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Chapter 1
Motivation and Introduction

1.1 Motivation

Noise attenuation and vibration control are key problems in engineering. Prob-
lems with noise and vibration often arise in buildings, helicopters, computer hard
disks, active noise control, spacecrafts, and other areas. While much progress has
been made in the field to address this problem, many of the traditional techniques
rely on information about the system in order to reject disturbances.

In building design, a common problem is the suppression of noise and vibration
that manifest from mechanical equipment and natural phenomina such as wind. For
example, very tall buildings are routinely subject to wind-induced vibrations that
manifest as sinusoidal disturbances [1]. While methods have been developed to ad-
dress the problem, they often rely on information about the system dynamics or
disturbances. For example, in the case of mechanical equipment generating noise
or vibration, a typical solution involves selecting vibration spring isolators which
dampen the vibration transmitted to the building. However, selecting a proper vi-
bration spring isolation system requires the engineer to know some physical parame-
ters about the mechanical system in question [2]. Another problem engineers face is
the design of air distribution systems in sound sensitive areas (such as auditoriums
and learning environments). To attenuate noise that is generated from air traveling
through a duct, engineers will often oversize the ductwork to reduce the velocity of
the air or add expensive sound attenuators or internal acoustical insulation. While
these strategies can be effective, they tend to increase building costs, add complexity
to the design, and can also reduce the space that is available to route other above
ceiling utilities.

In helicopter design and operation, a key problem engineers seek to address is
the suppression of vibration [3]. Vibration typically manifests in the fuselage as a
result of the helicopters main rotor blades rotating at high speeds and experiencing
unsteady airloads. As a result, mechanical components can degrade and fail over
time and crew members can experience uncomfortable rides resulting in fatigue. In
fact, in the 1960s, the average cabin floor vibration levels were around 0.3 g, which
contributed to an extremely uncomfortable ride experience for the occupants [4]. In

1



recent years, vibration levels have decreased to 0.1 g to 0.2 g; however, opportunities
remain to decrease these levels further. While solutions have been offered to address
this problem, most techniques require information about the disturbance or system
dynamics to implement.

In computer hard disks, vibration compensation is of great importance to ensure
optimized operation. Advances in operating systems and computing power will con-
tinue to affect the demand for larger disk drives. In fact, it is estimated that the track
density (which significantly affects the capacity of disk drives) will increase from the
current 6,000 tracks per inch (tpi) to over 30,000 tpi by the end of the century. Within
hard disks, a read/write head positioning servo mechanism is present which is either
track seeking or track following. To achieve optimal performance, the head position-
ing servo mechanism must attenuate vibration, the primary factor contributing to
poor accuracy. For this reason, it is critical that solutions are offered to address the
problem of vibration within hard disk drives to ensure that performance can keep up
with demand [5]. While control solutions are available to attenuate the vibration,
most algorithms require an accurate model of the system dynamics or disturbance
frequencies and harmonics to implement. For example, in [6], a control was intro-
duced which used information about an open-loop transfer function to design both
the control and the structure which resulted in a 55% increase in positioning accuracy.
While this increase in head positioning accuracy is significant, the controller requires
an accurate model of the system dynamics, which are often unknown or subject to
great uncertainty.

With the growth of technology and industry, the presence of acoustic noise has
become a concern from both a health and quality of life standpoint. Noisy conditions
in manufacturing and travel (such as trains and air planes), and noise generated in
busy urban areas are problems engineers are trying to address [7]. One solution is
active noise control (ANC). In ANC, an unwanted sound or disturbance is reduced
or eliminated by introducing a secondary sound of equal magnitude and opposite
phase. In the ideal case, ANC techniques can be implemented to address an un-
wanted sound or disturbance that may have characteristics that change over time.
ANC techniques have been shown to be effective in some applications such as head
phone design. For example, in [8], the design and implementation of an ANC system
for head phone applications is presented and implemented in an experiment. Re-
sults show that the algorithm was capable of achieving high noise cancellation rates,
especially for low-frequency harmonics. ANC methods have also been shown to be
successful in practice; however, they typically require knowledge about the system or
rely on approximations and assumptions about the system to implement effectively.
For example, in [9], a controller is presented which is capable of rejecting unknown
disturbances acting on a SISO system. However, the controller requires a sufficiently
accurate model of the plant as well as a frequency estimator to estimate the frequency
of the disturbance for successful implementation.

In flexible spacecraft design, vibration suppression is a key objective. As en-
gineers continue to challenge their designs, spacecrafts continue to get lighter and
more flexible which yields susceptibility to unwanted vibration. For example, orbit-
ing spacecrafts often have a rigid body with attached flexible appendages such as
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antennas and solar panels for the purpose of communication, remote sensing, and
other useful functions. In addition, mission requirements often warrant demanding
rotational maneuvers and sudden movements induced by thrust which can induce
vibrations [10]. These elements make vibration suppression using traditional control
strategies more challenging as the system dynamics often change over time or are
subject to uncertainty.

In real world applications, it is not always possible to accurately model the system
in question. Developing an accurate system model can be an extremely time intensive
process. Many models are designed using assumptions or approximations to reduce
the complexity of the modeling process, which can result in models that may not
accurately represent the dynamics of the physical system being modeled. However,
while it can be difficult to model a system accurately, it is often possible to measure,
or estimate, a sinusoidal disturbance (such as noise or vibration) acting on a system.
For example, in noise applications, one can determine the frequency content of a
disturbance by performing a discrete Fourier transform. In vibration applications,
one can analyze the vibration using an accelerometer to understand the disturbance.
This is significant because control algorithms have been developed which are capable
of asymptotically rejecting the disturbance, with minimal or even no knowledge of
the system as discussed in the literature review.

While progress has been made in the development of such control methods, typi-
cally these algorithms are implemented in numerical simulations rather than experi-
mental settings for use in verification or validation of the algorithm. Numerical sim-
ulations typically constrain the algorithm to optimal conditions which cannot always
be guaranteed in practical implementations due to factors including measurement
uncertainty, sensor noise, and actuator saturation. Thus, we are motivated to fur-
ther analyze these algorithms in experimental applications; specifically, we analyze
the frequency domain algorithm presented in [11] and the time domain algorithm
presented in [12] which are adaptive control algorithms capable of eliminating known
disturbances acting on completely unknown systems.

1.2 Literature Review

The internal model principle is a feedback control technique that can be used
for tracking references and rejecting sinusoidal disturbances. The internal model
principle states that asymptotic disturbance rejection or command following can be
achieved by incorporating copies of the exogenous dynamics in the feedback loop [13].
This technique can be effective, but requires information about the disturbance and
system which is not always known. For example, in [14], a control is presented which
regulates and internally stabilizes a linear time-invariant system in the presence of ex-
ternal signals; however, the control requires information about both the disturbance
and the plant to implement.

While the internal model principle requires information about both the system
and disturbance to implement, it can be used in scenarios when the disturbance is not
known through the use of a model based observer. A model based observer is an ob-
servation mechanism designed to estimate disturbances when they are unknown [15].
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In [16], an adaptive feedback controller is developed based on the internal model
principle which utilizes a frequency estimator, but some information about the sys-
tem is still required for implementation. In [17], disturbance rejection for a class of
nonlinear multi-input multi-ouput (MIMO) systems is presented using a controller
that utilizes a disturbance-based observer to estimate the disturbance. However, in-
formation about the system is required to implement.

Adaptive feedforward cancellation is a technique that can be implemented to ad-
dress disturbances acting on an uncertain or unknown system. In general, it works by
adding a copy of the disturbance with updated amplitudes and phases to asymptot-
ically reject the disturbance. In the simplest single-input single-output (SISO) case,
adaptive feedfoward cancellation cancels the disturbance at the input of the plant by
adding a “negative” copy of the disturbance, that is, a copy of the disturbance with
a negative amplitude [18]. To asymptotically reject the disturbance, the amplitudes
of the “negative” disturbance copy must be adapted to converge to nominal values
that completely cancel the disturbance. One shortcoming of this technique is that
certain assumptions or model information is required to implement. For example,
in [19], an adaptive feedfoward algorithm is presented which is capable of rejecting
a disturbance. However, for implementation, it is required that the plant transfer
function must be strictly positive real.

Many large scale control applications, such as flexible spacecraft, demand decen-
tralized control strategies in lieu of centralized methods. Decentralized controllers dif-
fer from centralized controllers in that each local control is computed using only local
measurements. In [20] a decentralized active vibration controller is used to attenuate
vibration of solar panel structures. The algorithm uses a H∞ control scheme but re-
quires precise, optimal, placement of actuators to implement. In [21], a decentralized
adaptive controller is presented that is capable of rejecting known disturbances acting
on unknown systems. The adaptive algorithm utilizes a discrete Fourier transform
(DFT) to identify the frequency of the disturbance, which is then used to construct a
controls update. The algorithm has the advantage of being completely decentralized.
One potential short coming of this algorithm is the use of the DFT, which can slow
convergence times due to the nature of batch data processing.

Higher harmonic control (HHC) is another strategy which was developed in the
helicopter vibration reduction [22–24] and active rotor balancing [25] communities.
In the case of helicopter vibration reduction this is typically referred to as higher
harmonic control. In the case of active rotor balancing, this is often referred to as
convergent control. HHC works by using the amplitude and phase information from
the measurement to update the amplitude and the phase of a sinusoidal control.
While this strategy can be effective, implementation typically requires an estimate
of the control-to-performance transfer function (for non-adaptive algorithms). HHC
can also be implemented with adaption to address known disturbances acting on un-
known systems. For example, in [26], a controller is introduced that addresses the
problem of a known disturbance acting on an unknown system. The controller works
by implementing a recursive least squares (RLS) procedure to estimate the secondary
path transfer function used in the control update. One shortcoming of this algorithm,
however, is that persistent excitation is required to ensure convergence of the RLS
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estimate. However, there are adaptive implementations of HCC that address these
shortcomings.

One such strategy is called frequency-domain adaptive higher harmonic control
(FD-AHHC) introduced in [11]. In contrast to the previously discussed HHC meth-
ods, FD-AHHC does not require an estimate of the control-to-performance transfer
function, an external excitation signal to ensure stability, or the use of averaging the-
ory to approximate the closed-loop system response. The only information required
is the frequencies of the sinusoidal disturbance. FD-AHHC is a frequency domain
algorithm that utilizes a DFT to extract the response at the disturbance frequencies.
Using only the information from the DFT, the algorithm computes an estimate of
the control-to-performance transfer function which is then used to construct a control
update. One limitation of this approach is the need to utilize a DFT, which requires
batch data processing that can increase the time required to eliminate disturbances.
Another drawback is that the algorithm relies on the assumption that the update
period Ts is sufficiently large relative to that of the settling time of the system. If
this assumption is invalid, then instabilities can manifest in the closed-loop response.
One way to ensure stability of the closed-loop system is to increase the update pe-
riod Ts. However, this also increases the time it takes to eliminate the disturbance.
An extension of this algorithm is presented in [27] which is capable of rejecting un-
known disturbances acting on unknown systems. The algorithm works similarly to
FD-AHHC, except that a frequency estimator is implemented to estimate the fre-
quency content of the disturbance.

In contrast to frequency-domain control methods, an adaptive time-domain HHC
algorithm was introduced in [28]. This method is similar FD-AHHC in that it is
in adaptive algorithm that estimates the control-to-performance transfer function at
each time step, but it operates entirely in the time domain without the use of a DFT.
In addition, larger control update gains can be implemented compared to FD-AHHC
without introducing instabilities. However, similar to FD-AHHC, instabilities can
manifest in the closed-loop system if the assumption that the update period Ts is
sufficiently large relative to the settling time of the system is not valid. In addition,
another shortcoming of this algorithm is that it requires the use of online matrix
inversion, which can be computationally expensive as the number of sensors and ac-
tuators are increased. To address this short coming, a new adaptive time-domain
algorithm was introduced in [12].

1.3 Summary of Contributions

Chapter 2 reviews the frequency-domain algorithm presented in [11]. This chapter
also presents a new modified version of the algorithm, which addresses the problems
of actuator saturation and sensor noise. In this thesis, we refer to the method in [11]
as frequency-domain adaptive harmonic control (FDAHC).

Chapter 3 reviews the time-domain algorithm presented in [12]. This chapter
also presents a new modified version of the algorithm which addresses the problem
of sensor noise. The modified version of the algorithm also includes a modification
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which addresses actuator saturation, which is based on previous work in [12]. In
this thesis, we refer to the method in [12] as time-domain adaptive harmonic control
(TDAHC).

The main contribution in this thesis is presented in Ch. 4. In Ch. 4, results
from active noise control experiments are presented where we compare the modified
FDAHC algorithm and modified TDAHC algorithm under different scenarios. The
experiments are used to explore the strengths and weaknesses of each algorithm and
to explore optimal parameters to use when implementing in real world applications.
The items investigated in this work are presented in the list below:

i) An implementation of each algorithm for a single-input single-output (SISO)
system is presented in an experimental setting to illustrate, and compare, how
the initial estimate of the control-to-performance transfer function will deter-
mine the transient response of the performance for each algorithm.

ii) The algorithms are compared under conditions where the system is first subject
to a single-tone disturbance and then subject to a multi-tone disturbance using
different initial conditions. The comparison provides insight into multi-tone
disturbance rejection.

iii) The performance of the algorithms are compared under conditions where the
frequency of the disturbance that is acting on the system is not known with
complete certainty. Insight is gained into how robust each algorithm is to un-
certainty in the frequency of the disturbance.

iv) The convergence speed (i.e., speed to attenuate the disturbance and reach
steady-state) of each algorithm is compared using optimal parameters tuned
to deliver the fastest possible convergence speed.

The experiments conducted in Ch. 4 reveal the following trade-offs between the
algorithms:

1) FDAHC is less susceptible to measurement noise due to the DFT. Since the
DFT performs batch processing, it has the effect of filtering out some sensor
noise. In contrast, TDAHC does not utilize a DFT and is, thus, more suscep-
tible to measurement noise.

2) FDHAC is less influenced by the transient response due to the averaging proper-
ties of the DFT. In contrast, TDAHC is generally more sensitive to the transient
response.

3) TDAHC can be implemented with larger control gains which can yield faster
steady-state performance convergence times compared to that of FDAHC. In
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practice, TDAHC control gains can be selected higher to yield faster conver-
gence times compared to that of FDAHC.
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Chapter 2
Review of Frequency-Domain Adaptive Harmonic Control

In this chapter, we review frequency-domain adaptive harmonic control (FDAHC),
which addresses the problem of rejecting sinusoidal disturbances with known frequen-
cies that act on a completely unknown asymptotically stable linear time-invariant
(LTI) system. The review of FDAHC is based on [11], which introduced this method.
This chapter also presents modifications of the FDAHC algorithm to address sensor
noise and actuator saturation.

2.1 Notation

Let F be R or C. Let ∥·∥ be the 2-norm on Fn, and let ∥·∥∞ be the infinity norm
on Fn. Let A∗ denote the complex conjugate transpose of A ∈ Fm×n, and define the
Frobenius norm of A ∈ Fm×n as ∥A∥F ≜

√
trA∗A. Define the open ball radius r ≥ 0

centered at C ∈ Cm×n by Br(C) ≜ {X ∈ Cm×n : ∥X −C∥F ≤ r}. Let λmin(A) denote
the minimum eigenvalue of the Hermitian positive-semidefinite matrix A ∈ Fn×n.

Let ∠λ denote the argument of λ ∈ C defined on the interval (−π, π] rad. Let
N ≜ {0, 1, 2, . . . } and Z+ ≜ N \ {0}.

2.2 Problem Formulation

Consider the LTI system

ẋ(t) = Ax(t) +Bu(t) +D1d(t), (2.1)
y(t) = Cx(t) +Du(t) +D2d(t), (2.2)

where t ≥ 0, x(t) ∈ Rn is the state, x(0) = x0 ∈ Rn is the initial condition, u(t) ∈ Rm

is the control, y(t) ∈ Rℓ is the measured performance, d(t) ∈ Rℓd is the unmeasured
disturbance, and A ∈ Rn×n is asymptotically stable. Consider the tonal disturbance

d(t) =
q∑
i=1

dc,i cosωit+ ds,i sinωit, (2.3)
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where ω1, ω2, . . . , ωq > 0 and dc,1, dc,2, . . . , dc,q, ds,1, ds,2, . . . , ds,q ∈ Rℓd determine the
disturbance amplitude and phase at each disturbance frequency. Define the transfer
functions Gyu : C → Cℓ×m and Gyd : C → Cℓ×ℓd by

Gyu(s) ≜ C(sI − A)−1B +D, (2.4)
Gyd(s) ≜ C(sI − A)−1D1 +D2. (2.5)

We make the following assumptions:

(A2.1) For all i ∈ Q ≜ {1, 2, . . . , q}, rank Gyu(ȷωi) = ℓ.

(A2.2) ω1, · · · , ωq are known.

Assumption (A2.1) implies that the number of actuators is at least as large as the
number of performance measures (i.e., m ≥ ℓ). Assumption (A2.2) implies that the
disturbance frequencies ωi are known; however, the disturbance amplitudes dc,i and
ds,i and the system model A,B,C,D,D1, and D2 are completely unknown.

The goal is to design a control u that eliminates the effect of the disturbance d on
the performance y. We desire a control that relies on no model information regarding
the system (2.1) and (2.2), and requires knowledge of only the disturbance frequencies
ω1, . . . , ωq. Unless otherwise stated, all statements in this chapter that involve the
subscript i are for all i ∈ Q.

2.3 Ideal Control

For the moment, assume that Gyu(ȷωi), Gyd(ȷωi), dc,i, and ds,i are known. Let
uc,i, us,i ∈ Rm, and consider the harmonic control

u(t) =
q∑
i=1

uc,i cosωit+ us,i sinωit. (2.6)

Define ûi ≜ uc,i − ȷus,i, which is the discrete Fourier transform (DFT) at frequency
ωi obtained from a sampling of u. In addition, define

Gi,∗ ≜ Gyu(ȷωi) ∈ Cℓ×m, (2.7)
di,∗ ≜ Gyd(ȷωi)(dc,i − ȷds,i) ∈ Cℓ. (2.8)

The harmonic steady-state (HSS) performance of (2.1) and (2.2) with disturbance
(2.3) and control (2.6) is

yhss(t, û1, . . . , ûq) ≜
q∑
i=1

Re
(
Gyu(ȷωi)ûi +Gyd(ȷωi)(dc,i − ȷds,i)

)
eȷωit

=
q∑
i=1

Re
(
Gi,∗ûi + di,∗

)
cosωit− Im

(
Gi,∗ûi + di,∗

)
sinωit. (2.9)
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Define

ŷhss,i(ûi) ≜ Gi,∗ûi + di,∗, (2.10)

which is the DFT at frequency ωi obtained from a sampling of yhss. Consider the cost
function

J(û1, . . . , ûq) ≜ lim
t→∞

1
t

∫ t

0
∥yhss(τ, û1, . . . , ûq)∥2dτ, (2.11)

which is the average power of yhss. Substituting (2.9) and (2.10) into (2.11), it follows
that

J(û1, . . . , ûq) = lim
t→∞

1
t

∫ t

0

∥∥∥∥∥
q∑
i=1

Re ŷhss,i(ûi) cosωiτ − Im ŷhss,i(ûi) sinωiτ
∥∥∥∥∥

2

dτ

=
q∑
i=1

[
Re ŷhss,i(ûi)
Im ŷhss,i(ûi)

]T(
lim
t→∞

1
t

∫ t

0

[
cos2ωiτ −(cosωiτ)(sinωiτ)

−(cosωiτ)(sinωiτ) sin2ωiτ

]
dτ
)

×
[
Re ŷhss,i(ûi)
Im ŷhss,i(ûi)

]

= 1
2

q∑
i=1

ŷ∗
hss,i(ûi)ŷhss,i(ûi). (2.12)

It follows from (2.12) that J is minimized by finding ûi that minimizes 1
2 ŷ

∗
hss,i(ûi)×

ŷhss,i(ûi), which is equal to the average power of yhss at frequency ωi. The following
result provides an expression for the control that minimizes J . This result is presented
in [11, Theorem 1].

Theorem 2.1. Assume that (A2.1) holds. For all i ∈ Q, define ui,∗ ≜ −G∗
i,∗×

(Gi,∗G
∗
i,∗)−1di,∗. Then, J(u1,∗, . . . , uq,∗) = 0.

Theorem 2.1 provides the ideal control parameters ui,∗, but ui,∗ requires knowledge
of Gi,∗ and di,∗, which are unknown.

2.4 Review of FDAHC

FDAHC uses a sinusoidal control with frequencies ωi, and amplitudes and phases
that are updated at discrete times. Let Ts > 0 denote the update period, and for
each k ∈ N and for all t ∈ [kTs, (k + 1)Ts), consider the control

u(t) =
q∑
i=1

Re ui,k cosωit− Im ui,k sinωit, (2.13)

where ui,k ∈ Cm is determined from update equations presented in this section. Thus,
the control (2.13) is a piecewise-continuous sinusoid.

For each k ∈ Z+, let yi,k ∈ Cℓ denote the DFT at ωi obtained from a sampling of
y on the interval [(k−1)Ts, kTs). The DFT data yi,k is the feedback used by FDAHC.
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Note that if Ts is sufficiently large relative to the settling time of (2.1) and (2.2), then
for all k ∈ N, y((k + 1)Ts) ≈ yhss((k + 1)Ts, u1,k, . . . , uq,k). In this case, for all k ∈ N,
yi,k+1 ≈ ŷhss,i(ui,k). In Section 2.5, we invoke the HSS assumption that for all k ∈ N,
yi,k+1 = ŷhss,i(ui,k); however, this assumption is used only for the stability analysis in
Section 2.5.

Let µi ∈ (0, 1], σi > 0, and ui,0 ∈ Cm. Then, for all k ∈ N, consider the control

ui,k+1 = ui,k − µi
σi+∥Gi,k∥2

F
G∗
i,kyi,k+1, (2.14)

where Gi,k ∈ Cℓ×m is an estimate of Gi,∗ obtained from the adaptive equation devel-
oped below.

To determine the adaptive equation for Gi,k, note that if yi,k+1 = ŷhss,i(ui,k), then
it follows from (2.10) that Gi,∗(ui,k − ui,k−1) − (yi,k+1 − yi,k) = 0. Thus, we consider
the cost function Jk,i : Rℓ×m × Rℓ×m → [0,∞) defined by

Jk,i(Gr, Gi) ≜
1
2∥(Gr + ȷGi)(ui,k − ui,k−1) − (yi,k+1 − yi,k)∥2. (2.15)

Note that Jk,i(Re Gi,∗, Im Gi,∗) = 0, that is, Gi,∗ minimizes Jk,i. Define the complex
gradient

∇Jk,i(Gr, Gi) ≜
∂J(Gr, Gi)

∂Gr
+ ȷ

J(Gr, Gi)
∂Gi

= [(Gr + ȷGi)(ui,k − ui,k−1) − (yi,k+1 − yi,k)](ui,k − ui,k−1)∗, (2.16)

which is the direction of the maximum rate of change of Jk,i with respect to Gr + ȷGi.
See [Eq. (17)] [11]. Let Gi,0 ∈ Cℓ×m\{0},γi ∈ (0, 1], and νi > 0. Then, for all k ∈ Z+,
consider the adaptive equation

Gi,k = Gi,k−1 − ηi,k∇Jk,i(Re Gi,k−1, Im Gi,k−1), (2.17)

where

ηi,k ≜
γi(σi+∥Gi,k−1∥2

F)2

νiµ2
i + (σi+∥Gi,k−1∥2

F)2∥ui,k − ui,k−1∥2 . (2.18)

Thus, it follows from (2.16)–(2.18) that for all k ∈ Z+,

Gi,k = Gi,k−1 − γi(σi+∥Gi,k−1∥2
F)2

νiµ2
i + (σi+∥Gi,k−1∥2

F)2∥ui,k − ui,k−1∥2

×
[
Gi,k−1(ui,k − ui,k−1) − (yi,k+1 − yi,k)

]
(ui,k − ui,k−1)∗. (2.19)

Thus, FDAHC is given by (2.13), (2.14), and (2.19). The FDAHC architecture is
presented in Fig. 2.1.
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y = Cx + Du + D2d
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d

Sample DFT
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u(t) =
∑q
i=1 Re ui,k cos ωit

−Im ui,k sin ωit

u

Gi,k

Gi,k = Gi,k−1 − γi(σi+∥Gi,k−1∥2
F)2

νiµ2
i +(σi+∥Gi,k−1∥2

F)2∥ui,k−ui,k−1∥2

×
[
Gi,k−1(ui,k − ui,k−1) − (yi,k+1 − yi,k)

]
(ui,k − ui,k−1)∗

ui,k+1
ui,k+1 = ui,k − µi

σi+∥Gi,k∥2
F

G∗
i,kyi,k+1

Figure 2.1: Control architecture for FDAHC

2.5 Stability Analysis

If Ts is sufficiently large relative to the settling time of (2.1) and (2.2), then for
all k ∈ N, yi,k+1 ≈ ŷhss,i(ui,k). Thus, we make the HSS assumption:

(A2.3) For all i ∈ Q and for all k ∈ N, yi,k+1 = ŷhss,i(ui,k).

In this case, (2.10) implies that for all k ∈ N,

yi,k+1 = Gi,∗ui,k + di,∗. (2.20)

Assumption (A2.3) is used to analyze the stability of the closed-loop system consisting
of (2.14), (2.19) and (2.20). The next result is the main result on the stability and
performance of FDAHC. This result is given in [11, Corollary 2].

Theorem 2.2. Assume m = ℓ, and consider the closed-loop system (2.14), (2.19),
and (2.20), where µi ∈ (0, 1], γi ∈ (0, 1], σi > 0, and νi > 0, and (A2.1)–(A2.3) are
satisfied. Then, the following statements hold:

i) For all i ∈ Q, (yi,k, Gi,k−1) ≡ (0, Gi,∗) is a Lyapunov stable equilibrium of
(2.14),(2.19), and (2.20).

ii) There exists r > 0 such that for i ∈ Q and for all (ui,0, Gi,0) ∈ Cℓ × Br(Gi,∗),
limk→∞ ui,k = ui,∗ and limk→∞ yi,k = 0.

iii) For all i ∈ Q, let ui,0 ∈ Cℓ, and let Gi,0 ∈ Cℓ×ℓ be nonsingular. Assume
that there exists ks ≥ 0 and ε > 0 such that for all i ∈ Q and all k ≥ ks,
λmin(G∗

i,kGi,k) ≥ ε. Then, for all i ∈ Q, limk→∞ ui,k = ui,∗ and limk→∞ yi,k = 0.

The following result provides the single-input single-output (SISO) stability prop-
erties. This result is given in [11, Corollary 3].
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Theorem 2.3. Assume m = ℓ = 1, and consider the closed-loop system (2.14),
(2.19), and (2.20), where µi ∈ (0, 1], γi ∈ (0, 1], σi > 0, and νi > 0, and (A2.1)–
(A2.3) are satisfied. Then, for all i ∈ Q, (yi,k, Gi,k−1) ≡ (0, Gi,∗) is a Lyapunov stable
equilibrium of (2.14),(2.19), and (2.20). Furthermore, for i ∈ Q and for all initial
conditions ui,0 ∈ C and Gi,0 ∈ C \ {x ∈ C : x = 0 or |∠x − ∠Gi,∗| = π}, Gi,k is
bounded, limk→∞ ui,k = ui,∗, and limk→∞ yi,k = 0.

2.6 FDAHC Modification

Numerical testing demonstrates that actuator saturation and sensor noise can pre-
vent optimal (or even acceptable) disturbance rejection. To address this shortcoming,
we present a modified version of FDAHC. Specifically, we present a modification to
the update equation for uk to address the problem of actuator saturation. We also
present a modification to the update equation for Gi,k to address the problem of
sensor noise.

2.6.1 FDAHC Modification to Address Actuator Saturation

Let umax > 0 be the maximum allowable magnitude of each entry of the control u.
In other words, we aim to enforce the constraint that for all t ≥ 0, ∥u(t)∥∞ ≤ umax.
For all k ∈ N, consider the update equation for ui,k given by

ui,k+1 =


umax

αk+1
vi,k+1, if αk+1 > umax,

vi,k+1, otherwise,
(2.21)

where

αk+1 ≜ max
j∈{1,...,m}

q∑
i=1

|ejvi,k+1|, (2.22)

vi,k+1 ≜ ui,k − µi
σi+∥Gi,k∥2

F
G∗
i,kyi,k+1, (2.23)

and for all j ∈ {1, 2, . . . ,m}, ej ∈ R1×m denotes the jth row of Im. The modified
update (2.21)–(2.23) is used in place of (2.14).

Note that (2.13) and (2.21)–(2.23) imply

max
t∈[kTs,(k+1)Ts)

|eju(t)| = max
t∈[kTs,(k+1)Ts)

∣∣∣∣∣
q∑
i=1

ejRe ui,k cosωit− ejIm ui,k sinωit
∣∣∣∣∣

= max
t∈[kTs,(k+1)Ts)

∣∣∣∣∣
q∑
i=1

[
ejRe ui,k ejIm ui,k

][cosωit
sinωit

]∣∣∣∣∣
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≤ max
t∈[kTs,(k+1)Ts)

q∑
i=1

∣∣∣∣∣[ejRe ui,k ejIm ui,k
][cosωit

sinωit

]∣∣∣∣∣

≤ max
t∈[kTs,(k+1)Ts)

q∑
i=1

∥∥∥∥∥
[
ejRe ui,k
ejIm ui,k

]∥∥∥∥∥
∥∥∥∥∥
[
cosωit
sinωit

]∥∥∥∥∥
=

q∑
i=1

∥∥∥∥∥
[
ejRe ui,k
ejIm ui,k

]∥∥∥∥∥
=

q∑
i=1

|ejui,k|

=


umax

αk

q∑
i=1

|ejvi,k|, if αk > umax

q∑
i=1

|ejvi,k|, otherwise

≤ umax

αk

q∑
i=1

|ejvi,k|

≤ umax

αk
αk

= umax,

which demonstrates that (2.21)–(2.23) ensures that for all t ≥ 0, ∥u(t)∥∞ < umax.

2.6.2 FDAHC Modification to Address Sensor Noise

Let Rm ∈ R denote an upper bound on ∥Gi,k∥F. For all k ∈ Z+ consider the
update equation for Gi,k given by

Gi,k =


Rm

∥Θi,k∥F
Θi,k, if ∥Θi,k∥F ≥ Rm,

Θi,k, otherwise,
(2.24)

where

Θi,k ≜ Gi,k−1 − γi(σi+∥Gi,k−1∥2
F)2

νiµ2
i + (σi+∥Gi,k−1∥2

F)2∥ui,k − ui,k−1∥2

×
[
Gi,k−1(ui,k − ui,k−1) − (yi,k+1 − yi,k)

]
(ui,k − ui,k−1)∗. (2.25)

The modified update (2.24) and (2.25) is used in place of (2.19). Note that (2.24)
and (2.25) imply that ∥Gi,k∥F ≤ Rm.
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Figure 2.2: Acoustic duct.

2.7 Numerical Examples

In this section, we present numerical examples of FDAHC. Examples 2.1–2.3 illus-
trate the application of FDAHC to an acoustic duct. Examples 2.4–2.6 illustrate the
application of FDAHC and modified FDAHC to a 2-mass structure. For all examples,
the DFT is performed using a 1 kHz sampling frequency.

2.7.1 Acoustic Duct

Consider the acoustic duct of length L = 3 m shown in Fig. 2.2, where all mea-
surements are from the left end of the duct. A disturbance speaker is at ξd = 1.5
m, while 2 control speakers are at ξψ1 = 0.6 m and ξψ2 = 1.35 m. All speakers have
cross-sectional area As = 0.0025 m2. Two feedback microphones are in the duct at
ξϕ1 = 0.5 m and ξϕ2 = 2.7 m, and they measure the acoustic pressures ϕ1(t) = p(ξϕ1 , t)
and ϕ2(t) = p(ξϕ2 , t), respectively. Thus, for i ∈ {1, 2}, ϕi(t) = Cix(t), where
Ci = ρ0

As
[ 0 V1(ξϕi

) · · · 0 Vr(ξϕi
) ]. The equation for the acoustic duct is given by

1
c2
∂2p(ξ, t)
∂t2

= ∂2p(ξ, t)
∂ξ2 + ρ0ψ̇1(t)δ(ξ − ξψ1)

+ ρ0ψ̇2(t)δ(ξ − ξψ2) + ρ0ḋ(t)δ(ξ − ξd), (2.26)

where p(ξ, t) is the acoustic pressure, δ is the Dirac delta, c = 343 m/s is the phase
speed of the acoustic wave, ψ1 and ψ2 are the speaker cone velocities of the control
speakers, d is the speaker cone velocity of the disturbance speaker, and ρ0 = 1.21
kg/m2 is the equilibrium density of air at room conditions. Refer to [29] for more
details. Using separation of variables and retaining r modes, the solution p(ξ, t) can
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be approximated by

p(ξ, t) =
r∑
i=0

qi(t)Vi(ξ),

where for i ∈ {1, 2, · · · , r},

Vi(ξ) ≜ c

√
2
L

sin iπξ
L
,

ωn,i ≜ iπc/L is the natural frequency of the ith mode, ζi = 0.2 is the assumed
damping ratio of the ith mode, and qi satisfies the differential equation (2.1), where

x(t) =



∫ t
0 q1(σ)dσ
q1(t)

...∫ t
0 qr(σ)dσ
qr(t)

, A = diag
([

0 1
−ω2

n1 −2ζ1ω
2
n1

]
· · ·

[
0 1

−ω2
n1 −2ζ1ω

2
n1

])
,

B = ρ0

As

[
0 V1(ξψ1) · · · 0 Vr(ξψ1)
0 V1(ξψ2) · · · 0 Vr(ξψ2)

]T

, D1 = ρ0

As

[
0 V1(ξd) · · · 0 Vr(ξd)

]T
,

Let ω1 = 200π rad/s, ω2 = 160π rad/s, r = 5, Ts = 0.1 s, ν1 = σ1 = 1 × 10−6, and
x0 = 0. The initial estimate G0 and disturbance d is given in each example. For each
example, the control turns on at t = 1 s.

In the following example, we show that FDAHC is able to asymptotically reject
a single-tone disturbance acting on a SISO system. Note that the non-adaptive
version of the algorithm requires a sufficiently accurate estimate of G1,∗ for stability.
Specifically, as shown in [11, Theorem 3], the estimate G1,k must be within 90◦ of
G1,∗ for stability. In contrast, the adaptive version of the algorithm reviewed in this
chapter is stable even if the initial estimate G1,k is not within 90◦ of G1,∗ as shown
in [11, Theorem 4]. Thus, in this example, we first use an initial condition G1,0 which
is within 90◦ of G1,∗. We then use an initial condition for G1,0 which is not within
90◦ of G1,∗ to illustrate the effect that the initial estimate Gi,k has on the transient
response of y.

Example 2.1. Consider the SISO (ℓ = m = 1) system, where we let u = ψ1,
y = ϕ1, ψ2 = 0, and d(t) = 2 sinω1t + 0.2 cosω1t. Let µ1 = γ1 = 0.15. First,
consider the case where G1,0 is within 90◦ of G1,∗, specifically, let G1,0 = 0.75eȷ 3π

7 G1,∗.
Figure 2.3 presents the response y and control u. Figure 2.4 presents the trajectory
of the estimate G1,k which approaches G1,∗. FDAHC yields asymptotic disturbance
rejection.

Next, consider the case where G1,0 is not within 90◦ of G1,∗, specifically, let G1,0 =
−0.75eȷ 3π

7 G1,∗. Figure 2.5 presents the response y and control u. Figure 2.6 presents
the trajectory of the estimate G1,k which approaches G1,∗. In contrast to the first
initial condition, this initial condition yielded a larger transient response, but FDAHC
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Figure 2.3: FDAHC for a SISO system where
|∠G1,0/G1,∗| < π

2 . The response y(t) → 0 as
t → ∞.
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Figure 2.4: Trajectory of G1,k with FDAHC for
a SISO system where |∠G1,0/G1,0| < π

2 . The
dashed lines show the locus of G such that

|∠G1,0/G1,∗| = π
2 .
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Figure 2.5: FDAHC for a SISO system where
|∠G1,0/G1,∗| > π

2 . The response y(t) → 0 as
t → ∞.
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Figure 2.6: Trajectory of G1,k with FDAHC for
a SISO system where |∠G1,0/G1,0| > π

2 . The
dashed lines show the locus of G such that

|∠G1,0/G1,∗| = π
2 .

was still able to yield asymptotic disturbance rejection. This shows that the HSS
stability condition determines the transient response of y. △

Next, we address MIMO systems using FDAHC. In the following example, we
show that FDAHC is able to asymptotically reject a single-tone disturbance acting
on a MIMO (ℓ = m = 2) system. We implement FDAHC using two initial conditions
to illustrate that the initial condition G1,0 affects the transient response of y.

Example 2.2. Consider the MIMO (ℓ = m = 2) system where we let u =[
ψ1 ψ2

]T
, y =

[
ϕ1 ϕ2

]T
, and d(t) = 2 sinω1t + 0.2 cosω1t. Let µ1 = γ1 = 0.3

and let G1,0 = 0.5eȷπ
5G1,∗ denote the initial estimate of G1,∗ which satisfies the non-

adaptive stability requirement presented in [11, Theorem 2]. Figure 2.7 presents the
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Figure 2.7: FDAHC for a MIMO system where
G1,0 = 0.5eȷ π

5 G1,∗. The response y(t) → 0 as
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Figure 2.8: FDAHC for a MIMO system where
G1,0 = 0.5eȷ 6π

5 G1,∗. The response y(t) → 0 as
t → ∞.

response y and control u. FDAHC yields asymptotic disturbance rejection.
Next, we consider the initial estimate G1,0 = 0.5eȷ 6π

5 G1,∗ which does not satisfy
the non-adaptive stability requirement presented in [11, Theorem 2]. Figure 2.8
presents the response y and control u. In contrast to the first initial condition, this
initial condition yielded a larger transient response, but FDAHC was still able to
yield asymptotic disturbance rejection. This shows that the HSS stability condition
determines the transient response of y. △

Example 2.3. Consider the MIMO (ℓ = m = 2) system where we let u =[
ψ1 ψ2

]T
, y =

[
ϕ1 ϕ2

]T
, and

d(t) = 2 sinω1t+ 0.2 cosω1t+ 2 sinω2t+ 0.2 cosω2t,

which is a 2-tone disturbance. Let µ1 = γ1 = 0.3. Let G1,0 = 1eȷπ
3G1,∗ and G2,0 =

0.75eȷπ
6G2,∗ denote the initial estimates ofG1,∗ andG2,∗, respectively, which satisfy the

non-adaptive stability requirement presented in [11, Theorem 2]. Figure 2.9 presents
the response y and control u. FDAHC yields asymptotic disturbance rejection. △

2.7.2 Two-Mass Structure

Consider the 2-mass structure shown in Fig. 2.10, where ψ1 and ψ2 are the control
forces, d1 and d2 are disturbance forces, ξ1 and ξ2 are displacements of masses m1
and m2. This system is modeled by (2.1), where
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Figure 2.9: FDAHC for a multi-tone disturbance acting on a MIMO system. The response
y(t) → 0 as t → ∞.
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Figure 2.10: Two-Mass Structure.
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Figure 2.11: FDAHC for a SISO system in the
absence of sensor noise. The response y(t) → 0

as t → ∞.
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Figure 2.12: Trajectory of G1,k with FDAHC
for a SISO system in the absence of sensor

noise. The dashed lines show the locus of G
such that |∠G1,0/G1,∗| = π

2 .

A =


0 1 0 0

−(k1+k2)
m1

−(c1+c2)
m1

k2
m1

c2
m1

k2
m2

c2
m2

−(k2+k3)
m2

−(c2+c3)
m2

, B =


0 0
1
m1

0
0 0
0 1

m2

, D1 = B,

x(t) =


ξ1(t)
ξ̇1(t)
ξ2(t)
ξ̇2(t)

, u(t) =
[
ψ1
ψ2

]
, d(t) =

[
d1(t)
d2(t)

]
,

where m1 = 2 kg, m2 = 1 kg, c1 = 60 kg/s, c2 = 50 kg/s, c3 = 40 kg/s, k1 = 300
N/m, k2 = 200 N/m, and k3 = 400 N/m. The initial conditions are x(0) = 0 and
d(0) = 0.

For all examples, let Ts = 1 s, and σ1 = ν1 = 1 × 10−12. For each example, the
control turns on at t = 5 s. The disturbance forces d1 and d2 and adaptive gains µ1
and γ1 are identified in each example.

Example 2.4. Consider the SISO system where y = ξ1, ψ1 = u, ψ2 = 0, d1(t) =
200 sinω1t+250 cosω1t and d2(t) = 0, where ω1 = 8π rad/s. LetG1,0 = eȷπ

6G1,∗, which
is 30◦ away from G1,∗ and let µ1 = γ1 = 0.3. Figure 2.11 presents the response y and
control u. Figure 2.12 presents the trajectory of the estimate G1,k which approaches
G1,∗. FDAHC yields asymptotic disturbance rejection. △

In the following examples, we show that actuator saturation and sensor noise can
prevent optimal (or even acceptable) disturbance rejection using FDAHC. Despite
this shortcoming, we show that modified FDAHC is able to address these problems.
In the following example, we show that modified FDAHC is able to address the prob-
lem of actuator saturation.
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Figure 2.13: FDAHC for a SISO system with
actuator saturation. Due to the effects of

actuator saturation, asymptotic disturbance
rejection is not achieved.
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Figure 2.14: Modified FDAHC for a SISO
system with actuator saturation. Asymptotic

disturbance rejection is achieved despite
actuator saturation.

Example 2.5. We reconsider Example 2.4 but let the gains µ1 = 0.4 and γ1 = 0.2
and initial estimate G1,0 = 0.8eȷ 3π

2 G1,∗. We impose actuator saturation at um = 400
N, which is the maximum allowable magnitude of u1,k. First, we use FDAHC to
investigate the effects of actuator saturation. Figure 2.13 presents the response y
and control u. At approximately t = 8 s, u saturates and asymptotic disturbance
rejection is not achieved.

Next, we revisit the simulation but implement modified FDAHC. Let umax = 395
N, which was selected to ensure |u1,k| does not exceed um. Figure 2.14 presents the
response y and control u. In contrast to FDAHC, modified FDAHC prevents actuator
saturation and yields asymptotic disturbance rejection. △

In the following example, we show that in the presence sensor noise, the estimate
Gi,k can experience drift and diverge from Gi,∗.

Example 2.6. We reconsider Example 2.4 but introduce Gaussian white noise
with a mean of 0 and variance of 8×10−6 m. Figure 2.15 presents the response y and
control u. Fig. 2.16 presents the trajectory of the estimate G1,k. Note that due to the
presence of sensor noise, the estimate G1,k diverges significantly from G1,∗. Despite
this effect, FDAHC yields asymptotic disturbance rejection.

Next, we revisit the simulation but implement modified FDAHC to address the
problem of sensor noise. Let Rm = 4 × 10−3 which bounds Gi,k and ensures that
|Gi,k| < Rm. Figure 2.17 presents the response y and control u. Figure 2.18 presents
the trajectory of the estimate G1,k. Note that despite the presence of sensor noise,
modified FDAHC constrains the estimate G1,k by Rm which mitigates the affect of
drift. Modified FDAHC yields asymptotic disturbance rejection. △

In the next example, we implement modified FDAHC on a system acted on by a
multi-tone disturbance that is subject to both actuator saturation and sensor noise.
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Figure 2.15: FDAHC for a SISO system in the
presence of sensor noise. Despite the presence

of drift in the estimate G1,k, the response
y(t) → 0 as t → ∞.
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Figure 2.17: Modified FDAHC for a SISO
system in the presence of sensor noise. Despite
the presence of drift in the estimate G1,k, the

response y(t) → 0 as t → ∞.
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Figure 2.19: Modified FDAHC for a SISO system acted on by a multi-tone disturbance that is
subject to actuator saturation and sensor noise. Asymptotic disturbance rejection is achieved.

Example 2.7. Consider the SISO system where y = ξ1, ψ1 = u, ψ2 = 0,

d1(t) = 200 sinω1t+ 250 cosω1t, d2(t) = 200 sinω2t+ 250 cosω2t,

where ω1 = 16π rad/s and ω2 = 8π rad/s. Let G1,0 = 0.75eȷ 5π
2 G1,∗ and let G2,0 =

3.5eȷ 3π
2 G2,∗. Let µ1 = γ1 = 0.25. We impose actuator saturation at um = 655 N,

which is the maximum allowable magnitude of ui,k. To ensure actuator saturation
does not occur, we let umax = 650 N, which was selected to ensure |ui,k| does not
exceed um. We also introduce Gaussian white noise with a mean of 0 and variance of
8×10−6 m. To mitigate the effect of drift in Gi,k caused by the Gaussian white noise,
we select Rm = 4 × 10−3 which bounds Gi,k and ensures that |Gi,k| < Rm. Figure
2.19 presents the response y and control u. Modified FDAHC yields asymptotic
disturbance rejection. △

2.8 Conclusion

First, this chapter reviewed FDAHC, which is introduced in [11]. Next, we noted
that sensor noise and actuator saturation can negatively impact the performance of
FDAHC. To address this shortcoming, we presented a modification to FDAHC to
alleviate the problems of sensor noise and actuator saturation.
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Chapter 3
Review of Time-Domain Adaptive Harmonic Control

In this chapter, we review time-domain adaptive harmonic control (TDAHC),
which addresses the problem of rejecting sinusoidal disturbances with known frequen-
cies that act on a completely unknown asymptotically stable linear time-invariant
(LTI) system. The review of TDAHC is based on [12], which introduced this method.
This chapter also presents modifications of the TDAHC algorithm to address sensor
noise and actuator saturation.

3.1 Notation

Let F be R or C, and let x(i) denote the ith element of x ∈ Fn. Let ∥·∥ be the
2-norm on Fn, and let ∥·∥∞ be the infinity norm on Fn. Let A∗ denote the com-
plex conjugate transpose of A ∈ Fm×n and define the Frobenius norm of A ∈ Fm×n

as ∥A∥F ≜
√

trA∗A. Define the open ball radius r ≥ 0 centered at C ∈ Cm×n by
Br(C) ≜ X ∈ Cm×n : ∥X − C∥F < r.

Let spec(A) ≜ {λ ∈ C : det (λI − A) = 0} denote the spectrum of A ∈ Fn×n,
and let sprad(A) ≜ maxλ∈spec(A)|λ| denote the spectral radius of A ∈ Fn×n. Let
λmin(A) denote the minimum eigenvalue of the symmetric positive-semi definite ma-
trix A ∈ Fn×n. Let σmin(A) denote the minimum eigenvalue of the symmetric positive-
semidefinite matrix A ∈ Fm×n and let σmax(A) denote the maximum singular value
of A ∈ Fm×n.

The Moore-Penrose generalized inverse [30, Chap. 8.1] of A ∈ Rm×n is denoted
by A+ ∈ Rn×m. Note that if A ∈ Rm×n is right invertible (i.e., rank A = m), then
A+ = AT(AAT)−1.

Let ∠λ denote the argument of λ ∈ C defined on the interval (−π, π] rad. Let
ORHP and OUD denote the open-left-half plane and open unit disk in C, respectively.
Define N ≜ {0, 1, 2, . . . } and Z+ ≜ N \ {0}.
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3.2 Problem Formulation

Consider the LTI system

ẋ(t) = Ax(t) +Bu(t) +D1d(t), (3.1)
y(t) = Cx(t) +Du(t) +D2d(t), (3.2)

where t ≥ 0, x(t) ∈ Rn is the state, x(0) = x0 ∈ Rn is the initial condition, u(t) ∈ Rm

is the control, y(t) ∈ Rℓ is the measured performance, d(t) ∈ Rℓd is the unmeasured
disturbance, and A ∈ Rn×n is asymptotically stable. Consider the tonal disturbance

d(t) =
q∑
i=1

dc,i cosωit+ ds,i sinωit, (3.3)

where ω1, ω2, . . . , ωq > 0 and dc,1, dc,2, . . . , dc,q, ds,1, ds,2, . . . , ds,q ∈ Rℓd determine the
disturbance amplitude and phase at each disturbance frequency. Define the transfer
functions Gyu : C → Cℓ×m and Gyd : C → Cℓ×ℓd by

Gyu(s) ≜ C(sI − A)−1B +D, (3.4)
Gyd(s) ≜ C(sI − A)−1D1 +D2. (3.5)

We make the following assumptions:

(A3.1) For all i ∈ Q ≜ {1, 2, . . . , q}, rank Gyu(ȷωi) = ℓ.

(A3.2) ωi, . . . , ωq are known.

Assumption (A3.1) implies that the number of actuators is at least as large as the
number of performance measures (i.e., m ≥ ℓ). Assumption (A3.2) implies that the
disturbance frequencies ωi are known; however, the disturbance amplitudes dc,i and
ds,i and the system model A,B,C,D,D1, and D2 are completely unknown.

The goal is to design a control u that eliminates the effect of the disturbance d on
the performance y. We desire a control that relies on no model information regarding
the system (3.1) and (3.2), and requires knowledge of only the disturbance frequencies
ω1, . . . , ωq. Unless otherwise stated, all statements in this chapter that involve the
subscript i are for all i ∈ Q.

3.3 Ideal Control

For the moment, assume that Gyu(ȷωi), Gyd(ȷωi), dc,i, and ds,i are known. Let
uc,i, us,i ∈ Rm, and consider the harmonic control

u(t) =
q∑
i=1

uc,i cosωit+ us,i sinωit

=
q∑
i=1

(
fT
i (t) ⊗ Im

)
ûi, (3.6)

25



where ⊗ is the Kronecker product, and

ûi ≜

[
uc,i
us,i

]
∈ R2m, (3.7)

fi(t) ≜
[
cosωit
sinωit

]
∈ R2. (3.8)

Define

Gi,∗ ≜ Gyu(ȷωi) ∈ Cℓ×m, (3.9)

di,∗ ≜

[
Re Gyd(ȷωi) Im Gyd(ȷωi)

−Im Gyd(ȷωi) Re Gyd(ȷωi)

][
dc,i
ds,i

]
∈ R2ℓ. (3.10)

The harmonic steady-state (HSS) performance of (3.1) and (3.2) with disturbance
(3.3) and control (3.6) is

yhss(t, û1, . . . , ûq) ≜
q∑
i=1

Re
(
Gyu(ȷωi)(uc,i − ȷus,i) +Gyd(ȷωi)(dc,i − ȷds,i)

)
eȷωit

=
q∑
i=1

(
fT
i (t) ⊗ Iℓ

)(
H(Gi,∗)ûi, + di,∗

)
, (3.11)

where H : Cℓ×m → R2ℓ×2m is defined by

H(G) ≜
[

Re G Im G
−Im G Re G

]
∈ R2ℓ×2m. (3.12)

Consider the cost function

J(û1, . . . , ûq) ≜ lim
t→∞

1
t

∫ t

0
∥yhss(τ, û1, . . . , ûq)∥2dτ, (3.13)

which is the average power of yhss. Substituting (3.11) into (3.13) yields

J(û1, . . . , ûq) = lim
t→∞

1
t

∫ t

0

∥∥∥∥∥
q∑
i=1

(
fT
i (τ) ⊗ Iℓ

)(
H(Gi,∗)ûi, + di,∗

)∥∥∥∥∥
2

dτ

=
q∑
i=1

q∑
j=1

(H(Gi,∗)ûi + di,∗)T
(

lim
t→∞

1
t

∫ t

0

(
fi(τ)fT

j (τ)
)

⊗ Iℓ dτ
)

× (H(Gj,∗)ûj + dj,∗)

=
q∑
i=1

(H(Gi,∗)ûi + di,∗)T
(

lim
t→∞

1
t

∫ t

0

(
fi(τ)fT

i (τ)
)

⊗ Iℓ dτ
)

× (H(Gi,∗)ûi + di,∗)

= 1
2

q∑
i=1

∥H(Gi,∗)ûi + di,∗∥2. (3.14)
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It follows from (3.14) that J is minimized by finding ûi that minimizes 1
2∥H(Gi,∗)ûi+

di,∗∥2, which is equal to the average power of yhss at frequency ωi. Since (A3.1)
implies that rank Gi,∗ = ℓ, it follows that rank H(Gi,∗) = 2ℓ, which implies that
H(Gi,∗) is right invertible. The following result provides an expression for the control
that minimizes J . This result is presented in [12, Theorem 1].

Theorem 3.1. Assume that (A3.1) holds. For all i ∈ Q, define ui,∗ ≜ −H+(Gi,∗)di,∗.
Then, J(u1,∗, . . . , uq,∗) = 0.

Theorem 3.1 provides the ideal control parameter ui,∗, but ui,∗ requires knowledge
of Gi,∗ and di,∗, which are unknown.

3.4 Review of TDAHC

TDAHC uses a sinusoidal control with frequencies ωi, and amplitudes and phases
that are updated at discrete times. Let Ts denote the update period, and for each
k ∈ N and for all t ∈ [kTs, (k + 1)Ts), consider the control

u(t) =
q∑
i=1

(
fT
i (t) ⊗ Im

)
ui,k, (3.15)

where ui,k ∈ R2m is determined from the update equations presented in this section.
Thus, the control (3.15) is a piecewise-continuous sinusoid. We make the following
technical assumptions:

(A3.3) For all i ∈ Q and for all j ∈ Q\{i}, eȷωjTs ̸= eȷωiTs and e−ȷωjTs ̸= eȷωiTs .

(A3.4) For all i ∈ Q, ∠eȷωiTs /∈ {0, π}.

Assumption (A3.3) implies that the disturbance frequencies are distinct. Assumption
(A3.4) implies that ωiTs is not an integer multiple of π. Assumptions (A3.3) and
(A3.4) involve disturbance frequencies ωi and the update period Ts. Since ωi, . . . , ωq
are known, it follows that Ts can be selected to satisfy (A3.3) and (A3.4).

For each k ∈ Z+, define the sampled performance

yk ≜ y(kTs), (3.16)

which is the feedback used by TDAHC. Note that if Ts is sufficiently large relative to
the settling time of (3.1) and (3.2), then for all k ∈ Z+, yk ≈ yhss(kTs, u1,k−1, . . . , uq,k−1).
In Section 3.5, we invoke the HSS assumption that for all k ∈ Z+, yk = yhss(kTs, u1,k−1,
. . . , uq,k−1); however, this assumption is used only for the stability analysis in Section
3.5.
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For all α ∈ Z+ \ {1, 2, . . . , 2q − 1}, define the Vandermonde matrix

Vα ≜



1 e−ȷω1Ts e−ȷ2ω1Ts . . . e−ȷ(α−1)ω1Ts

1 eȷω1Ts eȷ2ω1Ts . . . eȷ(α−1)ω1Ts

... ... ... ...
1 e−ȷωqTs e−ȷ2ωqTs . . . e−ȷ(α−1)ωqTs

1 eȷωqTs eȷ2ωqTs . . . eȷ(α−1)ωqTs

 ∈ C2q×α. (3.17)

The following lemma concerns right invertibility of Vα. The proof follows from [30,
Fact 7.18.5].

Lemma 3.1. Assume that (A3.3) and (A3.4) hold. Then, for all α ∈ Z+\{1, 2, . . . ,
2q − 1}, Vα is right invertible.

Let r ∈ Z+ be such that r ≥ 2q, and for all k ∈ Z+, define

fi,k ≜ fi(kTs) ∈ R2, (3.18)

ψk ≜
[
fT

1,k . . . fT
q,k

]T
∈ R2q, (3.19)

Ψk ≜
[
ψk . . . ψk−r+1

]
∈ R2q×r. (3.20)

The choice of r affects the performance of TDAHC. The following result from [12,
Lemma 2] concerns the right inverse of Ψk, and provides an expression for Ψ+

k .

Lemma 3.2. Assume that (A3.3) and (A3.4) are satisfied. Then, for all k ∈ N,
Ψk is invertible, and

Ψ+
k = ΨT

k S
T
k (VrV T

r )−1Sk, (3.21)

where

Sk ≜ diag(S1,k, . . . , Sq,k) ∈ C2q×2q, (3.22)

Si,k ≜

[
e−ȷkωiTs ȷe−ȷkωiTs

eȷkωiTs −ȷeȷkωiTs

]
∈ C2×2. (3.23)

Lemma 3.2 provides an expression for Ψ+
k that can be computed without an online

matrix inversion. In particular, (VrV T
r )−1 can be computed offline, and Ψ+

k can be
computed from (3.20).

Let µ ∈ (0, 2), σi > 0, and ui,0 ∈ R2m. Then, for all k ∈ N, consider the control

ui,k+1 = ui,k − µ

σi +∑q
i=1∥Gi,k∥2

F
HT(Gi,k)(fi,k+1 ⊗ Iℓ)yk+1, (3.24)

where Gi,k ∈ Cℓ×m is an estimate of Gi,∗ and is obtained from the update equations
presented below.

For all k ≥ r, consider di,k : Cℓ×m × · · · × Cℓ×m → R2ℓ defined by

di,k(Ĝ1, . . . , Ĝq) ≜ (ei ⊗ I2ℓ)
(
(Ψ+

k )T ⊗ Iℓ
)
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×


yk −∑q

j=1

(
fT
j,k ⊗ Iℓ

)
H(Ĝj)uj,k−1

...
yk−r+1 −∑q

j=1

(
fT
j,k−r+1 ⊗ Iℓ

)
H(Ĝj)uj,k−r

, (3.25)

where ei ∈ R1×q is the ith row of Iq. Next, for all k > r, consider ŷk : Cℓ×m × · · · ×
Cℓ×m → Rℓ defined by

ŷk(Ĝ1, . . . , Ĝq) ≜
q∑
i=1

(fT
i,k ⊗ Iℓ)

(
H(Ĝi)ui,k−1 + di,k−1(Ĝ1, . . . , Ĝq)

)
. (3.26)

To determine the update equation for Gi,k, consider the cost Jk : Cℓ×m × · · · ×
Cℓ×m → [0,∞) defined by

Jk(Ĝ1, . . . , Ĝq) ≜
1
2
∥∥∥yk+1 − ŷk+1(Ĝ1, . . . , Ĝq)

∥∥∥2
,

which is a measure of how well ŷk+1(Ĝ1, . . . , Ĝq) approximates the measurement yk+1,
which itself is approximately equal to yhss((k + 1)Ts, u1,k, . . . , uq,k) = ∑q

i=1(fT
i,k+1 ⊗

Iℓ)(H(Gi,∗)ui,k + di,∗). Thus, if the HSS assumption and (A3.3)–(A3.4) are satisfied,
then ŷk+1(G1,∗, . . . , Gq,∗) = yk+1 and Jk(G1,∗, . . . , Gq,∗) = 0, that is, Jk is minimized
by Ĝi = Gi,∗.

For all k ≥ r, define the complex gradient

∇Ji,k(Ĝ1, . . . , Ĝq) ≜
[
∂Jk(Ĝ1,...,Ĝq)
∂(Re Ĝi)

+ ȷ∂Jk(Ĝ1,...,Ĝq)
∂(Im Ĝi)

]T

=
[
Iℓ −ȷIℓ

]
Γi,k(Ĝ1, . . . , Ĝq)

[
Im
ȷIm

]
, (3.27)

where Γi,k : Cℓ×m × · · · × Cℓ×m → R2ℓ×2m is defined by

Γi,k(Ĝ1, . . . , Ĝq) ≜ vec−1
(
Fi,k

[
yk+1 − ŷk+1(Ĝ1, . . . , Ĝq)

])
− (fi,k+1 ⊗ Iℓ)

[
yk+1 − ŷk+1(Ĝ1, . . . , Ĝq)

]
uT
i,k, (3.28)

where Fi,k ∈ R4ℓm×ℓ is defined by

Fi,k ≜
[
ui,k−1 ⊗ fi,k . . . ui,k−r ⊗ fi,k−r+1

]
Ψ+
k ψk+1, (3.29)

and vec−1 : R4ℓm → R2ℓ×2m is the inverse vec operator, that is, for all X ∈ R2ℓ×2m,
vec−1vec X = X. Note that ∇Ji,k is the direction of the maximum rate of change of Jk
with respect to Ĝi. Let Gi,0 ∈ Cℓ×m, and for all k ∈ {1, 2, . . . , r − 1}, let Gi,k = Gi,0.
For all k ≥ r, consider the update equation

Gi,k = Gi,k−1 − ηk∇Ji,k(G1,k−1, . . . , Gq,k−1), (3.30)
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where

ηk ≜
γ

ν +∑q
j=1∥Fi,k − ui,k ⊗ fi,k+1∥2

F
, (3.31)

where γ ∈ (0, 1), and ν > 0. Thus, TDAHC is given by (3.15) and (3.24)–(3.31). The
TDAHC architecture is presented in Fig. 3.1.

Unknown Plant
ẋ = Ax + Bu + D1d

y = Cx + Du + D2d

y
d

Sample
yk+1

u(t) =
∑q
i=1

(
fT
i (t) ⊗ Im

)
ui,k u

Gi,k

Gi,k = Gi,k−1 − ηk∇Ji,k(G1,k−1, . . . , Gq,k−1)

ui,k+1
ui,k+1 = ui,k − µ

σi+
∑q

i=1∥Gi,k∥2
F

HT(Gi,k)(fi,k+1 ⊗ Iℓ)yk+1

Figure 3.1: Control architecture for TDAHC

3.5 Stability Analysis

If Ts is sufficiently large relative to the settling time of (3.1) and (3.2), then for
all k ∈ Z+, yk ≈ yhss(kTs, u1,k−1, . . . , uq,k−1). Thus, we make the HSS assumption:

(A3.5) For all k ∈ Z+, yk = yhss(kTs, u1,k−1, . . . , uq,k−1)

In this case, (3.11) implies that for all k ∈ N,

yk+1 =
∑

q
i=1(fT

i,k+1 ⊗ Iℓ)(H(Gi,∗)ui,k + di,∗). (3.32)

Assumption (A3.5) is used to analyze the stability of the closed loop system consisting
of (3.24)–(3.32).

The following result provides the stability properties of the closed-loop system
consisting of (3.24)–(3.32) for the case where q = 1 and m ≥ ℓ = 1. This result is
given in [12, Theorem 4].

Theorem 3.2. Consider the closed-loop system consisting of (3.24)–(3.32), where
q = 1,m ≥ ℓ = 1, and (A3.1)–(A3.5) are satisfied. Let µ ∈ (0, 2), γ ∈ (0, 1), σ >
0, ν > 0, r = 2, and let u1,0 ∈ R2m and G1,0 ∈ Cℓ×m. Assume that there exists ks ∈ N
and ε > 0 such that for all k ≥ ks, |Im G1,∗G

∗
1,k| ≥ ε. Then, limk→∞ yk = 0.
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3.6 TDAHC Modification

Numerical testing demonstrates that actuator saturation and sensor noise can pre-
vent optimal (or even acceptable) disturbance rejection. To address this shortcoming,
we present a modified version of TDAHC. Specifically, we present a modification to
the update equation for uk to address the problem of actuator saturation. We also
present a modification to the update equation for Gi,k to address the problem of
sensor noise.

3.6.1 TDAHC Modification to Address Actuator Saturation

Let umax > 0 be the maximum allowable magnitude of each entry of the control u.
In other words, we aim to enforce the constraint that for all t ≥ 0, ∥u(t)∥∞ ≤ umax.
For all k ∈ N, consider the update equation for ui,k given by

ui,k+1 =


umax

αk+1
vi,k+1, if αk+1 > umax,

vi,k+1, otherwise,
(3.33)

where

αk+1 ≜ max
j∈{1,...,m}

q∑
i=1

∥Ejvi,k+1∥, (3.34)

vi,k+1 ≜ ui,k − µ

σi +∑q
i=1∥Gi,k∥2

F
HT(Gi,k)(fi,k+1 ⊗ Iℓ)yk+1, (3.35)

and for all j ∈ {1, 2, . . . ,m},

Ej ≜

[
ej 01×m

01×m ej

]
, (3.36)

where ej ∈ R1×m denotes the jth row of Im. The modified update (3.33)–(3.36) is
used in place of (3.24). Note that (3.15) and (3.33)–(3.35) imply that

max
t∈[kTs,(k+1)Ts)

|eju(t)| = max
t∈[kTs,(k+1)Ts)

∣∣∣∣∣
q∑
i=1

ej
(
fT
i (t) ⊗ Im

)
ui,k

∣∣∣∣∣
= max

t∈[kTs,(k+1)Ts)

∣∣∣∣∣
q∑
i=1

fT
i (t)Ejui,k

∣∣∣∣∣
≤ max

t∈[kTs,(k+1)Ts)

q∑
i=1

∣∣∣fT
i (t)Ejui,k

∣∣∣
≤ max

t∈[kTs,(k+1)Ts)

q∑
i=1

∥fi(t)∥∥Ejui,k∥
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=
q∑
i=1

∥Ejui,k∥

=


umax

αk

q∑
i=1

∥Ejvi,k∥, if αk > umax

q∑
i=1

∥Ejvi,k∥, otherwise

≤ umax

αk

q∑
i=1

∥Ejvi,k∥

≤ umax

αk
αk

= umax,

which demonstrates that (3.33)–(3.36) ensures that for all t ≥ 0, ∥u(t)∥∞ < umax.

3.6.2 TDAHC Modification to Address Sensor Noise

Let Rm ∈ R denote an upper bound on ∥Gi,k∥F. For all k ∈ Z+, consider the
update equation for Gi,k given by

Gi,k =


Rm

∥Θi,k∥F
Θi,k, if ∥Θi,k∥F ≥ Rm,

Θi,k, otherwise,
(3.37)

where

Θi,k ≜ Gi,k−1 − ηk∇Ji,k(G1,k−1, . . . , Gq,k−1). (3.38)

The modified update (3.37) and (3.38) is used in place of (3.30). Note that (3.37)
and (3.38) imply that ∥Gi,k∥F ≤ Rm.

3.7 Numerical Examples

In this section, we present numerical examples of TDAHC. Examples 3.1–3.3
illustrate the application of TDAHC to an acoustic duct system. Examples 3.4–3.6
illustrate the application of TDAHC and modified TDAHC to a 2-mass structure.

3.7.1 Acoustic Duct

Consider the acoustic duct shown in Fig. 2.2 and described in Section 2.7.1. All
parameters for the acoustic duct are the same as those considered in Section 2.7.1.

Let ω1 = 200π rad/s, ω2 = 160π rad/s, r = 5, Ts = 0.091 s, ν1 = σ1 = 1 × 10−6,
and x0 = 0. The initial estimate G0 and disturbance d is given in each example. For
each example, the control turns on at t = 1 s.

In the following example, we show that TDAHC is able to asymptotically reject
a single-tone disturbance acting on a SISO system. Note that the non-adaptive
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Figure 3.2: TDAHC for a SISO system where
|∠G1,0/G1,∗| < π

2 . The response y(t) → 0 as
t → ∞.
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Figure 3.3: Trajectory of G1,k with TDAHC
for a SISO system where |∠G1,0/G1,0| < π

2 .
The dashed lines show the locus of G such that

|∠G1,0/G1,∗| = π
2 .

version of the algorithm requires a sufficiently accurate estimate of G1,∗ for stability.
Specifically, as shown in [12, Theorem 2], the estimate G1,k must be within 90◦ of
G1,∗ for stability. In contrast, the adaptive version of the algorithm reviewed in this
chapter is stable even if the initial estimate G1,k is not within 90◦ of G1,∗ as shown
in [11, Theorem 3]. Thus, in this example, we first use an initial condition G1,0 which
is within 90◦ of G1,∗. We then use an initial condition for G1,0 which is not within
90◦ of G1,∗ to illustrate the effect that the initial estimate Gi,k has on the transient
response of y.

Example 3.1. Consider the SISO (ℓ = m = 1) system, where we let u = ψ1,
y = ϕ1, ψ2 = 0, and d(t) = 2 sinω1t + 0.2 cosω1t. Let µ1 = γ1 = 0.35. First,
consider the case where G1,0 is within 90◦ of G1,∗, specifically, let G1,0 = 0.75eȷ 3π

7 G1,∗.
Figure 3.2 presents the response y and control u. Figure 3.3 presents the trajectory
of the estimate G1,k which approaches G1,∗. TDAHC yields asymptotic disturbance
rejection.

Next, consider the case where G1,0 is not within 90◦ of G1,∗, specifically, let G1,0 =
−0.75eȷ 3π

7 G1,∗. Figure 3.4 presents the response y and control u. Figure 3.5 presents
the trajectory of the estimate G1,k which approaches G1,∗. TDAHC yields asymptotic
disturbance rejection. In contrast to the first initial condition, this initial condition
yielded a larger transient response, but TDAHC was still able to yield asymptotic
disturbance rejection. This shows that the HSS stability condition determines the
transient response of y. △

Next, we address MIMO systems using TDAHC. In the following example, we
show that TDAHC is able to asymptotically reject a single-tone disturbance acting
on a MIMO (ℓ = m = 2) system. We implement TDAHC using two initial conditions
to illustrate that the initial condition G1,0 affects the transient response of y.
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Figure 3.4: TDAHC for a SISO system where
|∠G1,0/G1,∗| > π

2 . The response y(t) → 0 as
t → ∞.
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Figure 3.5: Trajectory of G1,k with TDAHC
for a SISO system where |∠G1,0/G1,0| > π

2 .
The dashed lines show the locus of G such that

|∠G1,0/G1,∗| = π
2 .

-400

-200

0   

200 

400 

-400

-200

0   

200 

400 

-2

-1

0 

1 

2 

0 4 8 12 16
-2.5 

-1.25

0    

1.25 

2.5  

Figure 3.6: TDAHC for a MIMO system where
G1,0 = 0.5eȷ π

5 G1,∗. The response y(t) → 0 as
t → ∞.
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Figure 3.7: TDAHC for a MIMO system where
G1,0 = 0.5eȷ 6π

5 G1,∗. The response y(t) → 0 as
t → ∞.

Example 3.2. Consider the MIMO (ℓ = m = 2) system where we let u =[
ψ1 ψ2

]T
, y =

[
ϕ1 ϕ2

]T
, and d(t) = 2 sinω1t + 0.2 cosω1t. Let µ1 = γ1 = 0.7

and let G1,0 = 0.5eȷπ
5G1,∗ denote the initial estimate of G1,∗ which satisfies the non-

adaptive stability requirement presented in [12, Theorem 2]. Figure 3.6 presents the
response y and control u. TDAHC yields asymptotic disturbance rejection.

Next, we consider the initial estimate G1,0 = 0.5eȷ 6π
5 G1,∗ which does not satisfy

the non-adaptive stability requirement presented in [12, Theorem 2]. Figure 3.7
presents the response y and control u. In contrast to the first initial condition, this
initial condition yielded a larger transient response, but TDAHC was still able to
yield asymptotic disturbance rejection. This shows that the HSS stability condition
determines the transient response of y. △

Next, we consider a multi-tone disturbance acting on a MIMO system.
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Figure 3.8: TDAHC for a multi-tone disturbance acting on a MIMO system. The response
y(t) → 0 as t → ∞.

Example 3.3. Consider the MIMO (ℓ = m = 2) system where we let u =[
ψ1 ψ2

]T
, y =

[
ϕ1 ϕ2

]T
, and

d(t) = 2 sinω1t+ 0.2 cosω1t+ 2 sinω2t+ 0.2 cosω2t,

which is a 2-tone disturbance. Let µ1 = γ1 = 1.6. Let G1,0 = 1eȷπ
3G1,∗ and G2,0 =

0.75eȷπ
6G2,∗ denote the initial estimates ofG1,∗ andG2,∗, respectively, which satisfy the

non-adaptive stability requirement presented in [12, Theorem 2]. Figure 3.8 presents
the response y and control u. TDAHC yields asymptotic disturbance rejection. △

3.7.2 Two-Mass Structure

Consider the 2-mass structure shown in Fig. 2.10 and described in Section 2.7.2.
All parameters for the 2-mass structure are the same as those considered in Section
2.7.2.

For all examples, let Ts = 0.97 s, and σ1 = ν1 = 1 × 10−12. For each example, the
control turns on at t = 5 s. The disturbance forces d1 and d2 and adaptive gains µ1
and γ1 are identified in each example.

Example 3.4. Consider the SISO system where y = ξ1, ψ1 = u, ψ2 = 0, d1(t) =
200 sinω1t+ 250 cosω1t and d2 = 0, where ω1 = 8π rad/s. Let G1,0 = eȷπ

6G1,∗, which
is 30◦ away from G1,∗ and let µ1 = γ1 = 0.5. Figure 3.9 presents the response y and
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Figure 3.9: TDAHC for a SISO system in the
absence of sensor noise. The response y(t) → 0

as t → ∞.
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control u. Figure 3.10 presents the trajectory of the estimate G1,k which approaches
G1,∗. TDAHC yields asymptotic disturbance rejection. △

In the following examples, we show that actuator saturation and sensor noise can
prevent optimal (or even acceptable) disturbance rejection using TDAHC. Despite
this shortcoming, we show that modified TDAHC is able to address these problems.

In the following example, we show that modified TDAHC is able to address the
problem of actuator saturation.

Example 3.5. We reconsider Example 3.4 but let the adaptive gains µ1 = 0.5
and γ1 = 0.2 and initial estimate G1,0 = 0.8eȷ 3π

2 G1,∗. We impose actuator saturation
at um = 400 N, which is the maximum allowable magnitude of u1,k. First, we use
TDAHC to investigate the effects of actuator saturation. Figure 3.11 presents the
response y and control u. At approximately t = 8.5 s, u saturates. Despite saturation
occurring, asymptotic disturbance rejection is achieved.

Next, we revisit the simulation but implement modified TDAHC. Let umax = 395
N, which was selected to ensure |u1,k| does not exceed um. Figure 3.12 presents the
response y and control u. In contrast to TDAHC, modified TDAHC prevents actuator
saturation and yields asymptotic disturbance rejection. △

In the following example, we show that in the presence sensor noise, the estimate
Gi,k can experience drift and diverge from Gi,∗.

Example 3.6. We reconsider Example 3.4 but introduce Gaussian white noise
with a mean of 0 and variance of 8 × 10−6 m. Figure 3.13 presents the response y
and control u. Figure 3.14 presents the trajectory of the estimate G1,k. Note that
due to the presence of sensor noise, the estimate G1,k diverges significantly from G1,∗.

36



-400

-200

0   

200 

400 

0 5 10 15 20 25 30 35 40

-500

-250

0   

250 

500 

Figure 3.11: TDAHC for a SISO system with
actuator saturation. Despite the effects of

actuator saturation, asymptotic disturbance
rejection is achieved.
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Figure 3.12: Modified TDAHC for a SISO
system with actuator saturation. Asymptotic

disturbance rejection is achieved despite
actuator saturation.
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Figure 3.13: TDAHC for a SISO system in the
presence of sensor noise. Despite the presence

of drift in the estimate G1,k, the response
y(t) → 0 as t → ∞.
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Figure 3.14: Trajectory of G1,k with TDAHC
for a SISO system in the presence of sensor
noise. The dashed lines show the locus of G

such that |∠G1,0/G1,∗| = π
2 . Due to the

presence of sensor noise, the estimate G1,k

diverges significantly from G1,∗.

Despite this effect, TDAHC yields asymptotic disturbance rejection.
Next, we revisit the simulation but implement modified TDAHC to address the

problem of sensor noise. Let Rm = 4 × 10−3 which bounds Gi,k and ensures that
|Gi,k| < Rm. Figure 3.15 presents the response y and control u. Figure 3.16 presents
the trajectory of the estimate G1,k. Note that despite the presence of sensor noise,
modified TDAHC constrains the estimate G1,k by Rm which mitigates the affect of
drift. Modified TDAHC yields asymptotic disturbance rejection. △

In the next example, we implement modified TDAHC on a system acted on by a
multi-tone disturbance that is subject to both actuator saturation and sensor noise.
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Figure 3.15: Modified TDAHC for a SISO
system in the presence of sensor noise. Despite
the presence of drift in the estimate G1,k, the

response y(t) → 0 as t → ∞.
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Figure 3.16: Trajectory of G1,k with Modified
TDAHC for a SISO system in the presence of
sensor noise. The dashed lines show the locus
of G such that |∠G1,0/G1,∗| = π

2 . Despite the
presence of sensor noise, modified TDAHC
constrains the estimate G1,k by Rm which

mitigates the affect of drift.

Example 3.7. Consider the SISO system where y = ξ1, ψ1 = u, ψ2 = 0,

d1(t) = 200 sinω1t+ 250 cosω1t, d2(t) = 200 sinω2t+ 250 cosω2t,

where ω1 = 16π rad/s and ω2 = 8π rad/s. Let G1,0 = 0.75eȷ 5π
2 G1,∗ and let G2,0 =

3.5eȷ 3π
2 G2,∗. Let µ1 = γ1 = 0.6. We impose actuator saturation at um = 655 N,

which is the maximum allowable magnitude of ui,k. To ensure actuator saturation
does not occur, we let umax = 650 N, which was selected to ensure |ui,k| does not
exceed um. We also introduce Gaussian white noise with a mean of 0 and variance of
8×10−6 m. To mitigate the effect of drift in Gi,k caused by the Gaussian white noise,
we select Rm = 4 × 10−3 which bounds Gi,k and ensures that |Gi,k| < Rm. Figure
3.17 presents the response y and control u. Modified TDAHC yields asymptotic
disturbance rejection. △

3.8 Conclusion

First, this chapter reviewed TDAHC, which is introduced in [12]. Next, we noted
that sensor noise and actuator saturation can negatively impact the performance of
TDAHC. To address this shortcoming, we presented a modification to TDAHC to
alleviate the problems of sensor noise and actuator saturation.

A comparison of between the examples using FDAHC in Ch. 2 to the examples
presented in this chapter which utilized TDAHC reveals a few key trade-offs between
the algorithms:

1) FDAHC is less susceptible to measurement noise due to properties of the DFT.
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Figure 3.17: Modified TDAHC for a SISO system acted on by a multi-tone disturbance that is
subject to actuator saturation and sensor noise. Asymptotic disturbance rejection is achieved.

Since the DFT performs batch processing, it is able to average the data and
filter out some of the sensor noise. In contrast, TDAHC does not utilize a
DFT and is, thus, more susceptible to measurement noise. For example, by
comparing the average power of Fig. 2.17 using FDAHC to Fig. 3.13 using
TDAHC, we see that FDAHC has an average power that is about 10% lower
than TDAHC (i.e., 0.0011 mm2 compared to 0.0012 mm2). These effects are
observed in greater detail in Ch. 4 where real world experiments are presented
that draw a greater contrast between the algorithms.

2) FDHAC is less influenced by the transient response of y due to the averaging
properties of the DFT. In contrast, TDAHC is generally more sensitive to the
transient response of y. For example, compare Fig. 2.16, which has a peak tran-
sient response of 200 mm (FDAHC) to Fig. 3.12, which has a peak transient
response of 298 mm (TDAHC). This effect can also be observed by comparing
Fig. 2.19, which has a peak transient response of 150 mm (FDAHC) to Fig.
3.17, which has a peak transient response of 285 mm (TDAHC).

3) TDAHC can be implemented with larger control gains which can yield faster
steady-state performance convergence times compared to that of FDAHC. In
addition, TDAHC also does not require the use of a DFT which eliminates the
need of batch processing. Note that in this chapter, we implemented TDAHC
and FDAHC using parameters that were selected to yield similar performance.
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However, in practice, TDAHC parameters can be selected higher to yield faster
convergence times compared to that of FDAHC. This concept is explored fur-
ther in Ch. 4 where real world experiments are presented.
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Chapter 4
Active Noise Control Experiments

In this chapter, we present experimental results that compare modified FDAHC
to modified TDAHC. Each experiment aims to answer the following questions:

• Experiment 4.1: How does the initial estimate Gi,k affect the performance and
transient response for SISO systems?

• Experiment 4.2: How do FDAHC and TDAHC perform if there is an error in
the estimate of the disturbance frequency?

• Experiment 4.3: What are the optimal values of Ts, γi, and µi for a specific
experimental setup? What trade-offs in performance exist between FDAHC
and TDAHC when the algorithms are tuned to yield the fastest convergence
speed?

• Experiment 4.4: What are the trade-offs in performance when rejecting a multi-
tone disturbance (i.e., q ≥ 2) versus a single-tone (i.e., q = 1) disturbance?

4.1 Experiment Design

This section reviews the design of the experiments. A photo of the general exper-
imental setup is shown in Fig. 4.1. However, multiple configurations of the perfor-
mance microphone, control speaker, and disturbance speaker are used. Thus, each
experiment provides a schematic identifying the configuration of these elements. The
performance measurement signal from the microphone is amplified by a SM Pro Au-
dio PR8E microphone pre-amplifier. Each speaker is an M-Audio AV42 2-way 4-in
monitor. The microphone is an Audio2000 1064BL vocal microphone. The controller
is implemented on a dSPACE DS1103 controller board. Note that no system informa-
tion is required to implement FDAHC or TDAHC, and we do not use any knowledge
of the characteristics or locations of the components of the experiments to implement
FDAHC and TDAHC.

All data is sampled at 10,000 Hz. Let um > 0 be the maximum allowable magni-
tude for each control input. For all control speakers, um = 447 × 10−3 V. Thus, we
select umax = 400 × 10−3 V for implementation of FDAHC and TDAHC to ensure
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Figure 4.1: General experiment configuration.

actuator saturation does not occur.
For all experiments, TDAHC is implemented with r = 4. The values for the

gains µi, γi, σi, νi; the update time Ts; and the projection radius Rm are provided
in each experiment. In Experiments 4.1, 4.2, and 4.4 the control is turned on after
5 s of open-loop operation. In Experiment 4.3, the control is turned on after 1 s of
open-loop operation.

4.2 Results from Active Noise Control Experiments

We present results from four active noise control experiments that were conducted
to compare FDAHC and TDAHC.

Experiment 4.1. This experiment shows that FDAHC and TDAHC are capable
of asymptotically rejecting a single-tone (q = 1) disturbance acting on an unknown
SISO system regardless of the initial estimate G1,0. We examine two initial conditions
G1,0, which have angles that are 180◦ apart. The 180◦ difference guarantees that one of
the initial conditions satisfies the higher-harmonic control (HHC) stability condition
(i.e., G1,0 is within 90◦ of Gyu(ȷω1)), whereas the other initial condition does not
satisfy the stability condition.

The configuration for this experiment is in Fig. 4.2. In this configuration, one
microphone measures the response y, one speaker provides the control u, and one
speaker provides the disturbance d. The disturbance is d(t) = 0.1 sinω1t, where
ω1 = 250π rad/s (i.e., 125 Hz). We consider the initial condition 0.1 − ȷ0.2 and
−0.1 + ȷ0.2, which have angles that are 180◦ apart.

Next, we discuss the selection of the update time Ts; implementation of the DFT;
choice of gains µi, γi, ρi, νi; and the projection radius Rm. These values are shown
in Table 4.1.

The settling time of the system at frequency ω1 is experimentally determined to
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Table 4.1: Control parameters for Experiment 4.1.

Parameter FDAHC TDAHC
Ts 0.064 s 0.055 s
µ1 0.3 0.65
γ1 0.3 0.4
σ1 10−7 10−5

ν1 10−7 10−5

Rm 10 10

be approximately THSS = 0.05 s. FDAHC requires that the update period satisfy
Ts ≥ THSS + 2π/ω1, while TDAHC requires that the update period satisfy Ts ≥ THSS.
In addition, FDAHC requires that ω1Ts = 2πn where n ∈ Z+ (that is, Ts is an integer
multiple of 2π/ω1), and TDAHC requires that ω1Ts ̸= nπ where n ∈ Z+ (that is, Ts is
not an integer multiple of π/ω1). With these constraints in mind, the control update
periods are chosen to be Ts = 0.064 s for FDAHC and Ts = 0.055 s for TDAHC.

The discrete Fourier transform (DFT) used with FDAHC is implemented using
the last 2π/ω1 = 0.0008 s of data from each update period. Since the data is sampled
at 10 kHz, it follows that at each update the DFT is computed from the final 80 data
points sampled over that interval.

The gains gains µ1, γ1, ρ1, ν1 are selected based on empirical testing to obtain
good convergence speed (i.e., the time required to reach steady state) without large
peak transients.

The projection radius Rm is selected to be large enough to allow G1,k to adapt
over a large region.

The system response y and u, and trajectory of G1,k are presented in Figs.
4.3–4.10 for FDAHC and TDAHC with G1,0 = 0.1 − ȷ0.2 and G1,0 = −0.1 + ȷ0.2.
Both FDAHC and TDAHC attenuate the disturbance yielding near-zero steady-state
performance as shown in Figs. 4.3, 4.5, 4.7, and 4.9. Both algorithms also adapt
the estimate G1,k regardless of the initial condition as shown in Figs. 4.4, 4.6, 4.8,
and 4.10. In general, the initial condition that is within 90◦ of Gyu(ȷω1) results in a
smaller peak transient response. For this reason, it is likely that the initial condition
0.1−ȷ0.2 satisfies the HHC stability condition whereas the initial condition −0.1+ȷ0.2
does not.

Experiment 4.2. In practice, the frequency of the disturbance may not be known
exactly. This experiment examines which algorithm is more robust to uncertainty in
the disturbance frequency.

The configuration for this experiment is shown in Fig. 4.11. In this configuration,
one microphone measures the response y, one speaker provides the control u, and one
speaker provides the disturbance d. We use the initial condition 0.05 − ȷ0.25.

For all results, the control algorithms are implemented to attenuate a disturbance
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Figure 4.2: Experiment 4.1 configuration.
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Figure 4.3: FDAHC with G1,0 = 0.1 − ȷ0.2.
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Figure 4.4: Trajectory of G1,k for FDAHC
with G1,0 = 0.1 − ȷ0.2.
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Figure 4.5: FDAHC with G1,0 = −0.1 + ȷ0.2.
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Figure 4.6: Trajectory of G1,k for FDAHC
with G1,0 = −0.1 + ȷ0.2.
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Figure 4.7: TDAHC with G1,0 = 0.1 − ȷ0.2.
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Figure 4.8: Trajectory of G1,k for TDAHC
with G1,0 = 0.1 − ȷ0.2.

0 5 10 15 20

-40

-20

0  

20 

40 

0 5 10 15 20

-60

-30

0  

30 

60 

Figure 4.9: TDAHC with G1,0 = −0.1 + ȷ0.2.
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Figure 4.10: Trajectory of G1,k for TDAHC
with G1,0 = −0.1 + ȷ0.2.
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Table 4.2: Control parameters for Experiment 4.2.

Parameter. FDAHC TDAHC
Ts 0.064 0.055
µ1 0.2 0.4
γ1 0.5 0.9
σ1 10−7 10−4

ν1 10−7 10−4

Rm 100 100

with a frequency of ω1 = 250π rad/s (i.e., f = 125 Hz). However, the true frequency
fd of the disturbance is not necessarily 125 Hz. Each algorithm is tested at 19 dif-
ferent values of fd from 124.55 Hz to 125.45 Hz changing in 0.05 Hz increments. In
particular, d(t) = 0.1 sin 2πfdt.

The algorithm parameters used in this experiment are in Table 4.2. The update
time Ts and the DFT implementation in this experiment are the same as in Experi-
ment 4.1.

The gains µ1, γ1, σ1, and ν1 are selected based on empirical testing to obtain sim-
ilar convergence speeds between FDAHC and TDAHC for the nominal case where
fd = f = 125 Hz. The adaptive gains of µ1 = 0.2 and γ1 = 0.5 are selected for
FDAHC. Numerical simulations demonstrate that a reasonable rule of thumb for de-
termining FDAHC and TDAHC gains that yield similar convergence speed is to select
µ1/Ts and γ1/Ts for TDAHC as double that for FDAHC. Using this relationship as a
starting point, combined with experimental testing, results in µ1 = 0.4 and γ1 = 0.9
for TDAHC.

For FDAHC, numerical and empirical testing demonstrates that the normaliza-
tion gains σ1 and ν1 should be small relative to the squared Frobenius norm of G1,0,
that is, σ1 ≪∥G1,0∥2

F and ν1 ≪∥G1,0∥2
F. Using this metric as a guideline, we select

σ1 = ν1 = 10−7 for FDAHC. For TDAHC, we select σ1 = ν1 = 10−4 to obtain similar
performance to FDAHC.

The system response for the nominal case where f = fd = 125 Hz is shown in
Figs. 4.12–4.13. For the nominal case, FDAHC and TDAHC attenuate the distur-
bance yielding a near-zero steady-state response.

Figures 4.14 and 4.15 show the average power of y using FDAHC and TDAHC
for each of the 19 disturbance frequencies tested. The average power of y for each
case is computed using 150 s of data, specifically,

J ≜
1

N + 1

N∑
k=0

∥y(10−4k)∥2,

where N = 150 × 104 data points. The average among trials is 42.6 mV2 for FDAHC
compared to 19.7 mV2 for TDAHC. This difference is due primarily to trials where

46



d

u
y

dSPACE
Controller Board

Microphone
Pre-amplifier

A/DD/A

Multiplexer

Controller

Demultiplexer
28

.5
cm15.5 cm

Figure 4.11: Experiment 4.2 configuration.

f − fd ∈ {−0.45,−0.4, 0.4, 0.45}. For these trials, the average power with FDAHC
is higher than that without control (i.e., open-loop). In contrast, TDAHC achieves
significant attenuation on these trials. However, for trials where f−fd ∈ (−0.35, 0.35),
the average power with FDAHC is less than that with TDAHC.

Figures 4.16 and 4.17 show the magnitude of peak response of y using FDAHC
and TDAHC for each of the 19 disturbance frequencies tested. The magnitude of the
peak response is

P ≜ max
k∈{0,...,N}

|y(10−4k)|,

where N = 150 × 104 data points. Figures 4.16 and 4.17 show that the magnitude of
the peak response is generally smaller with FDAHC than with TDAHC. The mag-
nitude of the peak response averaged over all 19 disturbance frequencies is 24.5 mV
with FDAHC and 29.0 mV with TDAHC. However, there are disturbance frequen-
cies (e.g.,124.55 Hz, 124.6 Hz, 125.4 Hz, and 125.45 Hz) where TDAHC outperforms
FDAHC.

Figures 4.18–4.53 show the system response with FDAHC and TDAHC for each
of the 18 off nominal cases for fd. Note that in general, the response with FDAHC
is more smooth than that with TDAHC. This property is most likely a result of the
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fact that FDAHC uses the DFT, which can have an averaging effect.
Based on the results in Figs. 4.14–4.53, we conclude that FDAHC tends to perform

better than TDAHC if there is uncertainty in the disturbance frequency. However,
this trend does not hold at all frequencies. For example, Figs. 4.14 and 4.15 show
that TDAHC outperforms FDAHC if the frequency error |f − fd| exceeds 0.35 Hz.
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Figure 4.12: FDAHC for fd = 125 Hz.
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Figure 4.13: TDAHC for fd = 125 Hz.
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Figure 4.14: Average power for FDAHC.
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Figure 4.15: Average power for TDAHC.
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Figure 4.16: Magnitude of peak response for
FDAHC.
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Figure 4.17: Magnitude of peak response for
TDAHC.
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Figure 4.18: FDAHC for fd = 124.55 Hz.
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Figure 4.19: TDAHC for fd = 124.55 Hz.
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Figure 4.20: FDAHC for fd = 124.6 Hz.
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Figure 4.21: TDAHC for fd = 124.6 Hz.
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Figure 4.22: FDAHC for fd = 124.65 Hz.
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Figure 4.23: TDAHC for fd = 124.65 Hz.
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Figure 4.24: FDAHC for fd = 124.7 Hz.
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Figure 4.25: TDAHC for fd = 124.7 Hz.
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Figure 4.26: FDAHC for fd = 124.75 Hz.

0  30 60 90 120 150

-35

-25

-15

-5 

5  

15 

25 

35 

0  30 60 90 120 150

-60

-40

-20

0  

20 

40 

60 

Figure 4.27: TDAHC for fd = 124.75 Hz.
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Figure 4.28: FDAHC for fd = 124.8 Hz.
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Figure 4.29: TDAHC for fd = 124.8 Hz.
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Figure 4.30: FDAHC for fd = 124.85 Hz.
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Figure 4.31: TDAHC for fd = 124.85 Hz.
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Figure 4.32: FDAHC for fd = 124.9 Hz.
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Figure 4.33: TDAHC for fd = 124.9 Hz.
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Figure 4.34: FDAHC for fd = 124.95 Hz.
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Figure 4.35: TDAHC for fd = 124.95 Hz.
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Figure 4.36: FDAHC for fd = 125.05 Hz.
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Figure 4.37: TDAHC for fd = 125.05 Hz.
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Figure 4.38: FDAHC for fd = 125.1 Hz.
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Figure 4.39: TDAHC for fd = 125.1 Hz.
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Figure 4.40: FDAHC for fd = 125.15 Hz.
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Figure 4.41: TDAHC for fd = 125.15 Hz.
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Figure 4.42: FDAHC for fd = 125.2 Hz.
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Figure 4.43: TDAHC for fd = 125.2 Hz.
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Figure 4.44: FDAHC for fd = 125.25 Hz and
fc = 125 Hz.
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Figure 4.45: TDAHC for fd = 125.25 Hz.
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Figure 4.46: FDAHC for fd = 125.3 Hz.
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Figure 4.47: TDAHC for fd = 125.3 Hz.
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Figure 4.48: FDAHC for fd = 125.35 Hz.
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Figure 4.49: TDAHC for fd = 125.35 Hz.
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Figure 4.50: FDAHC for fd = 125.4 Hz.
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Figure 4.51: TDAHC for fd = 125.4 Hz.
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Figure 4.52: FDAHC for fd = 125.45 Hz.
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Figure 4.53: TDAHC for fd = 125.45 Hz.

Experiment 4.3. This experiment compares the convergence speed (i.e., time
required to reach steady-state performance), average power, and magnitude of the
peak response using FDAHC and TDAHC when tuned to yield the fastest possible
convergence speed.

The configuration for this experiment is shown in Fig. 4.54. In this configuration,
one microphone measures the response y, one speaker provides the control u, and one
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Figure 4.54: Experiment 4.3 configuration.
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Figure 4.55: Initial conditions where |G1,0| = 0.04.

55



Re G1,0

Im G1,0

0◦

90◦

180◦

270◦

360◦
IC15 IC13

IC16

IC14

Figure 4.56: Initial conditions where |G1,0| = 0.02.

Table 4.3: Control parameters for Experiment 4.3.

Parameter. FDAHC TDAHC
Ts 0.064 s 0.055 s
µ1 0.25 1.1
γ1 0.45 0.7
σ1 10−10 10−6

ν1 10−10 10−6
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Figure 4.57: Convergence time of FDAHC.
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Figure 4.58: Convergence time of TDAHC.

speaker provides the disturbance d. The disturbance is d(t) = 0.1 sinω1t, where ω1 =
250π rad/s (i.e., 125 Hz). We use 16 initial conditions for G1,0 that are distributed
around circles of radius 0.04 and 0.02. For the first 12 initial conditions, we let
|G1,0| = 0.04. For the last 4 initial conditions, we let |G1,0| = 0.02. For each initial
condition, 4 trials are performed. A graphical representation of the initial conditions
is presented in Figs. 4.55 and 4.56.

The algorithm parameters used in this experiment are in Table 4.3. The update time
Ts and the DFT implementation in this experiment are the same as in Experiment
4.1.

Empirical testing suggests that the fastest possible convergence speed with this
configuration occurs using µ1 = 0.25 and γ1 = 0.45 for FDAHC, and µ1 = 1.1 and
γ1 = 0.7 for TDAHC. Similarly, empirical testing suggests that the fastest convergence
speed with this experimental configuration occurs using σ1 = ν1 = 10−10 for FDAHC,
and σ1 = ν1 = 10−6 for TDAHC.

Figures 4.57 and 4.58 show the convergence time using FDAHC and TDAHC.
For each trial, convergence time tconv ≥ 0 is the smallest time such that

min
t≥tconv

|y(t)| ≤ δconv,

where the threshold δconv = 0.5 × 10−3 V is determined from that data noise level.
Figures 4.57 and 4.58 show that FDAHC attenuates the disturbance more quickly
than TDAHC. The convergence time averaged among all initial conditions is 0.82
s with FDAHC and 0.95 s with TDAHC. As an example, Figs. 4.59–4.60 show
the response for IC1 where FDAHC outperforms TDAHC. However, there are initial
conditions where TDAHC outperforms FDAHC such as IC3 shown in Figs. 4.61–4.62.
The higher convergence time with TDAHC is primarily due to a higher magnitude
of peak response on most initial conditions and the algorithm being more sensitive
to sensor noise compared to FDAHC. Note that FDAHC utilizes a DFT which can
have an averaging effect that can produce a smoother response.

Figures 4.63 and 4.64 show that the magnitude peak response of y using FDAHC
and TDAHC for each of the 16 initial conditions tested. The magnitude of the peak
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Figure 4.59: FDAHC with IC1.
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Figure 4.60: TDAHC with IC1.
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Figure 4.61: FDAHC with IC3.
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Figure 4.62: TDAHC with IC3.

response is

P ≜ max
k∈{0,...,N}

|y(10−4k)|,

where N = 10 × 104 data points. The magnitude of the peak response averaged over
the 16 initial conditions is 32 mV and 35 mV for FDAHC and for TDAHC. However,
there are initial conditions (e.g., IC2, IC3, and IC10) where TDAHC outperforms
FDAHC. This suggests that implementing larger control gains with TDAHC comes
at the cost of increasing the magnitude peak response which does not always lend
itself to achieving faster convergence speeds.

Figures 4.65 and 4.66 show the average power of y using FDAHC and TDAHC
for each of the 16 initial conditions tested. The average power of y for each initial
condition is computed using 10 s of data, specifically,

J ≜
1

N + 1

N∑
k=0

∥y(10−4k)∥2,
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Figure 4.63: Magnitude of the peak response
for FDAHC.
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Figure 4.64: Magnitude of the peak response
for TDAHC.
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Figure 4.65: Average power for FDAHC.
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Figure 4.66: Average power for TDAHC.

Table 4.4: Experiment 4.3 summary of results.

Metric FDAHC TDAHC
Average Convergence Time (s) 0.82 0.95

Average Power (mV2) 12 17
Magnitude of Peak Response (mV) 32 35

where N = 10 × 104 data points. Figures 4.65 and 4.66 show that FDAHC generally
has a lower average power compared to TDAHC. The average power among all trials
is 12 mV2 with FDAHC and 17 mV2 with TDAHC.

Table 4.4 summarizes the average values among all trials for metrics of con-
vergence time, average power, and peak of peak response. Based on the results in
Figs. 4.57–4.58 and Figs. 4.63–4.66, we conclude that FDAHC tends to outperform
TDAHC under this experiment configuration if convergence speed is the objective.
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Table 4.5: Control parameters for Experiment 4.4.

Parameter. FDAHC TDAHC
Ts 0.1 s 0.061 s

µ1 = µ2 0.1 0.2
γ1 = γ2 0.5 0.8
σ1 = σ2 10−6 10−6

ν1 = ν2 10−6 10−6

Rm 100 100

Experiment 4.4. This experiment shows that FDAHC and TDAHC are capable
of asymptotically rejecting a multi-tone (specifically, q = 2) disturbance acting on an
unknown SISO system. We compare the performance of FDAHC and TDAHC using
both a single-tone and multi-tone disturbance. We use two initial conditions for Gi,k,
which have angles that are 180◦ apart. The 180◦ difference guarantees that one of
the initial conditions satisfies the HHC stability condition (i.e., Gi,0 is within 90◦ of
Gyu(ȷωi)), whereas the other initial condition does not satisfy the stability condition.

The configuration for this experiment is shown in Fig. 4.67. In this configuration,
one microphone measures the response y, one speaker provides the control u, and one
speaker provides the disturbance di. We use two disturbance frequencies for this test,
let f1 = 180 Hz and let f2 = 200 Hz. For the case of a single-tone disturbance using
f1, we let

d(t) = η1(t) ≜ 0.0065 sin 2πf1t+ 0.0065 cos 2πf1t.

For the case of a single-tone disturbance using f2, we let

d(t) = η2(t) ≜ 0.0065 sin 2πf2t+ 0.0065 cos 2πf2t.

For the case of a multi-tone disturbance using f1 and f2, we let

d(t) = η3(t) ≜ 0.0065 sin 2πf1t+ 0.0065 cos 2πf1t+ 0.0078 sin 2πf2t+ 0.0078 cos 2πf2t.

We consider the initial condition 0.3 − ȷ0.3 and −0.3 + ȷ0.3, which have angles that
are 180◦ apart.

The parameters µi, γi, Ts, σi, νi are selected based on empirical testing to obtain
good convergence speed and a low peak transient response. Table 4.5 shows the
algorithm parameters used in this experiment.

The system response y and u is presented in Figs. 4.68–4.73 for FDAHC and
TDAHC with Gi,0 = 0.3−ȷ0.3 and Gi,0 = −0.3+ȷ0.3, where i ∈ {1, 2} as appropriate.
Both FDAHC and TDAHC attenuate the single-tone and multi-tone disturbances
yielding near-zero steady-state performance.

For each trial, convergence time tconv ≥ 0 is the smallest time such that
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Figure 4.67: Experiment 4.4 configuration
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Figure 4.68: Response to single-tone
disturbance d = η1 using G1,0 = 0.3 − ȷ0.3.
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Figure 4.69: Response to single-tone
disturbance d = η1 using G1,0 = −0.3 + ȷ0.3.
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Figure 4.70: Response to single-tone
disturbance d = η2 using G1,0 = 0.3 − ȷ0.3.
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Figure 4.71: Response to single-tone
disturbance d = η2 using G1,0 = −0.3 + ȷ0.3.
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Figure 4.72: Response to multi-tone
disturbance d = η3 using
G1,0 = G2,0 = 0.3 − ȷ0.3.
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Figure 4.73: Response to multi-tone
disturbance d = η3 using

G1,0 = G2,0 = −0.3 + ȷ0.3.
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Table 4.6: Convergence time.

G1,0 = 0.3 − ȷ0.3 G1,0 = −0.3 + ȷ0.3

FDAHC TDAHC FDAHC TDAHC

d = η1 9.6 s 5.2 s 5.2 s 4.0 s

d = η2 7.8 s 4.7 s 6.1 s 4.8 s

d = η3 8.7 s 8.2 s 5.8 s 12.5 s

min
t≥tconv

|y(t)| ≤ δconv,

where the threshold δconv = 0.5 × 10−3 V is determined from that data noise level.
A comparison of the single-tone disturbance response to the multi-tone disturbance
response shows that FDAHC attenuates the single-tone and multi-tone disturbance
in approximately the same time. In contrast, TDAHC attenuates the single-tones
more quickly. Table 4.6 presents the convergence times. The average FDAHC con-
vergence time with the single-tone disturbances is 7.2 s compared to 7.3 s with the
multi-tone disturbance. In contrast, the average TDAHC convergence time with the
single-tone disturbances is 4.7 s compared to 10.4 s with the multi-tone disturbance.
This suggests that the number of disturbance tones has a small impact on FDAHC
convergence time.

A comparison of the magnitude of the peak responses for each case shows that
with FDAHC is generally higher than that with TDAHC magnitude of peak response.
Table 4.7 presents the magnitude of peak response for each algorithm. The magnitude
of the peak response is

P ≜ max
k∈{0,...,N}

|y(10−4k)|,

where N = 35 × 104 data points. The average single-tone FDAHC magnitude of
peak response is 153 mV2 while the average single-tone TDAHC magnitude of peak
response is 46 mV2. Similarly, a comparison of the multi-tone disturbance response
shows that the FDAHC magnitude of peak response is generally higher than the
TDAHC magnitude peak response. The average multi-tone FDAHC magnitude of
peak response is 190 mV2 while the average magnitude of peak response with TDAHC
is 37 mV2.

In conclusion, we note that the number of disturbance tones generally increases
convergence times for TDAHC but does not significantly affect FDAHC convergence
times. In addition, in contrast to FDAHC, the TDAHC magnitude of peak response
is generally not affected by the number of disturbance tones. Note that empirical
data suggests if the adaptive control gain γ1 was selected smaller for each algorithm,
the resulting magnitude of the peak response would have likely decreased into a
similar range of values. This is because γ1 directly affects the scaling of Gi,k during
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Table 4.7: Magnitude of the peak response.

G1,0 = 0.3 − ȷ0.3 G1,0 = −0.3 + ȷ0.3

FDAHC TDAHC FDAHC TDAHC

d = η1 509 mV 47 mV 32 mV 35 mV

d = η2 44 mV 30 mV 25 mV 74 mV

d = η3 343 mV 39 mV 36 mV 36 mV

each update period and larger values can lead to more adaptation required to reach
stability.
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Chapter 5
Conclusions and Future Work

We reviewed two adaptive control techniques that address the problem of rejecting
sinusoidal disturbances with known frequencies that act on a completely unknown
asymptotically stable linear time-invariant (LTI) system. The first method is FDAHC
introduced in [11] and the second method is TDAHC introduced in [12]. Modifications
of the FDAHC and TDAHC algorithms were presented to address sensor noise and
actuator saturation. We demonstrated the effectiveness of each algorithm through
numerical simulations in Ch. 2 and Ch. 3. The main contribution in this thesis is
presented in Ch. 4 where results from active noise control experiments are presented
that examine the strengths and weaknesses of each algorithm when implementing in
the real world.

5.1 Trade-offs for Adaptive Algorithms

We summarize the main characteristics and trade-offs of FDAHC and TDAHC in
the list below:

1) FDAHC is less susceptible to measurement noise due to the DFT. Since the
DFT performs batch processing, it has the effect of filtering out some sensor
noise. In contrast, TDAHC does not utilize a DFT and is, thus, more suscep-
tible to measurement noise.

2) FDHAC is less influenced by the transient response due to the averaging proper-
ties of the DFT. In contrast, TDAHC is generally more sensitive to the transient
response.

3) TDAHC can be implemented with larger control gains which can yield faster
steady-state performance convergence times compared to that of FDAHC. How-
ever, implementing larger control gains can increase the peak transient response.
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4) FDAHC tends to outperform TDAHC when there is uncertainty in the distur-
bance frequency.

5) The convergence time using FDAHC is generally not affected by the number
of disturbance tones. In contrast, TDAHC convergence times tend to increase
with the number of disturbance tones. In addition, the magnitude of the peak
response is generally larger with FDAHC compared to TDAHC when the num-
ber of disturbance tones is increased.

5.2 Recommendations for Future Work

In Ch. 4 we conducted experiments using a combination of speakers and micro-
phones in a controlled environment. In the future, it may be beneficial to explore
integrating these control methods into the design of buildings–an environment that
is susceptible to noise generation from utilities and equipment. Further consideration
should go into addressing the problems of noise that is generated inside ductwork
and vibration emitted from mechanical equipment. Currently, these problems are
addressed in the industry by over-sizing ductwork to reduce the velocity of the air,
installing expensive internal acoustical insulation or sound attenuators, or designing
vibration spring isolators. However, these strategies tend to increase building costs,
add complexity to the design, and can reduce the space that is available to route
other above ceiling utilities. For this reason, it is worth studying how to integrate
these control methods into building design to improve the health of the building and
happiness of the occupants.
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