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ABSTRACT OF DISSERTATION

Energy Integrated Ratio Analysis of the Anomalous Precession Frequency in the
Fermilab Muon g-2 Experiment

The muon’s anomalous magnetic moment, aµ, provides a unique way for probing
physics beyond the standard model experimentally as it gathers contributions from
all the known and unknown forces and particles in nature. The theoretical predic-
tion of aµ has been in greater than 3 σ tension with the experimental measurement
since the results of the Muon g-2 Experiment at the Brookhaven National Labora-
tory (E-821) were published in the early 2000s with a precision of 540 ppb. To settle
this tension, the new Fermilab Muon g - 2 Experiment (E-989) is currently taking
data with the aim of experimentally determining aµ with a final precision of 140 ppb.
The determination of aµ involves measuring the magnetic field in which the muons
undergo spin precession and the anomalous part of the spin precession frequency, ωa.
We use a new reconstruction approach called the energy integrating method in which
the total energy of the decay positrons deposited in the electromagnetic calorimeters
is continuously recorded. This reconstruction method for the ωa analysis has differ-
ent sensitivity to some of the major systematic biases compared to the traditional
method which reconstructs individual positron events. Furthermore, we employ a
ratio histogramming procedure that has reduced sensitivity to slow variations in the
data. In this dissertation the muon g-2 experiment at Fermilab is described followed
by a detailed discussion of the Run-2 and Run-3 precession frequency data analysis
using the new energy integrating ratio histogramming method.

KEYWORDS: muon, anomaly, precession, precision, standard model, ratio q-method
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Chapter 1 Introduction

The work detailed in this dissertation describes a precision measurement of the
anomalous magnetic moment of a subatomic particle called the muon. For almost a
century the determination of magnetic moments of the subatomic particles has been
of great interest to the physicists, and it has advanced our understanding of the na-
ture of the universe. The Muon g-2 experiment in Fermilab aims to do the same
by carrying out a measurement of the anomaly in muon’s magnetic moment with an
unprecedented precision. The anomaly arises due to the contribution of the virtual
particles and forces in nature to the interaction of the muon with an external mag-
netic field. The measurement is motivated by a long standing discrepancy between
the theoretical prediction and the experimental value of the anomaly. By increasing
the precision on the experimental value, this experiment aims to settle this discrep-
ancy by either confirming the theory or by strengthening the disagreement further.
If the disagreement between the theory and the experiment widens, this could mean
that our physical understanding of nature is not complete and there are more un-
known particles or forces that are yet to be discovered.

This chapter details the importance of magnetic moments of the subatomic parti-
cles and introduces the muon and the significance of its magnetic moment. Further
it motivates the purpose of the experiment being carried out in Fermilab. Chapter
2 discusses the measurement principle and gives a detailed description of the ex-
perimental setup required to carry out this measurement. Chapter 3 describes the
development of a new technique for the determination of the anomalous precession
frequency of the muon which is one of the two prime components that go into the
experimental measurement of its anomalous magnetic moment, the other being the
magnetic field in presence of which the muons undergo spin precession. This method
is an important alternative way of determining the precession frequency and serves
to show the robustness of the experimental measurement. A brief overview of the
Run-1 analysis using this new method is also given in this chapter. In Chapter 4,
an improvement in the histogramming technique is introduced which is motivated
by the need for reducing the systematic uncertainty on the spin precession frequency
measurement determined using the alternative technique. Chapter 5 describes the
analysis of Run-2 and Run-3 data using this improved new technique and provides
the blinded analysis results. The last chapter is a summary of the Run-1 results and
its significance and the conclusions drawn from the Run-2 and 3 blinded analysis
using the new improved technique.
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1.1 g-factor of Charged Particles

1.1.1 Classical Magnetic Moment

Charged particles possessing angular momentum have an intrinsic magnetism charac-
terized by their magnetic moments. A simple case is shown in the figure 1.1, where a
particle with charge q and mass m, is following a circular loop of radius r and velocity
v. The orbital angular momentum of this particle can be expressed as

−→
L = m−→r ×−→v (1.1)

The magnetic moment of this charged particle then can be defined as

−→µ = g
q

2m

−→
L (1.2)

where g is a dimensionless quantity and is defined as the ratio of the angular momen-
tum and the magnetic moment of a particle. For our system of a charged particle
rotating in a circular loop,

g = 1. (1.3)

This relation holds true for all the classical charged particles even at the atomic
level[1]. But this relation fails when quantum mechanics comes into play.

Figure 1.1: A charged particle with mass, m, and charge, q, rotating in a circular
loop of radius, r, with velocity v, has an orbital angular momentum, L and possesses
a magnetic dipole moment µ .

1.1.2 Spin Angular Momentum

Since the rise of quantum mechanics in the early 20th century, the structure of the
subatomic particles has been widely studied. In 1926, Uhlenbeck and Goudsmith [4]
hypothesized that the electron possessed an intrinsic spin angular momentum. In
1922, Stern and Gerlach [5] had already shown the spatial quantization of angular
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momentum in their well known experiment with silver atoms in an inhomogeneous
magnetic field[2] in which the beam of silver atoms was observed to be split into two
distinct components along the direction of the dipole magnetic field. This observation
was later interpreted as the quatization of the spin angular momentum. Existence
of the spin quantum number would explain the anomalous Zeeman effect in which
the number of spectral lines of an atom in presence of an external magnetic field
were not equal to what would be expected if the electrons only possessed orbital
angular momentum. This also led to the explanation that the interaction between
the magnetic moment of the electron and its spin angular momentum was twice
as strong as the interaction between the magnetic moment of the electron and its

orbital angular momentum [1]. So, replacing orbital angular momentum,
−→
L , with

spin angular momentum
−→
S in equation 1.2,

−→µ = g
q

2m

−→
S (1.4)

where
g = 2 (1.5)

In 1927, it was shown by Thomas [6] [7] that the value g = 2, which was needed to
explain the experimental observations, can be deduced by using relativistic kinemat-
ics.

1.2 Numerical Value of g-factor

1.2.1 Dirac Equation

The first robust theoretical prediction of numerical value of g for spin half charged
elementary particles was given by Dirac [8] in 1928 by combining quantum mechanics
and special relativity in his equation which describes free spin half charged particles

iγµ∂µψ(x)−mψ(x) = 0 (1.6)

where γµ are a set of 4×4 constant matrices called gamma matrices, ψ is the field of
particles like electrons and ∂µ is the four component (three space-like and one time-
like) gradient or derivative. Dirac equation eventually led to formulation of Quantum
Field Theory (QFT) to describe creation and annihilation of relativistic particles. In
this theory, instead of working with individual particles, the concept of particle fields
was introduced to deal with relativistic systems containing multiparticle states.

To include the electromagnetic interaction, the Dirac equation is modified to

γµ(i∂µ − eAµ)ψ(x)−mψ(x) = 0 (1.7)

where Aµ is the four component electromagnetic vector potential and e is the charge
on an electron. In perturbation theory, the mathematical formalisms for working
with such field equations allow for diagrammatic representation known as Feynman
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diagrams[3]. Figure 1.2 shows a Feynman diagram for the simple interaction between
an electron and electromagnetic field. The mathematical object connected with this
interaction point is called the electron vertex function.

Figure 1.2: Feynman diagram for an electron, e, interacting with electromagnetic
field, γ. The straight lines denote the electron and the wavy line denotes the photon.

In QFT, particle interactions (scattering amplitude, cross sections etc) are calcu-
lated using the scattering or the S−matrix. For charged spin half particles interacting
with electromagnetic potential, the invariant matrix element of S-matrix, M, in the
fourier space is given by[3]

iM = −i(2m).eξ′†(− 1

2m
σk[F1(0) + F2(0)])ξB̃k(−→q ) (1.8)

where, ξ are the two-component spinors that solve the Dirac equation in the non-
relativistic limit, σk are the Pauli spin matrices, F1(q

2) and F2(q
2) are the Dirac and

Pauli form factors respectively, and are functions of scalar four-momentum transfer
squared, q2, and B̃k(−→q ) = −iεijkqiÃj(−→q ). This can be interpreted as the Born
approximation to the scattering of a charged spin half particle by a potential well

where the potential is the interaction with the magnetic field, −−→µ .
−→
B [3] and for a

slowly varying electrostatic field over large distances, −→q → 0. Consequently, in the
leading order F1 = 1 and F2 = 0, so

−→µ =
e

m
ξ′†
−→σ
2
ξ (1.9)

And since
−→
S = −→σ /2,

g = 2 (1.10)

and the next order terms in perturbation theory are higher order in the fine structure
constant, α.
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1.2.2 Deviation from g=2

Around this time, more experiments were done to test the predictions of Dirac theory.
Notably in 1933, Stern [9] [10] performed an experiment with a molecular hydrogen
beam and determined the magnetic moment of the proton to be much larger than 2.
At that time, it was believed that protons and electrons are similar point like spin
half particles with opposite charges. In 1939, Alvarez [11] measured the magnetic mo-
ment of neutrons by determining their Larmor precession frequency in the presence
of magnetic field and found that to be much larger than 2 as well. The anomalous
magnetic moments of protons and neutrons were later found to be largely due to the
internal structure of these composite particles.

In 1947, Kusch and Foley and others [12] [13] [14] made measurements of magnetic
moment of the electron by studying the hyperfine splitting structure of atoms in pres-
ence of magnetic field and found that numerical value of g deviated from predicted
value of 2 by 0.119 percent[16]

g = 2(1 + 0.00119)± 0.0001 (1.11)

indicating that the electron possesses an intrinsic or anomalous magnetic moment
above that deduced from the Dirac theory. This indicates that the Dirac theory does
not describe the electron’s interaction with the magnetic field completely.

1.2.3 Quantum Electrodynamics

Figure 1.3: Feynman diagram for radiative correction to vertex function involving
one virtual photon loop. The solid line represents the electron and the wavy line
denotes the photon.

In 1947, Schwinger [15] proposed the theory of Quantum Electrodynamics in which
the interaction of an electron with an external electromagnetic field included produc-
tion and absorption of virtual photons. This is called a radiative correction. The
Feynman diagram for such an interaction now includs a loop denoting the virtual
photon as shown in figure 1.3. Schwinger calculated this correction precisely [15] and
thus explained the anomalous part of the magnetic moment.
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Mathematically, the next to leading order term in equation 1.8 can be calculated
to be

F2(0) =
α

2π
≈ 0.0011614 (1.12)

And thus, anomalous magnetic moment of electron is

g = 2(1 + 0.0011614) (1.13)

which is in agreement with Kusch and Foley’s result in equation 1.10.

1.3 Muon and the Standard Model

1.3.1 Discovery of Muon

In 1936, Anderson and Neddermeyer [17] identified a new class of particles in cosmic
rays using cloud chambers. These particles were as ionizing as electrons but showed
a higher charge to mass ratio characterized by more curled particle tracks in the
presence of a magnetic field inside the ionization chambers. In 1937, their discovery
was confirmed by Street and Stevenson [18]and they also measured the mass of this
new class of particles which was found to be approximately a couple of hundred times
heavier than the electron. In 1946, Conversi, Pancini, and Piccioni [19] demonstrated
that these new particles were unstable and decayed into lighter electrons. These
newly discovered particles were called muons.

1.3.2 Properties of Muon

As mentioned in the last subsection, muons are elementary particles with the same
charge as electrons. Their rest mass is about 105.7 MeV/c2 which is 207 times the
mass of the electron (0.511 MeV/c2). Muons are radioactive and primarily decay into
electrons and neutrinos via weak interaction as shown in figure 1.4. Their average
lifetime is 2.2 µs.

1.3.3 The Standard Model

The Standard Model of particle physics is a field theory of elementary particles and
their interactions. The particles having spin 1/2 are called fermions and they are
the constituents of all the stable matter in the universe. The interactions of the
particles are mediated by the force carriers. They are bosons with spin 1 and the
Higgs boson is the only particle in the Standard Model with spin 0. Figure 1.5 shows
all the particles and the force carriers described by the Standard Model. The force
carriers are gluons, photons, W and Z bosons and they are responsible for strong
force, electromagnetic force and the weak force respectively. The fermions can be
either leptons or quarks which are the building blocks of the universe. Quarks can
interact via all the fundamental forces in nature and are always found in bound
states in nature (for example inside protons and neutrons) while the leptons can only
interact via the gravitational, weak or electromagnetic interaction. There are three
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Figure 1.4: Feynman diagram for decay of muon, µ− into electron, e−, and neutrinos,
ν̄e and νµ, mediated by weak interaction force carrier, W− boson

generations of each of the particles usually characterized by their masses. Finally
there is the Higgs boson which is responsible for the mass generation of the massive
vector bosons and all the fermions.

1.3.4 Standard Model Prediction of Muon g-2

Since the interaction of the electron (or any spin half charged particle) with an elec-
tromagnetic field can be influenced by all possible virtual particles coming in and out
of existence in the vacuum, the anomalous part of the magnetic moment, ((g-2)/2),
will gather contribution from all the particles and forces in nature that couple to the
electron. Using the standard model of particle physics one can calculate the various
contributions from the known particles and forces. The first order correction to the
anomalous part of an electron’s magnetic moment is already shown in equation 1.13.
This also holds true for muons and taus. However the higher order corrections are
mass dependent and hence the heavier leptons have different contributions from the
higher order terms. In other words, the contribution of higher order contributions
involving higher energy or mass scales, Λ, to a lepton’s anomalous magnetic moment
goes as [21]

δal ∝
m2
l

Λ2
(1.14)

where we have defined al = (gl − 2)/2 . This implies that the anomalous magnetic
moment of the muon which is ∼ 200 times heavier than the electron is m2

µ/m
2
e ≈40000

times more sensitive to these corrections than an electron. This, along with the fact
that muons are more stable than taus, are the reasons why the comparisons with
experimental measurement of anomalous magnetic moments of leptons are done with
muons. The development of the Muon g-2 experiments will be discussed in detail in
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Figure 1.5: The standard model of particle physics. In violet color are the three
generations of up and down quarks, the leptons are shown in green, in red are the
four force carriers and the Higgs boson is shown in yellow. Image credit [20].

the next subsections.

The standard model predicts that contributions to anomalous magnetic moment of
muons, aµ(= (gµ−2)/2), are from three types of corrections, quantum electrodynam-
ics (QED), electro-weak (EW) interactions and hadronic (Had).

aSMµ = aQEDµ + aEWµ + aHadµ (1.15)

The contribution from the hadronic virtual loops (aHadµ ) dominate the uncertainty on
the overall standard model prediction of aµ. As a result, a lot of the recent focus
has been on developing ways of precisely calculating aHadµ . To arrive at a concensus
on the theoretical value of the muon magnetic anomaly, a group was formed called
Muon g-2 Theory Intitiative, whose goal is to recommend a single value of aSMµ . The
first recommendation was published in 2020 as a white paper[22]. Following this
recommendation, the numerical standard model value of muon magnetic anomaly is

aSMµ = 116592089(63)× 10−11 (1.16)

Each of the components of this correction are described below.
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Figure 1.6: Feynman diagrams showing the 8th and 10th corrections to the vertex
diagram. The top two rows show the four-loop diagrams corresponding to 8th order
QED corrections while the bottom six rows show the five-loop diagrams for the 10th

order QED corrections to muon magnetic anomaly [23].

Quantum Electrodynamics (QED)

The first order correction to (g-2)/2 given in equation 1.13 is called the one loop
QED correction since the virtual photon forms a loop at the vertex. The higher order
corrections are obtained by doing a perturbative expansion in terms of α.

aQEDµ =
∞∑
n=1

(
α

π
)na2nµ (1.17)

In terms of Feynman diagrams, this means the number of photon loops are in-
creased in each subsequent higher order. The representative diagrams from the four
and five loop contributions are shown in figure 1.6. Currently, the corrections upto
5-loops (10th order in aµ) have been estimated [23] and the total contribution from
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the QED corrections is

aQEDµ = 116584718.931(104)× 10−11 (1.18)

The uncertainty comes from lepton mass ratios, numerical evaluation of 8th and
10th order terms and the uncertainty from the determination of α done with atom-
interferometry measurements of the Cs atom[25].

Electro-weak (EW)

Figure 1.7: Feynman diagrams showing the one-loop and two-loop diagrams con-
tributing to the electroweak corrections to muon magnetic anomaly. The wavy lines
represent the vector bosons and the dotted line is for the Higgs boson [24].

The contributions from the EW corrections come in due to the appearance of the
massive bosons at the vertex. They can be any of the vector bosons (W or Z) or
the Higgs particle. These contributions are calculated upto two-loop order and are
generally suppressed due to the high mass of the bosons relative to the muon [24].
The contribution to muon magnetic anomaly from EW corrections is

aEWµ = 153.6(1.0)× 10−11 (1.19)

Hadronic

The hadronic contributions come from the Feynman diagrams where quarks appear
at the vertex. The calculation of hadronic contributions to aµ poses an additional
challenge owing to the non-perturbative nature of QCD (Quantum Chromodynam-
ics). One of the hadronic contribution is called hadronic vacuum polarization (HVP)
as shown in figure 1.8. This can be calculated with the use of experimental cross-
section data, involving e+e− annihilation to hadrons, and perturbative QCD to eval-
uate energy-squared dispersion integrals [26], [27]. The leading order term in the
dispersion integral is [28], [29]

aHV P,LOµ =
α2

3π2

∫ ∞
m2
π

ds

s
R(s)K(s) (1.20)
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where mπ is the mass of pion, K(s) is the kernel function and R(s) is defined as

R(s) =
σ0
had,γ(s)

4πα2/(3s)
(1.21)

with
σ0
had,γ(s) ≡ σ0(e+e− → γ∗ → hadrons+ γ) (1.22)

The leading order HVP contribution to aµ is

aHV P,LOµ = 6931(40)× 10−11 (1.23)

Similarly, the next to leading order (NLO) and next-to-next leading order (NNLO)
are evaluated to be

aHV P,NLOµ = 98.3(7)× 10−11, aHV P,NNLOµ = 12.4(1)× 10−11 (1.24)

Figure 1.8: Feynman diagram showing the hadronic vacuum polarization contribution
to the muon magnetic anomaly. The solid line represents the muon and the wavy line
denotes the photon. The gray circle represents the quark loop.

Very recently, HVP contributions to aSMµ have also been calculated using lattice
QCD techniques which do not rely on experimental data on electron-positron anni-
hilation into hadrons or dispersive techniques [30],[31],[32]. These predictions differ
from the dispersive predictions by couple of standard deviations and are in tension
with the HVP contribution value recommended by the theory initiative white paper.
These results are currently being reviewed by the Muon g-2 Theory Initiative and
the numerical value of the hadronic contributions to aSMµ will be updated according
to their recommendation.

The other type of hadronic contribution is called hadronic light-by-light (HLbL) shown
in figure 1.9. The correction is determined phenomenologically by using dispersive
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Figure 1.9: Feynman diagram for hadronic light-by-light correction. It shows the
hadronic loop in gray coupling to four photons. The solid line represents the muon
and the wavy line denotes the photon.

relations similar to the HVP case. The main contributions come from data driven
estimation of numerically dominant contributions from the single-pseudoscalar poles
and large parts of the two-pion intermediate states, the model-dependent estimates
for the sum of scalar, tensor, and axial-vector contributions and perturbative QCD
determination of the c-quark contribution [22]. The leading order and next to leading
order estimates of aµ are

aHLbL,LOµ = 92(19)× 10−11, aHLbL,NLOµ = 2(1)× 10−11 (1.25)

1.4 Experimental Measurement of Muon g-2

1.4.1 History of Muon g-2 Experiments

An important concept behind the experimental measurement of anomalous muon
magnetic moment is the fact that parity is not conserved in weak interactions [33]
[34]. In 1957, Garwin, Lederman and Weinrich experimentally showed that parity
was violated in decay of pions to muons and then muons to electrons [35]. As a
result of this observation, it was possible to directly measure the muon anomalous
magnetic moment using naturally polarized muon beams. In 1959, Garwin et al. first
measured muon’s g-factor by stopping a beam of muons in a bromoform target in
presence of a homogeneous magnetic field. They reported their value of g with a
0.007% accuracy[36]

g = 2(1.00122± 0.00008) (1.26)

which was in agreement with the predictions of QED at that time.

The next generation experimental measurements of aµ were done in CERN. The
first experiment, conducted between 1960 and 1962, injected a positive muon beam
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Figure 1.10: A schematic representation of muons spiraling in a dipole magnetic
field inside the storage ring used in the CERN-1 Muon g-2 experiment. The length
of the magnet is 6 meters. M denotes the bending magnet and Q denotes a pair of
quadrupoles. The numbers 1 through 7 show the position of the counters for counting
muon coincidences. Be is the Beryllium moderator and T is the Methylene-iodide
target. Image credit [38].

in the presence of a strong dipole magnetic field as shown in figure 1.10. The muons
coming out of the magnetic field region were then stopped by a methylene iodide
target [37] [38]. The time distribution of the decaying muons was used to determine
the anomalous magnetic moment. The second experiment was done in 1966 and
involved a storage ring magnet in which the muons decayed into electrons [39]. The
physics behind the storage ring magnets will be discussed in detail in the next chapter.
And the third and final muon g-2 experiment at CERN was conducted between 1974
and 1979 with a storage ring magnet in which muon beam was subjected to vertical
focussing using electrostatic quadruples [40] [41] [42]. The setup of CERN-3 muon
g-2 experiment is shown in figure 1.11. The results of the 3 experiments from CERN
are summarized below.

aCERN−1µ = (1162± 5)× 10−6 (1.27)

aCERN−2µ = (11661± 3.1)× 10−7 (1.28)

aCERN−3µ = (1165924± 8.5)× 10−9 (1.29)

These results were in agreement with the standard model prediction at that point of
time.

1.4.2 Muon g-2 Experiment at Brookhaven National Lab (E-821)

In the 1980s an experiment to measure aµ with much higher precision was proposed
to be set up in Brookhaven National Laboratory (BNL). The goal of this new ex-
periment was to look for electro-weak contribution to muon’s anomalous magnetic
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Figure 1.11: A schematic representation of the storage ring used in the CERN-3 Muon
g-2 experiment. The ring, with radius 7 meters, is made up of 40 contiguous magnet
pieces as shown. There are 24 lead-scintillator shower counters shown on the inner
side of the ring. The pion beam was injected into the ring through an inflector magnet
which provided a field free region at the entrance to the storage region indicated at
the top left part of the ring [43].

moment. Additionally, this experiment would also have the scope to confirm the
predictions of the standard model or look for the existence of physics beyond this
theory. Some of the features of the experimental design were similar to that of the
CERN-3 experiment. For example, the experiment was conducted in a storage ring
with a dipole magnetic field and electrostatic quadruples were used to achieve ver-
tical focussing. The muon beam with the same relativistic energy was used (this
energy corresponding to a Lorentz boost factor of γ=29.3 had a special advantage
which will be again discussed in detail in the next chapter). The significant upgrades
with respect to the last experiment included a more homogenous magnetic dipole
field and better method of mapping the field with the help of a trolley with a NMR
probe, a more intense beam, muon kicker to directly inject muon beam in the storage
region, an improved inflector magnet and a four fold symmetry in the electrostatic
quadrupole system [43].
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The BNL experiment concluded taking data in 2001 and accumulated a dataset which
achieved a precision of 540 ppb. The final result of the experiment is

aBNLµ = 116592080(63)× 10−11 (1.30)

In this, 460 ppb was statistical uncertainty while 280 ppb came from various system-
atic effects. This number was about 2.7 standard deviations away from the theoretical
standard model prediction at that time. With improvement in precision in numerical
techniques and data driven approaches to hadronic contributions, the current devi-
ation (with respect to the theoretical value recommended by the white paper [22])
stands at about 3.7 σ as shown in figure 1.12.

Figure 1.12: Plot showing the comparison of theoretical and experimental values of
muon g-2. The points marked in blue are the old Standard Model estimates, the
red point and the red band corresponds to the current standard model estimate and
the associated uncertainty respectively as per [22]. The green band represents the
BNL experimental value of g-2 and the associated uncertainty and the blue band
within the green band shows the predicted uncertainty band for the new Fermilab
g-2 experiment. Note that the current Standard Model estimate denoted by ”SM
2020” in red does not include the recent lattice results [30],[31],[32] and this plot will
be updated later according to the recommendation made by the Muon g-2 Theory
Initiative.

While the standard model of particle physics has been tested remarkably well exper-
imentally for all its predicted particles and their interactions, it also has some prob-
lems. It does not include gravitational force. It does not explain matter-antimatter
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asymmetry observed in the universe and does not incorporate dark matter. Thus
this discrepancy is a compelling hint towards the existence of unknown particles or
forces that are not included in the standard model. Although 3.7 σ is a tantalizing
discrepancy, it still does not meet the threshold (5 σ) to conclusively say that the
standard model is incomplete. This motivates the need to improve the precision on
both theoretical and experimental values of aµ. Hence a new experiment is set up in
Fermilab to achieve better precision on the muon anomalous magnetic moment.

1.4.3 Goal of Fermilab Muon g-2 Experiment

The goal of the Fermilab Muon g − 2 experiment (E-989) is to measure anomalous
magnetic moment of muon, aµ, with a final precision of 140 ppb. If the current central
experimental value agrees with the findings of E-989, this would mean a deviation
of about 7σ, which is well above the discovery threshold. The new experiment aims
to achieve this unprecedented precision by increasing statistics and incorporating im-
provements in its measurement techniques.

The storage ring magnet is the same as the one used in the BNL experiment. The
experiment aims to limit its systematic uncertainties to 100 ppb with an expecta-
tion to collect data with which the statistical precision will be 100 ppb. The major
instrumental upgrades include a purer source of muon beam with a higher rate of
delivery to the storage ring at Fermilab, a new dedicated fast kicker, calorimeter de-
tectors with segmented lead fluoride crystals, dedicated straw trackers to image the
beam and improved magnetic field homogeneity. Each of these components will be
discussed in detail in the next chapter.

Copyright c© Ritwika Chakraborty, 2022.

16



Chapter 2 The Fermilab Muon g-2 Experiment

2.1 Measurement Principle

Measurement of the anomaly in muon g− 2 in E-989 employs the fact that a charged
particle possessing spin angular momentum in presence of external magnetic field
experiences a torque τ due to the interaction of its magnetic moment µ with the
magnetic field B

−→τ = −→µ ×
−→
B (2.1)

and undergoes Larmor precession with angular frequency

−→ωs =
ge

2m

−→
B (2.2)

where g is the g-factor, e is the charge on the particle and m is its mass. For a
relativistic particle, such as the muons in a storage ring with dipole magnetic field,
this is given by the more generalized Thomas precession

−→ωs = −ge
−→
B

2mµ

− (1− γ)
e
−→
B

mµγ
(2.3)

where γ is the Lorentz boost factor for the muons in the ring and mµ is the muon mass.
In a storage ring with magnetic field, the positively charged muon also undergoes
cyclotron motion with an angular frequency

−→ωc =
e
−→
B

2mµγ
(2.4)

The difference between the two frequency or the rate of precession of muon’s spin
with respect to the rate of change of muon’s momentum vector is given by

−→ωs −−→ωc = −ge
−→
B

2mµ

− (1− γ)
e
−→
B

mµγ
− e

−→
B

2mµγ
(2.5)

We can rewrite this as

−→ωa = −(
g − 2

2
)
e
−→
B

mµ

= −aµ
e
−→
B

mµ

(2.6)

where we have defined −→ωa = −→ωs −−→ωc and aµ = (g−2
2

).

To ensure that the muons are confined to the center of the ring and do not spi-
ral up or down, a vertical focussing is employed in the storage ring with the help
of an electrostatic quadrupole system. Due to this, the muons also experience an

electric field
−→
E and the above equation has to be modified to

−→ωa = − e

mµ

[aµ
−→
B − (aµ −

1

γ2 − 1
)

−→
β ×

−→
E

c
] (2.7)
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But it is possible to choose γ in such a way that aµ ≈ 1
γ2−1 so that the term involving

the E-field vanishes in the above equation. This value of γ ≈29.3 corresponds to the
so called magic momentum=3.09 GeV/c. So, now we have

ωa = −aµ
e
−→
B

mµ

(2.8)

As clear from equation 2.8, the difference between the spin precession frequency
and the cyclotron frequency is non-zero only because g 6= 2. So, in absence of the
anomalous contribution to muon’s spin precession frequency, the spin will precess at
the same rate as the cyclotron frequency as shown in figure 2.1.

Figure 2.1: Spin precession and cyclotron motion in presence (right) and absence (left)
of muon magnetic moment anomaly. The red and blue arrows denote the momentum
and spin of the muon. The rate of change of momentum and spin are equal in absence
of anomalous part of muon magnetic moment

From equation 2.8, it is clear that in the experimental setup of E-989, a precision
measurement of the anomalous spin precession frequency, ωa and the magnetic field,
B, are required.

The magnetic field in equation 2.8 is measured using proton nuclear magnetic reso-
nance (NMR) in the experiment which will be discussed in section 2.3. So B can be
rewritten in terms of proton’s Larmor frequency given by

B =
~ωp
2µp

(2.9)

Similarly, the electric charge, e, can also be written in terms of constants which
have been experimentally determined with high precision

e =
4meµe
~ge

(2.10)
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Using relations 2.9 and 2.10, equation 2.8 can be rewritten as

aµ =
ωa
ω̃p

mµ

me

µp
µe

ge
2

(2.11)

The quantities ge, mµ/me and µp/µe have been experimentally measured with
precision 0.26 ppt[45], 22 ppb[46] and 3 ppb[47] respectively. Notice that, ωp has
been replaced by ω̃p which is the precession frequency of the protons weighted by the
muon distribution which will be discussed in section 2.3. The subsequent sections
describe the measurement of the muon’s anomalous spin precession frequency and
the magnetic field in which the muons are stored.

2.2 Anomalous Precession Frequency Measurement

The determination of muon’s anomalous spin precession frequency ωa is based on
the physical properties of the muon decay mechanism. Muons decay into positrons
in storage ring following parity violating weak decay. The longitudinally polarized
muons decay to positrons, electron neutrinos and muon anti-neutrinos.

µ+ → e+ + νµ + νe (2.12)

Due to the parity violating weak decay, preferentially the positrons are right handed,
neutrinos are left handed and anti-neutrinos are right handed. In the rest frame of
the muon, the high energy positrons are emitted in the direction of the muon spin as
shown in figure 2.2. When boosted to lab frame, positrons are higher energy when
muon spin and momentum parallel to each other and lower energy when the muon
spin and momentum are anti-parallel to each other.

In the rest frame of the muon, defining y = E ′/Emax=53MeV , the differential an-
gular distribution of the positrons is given by the following [44]

dP (y, θ′)

dydΩ
∝ n′(y)[1 + α′(y) cos θ′] (2.13)

where
n′(y) = 2y2(3− 2y), (2.14)

θ′ is the angle between muon spin and positron momentum in muon rest frame and

α′(y) =
2y − 1

3− 2y
(2.15)

The muons in the storage ring are highly relativistic with a lorentz factor of γ = 29.3.
This causes the decay angle between the muon spin and positron momentum to be
highly compressed. The observed energy of the decay positrons in the laboratory
frame in terms of the rest frame energy is

Elab = γ(E ′ + βp′c cos θ′) ≈ γE ′(1 + cos θ′) (2.16)
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Figure 2.2: The top figure shows the emission of highest energy decay positrons while
the bottom figure shows the lowest energy case in the rest frame of the muon. Due to
parity violating nature of weak decay, the positrons are emitted preferentially right
handed and carry information about the muon spin direction.

Note in the laboratory frame, the angle between muon spin component and mo-
mentum can also be re-written as θ = ωat. As the count of muons exponentially
decay with a boosted lifetime of γτ , the integral of the number of positrons above an
energy threshold is modulated by ωa as

N(t) = N0e
−t
γτµ [1 + A cos(ωat− φ)] (2.17)

where A is the asymmetry in the number of positrons emitted with a particular he-
licity due to parity violation. The asymmetry is a function of laboratory energy since
the correlation between muon spin and positron momentum is stronger at higher
energies. The modulation of high energy (above the energy threshold of 1.7 GeV)
positrons by ωa is shown in figure 2.3. In the experiment ωa can be determined by
fitting either the time distribution of high energy positrons (T-method) or the time
distribution of the total energy of the positrons (Q-method).
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Figure 2.3: Time spectrum of high energy positrons in Run-1d above a threshold of
∼1.7 GeV.

The statistical fractional error on anomalous spin precession frequency is

δωa
ωa

=

√
2

ωaτµ
√
NA2

(2.18)

where N is the number of decay positrons and A is the decay asymmetry. To minimize
the uncertainty on ωa in the threshold based high energy positron counting methods
(T-method), the energy threshold which maximizes the quantity NA2 (plotted in
figure 2.4) is chosen. This however does not apply to the method that uses total
energy of the decay positrons which will be described in detail in the next chapter.

2.3 Magnetic Field Measurement

The other quantity which is measured in the experiment is the magnetic field in the
storage volume as seen by the stored muons. The magnetic field is measured by using
pulsed proton nuclear magnetic resonance (NMR) in which the Larmor precession
frequency of protons in water samples are determined. The magnetic field is given
in terms of the precession frequency at a reference temperature, T , by the following
expression

B =
~ω̃′p(T )

2
(2.19)

The stability of the magnetic field in the storage volume is achieved by NMR magne-
tometer devices which feedback the magnet current supply. Additionally, the local-
ized fine tuning of the field is done by shimming in which movable magnet pieces are
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Figure 2.4: Plot showing count of high energy positrons, N , asymmetry, A and NA2

versus energy. The statistical uncertainty on ωa can be minimized by maximizing
NA2.

used[60].

To measure the precession frequency ωp, there are 17 NMR probes mounted on a
movable trolley. The trolley is driven around the ring every 3 days between the data
taking intervals to map the magnetic field in the storage volume. Moreover, there are
378 fixed probes spread across 72 azimuthal locations in the ring that continuously
measure the magnetic field. The measurements recorded by the trolley probes and
the fixed probes are combined to determine the magnetic field versus position and
time in the storage volume. Finally, this magnetic field value determined in terms
of proton precession frequency is weighted by the distribution of muons in the beam
averaged over time and space to obtain ω̃p in equation 2.11.

2.4 Experimental Setup

The basic experimental setup of the new Fermilab Muon g-2 experiment is same as
that of the BNL g-2 experiment (E-821) with major upgrades to improve precision of
aµ measurement to reach the planned goal. It consists of a superconducting storage
ring magnet with radius 7.112 m and magnetic field strength of 1.45 T as shown in
figure 2.6. A positive muon beam orbits the ring and decays into positrons in presence
of a vertical magnetic field. The muon beam is constrained in the storage region with
the help of an Electrostatic Quadrupole (ESQ) System. The decay positrons are
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Figure 2.5: Figure showing magnetic field contours and azimuthally averaged muon
population distribution in E-989 Run-1.

detected by electromagnetic calorimeters located on the inner side of the ring. A
detailed description of each of the components of the experimental setup is given in
the next subsections.

2.4.1 Production of Muons

The process starts with a beam of H− ions accelerated by the linear accelerator,
Linac, to a kinetic energy of 400 MeV. This ion beam is passed through a stripping
foil to remove electrons to obtain a beam of protons. The Booster, which is a type of
synchrotron, accelerates the protons to kinetic energy of 8 GeV and produces 4×1012

protons per batch. After this the Recycler bunches the beam into 4 bunches of 1012

protons each and one batch at a time is extracted out of the Recycler. The proton
beam collides with a pion production target which is made up of nickel-iron alloy.
The secondary beam produced at the target is collected using a lens. Following this,
the positively charged particles with energy ∼3.11 GeV are selected using a bending
magnet. The M2 and M3 beamlines are equipped to capture muons with energy 3.09
GeV which corresponds to the magic momentum described in section 2.1 which decay
from the pions. The pions have spin zero and their decay products, muons and muon
neutrinos, are spin 1/2 particles and are preferentially left handed. This is how a
muon beam is produced with high longitudinal polarization. The muon beam is then
sent to the Delivery Ring (DR) where it undergoes few revolutions during the course
of which all the pions decay into muons. Finally the muon beam is sent to the g − 2
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Figure 2.6: A photograph showing the storage ring for the Muon g-2 experiment at
Fermilab. The muons enter the storage ring at the top right corner shown in red.
The storage ring itself is blue in color with various detectors located at the inner side
of the ring. Particularly, the 24 boxes can be seen on the inner side of the ring which
are the calorimeter detectors.

storage ring after being extracted through M4 and M5 beamlines at a rate of 16 muon
fills every 1.4 seconds as shown in figure 2.7 [49].

Figure 2.7: This figure shows a schematic representation of time structure of beam
pulses to g-2 storage ring [48]. 16 muon fills, on average 10 ms apart, are delivered
to storage ring every accelerator super-cycle (1.4 s).

2.4.2 Muons in the Storage Ring

The storage ring is a region of vacuum where the muons decay into positrons in the
presence of a vertical magnetic field. The storage ring comprises an arrangement of
superconducting coils and an iron yoke in order to produce a uniform 1.45 T vertical
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Figure 2.8: This figure shows a schematic representation of production and journey
muon beam within Fermilab starting from 8 GeV proton beamline in M1 ending with
muon beam at MC1 where the storage ring is located [49]

magnetic field. Figure 2.9 shows a schematic representation of the different compo-
nents of the ring. The muons enter the ring at the inflector which is a magnet that
provides a field free region for the muons to enter the ring. Then there are three
kicker plates that produce a transient magnetic field to kick the muon beam onto the
optimum orbit. There is also an ESQ system to hold the beam in the storage region
by providing a restoring force in vertical direction. This is provided by the four sets
of electrostatic quadrupole plates located around the ring.

The muons decay into positrons which are detected in the calorimeters as they pro-
duce Cherenkov radiation. There are 24 calorimeters located on the inner side of the
ring. They are connected to SiPMs which generate voltage signals corresponding to
the light pulses. These voltage signals are then digitized and processed for analysis
of the spin precession frequency of the muons.

T0 counter

The g− 2 storage ring is equipped with a laser monitoring system which is used for a
lot of crucial tasks like calibration. One of the most important functions of the laser
system is time synchronization. The analysis of muon spin precession frequency is
critically dependent on time and it is necessary to have precise knowledge of beam
injection time. For this, the laser system fires a sync pulse before injection of each
muon fill. However this is not enough for a precise knowledge of beam injection time
as there is a changing unknown offset between the sync pulse time and the muon beam
injection time. Therefore a T0 counter is installed at the point of beam entrance (see
subsection on Inflector magnet) which is a scintillator connected to SiPMs. The T0
produces a linear response to the primary beam pulse and the SiPMs produce a signal
corresponding to the pulse which is then digitized[48].
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Figure 2.9: This is a schematic representation of the equipment present in the storage
ring. Different colors show various detectors as marked in the figure

Inflector

Muons enter the storage ring through a hole in the storage ring magnet and the
inflector delivers the beam to the edge of the storage region as shown in figure 2.10.
The inflector is a superconducting magnet that cancels the dipole field of the storage
ring and provides an almost field free region. The inflector from E-821 was refurbished
for use in E-989 data taking. It’s novel geometry of the discrete superconducting
currents as shown in figure 2.10 prevents leak of magnetic flux and a superconducting
shield also reduces disturbances to the magnetic field of the storage region [51].

Kicker

After the muon beam entrance to the storage region is facilitated by the inflector
magnet, the beam is still not centered on the ideal orbit. To achieve the ideal beam
positioning, three additional plates are installed in the storage region, called the kicker
plates which produce a transient magnetic field. These are 1.27-m-long non-ferric
aluminum electromagnets that are pulsed at current values 3-4 kA. These magnets
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Figure 2.10: Figure on the left is a diagrammatic representation of the position of
the inflector magnet at the point of muon beam injection in the storage ring. Figure
on the right shows a photograph of the inflector magnet.

kick the muons onto the stable orbit necessary for the measurement of aµ. A schematic
representation of the kick is shown in figure 2.11 [50].

Figure 2.11: The beam enters the storage region at θ=0 and it crosses over to the
storage region at θ=π/2. At this point the kickers deflect it onto the stable orbit.

Collimators

Collimators are five copper rings located inside the storage ring that are used to define
the beam cross-section in the storage region. The muons which are outside of the
storage region hit the collimators, lose their energy and are eventually lost from the
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storage region. These lost muons can sometimes be detected along with the positrons
in the calorimeters and thus a correction is applied to account for these events. The
lost muon correction technique will be discussed in detail in the next chapter.

ESQ System and Betatron Oscillation

As mentioned before, the dipole magnetic field is not enough to constraint the beam
in the storage region as it can only exert force in the radial direction. So an electro-
static quadrupole field is needed for a restoring force in a vertical direction. This is
acheived by the four pairs of high voltage quadrupole plates inside the ring as shown
in figure 2.9. As the muon beam enters the ring, the electrostatic quadrupole plates
are charged asymmetrically to force the beam edges to be confined inside the region
of cross section defined by the collimators. This is called scraping. After ∼ 7 µs,
[52] the quad plates are charged symmetrically to their nominal voltage for long term
storage of the muon beam.

The quad plates along with the vertical magnetic field provide a linear restoring
force in the radial direction. As a result of restoring forces in vertical and radial
directions, the muons in the storage region undergo harmonic motion given by

x = x0 + Axcos(
√

1− n s

R0

) (2.20)

and
y = Aycos(

√
n
s

R0

) (2.21)

where s is the arc length, R0 is the radius of the ring, n is the field index

n =
kR0

vB0

(2.22)

and Ax and Ay are the amplitudes of oscillations in horizontal and vertical directions.
These oscillation are called betatron oscillations. The horizontal and vertical betatron
frequencies are defined in terms of cyclotron frequency, fc, as

fx = fc
√

1− n (2.23)

and
fy = fc

√
n (2.24)

Calorimeters

Each of the 24 (numbered 1 to 24 in figure 2.9) calorimeters is a two dimensional
array of Lead Fluoride (PbF2) crystals. The positrons decaying from the muons curl
inward and hit the face of the calorimeter as shown in figure 2.12. PbF2 is an ex-
cellent medium for producing Cherenkov radiation[54] and owing to its high density
and low radiation length its well suited to build a compact calorimeter detector. As
the positrons pass through the PbF2 crystals, they produce a shower of Cherenkov
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photons. The crystals are connected to Silicon Photomultipliers (SiPMs) which pro-
duce voltage pulses proportional to detected photons. This signal is then digitized
using an electronic waveform digitizer which is then processed and saved by the Data
Acquisition System (DAQ). This process happens continuously for 700 µs after the
beam injection and samples are recorded at a rate of 800 Mega-Samples per second
(MSPS).

Figure 2.12: Figure illustrating detection of decay positrons in the electromagnetic
calorimeters in the storage ring.

Tracker

There are two stations in front of calorimeter 12 and 18 where trackers are installed.
These are made up gaseous ionization straw chambers which are used to reconstruct
the profile of the muon beam during the fill period. As the decay positrons pass
through the straw chambers before hitting the calorimeters, the straw chambers in
the tracker produce a current which can be digitized. Each tracker has 8 modules
with 128 straws per module. The trackers provide useful information about beam
profiles, beam oscillations and decay positron momentum hitting the calorimeters
[53].

2.5 Data Acquisition System (DAQ)

All the signals produced in different detectors have to be saved in real time for offline
analysis which is done by the DAQ. Each calorimeter as well as the other detectors
are connected to a µTCA crate. The voltage signals produced in each calorimeter are
digitized using a five channel waveform digitizer, WFD5 contained within the µTCA
crate[55]. The WFD5s are compatible with AMC (Advanced Mezzanine Card) and
are connected to AMC13 modules designed by Boston University for CERN CMS
experiment[56]. The AMC13s distribute the clock signal within the µTCA crate,
facilitate readout of AMCs within the crate and transmit data to the DAQ frontend
computers. The Clock and Controls Center (CCC) has a 40 MHz clock for digitization
and it encodes the clock signal and beam trigger using Timing, Trigger, and Con-
trol (TTC) protocol developed for the CERN Large Hadron Collider experiments[57].
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Each WFD5 digitization channel comprises a 12-bit, 800 MSPS Analogue-to-Digital
Converter (ADC) chip for the digitization of the SiPM signal. The 800-MHz clock for
the WFD5 module derives from the 40-MHz master clock used for CCC digitization.
The AMC13 has an event builder which collects the data from all the WFD5 modules
from a calorimeter and sends that to a DAQ frontend computer over a 10-Gb Ethernet
link. The readout and pre-processing of the continuously digitized waveforms from
the detector system is done by the frontend computer while the back-end computer
is responsible for the event assembly, data storage, and run control[55].

The readout in the frontend machine parallelizes the process using GPU (Graphi-
cal Processing Unit) multicore processing. The process consists of a TCP thread that
receives and re-assembles the raw data from the AMC13 controller, a GPU thread
that manages the GPU-based data processing into various derived datasets, and a
MIDAS thread that handles the transfer of MIDAS-formatted events to the back-end
computer event builder. MIDAS is a DAQ environment originally developed at PSI
and TRIUMF[58]. To facilitate efficient multithreading, Mutual exclusion (Mutex)
locks are used to make sure that the threads take turns while accessing the same re-
sources. The ADC samples from each of the 54 crystals are recorded when they exceed
a pre-set threshold, typically equivalent to ∼ 50 Mev. The MIDAS tools for event
building, data storage, and run control are all performed on the backend computer.
MIDAS also provides an online database (ODB) used for cataloging and manipulat-
ing the parameters for data taking during the course of running the experiment[55].

The DAQ in E-989 processes data from 1296 calorimeter channels (54 channels per
calorimeter), two straw tracker stations, auxiliary detectors, the kicker, ESQs and
NMR probes. The experiment acquires raw ADC samples at a rate of 20 GigaBytes
per second. By implementing CUDA (Compute Unified Device Architecture) codes
for parallel processing of data using GPUs in the frontends, the rate at which the
data gets written in the tape is reduced by a factor of 100 that is 200 Megabytes per
second[59].

2.6 E-field and Pitch Correction

Although the Lorentz factor, γ, in equation 2.7 is chosen such that the electric field
term vanishes, in an experimental setup this cannot be perfectly achieved. There is
always a spread in the momentum of the muon beam that leads to a small contribution
from the E-field. This is called the E-field correction. This is true in the experimental
setup of E-989 and equation 2.7 can be written in terms radial E-field, Er, as [48]

ω′a = ωa[1−
βEr
cBy

(1− 1

aµβ2γ2
)] (2.25)

where ωa = −aµeB/mµ, By is the vertical component of the dipole magnetic field
and β(= v/c) is the muon’s velocity in the ring. Thus the fractional change in ωa due
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E-field correction is
ω′a − ωa
ωa

=
∆ωa
ωa

= −2βEr
cBy

(
∆p

p0
) (2.26)

This correction after some manipulations is given by

∆ωa
ωa

= −2β2n(1− n) < x2 >

R2
0

(2.27)

where < x2 > is time averaged equilibrium beam position and R2
0 is the radius of

the ring. The correction is directly applied to ωa and reduces its value owing to the
negative sign [48].

As described in section 2.4, the muon beam in the storage ring undergoes betatron

oscillation, fy, and as a result the condition that muon velocity
−→
β is orthogonal to

the dipole magnetic field,
−→
β .
−→
B = 0, does not hold. The angle between the muon mo-

mentum and the horizontal axis, ψ, also called the pitch angle, undergoes oscillation
[48]

ψ = ψ0 cos(ωyt) (2.28)

This effect is requires a pitch correction to the measured ωa. Equation 2.7 is modified
to include this effect as follows [48]

−→
ω′a = − e

mµ

[aµ
−→
B − aµ(

γ

γ + 1
)(
−→
β .
−→
B )
−→
β ] (2.29)

Rewriting
−→
β and

−→
B as

−→
β = β cosψẑ+β sinψŷ and

−→
B = Byŷ, where ŷ and ẑ denote

the vertical and horizontal directions, the transverse component of ωa, ω⊥ can be
written as [48]

ω⊥ = ω′ay cosψ − ω′az sinψ ≈ ωa[1−
ψ2

2
] (2.30)

The vertical betatron frequency ωy is one order of magnitude larger than ωa and as a
result, the parallel component of ωa, ω‖, changes its sign within a cycle of ωa modula-
tion. This leads to cancellation of ω‖ when a time average of these quantities is taken
into account. So pitch correction contribution to ωa only comes from its transverse
component ω⊥. After some algebraic manipulation, time averaged contribution of
pitch correction is [48]

Cp = −n
4

< y2 >

R2
0

(2.31)

where < y2 > is the time averaged mean-squared vertical position of the muon beam
[48].
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Chapter 3 Energy Integrated Reconstruction and Run-1 Analysis

3.1 Motivation

Experimental determination of Muon g − 2 is a precision measurement and it is im-
portant to validate its accuracy. Traditional determination of muon’s anomalous spin
precession frequency by counting high energy, above threshold positrons is suscepti-
ble to systematic biases. One important source of bias is called pile-up in which a
distortion to positron time distribution is caused by misidentification of two or more
positron event as one. This can happen when two positron events overlap in time in
the calorimeters. Another source of systematic effect comes in due to change in the
SiPM voltage signal amplitudes as a result of the detector response, called gain. Bias
from gain can cause systematic early-to-late effects. For an unbiased analysis of the
precession frequency data, algorithms are developed to identify and mitigate these
effects, but these are still significant source of systematic uncertainty in the preces-
sion frequency result. Hence it becomes important to perform parallel analyses which
would measure the same physical quantity but would have a very different sensitivity
to these systematic effects.

Figure 3.1: Anomalous precession frequency modulation of the decay positron energy.
Image credit [48]

One such analysis technique is called Energy Integrating analysis. This is a mini-
mum threshold analysis which does not count high energy positron events, but instead
records the energy deposited by the positrons in the calorimeters. Like the number of
high energy positrons, the total energy of the decay positrons also changes as a func-
tion of the angle between muon’s spin and momentum. The muons in the storage ring
are longitudinally polarized (spin and momentum are anti-parallel in case of positive
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muon) as explained in chapter 2. Muons decay into positrons, muon anti-neutrinos
and positron neutrinos. Since muon’s spin direction is changing with respect to its
momentum due to its spin precession, we obtain a modulation in total energy of the
decay positron due to its changing energy with spin precession as a result of parity
violating weak decay.

As a result, continuous digitized waveforms corresponding to total SiPM currents
which are in turn directly proportional to the integral of the energy deposited by the
positrons, will also have modulation by the anomalous precession frequency. This
method is called the Q-method where Q stands for total charge. The Q-method,
having a low threshold, has significantly different sensitivity to the systematic ef-
fects coming from gain and pile-up and thus is a crucial parallel analysis to confirm
the robustness of experimental determination of the precession frequency in Muon
g − 2 experiment. Although in effect, application of a small threshold of a couple of
hundred MeV is necessary to cut out the region of noise, it is still less sensitive to
gain fluctuations. Additionally, since this technique does not require identifying each
positron event correctly, it avoids biases resulting from pulse fitting or pulse clustering
that are done in positron counting methods. For the same reason, it is largely insen-
sitive to first order pile-up effects. It does suffer from small over/under-estimation of
pulse energies, but the overall sensitivity to pile-up is still significantly less than the
traditional positron counting method due to the low threshold. The next sections
describe the reconstruction of the precession frequency signal for Q-Method analysis.

3.2 Digitized Waveforms in DAQ

Q-method utilizes continuous digitized waveforms in units called ADC (Analogue-to-
Digital Converter) values which are proportional to the energy deposited in individ-
ual crystals by the decay positrons. These ADC samples are collected as a function
of time in bins of pre-defined widths. Each of the 54 (9 by 6) PbF2 crystals in the
calorimeters record digitized waveforms in ADC values as a function of time as shown
in figure 3.2.

The smallest bin-width possible with a 800 MSPS data collection rate, as described
in chapter 2, is 1.25 ns. However, considering the enormous data rate and limited
storage capacity for continuous digitized samples as opposed to the chopped islands
that are recorded in positron counting methods, the time bins are decimated by some
integer factor greater than 1. Moreover, for the same reason the end time for a Q-
method fill is less than T-method and several of the muon fills are combined together
into a single unit called flush to achieve additional data compression. Table 3.1 shows
these DAQ parameters for Run-1 through Run-5. In Run-1, the Q-method signal was
recorded in raw time bins of width 75 ns. This was changed in Run-2 and Run-3 to
be able to see higher frequency modulations and their effects in the data. The raw
bin width for Run 2 and 3 was 18.75 ns.
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Figure 3.2: ADC signal recorded in 1 flush of a single crystal from dataset 2C

Table 3.1: DAQ configuration parameters for Q-method data collection versus run
period

Run Period Start time End time Time Decimation Factor Muon fills per flush

1 -6 µs 232 µs 60 1
2 -6 µs 309 µs 15 4
3 -6 µs 309 µs 15 4
4 -6 µs 556 µs 30 4
5 -6 µs 556 µs 30 4

3.3 Background Subtraction

The muon beam injection at early time in a fill causes a large radiation flash in the
calorimeter which is recorded as a huge pulse followed by a big undershoot due to
the detector response. This introduces an early-to-late drift in the pedestal. To be
able to clearly see the modulation by ωa, this effect needs to be removed. To achieve
this a background subtraction algorithm is implemented. In this, for a pulse at each
time bin, called the trigger sample, an average pedestal is calculated which is then
subtracted from the ADC value of that pulse. The average is a rolling value which is
calculated for an island around each trigger pulse. This island is called the pedestal
window. With Run-1 DAQ configuration, the pedestal window was chosen to be 4
bins on each side of the trigger pulse with a gap of one bin. This gap is necessary to
account for the undershoot due to the detector response after each trigger pulse. It
is also necessary to choose the width of the pedestal window to be a multiple of the
cyclotron frequency time period (Tc) to eliminate the effects of pedestal bias due to
it. Tc in Fermilab storage ring is ∼ 149.2 ns. With time decimation factor being 60,
the pedestal window of 4 bins amounted to a time window of 300 ns which roughly
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twice Tc and hence successfully suppressed any effects coming from it.

Figure 3.3: Illustration of pedestal subtraction algorithm. The pulse in green color
depicts an above threshold trigger sample while the pulse in red color is an example
of below threshold trigger sample. The pulses in cyan are the pedestal samples and
contribute to average pedestal calculation. The pedestal samples adjacent to the
trigger pulse are rejected from average pedestal calculation.

The pedestal subtracted trigger pulse energy is then compared against a small
threshold, called absolute threshold, which is chosen for each DAQ configuration em-
pirically. The threshold is the energy value which cuts out the average ADC noise
coming from the digitizers. This is typically found to be about a couple of hundred
MeV and ωa has no systematic dependence on this empirically chosen value. If the
pedestal subtracted energy value is found to be above threshold, it is saved as signal
pulse and otherwise it is discarded as noise.

3.4 Noise Handling

To handle above average noise in the crystals, a rolling threshold is introduced. Av-
erage noise is calculated for a region chosen near the end of a fill since this region has
less probability of having a positron pulse. The standard deviation of the average
noise distribution is calculated per crystal. The rolling threshold is calculated by
multiplying a threshold multiplier chosen empirically with the standard deviation of
this calculated average noise. If the rolling threshold is found to be above the abso-
lute threshold, then it becomes the absolute threshold. This raising of the absolute
threshold happens very rarely, typically only in case of crystals with excessive noise.

3.5 Construction of Q-Method Time Spectrum

After applying the pedestal subtraction algorithm, the signal pulses need to be con-
verted to meaningful energy units. This is achieved by using energy calibration con-
stants. Additionally, there are two gain corrections that need to be applied to account
for early-to-late distortion of signal due to the undershoot of the pedestal happening
at the time of injection of the muon beam as a result of the detector response and
also due to long term environmental fluctuations.
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3.5.1 Energy Calibration

The signal is recorded in units of ADC and should be converted to MeV to report
analysis results in meaningful physical units. The energy calibration constants were
derived by aligning energy scales of the calorimeter channels relative to each other by
using the lost muons energy and the absolute scale was set by doing a 5-parameter
T-method fit to the per calorimeter data. The threshold value which gives maximum
statistical power, NA2, and minimum fitted error on ωa is set to be 1.7GeV. [61].

3.5.2 In-fill Gain Correction

As mentioned before, the calorimeters experience a splash of particle at the time of
muon injections causing the baseline to experience a big undershoot. As the recovery
from this flash of beam happens, the shape of the baseline undergoes a change during
the course of a muon fill which can in turn introduce a time dependence on the
precession frequency phase. This can result in a systematic bias in determination of
ωa. To correct for this, a fixed number of laser pulses are fired during each muon fill.
The time interval between subsequent pulses is made to vary such that drift in the
baseline up to several hundred microseconds is captured by the laser calibration. The
change in the amplitude of these laser pulses are then used to construct in-fill gain
(IFG) function

fIFG(t) = 1− AIFGe−t/τIFG (3.1)

which is applied to the positron signal for each muon fill[62].

3.5.3 Out-of-fill Gain Correction

Out-Of-Fill Gain (OOFG) or the long term drift correction is the correction associ-
ated with the change in SiPMs’ gain in response to environmental fluctuations like
temperature. To determine this correction, laser pulses are fired in the calorimeters
in the absence of muons and the SiPM responses are recorded. The ratio of the fired
laser signal amplitudes and the recorded signal amplitudes are then used to calculate
the long term gain effects for the positron signal. These constants are calculated by
averaging over a sub-run which is roughly equivalent to 5 seconds of running[63].

3.5.4 Pedestal Ringing

Since, Q-method uses continuous waveforms of the digitized data, it is affected by any
changes in the pedestal. One such effect is the ringing of the pedestal. The source
of this ringing is thought to be oscillation of the digitizer electronic equipment after
the beam injection and it is only seen in the early time of the fill [67] after which it
dies out as shown in figure 3.4. A data driven multiplicative correction was applied
to the histograms to correct for this effect.
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Figure 3.4: Ringing of the pedestal in Run-1 [67] at early times in raw data (before
pedestal subtraction).

3.6 Run-1 Analysis

After applying the calibration and correctional constants, the signal histograms from
the 1296 (54x24) channels are added together and multiple muon flushes are stacked
up to give the wiggle histogram that goes into the ωa analysis, shown in figure 3.5. The
x-axis units are in clock-tick which is roughly equal to 1.25 ns. The time, t = 0 should
be also assigned at this point and it is typically chosen to be bin which corresponds
to the peak of the flash at the time of muon beam injection.

Figure 3.5: Background subtracted, out-of-fill and in-fill gain corrected and energy
calibrated positron energy histogram for a subset of Run 2C

37



3.6.1 Assignment of Bin Uncertainties

The contents of the bins is the sum total of the energy hits at that time in fill and
the uncertainty comes from statistical uncertainty in the number of pulses that went
into that bin, ∆ni, and also the statistical variation from the energy resolution in
those pulses, Ei. The fluctuation in the energy value is considered to be a small
contribution and is ignored in the uncertainty calculation. The total energy in a time
bin of per calorimeter wiggle histograms given by

Etotal = n1E1 + n2E2 + n3E3 + ..... (3.2)

Ignoring the contribution from the fluctuation of energy per pulse, ∆Ei, the uncer-
tainty for the corresponding bin would be

∆Etotal =
√

(E1∆n1)2 + (E2∆n2)2 + (E3∆n3)2 + ... (3.3)

Assuming Poisson statistics and ∆ni =
√
ni,

∆Etotal =
√

(E1

√
n1)2 + (E2

√
n2)2 + (E3

√
n3)2 + ... (3.4)

This is approximated as

∆Etotal =
√

(E1)2 + (E2)2 + (E3)2 + ... (3.5)

where the effects from pulse splitting, that is sharing of a pulse energy between adja-
cent time bins, are ignored.

3.6.2 Blinding of Anomalous Precession Frequency

Before the analysis of the precession frequency data, the data is blinded to mitigate
any biases. This is done in two steps. First, there is a hardware blinding implemented
at the digitization precision clock which has a frequency of 40 MHz. This clock is
detuned to a secret value between 39 997 to 39 999 kHz unknown to the analyzers.
In addition to this a software blinding is also implemented by each analyzer by in-
troducing an offset ∆R unique to each analysis in the precession frequency such that

ωa = ωref [1− (R−∆R)× 10−6] (3.6)

where ωref = 2π × 0.2291 MHz.

3.6.3 Correcting the Cyclotron Modulation

The temporal length of the muon fill entering the storage ring is 120 ns. The cyclotron
frequency of the muon around the ring is 149.2 ns. As a result of this, each calorime-
ter sees a modulation of the precession frequency signal by the cyclotron frequency
in the raw binned (binwidth=18.75 ns in Run-2 and 3) data as shown in figure 3.6.
This is called Fast Rotation modulation. Before analyzing this data, groups of 8 bins
are summed together to make the final bin width of the data to be 150 ns (18.75×8 ).
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This is referred to as rebinning by a factor of 8. This washes out most of the effects
of fast rotation. However, since the bin width is not exactly equal to the time period
of the fast rotation, Tc, a beat frequency is observed at frequency ∼ ωc − ωb, where
ωc is the fast rotation frequency and ωb is the binning frequency.

Figure 3.6: Q-method data from calorimeter 1 showing modulation by fast rotation
signal at early times in Run-2 summed data

To handle this effect, a phase cancellation approach was adopted. First the data
in raw 18.75 ns bins are rebinned by a factor of 4 to make the bin width equal to 75
ns. This is roughly half of Tc. Next, it is superimposed with a histogram which is
shifted in time with respect to the first one by 75 ns such that the fast rotation has
the opposite phase in the shifted histogram. This cancels out the fast rotation phase
as shown in figure 3.7.

Figure 3.7: Figure on the left shows a toy model of fast rotation correction procedure;
figure on the right shows the correction on Q-method Run-2 summed calorimeter 1
data, zoomed into early times (6 to 8 µs)
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3.6.4 Fit Function

The wiggle histogram (figure 3.5) captures the total energy of the positron ensemble
undergoing an exponential reduction at a rate given by the muon’s decay lifetime
in the storage ring. On top of the decay spectrum, there is a sinusoidal modulation
due to the parity violating weak decay of the muons. Largely, a simple 5 parameter
function which accounts for these two effects seems to model the data well.

f(t) = N0e
(− t

γτ
)(1 + Acos(ωat− φ)) (3.7)

Howver, after performing the fit when a fast fourier transform (FFT) of the difference
between the fit-function and the data (fit-residuals) is produced, other effects begin
to show up as peaks as shown in figure 3.8. This motivates the need to introduce
additional terms in the fit-function to address these effects.

Figure 3.8: Fast fourier transform of the fit residuals showing various effects modu-
lating the precession frequency signal. fcbo is coherent betatron frequency responsible
for the oscillation of muon beam in the radial direction. fcbo±a are the satellite peaks
corresponding to the crossterm between cbo and the anomalous spin precession fre-
quency. fy and fvw are the muon beam vertical mean oscillation and the vertical width
oscillation respectively. fslow is the freuquency corresponsing to the slow variation in
the data.

Coherent Betatron Oscillation

As mentioned in chapter 2, the muon beam undergoes betatron oscillations in vertical
and radial directions. There is a radial oscillation of the muon beam, given by fx =
fc
√

1− n, where fc is the cyclotron frequency [48]. Since the calorimeter arrangement
in the experiment is discrete with 24 of them sitting on the inner side of the ring, the
observed radial betatron frequency is an alias of fx and fc given by

fcbo = fc − fx (3.8)
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as shown in figure 3.9.

Figure 3.9: Aliasing effect of radial betatron frequency. The blue oscillation depicts
the radial betatron oscillation. The black vertical lines denote the cyclotron frequency
wavelength and the black rectangular block shows position of one detector. The
observed CBO frequency as a result of aliasing in the detector is shown by the red
line. (Image taken from [48])

The second harmonic of this frequency f2cbo = 2fcbo is also observed in the FFT.
This frequency f2cbo is the oscillation of the radial width of the muon beam. Addi-
tionally, two satellite peaks at fcbo − fa and fcbo + fa corresponding to the product
cos(ωat).cos(ωcbot) (since the asymmetry and the phase are also modulated by the
CBO frequency) are also observed.

Since, there is a spread in the momentum of the muon beam and the storage po-
tential is not perfectly harmonic, the muon population undergoes the oscillation with
slightly different frequencies and eventually decohere. The time constant for decoher-
ence is roughly 250 µs [70]. Exponential functional forms are added to the fit-function
to capture the modulation of normalization factor N , asymmetry A and the phase φ
by CBO.

Ncbo(t) = 1 + AcboN e
− t
τcbo cos(ωcbot− φcboN ) + A2cboN e

− 2t
τcbo cos(2ωcbot− φ2cboN ) (3.9)

A(t) = A0(1 + AcboAe
− t
τcbo cos(ωcbot− φcboA)) (3.10)

φa(t) = Acboφe
− t
τcbo cos(ωcbot− φcboφ) (3.11)
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Due to damaged resistors in the ESQ system during the Run-1 data taking period
the CBO frequency had a time dependence and the form of the CBO envelope had
to be updated

ωcbot −→ ωcbot+ A1e
−t
τ1 + A2e

−t
τ2 (3.12)

The amplitude values, A1 and A2, and time constant values, τ1 and τ2, used were the
ones that were directly measured by the tracker system.

Vertical Oscillation

Like radial oscillation, the muon beam also undergoes vertical oscillation. One of
them is the oscillation of the mean and is given by

fy = fc
√
n (3.13)

and is directly observed in the FFT. The vertical width of the beam also undergoes
an oscillation called vertical waist motion. This frequency is again aliased like the
fcbo and the observed frequency is

fvw = fc − 2fy (3.14)

The envelopes for fy and fvw have decoherence times of roughly 100 µs and 30 µs
respectively. The functional form of these two oscillations are

Nvw(t) = 1 + Avwe
− t
τvw cos(ωvwt− φvw) (3.15)

Ny(t) = 1 + Aye
− t
τy cos(ωyt− φy) (3.16)

Muon Loss

Some of the muons are lost from the storage region after hitting collimators or other
obstacles. This leads to a beam energy loss and introduces bias in ωa determina-
tion. Therefore, a correction must be applied to the fit-function to account for these
losses. These muons can pass through the detectors as minimally ionizing particles
(MIPs) and deposit energies (∼ 170 MeV) in them. Additionally these muons can
pass through one or more successive calorimeters. The time of flight between con-
secutive calorimeters is 6.25 ns. So, time and energy cuts are used to identify lost
muons and construct their time spectra as shown in figure 3.10.

The correction term for this effect that goes in the fit-function has the following
form

Λ(t) = 1−Kloss

∫ t

0

e
t′
γτL(t′)dt′ (3.17)

where L(t′) is the loss time spectrum and Kloss is a fit parameter. Muons can be lost

from the storage region either by decaying or by escaping. The integral
∫ t
0
e
t′
γτL(t′)dt′

42



Figure 3.10: The integrated muon loss spectrum in Run-1

is the solution to the differential equation governing the number of muons present in
the storage ring at any time following the beam injection[70]. This accounts for the
loss in positrons that would have otherwise been present in their time distribution.

Slow Term

As mentioned before, the ESQ system in Run-1 consisted of two damaged resistors.
Because of that, the RC time constant of the quadruple plates was found to be higher
than designed. This led to a longer recovery period of the beam after scraping which
in turn meant that the beam was moving vertically well into the fit time window of
the flush. This significantly contributed to the slow effect peak in the FFT [68]. This
can also be seen in the fit-residuals as shown in figure 3.11.

Figure 3.11: The fit residuals (difference between the data and the fit-function) from
Run-1c showing the slow term modulation at early time [68]

The functional form for this effect in the fit function is

V (t) = Ave
− t
τA +Bve

− t
τB (3.18)
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where τA is a shorter time constant of ∼5µs while τB is a larger time constant of
∼200µs. Another term was needed to account for the relaxation of the asymmetry
parameter as a result of this vertical drift of the beam

A(t)→ A(t)e
− t
τrelax (3.19)

where τrelax is the time constant and is a fit parameter. This time constant was found
to be quite large, of order of few milli-seconds. This relaxation was motivated by the
drift of the asymmetry parameter with fit start time [69].

3.6.5 Fit Results

The Run-1 dataset consists of four sub-parts (1a, 1b, 1c and 1d) each with a different
field index. The energy calibration and IFG and OOFG corrections were applied after
pedestal subtraction. Fit start time for analysis was 30 µs, but it was changed to 50
µs in dataset 1d to minimize effects from the damaged ESQ resistors. An absolute
threshold of 300 MeV was applied. The full functional form that was used to fit the
datasets was

f(t) = N0e
(− t

γτ
)Ncbo(t)Nvw(t)Ny(t)Λ(t)V (t)(1 + A(t)cos(ωat− φ− φ(t))) (3.20)

Figure 3.12 shows a fit to summed Run-1 data and the FFT of the fit residuals for
the same.

Figure 3.12: Figure on the left shows the fit to the summed Run-1 dataset while the
figure on the right shows the fourier transform of fit residuals [71]

Fit results are summarized in the table 3.6.5. R values listed are unblinded values
proportional to ωa according to equation 3.6. The results of Run-1 analysis using
Q-method demonstrated agreement with the other analysis and was within the al-
lowed region of deviation. The statistical error bar on Q-method analysis was bigger
than other analyses since it employs a minimal threshold and does not maximize its
statistical power which can be achieved at around 1.7 GeV threshold. While other
threshold based analysis techniques also provided crosschecks, they all relied on the
same reconstructed positron events, which means they all used highly correlated data.
The Q-method was the most different parallel analyses with a much lower correla-
tion factor (about 0.5) with all other analyses. Therefore, it was the most important
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Table 3.2: Run 1 analysis results. The four Run-1 datasets were based on different
field indices, n, given in the columns ”Dataset” and ”Field index (n)”. The fitted R-
values (according to equation 3.6), after unblinding are given in the column, ”R
[ppm]” and their corresponding statistical uncertainties are given in column ”σR
[ppm]”.

Dataset Field index (n) R [ppm] σR [ppm]

1a 0.108 -83.96 2.07
1b 0.120 -79.70 1.76
1c 0.120 -81.03 1.45
1d 0.107 -82.74 1.29

Table 3.3: Run 1 systematic uncertainties. The column ”Systematic effect” lists
all the systematic effects that were calculated for Run-1 Q-method analyses and the
numbers under columns ”1a”, ”1b”, ”1c” and ”1d” denote the uncertainties associated
with each of those effects for the Q-method analyses of the four Run-1 datasets. All
the numbers are in parts per billion (ppb).

Systematic effect 1a 1b 1c 1d

Input clock stability 0.075 0.075 0.075 0.075
Input clock upconversion factor 2.100 2.100 2.100 2.100

In-fill Gain Amplitude 5.000 4.000 4.000 8.000
1n-fill Gain Time Constant 8.000 2.000 3.000 2.000
Pile-up modified error bars 15.000 15.000 15.000 15.000

Pile-up Simulations 10.000 10.000 10.000 10.000
Muon loss 17.000 3.000 2.000 3.000

CBO frequency change 5.500 16.000 48.400 33.000
CBO decoherence envelope model 4.100 1.000 14.000 38.000

CBO time constant 6.000 8.000 28.000 3.000
Vertical drift 198.000 200.000 342.000 208.000

crosscheck and proof of robustness of ωa measurement.

While the biggest error contribution came from statistical uncertainty, the sys-
tematic effects also contributed to the overall uncertainty. Table 3.6.5 summarizes the
systematic uncertainties. The procedures to describe the methods of estimating some
of these systematic uncertainties will be discussed in detail in chapter 5. As evident,
the Q-method analysis suffered most from the systematic uncertainty coming from
vertical drift which is a slow effect. Since the Q-method has a very low threshold,
it is more susceptible to any slow variation in the data. This motivated the need
to develop analyses techniques which are less susceptible to such effects. The Ratio
Method is one such histogramming technique which is described in the next chapter.
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Chapter 4 The Ratio Method

4.1 Motivation

As discussed so far, the Energy Integrating Reconstruction or the Q-method draws
its merits from the fact that it avoids individual positron reconstruction. Also it has
less sensitivity to systematic biases coming from gain and pile-up effects owing to its
small threshold which is applied only to avoid the region of noise (unlike positron
counting methods where threshold is applied to select high energy positrons). Due to
its low threshold Q-method is more susceptible to any slow variation in data. Run-1
Q-method result reported a systematic uncertainty of ∼ 300 ppb from vertical drift
which is a slow effect. This was the largest of all the systematic uncertainties. To
control this a histogramming technique called Ratio-Method was employed in Run-2
and Run-3 ωa analysis.

4.2 Ratio Method

The underlying principle for this histogramming technique is dividing the data into
subsets and then constructing a ratio of linear combinations of the subsets in such a
way that any slow effect that multiplies the normalization of the muon decay time
spectrum would cancel out. The biggest slow effect comes from the muon’s decay
lifetime itself. To cancel out the effects of muon lifetime in the ratio, one subset
of data is shifted later in time by half of anomalous precession frequency period,
Ta/2, while another subset is shifted earlier in time by the same amount. A linear
combination of these subsets can be used to cancel out muon’s lifetime as described
in section 4.2.1 [72].

4.2.1 Ratio Construction

To construct the ratio histogram, the four sets of the data are

v1(t) = v2(t) = H(t) (4.1)

u+(t) = H(t+
Ta
2

) (4.2)

u−(t) = H(t− Ta
2

) (4.3)

where H(t) is the time distribution of the positron energies. Linear combinations
taken are

U(t) = u+(t) + u−(t) (4.4)

and
V (t) = v1(t) + v2(t) (4.5)
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Then the ratio would be

R(t) =
V (t)− U(t)

V (t) + U(t)
(4.6)

Assuming a simple 5-parameter functional for H(t),

H(t) = N0e
−t
γτ (1 + Acos(ωat− φ)) (4.7)

we have

R(t) =
2N0e

−t
γτ (1+Acos(ωat))−N0e

−(t−Ta2 )
γτ (1+Acos(ωa(t−Ta2 )))−N0e

−(t+Ta2 )
γτ (1+Acos(ωa(t+

Ta
2
)))

2N0e
−t
γτ (1+Acos(ωat))+N0e

−(t−Ta2 )
γτ (1+Acos(ωa(t−Ta2 )))+N0e

−(t+Ta2 )
γτ (1+Acos(ωa(t+

Ta
2
)))

(4.8)

where for simplicity, it is assumed that φ = 0. Note that the normalization, N0 and
the exponential decay factor, e−t/γτ cancel out in the numerator and the denominator.
Further, the ratio can be simplified and approximated as

R ≈ Acos(ωat) (4.9)

This removes the slow effects including the muon lifetime as shown in Figure 4.1.

Figure 4.1: Ratio Q-method histogram

As evident in equation 4.8, this does not cancel out muon lifetime entirely and we
still have factors e±Ta/2γτ in the numerator and the denominator. Instead of splitting
the dataset equally with weights 1:1:1:1 into v1, v2, u+ and u−, if the weights are

assigned according to 1:1:e
Ta
2τ :e

−Ta
2τ , a complete cancellation of τ can be achieved. In

the same way the cancellation of the other slow terms is also not perfect, but since
the lifetimes of these effects are thought to be large, the factors such as e±Ta/2τslow are
∼1 and are negligible.
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Time Shift of the u+, u− Histograms in the Ratio Q-method

Q-method histograms have fixed time decimated bins, hence the shift can not be
equal to exactly half of the g-2 period (∼4365 ns). A scan was performed with var-
ious shifts in the 18.75 ns wide raw Q-Method bins ranging from a shift of 95 bins
(1781.25 ns) to 144 bins (2700 ns), shown in figure 4.2 with dataset C from Run-2.
Blinded R value showed no systematic dependence on various time shifts and the
statistical precision on R (σR) was found to be lowest at a shift of ∼ 116 bins (2175
ns) which is the closet that one can get to half of g-2 period with raw Q-method
binning. A scan over shift in time bin for 3 parameter ratio fit fourier transform was
also performed. The peaks corresponding to the CBO and vertical oscillations were
found to appear and disappear from the fourier transforms for certain shifts in the
bin as shown in figure 4.3. It was determined that a frequency peak disappeared from
fourier transform when the shift in time was an integer multiple of the time period
corresponding to that frequency[74].

Q-method final fits are performed with binning of 150 ns to minimize effects from
fast rotation, so the raw bins need to be rebinned by a factor of 8. For the ratio
construction, the Q-method raw bins are rebinned first by a factor of 8 to obtain
150 ns wide bins and then the ratio construction is done. The optimum bin shift
(equivalent to half of g-2 period) for 150 ns wide bins is between 14 and 15 bins.
A shift of 15 150 ns wide bins is close to the integer multiple of the vertical waist
frequency time period[74]. If a shift of 15 bins is chosen, the vertical waist frequency
disappears from the ratio histogram. However, due to combination with fast rotation
signal a more complicated vertical waist envelope persists in the data with smaller
amplitudes. This necessitates a randomization by the vertical waist frequency time
period while constructing the ratio histogram[72]. To avoid this additional random-
ization, a shift of 14 bins was picked for Run-2 and Run-3 ratio Q-method analysis.

There are two different ways of generating the four subsets of data for construct-
ing the ratio histogram: copy method and randomized method as described in the
next two subsections.

Figure 4.2: Figure on the left shows blind R[ppm] as a function of shift in 18.75ns wide
bins for a subset of Run-2C. Figure on the right shows the corresponding statistical
precision on R as a function of same shifts in 18.75ns bins.
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Figure 4.3: Fast Fourier Transforms (FFT) of ratio histogram fit for various shifts in
18.75 ns wide bins. The numbers in green on the top of each subplot denote the shift
in number of bins for that FFT. The subplot highlighted with red box is the shift
of bins closest to 1

2
of g-2 period. The red and blue dotted vertical lines denote the

positions of the CBO and vertical waist peak respectively.

Copy Ratio Method

The four sets of data are the copies of the same dataset. Since the copies of same his-
tograms are shifted forward and backward and then combined together, this method
introduces bin-to-bin correlations and correlated uncertainties. The calculation of
the χ2 function for minimization to perform the fit has to be correctly handled to
account for the bin-to-bin correlations in the data. The χ2 should be calculated using
equation 4.10 [73].

χ2 =
∑
ij

[yi − f(xi)][covij]
−1[yj − f(xj)] (4.10)

where yi denotes the histogram content of ith bin, f(xi) is the fit-function evaluated
at the corresponding time xi and covij is the covariance matrix element for bin i and
j.

Applying the ratio construction from equation 4.7, content of each bin of the ratio
histogram, yRi can be written as

yRi =
2yi − yi+δ − yi−δ
2yi + yi+δ + yi−δ

(4.11)

Each bin content of the ratio histogram yRi gathers contribution from a set of
bins separated by δ, where δ is ∼ 1/2 of g − 2 time period shift in Q-method bins.
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Using the standard error propagation, one can obtain

σ2
Ri

= (dyRi)
2 = (

∂yRi
∂yi

)2(dyi)
2 + (

∂yRi
∂yi+δ

)2(dyi+δ)
2 + (

∂yRi
∂yi−δ

)2(dyi−δ)
2 (4.12)

Covariance matrix elements were calculated for each non-zero pair of covari-
ances. The non-zero covariances are: cov(yRi , yRi) = (σRi)

2 , cov(yRi , yRi±δ) and
cov(yRi , yRi±2δ

) since,

yRi±δ =
2yi±δ − yi±2δ − yi
2yi±δ + yi±2δ + yi

(4.13)

and

yRi±2δ
=

2yi±2δ − yi±3δ − yi±δ
2yi±2δ + yi±3δ + yi±δ

(4.14)

For covariance calculation we use

cov(yi, yj) = E(yiyj)− E(yi)E(yj) (4.15)

Since each of these quantities yi and yj are data points of ratio histograms, the
calculation of expectation values is not straightforward. This motivates the need
to look for methods of approximation. One such approximation method can be to
employ Taylor expansion of the quantities yi and yj so that the ratio becomes a linear
combination of its constituents. To calculate the expectation values E(f(x, y, z..)),
where f is a function of x, y, z..., we can make use of Taylor expansion of f(x, y, z...)
about the mean x0, y0, z0... [75].

E(f(x, y, z..)) =E(f(x0, y0, z0..) + f ′x(x0, y0, z0..)(x− x0) + f ′y(x0, y0, z0..)(y − y0)

+ f ′z(x0, y0, z0..)(z − z0) +
1

2
[f ′′x (x0, y0, z0..)(x− x0)2

+ f ′′y (x0, y0, z0..)(y − y0)2 + f ′′z (x0, y0, z0..)(z − z0)2

+ 2f ′′x,y(x− x0)(y − y0) + 2f ′′y,z(y − y0)(z − z0) + 2f ′′z,x(z − z0)(x− x0)]
+ ....)

(4.16)

This simplifies the expectation value of the ratio histogram to be expressed as a
linear sum of the terms of the Taylor expansion.

For example , to calculate E(yRi), one can write E(yRi) in terms of Taylor expansion
of yRi about true means (µyi , µyi+δ , µyi−δ) of its constituent bins yi,yi+δ and yi−δ

E(yRi) = E(
2yi − yi+δ − yi−δ
2yi + yi+δ + yi−δ

) (4.17)
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where

E(yRi) =E(yRi |µyi ,µyi+δ ,µyi−δ

+
∂yRi
∂yi
|µyi ,µyi+δ ,µyi−δ (yi − µyi) +

∂yRi
∂yi+δ

|µyi ,µyi+δ ,µyi−δ (yi+δ − µyi+δ)

+
∂yRi
∂yi−δ

|µyi ,µyi+δ ,µyi−δ (yi−δ − µyi−δ) +
1

2!
[
∂2yRi
∂y2i
|µyi ,µyi+δ ,µyi−δ (yi − µyi)

2

+
∂2yRi
∂y2i+δ

|µyi ,µyi+δ ,µyi−δ (yi+δ − µyi+δ)
2 +

∂2yRi
∂y2i−δ

|µyi ,µyi+δ ,µyi−δ (yi−δ − µyi−δ)
2

+ 2
∂2yRi
∂yi∂yi+δ

|µyi ,µyi+δ ,µyi−δ (yi − µyi)(yi+δ − µyi+δ)

+ 2
∂2yRi

∂yi+δ∂yi−δ
|µyi ,µyi+δ ,µyi−δ (yi+δ − µyi+δ)(yi−δ − µyi−δ)

+ 2
∂2yRj
∂yi−δ∂yi

|µyi ,µyi+δ ,µyi−δ (yi−δ − µyi−δ)(yi − µyi)])

(4.18)

Now the terms like E(yi+δ − µyi+δ) are zero[75]. So non-zero terms in E(yRi) are:

E(yRi) =E(yRi |µyi ,µyi+δ ,µyi−δ

+
1

2!
[
∂2yRi
∂y2i
|µyi ,µyi+δ ,µyi−δ (yi − µyi)

2

+
∂2yRi
∂y2i+δ

|µyi ,µyi+δ ,µyi−δ (yi+δ − µyi+δ)
2

+
∂2yRi
∂y2i−δ

|µyi ,µyi+δ ,µyi−δ (yi−δ − µyi−δ)
2])

(4.19)

And terms like E(yi+δ − µyi+δ)2 are σ2
i+δ. So E(yRi) is given by

E(yRi) = yRi|µyi ,µyi+δ ,µyi−δ +
1

2!
[
∂2yRi
∂y2i
|µyi ,µyi+δ ,µyi−δσ

2
i +

∂2yRi
∂y2i+δ

|µyi ,µyi+δ ,µyi−δσ
2
i+δ

+
∂2yRi
∂y2i−δ

|µyi ,µyi+δ ,µyi−δσ
2
i−δ]

(4.20)

Likewise the other terms in Equation 4.15 are calculated.

Covariances can be also determined empirically from the auto-correlation histogram.
For this, one must perform an initial fit without the full covariance matrix and then
a fourier transform (FT) of the fit residuals. Then, the plot of auto-correlations can
be generated from the FT of the squared FT of the initial fit residuals. An example
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is shown in 4.4. This plot gives the correlation coefficients for the correlated bins.
For example, to obtain the correlation coefficient between bin i and bin i+ δ, we take
the ratio of the bin content of bin number 1 ± δ and bin number 1. And then the
covariances can be calculated as

Cov(yRi , yRj) = Corr(yRi , yRj)σRiσRj (4.21)

One should note that the auto-correlation plot is prone to noise. The correlation
coefficients calculated using both Taylor expansion method and the auto-correlation
method agree well with each other as shown in 4.5.

Figure 4.4: Auto-correlation plot (only showing first 70 bins): The correlation peaks
appear at bin 15 and bin 29, which correspond to a shift of δ =14 bins with respect
to bin 1.

Randomized Ratio Method

In this ratio construction, the Q-method flushes are randomly split into four different
histograms, thus the subsets are independent of each other. The χ2 calculation is
simplified to equation 4.22 [73].

χ2 =
f(xi)− yi

σ2
i

(4.22)

Now the ratio histogram bins are

yRi =
y1i + y2i − y3i − y4i
y1i + y2i + y3i + y4i

(4.23)

where y3i and y4i are shifted by ±δ with respect to y1i and y2i .
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Figure 4.5: Correlation coefficients; coefficients calculated by Taylor expansion
method are shown in dark blue for +δ, in red for −δ, in black for +2δ and in pink for
−2δ. Coefficients calculated empirically(from auto-correlation histogram) are shown
in green for ±δ and in cyan for ±2δ

The errors are propagated from the constituent histograms

(dyRi)
2 = (

∂yRi
∂y1i

)2(dy1i)
2 + (

∂yRi
∂y2i

)2(dy2i)
2 + (

∂yRi
∂y3i

)2(dy3i)
2 + (

∂yRi
∂y4i

)2(dy4i)
2 (4.24)

Creating four independent subsets introduces extra noise in the ratio histogram
which then requires running and averaging over random seeds. For Run-2 and 3
results, 32 random seeds were used.

4.2.2 Fast Rotation Handling

Smoothing or the phase cancellation of the cyclotron frequency can be implemented
to reduce the effect of cyclotron frequency as has been introduced in 3.6.3. For Runs-
2 and 3 analysis, the raw 18.75 ns wide Q-method bins were first rebinned by 4 to
obtain 75 ns wide binning. Next, a second copy of the data was made and an offset of
one bin (75 ns) was introduced between the two copies. Then the two copies, shifted
and unshifted were superimposed leading to cancellation of the cyclotron phase. This
introduced additional correlations in the data, which also needed proper handling.
The procedure is described in the next sub-section.

Fast Rotation Smoothing in Copy Ratio Method

Let yi denote the bins of the histogram which have binwidth equal to approximately
half of cyclotron period i.e 75 ns (rebinned by factor of 4 with respect to the raw 18.75
ns bin width). To cancel out the Fast Rotation phase, a copy of this histogram is
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Figure 4.6: Covariance matrix(zoomed in at 800-1000 bins range) for Ratio Method
without the fast rotation correction. The non-zero elements appear along diagonal,
diagonal±δ and diagonal±2δ.

made and shifted by one bin. The shifted and unshifted copies are then superimposed
to cancel out the FR phase.

yFRi =
yi + yi+1

2
(4.25)

The superposed histogram, yFRi is then further rebinned by a factor of 2 to obtain
yRBi with 150 ns binning.

yRBi =
yFR2i−1

+ yFR2i

2
(4.26)

or in terms of yi,

yRBi =
y2i−1

4
+
y2i
2

+
y2i+1

4
(4.27)

Four copies of yRBi are made to construct the ratio histogram.

yRi =
2yRBi − yRBi+δ − yRBi−δ
2yRBi + yRBi+δ + yRBi−δ

(4.28)

δ corresponds to a shift by ∼ 1/2 of g − 2 period. Hence again in terms of yi, one
can rewrite as

yRi = −2y2(i−δ)−4y2i+2y2(i+δ)+y2(i−δ)−1+y2(i−δ)+1−2y2i−1−2y2i+1+y2(i+δ)−1+y2(i+δ)+1

2y2(i−δ)+4y2i+2y2(i+δ)+y2(i−δ)−1+y2(i−δ)+1+2y2i−1+2y2i+1+y2(i+δ)−1+y2(i+δ)+1
(4.29)
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Table 4.1: Non-zero elements in the covariance matrix for copy ratio method with
fast rotation handling. δ is equal to the time shift in units of the Q-method bins

Non-zero elements

i,i±1
i,i±(δ − 1)

i,i±δ
i,i±(δ + 1)
i,i±(2δ − 1)

i,i±2δ

i,i±(2δ + 1)

The errors are propagated from the constituent histograms

σ2
Ri

= (dyRi)
2 =(

∂yRi
∂y2(i−δ)

)2(dy2(i−δ))
2 + (

∂yRi
∂y2i

)2(dy2i)
2 + (

∂yRi
∂y2(i+δ)

)2(dy2(i+δ))
2

+ (
∂yRi

∂y2(i−δ)−1
)2(dy2(i−δ)−1)

2 + (
∂yRi

∂y2(i−δ)+1

)2(dy2(i−δ)+1)
2

+ (
∂yRi
∂y2i−1

)2(dy2i−1)
2 + (

∂yRi
∂y2i+1

)2(dy2i+1)
2 + (

∂yRi
∂y2(i+δ)−1

)2(dy2(i+δ)−1)
2

+ (
∂yRi

∂y2(i+δ)+1

)2(dy2(i+δ)+1)
2

(4.30)

The non-zero elements in covariance matrix in this case are given in table 4.2.2.
These covarainces can be calculated similarly using the procedure described in

section 4.2.1.

Fast Rotation Smoothing in Randomized Ratio Method

To implement fast rotation phase cancellation in randomized ratio method, four in-
dependent subsets of data with time bin width equal to ∼ 1

2
of cyclotron period (75

ns) are generated. Then a copy of each those histogram is shifted by one bin and

then superimposed with the corresponding unshifted histogram: y1FRi =
y1i+y1i+1

2
,

y2FRi =
y2i+y2i+1

2
, y3FRi =

y3i+y3i+1

2
and y4FRi =

y4i+y4i+1

2
. Then the ratio is con-
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Figure 4.7: Full covariance matrix(zoomed in at 800-1000 bins range) for Fast Rota-
tion corrected Ratio Method. The non-zero elements appear along diagonal, diagonal
±1, diagonal ±δ, (diagonal ±δ)± 1, diagonal ±2δ and (diagonal ±2δ)± 1.

structed similar to equation 4.23. The error propagation in this case would be

σ2
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)2

(4.31)

And the non-zero covariances are Cov(yRi, yRi±1) which can be calculated in the
same way as described in section 1.1.2.

4.2.3 Fourier Transforms of Correlated data

The fourier transform of the residuals of fit to data with bin-to-bin correlations has
correlation wave. A toy simulation showing the number of oscillation periods changing
with the shift in 150 ns wide Q-method bins is shown in 4.8. The number of oscillation
periods in the full FFT (Fast Fourier Transform) spectrum is equal to the number of
bins by which the histograms are shifted. The presence of the wave makes it difficult
to look for smaller peaks in the FFT, hence it is important to cross check with the
FFT of a randomized ratio method fit. An attempt was made to remove this structure
from the FFT by fitting with a simple sine squared function. However, it was found
that such a function is not enough to remove the structure from the FFT, and so
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further simulation studies are recommended to investigate the exact structure of the
correlation bumps in the FFT.

Figure 4.8: Fourier Transforms for various time bin shifts in ratio method. The red
caption at the top of each subplot denotes the time shift in the number of 150 ns
wide bins.

Copyright c© Ritwika Chakraborty, 2022.
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Chapter 5 Energy Integrating, Ratio Method Analysis of Run-2 and 3
Data

5.1 Data Analyzed

Energy Integrated Ratio method described in chapter 3 and 4, was one of the analysis
techniques used in Run-2 and Run-3 precession frequency analysis in E-989. Run-2
data taking began in late 2018 and concluded in summer of 2019 while Run-3 data was
collected from 2019 Fall through 2020 Spring. Total number of sub-datasets in these
two runs combined are 20 and the total size of the dataset is approximately four times
the total data collected in the BNL experiment. Run-2 production data consists of 7
datasets denoted B through H and Run-3 production datasets are denoted B through
O. Between data taking periods of Run-2 and Run-3, a better temperature stability
was achieved in the experimental hall which hosts the storage ring. There was also
hardware improvement work done on the kicker system while taking Run-3 data. As
a result, the optimum kick was achieved starting from sub-dataset N from Run-3.
Also, the hardware blinding is different between Run-2 and Run-3 data. As a result,
the data collected in these two runs are analyzed in 3 groups, Run-2 (B to H), Run-
3a (B to M) and Run-3b (N and O). Table 5.1 summarizes the data analyzed from
Run-2 and Run-3 per dataset. Software release v9 75 00 was used to analyze all the
datasets.

5.2 Procedures

5.2.1 Data Selection

As mentioned before, the Q-method data is recorded in time-decimated bins where
the smallest bin width can be 1 clock-tick ∼ 1.25 ns. Beginning with run number
24727, which is a part of dataset 2C, the DAQ settings were changed. Time decima-
tion factor was changed from 60 to 15, fills per flush was increased from 1 to 4 and the
end time was extended to 352000 clock-ticks. As a result, the Run-2 and 3 datasets
that were analyzed have a bin width of 15 clock-ticks or ∼ 18.75 ns. Since the start
time of the flush corresponds to 100000 clock-ticks, the total number of time bins in
each of the datasets are 16800.

Not every fill that is recorded by the DAQ system is analysis quality data. There
are fills that are taken during sparks in the ESQ system or kicker system. Some
of the fills also contain laser pulses used for determining in-fill gain correction con-
stants. All these are removed from production data by performing a Data Quality
Cut (DQC) analysis. Since the Q-method combines fills into flushes, it needs to have
a modified version of DQC cuts. A flush-by-flush DQC cut was applied to Run-2 and
3 datasets using the filter module QFlushDQCFilter module.cc which is why Q-
method analyzed data have less number of fills analyzed than total available. Since
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Table 5.1: Data analyzed for Run 2 and 3. The column ”Dataset name” lists the
names given to the produced datasets that were finally analyzed. The column ”Total
Fills” denotes the number of fills that were present in these produced datasets and
the column ”Fills analyzed” denotes the number of fills that were analyzed in the Q-
method due to the modified data quality cuts. The last column, ”Fraction”, denotes
the percentage of total fills analyzed in the Q-method analysis.

Dataset name Total Fills Fills Analyzed Fraction

2B gm2pro daq offline dqc run2B 5126A 1437874 0 0%

2C gm2pro daq offline dqc run2C 51224A 6593870 4984328 75.59%

2D gm2pro daq offline dqc run2D 5123A 5284733 4369016 82.67%

2E gm2pro daq offline dqc run2E 5124BC 2098556 1677976 79.96%

2F gm2pro daq offline dqc run2F 5125AB 2130004 2063216 96.86%

2G gm2pro daq offline dqc run2G 5125A 445103 431032 96.84%

2H gm2pro daq offline dqc run2H 5125A 609113 589904 96.85%

3B gm2pro daq offline dqc run3B 5218A 4693687 4575656 97.49%

3C gm2pro daq offline dqc run3C 5218A 1275319 1238260 97.09%

3D gm2pro daq offline dqc run3D 5218A 7185302 6973100 97.05%

3E gm2pro daq offline dqc run3E 5218A 2900754 2807360 96.78%

3F gm2pro daq offline dqc run3F 5218A 1467861 1421264 96.83%

3G gm2pro daq offline dqc run3G 5218A 3326052 3221392 96.85%

3I gm2pro daq offline dqc run3I 5218A 3220143 3117812 96.82%

3J gm2pro daq offline dqc run3J 5218A 2397365 2321472 96.83%

3K gm2pro daq offline dqc run3K 5218A 1563390 1512068 96.72%

3L gm2pro daq offline dqc run3L 5218A 1120450 1083544 96.71%

3M gm2pro daq offline dqc run3M 5218A 3911125 3791196 96.93%

3N gm2pro daq offline dqc run3N 5217ABC 6615051 6342024 95.87%

3O gm2pro daq offline dqc run3O 5217A 4932960 4770784 96.71%
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DAQ setting was changed during dataset 2C, dataset 2B had Run-1 configuration
and was not included in Run-2 and 3 analysis.

Q-method Energy Threshold

A threshold scan was performed to determine the optimal value. There was no
consistent trend in R or σR with a changing threshold. Figure 5.1 shows threshold
scan of dataset 2D from 100 MeV to 800 MeV. While choosing a higher threshold did
show an improvement in χ2/NDF, it also led to losing some low energy pulses. Hence
it was decided to keep the threshold same as Run-1 analysis which is 300 MeV. The
threshold of 300 MeV was also comfortably above the energies of other possible beam
contaminants like deuterons, protons or lost muons.

Figure 5.1: Threshold scan of blinded R from dataset 2D

Pedestal Subtraction

Pedestal subtraction algorithm has already been described in section 3.3. For Run-2
and 3 datasets, the pedestal window was 8 bins on either side of the trigger sample
with a gap of 1 bin. 8 bins was chosen to make the pedestal window width 150 ns
which is approximately the same as the fast rotation time period of 149.2 ns to avoid
biases due to cyclotron modulation.

Noise Handling

This procedure has also been discussed in section 3.4. For Run-2 and 3 analysis,
the window for calculating average noise was 100 time bins near the end of the
flush time range between bin 16650 and 16750. The value of threshold multiplier
for calculating the rolling threshold was determined through a scan. The range of
threshold multiplier values covered in this scan is from 5 to 15. The value of 10 was
found to be optimum to remove crystal noise from the data[76].
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Removal of In-fill Laser

For Run-2 and 3, flushes with in-fill laser pulses were removed from the analyzed
data using the filter module QFlushDQCFilter module.cc. Since this module
was found to be failing in some cases, an additional filter was also incorporated in the
analyzer to remove in-fill laser. In this filter, for each time bin of each flush, the ADC
value is compared against a small threshold of 1000, which was chosen empirically
(since the laser pulses typically have a high amplitude). If an ADC value of 1000 or
greater occured in the same time bin for more than 50 crystals (almost all the crystals
of the calorimeter see the laser pulse when it is fired), then that flush was flagged as
having an in-fill laser pulse and was discarded.

Removal of Unphysical Large Spikes

Some very large unphysical spikes were also encountered in the data, which were sus-
pected to be introduced by a corrupt node while running production jobs on the High
Performance Computing (HPC) grid. To prevent such spikes from contaminating the
data, a crystal-by-crystal rejection of flushes with samples with ADC values less than
-3000 and greater than 40000 was applied. This was implemented using filter module
QSpikeCheckFilter module.cc

Repeat Readout of Stale Calorimeter Data between Flushes

An occasional problem with repeat of stale calorimeter data was found in which there
was a readout of a fill between flushes. Since the flush factor is set to 4, having a
non-empty fill at a gap of less than 4 fills was making some of the data redundant.
This spurious readout only occurred in a handful of calorimeters. To check this, a
filter module QFlushQualityFilter module.cc was put in where a fill readout was
rejected if it was found to contain less than 22 calorimeters which is the production
standard.

5.2.2 Energy Calibration and Gain Correction

For ADC-to-MeV calibration constants, a dataproduct named EnergyCalibrationCon-
stantsArtRecord was used to perform the energy calibration for each crystal. Sim-
ilarly, the out-of-fill gain corrections were obtained using the dataproduct OOFCon-
stantsArtRecord and the ADC values per crystal were divided by the constants.
For in-fill gain, module IFGnostdpConstantsService from dataproduct IFGCon-
stantsArtRecord was used and the ADC values were divided by the constants.

5.2.3 Pile-up Correction

Pile-up is corrected while applying the pedestal subtraction. Any above threshold
pulse in the pedestal window is rejected from the average pedestal calculation to avoid
distortion to the calculated pedestal. There was a small leftover effect from under-
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threshold pulses falling on the trigger sample and pedestal window. A systematic
uncertainty associated with this effect will be calculated.

5.2.4 Fast Rotation

As already described in section 3.6.3, smoothing procedure was implemented to reduce
the effect of fast rotation. The raw 18.75 ns Q-method bins were first rebinned by
4 to 75 ns binning. Then a second copy of the data was made and shifted by one
(75 ns) bin. Then the two copies, shifted and unshifted were superimposed leading
to cancellation of the cyclotron phase. This introduced bin-to-bin correlations in the
data.

5.2.5 Ratio Construction

The fast rotation corrected Q-method histograms with binwidth 75 ns were rebinned
by 2 to obtain 150 ns wide binning. At this stage four copies of the dataset were made
and then two of them were shifted earlier and later in time by 14 bins (= 2100 ns ∼
1
2
g-2 period). The weighting factors for the 4 subsets need fixing the muon lifetime

to a pre-determined value. This was chosen to be 64.440 µs which was obtained from
the results of fitting the Run-2 data using regular Q-method where muon lifetime was
a fit-parameter. The ratio was constructed as follows:

yRi =
2yi − yi+δ − yi−δ
2yi + yi+δ + yi−δ

(5.1)

where δ is 14 bins, yi is the fast rotation corrected histogram and yRi is the ratio
histogram on which the fits are performed. This introduced additional bin-to-bin
correlations in the data. And as discussed before, the χ2 for fit minimization was
calculated as

χ2 =
∑
i,j

[yRi − f(xi)][covij]
−1[yRj − f(xj)] (5.2)

5.2.6 Fit Function

Since the data has been transformed into ratio histograms, the fit function also needed
to be changed accordingly. Simplest functional form to fit the ratio histogram would
be

f(t) = Acos(ωat− φ) (5.3)

However as mentioned in section 4.2.1, this functional form is an approximation and
does not account for the distortions due to beam dynamics. So, for fitting the ratio
histogram following fit function was used

F (t) =
2f(t)− f(t+ Ta

2
)− f(t− Ta

2
)

2f(t) + f(t+ Ta
2

) + f(t− Ta
2

)
(5.4)

where,
f(t) = NcboNvwNyNxy(1 + A(t)cos(ωat− φ0 − φ(t))) (5.5)
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The terms in equation 5.5 are expanded as

Ncbo = 1+AcboN e
− t
τcbo cos(ωcbo(t)t−φcboN )+A2cboN e

− 2t
τcbo cos(2ωcbo(t)t−φ2cboN ) (5.6)

with ωcbo(t) = ωcbo(1 + Acbote
− t
τcbot )

Nvw = 1 + Avwe
− t
τvw cos(ωvwt− φvw) (5.7)

Ny = 1 + Aye
− t
τy cos(ωyt− φy) (5.8)

Nxy = 1 + Axye
− t
τxy cos(ωxyt− φxy) (5.9)

A(t) = A0e
− t
τrlx (1 + AcboAe

− t
τcbo cos(ωcbo(t)t− φcboA)) (5.10)

φ(t) = Acboφe
− t
τcbo cos(ωcbo(t)t− φcboφ) (5.11)

Ncbo, A(t) and φ(t) are the terms that capture normalization, asymmetry and phase
modulation by the coherent betatron oscillation (CBO) which is a radial oscillation
of the muon beam as described in section 3.6.4. Notice that an additional time de-
pendence has been added to the CBO frequency ωcbo. This term is incorporated to
handle the drift in ωcbo at early times. The need for this functional form was seen
when the fit start time scans were performed (described in section 5.3.1). The CBO
parameters were drifting at early times without this time dependence included in the
fit function as shown in figure 5.7. The time variation of CBO frequency was not
observed in Run-3b (the dataset after kicker improvement) and so this term was not
included in fit function for fitting Run-3b.

Nvw and Ny are the normalization modulation due to vertical waist (VW) oscilla-
tion and oscillation of the vertical mean respectively. An additional frequency at 1.9
MHz was also observed. This is the frequency due to the cross term between the
CBO and the VW, cos(ωcbo).cos(ωvw) and to handle this, an additional term was
incorporated represented here by Nxy [77]. The lifetime τxy, and the frequency, ωxy
were fixed at the values obtained from the results of regular Q-method fits since the
amplitude of this frequency is small in ratio Q-method.

An additional relaxation term was included in the fit for the asymmetry parame-
ter with a time constant τrlx. This was incorporated since the asymmetry parameter
was drifting with time in the fit start time scan, shown in figure 5.6. This is hy-
pothesized to be associated with an unknown slow effect which causes the drift in
the time spectrum from early to late times. This slow effect can possibly be due
to uncorrected drift in the pedestal leaking into the pedestal subtracted data, gain
changes that haven’t been accounted for or uncorrected residual pile-up effects. The
exact source of this effect is still under investigation. The effect of including this term
in fit-function on R is negligible (less than 10 ppb).
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5.3 Fit Results

Once the proper form of fit-function was established, the ratio histogram was fit
with this function. The ratio fit was performed using python curve fit from pack-
age scipy. The ratio construction and covariance matrix calculation was done using
ROOT. To cross-check the results, parallel fits were performed with randomized ratio
method and regular Q-method which are described in section 5.4.

The starting point of the fit was t = 30µs and the end time was t = 305µs which
meant the number of degrees of freedom (NDF) with 150 ns wide bins was 1835.
The full fit function contained 26 parameters in case of Run-2 and Run-3a and 24
parameters in case of Run-3b. This meant the effective NDF for the fits were 1809
and 1811 respectively. The fit results of the datasets Run-2, Run-3a and Run-3b are
summarized in Table 5.2. The fit results from individual datasets are also summa-
rized in Table 1 of Appendix A.

Figure 5.2: Fit to the Run-2 summed ratio histogram

Figure 5.3 shows the fit residuals defined as

Ri =
yi − f(xi)

σi
(5.12)

where yi is the data, f(xi) is the function value and σi is the uncertainty on the
data-point at bin i. Figure 5.4 shows fourier transform (FT) of those residuals for fit
to summed Run-2, Run-3a and Run-3b. The residuals and the FTs show no structure
other than noise indicating a good fit to the ratio histogrammed data. The periodic
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Table 5.2: Fit results of all the fit parameters in Run-2, Run-3a and Run-3b

2 3a 3b

χ2/NDF 1717/1809 1851/1809 1807/1811

R [ppm] -44.476 ± 0.489 -35.308 ± 0.385 -33.985 ± 0.612

A 0.2289285 ± 0.0000167 0.2294122 ± 0.0000132 0.2282373 ± 0.0000209

φ 4.014185 ± 0.000075 4.023101 ± 0.000059 3.996710 ± 0.000093

Acbo 0.00230 ± 0.00002 0.00186 ± 0.00002 0.00113 ± 0.00003

τcbo [µs] 253.68 ± 8.41 230.60 ± 7.11 209.92 ± 16.45

ωcbo [rad/µs] 2.3412 ± 0.0004 2.3296 ± 0.0005 2.3312 ± 0.0004

φcbo 5.7719 ± 0.0566 5.9338 ± 0.0753 2.5735 ± 0.0298

AcboA 0.00084 ± 0.00008 0.00040 ± 0.00006 0.00036 ± 0.00010

φcboA 5.74 ± 0.10 6.01 ± 0.17 2.26 ± 0.27

Acboφ 0.00007 ± 0.00008 0.00008 ± 0.00006 0.00012 ± 0.00010

φcboφ 0.37 ± 1.09 3.82 ± 0.79 1.59 ± 0.86

A2cbo 0.000124 ± 0.000016 0.000115 ± 0.000013 0.000026 ± 0.000022

φ2cbo 2.81 ± 0.17 3.37 ± 0.19 3.45 ± 0.85

Ay 0.00020 ± 0.00003 0.00047 ± 0.00004 0.00075 ± 0.00011

τy [µs] 175.28 ± 56.12 85.34 ± 8.41 54.67 ± 7.21

ωy [rad/µs] 13.930 ± 0.002 13.892 ± 0.001 13.900 ± 0.002

φy 5.90 ± 0.16 5.98 ± 0.08 2.68 ± 0.14

AVW 0.0014 ± 0.0021 0.0042 ± 0.0007 0.0030 ± 0.0005

τVW [µs] 28.14 ± 2.66 15.47 ± 1.01 21.25 ± 1.91

ωVW [rad/µs] 14.037 ± 0.003 14.100 ± 0.004 14.049 ± 0.004

φVW 4.26 ± 0.15 0.84 ± 0.16 1.96 ± 0.17

τrlx [µs] 304420 ± 63683 357500 ± 69176 587140 ± 297485

Acbot 0.007 ± 0.002 0.005 ± 0.002 -

τcbot [µs] 19.9 ± 6.5 24.2 ± 7.7 -

A1.9MHz 0.004 ± 0.003 0.004 ± 0.001 0.007 ± 0.004

φ1.9MHz 0.05 ± 0.77 0.99 ± 0.32 2.45 ± 0.55
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Figure 5.3: Run-2, Run-3a and Run-3b central fit residuals.

Figure 5.4: Run-2, Run-3a and Run-3b fourier transforms (FTs) of the residuals. The
bumps correspond to the bin-to-bin correlation in the data as a result of the ratio
construction.

structure in the FT come from bin-to-bin correlation as a result of the construction of
ratio histogram using the copies of the same wiggle histogram as mentioned in section
4.2.3. The period of the oscillation in the FT is determined by the number of bins by
which the time distribution was shifted for ratio construction. The oscillation period
is equal to the number of bins in the histogram divided by the number of bins in the
time shift. The construction of the ratio was done with a time shift of 14 (150 ns
wide) bins which is roughly equivalent to half of the precession frequency period. So
we observe 7 peaks in the FT. Since it becomes more difficult to see the smaller peaks
in the FT in the presence of the periodic structure, the randomized ratio method was
used to verify that no such peaks are being missed.

5.3.1 Start Time Scans

Fit start time scan in the range 30 µs to 105 µs was performed. The form of the
fit-function was same as that was used for the central fits with some additional con-
straints to help the fit to converge. The vertical waist frequency and lifetime was kept
fixed at the central fit value since the VW frequency decoheres quickly (∼ 30µs). The
lifetime of the time dependent envelope for the CBO frequency was also kept constant
at the central fit value. Figure 5.5 shows the start time scan for blind R for the three
data groups. The error bars of the subsequent points on these plots are correlated to
the previous points, so the allowed variation cannot be judged solely by looking at the
error bars. The red line denotes the allowed statistical variation of one σ calculated
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at each start time, ti as

k(ti) = pt0 ±
√
σ2
ti − σ2

t0 (5.13)

where pt0 is the fit parameter value when fit start time is t0, σti is the statistical
precision on the fit parameter, p, when fit start time is ti and σt0 is the statistical
precision on pt0 .

The scans of the other fit parameters were also well behaved. The asymmetry pa-
rameter and the CBO parameters showed a systematic variation with start time and
as mentioned before additional terms for asymmetry relaxation and time dependence
of CBO were introduced to correct that behavior. The scans of all the fit parameters
are given in Appendix A.

Figure 5.5: Run-2, Run-3a and Run-3b start time scan of blind R. The red lines show
the band corresponding to 1 σ.

Figure 5.6: Asymmetry start time scan before (left) and after (right) relaxation term
for Run-3a. Note that the vertical axis scale has shifted after including the asymmetry
relaxation term.

Figure 5.7: ωcbo start time scan before and after time carying cbo frequency term in
fit function in Run-2
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5.3.2 Calorimeter Scans

Another important sanity check that can be performed is fitting individual calorime-
ters. The fit function used had the same form as the central fit function with certain
parameters held constant to help the fit converge. For example the vertical oscilla-
tions are only visible at certain calorimeters [78] and hence the frequency and the
lifetime of both VW and mean vertical oscillation were fixed at the central fit values.
The fitted R values for the three datasets for per calorimeter fit are shown in figure
5.8. The calorimeter scans of all other fit parameters are given in Appendix A.

Figure 5.8: This figure shows blinded R vs calorimeter index. The error bars are
inflated by multiplying them with the square root of their respective calorimeter fit.
The red line shows a fit to a straight line.

The R versus calorimeter showed a wave pattern in Run-3a and Run-3b. This
was determined to be related to the mismodelling of the CBO envelope in the per
calorimeter fits. The amplitude of this wave is highly dependent on the parameter
τcbot , that is the lifetime of the time dependence of ωcbo. In the central fits, τcbot was
found to be roughly 20µs. But in the calorimeter scans if this parameter was fixed
at a lower value such as ∼5µs, then the amplitude of the wave could be reduced
significantly [79] as shown in figure 5.9. For example in Run-3a, the amplitude of
the wave was found to be 2.2 ppm if there was no time-dependent CBO envelope in
the fit function, 1.7 ppm if the time dependent CBO envelope was included with a
time constant of 24 µs (the parameter value obtained from central fit) and 0.8 ppm if
the time constant of the time varying CBO envelope was fixed at 5.5 µs. The exact
nature of the wave structure should be further investigated.

5.3.3 Per-Dataset Fits

The individual datasets were also fit and scans of the fit parameters per dataset was
performed. The vertical waist and the mean vertical oscillation frequency and lifetime
were kept fixed at their respective calorimeter sum fit result values. The asymmetry
relaxation term or the 1.9 MHz frequency (Nxy) term was not included in the per
dataset fits. Figure 5.10 shows blind R versus the individual datasets. All other
parameters are given in Appendix A. Note that the hardware blinding is different
between Run-2 and Run-3. Also, there was a significant amount of environmental
temperature fluctuation during the course of Run-2 which may have caused the field

69



Figure 5.9: The wave pattern in Run-3a calo scan after putting in a time dependent
CBO envelope with a time constant of 5.5 µs.

in the storage ring to drift. A much better stability in temperature was achieved
during Run-3 data taking after the magnet was properly insulated.

Figure 5.10: Plot of blind R versus the datasets of Run-2 and Run-3. Note that the
hardware blinding is different in Run-2 and Run-3

5.4 Methods Comparisons

To establish the correctness of the ratio Q-method analysis, two parallel analyses
were performed. One is the regular Q-method analysis. The details of the analysis
techniques are already discussed in chapter 3. Additionally, ratio method histograms
constructed using randomization were also analyzed. As discussed in section 4.2.1,
each dataset was divided into 4 subsets which were independent of each other and
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these subsets were then used for ratio construction. In both these cases the fast ro-
tation correction leads to correlations between adjacent bins. For this the empirical
calculation of the correlation coefficients was employed. The fits were performed in
ROOT using the package MINUIT.

Figure 5.11: Comparison of blinded R for different Q-method analyses. The plot on
the left shows the R-values obtained from fitting the individual Run-2 and Run-3
datasets using regular Q-method (black), copy ratio Q-method (red) and randomized
ratio Q-method (blue). The plot on the right shows the difference between R-values
obtained using three methods for the individual Run-2 and Run-3 datasets.

As shown in figure 5.11 all the differences between the three analyses are below ∼
1 ppm. The size of the allowed difference between ratio and regular analyses scales
with the statistics [80] and that is why the larger deviations are seen in the datasets
which have low statistics. For example, for a dataset with statistics of 2C, allowed
difference in the ratio and regular positron counting analysis is ∼ 80 ppb. Since,
the Q-method is less precise than positron counting methods, the region of allowed
differences is bigger for this analysis.

5.5 Impact of Correlated Bins on the Fit Results

Since the covariance matrix calculation described in chapter 4 is an approximation,
it is important to look at the impact of such approximation on the fit results. Stud-
ies were performed by varying the off diagonal elements of the calculated covariance
matrix to understand such effects. A scale factor was multiplied with the off diagonal
elements of the covariance matrix and changes on the fitted value of R, precision over
R and the chi-squared were evaluated. The range of variation of scaling factor was
from 0.998 to 1.001. The matrix was no longer positive definite beyond this upper
limit of 1.001. The change in R in Run-2 over this range was 6 ppb and σR changed by
17.5 ppb (∼ 4%) as shown in figure 5.12. And as figure 5.13 shows, the corresponding
change in χ2 was by 120 units for a degree of freedom of 1812(∼ 7%).

It should be noted that in the region approaching the positive definite limit for
the covariance matrix, the change in both χ2 and σR is no longer linear. As a matter
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Figure 5.12: Figure on the left shows variation of R with a scaling factor of off-
diagonal elements of the covariance matrix. Figure on the right shows the variation
of sigma with the scaling factor of the off diagonal elements. The horizontal and
vertical black dotted lines represent the fitted value of R without any scaling of the
calculated covariance matrix elements. The vertical red dotted lines corresponds to
highest possible scaling of off diagonal elements beyond which the matrix is no longer
positive definite.

of fact, when the scaling factor goes from 1.000 to 1.001, σR increases by ∼ 2% and
correspondingly χ2 increases by ∼ 4%. Systematic uncertainties will be assigned to
address the impacts of approximation of bin-to-bin covariances.

5.6 Systematic Uncertainties

5.6.1 Ratio Construction

Choice of Muon lifetime

As mentioned in section 4.2.1, the weighting of the four component histograms for
ratio construction requires knowledge of the muon lifetime, τ . The value used in the
analysis is 64440 ns. A systematic study was done to determine the bias in blinded
R as a result of the choice of this particular value of τ . To perform this study, full fit
with a range of τ values for ratio construction was chosen. This scan was perfomed
separately for the three datasets of Run-2 and 3. Figure 5.14 shows the fitted R
values for various choices of τ in the range 64000 ns to 65000 ns for dataset 3a. The
value of R was found to shift by ∼6 ppb for Run-2, ∼4 ppb for Run-3a and ∼2 ppb
in Run-3b.

5.6.2 Covariance Matrix for Fitting

As mentioned in section 5.5, the calculation of covariance matrix for fitting copy
ratio method involves some approximations and thus a systematic uncertainty was
assigned. The change in R was 6 ppb for a range of scaling factors (between 0.998 to
1.001) for the off-diagnonal matrix elements in Run-2. This was assigned to all the
dataset since the procedure remains same.
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Figure 5.13: Fit Chi-squared versus scaling factor for off-diagonal elements of covari-
ance matrix. The horizontal and vertical black dotted lines represent the fitted value
of R without any scaling of the calculated covariance matrix elements. The vertical
red dotted lines correspond to the highest possible scaling of off-diagonal elements
beyond which the matrix is no longer positive definite. The horizontal dotted green
line corresponds to a reduced chi-square of 1 which corresponds to a chi-square of
1812 on the vertical axis.

Figure 5.14: Blinded R versus various values of muon lifeitmes for Run-3a

5.6.3 Residual Early-to-Late Effect

As was done in Run-1, the residual early-to-late effect or the slow effect was deter-
mined by noting the change in the fitted value of R with a an extra term in the ratio
fit function. The functional form of the fit function was

D(t) = 1 + Ae−t/τD (5.14)
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Table 5.3: Various systematic uncertainties on R in Run-2 and Run-3 analysis usin
ratio Q-method where ratio was constructed using the copies of the same dataset

Run-2 [ppb] Run-3a [ppb] Run-3b [ppb]

Muon Life-time 6 4 2
Covariance Matrix approximation 6 6 6

Slow term 7 13 39

The change in R in the 3 datasets, Run-2, Run-3a and Run-3b were 7 ppb, 13 ppb
and 39 ppb. These values are quoted as systematic uncertainties associated with slow
effect in the Run-2 and 3 analysis.

Copyright c© Ritwika Chakraborty, 2022.
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Chapter 6 Conclusion

6.1 Muon g-2 Run-1 Results

On 7th April 2021, the collaboration released its results of the Run-1 data taken in
2018. For the ωa analysis there were 11 different results, 10 of which were analyzed
using positron counting methods. The 11th analysis was using the integrated energy
method and the analysis procedure has been briefly described in Chapter 3 of this
dissertation. 4 out of the 10 positron counting methods were asymmetry weighted
(A-method) analyses and thus had the best statistical precision. To minimize statis-
tical uncertainty of the Run-1 result, these 4 A-method analyses were averaged over
to obtain the final number for ωa. The rest of the analyses, including the energy
integrating analysis, served as cross checks and all the results were in agreement with
each other. Since, the energy integrating method is the only method that does not re-
construct individual positron events and also has very different sensitivities to various
systematic effects, it is the most different analysis procedure and a robust cross-check
for the final ωa result. Similarly, at least two parallel analyses were performed for
each of the three steps that constitute magnetic field measurement viz. calibration,
field tracking and muon weighting. The final unblinded ωa and ω̃p results of Run-1
datasets are summarized in table 6.1.

The final value of aµ obtained after applying necessary corrections is given below

aFNALµ = 116592040(54)× 10−11 (6.1)

This value confirmed the findings of the BNL Muon g-2 experiment (E-821)

aBNLµ = 116592080(63)× 10−11 (6.2)

The weighted average of the FNAL Run-1 and BNL final experimental values is

aExpµ = 116592061(41)× 10−11 (6.3)

Table 6.1: Run-1 final results of ωa, ω̃p and their ratios multiplied by 1000 per dataset
[66] after unblinding.

Run ωa/2π [Hz] ω̃p/2π [Hz] (ωa/ω̃p)×1000

1a 229081.06 (28) 61791871.2 (7.1) 3.7073009 (45)
1b 229081.40 (24) 61791937.8 (7.9) 3.7073024 (38)
1c 229081.26 (19) 61791845.4 (7.7) 3.7073057 (31)
1d 229081.23 (16) 61791003.4 (6.6) 3.7072957 (26)

Run-1 3.7073003 (17)

75



Figure 6.1: Figure showing the current theory prediction of aµ in green, the BNL
final result in blue, FNAL Run-1 result in red and the current experimental average
in violet.

and the theoretical prediction as recommended by the Muon g-2 Theory Initiative
white-paper is

aSMµ = 116592089(63)× 10−11 (6.4)

The E-989 Run-1 results deviate from the Standard Model prediction by 3.3 σ and the
E-989 and E-821 combined experimental value strengthens the discrepancy with the
theoretical prediction to 4.2 σ as illustrated in figure 6.1. However one should note
that the theoretical value recommended by the white-paper does not take into account
the recent results from the lattice QCD calculation of the HVP contribution to aSMµ .
If these new results are taken into account, the discrepancy with the experimental
average is reduced to ∼1.5 σ.

6.2 Ratio Q-method Analysis of Run-2 and Run-3

As mentioned before, the Run-1 energy integrating analysis result suffered from sys-
tematic biases arising from slow variation in the data and to control this problem, the
ratio histogramming technique was incorporated in the energy integrating analysis of
the Run-2 and Run-3 data. The blinded analysis of the Run-2 and Run-3 data using
the energy integrating ratio method has been concluded and the results are listed in
table 6.2. The central fit results and sanity checks like start-time scans, calorimeter
scans etc look encouraging and are detailed in chapter 5.

76



Table 6.2: Run-2 and Run-3 blinded results along with the statistical uncertainties.
The results are also blinded with respect to other analysis methods employed in
Run-2 and Run-3 analyses and cannot be directly compared. However, within the
energy integrating analysis, the same analysis has been done in three different ways
as mentioned in section 5.4 and all the central values agree well with each other as
shown in figure 5.11

Run R [ppm] σR [ppm]

2 -44.476 0.489
3a -35.308 0.385
3b -33.985 0.612

Like in Run-1, for this data there are 7 independent analysis groups which per-
formed parallel ωa analyses and energy integrated ratio analysis is one the 7 groups.
All the central values are still blinded. Some of the systematics have been evaluated
as discussed and tabulated in section 5.6. With the introduction of the ratio his-
togramming, the systematic uncertainty from slow effects was reduced by an order
of magnitude as discussed in section 5.6.3. As a result of this improvement, the Q-
method ratio analysis has a similar scale of systematic effects as the other analysis
groups and thus will serve as an important cross-check. In the analyses of the sub-
sequent runs (Run-4 through Run-6), the overall uncertainties will be dominated by
systematic uncertainties rather than the statistical uncertainties and consequently the
significance of the ratio Q-method analysis as a cross-check will be more pertinent.

6.3 Outlook

The Muon g-2 experiment at Fermilab has already released its Run-1 results and is
now on its way to publish the combined results from Run-2 and Run-3 in which the
statistical uncertainty is projected to be ∼ 200 ppb, a factor of 2 improvement over
Run-1 statistical precision. If the central value does not move, the new results will
be able to push the deviation of the experimental average to the 5 σ threshold with
respect to the Muon g-2 Theory Initiative value. The experiment has also recently
concluded taking the Run-5 data and a Run-6 is planned for the year 2022-23. All
this combined will enable the experiment to accumulate more than 20 times the total
data accumulated by the BNL experiment and improve the experimental precision
four fold. The current status of the data accumulated by E-989 is shown in figure
6.2.

This dissertation has described the analysis of the Run-2 and the Run-3 data using
a novel reconstruction technique called the energy integrating reconstruction which
was used for the first time in the Run-1 analysis. The author has further improved
the analysis procedure by incorporating a new ratio histogramming technique which
was so far only limited to positron counting methods. The combination of the new
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Figure 6.2: Figure showing the data collected by E-989 from Run-1 through Run-5 in
units of total data collected by E-821. The total data collected by the end of Run-5
is 19 times the total data collected by the BNL experiment.

reconstruction method with the ratio histogramming technique provides a unique
alternative determination of anomalous spin precession frequency of the muon in E-
989. As the experiment collects more data and reduces the statistical uncertainty, the
energy integrating ratio analysis for validating the anomalous precession frequency
results will gather increased importance.

Copyright c© Ritwika Chakraborty, 2022.
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Appendices

Appendix A: Supplmentary Plots and Fit Parameters from Run-2 and
Run-3 Analyses using Integrated Energy Ratio Method

Figure 1: Run-2 calorimeter scans of all the fits parameters in the fit function
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Figure 2: Run-2 start time scans of all the parameters in the fit function
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Figure 3: Run-2 dataset scan of all the parameters in the fit function
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Figure 4: Run-3a calorimeter scan of all the fits parameters in the fit function
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Figure 5: Run-3a start time scans of all the parameters in the fit function
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Figure 6: Run-3b calorimeter scan of all the fits parameters in the fit function
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Figure 7: Run-3b start time scans of all the parameters in the fit function
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Figure 8: Run-3 dataset scan of all the parameters in the fit function
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Table 1: Run-2 per dataset fit results. The frequency and lifetime of vertical mean
oscillation and vertical waist terms were kept fixed at the Run-2 central fit results for
the individual dataset.

2C 2D 2E 2F 2G 2H

χ2/NDF 1636/1817 1672/1817 1675/1817 1682/1817 1597/1817 1572/1817

R [ppm] -45.557 ± 0.79 -44.364 ± 0.863 -43.918 ± 1.402 -44.06 ± 1.291 -43.223 ± 2.702 -39.131 ± 2.262

A 0.22886 ± 0.00001 0.22879 ± 0.00002 0.22905 ± 0.00003 0.22897 ± 0.00002 0.22926 ± 0.00005 0.22953 ± 0.00004

φ 4.00488 ± 0.00012 3.99294 ± 0.00013 4.04098 ± 0.00021 4.04674 ± 0.00020 4.04136 ± 0.00041 4.04958 ± 0.00035

Acbo 0.00236 ± 0.00004 0.00239 ± 0.00004 0.00249 ± 0.00007 0.00174 ± 0.00007 0.00246 ± 0.00013 0.00257 ± 0.00011

τcbo [µs] 255 ± 13 275 ± 16 235 ± 20 236 ± 26 311 ± 58 285 ± 41

ωcbo [rad/µs] 2.3405 ± 0.0004 2.3410 ± 0.0004 2.3408 ± 0.0007 2.3439 ± 0.0009 2.3436 ± 0.0011 2.3424 ± 0.0009

φcbo 2.629 ± 0.050 2.625 ± 0.051 2.723 ± 0.088 2.493 ± 0.114 2.838 ± 0.147 2.848 ± 0.123

AcboA 0.00066 ± 0.00012 0.00071 ± 0.00013 0.00077 ± 0.00022 0.00174 ± 0.00021 0.00079 ± 0.00040 0.00062 ± 0.00034

φcboA 2.50 ± 0.19 0.46 ± 0.19 2.66 ± 0.30 2.66 ± 0.16 0.20 ± 0.52 0.08 ± 0.55

Acboφ 0.00012 ± 0.00012 0.00011 ± 0.00013 0.00020 ± 0.00022 0.00042 ± 0.00020 0.00056 ± 0.00040 0.00029 ± 0.00034

φcboφ 0.38 ± 1.06 -2.74 ± 1.19 2.39 ± 1.12 27.84 ± 0.51 9.80 ± 0.73 2.38 ± 1.20

Ay 0.00024 ± 0.00002 0.00007 ± 0.00002 0.00030 ± 0.00004 0.00037 ± 0.00003 0.00025 ± 0.00007 0.00015 ± 0.00006

τy [µs] 175.334 (fixed) 175.334 (fixed) 175.334 (fixed) 175.334 (fixed) 175.334 (fixed) 175.334 (fixed)

ωy [rad/µs] 13.93 (fixed) 13.93 (fixed) 13.93 (fixed) 13.93 (fixed) 13.93 (fixed) 13.93 (fixed)

φy 2.65 ± 0.08 2.13 ± 0.33 3.16 ± 0.12 2.88 ± 0.09 2.88 ± 0.27 3.67 ± 0.39

AVW 0.00138 ± 0.00008 0.00161 ± 0.00009 0.00139 ± 0.00015 0.00169 ± 0.00014 0.00127 ± 0.00028 0.00175 ± 0.00024

τVW [µs] 28.138 (fixed) 28.138 (fixed) 28.138 (fixed) 28.138 (fixed) 28.138 (fixed) 28.138 (fixed)

ωVW [rad/µs] 14.037 (fixed) 14.037 (fixed) 14.037 (fixed) 14.037 (fixed) 14.037 (fixed) 14.037 (fixed)

φVW 4.40 ± 0.06 4.48 ± 0.06 3.60 ± 0.11 4.20 ± 0.08 4.11 ± 0.22 3.41 ± 0.14
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Table 2: Run-3 per dataset fit results. The frequency and lifetime of vertical mean oscillation and vertical waist terms were
kept fixed at the Run-3 central fit results for the individual dataset.

3B 3C 3D 3E 3F 3G 3I 3J 3K 3L 3M 3N 3O

χ2/NDF 1619/1817 1590/1817 1712/1817 1714/1817 1621/1817 1580/1817 1646/1817 1643/1817 1729/1817 1682/1718 1621/1817 1882/1817 1718/1817

R [ppm] -36.392 ± 1.096 -35.396 ± 1.919 -35.705 ± 0.761 -34.509 ± 1.189 -35.089 ± 1.64 -32.941 ± 1.068 -36.214 ± 1.119 -36.137 ± 1.307 -35.156 ± 1.705 -35.328 ± 1.966 -35.17 ± 1.087 -34.821 ± 0.828 -32.841 ± 0.907

A 0.22949 ± 0.00002 0.22938 ± 0.00003 0.22944 ± 0.00001 0.2295 ± 0.00002 0.22934 ± 0.00003 0.22952 ± 0.00002 0.22936 ± 0.00002 0.22932 ± 0.00002 0.22932 ± 0.00003 0.22946 ± 0.00004 0.22893 ± 0.00002 0.22802 ± 0.00001 0.22845 ± 0.00002

φ 4.01552 ± 0.00017 4.01484 ± 0.00029 4.0416 ± 0.00012 4.03723 ± 0.00018 4.03087 ± 0.00025 4.01306 ± 0.00016 4.02054 ± 0.00017 4.01408 ± 0.00020 4.0035 ± 0.00026 4.00692 ± 0.00030 4.00993 ± 0.00017 3.99879 ± 0.00013 3.99395 ± 0.00014

Acbo 0.00209 ± 0.00006 0.00208 ± 0.00010 0.00206 ± 0.00004 0.00185 ± 0.00006 0.00189 ± 0.00008 0.00177 ± 0.00005 0.00171 ± 0.00006 0.00181 ± 0.00007 0.00176 ± 0.00009 0.00192 ± 0.00011 0.00164 ± 0.00005 0.00118 ± 0.00005 0.00106 ± 0.00005

τcbo [µs] 249 ± 20 238 ± 33 210 ± 11 236 ± 23 264 ± 37 280 ± 28 254 ± 26 214 ± 22 212 ± 30 193 ± 28 268 ± 28 200 ± 20 232 ± 30

ωcbo [rad/µs] 2.3322 ± 0.0007 2.3320 ± 0.0014 2.3290 ± 0.0006 2.3280 ± 0.0009 2.3290 ± 0.0012 2.3283 ± 0.0008 2.3308 ± 0.0009 2.3294 ± 0.0012 2.3286 ± 0.0016 2.3273 ± 0.0018 2.3295 ± 0.0009 2.3345 ± 0.0012 2.3293 ± 0.0013

φcbo -0.125 ± 0.104 -0.061 ± 0.188 -0.159 ± 0.082 -0.530 ± 0.132 -0.416 ± 0.167 -0.486 ± 0.112 -0.271 ± 0.128 -0.422 ± 0.158 -0.613 ± 0.215 -0.705 ± 0.243 -0.736 ± 0.126 -0.082 ± 0.162 -0.822 ± 0.178

AcboA 0.00022 ± 0.00017 0.00014 ± 0.00030 0.00045 ± 0.00012 0.00050 ± 0.00019 0.00039 ± 0.00025 -0.00068 ± 0.00016 0.00010 ± 0.00017 -0.00072 ± 0.00021 0.00050 ± 0.00028 0.00024 ± 0.00033 -0.00066 ± 0.00017 -0.00040 ± 0.00014 -0.00030 ± 0.00014

φcboA -0.27 ± 0.75 1.27 ± 2.22 0.44 ± 0.29 -0.29 ± 0.40 -0.59 ± 0.66 2.22 ± 0.26 0.44 ± 1.74 2.18 ± 0.33 -0.33 ± 0.59 0.13 ± 1.39 2.54 ± 0.28 2.79 ± 0.38 1.90 ± 0.50

Acboφ 0.00015 ± 0.00017 0.00008 ± 0.00030 0.00010 ± 0.00013 0.00029 ± 0.00019 0.00021 ± 0.00025 0.00017 ± 0.00016 0.00014 ± 0.00018 0.00028 ± 0.00022 0.00005 ± 0.00028 0.00010 ± 0.00034 0.00028 ± 0.00017 0.00008 ± 0.00014 0.00018 ± 0.00014

φcboφ 0.05 ± 1.11 -0.10 ± 3.68 0.48 ± 1.29 2.50 ± 0.67 -0.17 ± 1.21 1.86 ± 0.95 0.75 ± 1.27 0.69 ± 0.77 2.60 ± 6.08 -12.32 ± 3.35 0.52 ± 0.60 1.40 ± 1.69 1.65 ± 0.84

Ay 0.00063 ± 0.00004 0.00057 ± 0.00007 0.00055 ± 0.00003 0.00057 ± 0.00004 0.00062 ± 0.00006 0.00053 ± 0.00004 0.00045 ± 0.00004 0.00038 ± 0.00005 0.00027 ± 0.00006 0.00036 ± 0.00007 0.00032 ± 0.00004 0.00042 ± 0.00003 0.00041 ± 0.00003

τy [µs] 85.337 (fixed) 85.337 (fixed) 85.337 (fixed) 85.337 (fixed) 85.337 (fixed) 85.337 (fixed) 85.337 (fixed) 85.337 (fixed) 85.337 (fixed) 85.337 (fixed) 85.337 (fixed) 85.337 (fixed) 85.337 (fixed)

ωy [rad/µs] 13.891 (fixed) 13.891 (fixed) 13.891 (fixed) 13.891 (fixed) 13.891 (fixed) 13.891 (fixed) 13.891 (fixed) 13.891 (fixed) 13.891 (fixed) 13.891 (fixed) 13.891 (fixed) 13.891 (fixed) 13.891 (fixed)

φy 5.52 ± 0.06 2.46 ± 0.12 2.97 ± 0.05 2.97 ± 0.07 2.59 ± 0.09 2.80 ± 0.07 2.82 ± 0.09 2.75 ± 0.12 2.42 ± 0.22 2.86 ± 0.19 3.42 ± 0.12 5.49 ± 0.07 5.32 ± 0.08

AVW 0.00434 ± 0.00033 0.00333 ± 0.00058 0.00421 ± 0.00023 0.00394 ± 0.00036 -0.00439 ± 0.00049 0.00419 ± 0.00032 0.00479 ± 0.00034 0.00480 ± 0.00039 0.00491 ± 0.00051 0.00535 ± 0.00059 0.00556 ± 0.00033 0.00477 ± 0.00025 0.00433 ± 0.00027

τVW [µs] 15.47 (fixed) 15.47 (fixed) 15.47 (fixed) 15.47 (fixed) 15.47 (fixed) 15.47 (fixed) 15.47 (fixed) 15.47 (fixed) 15.47 (fixed) 15.47 (fixed) 15.47 (fixed) 15.47 (fixed) 15.47 (fixed)

ωVW [rad/µs] 14.099 (fixed) 14.099 (fixed) 14.099 (fixed) 14.099 (fixed) 14.099 (fixed) 14.099 (fixed) 14.099 (fixed) 14.099 (fixed) 14.099 (fixed) 14.099 (fixed) 14.099 (fixed) 14.099 (fixed) 14.099 (fixed)

φVW 3.85 ± 0.08 3.82 ± 0.17 2.82 ± 0.05 2.95 ± 0.09 -0.68 ± 0.11 2.74 ± 0.08 3.42 ± 0.07 3.37 ± 0.08 3.42 ± 0.10 3.50 ± 0.11 3.15 ± 0.06 3.69 ± 0.05 3.93 ± 0.06
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