

University of Kentucky UKnowledge

Kentucky River Watershed Watch

Kentucky Water Resources Research Institute

1-2001

2000 Kentucky River Watershed Watch Data Collection Effort

L. Ormsbee Kentucky Water Resources Research Institute

E. Zechman
Kentucky Water Resources Research Institute

Follow this and additional works at: https://uknowledge.uky.edu/krww_reports

Part of the Environmental Monitoring Commons, and the Water Resource Management Commons Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation

Ormsbee, L. and Zechman, E., "2000 Kentucky River Watershed Watch Data Collection Effort" (2001). *Kentucky River Watershed Watch*. 9.

https://uknowledge.uky.edu/krww_reports/9

This Report is brought to you for free and open access by the Kentucky Water Resources Research Institute at UKnowledge. It has been accepted for inclusion in Kentucky River Watershed Watch by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

SUMMARY REPORT 2000 KENTUCKY RIVER WATERSHED WATCH DATA COLLECTION EFFORT

- L. Ormsbee
- E. Zechman

Prepared for:

The Kentucky River Authority

By:

The Kentucky Water Resources Research Institute University of Kentucky Lexington, Kentucky

January 2001 KWRRI

ABSTRACT

During the summer of 2000, the Kentucky River Authority provided \$14,000 for the support of volunteer water quality sampling in the Kentucky River Basin as part of the 2000 Kentucky River Watershed Watch effort. This report summarizes the results of that sampling effort.

TABLE OF CONTENTS

Chapt	er 1: Introduction	1
1.1	Overview	1
1.2	Study area	1
1.3	Sample data and study dates	11
1.4	Baseflow conditions	11
Chapt	er 2: Data Collection and Analysis	20
2.1	Physical/Chemical Field Data	20
2.2	Herbicide/Pesticide Indicators	20
2.3	Herbicide/Pesticide Sampling	20
2.4	Bacteriological Indicators	34
	2.4.1 Fecal Coliform	34
	2.4.2 Fecal Streptococci and the FC/FS ratio	35
2.5	Bacteriological Sampling	35
	2.5.1 Focused Fecal Coliform/Fecal Strep Sampling	35
	2.5.2 Synoptic Fecal Coliform/Fecal Strep Sampling	39
	2.5.3 Follow-Up Fecal Coliform/Fecal Strep Sampling	39
2.6	Physical/Chemical Sampling	39
2.7	Nutrient Sampling	39
2.8	Significance of Nutrient Results	39
2.9	Metals Data	53
2.10	Letcher County Focused Sampling	64
Chapt	ter 3: Conclusions and Recommendations	70

Appendix A: Background Information for the Interpretation of Water Quality Parameters

LIST OF TABLES

Table 1.1	2000 Kentucky River Watershed Watch Sampling Sites	8
Table 1.2	Basinwide Sampling Data and Collection Dates	10
Table 1.3	Letcher County Sampling Data and Collection Dates	10
Table 1.4	Types and Number of Samples at Sampling Sites	12
Table 2.1	Physical/Chemical Field Data	21
Table 2.2	Herbicide/Pesticide Results	33
Table 2.3	Focused Fecal Coliform/Fecal Strep Sampling Results	37
Table 2.4	Synoptic Fecal Coliform/Fecal Strep Sampling Results	42
Table 2.5	Follow-Up Fecal Coliform/Fecal Strep Sampling Results	45
Table 2.6	Chemical Sampling Results	47
Table 2.7	Nutrient Sampling Results	51
Table 2.8	Metals Sampling Results	55
Table 2.9	Stations with Highest Metals Concentrations	63
Table 2.10	Letcher County Chemical/Metals Sampling Results	66
Table 2.11	Letcher County Focused Fecal Coliform/Fecal Strep Results	67
Table 2.12	Lectcher County AMD Sampling Results	€68

LIST OF FIGURES

Figure 1.1	Kentucky River Basin	2
Figure 1.2	Kentucky River Basin 8-digit HUCs	2 3
Figure 1.3	Kentucky River Lower Basin	4
Figure 1.4	Kentucky River Middle Basin	4 5 6 7
Figure 1.5	Kentucky River Upper Basin	6
Figure 1.6	Kentucky River Watershed Watch Monitoring Sites	7
Figure 1.7	Kentucky River Gauging Stations	14
Figure 1.8	North Fork Kentucky River	15
Figure 1.9	Middle Fork Kentucky River	16
Figure 1.10	South Fork Kentucky River	17
Figure 1.11	Lock and Dam #10	18
Figure 1.12	Lock and Dam #2	19
Figure 2.1	Herbicide/Pesticide Sampling Locations	32
Figure 2.2	Focused Fecal Coliform Sampling Locations	36
Figure 2.3	Kentucky River Basin Fecal Coliform Counts	40
Figure 2.4	Kentucky River Basin FC/FS Ratios	41
Figure 2.5	Follow-Up Fecal Sampling Locations	44
Figure 2.6	Physical/Chemical Sampling Locations	46
Figure 2.7	Kentucky River Basin Total Recoverable Phosphorus	50
Figure 2.8	Kentucky River Basin Metal Sampling Locations	54
Figure 2.9	Letcher County Sampling Locations	65

CHAPTER I: INTRODUCTION

1.1 Overview

This report documents the results of the 2000 Kentucky River Watershed Watch sampling effort which was supported by a grant of \$14,000 by the Kentucky River Authority. The Kentucky River Watershed Watch is a volunteer organization affiliated with the Kentucky Waterways Alliance with the following goals:

- 1. To provide current data on general water quality conditions to local stream based organizations working to protect their watershed.
- 2. To provide widespread screening for potential water quality problems to resource management agencies.
- 3. To provide auxiliary information to assist resource management agencies in meeting specific operational and management objectives.
- 4. To identify specific impacts to water quality through targeted observations and measurements.

The Kentucky Water Resources Research Institute and the Kentucky River Watershed Watch steering committee provided coordination and oversight of the sampling effort. The sampling effort was conducted so as to be consistent with the scientific study plan developed by the Kentucky River Watershed Watch scientific advisory board which describes the monitoring objectives, methods, parameters, quality assurance, and data management. A copy of the plan may be found at the project web site: http://water.nr.state.ky.us/watch/2000/plan_of_work.htm. Detailed sampling results for 2000 are posted on the project web site at: http://water.nr.state.ky.us/watch/2000/ky.htm.

1.2 Study Area

The Kentucky River Watershed Watch sampling effort was conducted at 140 different sites across the Kentucky River Basin. The Kentucky River Basin extends over much of the central and eastern portions of the state and is home to approximately 710,000 Kentuckians. The watershed includes all or part of 42 counties and drains over 7,000 square miles with a tributary network of more than 15,000 miles. A map of the watershed is shown in Figure 1.1. For the purpose of watershed management, the River Basin has been subdivided into smaller sub-basins and watersheds using the USGS Hydrologic Unit Code (HUC) classification system. A map showing the 8-digit subbasins and the 11-digit watersheds is shown in Figure 1.2. A more detailed description of the 11-digit HUC watersheds in provided in Figures 1.3-1.5. An index of the 140 sampling sites is provided in Figure 1.6 and Table 1.1

County Boundaries
Kentucky River Basin Boundary Kentucky State Boundary Pike Floyd Magoffin Harlan 80 Miles Bell Knox Laurel Bourbon Harrison Boone Mercer Casey Boyle Shelby 2

Figure 1.1 Kentucky River Basin

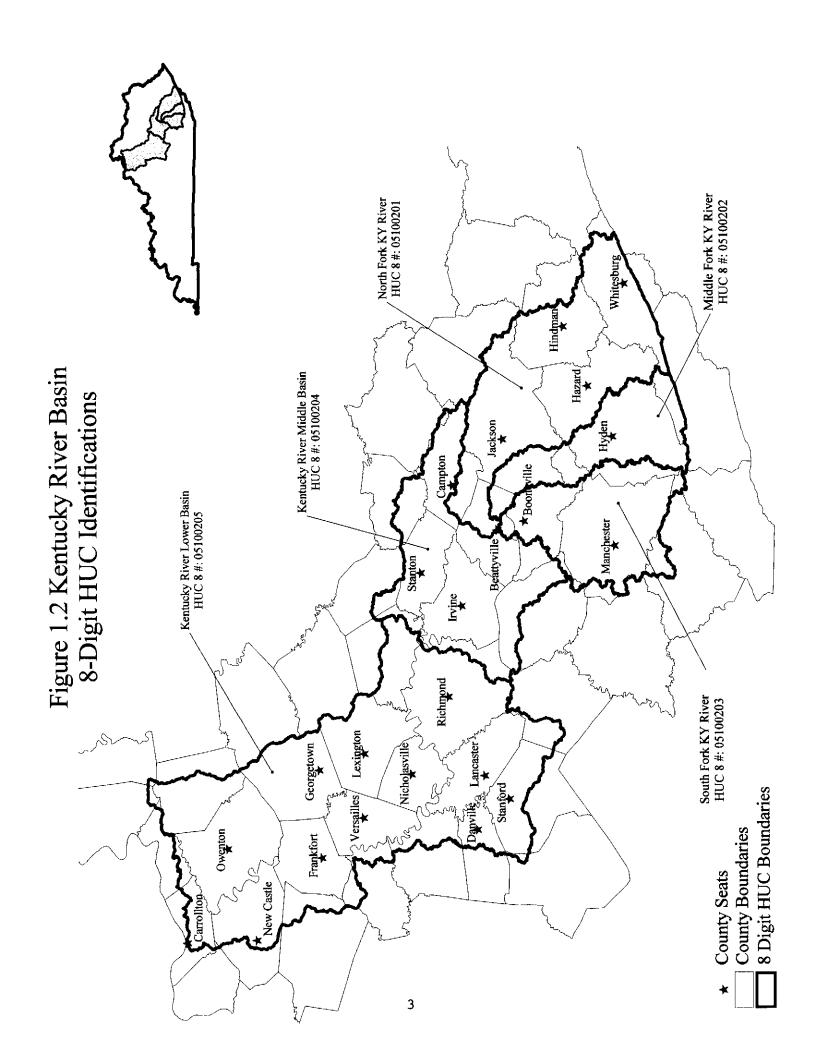
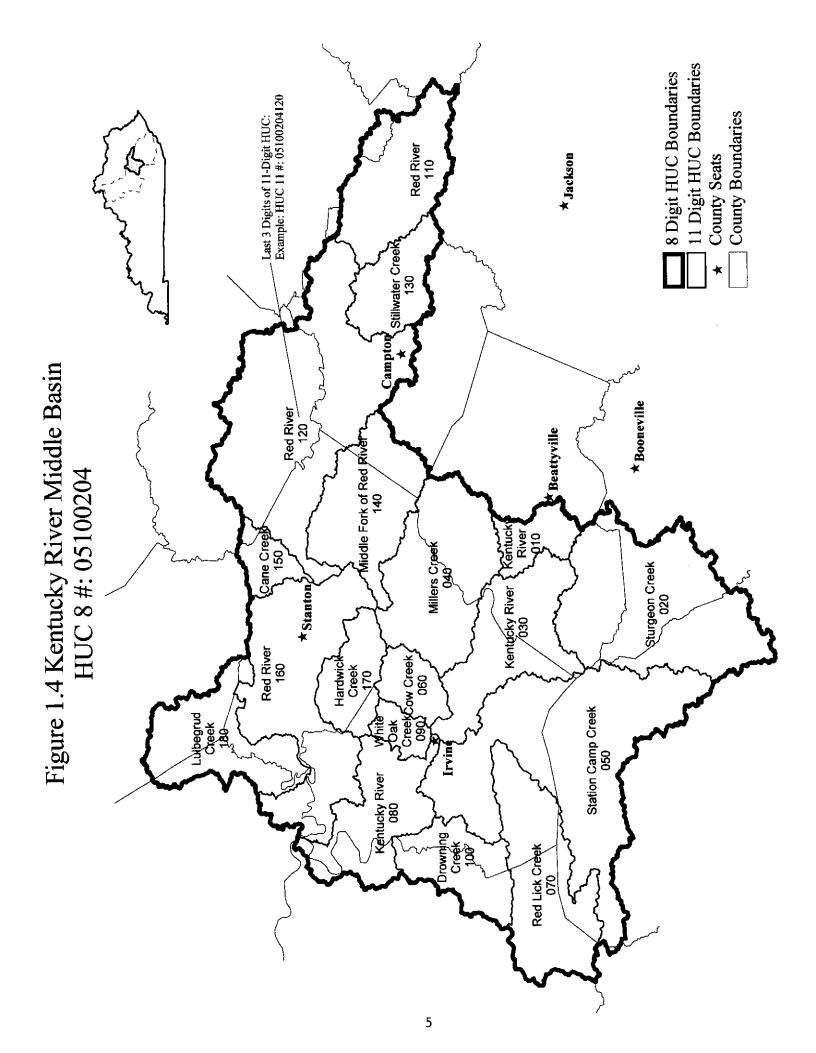
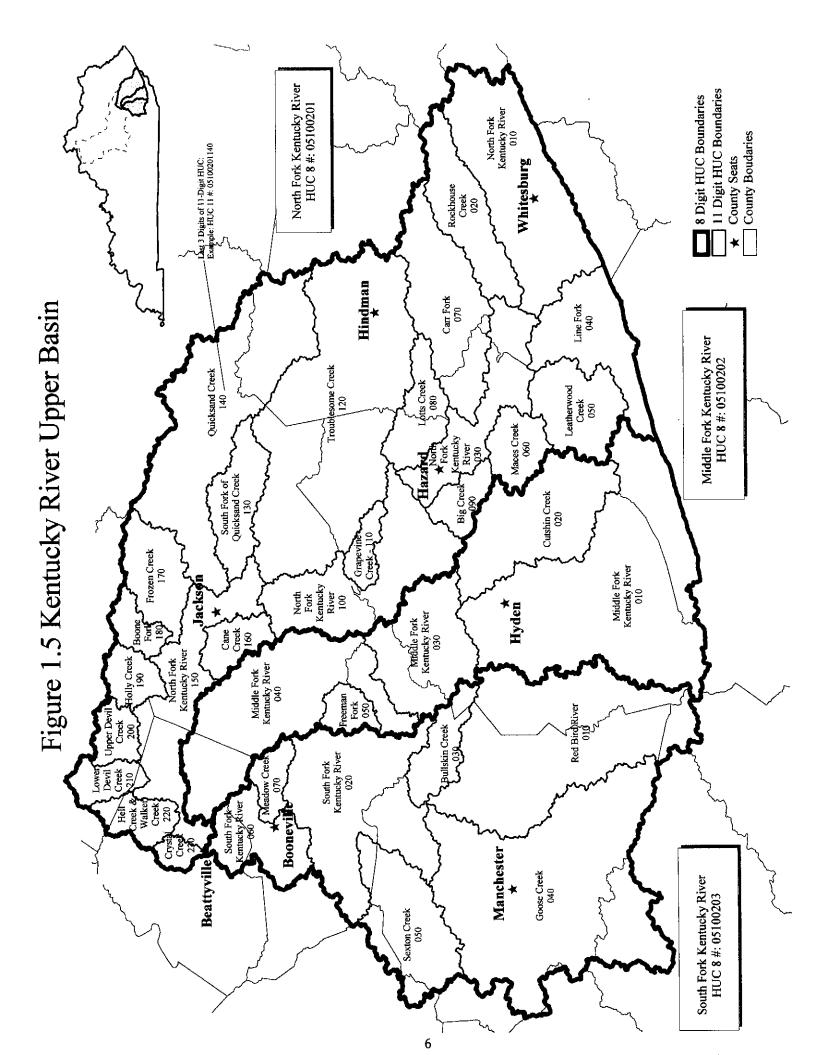




Figure 1.3 Kentucky River Lower Basin HUC 8 #: 05100205

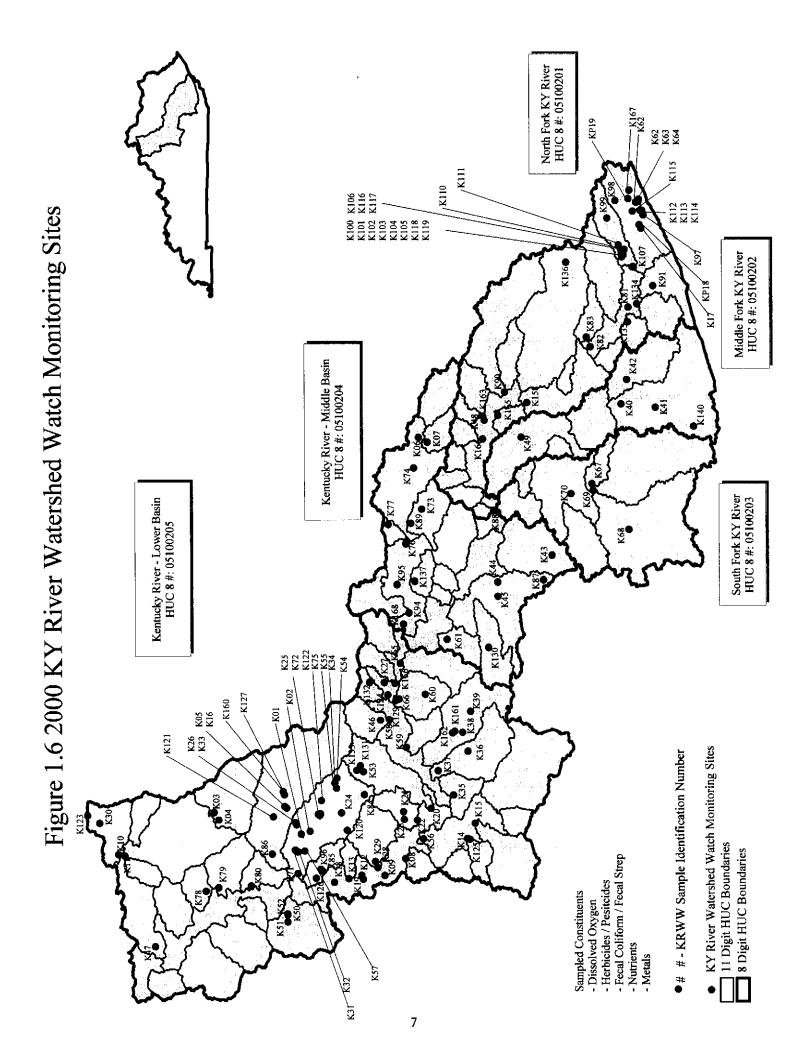


Table 1.1 Kentucky River Watershed Watch Sampling Sites

Comple ID #	Stream Name	Site Location	Longitude	Latitude
Sample ID #	Stream Name	Site Location	(dec. deg.)	(dec. deg.)
1201	ly to t	Tion death of the day had a	P4 60126	38.16546
K01 K02	Lee's Branch Lee's Branch	100yds North of US 421 bridge 150yds downstream of Stephens St.	-84.69126 -84.68252	38.10340
K02	Eagle Creek E Fork	Above Hinton Cemetary Rd	-84,62425	38.43077
K04	Eagle Creek W Fork	Burgess Rd. Bridge 1.25mi North	-84,64744	38,41616
K05	Cane Run Ceek	0.2mi upstream of 460 Bridge	-84,61074	38,20944
K06	Red River	Mouth of Big Branch	-83.48420	37.80204
K07	Stillwater Creek	SR 746 Bridge	-83.49858	37.77515
K08	Shawnee Run	600" up from confluence of KY River	-84,76727	37,84721
K09	Landing Run	600" up from confluence of KY River	-84.81915	37.91064
K10	Ten Mile Creek	0.25mi upstream of mouth of Eagle Creek	-84.75343	38.72292
K11	Eagle Creek	Just up from Mouth of Ten Mile Creek	-84.75750	38.70356
K12	Craig Creek	Lillards Ferry Rd. Bridge	-84.81883	37,98117
K13	Grier's Creek	Grier's Creek Rd. 0,5 miles below bridge	-84.82827	38.02069
K14	Clarks Run	N37 38' 21" W 84 43' 19"	-84,70554	37,65786
K15	Hanging Fork Creek	N37 37' 24" W 84 40' 49"	-84,65876	37.63387
K16	North Fork Elkhorn	At Great Crossings	-84.60580	38.21564 37.12016
K17	North Fork KY River	Whitesburg, at KY 931/15	-82.84696	
K18 K19	Sharps Branch Gilbert's Creek	0.75mi upstream of Mouth of Sharps First Crossing of Gilbert's Creek Rd	-84.83958 -84.83014	38.06465 37.97655
K20	Hickman Creek	Between UT and Mouth of Hickman	-84,61263	37.76886
K21	Town Fork	Just below New WWTP, Nicholasville	-84,62239	37.75880
K22	Jessamine Creek	At SR 29 Bridge	-84,64875	37,81054
K23	Wilmore Tn Branch	Just above Mouth at Jessamine Creek	-84.64642	37.85055
K24	South Elkhorn	Upstream of US 60 near Airport	-84,62588	38,04231
K25	South Elkhorn	Below Dam near Confl of Town Branch	-84,62981	38,11329
K26	South Elkhorn	0.5mi upstrm of SR 341	-84.66193	38.18007
K27	Two Mile Creek	0.5mi south of Elkin Station Rd. Bridge	-84.22552	37.90966
K28	Clear Creek	500m upstream of Mouth of Clear Creek	-84,79488	37.93250
K29	Clear Creek	At KY 33 Bridge	-84,77613	37,93950
K30	Ten Mile Creek	0.5mi upstrm of Verona Mt Zion Rd.	-84,65661	38,77999
K31	South Elkhorn Creek	Just Upstream of SR 1685 Bridge	-84.74018	38,18380
K32	Beals Run	Just below US 421	-84,74615	38,17530
K33	South Elkhorn	210 Ironworks Estate Subdivision UT	-84.65559	38,18278
K34	Wolfe Run	At Valley Park off Cambridge Dr.	-84.54980	38.05682
K35	Sugar Creek	Three Forks 200yds below 1355 bridge	-84.57100	37.69972
K36	Paint Lick Creek	Paint Lick, SR 52 Bridge	-84.43648	37.65488
K37	Paint Lick Creek	Bradshaw Mill off Dry Bridge Road	-84.49661	37.74660
K38	Silver Creek	Ruthton	-84,37839	37,67118
K39 K40	Silver Creek	below I-75 bridge Just Below Mouth of Asher Branch	-84.31316 -83,38252	37.64672 37.18252
K41	Middle Fork Middle Fork	Below Mouth of Greasy Creek	-83.39265	37.18232
K42	Cutshin Creek	At gaging station at Wooton, KY	-83.39203 -83.30801	37.16488
K43	Sturgeon Creek	SR 30 Bridge over Sturgeon Creek	-83.84233	37.10466
K43	Station Camp Creek	Rt 89 Bridge	-83,92341	37,56082
K45	Station Camp Creek	Rt 1209 Bridge	-83.96619	37.56083
K46	Boone Creek	By Iriquois Hunt Club	-84,34068	37.92189
K47	Eagle Creek	Happy Hollow Trailer Park Lot D61	-85.03471	38.61184
K48	North Fork KY River	Martha Lane Collins Br (KY 541)	-83,43162	37.60086
K49	Middle Fork KY River	Under KY 30 Bridge	-83.48359	37.48774
K50	Benson Creek	Downstream of Red Bridge	-84,93866	38.20760
K51	Benson Creek	At Red Bridge Falls	-84.96000	38.20760
K52	South Fork Benson Creek	At Riffle Above Red Bridge	-84.93618	38,20746
K53	W Hickman Creek	Behind Tates Creek Shopping Center	-84.49927	37.97457
K54	McConnell Springs	McConnell Spring, Fayette Co.	-84.51903	38,05539
K55	Town Branch	Jimmy Campbell Lane Bridge	-84.53362	38,06256
K56	Dix River	0.25mi N of Dix Dam	-84.70655	37,79246
K57	Spring Stn	At spring	-84.74323	38.15527
K58	Boone Creek	Mouth of Boone Creek	-84.33864	37.89437
K59	Tates Creek	Below mouth of Long Branch	-84.42403 -84.26101	37.84343
K60	Dreaming Creek Drowning Creek	Mouth of Dreaming near Otter Creek 100vds upstream of SR52 bridge	-84.26101 -84.09609	37.78503 37.71704
K61 K62	North Fork KY River	Mayking, at Old Regular Baptist Church	-84.09009	37.1704
K63	Pine Creek	At Mayking Baptist Church	-82.76511	37.12901
	Creekam Creek	At Mouth of Creekam Creek & Pert Fork	-82,75797	37.12697
K64	ICICERAITI CIECE	TAT MOUNT OF CICCKAIN CICCK AS PER POIN		

Table 1.1 Kentucky River Watershed Watch Sampling Sites

Sample ID #	Stream Name	Site Location	Longitude	Latitude
Sample 1D #	Sucani Name	Site Location	(dec. deg.)	(dec. deg.)
K66	Otter Creek	RR crossing on 388 near Boonesboro	-84,27546	37,86482
K67	Bullskin Creek	At mouth of Little Bullskin Creek	-83.62553	37,27257
K68	Goose Creek	At mouth of Sutton Branch	-83,76523	37.15973
K69	Goose Creek	Below Mouth of Jacks Branch	-83.64610	37.26858
K70	Bishops Branch	At mouth	-83.65597	37.33676
K71	South Fork Elkhorn	US 68 Harrodsburg Rd. Bridge	-84.81264	38,17618
K72	Steele's Branch	Redd Rd. Bridge off Old Frankfort Pk	-84,62871	38.10645
K73	Mdl Fork	KY 715 Bridge over Middle Fork	-83,70271	37,79348
K74	Swift Camp Creek	At Swift Camp Creek Camp	-83.57722	37.81748
K75	Town Branch	Yarnellton Rd. Bridge	-84.58790	38.10353
K76	Red River	East of Stanton	-83.80894	37.84209
K77	Cane Creek	Gordon Property at Meniffee Co Line	-83.74999	37.89573
K78	Sevren Creek	.25mi below US 127	-84.86606	38,45655
K79	Cedar Creek	Cedar Creekeek below Sawbridge Creek	-84.85513	38.41764
K80	Elkhorn Creek	Strohmeir Rd. at old Iron Bridge	-84.84982	38,31881
K81	North Fork KY River	Fusonia below Fort Branch	-83,08705	37,16030
K82	North Fork KY River	Perry Co Park	-83.20780	37.27592
K83	Lotts Creek	550 bridge	-83.17841	37.28781
K84	South Elkhorn	Tributary A of South Elkhorn Creek	-84.56950	37.97250
K85	Glen Creek	Intersection of Steel Rd and McCracken, Glenn's Creek Baptist Church	-84,80528	38.10066
K86	North Fork Elkhorn Creek	Switzer Bridge	-84.75245	38,25380
K87	War Fork Creek	Below bridge on Jack's Ridge (warfork Rd.)	-83.91670	37.42106
K88	Crystal Creek	Right off main st. in Beattyville onto Locust Rd. 0.4 mi on right	-83.70777	37.57303
K89	South Fork of Red River	40 yds upstream of Hwy 11/15 bridge	-83.74633	37.82657
K90	Quicksand Creek	Off bridge on Hwy 15 next to junction with Hwy 30	-83.34614	37,53823
K91	Bates Fork	Bates Fork and Turkey Creek	-83.02194	37,08417
K94	Red River - Lower	Red River at Twin Creek	-84.01583	37.83296
K95	Red River	Below bridge on Hwy 15 Clay City	-83.93072	37.86907
K96	Graddy Springs	Spring on Greenwood Farm, Steele Rd.	-84.79900	38.10630
K97	North Fork Kentucky River	Ermine, KY	-82.80577	37.11340
K98	Millstone Creek	Millstone Transfer Station	-82,76200	37,19860
K99	Rockhouse Creek	Rockhouse Creek and Love's Branch	-82.81580	37.22370
K100	Rockhouse Creek	Below Doty Creek	-82,92800	37,17500
K101	Rockhouse Creek	Above Doty Creek	-82.92800	37.17500
K102	Doty Creek	Mouth of Doty	-82.92800	37.17500
K103	Rockhouse Creek	Below Blair Branch	-82.92517	37.18067
K104	Rockhouse Creek	Above Blaire Branch	-82,92517	37,18067
K105	Blair Branch	Mouth of Blair Branch	-82.92517	37.18067
K106	Blair Branch	Mouth of Tooter Branch	-82.91133	37.17150
K107	Rockhouse Creek	Below Crases Branch	-82,96350	37,14483
K108	Rockhouse Creek	Above Crases Branch	-82.96350	37.14483
K109	Rockhouse Creek	Mouth of Crases Branch	-82.96350	37.14483
K110	Rockhouse Creek	Below Ison	-82.91083	37.18267
K111	Rockhouse Creek	Above Ison	-82,89733	37,18933
K112	North Fork Kentucky River	Below Colly Creek	-82,79278	37,11667
K113	North Fork Kentucky River	Above Colly Creek	-82.79278	37.12222
K114	Colly Creek	At the mouth	-82.79278	37.11917
K115	Allen Branch	At the mouth	-82.79472	37,14611
K116	Blair Branch	Above Tooter Branch	-82.91133	37,17150
K117	Blair Branch	Below Ison Branch	-82,91133	37.17150
K118	Doty Creek	Left Fork	-82,93400	37.17917
K119	Doty Creek	Right Fork	-82,93400	37.17917
K120	Unnamed Trib-Elkhorn Creek	Sycamore Estates, Woodford Co	-84,68000	38.02500
K121	South Fork Elkhorn	Hopewell Farm	-84.63778	38.25000
K122	South Fork Elkhorn	Brown's Mill Road, Bridge #1	-84.63389	38.10889
K123	South Fork Elkhorn	Brown's Mill Road, Bridge #2	-84.63264	38.81667
K124	Kentucky River	At Fort Boonesborough State Park, Boonesboro Beach	-84.26250	37.89880
K125	Clark's Run	At the Dix River	-84.70800	37.65000
K126	Glenn's Creek	Millville School	-84.82694	38.12056
	North Elkhorn	at Dog Pound	-84.56913	38.21628
K127				
K129	Otter Creek	100 yds dwnstrm of Bridge on Routh 388	-84.28000	37.87500
K129 K130	Otter Creek McCarter's Branch	At Red Lick Creek	-84.12000	37.59000
K129	Otter Creek			

Table 1.1 Kentucky River Watershed Watch Sampling Sites

Sample ID#	Stream Name	Site Location	Longitude	Latitude
Sample 1D "	Sucan ranc	She Bocaton	(dec. deg.)	(dec. deg.
K133	Unnamed Trib - West Hickman Creek	Zandale/Lansdowne	-84,49500	37,99500
K134	Leatherwood Creek	Leatherwood Creek behind Cornettsville Fire Dept.	-83.07694	37.13389
K135	Left Fork	Maces Creek Road, Viper School	-83,13194	37,16167
K136	Troublesome Creek	Knott Co. Central	-82,95000	37.35000
K137	Hardwick's Creek	1057 bridge, 2.5 mi. south of Clay City	-83,92050	37.81500
K140	Middle Fork	Upstream of Hyden, near Rye Cove Branch	-83.45030	36.96130
K156	Four Mile Creek	Confluence of Kentucky River and Four Mile Creek	-84.22750	37.87690
K157	Kentucky River	At Fort Boonesborough State Park, Boonesboro Beach	-84,26250	37,89880
K158	Howards Creeks	Confluence of Kentucky River and Howards Creek	-83.37800	37,4700
K160	North Elkhorn	Route 25 north of Georgetown, at the boat dock	-84,56000	38,2200
K161	Silver Creek	Hagans Mill Bridge	-84.37500	37.6950
K162	Silver Creek	Taylor's Fork and Silver Creek	-84.38000	37.7020
K163	Frozen Creek	Confluence of North Fork Kentucky River	-83,42000	37.6050
K165	Cane Creek	100' below confluence of Cane Creek and Lindon Fork	-83,41667	37,5584
K166	War Creek	Above confluence with North Fork Kentucky River	-83.48889	37.6055
K167	Boone Fork	HWY15 - KY 205 Intersection	-82,73000	37.1555
K168	Lulbegrud Creek	Bridge on Route 1028 at Log Lick Creek in Clark County	-84.05000	37.8500
KP18	Boone Fork	At Kona	-82,83645	37.1253
KP19	Sandlick	At Whitesburg	-82.75594	37,1590
KL1	North Fork Kentucky River	Appalshop, Near Heritage Chair Factory	-82.82444	37,1169
KL2	Little Dry Fork	Route 15 near Hazard, at Little Dry Fork Road	-82.85767	37.1411
KL3	Sandlick Creek	At the Sandlick Firehall	-82,82500	37.1643
KL4	Crafts Colly	On Magnolia Road	-82.80500	37,1715
KL5	Company Fork	At the trail along Bony Piles	-82,79417	37,1680
KL6	Company Fork	At the trail along Bony Piles	-82.79417	37.1678
KL7	Millstone Creek	Near millstone Transfer Station	-82.76100	37.1998
KL8	Crafts Colly	:	-82.80467	37.1676
KL9	Company Fork	Fork Road	-82,79000	37,1750
KL10	Camp Branch	Near Donnie Proffitt's property and Golden Oak property	-82.81717	37,2061
KLH	Camp Branch	Tipple Driveway	-82.82267	37,2026

1.3 Sample Data and Collection Dates

Water quality data were collected across the basin at five different times extending through the spring, summer, and fall of 2000. A listing of the sample dates and types of data collected during each sample period is provided in Table 1.2

Type of Data Collected Sample Dates Sites Samples 1. Herbicide/Pesticide 6/12/00-6/28/00 4 4 2. Focused Fecal Coliform 6/5/00-6/30/00 91 26 3. Synoptic Fecal Coliform. 7/7/00-7/12/00 69 69 4. Follow Up Fecal Coliform 7/29/00-8/4/00 22 22 5a. Chemical/Nutrients 9/10/00-9/18/00 86 86 5b. Chemical/Nutrients/Metals 9/10/00-9/18/00 39 39

Table 1.2 Basinwide Sample Data and Collection Dates

In addition to the basin wide sampling effort, separate focused sampling was conducting in Letcher County during March and September of 2000. A listing of the sample dates and types of data collected during each sample period is provided in Table 1.3 Finally, a summary of the types and number of samples collected at each data collection site is provided in Table 1.4.

Table 1.3	Letcher County Sample Data and Collection D	ates
	0 1 5	_ ~

Type of Date Collected	Sample Dates	Sites	Samples
1. Metals Data	3/7/00-3/18/00	K97,K98,K99	9
2a. Fecal Coliform/Strep	3/26/00-3/31/00	K100-K115	39
2b. Fecal Coliform/Strep	8/28/00-9/6/00	KP18-KP19	6
3. AMD Data	6/28/00-9/6/00	KL1-KL11	31

1.4 Baseflow Conditions

In order to provide a basis for interpreting the sample results it is important to understand the associated stream conditions during the sampling effort. For example, data collected during low flow or dry conditions may be more indicative of the impact of points discharges while data collected following a storm may be more reflective of the impacts of non-point pollutant discharges. An indication of the stream conditions during the sampling period may be obtained by examination of USGS streamflow records. For the purposes of this study, five separate USGS gauging stations were selected for use in providing an indication of the streamflow conditions during the sampling period. The names, station numbers, and locations of each of these stations is shown in Figure 1.7. Streamflow plots for each station showing the times of the different sampling efforts are shown in Figures 1.8-1.12.

Table 1.4 Types and Number of Samples

	Field Physical / Chemical Data	Pesticide / Herbicide Sampling	Focused Fecal Coliform Sampling	Synoptic Fecal Coliform Sampling - July 2000	Follow up Fecal Coliform Sampling	Chemical Sampling - September 2000	Nutrient Sampling - Sept 2000	Metals Sampling - September 2000	Letcher Fecal Sampling	Physical / Chemical Data	Letcher Metals / AMD Sampling
Sample ID#	# Samples	# Samples	# Samples	# Samples	# Samples	# Samples	# Samples	# Samples	# Samples	# Samples	# Samples
K01	6		5	1		1	<u> </u>			7	
K02	2		,	1	1	1]	1		3	
K03	1			1		1	1	1		2	
K04	t			1		1	1			2	
K05 K06	3		5	1		1	1 1			4	
K07	1			1		1	1			2	
K12	2			1	1	1	i			3	
K13	2			1	1	1	1			3	
K14	1			1		1	1			2	
K15 K16	l t			1	-	1	1			2	
K18	1		· · · · · · · · · · · · · · · · · · ·			,				2 1	
K19	1			1					-	1	
K21	7		5	1	1	1	1	•		8	
K22 K23	7		5	1	1	1	1			8	
K25	2		3	1	1	1	1			8 2	
K26	I			1		1	i			2	
K27	ŧ			1		1	1			2	
K28	2			1	1	1	1			3	
K29 K31	2			1	1	1	1	·		2	
K32	6		5	1		· · · · · · · · · · · · · · · · · · ·	,			6	
K33	1			1		1	1			2	
K34	1			1]]			2	
K35	1									1	
K36 K37	2			1	1					2 1	
K38	1			1			· · · · · · · · · · · · · · · · · · ·			1	
K39	2			1	1					2	
K40	1									11	
K42 K43	1					,	,	1		1	
K44	1			<u> </u>		1	1 1	1		2	
K45	1			1		i	1	i		2	
K46								l			
K47								. 1			-
K48 K49	1					1	. 1	1		2	
K50	1			i		1	i i	ı		2	
K51	1			1		1	1	•		2	
K52	1			1		1	l			2	
K53 K54				1		1	1			1	
K55	1			1 1		1 1	1	1		1	
K56	1			1		i	1 1			2	l
K57	L L			1		i	i			2	
K59						i	1			1	
K60 K61			ļ			i	1			1	
K62	1		-			1	1			1	
K63	1		<u> </u>			İ				i	<u> </u>
K64											
K65 K66	1		-]			2	
K67	1					1	1			1 1	<u> </u>
K68						1	1 .		<u> </u>	i	
K69						1	1			1	
K70 K71			<u> </u>			1	1		ļ	1	
K71	5		5	1	1	1	1		ļ	1 6	—
K73			 	1	'	1	1			1	
K74				1		1	1			1	
K75				1		1	1			1	
K76 K77	i		<u> </u>	—	 	1	1			2	
K78	1		-			<u> </u>	<u> </u>		 	1	l
K79	1								<u> </u>	i	
K80	1								L	1	
K81 K82	6		2			l t	L L	1	ļ	i 7	
K83	6		3			1 1	1	1 1		7	
K84						1	1	<u>'</u>		1	
K85			1	1		1	1	1	,	1	1

	Field Physical / Chemical Data	Pesticide / Herbicide Sampling	Focused Fecal Coliform Sampling	Synoptic Fecal Coliform Sampling - July 2000	Follow up Fecal Coliform Sampling	Chemical Sampling - September 2000	Nutrient Sampling - Sept 2000	Metals Sampling - September 2000	Letcher Fecal Sampling	Physical / Chemical Data	Letcher Metals Sampling - March 2000
Sample ID #	# Samples	# Samples	# Samples	# Samples	# Samples	# Samples	# Samples	# Samples	# Samples	# Samples	# Samples
K86	1			1		ı	1			2	
K87				1	1	1	1			i	
K89						1]			1	
K90 K94						1	1			1	
K95						<u> </u>	<u>1</u>			1 1	
K96				1		1	1			1	
K97	6									3	3
K98 K99	6									3	3
K100	7		3						3	7	
K101	7		3						3	7	
K102 K103	6		3						3	6	
K104	6		3						3	6	
K105	6		3						3	6	
K106	6		3						3	6	
K107 K108	7		3				ļ		3	7	
K108	4		3						3	7 4	
K110	7		3				İ		2	7	
Kill	7		3						2	7	
K112 K113	3								2	3	
K113 K114	2								2	2	ļ
K115	3								2	3	
K116	5		<u> </u>							5	
K117 K118	6		3							4	
K119	6		3							6	
K120	3	ı	•	1	1	l l	1 1	1		4	
K121	<u> </u>	1		1		l	l	1		2	
K122 K123	1	1		1	***	1	1	1		2 2	
K124	i	· · · · ·	4	•		-		1	ļ		
K125	1					1	l	1		2	
K126	2			1	1	11	l .	1		3	
K127 K129	2 2			1	<u>l</u>	1 I	1	1		3	
K130	2			i	i	1	i	1		3	
K131	1			1		1	1	1		2	
K132	2				1	1	l	1		3	
K133 K134	1			1		1	ι	1		2	
K135	5					i	1	1		6	
K136	1					i	1	1		2	
K137	1			1						1	
K140 K156	1 t	· ·		1		1	i i	1		2 2	
K157	1			1	1	 	1	1		2	
K158	1			1	1		1	ī		2	<u> </u>
K160				1							
K161 K162	1			1		1	1	1		2	
K163	1	<u> </u>			-	1	1 1	1		2 2	
K165	1					1	1	1		2	<u> </u>
K166	1					1	1.	1		2	
K167 K168	1 1		 	i		1	1	1 1		2 2	
KP18						<u> </u>		<u> </u>	3		
KP19									3		
KL1 KL2	3									3	
KL3	3		 			<u> </u>	 			3	
KL4	3								<u> </u>	3	
KL5	3									3	
KL6 KL7	3		ļ				-			3	_
KL8	3			,			 			3	
KL9	3									3	
KL10	3									3	
KL11	 									3	
# Sites Sampled per Event out of Total 147 Sites	115	4	26	69	22	86	86	39	18	139	3

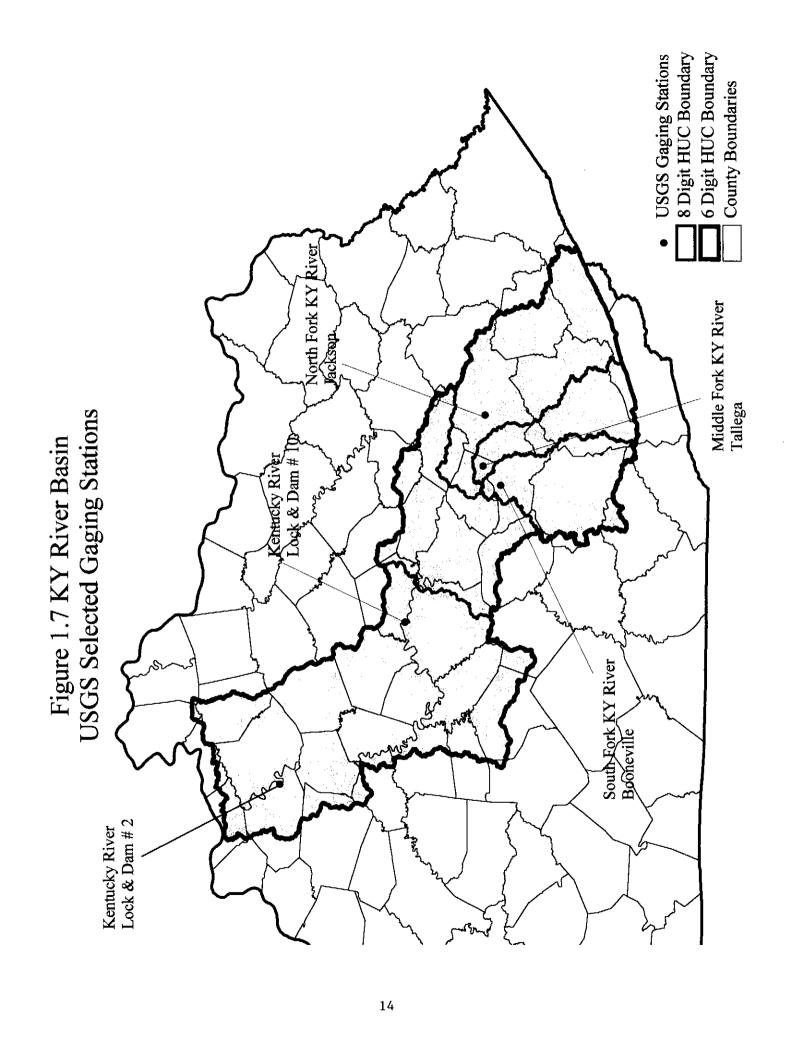


Figure 1.8 North Fork Kentucky River - Jackson 2000 Flow Values

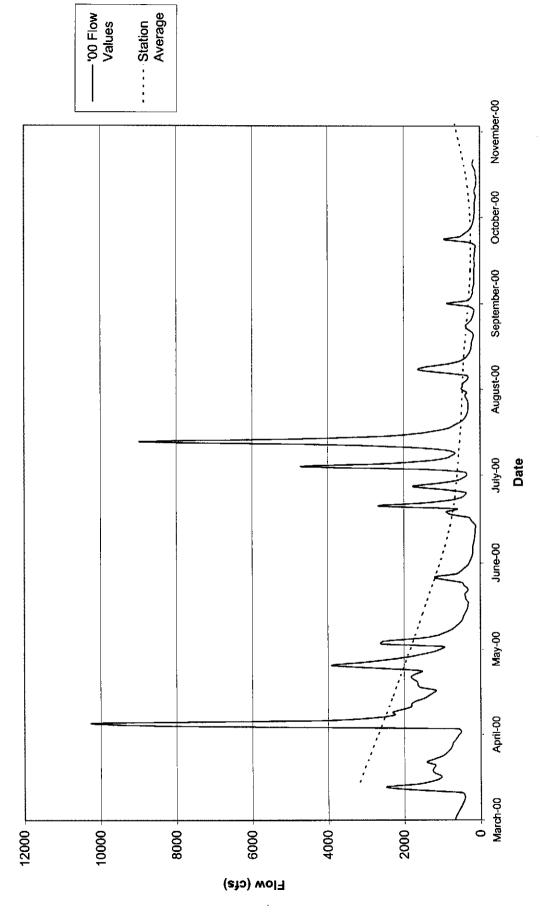


Figure 1.9 Middle Fork Kentucky River - Tallega 2000 Flow Values

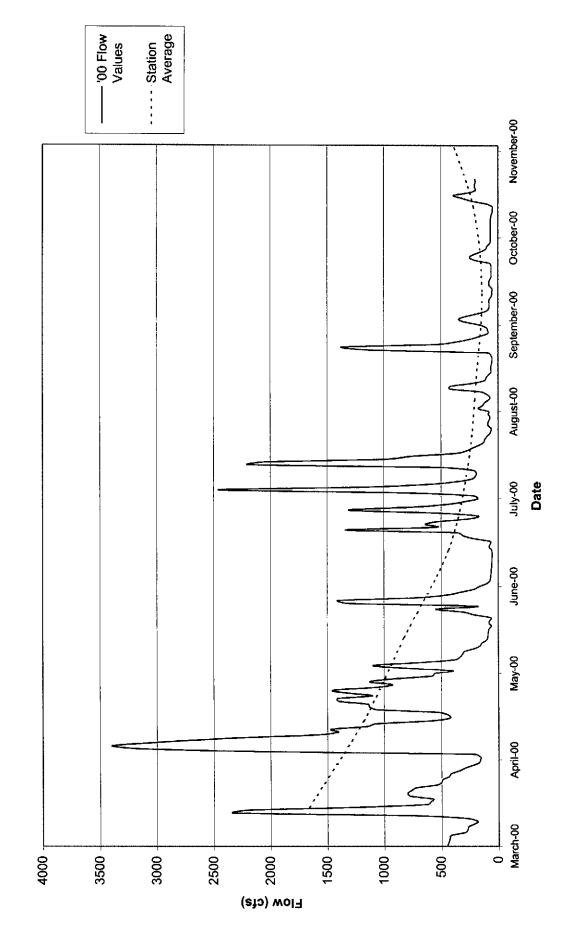


Figure 1.10 South Fork Kentucky River - Booneville 2000 Flow Values

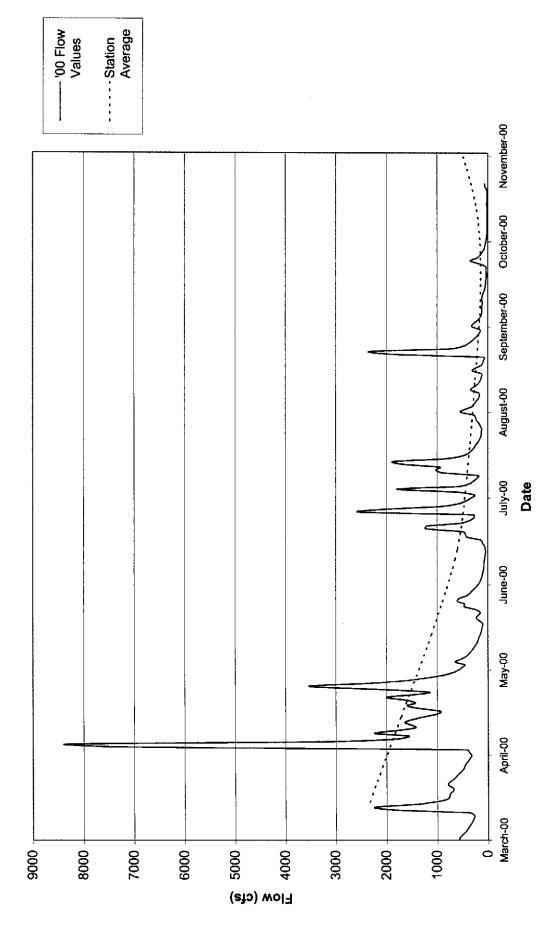


Figure 1.11 Kentucky River - Lock & Dam # 10 2000 Flow Values

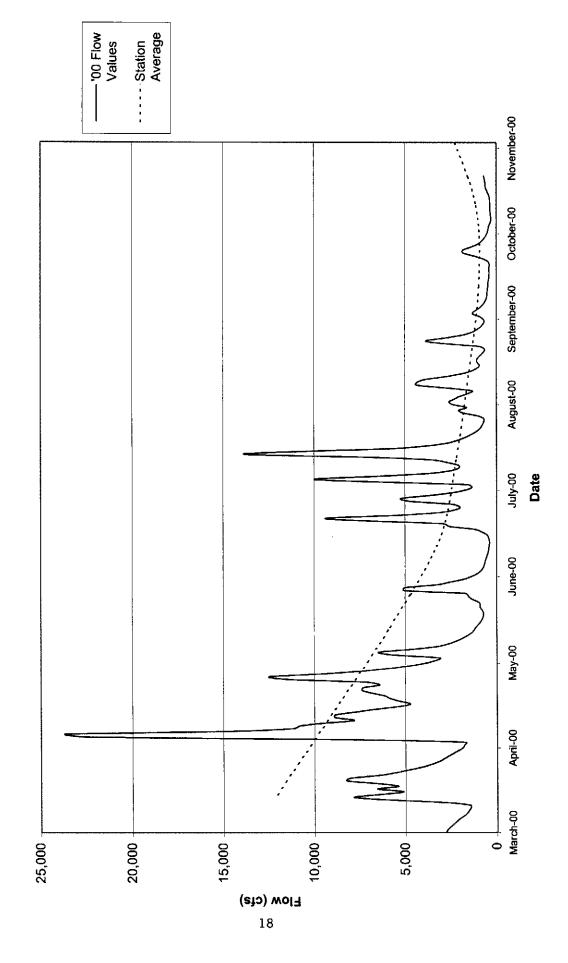
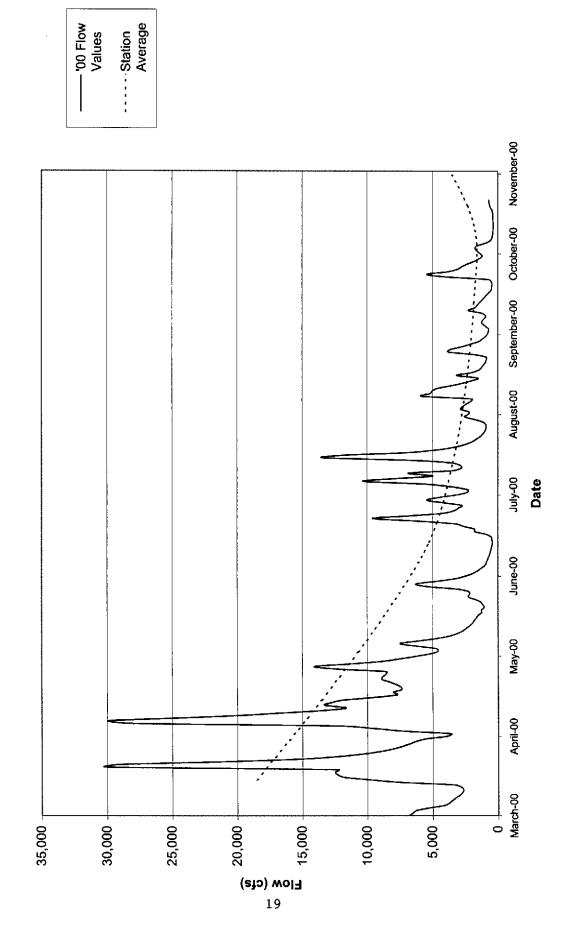



Figure 1.12 Kentucky River - Lock & Dam #2 2000 Flow Values

CHAPTER 2: DATA COLLECTION AND ANALYSIS

2.1 Physical/Chemical Field Data

General physical/chemical field data (flow, water temperature, pH, and dissolved oxygen) were collected at each sample site during five separate basinwide sample periods. A summary of the physical/chemical data collected during this period is provided in Table 2.1. With the exception of stations K14, K21, K130, K135, and K168, all stations had oxygen levels greater than 5.0. For the observed stream temperatures, all dissolved oxygen values should be less than 10. Thus, sites with readings in excess of 10 are most likely due to measurement error. With the exception of stations K01, K32, K54, K72, and K124, all stations had pH values greater than 6.

2.2 Herbicide/Pesticide Indicators

Five separate herbicides/pesticides were used to evaluate the possibility of potential pollution from rural and/or urban land uses in the Kentucky River Basin. The herbicide/pesticides included: 2,4-D, Alachlor, Chloropyrifos, Metolachlor, Triazine. 2,4-D is a chlorinated phenoxy compound which functions as a systemic herbicide that is used to control many types of broadleaf weeds. It is used in cultivated agriculture, in pasture and rangeland applications, forest management, home, garden, and to control aquatic vegetation. Alachlor is an aniline herbicide used to control annual grasses and broadleaf weeds in field corn, soybeans, and peanuts. It is a selective systemic herbicide, absorbed by gernminating shoots and by roots. interferring with a plant's ability to produce protein and by interfering with root elongation. Chloropyrifos is a broad-spectrum organophosphate insecticide. Chloropyrifos is effective in controlling cutworms, corn rootworms, cockroaches, grubs, flea beetles, flies, termites, fire ants, and lice. It is used as an insecticide on grain, field, fruit, nut, and vegetable crops, as well as on lawns and ornamental plants. Metolachlor is usually applied to crops before plants emerge from the soil, and is used to control certain broadleaf and annual grassy weeds in field corn, soybeans, peanuts, grain sorghum, potatoes, pod crops, cotton, safflower, stone fruits, nut grees, highway rights-of-way and woody ornamentals. It inhibits protein synthesis; thus, high-protein crops (e.g. soy) can be adversely affected by excessive metolachlor application. Additives may be inleuded in product formulations to help protect sensitive crops (i.e. sorghum) from injury. Triazine (or Atrazine) is a selective triazine herbicide used to control broadleaf and grassy weeds in corn and other crops, and in conifer reforestation plantings. It is also used as a nonselective herbicide on non-cropped industrial lands and on fallow lands. Over 64 million acres of cropland were treated with atrazine in the U.S. in 1990. For a more thorough discussion of each of these products, see Appendix A.

2.3 Herbicide/Pesticide Samples

Herbicide/pesticide data were collected at four new sample sites during the period 6/12/00-6/28/00. The locations of each of the sites is shown in Figure 2.1. A summary of the results for the herbicide/pesticide data collection effort is provided in Table 2.2.

Table 2.1 - Kentucky River Watershed Watch Physical / Chemical Field Data

SampleID#	Collection Date	Sampler's Description and Comments	Flow Conditions*	Water Temperature* (C)	*Hq	Dissolved Oxygen* (mg/L)
K01	6/14/00	Cloudy	Low	-	7.0	1.4
K01	6/19/00	Turbid	Low	•	5.5	9.0
K01	9/5/90	Turbid	Low	•	0.9	5.4
K01	6/27/00	Very turbid	Low	_	5.0	•
K01	00/05/9	Slightly turbid	Low		5.5	9.9
K01	00/L//L	Clear	Low	•	-	-
K01	9/10/00	Clear	Low	•	-	-
K02	00/L//L	Clear	Low	-	•	•
K02	8/1/00	Clear	Low	-	•	•
K02	00/01/6	Slightly cloudy	Low	•	,	•
K03	2/10/00		Ponded	35	8	7
K03	00/01/6	Oily film on surface, smell	Ponded	23	7.5	7
K04	2/10/00		Ponded	35	7.5	8
K04	00/01/6		Ponded	23	7.5	5.6
K05	2/10/00		Normal	23	7.7	3.7
K05	7/31/00		Normal	22	7.5	2.8
K05	00/6/8		Normal	24	7.5	9
K05	00/01/6		Normal	23	7.5	7.6
K06	7/29/00	Sligh greenish tint	Normal		'	-
K06	9/10/00	Murky, bottom not visible, little sign of flow	Low	-	1	•
K07	00/67/2	Light brownish tint	Normal	,	'	•
K07	00/01/6	Clear - looks good	Low		٠	,
K12	7/12/00	Crawdads, snails, crabs present	Ponded	21	7.5	8.75
K12	7/29/00		Ponded	•	1	-
K12	9/12/00		Low	-	8.5	-
K13	7/12/00	Murky	Low	19	8.2	7.5
K13	00/67/L		Low		'	,
K13	9/17/00		Normal	24	8.3	1
K14	7/10/00	Clear, surface algae and foam	Low	24	7.5	3.6
K14	00/6/6	Clear, flowing, small fish present	Low	22	8.5	9.5
K18	2/10/00	Low, trickling flow, mossy growth in pooled areas	Low		·	

Table 2.1 - Kentucky River Watershed Watch Physical / Chemical Field Data

SampleID#	Collection Date	Sampler's Description and Comments	Flow Conditions*	Water Temperature* (C)	*Hd	Dissolved Oxygen* (mg/L)
K19	2/10/00	Low, trickling flow, mossy growth in pooled areas	Low	-	,	-
K21	00/5/9	Algae abundant	Normal	•	•	_
K21	00/01/9	Dark green algae mats along bank	Normal	-	,	•
K21	00/91/9	Algae abundant	Normal	•	•	,
K21	6/22/00	Good flow	Normal	-	-	_
K21		Bottom covered with algae	Low	-	•	-
K21	00/8//		Normal	21.1	9.7	4.7
K21	7/29/00		Normal	_	-	-
K21	00/6/6	Clear, 2 cm foam bubbles	Low	25.6	7.7	6.5
K22	00/5/9	Algae abundant	Low	•	-	1
K22	90/01/9	Heavy algae growth	Normal	18	7.8	6.2
K22	90/91/9	Heavy algae growth	Low		-	_
K22		Algae abundant	Normal		-	
K22	00/08/9	Algae abundant	Low		1	
K22	00/8//	Algae on bank, clear center channel	Normal	18.9	7.7	7.6
K22	7/29/00	Almost no water in creek	Ponded	•	1	_
K22	00/6/6	Clear, very low flow	Ponded	17.8	7.3	6.5
K23	6/10/00	1-5 cm foam on surface	Normal	18	8.0	7.0
\$23	00/5/9		Normal	•	ı	_
K23	6/16/00		Normal	•	ŀ	1
K23	6/22/00	Good flow	Normal	•	,	-
K23	00/02/9	Bottom muddy	Low	•	-	_
K23	00/8//	Cloudy	Normal	19.5	7.7	7.2
K23	7/29/00		Low	•	•	-
K23	00/6/6	2-4 cm foam flecks	Normal	17.8	7.7	6.5
K25	00/8//	Bank Full	Normal	-	7.7	7
K25	7/29/00	Low turbidity	Bank full		7.5	6.4
K26	2/10/00	Water almost clear, bed covered in silt, little aquatic life	Low	24	7.75	5.6
K26	9/10/00		Normal	24	7.5	6.3
K27	00/01//	Low but not stagnant, slightly cloudy, algae present	Low	22	7.5	5
K29	7/7/00	Flow clear, bottom coated in ligyht silt	Normal	21	7.5	8

Table 2.1 - Kentucky River Watershed Watch Physical / Chemical Field Data

	Collection	-	Flow	Water	*17"	Dissolved Oxygen*
SampleLD#	Date	Samplers Description and Confinents	Conditions*	Temperature* (C)	. md	(mg/L)
K29	2/29/00		Low		7.7	9.9
K29	00/01/6	Still, film on surface, several black bass	Ponded	22	7.5	6.8
K31	7/13/00	Clear, free flowing	Normal	-	-	
K31	00/01/6		Normal	61	1	1
K32	6/13/00	Very cloudy, algae abundant	Ponded	-	7.0	0.9
K32	00/61/9	Slightly turbid	Normal	•	5.5	13.0
K32	9/56/00	Turbid, algae very abundant	Low	•	0.9	10.0
K32	6/27/00	Slightly turbid	Normal	-	5.0	-
K32	00/05/9	Turbid, algae very abundant	Ponded	1	5.5	20.0
K32	7/13/00	Minimal flow	Ponded	•	•	1
K33	2/10/00	Water clear	Ponded	_	•	1
K33	00/01/6		Ponded	23	∞	5.6
K34	2/8/00		Normal	_	8	8.2
K34	00/01/6	Clear, slow flow, many fish	Normal	1	8.5	10
K35	2/8/00	Very low flow	row	19	8	6.4
K36	2/8/00	Turbid water	Normal	22	8	5.2
K36	8/1/00	Very turbid, visibility limited to 1 ft.	Bank full	23	7.5	5.2
K37	2/8/00	Very turbid, visibility limited to 2 ft.	Normal	21	8	7.2
K38	2/8/00	Very turbid, visibility limited to 2 ft.	Normal	23	8.5	8
K39	00/8//	Very turbid, visibility limited to 2 ft.	Normal	22	7.5	6.4
K39	00/1/8	Very turbid, visibility limited to 1 ft.	Bank fuli	23	7.5	5.4
K40	2/28/00		Normal	-	•	
K42	7/28/00		Normal	-	ı	
K43	00/81/6		Low	13	7	8.9
K44	2/10/00		Normal	25	7.5	7.6
K44	00/11/6	Clear, low	MOΊ	20	7.8	8
K45	2/10/00		Normal	22	7.8	8
K45	00/11/6		Fow	20	7.8	7.8
K48	7/29/00	Moderate flow rate, water clean	Normal	24	7.5	7.6
K48	00/01/6	Low, clear, bottom visible	Low	22	7.75	7.2
K50	00/8//	Clear and flowing	•	•	1	

Table 2.1 - Kentucky River Watershed Watch Physical / Chemical Field Data

	Collection		Flow	Water		Dissolved Oxygen*
SampleID#	Date	Sampler's Description and Comments	Conditions*	(C)	•Hd	(mg/L)
K50	00/01/6	Clear	Ponded	-	-	£
K51	00/8//	Clear and flowing	Normal	_	•	,
K51	9/10/00	Clear, plant growth	Ponded	•	٠	
K52	00/8//	Clear and flowing	Normal	•		•
K52	00/01/6	Clear, algae covering bed	Low	-	-	•
K53	00/6/6	Clear	Normal	22	-	•
K54		Lots of plants in current flow path	Normal	91	9.6	6.75
K54	00/8/6	Cloudy and silty	Normal	18.9	7.3	6.94
K55	00/8/6	Murky, dark water	Normal	21.1	7.1	7.85
K56	00/L/L		Normal	16	7.5	7.7
K56	00/8/6		Low	-	8	8.1
K57	00/L/L		Normal	15	8	7.9
K57	00/01/6		Low	-	8.5	8.2
K59	00/6/6	Little flow	Low	-	8	01
K60	00/01/6		Normal	-	7.5	5.5
K61	00/01/6	Slow moving water	Ponded		7.5	5.5
K62		Normal, clear	Normal	-		
K63	7/29/00	Normal, clear	Normal	-	,	-
K65		Pond-like areas	Low	•	8	8
K67	00/6/6		Low		•	1
K68	00/6/6	Slightly murky	Normal	25	•	1
K69	00/6/6	Slightly murky	Low	25		•
K70	00/6/6		Low	-	•	
K71	00/6/6	Swift current, clear water	Normal	-	7.25	7.5
K72	6/27/00	Turbid	Normal	-	5.0	-
K72		Slightly cloudy	Low	_	5.5	7.4
K72	00/61/9	Very turbid	Low	-	5.0	9.4
K72	9/26/00	Slightly turbid	Normal	-	7.4	5.5
K72		Slightly turbid	Normal	_	0.9	8.6
K72	00/01/6	Clear, flowing	Normal	23	7.8	7.2
K73	7/29/00		-	1	·	1

Table 2.1 - Kentucky River Watershed Watch Physical / Chemical Field Data

's Description and Comments Conditions* Conditions* ly clear, slightly brownish, shiny surface near bank Low cownish tint Low cowning Low Low Low owing
Clear, singuity brownish Clear, flowing Brownish cast, visibility 12", some algae present
Cloudy and silty
Highly discolored
as a clay bank
with grey tinge
is a clay bank
ants present, rotten smell
Crawfish present
Water flowing well, brownish color
Very low / clear
Mostly clear, slightly brownish
Moderate flow, slightly murky water
Water clear, bottom visible

Table 2.1 - Kentucky River Watershed Watch Physical / Chemical Field Data

SampleID#	Collection	Sampler's Description and Comments	Flow Conditions*	Water Temperature* (C)	*Hd	Dissolved Oxygen* (mg/L)
				,		
K94	9/11/6	Moderately clear	Low		7.7	,
К95	9/11/6	Cloudy	Normal	•	7.5	-
K96	2/8/00	Water clear and very cold	Normal	-	6.75	7
K96	00/6/6	Water cold	Normal	-	6.7	9
K97	3/7/00	Low and clear	Low	-		-
K97	3/11/00	Normal flow and clear	Normai	•	•	•
K97	3/18/00	Swollen and discolored, swiftly flowing water	Normal	•		•
К98	3/1/00	Low and clear	Low	_		•
К98	3/11/00	Swollen and discolored, swiftly flowing water	Bank Full	_	•	•
К98	3/18/00	Normal flow and clear	Normal	1	,	•
K99	3/2/00	Silt-ridden, low	Low	-	,	•
K99	3/11/00	Swiftly-flowing, swollen, muddy water due to large sediment load	Bank Full	-	-	_
K99	3/18/00		Bank Full	1	1	
K100	3/29/00	Normal flow and clear	Normal	1	ı	,
K100	3/31/00	Normal flow and clear	Normal	-	1	,
K100	9/16/00		Low	•	١	_
K100	6/21/00	Clear	Low	•	7.2	7.0
K100	90/97/9	Muddy	Low	-	0.9	7.4
K100	90/87/9	Muddy / Fast	Bank Full		7.4	7.0
K100	6/30/00 Murky	Murky	Bank Full	,	7.5	7.0
K101	3/29/00	Normal flow and clear	Normal		,	•
K101	3/31/00	Normal flow and clear	Normal	-	-	•
K101	00/61/9	Cloudy	Low	•	٠	•
K101	90/17/9	Clear	Low	,	7.3	6.5
K101	90/97/9	Muddy	Low	_	7.3	6.0
K101	6/28/00 Muddy	Muddy / Fast	Bank Full	_	7.4	7.0
K101	00/08/9	Murky	Bank Full	•	7.3	7.5
K102	3/29/00	Normal flow and clear	Normal	•	'	
K102	3/31/00	Low and clear	Low	ı	·	ı
K102	00/61/9	Cloudy	Low	•	•	•
K102	6/26/00 Muddy	Muddy	Low		7.3	7.0

Table 2.1 - Kentucky River Watershed Watch Physical / Chemical Field Data

SampleID#	Collection	Sampler's Description and Comments	Flow Conditions*	Water Temperature* (C)	*Hd	Dissolved Oxygen* (mg/L)
K102	9/28/00	Muddy / Swift	Bank Full	_	7.4	7.5
K102	00/08/9	Clear	Low	_	7.4	7.5
K103	3/29/00	Normal flow and clear	Normal	-	•	ţ.
K103	3/31/00	Normal flow and clear	Normal	_	ı	,
K103	9/21/00	Clear	Low	_	7.3	8.0
K103	9/26/00	Milky	Low	_	7.3	8.0
K103	9/28/00	Muddy / Fast	Bank Full	_	7.5	8.0
K103	00/06/9	Murky	Bank Full	-	7.4	8.0
K104	3/29/00	Normal flow and clear	Normal	-	1	•
K104	3/31/00	Normal flow and clear	Normal		'	•
K104	6/21/00	Clear	Low	_	7.3	7.5
K104	9/97/9	Milky	Low	_	7.3	7.0
K104		Muddy / Fast	Bank Full	_	7.4	7.5
K104	90/08/9	Murky	Bank Full	_	7.4	7.5
K105	3/29/00	Normal flow and clear	Normal	•	•	•
K105	3/31/00	Low and clear	Low	•	-	1
K105	9/17/9	Clear	Low		7.2	8.5
K105		Milky	Low	_	7.2	7.5
K105		Muddy / Swift	Bank Full		7.4	8.0
K105	00/08/9	Clear	Low	_	7.2	7.5
K106	3/29/00	Normal flow and clear	Normal	1	,	1
K106	3/31/00	Normal flow and clear	Normal		-	-
K106	9/21/00	Clear	Low	_	7.4	8.0
K106	9/79/00	Milky	Low	_	7.6	7.0
K106	9/28/00	Muddy / Swift	Bank Full	_	7.5	7.0
K106	6/30/00 Murky	Murky	Bank Full	-	7.5	7.5
K107	3/29/00	Normal flow and clear	Normal	•	1	1
K107	3/31/00	Normal flow and clear	Normal	1	•	•
K107	00/61/9	Clear, very low	Low	•	,	-
K107	6/21/00	Clear	Low	4	7.4	9.0
K107	00/97/9	6/26/00 Muddy and flowing swiftly	Normal		7.4	8.0

Table 2.1 - Kentucky River Watershed Watch Physical / Chemical Field Data

7.1	Collection		Flow	Water	*17	Dissolved Oxygen*
Sample1D#	Date	Sample S Description and Comments	Conditions*	Temperature* (C)		(mg/L)
K107	9/28/00	Muddy / Fast	Bank Full	-	7.5	8.0
K107	00/06/9	Murky	Bank Full	_	7.4	8.0
K108	3/29/00	Normal flow and clear	Normal	-	•	
K108	3/31/00	Normal flow and clear	Normal			•
K108	00/61/9	Clear, very low	Low	_	•	-
K108	6/21/00	Clear	Low	_	7.4	9.6
K108	9/79/9	Muddy and flowing swiftly	Normal	ı	7.4	8.0
K108	9/28/00	Muddy / Fast	Bank Full	-	7.5	8.0
K108	00/06/9	Murky	Bank Full	-	7.4	8.5
K109	3/31/00	Low and clear	Low	,	,	•
K109	9/56/00	Low and clear	Ponded	-	7.5	7.5
K109	9/28/00	Fast / Murky	Bank Full	-	7.5	8.0
K109	00/06/9	Clear	Normal	,	7.5	7.0
K110	3/26/00	Clear and normal flow	Normal	•	ı	•
K110	3/31/00	Normal flow and clear	Normal	•	ı	,
K110	00/61/9	Cloudy	Low	-	•	•
K110	6/21/00	Clear	Low	•	7.4	8.0
K110	9/5/90	Muddy	Low	1	7.4	7.0
K110	9/58/00	Muddy / Fast	Bank Full	-	7.5	7.5
K110	00/08/9	Murky	Bank Full	,	7.4	7.5
K111	3/26/00	Clear and normal flow	Normal	1	1	
K111	3/31/00	Normal flow and clear	Normal	•	ı	1
K111	00/61/9	Cloudy	Low	1	•	•
K111	6/21/00	Cloudy	Low	1	7.5	6.5
K111	6/26/00	Muddy	Low	-	7.5	6.0
K111	9/78/00	High / Muddy	Bank Full		7.5	7.0
K111	00/02/9	Murky	Bank Full	-	7.4	7.0
K112	3/26/00	Normal flow and clear	Normal		'	
KI12	3/31/00	Low and clear	Low		,	
K113	3/26/00	Normal flow and clear	Normal	•	,	•
K113	3/31/00	3/31/00 Low and clear	Low	•	1	

Table 2.1 - Kentucky River Watershed Watch Physical / Chemical Field Data

	Collection		Flow	Water	1	Dissolved Oxygen*
SampleID#	Date	Sampler's Description and Comments	Conditions*	Temperature* (C)	pHT	(mg/L)
					ı	
K114	3/31/00	Normal flow and clear	Normal	-	1	-
K115	3/26/00	Normal flow and clear	Bank Full	-	•	•
K115	3/31/00	Milky sheen on surface, white algae abundant on bed	Normal	-	,	
K116	00/61/9	Muddy	Normal	-	,	•
K116	9/21/00	Clear	Low	-	7.4	8.0
K116		Milky	Low	•	7.5	7.0
K116		Muddy / Swift	Bank Full	•	7.4	7.5
K116		Murky	Low	•	7.5	7.4
K117		Clear	Low	_	7.4	8.0
K117	,	Milky	Low	-	7.4	7.0
K117	9/28/00	Muddy / Swift	Bank Full	_	7.4	7.5
K117	00/06/9	Murky	Bank Full	_	7.5	7.5
K118	00/61/9	Clear	Low	-	•	
K118	6/21/00	Clear	Low	-	7.3	7.0
K118	9/26/00	Low and clear	Low	-	7.3	7.0
K118	00/87/9	Murky / Swift	Bank Full	_	7.4	7.5
K118	L	Clear	Low	-	7.4	7.5
K119	00/61/9	Clear	Low	_	-	ı
K119	9/21/00	Clear	Low	-	7.4	7.0
K119	9/5/00	Clear	Low	_	7.4	7.0
K119	9/28/00	Murky / Swift	Bank Full	•	7.4	7.5
K119	00/06/9	Clear	Low	. 1	7.3	7.5
K120	4/1/00		Normal	-	8.5	10
K120	00/L/L	Low flow and moss	Low	70.5 F	8	8.5
K120	7/29/00		Low	19	8	7.8
K120	00/01/6	Slow and shallow flow, heavy vegetation	Low	21	8	7.4
K121	00/8//	Clear	٠	20	7.75	5.4
K121	00/01/6	Clear to slight turbidity, 7.4 ft ³ /s	Low	21	7.5	5
K122	00/8//	Water flow is in a ditch	Normal	21	7.5	5.4
K122	00/01/6	Slight turbidity, 11.5 ft ³ /s	Low	20.5	7.5	5.6

Table 2.1 - Kentucky River Watershed Watch Physical / Chemical Field Data

	Collection		Flow	Water	*	Dissolved Oxygen*
Samplet D#	Date	Sampler's Description and Comments	Conditions*	Temperature* (C)		(mg/L)
K123	00/8//	Stream flow in a ditch, water smells slightly	Normal	21	7.5	6.7
K123	00/01/6	Slight turbidity, 44.2 ft ³ /s	Low	20.5	7.5	9.9
K124	6/21/00		Normal	•	7.5	0.6
K124	6/24/00	Turbid, light brown color	Normal	25.1	7.7	7.7
K124	9/5/90	Very turbid, coal deposits on beach	Normal	-	5.5	6.4
K124	9/38/00		Normal	23	6.5	-
K125	9/13/00		Ponded	ı	7.8	9
K126	00/8/L		Normal	59 F	8.5	8
K126	2//29/00	Slightly turbid, muddy	Normal	16	8	7.4
K126	00/01/6	Clear, flowing	Normal	18	7.75	7.2
K127	2/10/00		Normal	25	7.5	6
K127	7/31/00		Normal	21	7.5	9
K127	00/01/6		Normal	21	8	7.6
K129	00/8//		Normal	-	8.5	6
K129	7/29/00		Normal	23	8	6.2
K129	00/8/6	Slightly cloudy	Normal	25	8.5	10.5
K130	00/L//L	Slightly turbid, good flow	Normal	25	7.6	6.8
K130	2/29/00		Low	24	7.5	5.8
K130	00/01/6		Low	22	7.2	4.4
K131	2/10/00	Algae covering rocks, floating on surface	Ponded	-	ı	
K131	00/6/6	Clear	Normal	22	ı	-
K132	2/10/00	Water clear, lots of silt	Low	81 F	8.5	8.4
K132	2/29/00		Low	-	,	,
K132	00/6/6	Clear, flowing slowly, bed heavily silted	Low	23	·	•
K133	1/11/00		Normal	•	'	Ţ
K134	1/29/00	Water clear	Normal	•	8	•
K134	00/6/6	Clear	Low	•	•	
K135	1/29/00		Normal	20	8.2	4
K135	00/6/6	Low, calm	Low	-	•	
K136	2/28/00	Clear, flowing	Normai	-	,	,

Table 2.1 - Kentucky River Watershed Watch Physical / Chemical Field Data

	Collection	Collection	Flow	Water		Dissolved Oxygen*
SampleID#	Date	Sampler's Description and Comments	Conditions*	Temperature* (C)	pH.	(mg/L)
K136	0/10/00	Low, calm	Low	_	·	-
K137	2/29/00	Clear, calm	Low	-	7.5	17
K140	00/6/6	Some sulfur visible on standing water	Bank Full	20	7.5	•
K156	00/L//		Bank full	_	8	9.4
K156	00/8/6	Clear, clean	Normal	_	7.5	6.4
K157	00/L/L	Swift current	Bank full	•	7.5	8.6
K157	00/8/6	Pools, low current	Low	•	7.5	9.8
K158	00/L/L		Bank full	-	7.5	8.3
K158	00/8/6	Clear	Normal	-	8	8.5
K161	00/8/2		Normal	_	8.5	10
K161	00/8/6		Low	20	8	8
K162	00/8//		Normal		8.5	12
K162	00/8/6		Low	18	8	8
K163	7/28/00	Clear, moderate flow	Normal	-	•	
K163	00/01/6	Clear, good flow	Normal	23	·	1
K165	2/29/00	Milky flow	Low	-	,	•
K165	00/01/6	Clear, good flow	Low	-	·	•
K166	1/29/00	Clear and flowing	Low	-	·	
K166	00/01/6	Low flow, clear	Low	-		ı
K167	2/29/00	Clear, moderate flow	Normal	-	-	,
K167	0/10/00	Clear, good flow	Normal	22	•	ŧ
K168	7/24/00		Normal	23	8	4.5
K168	00/8/6	Water slightly cloudy	Normal	22	7.8	9

(*) - Dashed values indicates no data available
 Based on observed temperature values, the dissolved oxygen reading should be < 10.
 Values in excess of 10 are assumed to be attributed to measurement error.

Figure 2.1 Herbicide / Pesticide Sampling Locations Refer to accompanying tables for herbicide and pesticide values. KRWW Herbicide / Pesticide Sampling Sites 8 Digit HUC Boundary 6 Digit HUC Boundary

Table 2.2 Kentucky River Watershed Watch 2000 Pesticide / Herbicide Sampling

Triazines by	Immunoassay, ug/L	Less than MDL	Less than MDL	0.11	0.1
Metolachlor by	Immunoassay, ug/L	Less than MDL	Less than MDL	Less than MDL	Less than MDL
Chlorpyrifos by	Immunoassay, ug/L	Less than MDL	Less than MDL	Less than MDL	Less than MDL
Alachlor by	Immunoassay, ug/L Immunoassay, ug/L Immunoassay, ug/L	Less than MDL	Less than MDL	Less than MDL	Less than MDL
2.4-D by	Immunoassay, ug/L	Less than MDL	Less than MDL	Less than MDL	Less than MDL
Collection	Date	6/12/00	00/57/9	00/87/9	00/87/9
Sample ID Collection	#	K120	K121	K122	K123

The collected samples did not register the occurrence of any of these substances above the minimum detection limits (i.e., 0.9 microg/l for 2,4-D; 0.06 microg/l for Alachlor, 0.1 microg/l for Chlorphyrifos, 0.08 microg/l for Metolachlor, and 0.06 microg/l for Triazine) except for stations K122 and K123 which yielded Triazine values of 0.11 and 0.10 respectively.

2.4 Bacteriological Data

Two separate indicators were used to evaluate the possibility of bacteriological contamination in the streams of the Kentucky River Basin. These included fecal coliform and fecal streptococci.

2.4.1 Fecal Coliform

Total coliform bacteria are a collection of relatively harmless microorganisms that live in large numbers in the intestines of man and warm- and cold-blooded animals. They aid in the digestion of food. A specific subgroup of this collection is the fecal coliform bacteria, the most common member being *Escherichia coli*. These organisms may be separated from the total coliform group by their ability to grow at elevated temperatures and are associated only with the fecal material of warm-blooded animals.

The presence of fecal coliform bacteria in aquatic environments indicates that the water has been contaminated with the fecal material of man or other animals. At the time this occurred, the source water may have been contaminated by pathogens or disease producing bacteria or viruses which can also exist in fecal material. Waterborne pathogenic diseases include typhoid fever, viral and bacterial gastroenteritis, and hepatitis A. The presence of fecal contamination is an indicator that a potential health risk exists for individuals exposed to this water. Fecal coliform bacteria may occur in ambient water as a result of the overflow of domestic sewage or non-point sources of human and animal waste. The state criteria for fecal coliform are based on the designated use of the particular stream and may be summarized as follows:

Primary Contact Recreation (swimming from May 1 thru Oct 31): fecal coliform shall not exceed 200 colonies per 100 ml as a monthly geometric mean based on not less than 5 samples per month; nor exceed 400 colonies per 100 ml in 20 percent or more of all samples taken during the month. [note as a result of the sampling frequency requirement with the first criteria, the state of Kentucky uses the 400 colonies per 100 ml criteria for classifying streams in the 305(b) report].

Secondary Contact Recreation (fishing and boating): fecal coliform content shall not exceed 1000 colonies per 100 ml as a monthly geometric mean based on not less than 5 samples per month; nor exceed 2000 colonies per 100 ml in 20 percent or more of all samples taken during the month.

Domestic Water Supply: fecal coliform content shall not exceed 2000 colonies per 100 ml as a monthly geometric mean based on not less than 5 samples per month.

2.4.2. Fecal Streptococci and the FC/FS Ratio

In the mid-70s, a general hypothesis was established that the ratio of two indicator bacteria in fecal wastes – fecal coliforms (FC) and fecal streptococci (FS) – was characteristic of particular animal wastes. In human wastes, the fecal coliform/streptococci ratio (FC/FS ratio) was determined to be greater than 4.0. In domesticated animals, like cattle, the ratio was identified to range between 0.1 and 4.0. In wild animals, the ratio was less than 0.1. Since that time, many attempts have been made to use the ratio to determine the source of fecal bacteria in contaminated waters. However, such applications should be limited to those cases where the following conditions are strictly enforced (Coyne and Howell, 1994):

- 1) Sampling needs to occur soon after manure deposition (within 24 hours if possible) because the fecal bacteria die off at different rates.
- 2) It becomes difficult to distinguish fecal streptococci in wastes from fecal streptococci that are naturally present in the soil and water when fewer than 100 fecal streptococci/100 ml of water are present, thus comparisons should generally only be done when the fecal strep values are greater than 100.
- 3) The water pH needs to be between 4 and 9 because fecal coliforms die off quicker than fecal streptococci in acid or alkaline water.
- 4) In typical agricultural settings, the FC/FS ratio from a single sample has little diagnostic use. The conclusions drawn must be carefully evaluated because so many environmental factors affect it. For example, warm shallow streams, high in organic carbon, permit fecal coliform re-growth and increase the FC/FS ratio. Samples taken in these conditions can give misleading values. Consequently, the mean FC/FS ratio for a site can be largely meaningless when the range of FC/FS ratios is so great.

2.5 Bacteriological Sampling

Three different sets of fecal coliform/fecal strep sampling were conducted in the Kentucky River basin during the summer of 2000. These included targeted or focused sampling, synoptic sampling, and follow-up sampling. The results of each sampling effort are discussed in following sections.

2.5.1 Focused Fecal Coliform/Fecal Strep Sampling

As a result of the occurrence of elevated fecal coliform/fecal strep values at numerous measured sites during the summer of 1999, several sites were selected for multiple focused fecal coliform/fecal strep sampling during June of 2000. The locations of each of the sites are shown in Figure 2.2 and compared on the basis of the geometic means of the collected data. The maximum fecal coliform count is shown in parentheses. The individual results for each site and for each sample are shown in Table 2.3. As can be seen from both the figure and the table, numerous sites across the basin continue to experience significant fecal coliform contamination.

Fecal Coliform Count 200 - 1000 (Secondary Contact Supported) Fecal Coliform Count > 1000 (Secondary Contact Not Supported)

Fecal Coliform Count < 200 (Primary Contact Supported)

Fecal Coliform Count > 2000 (Water Supply Not Supported)

8 Digit HUC Boundary 6 Digit HUC Boundary

Table 2.3 Kentucky River Watershed Watch Focused Fecal Coliform / Fecal Strep Sampling Results

Sample ID #	Collection Date	Fecal Coliform Count	Fecal Strep Count*	Fecal / Strep Ratio*
K01	6/14/00	3200	3100	1.032
K01	6/19/00	590	6000	0.098
K01	6/26/00	867	429	<0.045
K01	6/27/00	25000	43000	.581
K01	6/30/00	-	600	-
K05	7/31/00	1400	900	1.556
K05	8/9/00	270	1200	.225
K05	8/16/00	60	250	.24
K05	8/21/00	500	2500	.2
K05	8/28/00	450	500	.9
K21	6/5/00	60	170	.353
K21	6/10/00	310	670	.463
K21	6/16/00	4000	5900	.678
K21	6/22/00	10	450	<0.043
K21	6/30/00	•	400	-
K22	6/5/00	60	240	0.250
K22	6/10/00	100	530	.189
K22	6/16/00	2300	10000	.23
K22	6/22/00	11	451	<0.044
K22	6/30/00	•	300	-
K23	6/5/00	300	620	.484
K23	6/10/00	140	620	.226
K23	6/16/00	4300	18000	.239
K23	6/22/00	11	230	<0.02
K23	6/30/00	-	300	
K32	6/14/00	650	630	1.032
K32	6/19/00	550	3000	0.183
K32	6/26/00	869	231	<0.03
K32	6/27/00	60000	>60000	>1
K32	6/30/00	-	800	
K72	6/14/00	290	1600	.181
K72	6/19/00	20000	6000	3.333
K72	6/26/00	12	1306	<0.045
K72	6/27/00	9000	40000	.225
K72	6/30/00	9000	1300	.223
K82	6/19/00	14000	30000	0.467
K82	6/21/00	20000	600	33.333
K82		1900	500	3.800
K82 K83	6/26/00 6/19/00	5700	60000	0.095
K83	6/21/00	5000	600	8.333
K83		700	1400	
	6/26/00			0.500 1.500
K100		12000	8000	2.500
K100	6/21/00	1500 4500	600	
K100	6/26/00		2800	1.607 0.714
K101	6/19/00	5000	7000	
K101	6/21/00	2300	600	3.833
K101	6/26/00	3900	200	19.500

Table 2.3 Kentucky River Watershed Watch Focused Fecal Coliform / Fecal Strep Sampling Results

Sample ID #	Collection Date	Fecal Coliform Count	Fecal Strep Count*	Fecal / Strep Ratio*
K102	6/19/00	6000	20000	0.300
K102	6/21/00	1000	600	1.667
K102	6/26/00	700	400	1.750
K103	6/19/00	2000	6000	0.333
K103	6/21/00	700	600	1.167
K103	6/26/00	2900	1500	1.933
K104	6/19/00	2900	9000	0.322
K104	6/21/00	1500	600	2.500
K104	6/26/00	4400	1200	3.667
K105	6/19/00	21000	25000	0.840
K105	6/21/00	16000	600	26.667
K105	6/26/00	2600	3600	0.722
K106	6/19/00	29000	65000	0.446
K106	6/21/00	2400	600	4.000
K106	6/26/00	3700	2900	1.276
K107	6/19/00	320	9000	0.036
K107	6/21/00	250	450	0.556
K107	6/26/00	4200	3200	1.313
K108	6/19/00	340	1000	0.340
K108	6/21/00	270	600	0.450
K108	6/26/00	4100	2700	1.519
K109	6/19/00	2300	6000	0.383
K109	6/21/00	2400	600	4.000
K109	6/26/00	600	1900	0.316
K110	6/19/00	2800	7000	0.400
K110	6/21/00	150	500	0.300
K110	6/26/00	2800	1900	1.474
K111	6/19/00	33000	35000	0.943
K111	6/21/00	7000	600	11.667
K111	6/26/00	1100	900	1.222
K116	6/26/00	2400	2500	0.960
K117	6/19/00	28000	57000	0.491
K117	6/21/00	2000	600	3.333
K117	6/26/00	1900	5200	0.365
K118	6/19/00	3500	25000	0.140
K118	6/21/00	700	600	1.167
K118	6/26/00	500	2900	0.172
K119	6/19/00	70000	15000	4.667
K119	6/21/00	1800	600	3.000
K119	6/26/00	1200	1400	0.857
K124	6/21/00	130	170	0.765
K124	6/24/00	11	428	<0.044
K124	6/26/00	200	300	0.667
K124	6/28/00	80	90	.889

<u>Notes</u>

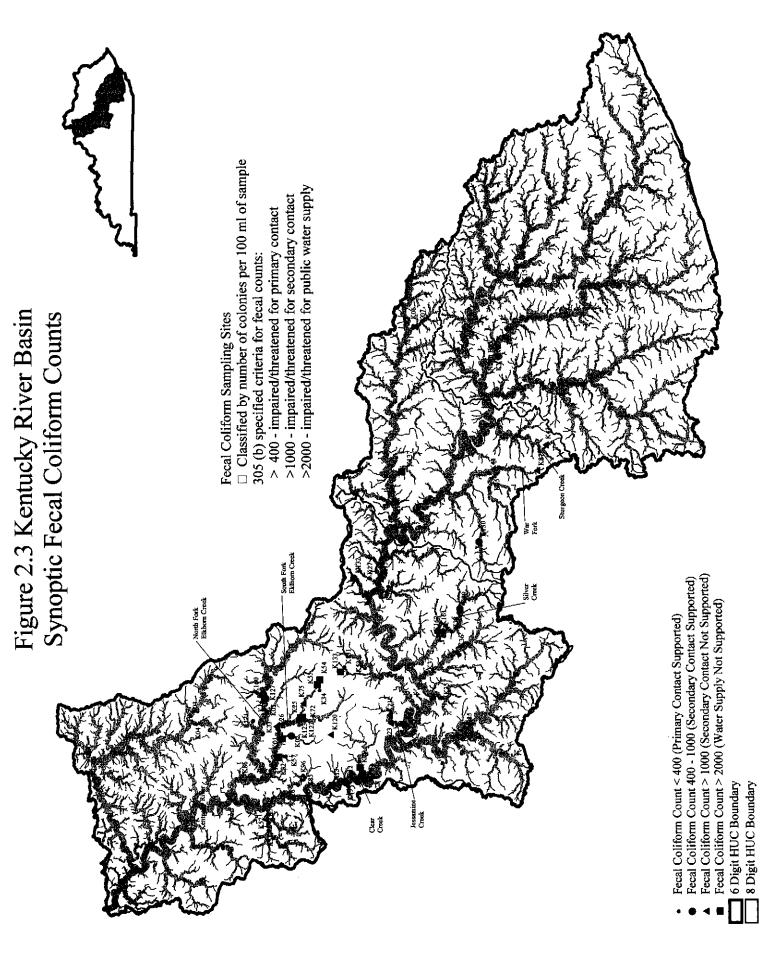
2.5.2 Synoptic Fecal Coliform/Fecal Strep Sampling

As in past years, a synoptic round of fecal coliform/fecal strep samples were collected at targeted sample locations during the month of July. The sample locations and associated summary results are shown in Figure 2.3. The range of corresponding fecal coliform/fecal strep ratios are highlighted in Figure 2.4. Only a handful of stations had FC/FS ratios in excess of 4.0. The individual results for each site are shown in Table 2.4.

2.5.3 Follow Up Fecal Coliform/Fecal Strep Sampling

Based on the observation of high readings at 22 of the synoptic sites, an additional round of fecal coliform/fecal strep samples were collected between 7/29/00 - 8/4/00. The sample locations and associated values are highlighted in Figure 2.5. The results of this sampling effort are provided in Table 2.5.

2.6 Physical/Chemical Sampling


General chemical data (alkalinity, chlorides, conductivity, total organic carbon, total suspended solids, and total hardness) were collected at all sample locations during the month of September. The locations of the sampling sites are shown in Figure 2.6 The individual results for each sample are shown in Table 2.6.

2.7 Nutrient Sampling

In addition to general chemical data, general nutrient data (nitrogen, phosphorus, and sulfate) were also collected at each sample site during the month of September. The spatial distribution of total phosphorus loads across the basin is shown in Figure 2.7. Several stations had phosphorus readings in excess of 0.1 mg/l. A summary of the nutrient data collected during this period is provided in Table 2.7. Eight stations had phosphorus readings in excess of 1.0 mg/l. These loadings were mainly associated with streams draining the Lexington area (e.g., North Elkhorn, South Elkhorn, Jessamine Creek, and Hickman Creek). These readings are similar to readings from previous sampling efforts and represent a continuing nutrient problem in the central bluegrass region. The highest recorded phosphorus reading was 1.84 mg/l which occurred at station K21 (Hickman Creek south of Nicholasville).

2.8 Significance of Nutrient Results

Oxygen demanding materials and plant nutrients are the most common substances discharged to the environment by man's activities, through wastewater facilities and by agricultural, residential, and stormwater runoff. The most important plant nutrients, in terms of water quality, are phosphorus and nitrogen. In general, increasing nutrient concentrations are undesirable due to the potential for accelerated growth of aquatic plants, including algae. Nuisance plant growth can create imbalances in the aquatic community, as well as aesthetic and access issues. High densities of phytoplankton (algae) can cause wide fluctuations in pH and dissolved oxygen.

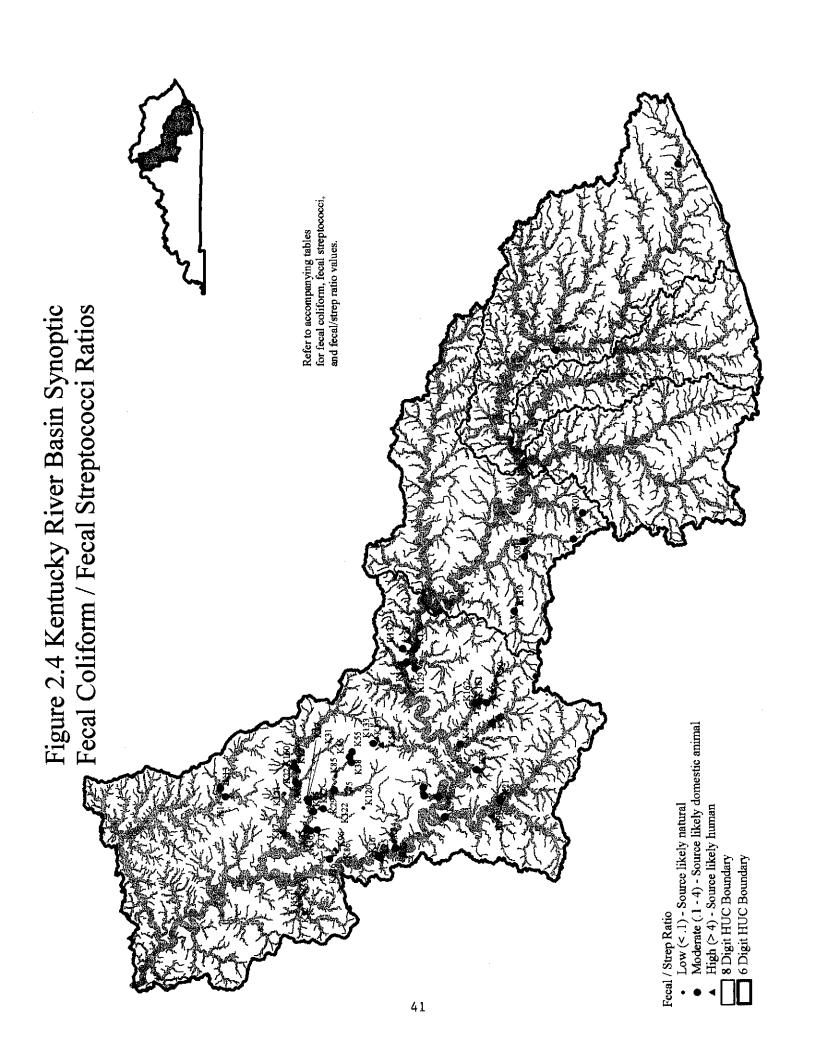


Table 2.4 Kentucky River Watershed Watch Synoptic Fecal Coliform / Fecal Strep Sampling

Sample ID #	Collection Date	Fecal Coliform Count	Fecal Strep Count*	Fecal / Strep Ratio
K01	7/7/00	2200	1800	1.222
K02	7/7/00	1000	700	1.429
K03	7/10/00	90	480	.188
K04	7/10/00	80	120	.667
K05	7/10/00	140	500	.28
K06	7/29/00	270	600	.45
K07	7/29/00	1100	400	2.75
K12	7/12/00	1000	6000	.167
K13	7/12/00	10000	9000	1.111
K14	7/10/00	190	350	.543
K15	7/10/00	150	550	.273
K16	7/10/00	70	230	.304
K18	7/10/00	2000	2000	1
K19	7/10/00	>10	1500	<10
K21	7/8/00	30	550	.055
K22	7/8/00	130	1700	.076
K23	7/8/00	110	420	.262
K25	7/8/00	2100	420	5
K26	7/10/00	120	270	.444
K27	7/10/00	190	700	.271
K28	7/7/00	2400	1100	2.182
K29	7/7/00	20000	4200	4.762
K31	7/13/00	150	800	.188
K32	7/13/00	3500	1300	2,692
K33	7/10/00	1400	3000	.467
K34	7/8/00	10	1800	< 0.006
K35	7/8/00	20	130	.154
K36	7/8/00	320	690	.464
K37	7/8/00	160	250	.64
K38	7/8/00	130	240	.542
K39	7/8/00	560	1400	.4
K43	7/7/00	1200	9000	.133
K44	7/10/00	60	290	.207
K45	7/10/00	40	280	.143
K50	7/8/00	10	170	< 0.059
K51	7/8/00	10	190	< 0.059
K52	7/8/00	10	220	< 0.053
K53	7/7/00	10	1300	< 0.008
K54	7/12/00	38000	1500	25.33
K55	7/7/00	4000	2400	1.667
K56	7/7/00	50	230	.217
K57	7/7/00	260	570	.456
K72	7/7/00	1600	2600	.615
K73	7/29/00	40	800	.05
K74	7/29/00	250	1100	.227

Table 2.4 Kentucky River Watershed Watch Synoptic Fecal Coliform / Fecal Strep Sampling

Sample ID #	Collection Date	Fecal Coliform Count	Fecal Strep Count*	Fecal / Strep Ratio*
K 75	7/7/00	1300	3000	.433
K85	7/8/00	10	3500	< 0.003
K86	7/8/00	10	570	< 0.018
K87	7/10/00	1700	270	6.296
K96	7/8/00	10	140	< 0.071
K120	7/7/00	1900	3100	.613
K121	7/8/00	10	1500	< 0.007
K122	7/8/00	10	2100	< 0.005
K123	7/8/00	10	2800	< 0.004
K126	7/8/00	370	550	.673
K127	7/10/00	1000	100	10
K129	7/8/00	180	380	.474
K130	7/10/00	440	1700	.259
K131	7/10/00	10	18000	< 0.001
K132	7/10/00	550	20000	.028
K133	7/11/00	40000	78000	.513
K137	7/29/00	2400	17000	.141
K156	7/7/00	1500	580	2.586
K157	7/7/00	1500	1700	.882
K158	7/7/00	1300	1900	.684
K160	7/7/00	700	580	1.207
K161	7/8/00	370	450	.822
K162	7/8/00	170	320	.531
K168	7/29/00	330	1400	.236

Notes

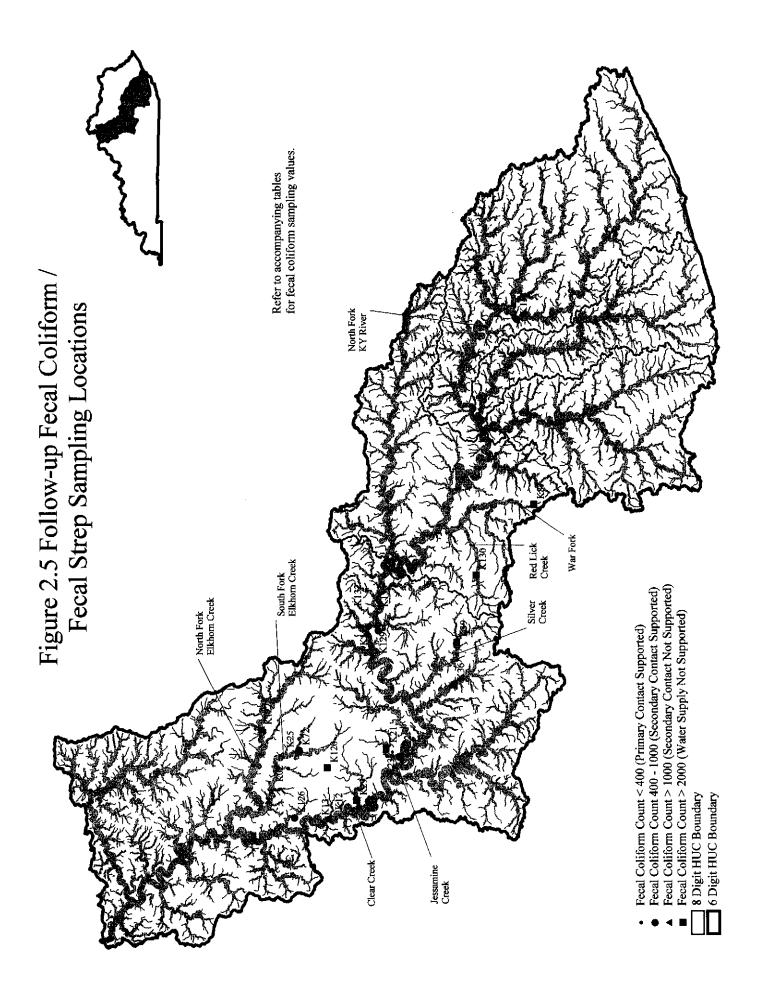


Table 2.5 Kentucky River Watershed Watch Follow Up Fecal Coliform / Fecal Strep Sampling Results

Sample ID #	Collection Date	Fecal Coliform Count	Fecal Strep Count*	Fecal / Strep Ratio*
	•			
K02	7/31/00	340	1400	.243
K12	7/29/00	73000	55000	1.327
K13	7/29/00	1500	400	3.75
K21	7/29/00	3400	700	4.857
K22	7/29/00	15000	8000	1.875
K23	7/29/00	310	300	1.033
K25	7/29/00	260	400	.65
K28	7/29/00	150	1000	.15
K29	7/29/00	18000	27000	.667
K36	8/1/00	6000	3200	1.875
K39	8/1/00	3000	2900	1.034
K72	8/11/00	1000	2000	.5
K87	7/29/00	3000	4300	.698
K120	7/29/00	23000	56000	.411
K126	7/29/00	500	2000	.25
K127	7/31/00	1300	600	2.167
K129	7/29/00	700	350	2
K130	7/29/00	4000	1700	2.353
K132	7/29/00	350	430	.814
K156	8/4/00	40	140	.286
K157	8/4/00	30	80	.375
K158	8/4/00	410	500	.82

Notes

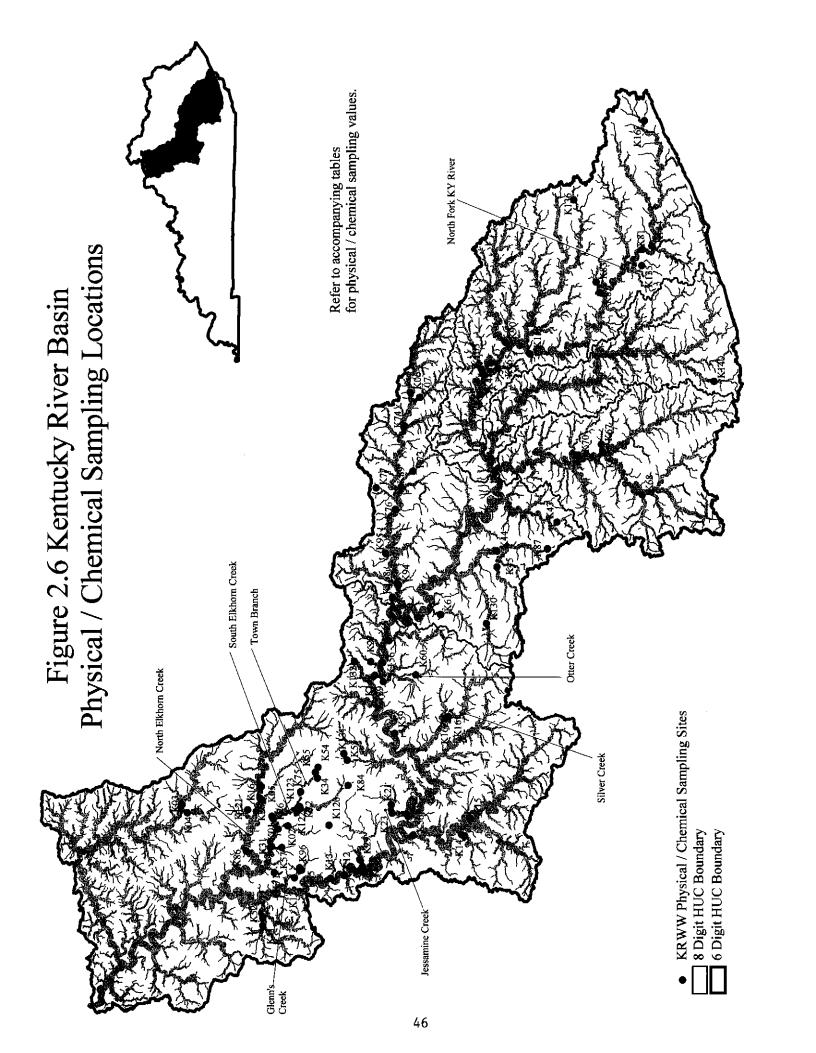


Table 2.6 Kentucky River Watershed Watch Physical / ChemicalSampling Results - September 2000

602 Conductivity* Total Org
3.9 606 3.2 7.4 237 2.8
651
2.7 685 2.7
58 1656 7.0
0.4 722 4.3
52.3 917 7.0
7.5 930 6.4
9.6 340 3.9
5.3 405 3.2
0.9 395 2.1
18.4 540 3.3
85.4 796 4.2
23.8 620 4.2
47.3 554 2.1
5.0 136 2.8
1.7 299 1.2
1.4 266 1.0
12.2 1019 2.6
6.9 346 3.9
0.3 337 4.0
2.1 332 3.6
8.7 423 6.7

Table 2.6 Kentucky River Watershed Watch Physical / ChemicalSampling Results - September 2000

d Solids Total Hardness* (by Titration)	144	156	IDL 160	IDL 252	280	224	330 IDL	24	06	DL 162	170	128	DL 230	244	DL 122	DL 54		100	110	290	,	IDL 454	266	200	234	06	142	DL 318	110	
Total Suspended Solids	59	12	Less Than MDI	Less Than MDL	14	12	Less Than MDL	4	10	Less Than MDL	7	5	Less Than MDL	13	Less Than MDL	Less Than MDI	Less Than MDL	6	13	40	Less Than MDL	Less Than MDI	6	9	9	19	8	Less Than MDL	11	
Total Organic Carbon*	3.9	4.1	2.8	1.6	5.0	8.8	4.6	6.5	1.5	2.0	2.1	2.2	2.4	2.8	2.2	2.2	3.3	3.3	1.4	2.4	3.5	1.9	4.1	4.1	3.6	1.7	2.2	2.8	2.7	
Conductivity*	255	424	333	526	827	1138	648	323	199	404	449	314	503	539	314	137	726	233	221	794	727	1414	552	610	601	193	316	627	253	
Chloride*	21.5	38.5	11.6	18.7	77.3	111	23.8	7.4	3.9	19.0	15.4	12.8	26.6	31.8	30.0	10.4	74.3	9.3	2.3	18.4	16.8	17.1	20.4	56.2	55.4	8.5	21.1	5.2	11.0	
Alkalinity*	74	121	123	220	<i>L</i> 91	501	214	145	19	62	83	61	184	204	114	42	143	08	110	155	135	259	268	140	179	81	133	158	83	
Collection Date	00/8/6	00/8/6	9/10/00	00/01/6	00/6/6	00/01/6	9/10/00	00/6/6	00/6/6	00/6/6	00/6/6	00/6/6	00/6/6	9/10/00	9/10/00	00/01/6	9/10/00	00/01/6	00/01/6	00/6/6	00/61/6	9/14/00	00/01/6	00/6/6	00/01/6	00/11/6	00/01/6	00/01/6	00/11/6	
Sample ID#	K54	KSS	K56	K57	K59	K60	K61	K65	K67	K68	K69	K70	K71	K72	K73	K74	K75	K76	K77	K81	K82	K83	K84	K85	K86	K87	K89	K90	K94	

Table 2.6 Kentucky River Watershed Watch Physical / ChemicalSampling Results - September 2000

	П																									Γ
Total Halmicss (by Huativil)	272	268	182	184	216	208	210	228	240	160	508	218	190	430	184	120	180	184	190	178	192	182	144	109	132	178
Total Susp	13	14	11	16	12	14	5	Less Than MDL	7	5	7	28	Less Than MDL	Less Than MDL	17	8	Less Than MDL	13	5	7	9	6	5	Less Than MDL	Less Than MDL	Less Than MDL
1041018	8.0	1.5	3.4	6.2	5.3	8.9	4.0	3.7	5.5	4.1	2.5	4.3	1.8	2.0	3.3	1.8	2.5	2.4	2.6	5.7	4.7	2.1	2.4	1.7	1.6	3.3
Conductivity	523	577	406	422	651	488	625	653	814	383	22.6	471	664	936	695	640	433	423	399	439	446	405	347	_	334	402
	7.5	28.8	21.6	22.9	60.5	28.4	55.1	54.5	8.09	18.1	35.8	47.5	52.2	53.8	44.4	20.4	9.6	9.5	12.2	23.7	24.3	7.6	21.1	Not Analyzed	6.61	12.4
Aixaimity	242	225	145	149	143	168	154	169	149	109	359	185	154	113	208	166	06	88	150	136	159	80	120	•	<i>L</i> 6	125
Concenson Date Atkannity	9/10/00	9/10/00	9/10/00	9/10/00	00/01/6	9/13/00	9/10/00	9/10/00	00/8/6	00/01/6	00/6/6	00/6/6	00/6/6	00/6/6	9/10/00	00/8/6	00/8/6	00/8/6	00/8/6	00/8/6	00/8/6	9/10/00	9/10/00	9/10/00	9/10/00	00/8/6
‡] [K96	K120	K121	K122	K123	K125	K126	K127	K129	K130	K131	K132	K134	K135	K136	K140	K156	K157	K158	K161	K162	K163	K165	K166	K167	K168

Notes
1. (*) - Dashed values indicates no data available

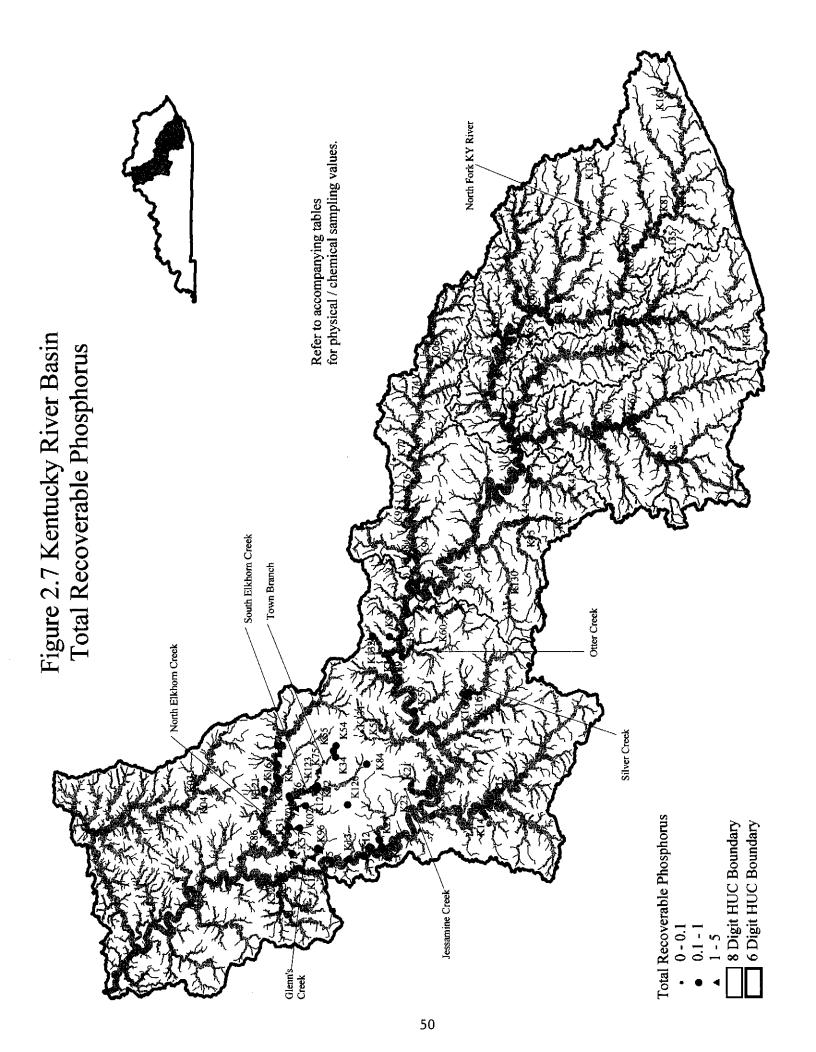


Table 2.7 Kennicky River Watershed Watch Nutrient Sampling Results - September 2000

Table 2.7 Kentucky River Watershed Watch Nutrient Sampling Results - September 2000

Sulfate	9.6	293	226	541	15.1	77.6	73.8	6.6	7.4	210	30.0	24.8	34.6	34.7	36.2	37.5	76.0	53.9	78.9	80.8	165	65.6	181	42.1	135	109	104	138	120	117	46.2	59.5	41.2	128	33.4	Not Analyzed	47.1	75.0
Total Recoverable Phosphorus	Less Than MDL	90.0	Less Than MDL	Less Than MDL	0.28	1.32	0.25	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.38	0.26	0.31	0.28	97.0	0.09	1.18	0.53	0.51	Less Than MDL	Less Than MDL	0.29	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.26	0.11	0.15	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL
Orthophosphate-P (PO4-P)	 0.017	9000	0.012	900:0	0.236	0.984	0.257	JOM neal seal	0.012	0.014	0.011	910:0	0.396	0.262	0.321	0.337	0.854	Less Than MDL	0.942	0.574	0.575	0.010	290'0	0.299	0.013	0.020	0.026	0.023	0.014	0.008	0.271	0.116	0.159	0.012	0.011	Less Than MDL	0.008	0.023
Orthophosphate (PO4)	0.053	0.019	0.038	0.019	0.724	3.018	0.788	Less Than MDL	0.037	0.043	0.033	0.048	1.215	0.802	0.984	1.032	2.620	Less Than MDL	2.889	1.759	1.762	0.030	0.205	0.917	0.039	0.062	0.079	0.069	0.043	0.023	0.830	0.357	0.487	0.036	0.035	Less Than MDL	0.025	0.071
Kjeldahl Nítrogen (-N)	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	2.09	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.11	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDE	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Not Analyzed	Less Than MDL	Less Than MDL
Nitrate-N (NO ₃ -N)	0.05	0.27	0.25	0.29	0.18	3.34	0.54	0.16	0.11	60'0	0.23	0.27	6.15	3.59	88.0	56:0	91'9	Less Than MDL	2.53	1.65	3.39	0.04	89.0	0.02	0.38	0.04	0.04	0.04	0.23	0.27	0.52	0.25	99.0	0.25	0.07	Not Analyzed	0.14	Less Than MDL
Nitrate (NO ₃)	0.21	1.2	1.1	1.3	0.8	14.8					1.0	1.2	27.2	15.9	3.9	4.2	27.0	Less Than MDL	11.2	7.3	15.0	0.2	3.0	0.1	1.7	0.2	0.2	0.2	1.0	1.2	2.3	1.1	2.94	1.1	0.3	Not Analyzed		Less Than MDL
Kjeldahl Nitrogen (NH ₃)	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	2.54	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.13	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Not Analyzed	Less Than MDL	Less Than MDL
Ammonia (NH ₃ -N)	Less Than MDL		Less Than MDL	Less Than MDL	2.08	0.03	0.03	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL			Less Than MDL	0.02	0.10		Less Than MDL	Less Than MDL	0.05	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL
Ammonia (NH ₃)		Less Than MDL	Less Than MDL	Less Than MDL	2.53	0.04	0.04	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL		Less Than MDL	Less Than MDL	0.02	0.12	60.0	Less Than MDL	Less Than MDL		Less Than MDL		Less Than MDL	Less Than MDL		Less Than MDL				Less Than MDL				Less Than MDL		Less Than MDL		Less Than MDL
Collection Date	10-Sep-00	00-daS-60	00-daS-61	14-Sep-00	10-Sep-00	00-Sep-00	10-Sep-00	17-Sep-00	00-dəS-01	10-Sep-00	00-daS-11	11-Sep-00	00-d >S- 01	10-Sep-00	10-Sep-00	00-daS-01	10-Sep-00	13-Sep-00	00-daS-01	00-das-01	00-d > S-80	00-das-01	00-das-60	00-Sep-00	00-daS-60	00-Sep-00	10-Sep-00	00-daS-80	00-das-80	00-daS-80	08-Sep-00	00-das-80	00-daS-80	10-Sep-00	00-daS-01	10-Sep-00	10-Sep-00	00-das-80
Sample ID	 K77	K81	K82	K83	K84	K85	K86	K87	K89	K90	K94	K95	K96	K120	K121	K122	K123	K125	K126	K127	K129	K130	K131	K132	K134	K135	K136	K140	K156	K157	K158	K161	K162	K163	K165	K166	K167	K168

Total phosphorus (TP) is commonly measured in surface waters. TP includes all of the various forms of phosphorus (organic, inorganic, dissolved, and particulate) present in a sample. Phosphorus is one of the key elements necessary for growth of plants and animals. Phosphates are made up of phosphorus and exist in three forms: orthophosphate, metaphosphate (or polyphosphate) and organically bound phosphate. Each compound contains phosphorous in a different chemical formula. Ortho forms are produced by natural processes and are found in sewage. Poly forms are used for treating boiler waters and in detergents. In water, they change into the ortho form. Organic phosphates are important in nature. Their occurrence may result from the breakdown of organic pesticides which contain phosphates. They may exist in solution, as particles, loose fragments or in the bodies of aquatic organisms.

The forms of nitrogen routinely analyzed at most Kentucky ambient sampling sites are ammonia and ammonium (NH₃/NH₄), total Kjeldahl nitrogen (TKN), and nitrite and nitrate (NO₂/NO₃). Ammonia and ammonium are readily used by plants. TKN is a measure of organic nitrogen and ammonia in a sample. Nitrate is the product of aerobic transformation of ammonia, and is the most common form used by aquatic plants. Nitrite is usually not present in significant amounts.

Kentucky currently has no official numerical standards or criteria for nutrients in water. However, the USEPA has issued recommendations for phosphorus concentrations to prevent over-enrichment. In general, any concentration of phosphorus in excess of 0.1 mg/l has the potential to cause possible eutrophication problems in a stream.

In addition to man-made sources, some phosphorus loadings may occur naturally from the watershed soils and underlying geology. In particular, background TP levels in the Bluegrass region have been observed from wells, springs, and pristine watersheds as high as 0.25 mg/l. In most cases these readings have been associated with high phosphorus concentrations associated with the Tanglewood member of the Lexington.

2.9 Metals Data

In addition to chemical and nutrient data, metals data were also collected at all new stations that were established as part of the 2000 sampling effort and also at those previous year stations at which high metals concentrations were identified. The final set of selected sampling locations are shown in Figure 2.8. The results of the sampling effort are provided in Table 2.8. A summary of those stations that had the highest concentration for a particular metal are shown in Table 2.9. A discussion of the significance of each of these metals is provided in Appendix A along with (where applicable) specific criteria limits

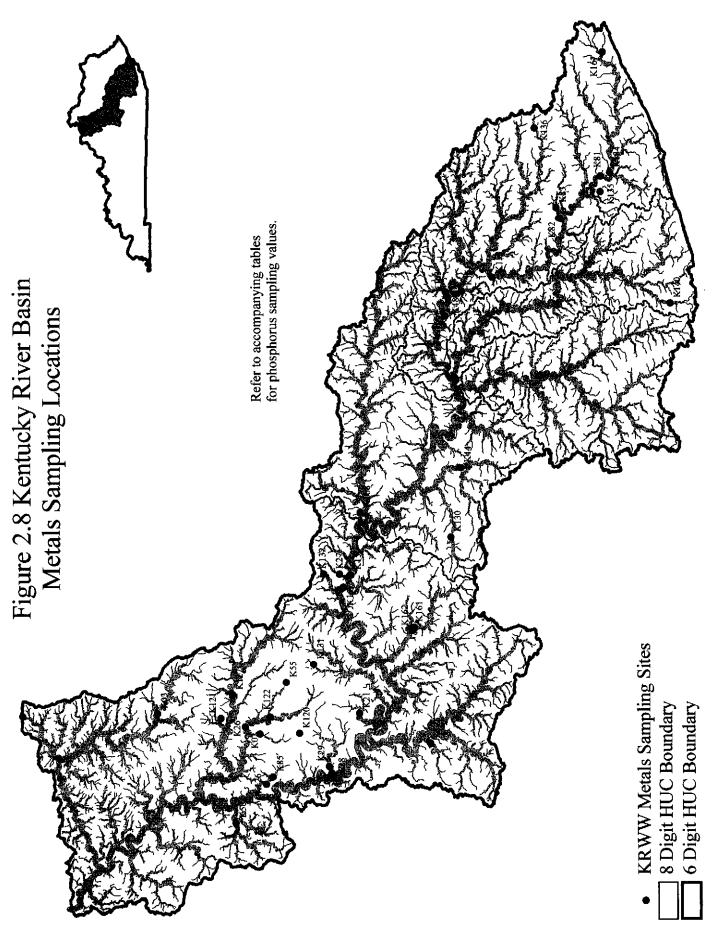


Table 2.9 Stations with Maximum Metal Concentrations

Metal	Maximum Level (mg/l)	Sites
1. Aluminum	1.89	K81
2. Antimony	0.17	K48, K83
3. Arsenic	Less than MDL	
4. Barium	0.34	K02
5. Beryllium	Less than MDL	·
6. Boron	0.32	K21
7. Cadmium	Less than MDL	
8. Calcium	84.7	K131
9. Chromium	Less than MDL	
10. Cobalt	0.004	K85, K121, K131, K162
11. Copper	0.0.14	K21
12. Gold	Less than MDL	
13. Iron	0.88	K81
14. Lead	Less than MDL	
15. Lithium	0.02	K03, K81, K48
16. Magnesium	65.66	K48
17. Manganese	0.25	K29
18. Nickel	0.02	K21
19. Potassium	11.68	K125
20. Selenium	Less than MDL	
21. Silicon	23.547	K135
22. Silver	Less than MDL	
23. Sodium	84.77	K21
24. Strontium	1.53	K83
25. Sulfur	626.4	K28
26. Thallium	Less than MDL	
27. Tin	Less than MDL	
28. Vanadium	Less than MDL	
29. Zinc	0.06	K21

Note: MDL = Minimum Detection Limit

Table 2.9 reveals that three sites accounted for most of the maximum metal concentrations. These included: K21, K48, and K81. Last year, the sites with the most maximum concentrations included K03, K48, and K50. Because in some cases the resulting concentrations may have violated designated use standards for the streams, it is recommended that additional sampling be performed to ascertain the source of the contamination. For a more comprehensive review of historic metals concentrations in the Kentucky River Basin consult Water-Quality Assessment of the Kentucky River Basin, Kentucky: Distribution of Metals and Other Trace Elements in Sediment and Water, 1987-1990 (USGS, 1995).

Table 2.8 Kentucky River Watershed Watch Metals Sampling Results - September 2000

Sample 1D	Collection	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium
#	Date	Total by ICP	Total by ICP	Total by ICP	Total by ICP	Total by ICP	Total by ICP	Total by ICP
K02	00/11/60	0.31	Less Than MDL	Less Than MDL	0.34	Less Than MDL	0.03	Less Than MDL
K03	09/10/00	0.27	Less Than MDL	Less Than MDL	0.03	Less Than MDL	0.13	Less Than MDL
K21	00/60/60	0.20	Less Than MDL	Less Than MDL	0.02	Less Than MDL	0.32	Less Than MDL
K26	00/101/60	0.87	Less Than MDL	Less Than MDL	0.01	Less Than MDL	0.10	Less Than MDL
K27	09/10/00	0.43	Less Than MDL	Less Than MDL	0.03	Less Than MDL	0.04	Less Than MDL
K28	09/10/00	0.16	0.09	Less Than MDL	0.03	Less Than MDL	0.01	Less Than MDL
K29	09/10/00	0.14	Less Than MDL	Less Than MDL	0.06	Less Than MDL	0.02	Less Than MDL
K44	09/17/00	0.29	Less Than MDL	Less Than MDL	0.02	Less Than MDL	0.03	Less Than MDL
K48	09/10/00	1.09	0.17	Less Than MDL	0.06	Less Than MDL	Less Than MDL	Less Than MDL
K50	09/10/00	0.18	Less Than MDL	Less Than MDL	0.02	Less Than MDL	0.03	Less Than MDL
K55	00/08/00	£6'0	Less Than MDL	Less Than MDL	0.03	Less Than MDL	0.07	Less Than MDL
K81	00/60/60	1.89	0.08	Less Than MDL	0.06	Less Than MDL	0.04	Less Than MDL
K82	09/19/00	0.38	0.07	Less Than MDL	0.04	Less Than MDL	0.03	Less Than MDL
K83	09/14/00	0.13	0.17	Less Than MDL	0.04	Less Than MDL	0.05	Less Than MDL
K85	09/09/00	0.29	Less Than MDL	Less Than MDL	0.01	Less Than MDL	0.23	Less Than MDL
K120	00/10/00	0.10	Less Than MDL	Less Than MDL	0.02	Less Than MDL	0.04	Less Than MDL
K121	09/10/00	0.63	Less Than MDL	Less Than MDL	0.02	Less Than MDL	0.02	Less Than MDL
K122	09/10/00	0.75	Less Than MDL	Less Than MDL	0.02	Less Than MDL	0.02	Less Than MDL
K123	00/10/00	0.42	Less Than MDL	Less Than MDL	0.02	Less Than MDL	0.10	Less Than MDL
K125	09/13/00	0.13	Less Than MDL	Less Than MDL	0.05	Less Than MDL	0.04	Less Than MDL
K126	00/10/00	0.15	Less Than MDL	Less Than MDL	0.01	Less Than MDL	0.23	Less Than MDL
K127	09/10/00	0.16	Less Than MDL	Less Than MDL	0.02	Less Than MDL	0.13	Less Than MDL
K130	00/10/00	0.16	Less Than MDL	Less Than MDL	0.03	Less Than MDL	0.04	Less Than MDL
K131	00/60/60	0.17	0.07	Less Than MDL	0.04	Less Than MDL	0.07	Less Than MDL
K132	00/00/60	99.0	Less Than MDL	Less Than MDL	0.01	Less Than MDL	0.01	Less Than MDL
K134	00/60/60	0.12	Less Than MDL	Less Than MDL	0.07	Less Than MDL	0.05	Less Than MDL
K135	00/60/60	0.19	0.09	Less Than MDL	0.08	Less Than MDL	Less Than MDL	Less Than MDL
K136	09/10/00	0.20	Less Than MDL	Less Than MDL	0.05	Less Than MDL	90.0	Less Than MDL

Table 2.8 Kentucky River Watershed Watch Metals Sampling Results - September 2000

Sample ID	Sample ID Collection	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium
*	Date	Total by ICP	Total by ICP	Total by ICP	Total by ICP	Total by ICP	Total by ICP	Total by ICP
K140	00/80/60	0.13	Less Than MDL	Less Than MDL	0.04	Less Than MDL	0.02	Less Than MDL
K156	00/80/60	0.48	Less Than MDL	Less Than MDL Less Than MDL	0.04	Less Than MDL	0.03	Less Than MDL
K157	00/80/60	7.70	Less Than MDL	Less Than MDL Less Than MDL	0.04	Less Than MDL	0.03	Less Than MDL
K158	00/80/60	0.54	Less Than MDL	Less Than MDL	0.01	Less Than MDL	0.02	Less Than MDL
K161	00/80/60	0.38	Less Than MDL	Less Than MDL	0.03	Less Than MDL	90.0	Less Than MDL
K162	00/80/60	0.44	Less Than MDL	Less Than MDL	0.01	Less Than MDL	0.03	Less Than MDL
K163	00/10/00	0.25	Less Than MDL Less Than MDL	Less Than MDL	0.03	Less Than MDL	0.02	Less Than MDL
K165	00/10/00	0.16	Less Than MDL	Less Than MDL	0.04	Less Than MDL	0.06	Less Than MDL
K166	00/01/60	90:0	Less Than MDL	Less Than MDL	0.03	Less Than MDL	0.04	Less Than MDL
K167	00/10/60	0.12	Less Than MDL Less Than MDL	Less Than MDL	0.03	Less Than MDL	0.06	Less Than MDL
K168	00/80/60	0.33	Less Than MDL Less Than MDL	Less Than MDL	0.03	Less Than MDL	0.05	Less Than MDL

Table 2.8 Kentucky River Watershed Watch Metals Sampling Results - September 2000

Sample ID	Collection		Chromium	Cobalt	Copper	Gold	Iron	Lead
#	Date	Total by ICP	Total by ICP	Total by ICP	Total by ICP	Total by ICP	Total by ICP	Total by ICP
207	90,01,00	76.30	T. S. C. T. L. S. M. D. I.	T and The same MADE	T. T. T. L. C. LADI	Town The second	01.0	TOTAL MADE
K02	09/10/00	85.50	Less I nan MDL	Less Than MDL	Less I nan MDL	Less Than MDL	0.18	Less 1 nan MDL
K03	09/10/00	38.53	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.43	Less Than MDL
K21	09/09/00	49.05	Less Than MDL	Less Than MDL	0.014	Less Than MDL	0.32	Less Than MDL
K26	00/10/60	32.16	Less Than MDL	0.03	Less Than MDL	Less Than MDL	0.49	Less Than MDL
K27	09/10/00	63.37	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.34	Less Than MDL
K28	00/10/60	69.43	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.05	Less Than MDL
K29	09/10/00	90'90	Less Than MDL	0.005	Less Than MDL	Less Than MDL	80.0	Less Than MDL
Х 44	09/11/00	47.90	Less Than MDL	0.01	Less Than MDL	Less Than MDL	0.12	Less Than MDL
K48	00/10/60	93.64	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.62	Less Than MDL
K50	00/10/60	47.45	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.13	Less Than MDL
K55	00/80/60	50.91	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	19'0	Less Than MDL
K81	00/60/60	90.78	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.88	Less Than MDL
K82	00/11/60	54.96	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.26	Less Than MDL
K83	09/14/00	96.34	Less Than MDL	0.003	Less Than MDL	Less Than MDL	0.21	Less Than MDL
K85	00/60/60	54.24	Less Than MDL	0.004	Less Than MDL	Less Than MDL	0.25	Less Than MDL
K120	00/10/60	84.70	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.08	Less Than MDL
K121	00/10/60	53.46	Less Than MDL	0.004	Less Than MDL	Less Than MDL	0.42	Less Than MDL
K122	09/10/00	55.14	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.51	Less Than MDL
K123	00/10/60	60.29	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.34	Less Than MDL
K125	09/13/00	53.78	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.17	Less Than MDL
K126	00/10/60	57.78	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.13	Less Than MDL
K127	00/10/60	64.83	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.10	Less Than MDL
K130	00/101/60	39.59	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.35	Less Than MDL
K131	00/60/60	142.1	Less Than MDL	0.004	Less Than MDL	Less Than MDL	0.04	Less Than MDL
K132	09/09/00	65.77	Less Than MDL	0.003	Less Than MDL	Less Than MDL	0.39	Less Than MDL
K134	00/60/60	40.72	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.08	Less Than MDL
K135	00/60/60	85.6	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.10	Less Than MDL
K136	09/10/00	40.26	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	0.18	Less Than MDL

Table 2.8 Kentucky River Watershed Watch Metals Sampling Results - September 2000

Lead	ICP Total by ICP	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	I Ass Than MDI
Iron	Total by ICP	0.10	0.25	0.43	0.04	0.22	0.25	0.43	0.39	0.19	0.18	0.19
PloD	Total by ICP	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL Less Than MDL	Less Than MDL Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	I ess Than MDI I ess Than MDI I ess Than MDI I ess Than MDI
Copper	Total by ICP	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDI.
Cobalt	Total by ICP	Less Than MDL Less Than MDL Less Than MDL Less Than MDL	Less Than MDL Less Than MDL Less Than MDL Less Than MDL	Less Than MDL Less Than MDL Less Than MDL Less Than MDL	Less Than MDL Less Than MDL Less Than MDL Less Than MDL	0.003	0.004	Less Than MDL Less Than MDL Less Than MDL Less Than MDL	Less Than MDL Less Than MDL Less Than MDL Less Than MDL	Less Than MDL Less Than MDL Less Than MDL Less Than MDL	Less Than MDL Less Than MDL Less Than MDL Less Than MDL	Less Than MDI
Chromium	Total by ICP	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL	I see Than MDI
Calcium	Total by ICP	23.63	35.33	34.45	51.65	46.11	59.40	37.81	38.58	30.87	30.68	78.87
Collection	Date	00/80/60	00/80/60	00/80/60	00/80/60	00/80/60	00/80/60	09/10/00	00/11/00	00/10/00	09/10/00	00/80/60
Sample ID	#	K140	K156	K157	K158	K161	K162	K163	K165	K166	K167	K168

Table 2.8 Kentucky River Watershed Watch Metals Sampling Results - September 2000

Sample ID	Collection	Lithium	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silicon
#	Date	l otal by ICP	lotal by ICP	lotal by ICF	lotal	1 otal by ICF	I otal by ICF	lotal by ICP	10tal by ICF
K02	00/11/60	Less Than MDL	5.95	0.05		Less Than MDL	3.21	Less Than MDL	4.98
K03	00/11/60	0.02	8.30	0.20		Less Than MDL	8.34	Less Than MDL	1.63
K21	00/60/60	9000	11.03	0.02		0.02	9.78	Less Than MDL	2.49
K26	00/01/60	Less Than MDL	5.56	0.05		Less Than MDL	6.72	Less Than MDL	2.975
K27	00/01/60	Less Than MDL	8.05	0.17		Less Than MDL	2.98	Less Than MDL	2.85
K28	00/11/60	Less Than MDL	5.25	0.02		Less Than MDL	2.94	Less Than MDL	2.33
K29	00/01/60	Less Than MDL	7.43	0.25		0.01	5.67	Less Than MDL	3.18
K44	00/11/60	Less Than MDL	6.41	0.01		Less Than MDL	2.67	Less Than MDL	3.03
K48	00/01/60	0.02	99:59	0.09		Less Than MDL	6.37	Less Than MDL	2.69
K50	00/01/60	Less Than MDL	9.53	0.05		Less Than MDL	4.39	Less Than MDL	1.29
K55	00/80/60	Less Than MDL	5.77	0.07		Less Than MDL	5.07	Less Than MDL	3.27
K81	00/60/60	0.02	29.42	0.03		Less Than MDL	7.27	Less Than MDL	4.26
K82	00/61/60	0.01	29.87	90.0		0.007	6.46	Less Than MDL	1.63
K83	09/14/00	0.05	56.19	0.05		0.008	10.25	Less Than MDL	2.723
K85	00/60/60	0.01	9.81	0.04		Less Than MDL	9.03	Less Than MDL	3.66
K120	00/01/60	Less Than MDL	5.89	0.02		Less Than MDL	2.45	Less Than MDL	3.55
K121	00/01/60	Less Than MDL	5.31	0.08		Less Than MDL	4.67	Less Than MDL	2.99
K122	00/01/60	Less Than MDL	5.74	0.09		Less Than MDL	4.91	Less Than MDL	3.29
K123	00/01/60	0.007	66.6	0.07		Less Than MDL	9.48	Less Than MDL	3.16
K125	00/13/00	Less Than MDL	18.15	0.10		Less Than MDL	11.68	Less Than MDL	1.68
K126	00/01/60	0.01	89.6	0.02		Less Than MDL	9.07	Less Than MDL	3.62
K127	00/01/60	0.008	9.01	90.0		Less Than MDL	9.19	Less Than MDL	2.02
K130	00/01/60	Less Than MDL	9.71	0.08		Less Than MDL	5.46	Less Than MDL	2.47
K131	00/60/60	0.006	25.01	0.20		0.000	5.04	Less Than MDL	2.75
K132	00/60/60	Less Than MDL	7.28	0.03		Less Than MDL	4.97	Less Than MDL	3.36
K134	00/60/60	0.01	16.01	0.01		Less Than MDL	6.53	Less Than MDL	1.06
K135	00/60/60	0.004	44.56	0.07		Less Than MDL	6.12	Less Than MDL	23.547
K136	00/10/00	0.008	21.86	0.01		Less Than MDL	5.70	Less Than MDL	1.94

Table 2.8 Kentucky River Watershed Watch Metals Sampling Results - September 2000

Sample ID	Collection	Lithium	Magnesium	Manganese Mercury	Mercury	Nickel	Potassium	Selenium	Silicon
#	Date	Total by ICP	Total by ICP Total by ICP	Total by ICP	Total	Total by ICP	Total by ICP	Total by ICP	Total by ICP
K140	00/80/60	0.01	11.6	0.01		Less Than MDL	4.17	Less Than MDL	0.79
K156	00/80/60	0.005	18.41	0.05		Less Than MDL	4.11	Less Than MDL	2.56
K157	00/80/60	600.0	16.85	0.05		Less Than MDL	4.01	Less Than MDL	3.12
K158	00/80/60	Less Than MDL	8.27	0.01		Less Than MDL	3.39	Less Than MDL	1.22
K161	00/80/60	0.004	10.34	90:0		0.006	7.45	Less Than MDL	2.35
K162	00/80/60	Less Than MDL	10.23	0.05		Less Than MDL	5.91	Less Than MDL	2.465
K163	00/11/60	Less Than MDL	22.03	0.06		Less Than MDL	4.74	Less Than MDL	2.50
K165	00/101/60	Less Than MDL	9.08	0.05		Less Than MDL	4.19	Less Than MDL	1.92
K166	00/11/60	Less Than MDL	7.75	90:0		Less Than MDL	4.48	Less Than MDL	2.76
K167	00/101/60	Less Than MDL	9.93	0.05		Less Than MDL	4.54	Less Than MDL	2.44
K168	00/80/60	Less Than MDL	14.68	0.05		Less Than MDL	6.40	Less Than MDL	2.69

Table 2.8 Kentucky River Watershed Watch Metals Sampling Results - September 2000

Sample ID	Collection	Silver Tetal by ICB	Sodium Total by, ICP	Strontium Total by ICP	Sulfur Total by ICD	Thallium Total by ICD	Tin Total by ICD	Vanadium Total by ICD	Zinc Total by ICB
Ė	2	Toma of tot	101 63 101	Total of total	Total of total	rom of rot	Total Co mon	Tomas of Total	roming for
K02	00/101/00	I ess Than MDI	\$ 10	010	\$7.9	I ess Than MDI	I ess Than MDI	I ess Than MDI	I ess Than MDI
707	00/10/00	I agg Then MDI	35.46	0.21	4.08	I acc Then MDI	I oss Than MDI	I acc Then MDI	I on Than MDI
COV	00/01/20	LCSS IIIdii MDL	01:00	0.21	PO:	LCSS IIIIII MDL	TCSS IIIdii MD	Less Illan MDL	LC35 I Hall INDL
K21	00/60/60	Less Than MDL	84.77	0.19	44.49	Less Than MDL	Less Than MDL	Less Than MDL	90.0
K26	00/10/60	Less Than MDL	21.28	0.10	9.14	Less Than MDL	Less Than MDL	Less Than MDL	0.01
K27	09/10/00	Less Than MDL	7.12	0.15	9.28	Less Than MDL	Less Than MDL	Less Than MDL	0.003
K28	00/01/60	Less Than MDL	4.42	0.12	626.4	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL
K29	00/10/00	Less Than MDL	12.27	0.19	15.71	Less Than MDL	Less Than MDL	Less Than MDL	0.008
K44	00/11/60	Less Than MDL	2.97	0.12	5.65	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL
K48	00/01/60	Less Than MDL	30.04	0.97	113.7	Less Than MDL	Less Than MDL	Less Than MDL	0.009
K50	00/01/60	Less Than MDL	9:26	0.17	9.57	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL
K55	00/80/60	Less Than MDL	22.40	0.14	69.6	Less Than MDL	Less Than MDL	Less Than MDL	0.03
K81	00/60/60	Less Than MDL	50.12	1.06	62.3	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL
K82	00/61/60	Less Than MDL	53.87	0.87	66.19	Less Than MDL	Less Than MDL	Less Than MDL	900.0
K83	09/14/00	Less Than MDL	151.2	1.53	148.2	Less Than MDL	Less Than MDL	Less Than MDL	0.005
K85	00/60/60	Less Than MDL	37.20	0.14	19.26	Less Than MDL	Less Than MDL	Less Than MDL	0.01
K120	09/10/00	Less Than MDL	13.14	0.10	9.35	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL
K121	09/10/00	Less Than MDL	10.47	0.10	8.86	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL
K122	09/10/00	Less Than MDL	10.91	0.10	9.25	Less Than MDL	Less Than MDL	Less Than MDL	0.01
K123	00/11/60	Less Than MDL	38.00	0.17	18.47	Less Than MDL	Less Than MDL	Less Than MDL	0.05
K125	09/13/00	Less Than MDL	16.05	0.31	15.88	Less Than MDL	Less Than MDL	Less Than MDL	0.004
K126	00/11/60	Less Than MDL	37.36	0.14	19.24	Less Than MDL	Less Than MDL	Less Than MDL	0.005
K127	00/110/00	Less Than MDL	35.87	0.17	21.66	Less Than MDL	Less Than MDL	Less Than MDL	0.005
K130	00/11/60	Less Than MDL	11.26	0.11	16.42	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL
K131	00/60/60	Less Than MDL	18.61	0.54	43.33	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL
K132	00/60/60	Less Than MDL	10.56	0.10	11.65	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL
K134	00/60/60	Less Than MDL	58.28	0.53	35.75	Less Than MDL	Less Than MDL	Less Than MDL	Less Than MDL
K135	00/60/60	Less Than MDL	27.27	0.33	86.50	Less Than MDL	Less Than MDL	Less Than MDL	0.01
K136	00/10/00	Less Than MDL	75.44	0.36	33.75	Less Than MDL	Less Than MDL	Less Than MDL	0.005

2.10 Letcher County Focused Sampling

In addition to the basin wide sampling effort, separate focused sampling was conducted in Letcher County during March 2000. A detailed metals analysis was conducted for three separate samples at sites K97, K98, and K99 while three rounds of fecal coliform samples at sites K100-K115. Three additional rounds of fecal coliform samples were then collected in September 2000 at sites KP18 and KP19. Finally, 11 additional sites (KL1- KL11) were sampled in an attempt to identify potential impacts associated with abandoned mine drainage (AMD). The locations of each of the sites is shown in Figure 2.9 The results from metals sampling and the fecal coliform sampling are shown in Tables 2.10 and 2.11 respectively. As can be seen from the fecal sample results, several sites continued to have extremely high fecal coliform counts. In addition, the fecal coliform/fecal strep rations were consistently greater than 1 and in many cases consistently greater than 4 for multiple samples at the same sites. This would strongly suggest that the source of the fecal contamination is from human sources.

The results of the AMD sampling is shown in Table 2.12. In general, all sites indicated very high levels of conductivity (> 800 umhos/cm), total dissolved solids (> 750 mg/l), sulfate (> 250 mg/l), iron (> 1 mg/l) and manganese (> 0.05 mg/l), thus indicating significant AMD impacts. Of particular impact were those sites located in the Crafts Colly Watershed (i.e. KL4, KL5, KL6, KL8, and KL9).

Table 2.10 Letcher County Metals Sampling Results

_				_					
Total by ICP	TOE	TOE	BDL	TOS	90'0	TOE	BDL	0.22	TOS
Total by ICP	38	37	21	54	39	38	56	23	26
Total by ICP	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Total by ICP	3.6	3.9	2.8	5.9	6,4	5.3	4.5	8.8	3,2
Total	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Total by ICP	0.09	0.1	0.08	0.11	0.39	0.26	0.7	0.95	0.28
Total by ICP	32	29	21	79	63	68	42	55	28
	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	. BDL
Total by ICP	0.37	0.54	0.37	99'0	12	0.24	0.92	38	1.1
Total by ICP	BDL	BDL	0.014	BDL	0.012	BDL	BDL	0.45	BDL
Total by ICP	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.4	BDL
Total by ICP	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Total by ICP	0.05	0.05	0.04	0.04	60.0	0.04	0.05	0.26	0.05
Total by ICP	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Total by ICP	BDL	0.3	0.08	BDL	5.8	0.07	0.31	24	79'0
Date	03/02/00	03/11/00	03/18/00	03/01/00	03/11/00	03/18/00	03/17/00	03/11/00	03/18/00
#	K97	K97	K97	K98	K98	K98	K99	K99	K99
	Total by ICP Total	Date Total by ICP Total by ICP	Date Total by ICP Total by ICP	Date Total by ICP Total by ICP	Date Total by ICP Total by ICP	Date Total by ICP Total by ICP	Date Total by ICP Total by ICP	Date Total by ICP Total by ICP	Date Total by ICP Total by ICP

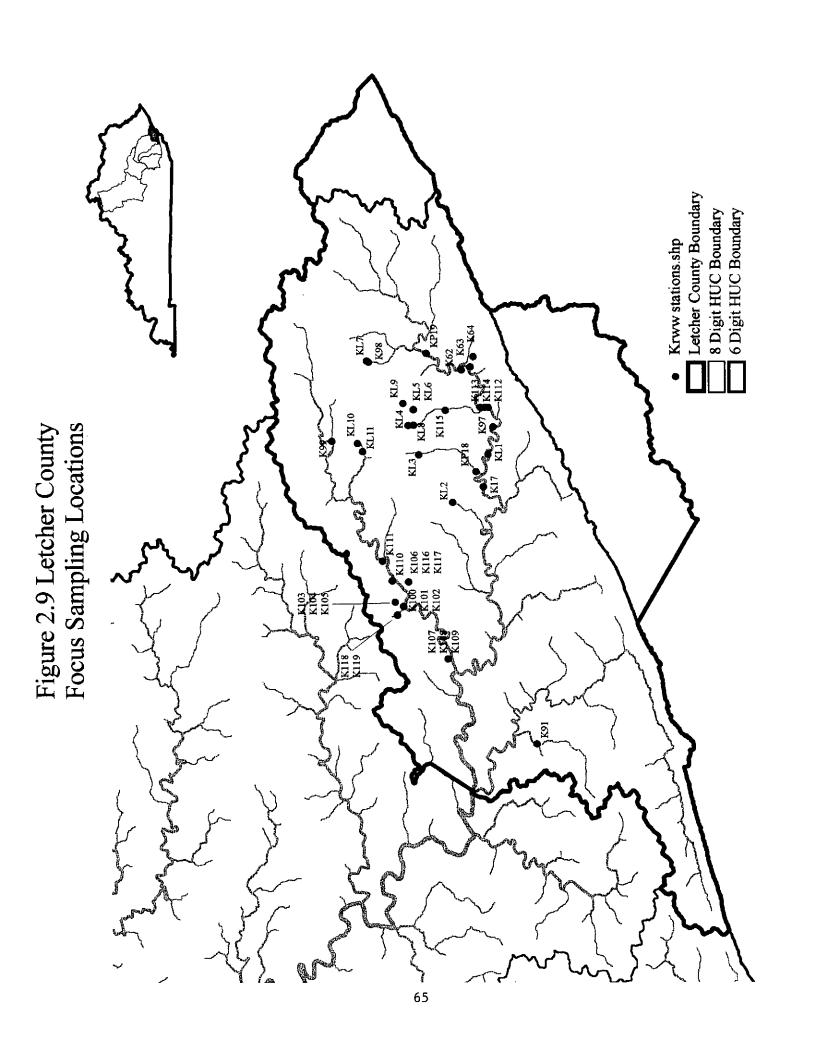


Table 2.11 Letcher County Fecal Coliform / Fecal Strep Sampling Results

Sample ID#	Collection Date	Fecal Coliform Count	Fecal Strep Count*	Fecal / Strep Ratio*
<u>-</u>		,	1	- star. Europ reactio
K100	3/26/00	460	260	1.769
K100	3/29/00	1000	40	25.000
K100	3/31/00	1100	190	5.789
K101	3/26/00	400	280	1.429
K101	3/29/00	400	70	5.714
K101	3/31/00	1200	150	8.000
K102	3/26/00	500	180	2.778
K102	3/29/00	2700	30	90.000
K102	3/31/00	2700	80	33.750
K103	3/26/00	16000	370	43.243
K103	3/29/00	130	230	0.565
K103	3/31/00	42000	320	131.250
K104	3/26/00	350	300	1.167
K104	3/29/00	800	60	13.333
K104	3/31/00	700	150	4.667
K105	3/26/00	17000	110	154.545
K105	3/29/00	22000	600	36.667
K105	3/31/00	54000	1000	54.000
K106	3/26/00	>60000	120	>500
K106	3/29/00	2500	1000	2.500
K106	3/31/00	1200	210	5.714
K107	3/26/00	360	110	3.273
K107	3/29/00	800	90	8.889
K107	3/31/00	190	90	2.111
K108	3/26/00	500	210	2.381
K108	3/29/00	450	60	7.500
K108	3/31/00	260	60	4.333
K109	3/26/00	300	80	3.750
K109	3/29/00	400	40	10.000
K109	3/31/00	100	1500	0.067
K110	3/29/00	500	90	5.556
K110	3/31/00	300	130	2.308
KIII	3/29/00	900	20	45.000
K111	3/31/00	140	20	7.000
K112	3/29/00	1800	210	8.571
K112	3/31/00	440	150	2.933
K113	3/29/00	1700	230	7.391
K113	3/31/00	290	210	1.381
K114	3/29/00	1000	70	14.286
K114	3/31/00	450	130	3.462
K115	3/29/00	300	330	0.909
K115	3/31/00	BDL	200	•
KP18	9/5/00	60000		
KP18	9/6/00	60000	-	<u>-</u>
KP18	9/7/00	15000		
KP19	9/5/00	60000		
KP19	9/6/00	60000	-	-
KP19	9/7/00	7000	-	•

Notes

Table 2.12 Letcher County AMD Sampling Results

Dissolved	manganese (mg/L)		0.33	0.34	0.34	0.54	0.61	0.44	0.73	0.74	0.77	0.1	0.26	0.4	0.27	0.38	0.54	1.11	1.41	1.36	2.99	3.18	3.14	1.21	1.26	1.32	0.82	1.19	0.84	0.13	0.12	0.12
Total		0.42	0.35	0.37	0.34	0.62	0.62	69.0	0.84	0.77	0.81	0.93	0.83	0.75	0.36	0.41	0.61	1.24	1.45	1.38	3.06	3.33	3.2	1.21	1.29	1.4	0.93	1.23	68.0	0.16	0.12	0.13
Dissolved	(mg/L)		<.01	0.12	<.01	<.01	<.01	<.01	<.01	6.85	2.72	<.01	0.07	<.01	70.0	<.01	<.01	0.03	0.01	0.01	1.21	2.18	1.46	0.02	90.0	80.0	<.01	1.88	<.01	0.02	<.01	<.01
Total Iron	(mg/L)	0.61	0.3	0.38	0.78	4.77	4.92	2.19	8.09	9.26	8.69	4.08	4.12	1.44	0.38	0.59	0.48	10.4	2.67	4.35	2.51	2.42	2.7	0.61	29.0	0.61	26.83	40.48	6.01	1.77	1.41	0.56
Sulfates	(mg/L)	180	575	430	610	200	180	290	250	280	230	575	450	480	009	470	440	425	320	290	800	840	089	675	580	530	375	270	490	425	360	440
TDS	(mg/L)	18	800	898	870	632	622	628	337	329	337	502	527	514	532	528	510	672	711	889	552	637	619	498	537	527	09/	905	895	544	464	492
Conductivity	(mg/L)	029	1599	1736	1738	1262	1243	1252	671	657	674	1000	1054	1025	1062	1055	1017	1342	1421	1373	1101	1274	1236	966	1074	1051	1525	1804	1786	1082	886	982
Alkalinity	(mg/L)	96	396	369	361	298	306	294	0	0	0	127	119	116	120	123	111	354	374	353	0	0	0	35	33	30	343	285	294	179	178	165
Acidity	(mg/L)	BDL	0	0	0	0	0	0	20	45	55	0	0	0	0	0	0	0	0	0	405	135	135	0	5	0.5	0	0	0	0	0	0
Hd		7.6	7.4	6.9	7.2	7.4	6.9	7.4	4.9	4.5	3.7	9.9	5.9	6.4	6.9	6.3	7.2	6.9	6.4	7	3.6	3.4	3.3	9	5.5	6.1	6.7	6.2	7.2	8.9	6.4	7.3
Date		6/28/00	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6
Station ID		KL1	KL2	KL2	KL2	KL3	KL3	KL3	KI4	KL4	KL4	KL5	KLS	KL5	KL6	KL6	KL6	KL7	KL7	KL7	KL8	KL8	KL8	KL9	KL9	KL9	KL10	KL10	KL10	KL11	KL11	KL11

Table 2.12 Letcher County AMD Sampling Results

Hardness	(I) om)	(mg/L)	290	,		1	,	1	1		1	1	,	1					'	1	,	•	,	ı	1	1	'	•					
Aluminum	(I/20m)	(ung/L)	0.00	0.019	0.005	0.004	<.001	0.01	0.007	2.74	4.21	4.29	0.401	1.65	0.061	<.001	0.028	0.044	0.035	0.004	0.017	25.1	31.5	27	14.5	14	11.4	0.72	0.233	0.222	0.029	0.003	<.001
Chlorine	(I) way	(mg/L)	-	18.4	14.8	14	7.6	8.9	4	5.6	8.9	4	5.2	4.8	2.4	4.4	3.6	2.8	89	35.6	40	17.2	3.6	2.8	9.7	3.6	3.6	22.8	20.8	16.4	4.4	9	3.2
Dissolved	Fotassium (mg/l)	(111g/12)	-	7.9	8.25	9.15	6.4	6.83	10.9	4.24	5.63	7.3	7.47	8.55	12.05	7.58	8.1	10.3	6.57	6	10.8	4.22	5.43	6.4	6.65	7.4	11.7	8.48	9.33	12.9	8.56	7.94	11.5
Dissolved	muipos (ma/L)	(-1,811)		288.57	304.4	327.75	178.16	233.43	243.85	29.55	-	49.65	99.09	64.62	95.55	61.67	60.27	83.4	110	76.44	105.05	44.48	36.11	51.25	59.76	53.69	92.2	303.82	291.66	374.1	45.86	45.08	39.71
Dissolved	Magnesium (mo/L)	33	55	32.88	23.88	29.15	35.28	26.15	33.3	30.22	23.09	22.6	59.76	45.65	47.75	60.38	43.47	50.1	76.98	59.9	60.65	67.48	57.83	47.05	58.62	51.12	54.95	19.04	17.87	12.1	52.3	39.96	38.9
Dissolved	(mo/L)	(59	51.12	44.33	32.7	53.94	55.62	65.5	30.4	36.69	27.35	86.24	83.78	79.35	84.05	85.91	87.75	131.4	122.06	128.3	48.44	61.22	50.6	77.82	81.83	70.2	40.46	57.96	36.9	86.06	89.78	74.5
Coto	Date	00/00/	00/87/9	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6	8/28/00	8/31/00	00/9/6
Station ID	J. Hattori	17.1	7	KL2	KL2	KL2	KL3	KL3	KL3	KL4	KL4	KL4	KL5	KL5	KL5	KL6	KL6	KL6	KL7	KL7	KL7	KL8	KL8	KL8	KL9	KL9	KL9	KL10	KL10	KL10	KL11	KL11	KL11

CHAPTER 3: CONCLUSIONS AND RECOMMENDATIONS

This report summarizes the results of the 2000 Kentucky Watershed Watch Sampling effort for the Kentucky River Basin. As part of this sampling effort, approximately 150 separate sites were sampled at five different times for four main groups of parameters: herbicides/pesticides, pathogens, chemical/nutrients/metals, and AMD parameters. In addition, basic field parameters (temperature, pH, and dissolved oxygen) were also sampled. In general, the observed impacts associated with the measured herbicides and pesticides were minimal. In addition, dissolved oxygen readings were above a minimum threshold of 5 mg/l for nearly all cases. High fecal counts were observed in the North Fork of the Kentucky River and in both the North and South Forks of Elkhorn Creek as well as Clear Creek, Hickman Branch, and Jessamine Creek. This is consistent with sample results from previous years. Focused fecal sampling in Letcher county revealed continued significant impacts from straight pipes.

An evaluation of the nutrient results, revealed that the main nutrient of concern was phosphorus, which appeared in significant concentrations in both the North and South Forks of Elkhorn Creek and in Jessamine Creek. This is consistent with observations in previous years. However, it is noted that background levels in this region can be as high as 0.25 mg/l. Nevertheless, there remain several sites with phosphorus levels in excess of 1.0 mg/l which is ten times the unofficial maximum level of 0.1 mg/l and clearly reflects impacts from either point or non-point sources.

Significant metals concentrations were observed at several sites. Two of the sites had the maximum metals concentrations in multiple categories. These included:

K21: Hickman Creek, south of Nicholasville.

K83: Lotts Creek

Based on the fact that these sites contained the maximum concentrations for a number of constituents, it is recommended that additional investigations be performed at these sites to identify the source of the higher metals concentrations.

Focused AMD sampling in Letcher county revealed significant water quality impacts. Measured concentrations for conductivity, TDS, sulfates, manganese, and iron were all above maximum limits. Of particular concern were the measured values on Colly Creek.

Over the last four years, the Kentucky River Watershed Watch sampling program has helped to identify water quality problems in specific streams throughout the basin, and in particular in the lower basin. As in years past, it is recommended that additional synoptic sites be established in the headwater basins, while more frequent sampling be conducted at a fewer set of focused sites in the lower basins. However, beyond the need for continued monitoring, there is now sufficient data to indicate those streams which are significantly impacted. As a result, it is recommended that local action teams be formed

to work with state officials in the development and implementation of effective TMDLs for these impaired waters.