management in the context of a hybrid

SDN/legacy network. We started from the perspectives of campus administrations and

analyzed why in general they were reluctant to delegate permissions for researchers to

control the network. We proposed a cooperative model that can assure the network

administrators that letting the researchers manage and control certain IT-approved types

of flows will do no harm to the normal operations of the campus network due to the fact

that both the type of network traffic and the actions are limited and pre-approved by the

IT. Then we investigated whether we could enable SDN services network-wide by writing a

customized SDN application that will control the setup of Policy-Based Routing on legacy

switches/routers. The two types of experiments, campus-campus, and campus-Internet

both showed that hosts connected to the legacy switch can still use the VIP Lanes services

with the help of the PBR module. The paths created by the VIP Lanes control software

137

enable a faster transfer speed compared with the paths to the campus core, which passes

through the middleboxes.

138

Chapter 7: Summary and Future Work

7.1 Dissertation Summary

In this dissertation, we proposed novel approaches to simplify network policy management

using NLP and SDN.

In particular, we first proposed Network Policy Analyzer (NPA), a system that can

be used to analyze whether a given network policy is well written or not. NPA mimics what

network administrators think about when enforcing a given network policy and checks

whether there are any ambiguous or missing values in the policy statement. Policymakers

can use the output of NPA to improve the writing of the policies so that both the network

users (readers of the policies) and network administrators will have fewer misunderstandings

regarding the network policies.

Then we proposed Network Policy Conversation Engine (NPCE) which allows

users to query network policy violations using natural language questions. Network

administrators, as well as policymakers, can ask questions and query the network without

knowing the details of the query language.

Next, to support future Internet routing policy based on the source address and

understand how ASes are connected and the locations of IXPs in the Internet topology,

we collected publicly available data from data sources such as PeeringDB, Packet Clearing

House, and CAIDA. We created an Internet topology graph in the graph database Neo4j

so that the users can find the information about IXPs and ASes they are interested in.

Lastly, we focused on network policy management in a hybrid SDN/Legacy network.

We first analyzed the concerns network administrators may have for giving permission to

researchers and their SDN applications that potentially control the network. A proposed

139

cooperative model assured campus network administrations of the fact that limited IT-

approved content and actions in the flows would do no harm to the normal operation of

the campus network. Besides the model of shared trust and control of the network, we also

proposed an approach to extend the VIP Lanes high-speed SDN services to the legacy part

of the network. Taking advantage of Policy-Based Routing and protocols such as SNMP,

the SDN controller could have a view of the legacy switch and provide SDN services to the

hosts connected.

7.2 Future Work

The work described in this thesis makes significant strides toward improving network

policies, but can be extended to further improve the ways policies are written and applied.

Example future work includes:

• NLP Training: Introducing NLP to network policy management has a promising

future. However, the trained NLP models are dependent on the number as well as

the characteristics of the training examples being used. In this dissertation, both

of the two proposed systems that trained NLP models have hundreds of samples for

the training. As has been discussed in Chapter 4, NLP libraries such as spaCy have

recommended a minimum number of training examples. The creation of such Named

Entity Extraction models is to generalize, which means that even though words have

never appeared in the training samples, the system should still be able to recognize

such words. For future work, more network policies are to be collected for the training

to increase the accuracy of the system.

• Optimize Network Monitoring: In NPCE, we collected network data on the gran-

ularity of both the flow level and the packet level. In the prototype implementation,

there was only one switch connected. However, this is not the case in the production

network. It should be examined whether such kinds of network monitoring will

influence the normal transmission of the network traffic. Algorithms can be designed

140

based on the network traffic type described in the network policy documents on where

to place such monitoring functions.

141

Appendices

Appendix A List of Abbreviations

ACL Access Control List

AI Artificial Intellingence

API Application Programming Interface

ARP Address Resolution Protocol

AS Autonomous System

ASN Autonomous System Number

ASDM Adaptive Security Device Manager

AUP Acceptable Use Policy

BGP Border Gateway Protocol

CDP Cisco Discovery Protocol

CIO Chief Information Officer

CLI Command-Line Interface

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DoS Denial of Service

DSL Digital Subscriber Line

EIGRP Enhanced Interior Gateway Routing Protocol

ESDX Economic Software-Defined eXchange

FTP File Transfer Protocl

GENI Global Environment for Network Innovations

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

142

HTTPS HyperText Transfer Protocol Secure

IANA Internet Assigned Number Authority

IBN Intent-Based Networking

IDS Intrusion Detection System

IOS Internetwork Operating System

IP Internet Protocol

IPS Intrusion Prevention System

IRC Internet Relay Chat

ISP Internet Service Provider

IXP Internet Exchange Point

IT Information Technology

ITS Information Technology Service

JSON JavaScript Object Notation

LSTM Long Short Term Memory

MAC Media Access Control

ML Machine Learning

NAT Network Address Translation

NBI Northbound Interface

NER Named Entity Recognition

NGFW Next-Generation Firewall

NIC Network Interface Card

NLP Natural Language Processing

NOS Network Operating System

NPCE Network Policy Conversation Engine

NPA Network Policy Analyzer

OS Operating System

OSI Open System Interconnect

OSPF Open Shortest Path First

OVS Open Virtual Switch

143

OVSDB Open vSwitch Database

PBR Policy-Based Routing

PC Policy Committee

PoP Point of Presence

QoS Quality of Service

RCP Remote Copy

REST REpresentational State Transfer

RIR Regional Internet Registry

RPKI Resource Public Key Infrastructure

RS Route Server

SDN Software-Defined Network

SDX Software-Defined eXchange

SFTP SSH File Transfer Protocol

SNMP Simple Network Management Protocol

SQL Structured Query Language

SSH Secure Shell

SSL Secure Socket Layer

VLAN Virtual Local Area Network

Appendix B Other Policies and Discussion

In Chapter 4, we showed example policies about Insecure Protocols, P2P File Sharing,

Network Scanning, and Bandwidth Usage. We discuss the assessment of some network

policies on other topics in this appendix. We categorize the policies based on the topics and

discuss the factors that prevent the policies from being implemented correctly. In particular,

we focus on two aspects (1) Where to find the information about the extracted entities and

(2) What tools are available to detect the network traffic described in the policy statement?

We only list a few network policies to illustrate the problem in this appendix.

144

Appendix B.1 Explanation for the Extracted Information

The ambiguities in the network policies may exist due to the unmatched information kept by

the network administrators. Once NLP systems extract the information from the policies,

they should be further converted to lower-level details for automatic enforcement. In other

words, the lack of an information database, e.g, an alias file which provides details to

support the extracted information is making the network policies difficult to be understood

completely. Such an information database, which should be recognized and agreed upon by

both the policymakers and network administrators will be helpful to reduce or eliminate

the ambiguities in the network policies. Without such a database for the explanation, the

extracted information becomes ambiguous.

• Unauthorized Services

“Baylor University does not allow network users to run unauthorized

SMTP, DHCP, DNS, or directory services on any networks.” [148]

In this policy, protocols such as SMTP, DHCP and DNS are mentioned. An alias file

can record the transport layer protocol and the port numbers used by these protocols.

To distinguish between authorized and unauthorized traffic, the IP addresses of such

authorized SMTP, DHCP, and DNS servers should be provided. On the other hand, for

the term directory services, what are the common protocols used for such services?

These protocols should also be agreed upon by both the policymakers and the network

administrators and recorded in the alias file so that the ambiguities are eliminated.

• Recreational Games

“Due to limited network resources, the use of CAMPBELL network

facilities for playing graphics-based interactive games is prohibited.”

[99]

In this policy, the term graphics-based interactive games is causing confusion.

What port numbers and protocols can be used to represent the traffic generated

by such games should be discussed and agreed on in the alias file to eliminate the

ambiguities.

• Domain Registration

“The registration of commercial hostnames to a SUNY Delhi Wireless

IP address is strictly prohibited.” [149]

In this policy, the term commercial hostnames is confusing. Details about such

hostnames should be provided as a list in the alias file to make the policy clear.

• Unauthorized IP

“Only officially assigned Internet Protocol (IP) numbers may be used

for equipment connected to the University’s data network.” [150]

In this policy, details of the officially assigned IP should be provided, for example,

the IP address range provided by the official DHCP server and the pre-approved static

IP addresses. All the other IPs observed will be considered as a violation of this policy.

145

Appendix B.2 Tools For Traffic Detection

The 5-tuple is a concept that describes the characteristics of a basic TCP/IP connection.

Network policies about application layer protocols as well as other policies about the use

of IP addresses can be enforced within a rule using the 5-tuple before the network traffic is

actually observed. However, some types of network traffic described by the network policies,

which involve characteristics beyond the 5-tuple, require sophisticated tools or systems for

detection. Network administrators want clear information about what tools are available

and whether these tools can detect the network traffic described in the policies. Without

such information, the policies become potentially not enforceable.

• Network Monitoring

“Attempts to monitor, analyze, or tamper with network data packets

that are not explicitly addressed to your computer are prohibited.” [94]

Data interception may occur in the network. Some types of interception can be

detected based on the intercepted data. For example, there are tools that can detect

HTTPS interception attacks. In fact, there should be a match between what is

recorded in the network policies and the corresponding alias file that documents

the tools used to detect such traffic. In this policy, network administrators need

clear information about what types of traffic will be generated by the behavior of

monitor, analyze or tamper with packets and what tools can be used to detect

the network traffic. Otherwise, they become ambiguities in the policy.

• Unauthorized Devices

“University students, faculty, staff, volunteers and guests shall not install

wireless networking equipment in University owned or leased spaces

without written consent from the Information Security and Policy Office.”

[10]

In this policy, the term wireless networking equipment is ambiguous. Network

administrators will be confused about which devices are considered wireless network

equipment and what tools can be used to detect the traffic generated by these devices.

The definition of wireless networking equipment and the approach to detect them

should be recorded in the alias file.

All the collected policies and assessments can be found at [151].

146

Bibliography

[1] James Griffioen, Kenneth Calvert, Zongming Fei, Sergio Rivera, Jacob Chappell,

Mami Hayashida, Charles Carpenter, Yongwook Song, and Hussamuddin Nasir. VIP

Lanes: High-speed Custom Communication Paths for Authorized Flows. In 2017

26th International Conference on Computer Communication and Networks (ICCCN),

pages 1–9. IEEE, 2017.

[2] UMSL Network Policies. https://www.umsl.edu/technology/networking/networkpo

licy.html.

[3] University of Birmingham Wireless Network Policy. https://intranet.birmingham.ac

.uk/it/teams/infrastructure/core/wireless/help/policy.aspx.

[4] Indiana University Security of Information Technology Resources. https://policies.i

u.edu/policies/it-12-security-it-resources/index.html.

[5] Villanova University Network Security Policy. https://www1.villanova.edu/villanova

/unit/policies/AcceptableUse/security.html.

[6] Salem State University Network Security Policy. https://records.salemstate.edu/sites

/records/files/policiesNetwork20Security20Policy.pdf.

[7] UC Berkeley Network Printer Security Best Practices. https://security.ber

keley.edu/education-awareness/best-practices-how-articles/system-application-

security/network-printer-security.

[8] University of Louisiana at Lafayette Security and Accetable Use Policies. https://he

lpdesk.louisiana.edu/sites/helpdesk/files/IT Security Policy.pdf.

[9] The Sans Institute Router and Switch Security Policy. https://assets.contentstack.io

/v3/assets/blt36c2e63521272fdc/blt6cbaf88421cd16f6/5e9dfac0674ec260f325c430/ro

uter and switch security policy.pdf.

[10] University of Iowa Network and Airspace policy. https://itsecurity.uiowa.edu/netwo

rk-and-airspace.

[11] Loyola University Chicago Network Firewall Policy. https://itsecurity.uiowa.edu/net

work-and-airspace.

[12] Neil Francis Doherty, Leonidas Anastasakis, and Heather Fulford. Reinforcing the

Security of Corporate Information Resources: A Critical Review of the Role of the

Acceptable Use Policy. International journal of information management, 31(3):201–

209, 2011.

147

https://www.umsl.edu/technology/networking/networkpolicy.html
https://www.umsl.edu/technology/networking/networkpolicy.html
https://intranet.birmingham.ac.uk/it/teams/infrastructure/core/wireless/help/policy.aspx
https://intranet.birmingham.ac.uk/it/teams/infrastructure/core/wireless/help/policy.aspx
https://policies.iu.edu/policies/it-12-security-it-resources/index.html
https://policies.iu.edu/policies/it-12-security-it-resources/index.html
https://www1.villanova.edu/villanova/unit/policies/AcceptableUse/security.html
https://www1.villanova.edu/villanova/unit/policies/AcceptableUse/security.html
https://records.salemstate.edu/sites/records/files/policiesNetwork20Security20Policy.pdf
https://records.salemstate.edu/sites/records/files/policiesNetwork20Security20Policy.pdf
https://security.berkeley.edu/education-awareness/best-practices-how-articles/system-application-security/network-printer-security
https://security.berkeley.edu/education-awareness/best-practices-how-articles/system-application-security/network-printer-security
https://security.berkeley.edu/education-awareness/best-practices-how-articles/system-application-security/network-printer-security
https://helpdesk.louisiana.edu/sites/helpdesk/files/IT_Security_Policy.pdf
https://helpdesk.louisiana.edu/sites/helpdesk/files/IT_Security_Policy.pdf
https://assets.contentstack.io/v3/assets/blt36c2e63521272fdc/blt6cbaf88421cd16f6/5e9dfac0674ec260f325c430/router_and_switch_security_policy.pdf
https://assets.contentstack.io/v3/assets/blt36c2e63521272fdc/blt6cbaf88421cd16f6/5e9dfac0674ec260f325c430/router_and_switch_security_policy.pdf
https://assets.contentstack.io/v3/assets/blt36c2e63521272fdc/blt6cbaf88421cd16f6/5e9dfac0674ec260f325c430/router_and_switch_security_policy.pdf
https://itsecurity.uiowa.edu/network-and-airspace
https://itsecurity.uiowa.edu/network-and-airspace
https://itsecurity.uiowa.edu/network-and-airspace
https://itsecurity.uiowa.edu/network-and-airspace

[13] What is Snort? https://www.snort.org/.

[14] Suricata, Open Source IDS/IPS/NSM Engine. https://suricata-ids.org/.

[15] Zeek Manual. https://docs.zeek.org/en/master/.

[16] Introduction to Cisco IOS NetFlow - A Technical Overview. https:

//www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/pr

od white paper0900aecd80406232.html.

[17] TCPDUMP/Libpcap Public Repository. https://www.tcpdump.org/.

[18] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve

Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-Defined Networking:

A Comprehensive Survey. Proceedings of the IEEE, 103(1):14–76, 2014.

[19] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,

Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling

Innovation in Campus Networks. ACM SIGCOMM Computer Communication

Review, 38(2):69–74, 2008.

[20] Ben Pfaff and Bruce Davie. The Open Vswitch Database Management Protocol.

Internet Requests for Comments, RFC Editor, RFC, 7047, 2013.

[21] Cisco whitepaper: Intent-based Networking, Building the Bridge between Business

and IT. https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networ

ks/digital-network-architecture/nb-09-intent-networking-wp-cte-en.pdf.

[22] Elisa Rojas. From Software-Defined to Human-Defined Networking: Challenges and

Opportunities. IEEE Network, 32(1):179–185, 2017.

[23] Cisco ACL Overview and Guidelines. https://www.cisco.com/c/en/us/td/docs/ios-

xml/ios/sec data acl/configuration/15-mt/sec-data-acl-15-mt-book/sec-acl-ov-

gdl.html.

[24] Basic Access List Configuration for Cisco Devices. https://www.ciscopress.com/art

icles/article.asp?p=1697887#:∼:text=Unlike%20a%20standard%20ACL%2C%20th

e,based%20on%20an%20established%20connection.

[25] Cisco Configure Static Routing. https://www.cisco.com/c/en/us/td/docs/switches

/datacenter/nexus3000/sw/unicast/503 u1 2/nexus3000 unicast config gd 503 u1 2

/l3 route.html.

[26] PFSENSE. https://www.pfsense.org/.

[27] IPFW. https://www.freebsd.org/doc/en/books/handbook/firewalls-ipfw.html.

[28] PF. https://www.openbsd.org/faq/pf/.

[29] IPTABLES. https://linux.die.net/man/8/iptables.

[30] Palo Alto Networks. https://www.paloaltonetworks.com/.

148

https://www.snort.org/
https://suricata-ids.org/
https://docs.zeek.org/en/master/
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.tcpdump.org/
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/digital-network-architecture/nb-09-intent-networking-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/digital-network-architecture/nb-09-intent-networking-wp-cte-en.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_data_acl/configuration/15-mt/sec-data-acl-15-mt-book/sec-acl-ov-gdl.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_data_acl/configuration/15-mt/sec-data-acl-15-mt-book/sec-acl-ov-gdl.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_data_acl/configuration/15-mt/sec-data-acl-15-mt-book/sec-acl-ov-gdl.html
https://www.ciscopress.com/articles/article.asp?p=1697887#:~:text=Unlike%20a%20standard%20ACL%2C%20the,based%20on%20an%20established%20connection.
https://www.ciscopress.com/articles/article.asp?p=1697887#:~:text=Unlike%20a%20standard%20ACL%2C%20the,based%20on%20an%20established%20connection.
https://www.ciscopress.com/articles/article.asp?p=1697887#:~:text=Unlike%20a%20standard%20ACL%2C%20the,based%20on%20an%20established%20connection.
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/unicast/503_u1_2/nexus3000_unicast_config_gd_503_u1_2/l3_route.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/unicast/503_u1_2/nexus3000_unicast_config_gd_503_u1_2/l3_route.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/unicast/503_u1_2/nexus3000_unicast_config_gd_503_u1_2/l3_route.html
https://www.pfsense.org/
https://www.freebsd.org/doc/en/books/handbook/firewalls-ipfw.html
https://www.openbsd.org/faq/pf/
https://linux.die.net/man/8/iptables
https://www.paloaltonetworks.com/

[31] Cisco Next Generation Firewall. https://www.cisco.com/c/en il/products/security/

firewalls/index.html.

[32] SONICWALL. https://www.sonicwall.com/.

[33] Barracuda Firewall. https://www.barracuda.com/landing/pages/firewall.

[34] Ethereal Tool. https://ethereal.en.softonic.com/.

[35] SFLOW. https://sflow.org/.

[36] IPFIX. https://tools.ietf.org/html/rfc7011.

[37] Arthur Selle Jacobs, Ricardo José Pfitscher, Ronaldo Alves Ferreira, and Lisan-

dro Zambenedetti Granville. Refining Network Intents for Self-Driving Networks.

In Proceedings of the Afternoon Workshop on Self-Driving Networks, pages 15–21,

2018.

[38] Dialogflow, Create Conversational Experiences Across Devices and Platforms. https:

//cloud.google.com/dialogflow.

[39] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with

Neural Networks. In Advances in neural information processing systems, pages 3104–

3112, 2014.

[40] Mohammad Riftadi and Fernando Kuipers. P4I/O: Intent-Based Networking with

P4. In 2019 IEEE Conference on Network Softwarization (NetSoft), pages 438–443.

IEEE, 2019.

[41] Sergio Rivera, Zongming Fei, and James Griffioen. POLANCO: Enforcing Natural

Language Network Policies. In Proceedings of the 29th International Conference on

Computer Communications and Networks (ICCCN), 2020.

[42] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo Ye,

Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, et al. Safely

and Automatically Updating In-Network ACL Configurations with Intent Language.

In Proceedings of the ACM Special Interest Group on Data Communication, pages

214–226. 2019.

[43] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and David

Walker. Modular SDN Programming with Pyretic. Technical Reprot of USENIX,

30, 2013.

[44] Douglas Comer and Adib Rastegatnia. OSDF: An Intent-based Software Defined

Network Programming Framework. In 2018 IEEE 43rd Conference on Local Computer

Networks (LCN), pages 527–535. IEEE, 2018.

[45] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya Akella,

Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying Zhang. PGA:

Using Graphs to Express and Automatically Reconcile Network Policies. ACM

SIGCOMM Computer Communication Review, 45(4):29–42, 2015.

149

https://www.cisco.com/c/en_il/products/security/firewalls/index.html
https://www.cisco.com/c/en_il/products/security/firewalls/index.html
https://www.sonicwall.com/
https://www.barracuda.com/landing/pages/firewall
https://ethereal.en.softonic.com/
https://sflow.org/
https://tools.ietf.org/html/rfc7011
https://cloud.google.com/dialogflow
https://cloud.google.com/dialogflow

[46] Anubhavnidhi Abhashkumar, Joon-Myung Kang, Sujata Banerjee, Aditya Akella,

Ying Zhang, and Wenfei Wu. Supporting Diverse Dynamic Intent-Based Policies using

Janus. In Proceedings of the 13th International Conference on emerging Networking

EXperiments and Technologies, pages 296–309, 2017.

[47] ONOS Intent Framework. https://wiki.onosproject.org/display/ONOS/Intent+Fra

mework.

[48] Davide Sanvito, Daniele Moro, Mattia Gull̀ı, Ilario Filippini, Antonio Capone,

and Andrea Campanella. ONOS Intent Monitor and Reroute Service: Enabling

Plug&Play Routing Logic. In 2018 4th IEEE Conference on Network Softwarization

and Workshops (NetSoft), pages 272–276. IEEE, 2018.

[49] Minh Pham and Doan B Hoang. SDN Applications-The Intent-Based Northbound

Interface Realisation for Extended Applications. In 2016 IEEE NetSoft Conference

and Workshops (NetSoft), pages 372–377. IEEE, 2016.

[50] OpenDayLight NIC. https://docs.opendaylight.org/en/stable-fluorine/user-guide/ne

twork-intent-composition-(nic)-user-guide.html.

[51] Project Nemo. https://www.ietf.org/proceedings/95/slides/slides-95-sdnrg-11.pdf.

[52] Mariam Kiran, Eric Pouyoul, Anu Mercian, Brian Tierney, Chin Guok, and Inder

Monga. Enabling Intent to Configure Scientific Networks for High Performance

Demands. Future Generation Computer Systems, 79:205–214, 2018.

[53] Inder Monga, Chin Guok, John MacAuley, Alex Sim, Harvey Newman, Justas Balcas,

Phil DeMar, Linda Winkler, Tom Lehman, and Xi Yang. SDN for End-to-end

Networked Science at the Exascale (sense). In 2018 IEEE/ACM Innovating the

Network for Data-Intensive Science (INDIS), pages 33–44. IEEE, 2018.

[54] Nick Feamster and Hari Balakrishnan. Detecting BGP Configuration Faults with

Static Analysis. In Proceedings of the 2nd conference on Symposium on Networked

Systems Design & Implementation-Volume 2, pages 43–56, 2005.

[55] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.

Fast Control Plane Analysis using an Abstract Representation. In Proceedings of the

2016 ACM SIGCOMM Conference, pages 300–313, 2016.

[56] Seyed K Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas

Sekar, and George Varghese. Efficient Network Reachability Analysis using a Succinct

Control Plane Representation. In 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 16), pages 217–232, 2016.

[57] Donald E Knuth. The Art of Computer Programming, Volume 4A: Combinatorial

Algorithms, Part 1. Pearson Education India, 2011.

[58] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A General Approach

to Network Configuration Verification. In Proceedings of the Conference of the ACM

Special Interest Group on Data Communication, pages 155–168, 2017.

150

https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://docs.opendaylight.org/en/stable-fluorine/user-guide/network-intent-composition-(nic)-user-guide.html
https://docs.opendaylight.org/en/stable-fluorine/user-guide/network-intent-composition-(nic)-user-guide.html
https://www.ietf.org/proceedings/95/slides/slides-95-sdnrg-11.pdf

[59] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,

Ratul Mahajan, and Todd Millstein. A General Approach to Network Configuration

Analysis. In 12th USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI 15), pages 469–483, 2015.

[60] Nuno P Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and George

Varghese. Checking Beliefs in Dynamic Networks. In 12th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 15), pages 499–512, 2015.

[61] Rupak Majumdar, Sai Deep Tetali, and Zilong Wang. Kuai: A Model Checker

for Software-Defined Networks. In 2014 Formal Methods in Computer-Aided Design

(FMCAD), pages 163–170. IEEE, 2014.

[62] Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky, Aleksandr Karby-

shev, Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. VeriCon: Towards Veri-

fying Controller Programs in Software-Defined Networks. In Proceedings of the 35th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

pages 282–293, 2014.

[63] Marco Canini, Daniele Venzano, Peter Pereš́ıni, Dejan Kostić, and Jennifer Rexford.

A NICE Way to Test OpenFlow Applications. In Presented as part of the 9th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 12), pages 127–

140, 2012.

[64] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P Brighten Godfrey,

and Samuel Talmadge King. Debugging the Data Plane with Anteater. ACM

SIGCOMM Computer Communication Review, 41(4):290–301, 2011.

[65] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott Shenker.

Verifying Isolation Properties in the Presence of Middleboxes. arXiv preprint

arXiv:1409.7687, 2014.

[66] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. Symnet: Static

Checking for Stateful Networks. In Proceedings of the 2013 workshop on Hot topics

in middleboxes and network function virtualization, pages 31–36, 2013.

[67] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. Datalog and Emerging

Applications: An Interactive Tutorial. In Proceedings of the 2011 ACM SIGMOD

International Conference on Management of data, pages 1213–1216, 2011.

[68] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In

International Conference on Tools and Algorithms for the Construction and Analysis

of Systems, pages 337–340. Springer, 2008.

[69] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Automatic

Test Packet Generation. In Proceedings of the 8th international conference on

Emerging networking experiments and technologies, pages 241–252, 2012.

[70] Peter Pereš́ıni, Maciej Kuzniar, and Dejan Kostić. Rule-level Data Plane Monitoring

with Monocle. ACM SIGCOMM Computer Communication Review, 45(4):595–596,

2015.

151

[71] Kai Bu, Xitao Wen, Bo Yang, Yan Chen, Li Erran Li, and Xiaolin Chen. Is Every

Flow on the Right Track?: Inspect SDN Forwarding with RuleScope. In IEEE

INFOCOM 2016-The 35th Annual IEEE International Conference on Computer

Communications, pages 1–9. IEEE, 2016.

[72] Seyed K Fayaz, Yoshiaki Tobioka, Sagar Chaki, and Vyas Sekar. Scalable Testing

of Context-Dependent Policies over Stateful Data Planes with Armstrong. arXiv

preprint arXiv:1505.03356, 2015.

[73] Arthur S Jacobs, Ricardo J Pfitscher, Rafael H Ribeiro, Ronaldo A Ferreira,

Lisandro Z Granville, Walter Willinger, and Sanjay G Rao. Hey, Lumi! Using Natural

Language for Intent-Based Network Management. In 2021 USENIX Annual Technical

Conference (USENIX ATC 21), pages 625–639, 2021.

[74] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin Vechev.

Net2text: Query-Guided Summarization of Network Forwarding Behaviors. In 15th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 18),

pages 609–623, 2018.

[75] Azzam Alsudais and Eric Keller. Hey network, can you understand me? In 2017 IEEE

Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages

193–198. IEEE, 2017.

[76] Floodlight Controller. https://floodlight.atlassian.net/wiki/spaces/floodlightcontrol

ler/overview.

[77] Ryu Controller. https://ryu-sdn.org/.

[78] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating Structured

Queries from Natural Language using Reinforcement Learning. arXiv preprint

arXiv:1709.00103, 2017.

[79] Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. Typesql:

Knowledge-Based Type-Aware Neural Text-to-SQL Generation. arXiv preprint

arXiv:1804.09769, 2018.

[80] The Usable Privacy Project. https://usableprivacy.org/.

[81] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram Krishnan,

Jaspreet Bhatia, Travis D Breaux, and Jianwei Niu. Toward a Framework for

Detecting Privacy Policy Violations in Android Application Code. In Proceedings

of the 38th International Conference on Software Engineering, pages 25–36, 2016.

[82] Joel R Reidenberg, Jaspreet Bhatia, Travis D Breaux, and Thomas B Norton.

Ambiguity in Privacy Policies and the Impact of Regulation. The Journal of Legal

Studies, 45(S2):S163–S190, 2016.

[83] Dan Levin, Marco Canini, Stefan Schmid, Fabian Schaffert, and Anja Feldmann.

Panopticon: Reaping the Benefits of Incremental SDN Deployment in Enterprise

Networks. In 2014 USENIX Annual Technical Conference (USENIX ATC 14), pages

333–345, 2014.

152

https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
https://ryu-sdn.org/
https://usableprivacy.org/

[84] Hui Lu, Nipun Arora, Hui Zhang, Cristian Lumezanu, Junghwan Rhee, and Guofei

Jiang. HybNET: Network Manager for a Hybrid Network Infrastructure. In

Proceedings of the Industrial Track of the 13th ACM/IFIP/USENIX International

Middleware Conference, Middleware Industry ’13, pages 6:1–6:6, New York, NY, USA,

2013. ACM.

[85] Cheng Jin, Cristian Lumezanu, Qiang Xu, Zhi-Li Zhang, and Guofei Jiang. Telekine-

sis: Controlling Legacy Switch Routing with OpenFlow in Hybrid Networks. In

Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking

Research, SOSR ’15, pages 20:1–20:7, New York, NY, USA, 2015. ACM.

[86] Cheng Jin, Cristian Lumezanu, Qiang Xu, Hesham Mekky, Zhi-Li Zhang, and Guofei

Jiang. Magneto: Unified Fine-Grained Path Control in Legacy and OpenFlow Hybrid

Networks. In Proceedings of the Symposium on SDN Research, pages 75–87. ACM,

2017.

[87] Ryan Hand and Eric Keller. ClosedFlow: OpenFlow-Like Control Over Proprietary

Devices. In Proceedings of the third workshop on Hot topics in software defined

networking, pages 7–12. ACM, 2014.

[88] OpenFlow 1.5 Specification. https://opennetworking.org/wp-content/uploads/2014

/10/openflow-switch-v1.5.1.pdf.

[89] Natural Language ToolKit. https://www.nltk.org/.

[90] spaCy: Industrial-Strength Natural Language Processing. https://spacy.io/.

[91] UNIVERSITY OF ABERDEEN CRYPTOGRAPHIC POLICY. https:

//www.abdn.ac.uk/staffnet/documents/policy-zone-information-policies/Crypt

ographic%20Policy.pdf.

[92] University of Memphis, Should you use P2P Applications on campus?

https://www.memphis.edu/resnet/about/p2p.php#:∼:text=While%20p2p%20a

pplications%20have%20many,your%20computer%20to%20the%20Internet.

[93] Key Words for Use in RFCs to Indicate Requirement Levels. https://datatracker.ie

tf.org/doc/html/rfc2119.

[94] HMS Network Policy. https://projects.iq.harvard.edu/student-computing-services/h

ms-network-policy.

[95] Nmap: the Network Mapper. https://nmap.org/.

[96] University of Cambridge, Policy-Insecure protocols. https://www.ch.cam.ac.uk/com

puting/policy-insecure-protocols.

[97] Network Acceptable Use Policy. https://grenfell.mun.ca/campus-services/Pages/i

nformation-technology-services/Policies-and-Guidelines/Network-Acceptable-Use-

Policy.aspx.

[98] University of Pittsburgh Information Technology, Telnet and FTP. https://www.te

chnology.pitt.edu/security/telnet-and-ftp.

153

https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.nltk.org/
https://spacy.io/
https://www.abdn.ac.uk/staffnet/documents/policy-zone-information-policies/Cryptographic%20Policy.pdf
https://www.abdn.ac.uk/staffnet/documents/policy-zone-information-policies/Cryptographic%20Policy.pdf
https://www.abdn.ac.uk/staffnet/documents/policy-zone-information-policies/Cryptographic%20Policy.pdf
https://www.memphis.edu/resnet/about/p2p.php#:~:text=While%20p2p%20applications%20have%20many,your%20computer%20to%20the%20Internet
https://www.memphis.edu/resnet/about/p2p.php#:~:text=While%20p2p%20applications%20have%20many,your%20computer%20to%20the%20Internet
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://projects.iq.harvard.edu/student-computing-services/hms-network-policy
https://projects.iq.harvard.edu/student-computing-services/hms-network-policy
https://nmap.org/
https://www.ch.cam.ac.uk/computing/policy-insecure-protocols
https://www.ch.cam.ac.uk/computing/policy-insecure-protocols
https://grenfell.mun.ca/campus-services/Pages/information-technology-services/Policies-and-Guidelines/Network-Acceptable-Use-Policy.aspx
https://grenfell.mun.ca/campus-services/Pages/information-technology-services/Policies-and-Guidelines/Network-Acceptable-Use-Policy.aspx
https://grenfell.mun.ca/campus-services/Pages/information-technology-services/Policies-and-Guidelines/Network-Acceptable-Use-Policy.aspx
https://www.technology.pitt.edu/security/telnet-and-ftp
https://www.technology.pitt.edu/security/telnet-and-ftp

[99] The Campbell University Acceptable Use Policy. https://www.campbell.edu/informa

tion-technology-services/acceptable-use-policy/.

[100] Zhiyuan Zhang, Bing Wang, Faisal Ahmed, IV Ramakrishnan, Rong Zhao, Asa

Viccellio, and Klaus Mueller. The Five Ws for Information Visualization with

Application to Healthcare Informatics. IEEE transactions on visualization and

computer graphics, 19(11):1895–1910, 2013.

[101] What is Geni? https://www.geni.net/about-geni/what-is-geni/.

[102] Elasticsearch. https://www.elastic.co/what-is/elasticsearch.

[103] What is The ELK Stack? https://www.elastic.co/what-is/elk-stack.

[104] Beats, Lightweight data shippers. https://www.elastic.co/beats/.

[105] Filebeat, Lightweight shipper for logs. https://www.elastic.co/beats/filebeat/.

[106] Packetbeat, Lightweight shipper for network data. https://www.elastic.co/beats/pac

ketbeat.

[107] ping(8)- Linux manual page. https://man7.org/linux/man-pages/man8/ping.8.html.

[108] The Internet Assigned Number Authority. https://www.iana.org/.

[109] Who are the Tier 1 ISPs? https://drpeering.net/FAQ/Who-are-the-Tier-1-ISPs.php.

[110] Internet Transit Prices - Historical and Projected. https://drpeering.net/white-pape

rs/Internet-Transit-Pricing-Historical-And-Projected.php.

[111] Adnan Ahmed, Zubair Shafiq, Harkeerat Bedi, and Amir Khakpour. Peering vs.

Transit: Performance Comparison of Peering and Transit Interconnections. In 2017

IEEE 25th International Conference on Network Protocols (ICNP), pages 1–10. IEEE,

2017.

[112] Narine Badasyan and Subhadip Chakrabarti. A Simple Game-Theoretic Analysis of

Peering and Transit Contracting Among Internet Service Providers. Telecommunica-

tions Policy, 32(1):4–18, 2008.

[113] Aemen Lodhi, Amogh Dhamdhere, and Constantine Dovrolis. Open Peering by

Internet Transit Providers: Peer Preference or Peer Pressure? In IEEE INFOCOM

2014-IEEE Conference on Computer Communications, pages 2562–2570. IEEE, 2014.

[114] William B Norton. A Business Case for ISP Peering. White Paper (v1. 3), February,

2002.

[115] Ignacio Castro, Juan Camilo Cardona, Sergey Gorinsky, and Pierre Francois. Remote

Peering: More Peering without Internet Flattening. In Proceedings of the 10th ACM

International on Conference on emerging Networking Experiments and Technologies,

pages 185–198, 2014.

154

https://www.campbell.edu/information-technology-services/acceptable-use-policy/
https://www.campbell.edu/information-technology-services/acceptable-use-policy/
https://www.geni.net/about-geni/what-is-geni/
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/beats/
https://www.elastic.co/beats/filebeat/
https://www.elastic.co/beats/packetbeat
https://www.elastic.co/beats/packetbeat
https://man7.org/linux/man-pages/man8/ping.8.html
https://www.iana.org/
https://drpeering.net/FAQ/Who-are-the-Tier-1-ISPs.php
https://drpeering.net/white-papers/Internet-Transit-Pricing-Historical-And-Projected.php
https://drpeering.net/white-papers/Internet-Transit-Pricing-Historical-And-Projected.php

[116] Luis Augusto Dias Knob, Rafael Pereira Esteves, Lisandro Zambenedetti Granville,

and Liane Margarida Rockenbach Tarouco. SDEFIX—Identifying Elephant Flows in

SDN-Based IXP Networks. In NOMS 2016-2016 IEEE/IFIP Network Operations and

Management Symposium, pages 19–26. IEEE, 2016.

[117] Marcus Vinicius Brito da Silva, Arthur Selle Jacobs, Ricardo José Pfitscher, and

Lisandro Zambenedetti Granville. IDEAFIX: Identifying Elephant Flows in P4-based

IXP Networks. In 2018 IEEE Global Communications Conference (GLOBECOM),

pages 1–6. IEEE, 2018.

[118] AMS-IX Amsterdam. https://www.ams-ix.net/ams.

[119] Iperf3. http://software.es.net/iperf/.

[120] rrdtool Round Robin Database Tool. https://linux.die.net/man/1/rrdtool.

[121] Seattle Internet Exchange Traffic Graphs. https://www.seattleix.net/statistics/#dai

ly.

[122] Hong Xu and Baochun Li. Spot Transit: Cheaper Internet Transit for Elastic Traffic.

IEEE Transactions on Services Computing, 8(5):768–781, 2014.

[123] Packet Clearing House Internet Exchange Directory. https://www.pch.net/ixp/dir.

[124] nix.cz Neutral Internet Exchange. https://www.nix.cz/en/technical#traffic.

[125] Reza Motamedi. Internet Topology Discovery.

[126] Mohammad Zubair Ahmad and Ratan Guha. Studying the Effects of Internet

Exchange Points on Internet Topology. J Inform Tech Softw Eng, 2(114):2, 2012.

[127] University of Oregon Route Views Project. http://www.routeviews.org/routeviews/.

[128] Caida Ark Measurement Infrastructure. https://www.caida.org/projects/ark/.

[129] Yuval Shavitt and Eran Shir. DIMES: Let the Internet Measure Itself. ACM

SIGCOMM Computer Communication Review, 35(5):71–74, 2005.

[130] Brice Augustin, Balachander Krishnamurthy, and Walter Willinger. IXPs: Mapped?

In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement,

pages 336–349, 2009.

[131] Traceroute Glass Servers. http://traceroute.org/.

[132] Kuai Xu, Zhenhai Duan, Zhi-Li Zhang, and Jaideep Chandrashekar. On Properties

of Internet Exchange Points and Their Impact on AS Topology and Relationship. In

International Conference on Research in Networking, pages 284–295. Springer, 2004.

[133] Yihua He, Georgos Siganos, Michalis Faloutsos, and Srikanth Krishnamurthy. Lord

of the Links: a Framework for Discovering Missing Links in the Internet Topology.

IEEE/ACM Transactions On Networking, 17(2):391–404, 2008.

[134] PeeringDB, the Interconnection Database. https://www.peeringdb.com//.

155

https://www.ams-ix.net/ams
http://software.es.net/iperf/
https://linux.die.net/man/1/rrdtool
https://www.seattleix.net/statistics/#daily
https://www.seattleix.net/statistics/#daily
https://www.pch.net/ixp/dir
https://www.nix.cz/en/technical#traffic
http://www.routeviews.org/routeviews/
https://www.caida.org/projects/ark/
http://traceroute.org/
https://www.peeringdb.com//

[135] Pavlos Sermpezis, George Nomikos, and Xenofontas Dimitropoulos. Re-Mapping the

Internet: Bring the IXPs into Play. arXiv preprint arXiv:1706.07323, 2017.

[136] CAIDA Data Server /dataset. https://publicdata.caida.org/datasets/.

[137] NEO4J: Graph Data Management Platform. https://neo4j.com/.

[138] The Py2neo Handbook. https://py2neo.org/2021.1/.

[139] Hurricane Electric Internet Services. http://he.net/.

[140] NetworkX, Network Analysis in Python. https://networkx.org/.

[141] Configuring Policy-Based Routing. https://www.cisco.com/c/en/us/td/docs/switch

es/lan/catalyst4500/12-2/25ew/configuration/guide/conf/pbroute.pdf.

[142] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun

Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4:

Experience with a Globally-Deployed Software Defined WAN. ACM SIGCOMM

Computer Communication Review, 43(4):3–14, 2013.

[143] Stefano Vissicchio, Laurent Vanbever, Luca Cittadini, Geoffrey G Xie, and Olivier

Bonaventure. Safe Update of Hybrid SDN Networks. IEEE/ACM Transactions on

Networking, 25(3):1649–1662, 2017.

[144] An Architecture for Describing Simple Network Management Protocol (SNMP)

Management Frameworks. https://datatracker.ietf.org/doc/html/rfc3411.

[145] Cisco Discovery Protocol (CDP). https://learningnetwork.cisco.com/s/article/cisco-

discovery-protocol-cdp-x.

[146] RFC 826 An Ethernet Address Resolution Protocol. https://datatracker.ietf.org/doc

/html/rfc826.

[147] perfSONAR. https://www.perfsonar.net/.

[148] Baylor University Network Usage Policies. https://www.baylor.edu/risk/doc.php/34

1712.pdf.

[149] SUNY Delhi Wireless Usage Policy. https://www.delhi.edu/mydelhi/cis/byod/usage-

policy/index.php.

[150] The University of Denver Acceptable Use Policy for Computer and Network Systems.

https://www.du.edu/it/about/it-policies/computer-network-acceptable-use#:∼:

text=Users%20must%20not%20access%20computers,is%20owned%20by%20the%20

University.

[151] Collected Network Policies and Data Source. http://cs.uky.edu/∼psh238/.

156

https://publicdata.caida.org/datasets/
https://neo4j.com/
https://py2neo.org/2021.1/
http://he.net/
https://networkx.org/
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/25ew/configuration/guide/conf/pbroute.pdf
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/25ew/configuration/guide/conf/pbroute.pdf
https://datatracker.ietf.org/doc/html/rfc3411
https://learningnetwork.cisco.com/s/article/cisco-discovery-protocol-cdp-x
https://learningnetwork.cisco.com/s/article/cisco-discovery-protocol-cdp-x
https://datatracker.ietf.org/doc/html/rfc826
https://datatracker.ietf.org/doc/html/rfc826
https://www.perfsonar.net/
https://www.baylor.edu/risk/doc.php/341712.pdf
https://www.baylor.edu/risk/doc.php/341712.pdf
https://www.delhi.edu/mydelhi/cis/byod/usage-policy/index.php
https://www.delhi.edu/mydelhi/cis/byod/usage-policy/index.php
https://www.du.edu/it/about/it-policies/computer-network-acceptable-use#:~:text=Users%20must%20not%20access%20computers,is%20owned%20by%20the%20University.
https://www.du.edu/it/about/it-policies/computer-network-acceptable-use#:~:text=Users%20must%20not%20access%20computers,is%20owned%20by%20the%20University.
https://www.du.edu/it/about/it-policies/computer-network-acceptable-use#:~:text=Users%20must%20not%20access%20computers,is%20owned%20by%20the%20University.
http://cs.uky.edu/~psh238/

Vita

Personal Information

• Name: Pinyi Shi

• Place of Birth: Shanghai, China

Education

• Illinois State University, Normal IL, USA

M.S. in Information Systems, May. 2015

• University of Shanghai for Science and Technology, Shanghai, China

B.E. in Digital Printing, June 2012

Professional Experience

• Graduate Research Assistant, University of Kentucky Spring 2017–May 2022

• Graduate Teaching Assistant, University of Kentucky Spring 2016–Fall 2016

• Graduate Research Assistant, Illinois State University Summer 2014–Spring 2015

Scholastic and Professional Awards

• Student Travel Award, IFTP/IEEE IM 2019

Publications & Preprints:

• Shi, Pinyi, Yongwook Song, Zongming Fei, and James Griffioen. ”Checking Network

Security Policy Violations via Natural Language Questions.” In 2021 International

Conference on Computer Communications and Networks (ICCCN), pp. 1-9. IEEE,

2021.

• Shi, Pinyi, Sergio Rivera, Lowell Pike, Zongming Fei, James Griffioen, and Kenneth

Calvert. ”Enabling shared control and Trust in Hybrid SDN/legacy networks.”

In 2019 28th International Conference on Computer Communication and Networks

(ICCCN), pp. 1-9. IEEE, 2019.

• Griffioen, James, Zongming Fei, Sergio Rivera, Jacob Chappell, Mami Hayashida,

Pinyi Shi, Charles Carpenter et al. ”Leveraging SDN to enable short-term on-demand

security exceptions.” In 2019 IFIP/IEEE Symposium on Integrated Network and

Service Management (IM), pp. 13-18. IEEE, 2019.

• Rivera, Sergio, James Griffioen, Zongming Fei, Mami Hayashida, Pinyi Shi, Bhushan

Chitre, Jacob Chappell et al. ”Navigating the Unexpected Realities of Big Data

Transfers in a Cloud-based World.” In Proceedings of the Practice and Experience on

Advanced Research Computing, pp. 1-8. 2018.

157

	IMPROVING NETWORK POLICY ENFORCEMENT USING NATURAL LANGUAGE PROCESSING AND PROGRAMMABLE NETWORKS
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Types of Network Policies
	1.2 Example Network Policies
	1.3 Writing, Enforcing and Monitoring Network Policies
	1.3.1 How Network Policies Are Written?
	1.3.2 Network Policy Enforcement and Monitoring

	1.4 Interpreting the Intent of a Network Policy
	1.5 Tools That Help Network Policy Enforcement
	1.6 Dissertation Contributions
	1.7 Dissertation Organization

	2 Related Work
	2.1 Traditional vs. Modern Network Architectures
	2.1.1 Traditional Networks
	2.1.2 Software-Defined Networks
	2.1.3 Intent-Based Networks
	2.1.4 Transition Challenges from SDN to IBN

	2.2 Tools for Network Policy Management
	2.2.1 Taking Actions on Network Traffic
	2.2.2 Middleboxes in the Network
	2.2.3 Network Monitoring Tools

	2.3 Related Work in Network Policy Enforcement
	2.3.1 Intent Definition Language
	2.3.2 SDN-Based Solutions

	2.4 Related Work in Network Policy Testing/Verification
	2.4.1 Control Plane Verification/Testing
	2.4.2 Dataplane Verification/Testing

	2.5 Related Work in Natural Language Processing
	2.6 Related Work in Adapting SDN in Traditional Networks
	2.7 Summary

	3 NPA: A System to Check Ambiguity in Network Policies
	3.1 Introduction
	3.2 Relating Network Policy Statements to Network Policy Enforcement
	3.2.1 The Principles Behind Information Collection
	3.2.2 The Selection of Tags for the NLP Model

	3.3 System Architecture
	3.3.1 The Entity Extraction Module
	3.3.2 The Policy Analyzing Module

	3.4 Implementation and Evaluation of NPA
	3.4.1 Collecting and Screening Network Policies
	3.4.2 NLP Training
	3.4.3 Accuracy of the Policy Quality Report

	3.5 Network Policies and Use Cases
	3.5.1 Ambiguity in Traffic Description and Amount
	3.5.1.1 Policies about Protocols
	3.5.1.2 Policies about Bandwidth Usage
	3.5.1.3 Policies about Network Scanning

	3.5.2 Ambiguity in Action
	3.5.3 Ambiguity in Location

	3.6 Suggestions on Writing Good Network Policy
	3.7 Discussion

	4 NPCE: A Chatbot to Check Network Policy Violations
	4.1 Motivation
	4.2 Design Goals
	4.3 Approach: Using NLP and Modern Database Solutions
	4.3.1 System Architecture
	4.3.2 The Mapping Layer
	4.3.3 Tools for Implementation

	4.4 Examples and Use Cases
	4.4.1 Insecure Application Protocol Policies
	4.4.2 Policies about Prohibited Services
	4.4.3 Access Control Policies
	4.4.4 Port Scanning Policy
	4.4.5 IP source routing policy

	4.5 Discussion
	4.6 Summary

	5 Understanding the Internet Topology with IXP Data to Support Future Internet Routing Policies
	5.1 Introduction
	5.2 Peering on Internet
	5.2.1 Peering Benefits

	5.3 IXP Traffic Data
	5.4 Representing IXPs in the Internet Topology
	5.4.1 The Obstacles to Understand Internet Peering Relationships
	5.4.2 Dataset and Approach
	5.4.3 Prototype Internet Topology Graph and Example Queries

	5.5 Summary

	6 Managing Network Policies in a Hybrid SDN/Legacy Network
	6.1 Operational Concerns
	6.1.1 SDN Deployment and Solution
	6.1.2 Shared Control and Trust in a Hybrid Network
	6.1.2.1 Principles of Cooperation
	6.1.2.2 Including Non-SDN Switches as a Part of SDN

	6.2 Extending VIP Lanes to Legacy Networks
	6.2.1 VIP Lanes, A Motivated SDN Service for High-Speed Flows
	6.2.2 VIP Lanes Software
	6.2.3 Policy-Based Routing

	6.3 Experiment Setup and Results
	6.3.1 East-West Flow Experiment
	6.3.2 North-South flow experiment

	6.4 Summary

	7 Summary and Future Work
	7.1 Dissertation Summary
	7.2 Future Work

	Appendices
	Appendix A List of Abbreviations
	Appendix B Other Policies and Discussion
	Appendix B.1 Explanation for the Extracted Information
	Appendix B.2 Tools For Traffic Detection

	Bibliography
	Vita

