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ABSTRACT OF DISSERTATION 

 

 

EXPLORATION OF LIGNIN-BASED SUPERABSORBENT POLYMERS 

(HYDROGELS) FOR SOIL WATER MANAGEMENT AND AS A CARRIER FOR 

DELIVERING RHIZOBIUM SPP. 

 

Superabsorbent polymers (hydrogels) as soil amendments may improve soil 

hydraulic properties and act as carrier materials beneficial to soil microorganisms. 

Researchers have mostly explored synthetic hydrogels which may not be environmentally 

sustainable. This dissertation focused on the development and application of lignin-based 

hydrogels as sustainable soil amendments. This dissertation also explores the development 

of pedotransfer transfer functions (PTFs) for predicting saturated hydraulic conductivity 

using statistical and machine learning methods with a publicly available large data set. 

A lignin-based hydrogel was synthesized, and its impact on soil water retention was 

determined in silt loam and loamy fine sand soils. Hydrogel treatment significantly 

increased water retention at saturation/near saturation by 0.12 cm3 cm-3 and at field 

capacity by 0.08 cm3 cm-3 for silt loam soil compared to a control treatment with no added 

lignin hydrogel. Hydrogel application significantly increased water retention at -3 cm to -

15,000 cm soil water pressure head by 0.01 - 0.03 cm3 cm-3 for the loamy fine sand soil. 

Calculations demonstrated that at a 1% (w/w) concentration or lower, lignin-based 

hydrogels in silt loam and loamy fine sand soils would not increase plant available soil 

water storage. The incorporation of lignin-hydrogels significantly decreased saturated 

hydraulic conductivity. In unsaturated conditions, application of the lignin-based hydrogel 

at 0.1 and 0.3% (w/w) increased hydraulic conductivity. 

New pedotransfer functions (PTFs) for predicting saturated hydraulic conductivity 

were developed using machine learning (ML) and a large public database. Random forest 

regression and gradient boosted regression both gave the best performances with R2 = 

0.71 and RMSE = 0.47 cm h-1 on the validation data set.  

The concentration of lignin-alginate hydrogel added to Rhizobial cell culture did 

not affect cell survival. All treatments of wet bioencapsulated beads achieved a similar 

yield of 97% , however, the presence of starch in the lignin-alginate beads increased the 

survival of Rhizobium cells. 

 

KEYWORDS: Lignin, Soil water retention curve, Super absorbent polymers, 

Pedotransfer functions, Soil amendments, and Bioencapsulation. 
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CHAPTER 1. INTRODUCTION 

1.1 Organization of Thesis 

There are seven chapters in this dissertation. In the first chapter, we give a general 

introduction to the dissertation and establish the importance for research gaps that this 

dissertation addresses. The general introduction also outlines the specific objectives and 

hypotheses of the dissertation. The second chapter serves as an extensive literature review 

for this dissertation.  

Chapter three describes the experiments conducted to investigate the effects of 

amending lignin-based hydrogels on soil water retention in two soils (silt loam and loamy 

fine sand). A lignin-based hydrogel was synthesized, and its swelling kinetics were 

determined to ascertain the swelling ratio of the hydrogel. The hydrogel was characterized 

by studying its internal morphology and functional groups present which allows it to 

function as a water retention material. The soil water retention curve of the amended soils 

was then determined.  

In the fourth chapter, we describe the impacts of amending the lignin-hydrogel on 

saturated and unsaturated soil hydraulic conductivity using various laboratory methods 

coupled with numerical simulations.  

In the fifth chapter, we describe a process for developing new pedotransfer functions 

(PTFs) for predicting saturated hydraulic conductivity using machine learning (ML) 

algorithms and a large database of over 8000 soil samples.  

Chapter six describes experiments investigating the feasibility of using lignin-

alginate beads with a starch additive to bioencapsulate and release Rhizobial cells.  
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The seventh chapter summarizes the dissertation and identifies research areas for 

future exploration. 

1.2 Introduction 

Superabsorbent polymers (hydrogels) have been proposed as soil amendments that could 

be used to increase water use efficiency as the hydrogels trap water that would have 

otherwise drained beyond the plant roots (Andry et al., 2009). Hydrogels are materials with 

hydrophilic structures and networks of polymer chains that are known to absorb and retain 

copious amounts of water within their three-dimensional networks (Ahmed, 2015) while 

maintaining their stability and network structure (Ranganathan et al., 2019). Hydrogels 

have attracted attention from researchers from various backgrounds i.e., medicine, food, 

pharmaceutical and agricultural industries with the goal to capitalize on hydrogels’ 

swelling capacities to solve diverse problems. Agriculture is known to be one of the highest 

consumers of water (Ghobashy, 2020) and thus, may benefit from soil amendments that 

are added to soil to prevent plant water stress or for improving soil physical properties.  

 Synthetic hydrogels have been the most widely utilized and researched form of 

hydrogels in agriculture, and these hydrogels are synthesized from polyacrylamide and 

polyacrylate (Mikkelsen, 1994). The wide usage of synthetic hydrogels has drawn the 

attention of researchers to investigate producing hydrogels from green alternatives i.e., 

biopolymers which are claimed to have the advantages of being easily degradable and 

biocompatible compared to synthetic hydrogels (Kalinoski & Shi, 2019; Ma et al., 2015; 

Meng et al., 2019b).  
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 Lignin-based hydrogels have been successfully developed, characterized 

(Kalinoski & Shi, 2019; Passauer, 2012) and shown to be a viable option for agricultural 

soils since they are non-toxic to the environment and biodegradable (Meng et al., 2019b; 

Rico-García et al., 2020). Lignin is a naturally occurring phenolic polymer and the second 

most abundant polymer after cellulose. Lignin is a waste product of pulp and paper 

industries (Ciolacu et al., 2012). Despite lignin’s natural abundance, lignin-based 

technologies are not fully developed to process lignin-derived materials into high value 

products (Kai et al., 2016). One reason for the lack of progress in development of lignin-

based bioproducts is due to lignin’s heterogeneity, thus lignin is mostly directly combusted 

for heat and power (Chen et al., 2020). However, lignin possesses properties that make it 

suitable for the development of hydrogels and subsequent application to soil. For example, 

lignins are high in antimicrobial properties, biodegradable and may help sequester carbon 

(Thakur & Thakur, 2015) potentially making lignin suitable for the synthesis of bio-based 

hydrogels. 

 The first two foci of this dissertation capitalize on the use of lignin as a basis for 

synthesizing bio-based hydrogels and their subsequent application as soil amendments that 

could impact soil hydraulic properties (soil water retention and soil hydraulic conductivity) 

positively.  Soil water retention refers to the quantity of water soils can hold for crop use. 

Soil water retention is often quantified using the soil water retention curve (SWRC). Since 

hydrogels can hold and release water due to their swelling properties, researchers are 

interested in how the application of hydrogels affects the SWRC. However, most studies 

used synthetic-based hydrogels (Abdallah, 2019b; Abrisham et al., 2018; Akhter et al., 

2004; Al-Humaid & Moftah, 2007; Alkhasha & Al-Omran, 2020; Alkhasha et al., 2018; 
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Bai et al., 2010; Bhardwaj et al., 2007; Lentz, 2020; Liao et al., 2016; Saha et al., 2020a; 

Shahid et al., 2012). There is currently a dearth of research that explains how lignin 

hydrogels will affect soil moisture retention.  Similarly, most studies in literature have 

focused on the effect of synthetic-based hydrogels on soil hydraulic conductivity 

(Abdallah, 2019b; Alkhasha et al., 2018; Andry et al., 2009; Bhardwaj et al., 2007; Han et 

al., 2013; Hussien et al., 2012; Mohawesh & Durner, 2019; Shahid et al., 2012; Smagin et 

al., 2019; Zhuang et al., 2013). Since soil hydraulic conductivity describes the movement 

of water in soil, hydrogels which can store water in saturated conditions and release water 

under unsaturated conditions are candidates for controlling how water moves in soil. 

However, no study of which we are aware has tested the effect of lignin-based hydrogels 

on soil hydraulic conductivity. It is therefore important to evaluate the effects of lignin-

based hydrogels on soil hydraulic conductivity because data from such a study has practical 

agronomic implications. 

 Another aspect of this dissertation is the application of various machine learning 

algorithms to predict saturated hydraulic conductivity from publicly-available large data 

sets. Saturated hydraulic conductivity (Ks) is one of the most important hydraulic 

properties of soil measured in the laboratory (Reynolds, 2008) or in the field. Saturated 

hydraulic conductivity of a soil refers to its ability to conduct water when all pores are 

filled with water (Lal & Shukla, 2004). Direct in-situ and accurate measuring techniques 

for saturated hydraulic conductivity are costly, labor intensive, and time consuming which 

can be impractical for field scale applications (Zhang & Schaap, 2019). To address this 

problem, pedotransfer functions (PTFs) have been used to model and predict soil hydraulic 

properties (Cornelis et al., 2001; Pachepsky & Van Genuchten, 2011; Padarian et al., 2018). 



5 

 

Pedotransfer functions are models for predicting soil hydraulic properties i.e., water 

retention and hydraulic conductivity from more-easily measured soil properties i.e., 

particle-size distribution, organic matter (OM) content and bulk density (BD) (Cornelis et 

al., 2001; Padarian et al., 2018).  

 Pedotransfer functions have been widely developed using regression functions 

(Gupta & Larson, 1979; Rawls et al., 1982; Wösten et al., 1999). However, developing 

PTFs using regression functions is often limited by the assumptions implicit in traditional 

statistical methods (Elith et al., 2008). A popular and efficient modeling approach for 

deriving PTFs for soil hydraulic properties is with the use of machine learning (ML) 

algorithms (Padarian et al., 2018). Several researchers have developed PTFs for predicting 

saturated hydraulic conductivity (Agyare et al., 2007; Arshad et al., 2013; Elbisy, 2015; 

Jorda et al., 2015; Kashani et al., 2020; Kotlar et al., 2019; Nivetha et al., 2019; 

Rasoulzadeh, 2011). However, previous work in this field rarely justifies the selection of 

the input variables used to develop PTFs. Furthermore, when PTFs are developed using 

ML, they are often not easily interpreted. Based on the limitations associated with the 

development of PTFs mentioned above, we aim to develop new PTFs derived from a large 

public database of over 8000 soil samples. We hypothesize that by applying feature 

selection (principal component analysis coupled with correlation analysis) to the input data 

derived from the measured soil properties in the database, we can select the most relevant 

input variables that give a higher prediction accuracy for our PTFs using machine learning 

algorithms. 

 In the final part of this dissertation, we aimed to capitalize on the ability of 

hydrogels to slowly release active ingredients into their surrounding environment. Apart 



6 

 

from the ability of hydrogels to retain water in soil for plant use, hydrogels have also been 

increasingly utilized for controlled nutrient release (Guilherme et al., 2015; Mikkelsen, 

1994; Ramli, 2019). Controlled nutrient release is possible since small nutrient molecules 

can diffuse through the hydrated polymer (Mikkelsen, 1994), hence prolonging the rate at 

which nutrients are released back into the soil. Similarly, several studies have succeeded 

in encapsulating beneficial microorganisms using different carriers e.g. peat  (Malusá et 

al., 2012), however, lignin-based hydrogels have yet to be extensively tested as engineered 

carriers of Rhizobium which could be applied to soil. Hence this research is expected to 

add to the evidence base of using lignin-based hydrogels as engineered carriers of 

beneficial soil microorganisms (Rhizobium) by testing the biocompatibility of lignin-

alginate hydrogel with Rhizobium, the encapsulation efficiency, and the release kinetics of 

the lignin-alginate   hydrogel with Rhizobium.   

1.3 Project Objectives and Hypotheses 

The main goal of this project was to quantify the ability of lignin-based hydrogels to 

manage soil hydraulic properties, used as engineered carriers of Rhizobium spp. and to 

develop pedotransfer functions to simulate soil hydraulic conductivity. This study is 

divided into four main objectives as described below: 

Objective 1: Quantify the ability of an alkali lignin-based hydrogel to increase soil water 

retention. The main hypothesis in this objective was that by amending soil with lignin-

based hydrogels, the amended soils will retain more water with increasing soil matric 

suction which could be beneficial for crop water uptake.  
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Objective 2: Quantify the impact of incorporated lignin-based hydrogels on the soil 

hydraulic conductivity of a disturbed silt loam soil. It was hypothesized that amending soils 

with the lignin-based hydrogel would reduce hydraulic conductivity compared to 

unamended soil, which would reduce deep percolation of water in the soil while increasing 

soil water storage. 

Objective 3: Develop a set of new PTFs for predicting saturated hydraulic conductivity 

(Ks) using machine learning algorithms and a large database of over 8000 soil samples 

while incorporating statistical methods to inform feature selection for the model inputs. 

The central hypothesis of this objective was that there is a relationship between easily 

measured soil properties (e.g., bulk density, % silt, % clay, % sand) and saturated hydraulic 

conductivity. Thus, by applying feature selection (principal component analysis coupled 

with correlation analysis) to the input data, the most relevant input variables that give a 

higher prediction accuracy can be selected and used to build the models to predict Ks. 

Objective 4: Evaluate the feasibility of using lignin-alginate beads with a starch additive 

to bioencapsulate and slowly release Rhizobial cells. It was hypothesized that, the addition 

of the different concentrations of lignin-based hydrogel in a growth medium containing 

Rhizobium will provide a better condition for the growth of the Rhizobial cells when 

compared to a control incubation with no hydrogel. It was also hypothesized that the 

encapsulation efficiency and release kinetics of the bioencapsulated cells will differ based 

on the different combinations of lignin, alginate, and starch. 
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CHAPTER 2. LITERATURE REVIEW  

2.1 Summary 

Superabsorbent polymers (hydrogels) have been proposed as soil amendments to enhance 

soil water management. However, a lack of systematic reviews on the impacts of hydrogels 

on soil hydraulic properties makes it difficult to recommend specific types of hydrogels 

that positively impact soil water management. In addition, findings from previous research 

suggest contrasting effects of hydrogels when used as soil amendments. This systematic 

review surveys the published literature over the past two decades (i) reviews the 

biodegradability of biobased and synthetic hydrogels used as soil amendments; (ii) 

synthesizes the impacts of biobased and synthetic hydrogels on soil hydraulic properties 

(i.e. water retention, soil hydraulic conductivity, soil water infiltration, and evaporation); 

(iii) critically discusses the link between the source of the biobased and synthetic hydrogels 

and their impacts as soil amendments; and (iv) identifies potential research directions. This 

study found that synthetic hydrogels are the most common types of hydrogels and on 

average degrade at a lesser rate in soil compared to biobased hydrogels. The lower 

degradation rate of synthetic hydrogels is due to their higher molecular weights and the 

lack of reactive terminal groups in their molecular chains which makes it difficult for most 

microorganisms (without specialized enzymes) to break down these synthetic hydrogels. 

However, some specific fungi can break down the carbon in synthetic hydrogels. On the 

other hand, biobased hydrogels are more-easily degradable due to the availability of 

functional moieties that can participate in enzyme-mediated biodegradation in soil. In 

addition, the abundance of hydroxyl groups in most biobased hydrogels increases bonding 

with water which we hypothesize increases microbial activity (higher water activity) 
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leading to faster biodegradation. Both synthetic and biobased hydrogels increased water 

retention in soil compared to unamended soil with decreasing soil water pressure head, 

decreased saturated hydraulic conductivity, reduced infiltration, and decreased soil 

evaporation. Even though the faster degradation of bio-based hydrogel may be 

environmentally beneficial, hybrid hydrogels (i.e., blend of biobased and synthetic 

backbone materials) which exhibit moderate biodegradation may be needed to prolong the 

benefit of repeated water absorption in soil for the duration of the crop growing season.  
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2.2 Introduction 

One of the major challenges in agriculture in arid and semi-arid regions is low crop 

water availability due to lower rainfall and water supply issues for irrigation.  In addition, 

sandy soils are characterized by low water retention and low water storage due to high 

levels of sub-surface drainage of rain and irrigation water (Abdallah, 2019b). 

Superabsorbent polymers (hydrogels) have been proposed as soil amendments that could 

be used to increase water use efficiency as the hydrogels trap water that would have 

otherwise drained beyond the plant roots (Andry et al., 2009). The application of both 

synthetic polymers (Miller & Naeth, 2019) and natural products (i.e. crop residues) (Zhou 

et al., 2020) to increase soil productivity and water retention has become more prevalent 

as these materials improve the sustainability of agriculture particularly in arid and semi-

arid regions (Alkhasha et al., 2018).   

Hydrogels have attracted attention from researchers from various backgrounds i.e., 

medicine, food, pharmaceutical and agricultural industries with the goal to capitalize on 

hydrogels’ swelling capacities to solve diverse problems. For example, in medicine, 

hydrogels have been used as scaffolds to provide mechanical protection to tissues where 

cells are adhered to or suspended within the gel (Slaughter et al., 2009). In the food 

industry, hydrogels are used to encapsulate active ingredients like probiotics which will be 

eventually released slowly in the body of the host (Amine et al., 2014). Hydrogels have 

also been widely used in agriculture as soil amendments to increase soil water retention 

(Abedi-Koupai et al., 2008). Agriculture, being one of the highest consumers of water, 

benefits substantially when soil amendments are added to soil to prevent water stress or for 

improving soil physical properties.  
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There are several ways of classifying hydrogels. Hydrogels have been classified 

based on their source, synthesis, or crosslinking (Prakash et al., 2021). In terms of their 

source, hydrogels have been described as either natural (biobased) or synthetic. Biobased 

hydrogels are hydrogels that are prepared using natural polymers while synthetic hydrogels 

are hydrogels are synthesized through chemical polymerization of synthetic monomers 

(Thakur & Thakur, 2018). Biobased hydrogels are prepared using polysaccharides like 

alginate, chitosan, and dextran (Thakur & Thakur, 2018) while synthetic hydrogels include 

poly (ethylene glycol) diacrylate, poly (acrylic amide), poly (vinyl alcohol) (Chirani et al., 

2015). In this review, we use the term “biobased hydrogels” to represent the class of 

hydrogels that contain materials of biological origin.   

An important feature of hydrogels is their ability to absorb and trap water into their 

three-dimensional structure. This property is usually referred to as its swelling capacity. 

The swelling capacity is one of the most important metrics used to ascertain how well a 

hydrogel will perform in retaining water in the soil matrix. High swelling capacities allow 

hydrogels to be applied in situations where liquids are absorbed from an environment or 

expelled into that environment (Blanco et al., 2013). According to Isık & Kıs (2004), the 

swelling characteristics of a hydrogel depend on the nature (i.e., ionic content, charge and 

crosslinking agent) of the polymer used to synthesize the hydrogel and the prevailing 

environmental conditions (i.e., pH and temperature of the solution surrounding the 

hydrogel). Ghobashy (2018) argued that the swelling process of a hydrogel is a transition 

from solid state to a fluid without dissolution and the two interfaces interact to become a 

“gel”. The change in volume of a hydrogel is driven by water diffusion and the equation 
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that has been used to describe the mechanism of diffusion of water into the polymeric 

network of hydrogel is Fick’s first law (Masaro & Zhu, 1999).  

Fick’s First Law for Diffusion in One Direction 

Equation 2.1   

𝑗 =  −𝐷
∂C

∂Z
  ( 2. 1 ) 

where 𝑗 is the flux per unit area, 𝐷 is the diffusion coefficient, C is the concentration, Z is 

the distance and  
∂C

∂Z
 is the concentration gradient along the Z axis. 

Hydrogels need an aqueous environment to swell. According to Zhou & Jin (2020), 

when a polyacrylamide hydrogel is inserted into NaOH with a solvent i.e., water, a 

hydrolysis reaction takes place whereby the bonds in the polyacrylamide are broken by the 

hydroxyl ions allowing amide groups from the polyacrylamide chain to be converted into 

partially ionized carboxyl groups (Figure 2.1). The hydrogel then becomes a 

polyelectrolyte which allows the hydrogel to absorb considerable amounts of water (Zhou 

& Jin, 2020).  
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Figure 2.1. A schematic showing hydrolysis-induced swelling of a polyacrylamide-based 

hydrogel in the presence of an aqueous solution of NaOH and water molecules; redrawn 

from Zhou & Jin (2020). 

 Several agrophysical applications require the knowledge of the hydraulic properties 

of soil as these properties indicate the ability of soils to retain or transmit water (Van 

Genuchten & Pachepsky, 2011). The application of different types of hydrogels to change 

certain soil hydraulic properties has been done over the past few decades to improve 

sustainability of agriculture in arid and semi-arid areas (Alkhasha et al., 2018). As a result 

of the increased attention given to hydrogels and their application to agriculture, several 

researchers have reported results that show the ability of hydrogels to repeatedly absorb, 

retain, and release substantial amounts of water relative to the hydrogel’s own weights 

(Alkhasha et al., 2018).  
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While synthetic hydrogels have been widely researched and claimed to possess 

superior properties like longer durability, high gel strength, and high absorption capacities 

(Behera & Mahanwar, 2020), bio-based hydrogels have also been shown to have high 

swelling capacities (Cannazza et al., 2014; Song et al., 2020; Tomadoni et al., 2020). In 

addition, increasing concerns arising from the use of synthetic hydrogels have propelled 

the increase in research in biobased hydrogels since they also have the advantage of being 

biocompatible, biodegradable (Kalinoski & Shi, 2019) and renewable (Li & Pan, 2010). 

Despite the considerable number of studies involved in elucidating the impacts both 

synthetic and biobased hydrogels have on soil hydraulic parameters, there are limited 

critical reviews of their impacts on soil as a function of the hydrogel’s source. In addition, 

there is a general assumption that since biobased hydrogels have higher biodegradation 

rates and extents, then they are inherently better suited as soil amendments than synthetic 

hydrogels; neglecting the fact that certain biobased hydrogels (lignin-based) hydrogels 

have lower swelling capacities (Li & Pan, 2010) which may need to be improved to have 

a significant impact as a soil amendment. 

There have been several recent reviews focusing on hydrogels and their various 

applications. Hüttermann et al. (2009) summarized the potential of using hydrogels to 

improve degraded and polluted lands by increasing water availability and thereby 

improving crop establishment. Zohuriaan-Mehr et al. (2010) highlighted the applications 

of hydrogels in non-hygienic industries (agriculture, textile/fiber, pharmaceutical, 

separation technologies, electrical and construction). Ahmed (2015) reviewed the 

classification, preparation processes, and process design considerations for large-scale 

production of hydrogels. Ullah et al. (2015) described the classification of hydrogels based 
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on their chemical and physical characteristics and how those characteristics influence 

hydrogel responses to stimuli in different applications (biomedical, environmental, and 

industrial). Guilherme et al. (2015) specifically reviewed polysaccharide-based hydrogels, 

their characteristics, synthesis and use as soil conditioners. Akhtar et al. (2016)  detailed 

various cross-linking methods (physical and chemical) used to synthesize hydrogels. 

Cheng et al. (2017) reviewed studies on chitosan-based hydrogels specifically evaluating 

their preparation, cross-linking methods, and applications in various fields (biomedical, 

agriculture and water treatment). A few other review studies focused on the use of 

hydrogels for the controlled release of fertilizers (Majeed et al., 2015; Ramli, 2019). While 

the above-mentioned reviews focused on the properties, synthesis and broad application of 

hydrogels, no extensive discussion was given as to their impacts on agricultural soils.   

Some studies reviewed the effects of hydrogels on water stress management (Saha 

et al., 2020b) and soil properties (physical, chemical, and biological) (Ostrand et al., 2020). 

Saha et al. (2020b) focused on the influence of superabsorbent hydrogels on soil physical 

properties such as water retention capacity, plant available water, saturated hydraulic 

conductivity, and soil infiltration. However, Saha et al. (2020b) did not extensively discuss 

the biodegradability of synthetic and biobased hydrogels. There was also limited discussion 

of the effects of hydrogel on soil-based evaporation. Ostrand et al. (2020) summarized the 

impact of hydrogels on the physical, chemical, and biological properties of soil but mostly 

with regards to the depth of application and rate of application of the hydrogel. This current 

review focuses specifically on summarizing available literature on applications of biobased 

and synthetic hydrogels to agricultural soil and addressing the questions: “Are biobased 

hydrogels more biodegradable than synthetic hydrogels in soil?;” and “Does the rate of 
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biodegradation of biobased and synthetic hydrogels affect their use as soil amendments for 

impacting soil hydraulic properties?”  

A discussion of the impacts of both synthetic and biobased hydrogels on important 

soil hydraulic properties is needed to better understand the merits and limitations of using 

synthetic or biobased hydrogels as soil amendments. First, a summary of the numerous 

studies that investigated the biodegradability of synthetic and biobased hydrogels is given 

and the differences in their biodegradation assessments are discussed. Secondly, a thorough 

review of studies that investigated the impact of synthetic and biobased hydrogels on 

important soil hydraulic properties is given. Thirdly, a conceptual framework summarizing 

how hydrogels could impact soil hydraulic parameters is discussed. The final part of this 

review summarizes research gaps and outstanding questions that need to be answered to 

move forward.  

 The scope of this review is shown in Figure 2.2 This review does not discuss the 

impact of hydrogel application to plant growth parameters. The scope of this review also 

does not include the use of hydrogels as materials for slow release of nutrients in soil. 
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Figure 2.2 Scope of the areas covered in this review. 

2.3 Literature Search 

This systematic review follows a variation of the method described in Pickering & 

Byrne (2014) focusing on making the review systematic, quantitative, and critical. This 

study is systematic since the methods used to survey the literature and select the relevant 

literature for inclusion are defined and reproducible (Pickering & Byrne, 2014). This study 

is also quantitative in the sense that it assessed where research has been conducted and 

identifies research gaps for the future. Finally, papers included were critically evaluated to 

give an understanding of the current state of this research area. The databases used for the 

literature search included: Google Scholar, Web of Science, ProQuest and Science Direct. 

Key words used for the search were a combination of “hydrogel”, “superabsorbent 

polymers”, “hydraulic conductivity”, “water retention”, “soil water retention curve”, 

“natural”, “synthetic”, “applications", "soil”, “hydraulic”, “biodegradability”, 
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“biodegradation”, “polymers”, “infiltration”, “evaporation”. The reference list of all 

literature was cross-checked to add relevant papers to the literature database.  

This review was limited to papers published from the year 2000 – 2020. A total of 

66 papers were included in this review. Relevant papers were included based on the 

following criteria: the paper was published in English, the paper was peer reviewed, some 

key words were found in paper, key explanatory and response variables were measured, 

and finally the paper was original research. Thus, reviews and meta-analysis were not 

included in the relevant data, even though review papers were a great resource for locating 

relevant papers and for understanding previous work in this field of study. 

The selected articles were entered into a personal database and categorized based on 

the purpose of the paper, the location of the study, whether it was a laboratory study, 

greenhouse study or a field study, the soil textures used or compared in the study, the 

application rate of the hydrogel, the type of hydrogel used, the methodology used, the 

independent and dependent variables analyzed, the main findings of the paper, limitations, 

and recommendations of the paper. For the first section of the study, only studies that 

included the investigation of biodegradation rate and/or extent on hydrogels were included. 

If a paper merely referred to a synthesized hydrogel as “biodegradable” without any formal 

experiment to test its biodegradability, that study was not included in this review as it can 

be misleading and sometimes creates confusion for readers (Hamid, 2000). For the second 

part of the review, only papers that investigated the impacts of hydrogel on the soil 

hydraulic properties (soil water retention, soil hydraulic conductivity, soil water 

infiltration, and soil evaporation) were included.  
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Another criterion for inclusion was that the water retention of any of the soil textures 

should be measured using standard methods e.g., pressure plate apparatus, tensiometer, 

centrifugation, and evaporation method. It was important that the amount of water held by 

a soil was measured in relation to the change in soil water pressure head of the soil. Studies 

that merely quantified the water absorption capacity of a hydrogel in water without 

measuring the change in soil water pressure head were not included in this review. 

2.4 Biodegradability of Synthetic and Biobased Hydrogels in Soil  

 Biodegradation refers to a type of degradation catalyzed by microorganisms leading 

to the reduction of organic material into carbon, CO2, water, and new microbial biomass 

(Grima et al., 2000). Biodegradability is thus the property of a material which allows the 

materials to undergo biodegradation. Biodegradable materials are organic (i.e., plant and 

animal matter), derived from living organisms or are synthetic materials similar in nature 

to plants and animals such that microorganisms can act on them (Tahri et al., 2013). 

According to Lucas et al. (2008), biodegradation can be divided into four main stages: 

biodeterioration, biofragmentation, assimilation, and mineralization. Biodeterioration 

occurs when microbial communities, other decomposers and/or abiotic factors fragment 

biodegradable materials into smaller pieces (Lucas et al., 2008). Biofragmentation involves 

the cleavage of polymeric molecules reducing their molecular weights and generating 

oligomers, dimers, and monomers (Lucas et al., 2008). Assimilation is when energy, new 

biomass, and other primary and secondary metabolites are produced in the cytoplasm of 

microorganisms. Finally, mineralization involves the oxidation of simple and complex 

metabolites into CO2, N2, CH4, and H2O into the environment (Lucas et al., 2008). 

Scientists are interested in how polymers biodegrade in soil as the bioproducts of 

degradation have implications for the environment. 

In recent times, there has been a worldwide interest in developing biodegradable 

polymers especially for agricultural applications (Van Der Zee, 2011). Complete 

biodegradation of polymers results in the break-down of all the organic components of the 
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polymers (Zumstein et al., 2018). Zumstein et al. (2018) argue that biodegradation of 

polymers in soil involves: the colonization of the polymer surface by microorganisms, 

depolymerization of the polymer into low molecular weight compounds, and the microbial 

uptake and utilization of these compounds and either incorporating the carbon released as 

microbial biomass or released as CO2. The rate of biodegradation of a polymer determines 

how suitable the polymer can be applied for a specific role i.e., soil water management. 

Despite the arguments supporting a shift to biobased hydrogels, few studies have 

compared the biodegradability of synthetic and biobased hydrogels in agricultural soils. 

The structure of carbon bonds in materials entering the soil determines the rate at which 

those materials will be decomposed into soil organic matter. In the same way, the type of 

carbon bonds in the backbone material used to synthesize a hydrogel will determine the 

rate at which it degrades in soil if it degrades at all. For example, carbohydrates have linear 

branched chains which make them easy to break down by soil microbes (Horwath, 2007) 

compared to lignin. Some biodegradable hydrogels currently investigated by researchers 

blend or graft hydrophilic monomers/polymers with natural or synthetic polymers such as 

starch, polylactic acid, chitosan, cellulose, clay (Vudjung & Saengsuwan, 2017) to form 

hybrid hydrogels which may have an advantage over purely synthetic hydrogels in terms 

of biodegradability. Others have also synthesized biodegradable hydrogels by cross-linking 

cellulose derivatives using difunctional molecules as cross-linkers which are capable of 

binding different polymers into three dimensional hydrophilic networks (Wang et al., 

2008). By modifying hydrogels with natural polymers, new materials which are more 

biodegradable may be produced (Estrada-Villegas et al., 2019). 
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  There are several ways to measure the biodegradability of hydrogels in soil. 

Biodegradability of hydrogels can be investigated by quantifying the CO2 efflux from an 

incubation of soil and the hydrogel, measuring the biochemical oxygen demand (BOD) of 

the amended soil compared to the natural soil, measuring weight loss through soil burial 

method (van der Zee, 2005), monitoring the accumulation of microbial biomass, 

monitoring changes in the physical properties of the hydrogel with time (Hamid, 2000) or 

by labeling the hydrogel with radioactive 14C and tracking the 14C in the CO2 or CH4 

released from metabolism of the polymer (Van Der Zee, 2011). However, the most 

common method of investigating the biodegradability of hydrogels in soil is through the 

soil burial method (Sarmah & Karak, 2019; Sharma et al., 2014; Song et al., 2020; Tanan 

et al., 2019). The soil burial method involves measuring a known amount of hydrogel and 

placing it at a depth in soil. Moisture is regularly added to the soil to simulate conditions 

in the field. After a specific period, the weight loss in the hydrogel is measured and assumed 

to represent the percentage of biodegradation in soil. While the soil burial and weight loss 

method are commonly used in literature, there are some limitations to this method. For 

example, the temperature, pH, and specific microorganisms present in the soil are rarely 

reported. Since biodegradability in soil is mostly due to the action of soil microorganisms, 

the temperature, pH, and water content of the soil should be measured and reported as these 

can help explain the rate of the degradation at the end of a certain period of incubation. 

Some researchers have studied the mechanisms by which synthetic polymers may 

be degraded in soil. Synthetic polymers like polyacrylamides tend to degrade slowly in soil 

through chemical, photo, biological and mechanical processes i.e., tillage (Sojka et al., 

2007) due to their high molecular weights. In terms of biological breakdown of synthetic 
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hydrogels, Wen et al. (2010) held the view that biodegradation of 

polyacrylamide/polyacrylate based hydrogels occurred as microorganisms utilized the 

amide group of the polymer as a nitrogen source and/or the carbon backbone as a carbon 

source (Xiong et al., 2018). Despite the ability of some microorganisms that utilize the 

amide groups, the carbon backbone of polyacrylate, which remains after deamination, still 

poses a challenge to most microorganisms to degrade as it is very recalcitrant (Nyyssölä & 

Ahlgren, 2019). The rate of biodegradation of the carbon backbone depends primarily on 

physical properties, such as molecular weight and copolymers (Caulfield et al., 2002).  

Photodegradation can occur when the C–C, C–H, and C–N bonds in 

polyacrylamide with bond strengths of 340, 420, and 414 kJ mol-1 are exposed to light with 

wavelengths of 325, 288, and 250 nm, respectively (Sojka et al., 2007). UV radiation in 

sunlight at wavelengths below 300 nm usually gets absorbed by ozone, reducing the 

intensity of the wavelength reaching the earth surface (Sojka et al., 2007). According to 

Caulfield et al. (2002), the degradation of polyacrylamide by UV radiation results in the 

formation of other functional groups and a reduction in the molecular weight of the 

polyacrylamide. 

From the studies surveyed, synthetic hydrogels undergo degradation in soil albeit 

certain conditions accelerate degradation. Smagin et al. (2014) asserts that the main 

controlling factors determining the biodegradation rate and extent of synthetic based 

(polyacrylamide and acrylate polymer hydrogels) are composition, soil temperature, and 

depth of placement of the hydrogel in soil. For practical purposes, prior to the application 

of synthetic hydrogels, the water absorption capacity should not be the only factor 

considered. The molecular weight of the hydrogel should be considered and if possible 
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controlled during polymerization to produce synthetic hydrogels with lower molecular 

weights. In addition, the abiotic stresses that are likily to exist on the farm in which the 

synthetic hydrogel is applied should also be considered such as tillage practices, freeze-

thaw cycles, hydrodynamic shearing during mixing and application of the hydrogel into the 

soil (Nyyssölä & Ahlgren, 2019). A farm with frequent tillage, and experiences frequent 

freeze-thaw will experience higher degradation of hydrogels made from synthetic polymers 

than fallow fields that are not exposed to frequent freeze-thaw cycles. 

Table 2.1 reports a survey of different studies that synthesized hydrogels and 

measured their biodegradability with the intention of utilizing those hydrogels in soil. Out 

of 19 studies surveyed, 6 of those studies used synthetic hydrogels made of materials such 

as polyacrylamide, polyacrylate, potassium acrylate, and polyacrylic acid. Of the 6 studies, 

2 studies measured soil biodegradation using the soil burial method (Oksińska et al., 2018; 

Oksińska et al., 2016). Oksińska et al., (2016) wrapped a dry technical copolymer of 

acrylamide and potassium acrylate containing 5.28% of unpolymerized monomer of a 

geotextile and incubated it in soil and reported a 31.7% decrease in mass of the hydrogel 

after 9 months caused by the colonization and action of Rhizobium radiobacter 28SG and 

Bacillus aryabhattai 31SG. A follow-up study by the authors (Oksińska et al., 2018) 

discovered that the microbes (Bacillus megaterium isolate 37SBG and the Acremonium 

sclerotigenum – Acremonium egyptiacum complex isolate 25SFG) that colonized the 

technical cross-linked potassium polyacrylate hydrogel used in their study degraded the 

hydrogel by 77.9% of the original weight of the hydrogel after 9 months. Wen et al. (2010) 

showed that biodegradation of polyacrylamide reached 70% of the original amount of 

polyacrylamide studied after 72 hours in the presence of Bacillus cereus and Bacillus flexu. 
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Their study argued that the microorganisms utilized the amide group of the polymer as a 

nitrogen source while the carbon backbone was used as a carbon source. Results from these 

studies indicate that with the right microorganism available in soil, some synthetic 

hydrogels could be as biodegrable as their biobased counterparts. 

On the contrary, the three other studies (Bai et al., 2015b; Stahl et al., 2000; Wilske 

et al., 2014) that measured biodegradability of synthetic hydrogels in soil observed lower 

biodegradation rates ranging from 0.12 to 7.3%. For example, Stahl et al. (2000) 

demonstrated a mineralization rate of the synthetic hydrogels (polyacrylamide copolymer 

and polyacrylate) of 7.3% in 76 days (about 2 and a half months) when the hydrogels were 

incubated with inoculated sawdust containing white rot fungi (Phanerochaeta 

chrysosporium) in non-sterilized garden soil. Their findings suggest that contrary to the 

general belief that synthetic hydrogels are non-biodegradable, certain conditions (nutrient 

sources), when made available enable the fungi and native soil microbes to work 

synergistically to degrade synthetic hydrogels. There are two pathways that white rot fungi 

(Phanerochaeta chrysosporium) uses to degrade synthetic polymers, i) through the 

secretion of lignin degrading peroxidases (Sutherland et al., 1997) and ii) through the 

secretion of cellobiose dehydrogenase (Cameron et al., 2000). While the lignin degrading 

peroxidases require nutrient limiting conditions to effectively depolymerize synthetic 

polymers (Sutherland et al., 1997), cellobiose dehydrogenase does not require a nutrient 

limited condition provided the main carbon source provided externally for the enzyme is 

cellulose (Cameron et al., 2000).  

Using a novel method whereby 13CO2 efflux from 13C-labeled compounds was 

measured, Bai et al. (2015b) observed that 1.85% of a lower molecular weight polyacrylic 
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acid hydrogel (molecular weight = 219,500 g mol-1) biodegraded compared to 0.91% of 

the higher molecular weight polyacrylic acid hydrogel (molecular weight = 530,400 g mol-

1) after 149 days (about 5 months). Their results indicate that the biodegradation rate of the 

polyacrylic acid hydrogel depend on its molecular weight. Thus, for a 50% reduction in 

initial molecular weight of the polyacrylic acid hydrogel, degradation in soil doubled in 

extent, although at a low level. They concluded that their results indicate biodegradation 

mainly occurs at the terminal sites of the bonds in the hydrogel. Their findings are relevant 

because the molecular weight of the polymer is a parameter that can be controlled to some 

extent during polymerization. According to Hamid (2000), polymers with long chain-like 

molecular geometry decrease biodegradation as a larger concentration of the reactive 

terminal groups decrease with increasing chain length. However, certain enzyme systems, 

when present in soil, can react with these terminal groups to cause biodegradation even in 

higher molecular weight polymers (Hamid, 2000). 

 Similarly, Wilske et al. (2014) employed a system which analyzed the 12CO2 and 

13CO2 effluxes from hydrogel samples. Their study investigated the biodegradability of a 

synthetic polyacrylate hydrogel made from polyacrylic acid. In the study by Stahl et al. 

(2000), the synthetic hydrogels were degraded up to 7.3% in 76 days when supplemented 

with certain species of white rot fungi. However, Wilske et al. (2014) added no external 

inoculum and so the degradation was assumed to come from soil microbes native to the 

different soil textures (sand, loamy, sand, sandy loam, and loam). Results from Wilske et 

al. (2014) concluded that the degradation rates did not vary for temperatures between 20-

30°C and soil type did not significantly affect degradation rate of the hydrogel. 

Additionally, the polyacrylate main chain degraded only about 0.12-0.24% every six 



26 

 

months. Results from Wilske et al. (2014) are consistent with Stahl et al. (2000) who 

showed that mineralization, which is the last stage of degradation, was minimal i.e., 0.35% 

in 76 days in a co-polymer without any fungi inoculation and source of carbon. This implies 

that for effective biodegradation of synthetic polymers, white rot fungi along with a source 

of carbon e.g., sawdust which also serves as a source of metabolic water for the white rot 

fungi to survive and biodegrade synthetic polymers  (Stahl et al., 2000). 

 The remaining 13 studies shown in Table 2.1 describe studies that either 

synthesized hydrogels using biobased materials or combined biobased materials with 

synthetic materials resulting in hybrid hydrogels. In this review, we refer to all hydrogels 

containing natural polymers as biobased. The most common backbone materials that were 

used for synthesizing these biobased hydrogels were cassava starch, different variations of 

cellulose, alginate, and lignin. Cellulose is one of the most common organic materials used 

for the synthesis of hydrogels because of the presence of several hydroxyl groups which 

easily form hydrogen bonds creating 3D networks (Hasan & Abdel-Raouf, 2019). 

Cellulose is highly favored for hydrogel synthesis due to its abundance and the fact that it 

is a naturally occurring polymer of glucose found as the main constituent of plants and 

natural fibers (Sannino et al., 2009). Other characteristics that make cellulose suitable for 

use as hydrogels include the ability of its molecular weight to be easily reduced, lower 

mechanical strength, and easy chemical alterability (Chen et al., 2019) which makes it 

easier to break down in soil compared to synthetic materials like polyacrylamide. 

Nie et al. (2004) used sodium carboxymethylcellulose (Na-CMC) as the backbone 

material to synthesize a hydrogel. They varied the amount of cross-linker, antiseptic 

(antiscorbutic acid) and nutrient (urea) used to synthesize the hydrogel and studied how 
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those changes affected biodegradation of the hydrogel in soil. They observed that 

increasing antiseptic amount was detrimental to biodegradation of the hydrogel. Secondly, 

increasing the nutrient amount increased biodegradation of the hydrogel as the microbes 

responsible for biodegradation utilized nitrogen for growth and activities. Finally, the 

biobased hydrogel produced achieved a 50% degradation rate in 60 days, but the 

degradation rate was dependent on the type of soil i.e., there was higher degradation in 

sandy soils compared to finer soils. The authors asserted that the larger pores in sandy soils 

compared to finer soils increased aeration thus enhancing microbial activities. While Nie 

et al. (2004) attribute a difference in biodegradation of the hydrogel to the soil type, an 

earlier study (Goheen & Wool, 1991) found no significant difference in biodegradation of 

a polyethylene-starch blend polymer when applied to silt clay loam, silt loam, and fine sand 

soils. Since data for the carbon and nitrogen ratio of the soils used by Goheen & Wool 

(1991) was not reported, it could be argued that the carbon to nitrogen ratio (C:N) of the 

three soils could be similar which explained why the soil type had no effect on 

biodegradation. Generally, C:N of soil affects the rate of biodegradation of organic material 

in soil (Turioni et al., 2021). The lower C:N is, the higher biodegradation rates of hydrogels 

have been shown by Turioni et al. (2021). 

Wang et al. (2008) developed a novel amphoteric hydrogel from carboxymethyl 

cellulose, acrylic acid, acrylamide and [2-(methylacryloyloxy) ethyl] trimethylammonium 

chloride using inverse suspension copolymerization. Results from their soil 

biodegradability test indicated a 43.6% degradation after 100 days using the soil burial 

method. It appears from these studies that cellulose hydrogels can degrade as fast as 50% 

in just two months. By inference, it can be assumed that approximately 100% of a cellulose 
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hydrogel can degrade in less than 7 months especially when used in conjunction with 

nitrogen fertilizers, since microorganism activity increase with the presence of nitrogen for 

growth and metabolism (Mašková & Kunc, 1988; Nie et al., 2004). Biodegradation of 

cellulose in soil is a fairly well understood process and requires the participation of several 

enzymes (Bisaria & Ghose, 1981). According to Horwath (2007), the enzyme systems 

known as cellulase composed of endoglucanase, exoglucanase, and β-glucosidase 

collectively degrade cellulose even though they play distinct roles. Endoglucanases 

randomly cleave the β (1-4) linkages yielding glucose, then exoglucanases cleave the 

nonreducing ends of the cellulose chains yielding glucose, cellobiose, and cellotriose. 

Finally, β-glucosidase hydrolyses the glucose chain into individual glucose subunits. 

As seen in Table 2.1, five studies synthesized hydrogels using starch as a backbone 

material (Riyajan et al., 2015; Sahoo & Rana, 2006; Sarmah & Karak, 2019; Tanan et al., 

2019; Vudjung & Saengsuwan, 2017). The highest degradation rate was observed by 

Riyajan et al. (2015) who reported 80% biodegradation of their hydrogel in 30 days using 

the soil burial method. Sahoo & Rana (2006) observed that adding starch alone or poly 

(ethyl methacrylate) in alluvial soil led to lower biodegradation of about 38% and 20% 

respectively after 12 months of incubation using the soil burial method. The composite of 

starch and poly (ethyl methacrylate), however, achieved about 50% degradation in 12 

months. Riyajan et al. (2015) prepared a biobased hydrogel made up of maleated poly 

(vinyl alcohol) and cassava starch through a grafting reaction. Their results demonstrated 

an increase in biodegradation up to 80% in 30 days when the two polymers were used to 

synthesize hydrogel in the ratio of 6:4. Their result implies that with an increase in starch 

content of a hydrogel, biodegradation rate and extent increases. While the rapid 
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degradation of the hydrogels in Riyajan et al. (2015) were assumed to result from the action 

of bacteria and fungi, there was no formal identification of the causative mechanisms. 

Vudjung & Saengsuwan (2017) synthesized three biodegradable hydrogels based 

on cross-linked natural rubber latex and modified cassava starch and a hybrid using the 

interpenetrating polymer network method. Their rationale for testing these three versions 

was because starch has a high biodegradation rate while natural rubber has slow 

biodegradation rates hence by combining the two polymers, a hydrogel with a moderate 

degradation rate would be obtained. Their findings reported a degradation extent of 2.6, 

96, and 49% in the natural rubber-based hydrogel, cassava starch-based hydrogel and the 

hybrid (natural rubber/ cassava starch) based hydrogels, respectively after 90 days. Apart 

from the fact that increasing cassava starch content increased biodegradation, Vudjung & 

Saengsuwan (2017) observed that biodegradation in the hydrogel decreased as the amount 

of cross-linker in the hydrogel increased. This observation was earlier confirmed (Roy et 

al., 2006) who reported that uncrosslinked rubber degraded faster than crosslinked rubber. 

Roy et al., (2006) hypothesized that excessive crosslinking reduced the volume of the 

polymer networks which limited microbial access leading to lower biodegradation rates 

(Vudjung & Saengsuwan, (2017). The practical implication of their results is that 

optimized crosslinking should be a key variable during hydrogel synthesis as excessive 

crosslinking slows down biodegradation (Roy et al., 2006; Vudjung & Saengsuwan, 2017) 

and limits the swelling capacity of hydrogels (Xie et al., 2009). 

Tanan et al. (2019) synthesized a biodegradable semi-interpenetrating polymer 

network (semi-IPN) hydrogel based on cassava starch. Their study reported a degradation 

extent of 7.89, 17.6, 31.9, 54.7 and 72.7% after 15, 30, 60, 90, and 120 days respectively 
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indicating a linear degradation rate of the starch-based hydrogel. The authors ascribe the 

high degradability of the hydrogel to the gradual decrease in network linkages over time in 

the internal structure of the hydrogel. The hydrogel is hygroscopic and so encourages the 

growth of microorganisms that metabolize the carbon in the hydrogel. Sarmah & Karak 

(2019) synthesized a biodegradable hydrogel by reacting starch with acrylic acid with, N 

– methylene bisacylamide being the cross-linking agent. Their study tested biodegradation 

using two methods. They exposed the hydrogel to culture media containing Bacillus 

subtilis and Pseudomonas aeruginosa in a 6-week incubation study. The presence of starch 

in the hydrogel resulted in weight loss of approximately 57% of the original weight of the 

hydrogel when incubated with both Bacillus subtilis and Pseudomonas aeruginosa 

compared to approximately 8% weight loss in a synthetic poly (acrylic) acid hydrogel. 

Secondly, a soil burial test resulted in 40% degradation of the starch- modified poly acrylic 

acid hydrogel compared to a <5% weight loss in the poly (acrylic) acid hydrogel alone after 

3 months of exposure to soil. Although some studies (Tanan et al., 2019; Vudjung & 

Saengsuwan, 2017) have shown a higher degradation rate when only starch was used to 

synthesize hydrogels, Sahoo & Rana et al. (2006) claimed that their composite hydrogel of 

starch and a synthetic polymer (poly ethyl methacrylate) had a higher degradation rate 

because it had super porous networks that held more water to aid in the growth of the 

microorganisms that degraded the hydrogel.  

In summary, starch-based hydrogels are easily degradable, and the biodegradation 

rate of a starch-based hydrogel will depend on the starch ratio present. The higher the starch 

ratio, the faster the biodegradation. According to Hamid (2000), the availability of 

functional moieties that can participate in enzyme-mediated biodegradation is an important 
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requirement for a biodegradable polymer. Thus, the presence of abundant hydroxyl groups 

in starch is an advantageous property for enhancing biodegradation in soil. In addition to 

the abundant hydroxyl groups present, starch also possesses some advantageous properties 

i.e., it is an abundant natural biopolymer, it is renewable, it is economically feasible to 

obtain, relatively easy and inexpensive to prepare and has a high swelling capacity in water 

(Ismail et al., 2013). Using starch alone for synthesizing hydrogels could potentially 

compete with its use as a food source, thus efforts to use other non-food forms of 

carbohydrate biopolymers such as cellulose should be considered (Galanakis, 2020). 

Few studies have investigated the use of lignin for the synthesis of hydrogels for 

soil amendment. From our review, among all the biobased materials used to synthesize 

biodegradable hydrogels, lignin hydrogels had the slowest biodegradation rate. Lignin, 

which forms one of the main components of lignocellulosic plants and is the second most 

abundant plant polymer after cellulose (Meng et al., 2019b) has been successfully used to 

synthetize biodegradable hydrogels. Mazloom et al. (2019) synthesized a lignin hydrogel 

and tested its biodegradation rate. In their study, the microbial inoculum for biodegradation 

was extracted from dry soil through centrifugation. The inoculum was then added to the 

hydrogel samples and incubated. The authors’ results demonstrated a 6.5% degradation of 

the hydrogel after 40 days of incubation. Likewise, Passauer et al. (2015) synthesized 

cross-linked hydrogels made from oxyethylated lignins with the aim of investigating the 

biodegradation behavior of these hydrogels in soil. By measuring the CO2 evolved as a 

final product of biomineralization, the biodegradation of the lignin and oxylated lignin in 

the hydrogels was quantified. After 14 days of incubation, biodegradation ranged from 

0.9% - 3.2%. They also found that as the molecular weight of the hydrogel increased due 
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to the Poly (ethylene glycol) diglycidyl ether (PEGDGE) cross-linking, phenolic OH 

groups of lignin were less susceptible to microbial oxidation (Kirk & Farrell, 1987). The 

low degradation of lignin is due to low assimilation of carbon in the hydrogel as soil 

microorganisms do not utilize the recalcitrant carbon in lignin (Martin et al., 1980). 

According to Horwath (2007), the dense nature, hydrophobicity, and nonspecific structure 

of lignin makes it difficult for enzymes to cleave thus lignin must be broken into smaller 

fragments before extensive  decomposition can occur. 

This review also noted that alginate-based hydrogels tend to have higher 

biodegradation rates than lignin-based hydrogels. For instance, Phang et al. (2011) 

synthesized an alginate-based hydrogel by grafting acrylamide, itaconic acid and acrylic 

acid onto an alginate backbone. Their results suggested 82.6% degradation of the hydrogel 

in soil supernatant with nutrient (200 mL of sterile minimum mineral culture medium) 

added, 82.8% without nutrient added and 63.5% degradation in soil burial test after 40 

days. However, the extent of biodegradation in the hydrogels was dependent on the type of 

soil used to incubate the hydrogel. Song et al. (2020) synthesized a biodegradable hydrogel 

by cross-linking lignosulfonate with sodium alginate, and kanjaku flour. Biodegradation in 

the resulting hydrogel was tested using soil burial test. The synthesized biobased hydrogel 

degraded by 6% of its weight in 60 days and 14% of its weight in 120 days.  

Figure 2.3 summarizes some properties of synthetic and bio-based hydrogels that 

may be considered when deciding to use them as soil amendments. Synthetic hydrogels 

have a slower degradation rate compared to biobased hydrogels without the addition of any 

external microorganism or nutrient. The lower degradation rate in synthetic hydrogels is 

partly due to their long chain-like molecular geometry which reduces the concentration of 
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reactive terminal groups available for certain microbial enzyme systems to act on (Hamid, 

2000). To circumvent this limitation, some specific bacteria (Pseudomonas putida, 

Enterobacter aerogenes, Rhodococcus sp., Helicobacter pylori, Bacillus sp., Acinetobacter 

sp., Azomonas sp., Pseudomonas sp., Chlostridium sp) and fungi (Phanerochaeta 

chrysosporium) could be inoculated into soil to break down the carbon in some synthetic 

hydrogels. However, it is still much harder for microorganisms to mineralize the carbon 

backbone of polyacrylamide-based hydrogels as a sole carbon source due to the lack of 

appropriate enzymes. On the other hand, the higher degradation rates even without 

microbial inoculation for biobased hydrogels is due to the type of carbon chains in the 

backbone materials. Cellulose and starch for example have linear branched chains which 

make them easy to break down (Horwath, 2007). Juxtaposing the carbon chain structure of 

cellulose and starch with lignin, which is another form of organic material used for 

biobased hydrogels, lignin’s more complex structure poses a challenge for most microbial 

organisms to access its carbon. The soil microbial consortium is less effective at degrading 

lignin hence a lower biodegradation compared to polysaccharide-based hydrogels. This 

means for any carbon-based material in the form of hydrogel coming into the soil, hydrogel 

material with more cellulose or starch will have a higher mineralizable rate compared to 

hydrogels with more lignin. 

The difference in rate of biodegradation in the synthetic and biobased hydrogels 

means that prior to choosing and applying any kind of hydrogel, the specific utility of the 

hydrogel should be considered. If a hydrogel is meant to be used solely as a water retention 

material, one option is to synthesize hydrogels that possess properties of both synthetic and 

biobased hydrogels. Ghobashy (2020) suggests that combining biobased polymers with 
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synthetic polymers to make hydrogels with increased swelling properties, increased 

mechanical strength, enhanced biodegradability, and enhanced thermostability of the 

polymeric network formed. 

 

 

Figure 2.3. Characteristics of synthetic, biobased and hybrid hydrogels for soil amendment. 

 

Table 2.1 shows the various studies reviewed that performed biodegradation tests 

on hydrogels. Specific information reported includes the types of hydrogels used in the 

study, the backbone material used to synthesize the hydrogel, the method of testing for 

biodegradation in the hydrogel, and the extent of biodegradation. Certain abiotic conditions 
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like temperature, pH, relative humidity, and soil water content are not included in the table 

because these conditions are mostly not reported despite their being crucial for replication 

of experiments investigating biodegradability of synthetic and biobased hydrogel
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 Table 2.1. Synthetic and biobased hydrogels used as agricultural amendments, their main components and biodegradation in 

soil.                  

Reference Type of 

Hydrogel  

Backbone components 

of hydrogel 

Method for testing 

biodegradation 

Extent of 

biodegradation 

1. Stahl et al. (2000) Synthetic Polyacrylamide 

copolymer and 

polyacrylate 

Inoculation with white rot 

fungi and measuring 

mineralization 

7.3% degradation 

in 76 days 

2.Wen et al. (2010) Synthetic Polyacrylamide Incubation in liquid media 

inoculated with 

microorganisms 

70% degradation 

after 72 hours 

3.Wilske et al. (2014) Synthetic Polyacrylate hydrogel 

made from poly (acrylic 

acid). 

Measuring efflux from 13C-

labelled hydrogel in soil 

incubations 

0.12-0.24% every 

6 months 

4. Bai et al. (2015b) Synthetic Cross-linked polyacrylic 

acid 

 

 

 

 

 

 

Measuring efflux from 13C-

labelled hydrogel in soil 

incubations 

0.91% for high 

MW hydrogel and 

1.85% for low 

MW hydrogel 

after 5 months 
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5. Oksińska et al., 

(2016) 

Synthetic Technical crosslinked 

polymer of potassium 

acrylate and ultra-pure 

polymer 

 

 

 

Soil burial method and 

measuring weight loss 

 31.7% 

degradation after 

9 months 

6. Oksińska et al., 

(2018) 

Synthetic Technical crosslinked 

polymer of potassium 

acrylate and ultra-pure 

polymer 

Soil burial method and 

measuring weight loss 

77.9% 

degradation after 

9 months 

7. Nie et al. (2004) Bio-based Sodium 

carboxymethylcellulose 

as the backbone and 

crosslinking with AlCl3 

Enzymatic degradation and 

soil burial method 

50% degradation 

in 2 months 

8.Tanan et al. (2019) Bio-based Cassava starch and 

acrylic acid 

Soil burial method and 

measuring weight loss 

7.89, 17.6, 31.9, 

54.7 and 72.7% 

degradation after 

15,30,60,90, and 

120 days. 

10. Vudjung & 

Saengsuwan (2017) 

Bio-based  Cross-linked natural 

rubber latex and cassava 

starch 

Soil burial method and 

measuring weight loss 

2.6, 96, and 49% 

for rubber based, 

starch based and 

hybrid 

respectively after 

9 days 
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11. Riyajan et al. (2015) Bio-based Maleated poly(vinyl 

alcohol) and cassava 

starch 

Soil burial method and 

measuring weight loss 

80% degradation 

in 30 days 

12.Wang et al. (2008) Bio-based Carboxymethyl cellulose, 

acrylic acid, acrylamide 

and [2-

(methylacryloyloxy) 

ethyl] 

trimethylammonium 

chloride 

Soil burial method and 

measuring weight loss 

43.6% 

degradation after 

100 days 

13. Mazloom et al. 

(2019) 

Bio-based Alkali lignin, NaOH and 

poly (ethylene glycol) 

diglycidyl ether  

Soil supernatant incubation 

and measuring weight loss 

6.5% degradation 

after 40 days 

14. Passauer et al. 

(2015) 

Bio-based Lignin, NaOH and poly 

(ethylene glycol) 

diglycidyl ether 

Incubation in soil and 

measuring CO2 evolution 

0.9% - 3.2% after 

14 days 

15. Sarmah & Karak 

(2019) 

Bio-based Starch and acrylic acid 

with N, N – methylene 

bisacylamide as cross-

linker 

Bacteria media incubation and 

soil burial method and 

measuring weight loss 

40% degradation 

after 3 months 

16. Sharma et al. (2014) Bio-based Gum ghatti and 

methacrylic acid 

(monomer) using N, N´ - 

methylene-bis-acrylamide 

as a cross-linker 

Soil burial method with 

physical appearance 

observation, morphology, 

weight loss and FTIR 

spectroscopy 

66% and 86% 

after 2 months 
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17. Song et al. (2020) Bio-based Lignosulfonate, sodium 

alginate, and kanjaku 

flour 

Soil burial test and measuring 

weight loss 

14% degradation 

in 4 months 

18. Phang et al. (2011) Bio-based Acrylamide, itaconic acid 

and acrylic acid and 

alginate backbone 

Incubation in soil supernatant 

with and without nutrient 

addition, direct soil burial, and 

morphological observation 

under illuminated stereo 

microscope. 

63.5% 

degradation in soil 

after 40 days 

19. Sahoo & Rana et al. 

(2006) 

Bio-based Starch, ethyl 

methacrylate, benzoyl 

peroxide as initiator and 

sodium acrylate as cross-

linker 

Degradation in activated 

sludge, degradation in cultured 

medium and soil burial 

method. 

50% degradation 

in 12 months. 
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2.5 Impact of Hydrogels on Soil Hydraulic Properties   

 In agriculture, hydrogels are used to retain soil water in mostly dry soils. They may 

also be used to reduce irrigation frequency by serving as temporary storage materials in 

soils (Saha et al., 2020b). According to Durner & Flühler (2006), soil hydraulic properties 

refer to the macroscopic interactions between the chemical potential, phase concentration, 

and transmission behavior of fluids in soil. Soil hydraulic properties are used to quantify 

the capacity of a soil to store and transmit water (Van Genuchten & Pachepsky, 2011). 

These hydraulic properties include soil water retention, saturated hydraulic conductivity 

(Ks), unsaturated hydraulic conductivity (K), soil water infiltration rate, and soil 

evaporation rate.  

 

2.5.1 Impact of hydrogels on soil water retention 

There have been numerous studies that investigated the impacts of hydrogels on the 

above-mentioned soil hydraulic properties, however soil water retention is the most 

reported in literature (summarized in Table 2.2). Soil water retention refers to the quantity 

of water a particular soil can hold for crop use. Soil water retention is often quantified using 

the soil water retention curve (SWRC). Researchers are interested in how the application 

of hydrogel affects the SWRC (Figure 2.4) as the results have important agronomic 

implications for farmers. The SWRC describes the relationship between volumetric water 

content and the soil water pressure head at a given location in soil (Van Genuchten & 

Pachepsky, 2011; Wendroth et al., 2018). This curve will be different for every soil type. 

Due to capillary forces in soil pores and adsorption of water on solid surfaces, soil water 
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pressure head in soil is typically negative (Van Genuchten & Pachepsky, 2011). As soil 

water pressure head moves closer to zero, soil water is mostly held by capillary forces and 

as pressure decreases (becomes increasingly negative) the remaining water is tightly bound 

in the smallest pores in soil making it difficult for plants to access. 

  The part of the SWRC that is most relevant for agricultural decision-making is 

between the field capacity (FC) and the permanent wilting point (PWP) and is known as 

the plant available water capacity (PAWC). The field capacity of a soil is often described 

as the amount of water retained by a soil after a rain or irrigation event once drainage has 

become negligible. The permanent wilting point is the soil water content below which 

plants wilt permanently (Abedi-Koupai et al., 2008). The field capacity of soil will differ 

according to soil texture. Coarse soil, like sand, will have a lower field capacity than finer 

soils like clay. The soil water content available to plant roots is thus defined as PAWC as 

the difference in field capacity (FC) minus the permanent wilting point (PWP). From 

Figure 2.4, the soil water pressure head can be represented with an effective pore diameter. 

Thus, as soil water pressure head decreases, soil water is held by smaller pores. When soil  

is nearly saturated, water in the soil would be held by pores with average diameters 

corresponding to 3000µm (Goss & Ehlers, 2003). As the soil dries and the pressure in the 

soil approaches the permanent wilting point, water in soil will be held by pores with 

average diameters corresponding to 0.2µm (Goss & Ehlers, 2003).  

There have been several studies that examined the impact applying hydrogels had 

on the shape of the SWRC in diverse soil textures. Studies have predominantly reported a 

statistically significant increased water retention when the hydrogel application was in 

sandy soils with hydrogel concentrations ranging from 0.1 to 2% (w/w) (Abdallah, 2019b; 
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Andry et al., 2009; Banedjschafie & Durner, 2015; Bhardwaj et al., 2007; Dehkordi, 2018; 

El-Tohamy et al., 2014; Montesano et al., 2015). 

  

 

Figure 2.4. Soil water retention curve showing the relationship between soil volumetric 

water content and soil water pressure head in sand, silt loam and clay soil (redrawn from 

Goss, (2003)). 

Over the last two decades, many studies have investigated the application of 

hydrogels to soils for the purpose of improving soil water retention, summarized in Table 

2.2. The effects of hydrogels on soil water retention were consistent in all the studies 

reviewed i.e., soil water retention increased in all reviewed studies. Ten studies applied 

biobased hydrogels to different soils. Six of these studies (Andry et al., 2009; Cannazza et 

al., 2014; Demitri et al., 2013; Montesano et al., 2015; Narjary & Aggarwal, 2014; Narjary 

et al., 2012) applied cellulose-based hydrogels to mostly sandy soils and soil water 

retention increased by a range of 6-500% in the range of soil water pressure head from 
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saturation to permanent wilting point with a concentration of hydrogels between 0.1 and 

1.5% w/w.  

  For all the biobased hydrogels, soil water retention at a given pressure head 

increased. However, the increased water retention in (Hu et al., 2019) was attributed to the 

added polyacrylamide in the hydrogel which indicated that biobased hydrogels can be 

enhanced by blending them with synthetic hydrogels. The application rate for the biobased 

hydrogels ranged from 0.1 to 1.5% (w/w). While most of the studies in this review were 

conducted in lab conditions, among the biobased hydrogel studies, Narjary et al. (2014) 

conducted a field study and reported an increase of 6-8% in relative available water 

capacity of a sandy loam soil with a cellulose-based hydrogel concentration of 5 kg ha-1 

which was among the lowest increase in soil water retention. With an estimated soil density 

of 1430 kg m-3, this would result in an application rate of 0.0005 % (w/w) in the top 7 cm 

of soil. An earlier study by the same author (Narjary et al., 2012) reported the highest 

increase of 400% in moisture content in sandy soil in a lab study with a hydrogel 

concentration of 0.7%(w/w). These results reflect a disparity between lab tests and field 

tests of hydrogels where conditions are not controlled, and real-world settings may reduce 

the efficacies of hydrogels. 

Another trend regarding experiments using biobased hydrogels was that 70% of the 

studies tested the hydrogels on sandy soils. There is a dearth of studies examining the 

impact of biobased hydrogels on water retention in other soil textures. In addition, most 

biobased studies use cellulose-based hydrogels which have been shown to work effectively 

at increasing water retention in soil but biodegrade within a few days to a month. The 

limited studies using other biobased materials calls for a shift in attention to the less 
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explored biobased materials like lignin. For instance, only two studies were found from 

this review that applied a lignin-based hydrogel (Passauer et al., 2011; Song et al., 2020). 

Passauer et al. (2011) reported a significant increase in soil water content specifically for 

soil water pressure range between -3 cm and -15,000 cm. At a hydrogel concentration of 

0.5% (w/w) which was the highest concentration used, soil water content increased by 

14.2% at -300 cm. Song et al. (2020) applied a lignin-based sodium alginate hydrogel and 

reported an increase of soil water content by 2.98-8.96% at soil water pressure heads of -

1000 cm to -15,000 cm. This was similar to the range of soil water pressure head Passauer 

et al. (2011) observed a 14.2% increase in soil water retention. One reason for fewer studies 

using lignin hydrogels could be due to lignin’s hydrophobic nature, and its complex and 

heterogeneous structure which makes utilization difficult (Passauer, 2012). However, the 

presence of numerous hydrophilic functional groups (hydroxyl and carboxyl) on lignin’s 

backbone (Li & Pan, 2010) makes it a suitable candidate for synthesizing hydrogels that 

could assist in retaining water in soil. The advantage of using lignin is that it can be 

crosslinked with other materials like sodium alginate to obtain a hydrogel which is 

biodegradable, non-toxic with high water retention (Song et al., 2020) and is a biological 

waste with minimal alternative uses unlike starch. 

  Synthetic hydrogels which are mostly made of polyacrylamide and polyacrylate 

remain the most widely researched form of hydrogels, (Mikkelsen, 1994). A total of 31 

studies applied synthetic hydrogels to mostly two soil textures to test their ability to 

increase soil water retention (Table 2.2). Thirteen studies applied hydrogels originating 

from acrylamide/polyacrylamide (Abdallah, 2019b; Abrisham et al., 2018; Akhter et al., 

2004; Al-Humaid & Moftah, 2007; Alkhasha & Al-Omran, 2020; Alkhasha et al., 2018; 
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Bai et al., 2010; Bhardwaj et al., 2007; Lentz, 2020; Liao et al., 2016; Saha et al., 2020a; 

Shahid et al., 2012; Zhao et al., 2019b) to mostly sandy soils and sandy loam soils to 

quantify their soil water retention ability at an application range of 0-1.5% (w/w). The soil 

water retention increase in the soils amended with acrylamide/polyacrylamide-based 

hydrogel studies ranged from 0.76-330%. Another six studies (Agaba et al., 2010; Agaba 

et al., 2011; Bai et al., 2010; Geesing & Schmidhalter, 2006; Leciejewski, 2009; Zhuang 

et al., 2013) applied polyacrylate based hydrogels mostly to sandy soils at application rates 

ranging from 0-1% (w/w) which led to a soil water retention increase of 6.2-319%. 

The effects of hydrogel on soil water retention seem to be more consistent than for 

other soil hydraulic properties. However, the impacts have often been significant only for 

coarse soils i.e., sandy soils. Studies by (Abdallah, 2019; Banedjschafie & Durner, 2015; 

Montesano et al., 2015, Bhardwaj et al., 2007; Andry et al., 2009; El-Tohamy et al., 2014; 

Dehkordi, 2018) applied hydrogels at varying concentrations ranging from 0 -2.5% (w/w) 

to sandy soils. Montesano et al. (2015) reported a 400% increase in soil moisture at FC 

with 2% (w/w) application rate while in Banedjschafie & Durner (2015), the highest water 

content was observed at an application rate of 1% (w/w). Similarly, Dehkordi (2018) 

reported a significant increase of 45.5% in saturated water content with a hydrogel 

application of 0.6% (w/w) and concluded that irrigation needs may decrease by 10-30% 

with hydrogel treated sandy soil. Studies by Bhardwaj et al. (2007) and Andry et al. (2009) 

also showed a significant soil water retention after hydrogel treatment to sandy soils. 

 Studies on the impact of hydrogels on PAWC have been consistent i.e., PAWC 

increases with increasing application rate of hydrogels but to a larger extent in coarse-

textured soils (Narjary et al., 2012). In general, sandy soils hold the lowest PAWC 
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(Wendroth et al., 2018), hence applying hydrogels to sandy soils may result in higher 

benefits. With hydrogel application rates of 0, 0.1, 0.2 and 0.4% (w/w), Saha et al. (2020b) 

observed an increase in PAWC in sandy soil by a factor of up to 3.3% compared to a control 

treatment. Their study also found that PWP of the sandy soil was delayed by 32 days at the 

0.4% hydrogel treatment compared to the control treatment. Their study recommended a 

0.1% (w/w) application rate for coarse textured soils and a 0.2% for fine-textured soils, 

however they only tested a range from 0-0.4% w/w hydrogel. 

 When soils are saturated, hydrogels in the soil absorb a substantial portion of the 

water while acting as additional pores for storage of the water. As the soil dries, the stored 

water is released back into the soil for plant roots (Saha et al., 2020b). Several reasons can 

be attributed to the ability of hydrogels to retain and release water in the soil matrix. 

According to Yang et al. (2014), the increase in soil water retention with hydrogel 

application could be due to the strong adsorption and complexing capacities from 

hydrophilic functional groups, such as hydroxyl, carboxyl, amide, and sulfonic groups from 

the cross-linking in synthetic hydrogels. Higher soil water retention could also be due to a 

decrease in median pore diameter with the application of hydrogel (Narjary et al., 2012). 

Narjary et al. (2012) explains that as pore diameters decrease, smaller retention pores are 

likely to be found in soil and these pores can hold more water tightly due to the increase in 

porosity. 

2.5.2  Impact of hydrogels on soil hydraulic conductivity 

Hydraulic conductivity describes the ability of soil to transmit water (Klute & 

Dirksen, 1986). Besides increasing water availability in soils, hydrogels have been shown 

to affect hydraulic conductivity in soil. The effect of hydrogels on saturated hydraulic 
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conductivity (Ks) has been inconsistent though most studies on soil hydraulic conductivity 

have focused on Ks. Out of the 14 studies surveyed that investigated the effects of 

hydrogels on Ks, 9 of the 14 studies indicated a decrease in Ks (Abdallah, 2019b; Alkhasha 

et al., 2018; Mohawesh & Durner, 2019; Narjary & Aggarwal, 2014; Narjary et al., 2012; 

Shahid et al., 2012; Smagin et al., 2019; Song et al., 2020; Zhuang et al., 2013), however, 

three studies (Andry et al., 2009; Hu et al., 2019; Hussien et al., 2012) reported an increase 

and three studies reported an initial decrease in Ks then a subsequent increase in Ks with 

time (Bhardwaj et al., 2007; Han et al., 2013; Hussien et al., 2012).  

Of the nine studies that report a decrease in saturated hydraulic conductivity, three 

of them used biobased hydrogels (Narjary & Aggarwal, 2014; Narjary et al., 2012; Song 

et al., 2020). Narjary et al. (2012) applied a cellulose-based polyacrylate hydrogel at 0, 0.5, 

and 0.7% (w/w) to different soils in a laboratory PVC column experiment. They reported 

a 55% decrease of Ks in the sandy soil with the 0.7% (w/w) hydrogel treatment. In a follow-

up field study (Narjary & Aggarwal, 2014), the authors observed a decrease of 45% and 

60% in hydraulic conductivity in a sandy loam with 2.5 and 5 kg ha-1 application of a 

cellulose-based hydrogel respectively. Song et al. (2020) applied a lignin-based sodium 

alginate hydrogel to a sandy-loam soil and observed a decrease of 63.2-89.5% in Ks of a 

sandy loam soil with an increase in concentration of the hydrogel from 0 to 0.975% (w/w). 

The three studies that used biobased hydrogels also observed a decrease in Ks in coarse 

soils. The hypothesis is that due to the high swelling rates of the biobased hydrogels, the 

hydrogel’s expansion in the presence of water reduced the size of drainage pores while 

causing aggregation of the soil particles which reduced the number of pores available for 

downward movement of water in soil, thus reducing Ks. 
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  It is worth noting that, despite the evidence for a decrease in Ks when biobased 

hydrogels are amended to soil, two different studies (Andry et al., 2009; Hu et al., 2019) 

offer contradictory results. Andry et al. (2009) examined the effects of two hydrophilic 

polymers (carboxymethylcellulose and isopropyl acrylamide) on the Ks of a sandy soil as 

affected by temperature and water quality in a temperature–controlled environment. Their 

results suggested that Ks decreased with an increase in concentration of the two hydrogels. 

However, they also reported an increase in Ks only when soil temperature was increased 

to 35°C. The authors also observed that water retention at field capacity reduced due to an 

increase in temperature from 25°C to 35°C which they hypothesized will be taken by plant 

roots or lost by percolation. Based on their water retention and Ks measurements, it was 

thus recommended that to maximize water storage in soil through a decrease in Ks, 

irrigation should be done early in the morning when temperatures are lower than 25°C 

specifically for arid regions. The increase in Ks as soil temperature increases is due to a 

decrease in soil water viscosity (Levy et al., 1988). Similarly, Hu et al. (2019) reported a 

significant increase in Ks with the application of biobased hydrogels to sandy loam soil. 

They explain their results by hypothesizing that the hydrogel improved soil structure, 

decreased bulk density and increased porosity which increased Ks.  

While there is convincing evidence that biobased hydrogels reduce Ks, the 

reduction could be hydrogel dependent. Hence, the specific properties of the hydrogel like 

the swelling capacity in aqueous solutions and in soil could be the major factors that impact 

Ks. A biobased hydrogel with a high swelling capacity is likely to decrease Ks as more 

water is stored in the hydrogels thus reducing water percolating deep into the soil. 

Comparisons of different types of biobased hydrogels with different properties (swelling 
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capacities) used under similar conditions (e.g., temperature) will help determine the 

specific factors influencing Ks. 

Much of the evidence for decreases in Ks was found in studies that used synthetic 

hydrogels. A total of six studies (Abdallah, 2019b; Alkhasha et al., 2018; Mohawesh & 

Durner, 2019; Shahid et al., 2012; Smagin et al., 2019; Zhuang et al., 2013) using various 

synthetic hydrogels definitively argue that hydrogels decrease Ks. Four of the six studies 

applied hydrogels to high sand content soils underscoring the need for more studies using 

other soil textures. Mohawesh & Durner (2019) observed a significant decrease in Ks by a 

factor of 3 when a synthetic hydrogel was applied to sandy soil. In a study by Shahid et al. 

(2012), Ks was reduced by 16%, 36%, 48%, and 53% for hydrogel application rates of 0.1, 

0.2, 0.3 and 0.4%, respectively using a poly (Acrylamide-co-acrylic acid) based hydrogel. 

Zhuang et al. (2013) reported a decrease in Ks by 42.53, 55.45, 87.55, and 96.5% when 

sodium polyacrylate hydrogel was applied at 0.08, 0.2, 0.5 and 1% (w/w), respectively. 

The author’s explained that, as hydrogel concentration increased, the swelling of the 

hydrogel decreased the paths available for downward movement of water. Smagin et al. 

(2019) noticed that partially swollen hydrogels decreased Ks by up to 3.2 times compared 

to when dried hydrogel was applied which gave 1.4 reduction in Ks. They therefore advised 

that hydrogels be applied in swollen form to gain full benefits of reduction in Ks. Their 

recommendation is similar to Wei & Durian (2014) who emphasized that applying 

hydrogels in a wet state allowed hydrogels to quickly clump together forming reservoirs in 

sandy soil pores decreasing the downward percolation of soil water.  

Abdallah (2019b) applied a polyacrylamide-based hydrogel to a sandy soil at 0 and 

0.3% (w/w). Their study showed that Ks was significantly reduced, and the reduction was 
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dependent on the particle size of the hydrogel. There was a greater (68.8%) reduction when 

the hydrogel particle sizes were between 0.8 – 1.0 mm compared to hydrogels with particle 

sizes between 2 – 4 mm (38.9%). Their result implied that hydrogels with smaller particle 

sizes may be more useful at reducing Ks in sandy soils. It is worth investigating the impact 

of particle size of biobased hydrogels to understand how particle size impacts Ks, since to 

the best of our knowledge no study investigates this topic. For the studies surveyed in this 

review, the particle size distribution of the hydrogels was rarely reported and so there is a 

question as to the link that particle size distribution of biobased hydrogel has on the impact 

on soil hydraulic properties.  

Other studies using synthetic hydrogels have also reported a decrease in Ks, but the 

decrease was not consistent with all application rates neither was it true for the entire 

duration of the study. Han et al. (2013) investigated the effect of different synthetic 

hydrogel types (Acrylate Sodium Co-polymers (ASC) and Polyacrylamides (PAM)) on Ks. 

Their results suggest that Ks decreased sharply on initial hydrogel application, but Ks then 

gradually increased with time. Initially, the swelling of hydrogels led to the blockage of 

soil pores, but repeated absorption and desorption resulted in a loss of swelling capacity in 

the hydrogel thus soil pores were unblocked, and Ks increased.  

 The pressure exerted above the location of a hydrogel can also influence its role in 

limiting Ks. Bhardwaj et al. (2007) reports an initial decrease of Ks with a subsequent 

increase due to pressure from the soil above the hydrogel causing it to drain water. Hussein 

et al. (2012) showed a decrease in Ks (53.68-87.19%) at low concentration of the hydrogel 

(0.5 and 1%) and an increase (107.6-516.3%) at higher concentration (2%). The authors 

attribute the decrease in Ks to a reduction in the pore spaces between the soil particles and 
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aggregates caused by swelling in the hydrogel which blocks movement of water. The 

authors argue that the higher concentration led to weaker hydrogel soil matrix which was 

unable to withstand the hydraulic head exerted by the soil above. It could be argued that 

the influence of synthetic hydrogels on Ks is directly dependent on the residence time of 

the hydrogel in soil as well as the concentration. The longer the hydrogel stays in the soil 

the lower its efficacy at reducing Ks. Secondly, as you increase the concentration of the 

hydrogel, Ks reduces up to a certain threshold concentration at which point Ks starts to 

increase drastically. 

A possible explanation for the contradictory results regarding the effect of both 

biobased and synthetic hydrogel on Ks could be due to restricted swelling caused by the 

pressure exerted from the soil layers above the hydrogel in the soil (Saha et al., 2020b). 

For instance, when hydrogel is placed at a depth below the surface of the soil, it begins to 

swell by absorbing water into its 3D network. To keep the water absorbed in the hydrogel 

and at that specific height, the weight of the hydrogel must withstand the weight of soil 

exerting the downward pressure on the hydrogel. However, with time, the weight of the 

hydrogel decreases as water gradually moves out of the hydrogel into the surrounding soil 

due to an increase in matric suction in the soil. At this stage, the ability of the hydrogel to 

hold onto water now depends on the load applied by the upper layer (Lejcuś et al., 2018; 

Misiewicz et al., 2019) coupled with the matric suction in the soil. These two forces 

eventually overwhelm the strength of the hydrogel causing the water to drain out creating 

additional pores through which percolating water drains thereby increasing the hydraulic 

conductivity as a result (Saha et al., 2020b). 
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 Like Ks, unsaturated hydraulic conductivity (K) is important for the movement of 

water in soil, although fewer studies have investigated the impacts of hydrogels on K. A 

survey of literature found two studies since the year 2000 that measured K after applying 

hydrogel (Liao et al., 2016; Smagin et al., 2019). Both studies reported a decrease in K with 

the application of hydrogel. Liao et al. (2016) measured the K of a sandy loam soil when a 

synthetic polyacrylamide and acrylic acid-based hydrogel were applied at rates of 0, 0.01, 

0.03, and 0.06% (w/w). Their results reveal a decrease in K of 85.5 to 94.1% on day 0, 75.1 

to 82.9% on day 30 and 65 to 76.2% on day 50. Smagin et al. (2019) noticed that at high 

matric potentials i.e., > -10 to -15kPa, K was reduced up to 2-3 times at hydrogel 

concentrations ranging from 0.01-0.05% (w/w) and a reduction of 10-50 times at 0.1-0.2% 

hydrogel concentration. However, at low matric potentials i.e., -20 to -700kPa, K increased 

with an increase in hydrogel application rate.  

 In general, when soil is saturated or near saturation, there are plenty of conducting 

pores for water to move through soil thus an increase in K is observed. Eventually as 

conditions around the soil become unsaturated and tortuous, a decrease in K is observed. 

A hydrogel which can retain bound water for a period of time could gradually release the 

bound water during extremely dry conditions which creates a wider path/increase cross 

sectional area for the movement of water thus potentially increasing K. Field soils where 

hydrogels may be applied will mostly be limited by water and constantly be in an 

unsaturated state hence the importance of more studies investigating effect of hydrogel 

application to unsaturated hydraulic conductivity. 
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2.5.3  Impact of hydrogels on soil water infiltration  

 A hydrogel meant to be used for soil water management could alter soil water 

infiltration rate. Infiltration refers to the entry of water into soil and subsequent downward 

movement (Blanco-Canqui, 2017; Kirkham, 2014). Water content, field density, suction 

head, temperature, rainfall intensity and soil texture all influence soil infiltration rate (Sihag 

et al., 2018). For example, coarse textured soils have larger pores which allow water to 

quickly move below the reach of crop roots. A review of literature corroborates a decrease 

in infiltration rate with an increase in hydrogel application rate (Abrisham et al., 2018; Guo 

et al., 2019; Lentz, 2007; Reddy et al., 2015; Zhuang et al., 2013). Unlike hydraulic 

conductivity, studies have mostly agreed that the swelling process of hydrogels fills up the 

larger pores in soil serving as a barrier to the downward movement of water.  

 From the eight studies surveyed for this paper shown in Table 2.2, only one study 

investigated the impact of a biobased hydrogel (Poly-γ-glutamic acid-based hydrogel) on 

infiltration rate of sandy loam soil (Guo et al., 2019). The remaining seven studies all used 

either polyacrylamide, polyacrylate or acrylic acid derived hydrogels to apply to soil to 

study their impacts on infiltration rate of mostly sandy soils. With application rates of 0, 

0.08, 0.2, 0.5 and 1% (w/w), Zhuang et al. (2013) observed a decrease in the migration 

velocity of water into the deep soil layers while also decreasing infiltration rate in sandy 

soil. Three studies (Guo et al., 2019; Lentz, 2007; Reddy et al., 2015) applied hydrogels at 

rates ranging from 0-1.17% (w/w) to mostly loam soils. Guo et al. (2019) concluded that 

hydrogels decreased infiltration volume of water thereby increasing soil water at field 

capacity. Lentz (2007) emphasized that initially, the added hydrogel may decrease the 

seepage rate of water by absorbing water and preventing downward percolation, however, 
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in the long term, it is the change in pore-size distribution of soil by hydrogel amendment 

that will reduce infiltration. Reddy et al. (2015) compared the infiltration rate of sandy 

loam soil amended with four different hydrogels. Their study reports a decrease in 

infiltration rate of 90% in the best performing hydrogel. Hydrogel reduces infiltration rate 

by altering pore structure (Lentz, 2007; Saha et al., 2020b) of soils especially in sandy soils 

where bigger drainage pores are reduced to smaller retention pores.    

2.5.4 Impact of hydrogels on soil water evaporation 

 Evaporation refers to a process that occurs when liquid water changes into water 

vapor and diffuses into the atmosphere (Shuttleworth, 1979). Evaporation is an important 

process to the earth in terms of the hydrological cycle, for temperature control in warm-

blooded mammals and for cooling in industries (Carrier et al., 2016). There are three stages 

of soil evaporation. Stage 1 is where soil is sufficiently wet, so water is readily available at 

the surface for evaporation (Rose, 1968). There is a higher evaporation rate in stage one. 

One reason for this sharp increase is that the soil is saturated, and evaporation begins at the 

surface of the soil caused by environmental factors like atmospheric temperature, wind 

speed, and humidity (Idso et al., 1974). During stage 2, evaporation shifts from the surface 

water to the sub-surface water resulting in the formation of a dry surface layer (Rose, 1968). 

The soil starts to heat up and the water in the soil profile is unable to move to the surface 

of the soil fast enough to meet the demands of the evaporation at the surface (Idso et al., 

1974). Finally, during stage 3, constant evaporation is seen controlled by absorptive forces 

acting over molecular distances at the solid-liquid interfaces within the soil (Idso et al., 

1974). The rate of water moved is very low at this stage.  
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 There are differences in the drying rates of different textured soils. For example, 

when stage 2 of the drying process begins, evaporation rates will depend on the energy 

level of the soil which is also a function of the water retention capacity of soil. Coarse 

textured soils have large pores, thus through capillary action, the soil beneath the surface 

dries faster creating a higher tension between soil particles and thin layers of water. This 

high tension reduces the amount of water that moves up to the surface of the soil, hence 

decreasing evaporation. While in the case of fine soils, they have a higher water holding 

capacity and a lower energy level. Thus, during the second stage of drying, there are higher 

amounts of water available to move to the surface of the soil resulting in increased 

evaporation compared to sandy soils. Hydrogels can both retain water and reduce 

evaporation (Table 2.2). One study showed an increase in evaporation with hydrogel 

application (Guo et al., 2019). However, few studies in literature investigated how the 

application of hydrogels to soil impacted soil evaporation. 

 From our review, there was only one study (Guo et al., 2019), that studied the 

effects of a biobased hydrogel (Poly-γ-glutamic acid-based hydrogel) on evaporation and 

the only study that argued that hydrogels increased evaporation rate. Guo et al. (2019) 

tested a poly- γ-glutamic acid-based hydrogel on soil evaporation by filling small round 

PVC columns with hydrogel-soil mixtures at rates of 0, 0.05, 0.10, 0.15, and 0.20%. The 

experiment occurred in a constant temperature incubator at 50°C. Evaporation was then 

measured by the change in mass of the samples every 12 hours. Their results indicate that 

the poly- γ-glutamic acid-based hydrogel increased cumulative evaporation in soil 

compared to a control treatment. The authors attributed the increase in evaporation to the 
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increase in water storage in the soil because of the hydrogel which provides water for the 

first stage of evaporation to easily occur. 

 On the other hand, the remaining six studies that investigated evaporation 

(Alkhasha et al., 2018; Dehkordi, 2018; Taban & Movahedi Naeini, 2006; Yang et al., 

2015; Yu et al., 2012; Zhao et al., 2019a) indicated a decrease in soil evaporation with 

application of different synthetic hydrogels. In a laboratory experiment, Yang et al. (2015) 

filled a rectangular sand box with a  height of 117 cm. A 10 cm soil-hydrogel layer was 

placed 20 cm below the soil surface and irrigated. After 4 and 9 days of evaporation, water 

content was highest in the soil-hydrogel layer followed by the bottom layer and the surface 

layer had the lowest water content. In a similar study by Zhao et al. (2019a), a soil-hydrogel 

layer of 10 cm was placed at a depth of 10 cm with 10 cm sand above and 40 cm of Sandy 

loam soil below. Application rates of 0.2, 0.5 and 1% (w/w) significantly decreased 

evaporative loss with an increased water storage at the 2 and 18 cm depths after 10, 20 and 

30 days of evaporation. Two other studies (Yu et al., 2012; Yu et al., 2017) also confirmed 

the ability of hydrogel-soil mixture to retain more water after drying in an oven at 60°C for 

5 hours. Yu et al. (2012) suggested that after applying acrylamide-based hydrogel at a rate 

of 5 g hydrogel /kg soil, the amount of retained water in the soil increased thus extending 

the first stage of evaporation. 

 With these background studies, it can be deduced that hydrogels may alter the 

drying stages by increasing water storage. By placing hydrogels at a specific depth near 

the surface of the soil, hydrogels can reduce saturated hydraulic conductivity (Yang et al., 

2015) thus, keeping more water in the topsoil for a longer time. This prolongs stage 1 

drying since there would still be enough water at the surface of the soil. Secondly, as the 
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soil profile gradually dries under natural conditions and enters stage 2, hydrogels can 

intercept the movement of water upwards as some water will be absorbed and kept at the 

level just beneath the soil surface. The extent of the changes in soil evaporation will 

however depend on the type and amount of the hydrogel applied. 
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Table 2.2 Summary of the impacts of synthetic and bio-based hydrogels on soil hydraulic properties.    

   

Reference Type 

of 

study  

Soil 

textures 

Hydrogel 

application 

rate 

Hydrogel 

used  

Water retention Ks Soil water 

infiltration 

Evaporatio

n 

1. 

Abdallah 

(2019b) 

Lab 

and 

greenho

use  

Sandy 

soil  

0.3 and  

0% (w/w)  

WaterSorb 

(WS) 

(Synthetic) 

 

Gravimetric water 

content increased 

by 260% 

Decreased 

38.9-68.8% 

N/A N/A 

2. Abedi-

Koupai et 

al. (2008)  

Lab Sandy 

loam, 

Loamy, 

and Clay 

2, 4, 6, and 8 

g 

hydrogel/kg 

soil 

PR3005A 

 and Tarawat 

A100  

(Synthetic) 

 

Available water 

content increased 

180% in clay and 

220-320% in loamy 

and sandy loam 

N/A N/A N/A 

3. Agaba 

et al. 

(2010) 

Green

house 

Sand, 

Sandy 

loam, 

Loam, 

Silt 

loam 

and 

Clay 

0, 0.2, and 

0.4% (w/w) 

Luquasorb 

hydrogel, a 

powder type 

of potassium 

polyacrylate 

(Synthetic) 

 

Plant available 

water increased 

300% in sand, 

200% in silt loam 

N/A N/A N/A 

4. Agaba 

et al. 

(2011) 

Green

house 

Sandy 

soil 

0, 0.2, and 

0.4% (w/w) 

Luquasorb 

hydrogel, a 

powder type 

of potassium 

100% increase in 

retained water in 

top 25 cm of soil 

N/A N/A N/A 
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polyacrylate 

(Synthetic) 

5. Akhter 

et al. 

(2004) 

Potted 

study 

in lab 

Sandy 

loam, 

and 

Loam  

0.1, 0.2 and 

0.3% (w/w) 

 Acrylamide-

based 

hydrogel 

(Synthetic) 

 

Increased soil 

water content at 

field capacity by 

17- 46% in sandy 

loam and 23-50% 

in loam. 

N/A N/A N/A 

6. Bai et 

al. (2010) 

Lab 

and 

potted 

study 

Sandy 

clay 

loam 

0, 0.05, 0.1, 

0.2 and 

0.3% (w/w) 

Polyacrylate/ 

polyacrylami

de-based 

hydrogels 

(Synthetic) 

                                

Relative soil 

moisture increased 

6.2-32.8%. 

N/A N/A N/A 

7. 

Cannazza 

et al. 

(2014) 

Green

house 

potted 

study  

Red 

soil 

(Clay 

soil) 

and 

white 

soil  

0, 0.2, 0.5, 

1.0 and 

1.5% (w/w) 

Cellulose-

based 

hydrogel 

(Biobased) 

Increased water 

retention by 50%. 

N/A N/A N/A 

8. Koupai 

et al. 

(2008) 

Lab 

and 

field 

study 

Sandy 

loam 

and 

Clay 

4 and 6 g/ 

kg soil 

Superab 

A200 

(Synthetic) 

Available water 

content increased 

by 230%. 

N/A N/A N/A 

9. 

Leciejew

Lab 

study 

Loamy 

sand 

0.02, 0.08, 

0.17, and 

 Potassium 

polyacrylate-

based 

Soil water 

increased by 200-

250%. 

N/A N/A N/A 
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ski 

(2009) 

0.25% 

(w/w) 

hydrogel 

(Synthetic) 

10. Liao 

et al. 

(2016)     

Potted 

in lab 

Sandy 

loam 

0, 0.01, 

0.03, 0.06%  

Polyacrylami

de and 

acrylic acid-

based 

hydrogel 

(Synthetic) 

Soil water content 

increased by 2.7-

26.5%. 

N/A N/A N/A 

11. 

Montesan

o et al. 

(2015) 

Lab 

study 

Sandy 

soil 

0, 0.5, 1 and 

2% (w/w) 

Cellulose-

based 

hydrogel 

(Biobased) 

Increased soil 

water content at 

FC by 400%. 

N/A N/A N/A 

12. 

Sarmah 

& Karak 

(2020)  

Lab 

study 

Silty 

and 

Sandy 

0.1 and 

0.25% 

Starch based 

hydrogel 

(Biobased) 

Water holding 

capacity increased 

by 120% 

N/A N/A N/A 

13. Saha 

et al. 

(2020a) 

Lab 

study 

Fine 

sand, 

Silt 

loam 

and 

Clay 

0, 0.1, 0.2, 

and 0.4% 

(w/w) 

Stockosorb, 

acrylic-based 

polymer with 

acrylamide 

cross-linking. 

(Synthetic) 

Plant available 

water capacity 

increased by 120-

330% in fine sand. 

N/A N/A N/A 

14. 

Abrisham 

et al. 

(2018) 

Field 

study 

Sandy 

loam 

0 ,1, and 3 g 

hydrogel/ 

dm-3 of soil 

Stockosorb, 

an 

acrylamide/a

crylic acid 

copolymer 

potassium 

Available water 

content increased 

by 21.5%. 

N/A Soil water 

infiltration 

decreased 

by 21.5%. 

N/A 
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Salt. 

(Synthetic) 

15. 

Bhardwaj 

et al. 

(2007) 

Lab 

study 

Sandy 

soil 

0, 0.5, 2.5, 

and 5.0 g 

hydrogel /kg 

of soil. 

Cross-linked 

acrylamide 

or acrylic 

acid 

copolymers  

(Synthetic) 

Increased Decreased 

then an 

increase 

with time 

N/A N/A 

16. 

Andry et 

al. (2009) 

Lab 

study 

Sandy 

soil 

0 , 0.1, and 

0.2% (w/w) 

Carboxymeth

ylcellulose 

(biobased) 

and isopropyl 

acrylamide  

(Synthetic) 

Available water 

content increased 

by 400-500% 

Increased N/A N/A 

17. Lentz 

(2020) 

Potted 

study 

and 

lab 

study 

Degrad

ed 

calcare

ous 

Silt 

loam 

0.25 or 

0.5% dry 

weight (5.6 

or 11.2 Mg 

ha−1) 

Polyacrylami

de copolymer 

and 

polyacrylic 

acid-

potassium 

salt 

hydrogels. 

(Synthetic) 

Plant available 

water increased by 

42%. 

N/A N/A N/A 

18. 

Shahid et 

al. (2012) 

Lab 

study 

Sandy 

loam 

soil 

0.1, 0.2, 0.3 

and 0.4% 

(w/w) 

Poly 

(Acrylamide-

co-acrylic 

acid)/AlZnFe

2O4 

Water retention at 

field capacity 

increased by 60-

100%. 

Decreased 

by 16-

63%. 

N/A N/A 
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nanocomposi

te hydrogels 

(Synthetic) 

19. Hayat 

& Ali 

(2004) 

Lab 

and 

potted 

greenh

ouse 

study 

Sandy 

loam 

0,0.25,0.5,0.

75,1.00, 

1.25, and 

1.50% 

(w/w) 

Aquasorb 

(Synthetic) 

Soil moisture 

content increased 

by 30-850% 

N/A N/A N/A 

20. Yu et 

al. (2012) 

Lab Loamy 

sand, 

Sandy 

Loam, 

Sandy 

clay 

loam 

and 

Clay 

loam 

0.5% (w/w) WOTE, 

GNKH, 

PR3005S, 

and BJ-210 

lXM 

(Synthetic) 

Water absorption 

capacity increased 

by two orders of 

magnitude. 

N/A N/A Decreased 

evaporation 

up to 338% 

after 7 

hours of 

drying. 

21. 

Banedjsc

hafie & 

Durner 

(2015)   

Lab Sand 0, 0.3, 0.6, 

and 

1% w/w 

Superab A20

0 

(Synthetic) 

Plant available 

water increased by 

%5500 

N/A N/A N/A 

22. Baran 

et al. 

(2015) 

Lab Loamy 

sand                 

and 

Sand  

0, 0.2, 0.6, 

1%, and 2% 

(w/w) 

AgroaquaGel 

(Synthetic) 

Increased 

maximum water 

capacity by 32-

69%. 

N/A N/A N/A 
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23. 

Demitri 

et al. 

(2013)  

Lab 

and 

greenh

ouse 

Red 

soil 

0.2, 0.5, and 

1% (w/w) 

Cellulose-

based 

hydrogel 

(Biobased) 

Increased N/A N/A N/A 

24. 

Geesing 

(2006) 

Lab Loam, 

Silty 

clay 

loam 

and 

Sandy 

loam 

0, 1, 3, or 5 

g/L of soil 

Sodium 

polyacrylate 

(Synthetic) 

Increased only at 

rate > 3g/L 

N/A N/A N/A 

25. Hu et 

al.  

(2019) 

Lab Sandy 

loam 

0, 2 and 4 (t 

/ha) 

Biomaterials 

and 

polyacrylami

de 

(Synthetic 

and 

biobased) 

Soil water content 

increased by 12.1-

23.4%. 

Increased 

91-122%. 

N/A N/A 

26. 

Dehkordi 

(2018) 

Green

house 

study 

Sandy 

soil 

0,0.20, 0.40 

and 0.6% 

(w/w) 

Superab A20

0 (Synthetic) 

Soil water 

retention increased 

175-375%. 

N/A N/A Evaporatio

n rate 

decreased 

by 80% on 

the third 

day. 

27. 

Narjary 

et al. 

(2012) 

Lab Sand, 

alluvial 

Sandy 

loam, 

red 

0, 0.7, and 

0.5% (w/w)  

Pusa, a 

polyacrylate 

cellulose-

Soil water content 

increased by 400% 

in sandy soil at soil 

Decreased 

by 118, 

708, and 

95% in 

sand, red 

N/A N/A 
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Sandy 

loam 

and 

black 

Clay 

based 

hydrogel. 

(Biobased) 

pressures of 10-

100kPa. 

sandy 

loam and 

alluvial 

sandy soil 

respectivel

y. 

28. 

Narjary 

& 

Aggarwal 

(2014) 

Field* Sandy 

loam 

 0, 2.5, and 

5 (kg /ha) 

Pusa, a 

polyacrylate 

cellulose-

based 

hydrogel. 

(Biobased) 

Plant available 

water capacity 

increased by 6-8%. 

Decreased 

45-60% 

N/A N/A 

29. Salim 

(2015) 

Lab 

and 

field 

Sandy 

loam 

0, 4, 8, and 

12% (w/w) 

Sky Gel, 

copolymer of 

acrylic acid 

and sodium 

acrylic acid 

(Synthetic) 

Water holding 

capacity increased 

by 63.2-302.8%. 

N/A N/A N/A 

30. 

Śpitalnia

k et al. 

(2019) 

Lab Coarse 

sand, 

Loamy 

sand, 

and 

Sandy 

loam 

 Water 

absorbent 

geocomposit

e (Synthetic) 

Soil water 

retention increased 

by 54.8-191.6%. 

N/A N/A N/A 

31. Zhao 

et al. 

(2019b)   

Lab Sandy 

loam 

0,0.1, 0.2, 

0.5, and 1% 

(w/w) 

Acrylamide -

based 

hydrogel 

(Synthetic) 

Soil water content 

increased by 0.76-

3.74%. 

N/A Mean 

infiltration 

rate 

decreased 

N/A 
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by 9-

51.5%. 

32. 

Alkhasha 

et al. 

(2018) 

Lab Loamy 

sand 

0, 0.2, 0.4, 

0.6, and 

0.8% (w/w) 

PagriSap 

(polyacrylam

ide-based 

hydrogel) 

(Synthetic) 

Soil moisture 

increased by 2.49-

5.53%. 

Decreased 

31.4-

71.4%. 

Cumulativ

e 

infiltration 

increased 

from 9.32-

21.87% 

The 0.2% 

treatment 

decreased 

cumulative 

evaporation 

by 10.77% 

while 0.4-

0.8% 

decreased 

cumulative 

evaporation 

by 6.87- 
14.86%. 

33. 

Alkhasha 

& Al-

Omran 

(2020) 

Lab Sandy 

loam 

0, 0.2, 0.4, 

0.6, and 

0.8% (w/w) 

PagriSap 

(polyacrylam

ide- based 

hydrogel) 

(Synthetic) 

Soil water content 

increased by 3.3%. 

N/A N/A N/A 

34. Al-

Humaid 

& 

Moftah 

(2007) 

Field Sandy 

soil 

0.1%, 0.2%, 

0.4% or 

0.6% 

(w/w) 

Stockosorb 

K400, a 

cross-linked 

polyacrylami

de 

(Synthetic) 

Soil water content 

increased by 13.3-

300%. 

N/A N/A N/A 

35. 

Zhuang 

Lab Sandy 

soil 

0, 0.08, 0.2, 

0.5 and 1% 

Sodium 

polyacrylate  

(Synthetic) 

Maximum water 

supply quantity 

Decreased 

by 42.53 – 

96.5%. 

Decreased N/A 



 

 

 

6
6
 

et al. 

(2013) 

increased by 

45.61-318.89%. 

36. Song 

et al. 

(2020)          

Lab Sandy 

loam 

soil 

0, 0.375, 

0.650, 

0.975% 

(w/w) 

Lignin-based 

sodium 

alginate 

hydrogel  

(Biobased)        

 

Maximum water 

holding capacity in 

soil increased by 

2.98-8.96% 

Decreased 

63.2-89.5 

% 

N/A N/A 

37. 

Passauer 

et al. 

(2011)   

Lab Coarse 

silica 

0, 0.1, 0.25, 

and 0.5% 

(w/w) 

Lignin-based 

hydrogel 

(Biobased) 

Soil water content 

increased by 300-

400%. 

N/A N/A N/A 

38. 

Kashkuli 

& 

Zohrabi 

(2013)   

Lab Sandy 

soil 

0, 0.03, 

0.06, 0.08, 

0.2, and 

0.4% (w/w) 

Super AB 

A200 and 

Herbasorb 

(Synthetic) 

Soil available 

water increased 

350 and 320%. 

N/A N/A N/A 

39. 

Sivapalan 

(2001) 

Lab Sandy 0, 0.03 and 

0.07 % 

(w/w) 

ALCOSORB

® 400 

(anionic 

acrylic 

copolymer) 

(Synthetic) 

Soil water 

retention increased 

23 and 95%. 

N/A N/A N/A 

40. Han 

et al. 

(2013)   

Lab 

study 

Sandy 

loam 

ASC or 

PAM in soil 

at a mass 

ratio of 

Acrylate 

Sodium Co-

polymers 

(ASC) and 

Polyacrylami

N/A Decrease 

then an 

increase 

with time 

N/A N/A 
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1:2,000 

(SAP:soil). 

des (PAM) 

(Synthetic) 

41. 

Hussein 

et al. 

(2012)    

Lab Sandy 

and 

Sandy 

clay 

loam 

0.5, 1.0 and 

2.0% 

(wt/wt) 

Poly (acrylic 

acid)-co-

acrylamide 

hydrogel 

(Synthetic) 

N/A Decreased 

by 53.68-

87.18% 

with lower 

rates (0.5 

and 1%) 

and an 

increase 

by 107.6-

516.3% at 

2% 

N/A N/A 

42. 

Smagin 

et al. 

(2019) 

Lab Silty 

sand 

0.01 to 0.3 

% (w/w) 

Technical 

polyacrylamide 

(PAA) hydrogel 

and a co-

polymer of 

acrylamide and 

(sodium 

acrylate 

(Synthetic) 

N/A Decreased 

by 200-

800%. 

N/A N/A 

43. 

Mohawes

h & 

Durner 

(2019)   

Lab Sandy 

soil 

0.1, 0.25, and 

0.5% (w/w) 
Luquasorb 

(Synthetic) 
Soil water content 

increased up to 

86.9% 

Decreased 

by 300% 

N/A N/A 

44. Guo 

et al.    

(2019)   

Lab Sandy 

loam 

0, 0.05, 

0.10, 0.15, 

and 0.20% 

(w/w) 

Poly-γ-

glutamic 

acid-based 

Soil water content 

at FC increased by 

8.7-58.3%. 

N/A Cumulativ

e 

infiltration 

decreased 

Cumulative 

evaporation 

increased 
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hydrogel 

(Biobased) 

32.4-

52.0%. 

17.1-

25.3%. 

45. Lentz 

(2007)   

Lab Silt 

loam, 

Loam, 

Loamy 

sand, 

and 

Clay 

loam 

0, 0.25, and 

0.5% (w/w) 

Polyacrylami

de hydrogel 

(Synthetic) 

N/A N/A Decreased 

infiltration 

by 84-

97%. 

N/A 

46. 

Reddy et 

al. (2015)   

Lab Sandy 

loam 

0, 0.25, 

0.75, 1.25 

and 1.75% 

RDW-W, 

RDW-I, 

RDW-W and 

RDW-F 

(Synthetic) 

N/A N/A Maximum 

reduction 

of 90% in 

steady 

state 

infiltration

. 

N/A 

47. Yang 

et al. 

(2015)  

Lab Sand, 

loam, 

Silt 

0.6% (w/w) Acrylic 

sodium 

copolymer 

(Synthetic) 

N/A N/A Decrease 

and 

increase 

Decreased 

48. Zhao 

et al. 

(2019a) 

Lab Sandy 

loam 

0, 0.2, 0.5 

and 1% 

(w/w) 

Polyacrylami

de and 

acrylic acid-

based 

hydrogel 

(Synthetic) 

N/A N/A N/A Decreased 

by 0.3-14% 

at 20 cm on 

day 30. 
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49. 

Taban et 

al. (2006)  

Lab Loam 

and 

Loamy 

sand 

0.14 and 

0.7% (w/w) 

Aquasorb 

PR3005A, a 

salt 

copolymer 

polyacrylami

de 

(Synthetic) 

N/A N/A N/A Decreased 

about 

31.25% 

after 2500 

hours. 
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2.5.5 Summary of how hydrogels influence soil hydraulic properties 

 Figure 2.5 conceptually illustrates how hydrogels may impact the reviewed soil 

hydraulic properties. When rain falls or soil is irrigated, infiltration is initially high and 

water percolates into the soil profile making it available to plant roots until the soil becomes 

saturated, and infiltration stops. Near the roots of the plant, hydrogels swell by absorbing 

water. As the soil becomes dry and soil water pressure head decreases, the water absorbed 

by the soil is slowly released into the soil matrix making it available for plant roots to use. 

Some water also leaves the soil into the atmosphere through evaporation.  

 Within large pores of soil, the swollen hydrogel could prevent the downward flux 

of water thus decreasing Ks. However, the soil water pressure head eventually increases, 

and soil pores gradually become air filled, the flow path of water becomes tortuous as drag 

forces between the water and soil phase increases (Van Genuchten & Pachepsky, 2011). 

Assuming hydrogels can retain water in saturated conditions and release that water when 

soil water pressure head decreases, then it is expected that the gradual release of water from 

the hydrogel creates a less tortuous path for water flow hence potentially increasing 

unsaturated hydraulic conductivity. 

 A noteworthy trend from this review is that, as soil water retention increased 

because of the application of both biobased and synthetic hydrogels, Ks decreased. This 

trend was noticed in 83% of the studies that measured the effects of hydrogel on both soil 

water retention and Ks. The increase in soil water retention ranged from 0.76 – 318.89% 

while the decrease in Ks ranged from 9-708%. This trend implies that as the hydrogel swells 

and holds water at the position of the soil profile where it is placed, movement of water is 

limited as the swollen hydrogels occupy the drainage pores thus decreasing Ks. Another 
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trend worth mentioning is that as soil water retention increased with application of 

hydrogel, cumulative evaporation decreased in 3 out of 4 studies that quantified both soil 

water retention and cumulative evaporation. However, this trend may only be valid if the 

hydrogel is positioned strategically at a location below the surface of the soil. When placed 

near the soil surface, soil water retention increased accompanied by increased cumulative 

evaporation (Guo et al., 2019) since the swollen hydrogel provides a larger concentration 

of water which increases the concentration gradient between the soil surface and the 

atmosphere for evaporation of water.  
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Figure 2.5. Conceptual diagram describing the impact of hydrogel on different soil 

hydraulic parameters, (redrawn and modified from Saha et al. (2020b)) 

2.6 The “Ideal” Hydrogel for Improving Soil Hydraulic Properties 

While it is impossible to synthesize an “ideal” hydrogel, the following are some 

properties of hydrogels that may enable them to efficiently improve soil hydraulic 

properties when applied to soil: 

1.  Stability of hydrogel in soil should be at least 5 months and at most a year. The 

stability of the hydrogel depends on its biodegradability. The more biodegradable 

it is, the less stable it is in soil. For example, a hydrogel that is made entirely of 
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starch will be less stable than one made with synthetic materials or lignin. Starch, 

being a hydrophilic polymer, swells with water repeatedly with time. The presence 

of water and readily available carbon increases microbial activity which increases 

biodegradation leading to the breakdown of the network linkages in the hydrogel 

(Tanan et al., 2019). One way of circumventing the high degradation is to keep the 

starch content below 30% when blending the hydrogel with synthetic materials. A 

study by (Goheen & Wool, 1991) indicated that a starch content of 67% in a 

polymer blend with low-density polyethylene led to higher degradation in soil (56% 

degradation in 240 days) compared to a starch content of 29% which led to a slower 

degradation (13% degradation in 240 days). Previous studies by (Majeed et al., 

2017; Majeed et al., 2016) show the biodegradation of starch could be impeded by 

reinforcing starch films with 10% lignin. They explain that lignin impedes the 

action of starch degrading enzymes like α and β- amylase through non-productive 

binding on lignin. This non-productive binding obstructs the starch-degrading 

enzymes from attacking the α 1-4 glycosidic linkages which are usually broken 

during degradation hence increasing the resistance of starch to degradation. The 

practical implication of the results from (Majeed et al., 2017; Majeed et al., 2016) 

is that polysaccharide-based hydrogels could be blended with lignin to produce 

hydrogels that are moderately biodegradable increasing their time to positively 

impact soil hydraulic properties. The practical use of a specific hydrogel should 

however be considered in making a judgement as to the need for stability. That 

judgement could be made based on the specific crop and the growing season of the 

geographical area in which the crop is grown. For longer growing seasons e.g., > 5 
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months, a hydrogel with less starch and higher synthetic material may be preferred 

while in a growing season < 5 months, a higher blend of starch could be preferred. 

The lack of a standard biodegradation rate and quantification method for bio-based 

and synthetic hydrogel makes it challenging to prescribe an ideal hydrogel. Hamid 

(2000) suggests that pending the standardization of a “reasonable” rate of 

biodegradation for polymers, biobased polymers have been suggested due to the 

argument that they are more environmentally acceptable.  

2. Swelling capacity of a hydrogel in aqueous solutions and in soil is an important 

indicator of performance. The swelling capacity of a hydrogel enables the hydrogel 

to absorb and expel water from its environment (Blanco et al., 2013). From this 

review, the swelling capacity of a hydrogel directly affects all the soil hydraulic 

properties discussed. Since hydrogels will have to be in the presence of soil to 

influence soil hydraulic properties, it is worth quantifying the swelling capacity of 

the hydrogel when confined in soil. As shown in section 5 above, a hydrogel with 

a higher swelling capacity will absorb more water in soil which increased water 

retained in the soil. The increase in surface area of the hydrogel with swelling also 

impeded the downward movement of water thus decreasing hydraulic conductivity 

and soil water infiltration. Higher swelling in hydrogels also leads to higher water 

storage which reduces evaporation when placed at an appropriate depth in soil. 

3. Swelling characteristics when confined under soil pressure impacts hydraulic 

properties. An ideal hydrogel should be able to withstand the pressure exerted by 

the surrounding soil. Hydrogels should be designed to be able to absorb water 

causing it to swell, changing the shape, mass, and volume of the hydrogel in the 
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process, even at depth within the soil. According to Misiewicz et al. (2020), during 

swelling of hydrogels, the hydrogel-soil mixture exerts pressure on the top layer of 

the soil. Due to this pressure exerted by the hydrogel during swelling, the hydrogel 

can repeatedly absorb and release water in soil against the pressure exerted by the 

soil. Misiewicz et al. (2020) further explains that the cause of the pressure exerted 

by the hydrogel during swelling depends on the available pore capacity and the 

grain size distribution of the hydrogel. Similarly, Louf et al. (2021) recently 

demonstrated that in a three-dimensional granular medium e.g. soil, the extent of 

swelling in a hydrogel depends on the antagonistic competition between the force 

exerted by the hydrogel osmotic pressure and the force exerted by the surrounding 

soil. While these studies (Louf et al., 2021; Misiewicz et al., 2020; Misiewicz et al., 

2019) tested the swelling behavior of synthetic hydrogels (polyacrylamide and 

acylate-based) hydrogels, there are currently no studies that examine these 

questions using biobased hydrogels. It is possible that differences in the mechanical 

strength between biobased and synthetic hydrogels could influence the pressure the 

hydrogel can withstand in soil. According to Ahmed (2015), synthetic hydrogels 

possess a higher mechanical strength than biobased hydrogels, which could be 

advantageous in withstanding pressure. The challenge thus lies in synthesizing 

hydrogels with optimized mechanical strength with improved elasticity that allows 

the hydrogel to swell. 

2.7 Future Research Needs 

Here are the outstanding questions that need to be addressed in relation to the application 

of biobased hydrogels to soil as an amendment. 
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1. More studies are needed to understand how the particle size distribution of biobased 

hydrogels affects soil hydraulic properties. From this review, only one study 

Abdallah (2019b) tested the impact of particle size of a synthetic polyacrylamide 

hydrogel on soil water retention properties. However, to better understand how new 

biobased hydrogels could be tuned to improve certain soil properties, it is important 

to quantify the specific particle size ranges. Investigators can then start to determine 

the relationship between particle size and the hydrogel’s ability to swell in soil 

which has been shown to affect several hydraulic properties like soil water retention 

and hydraulic conductivity. 

2. The particle density of hydrogels can affect soil physical properties like porosity 

and bulk density which in turn affects how water moves through soil. Studies that 

investigate how the particle density of various hydrogels affect soil physical 

properties will help in the development of hydrogels with specific properties that 

improve soil hydraulic properties.  

3. Most studies tend to test the effects of hydrogel on sandy soils. Though the impacts 

of hydrogel application to finer soils like clay and silt are currently not definitive, 

there is value in investigating the impact of hydrogels over a large application 

range.  

4. There are currently limited studies that compare the impacts of both synthetic and 

biobased hydrogel applications on the distribution and metabolism of 

microorganisms in soil. The degradation of hydrogels may lead to the formation of 

byproducts which may influence the type of microorganisms in a particular soil as 

some microorganisms rely on carbon for metabolic activities. 
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5. Most studies in literature currently apply hydrogel in powdered or granular form by 

mixing with soil. More research into different application methods to ascertain the 

effectiveness of those methods, e. g. spraying in liquid form, applying hydrogels in 

swollen form, or applying hydrogels in dry solid form is needed. Some investigators 

suggest that the hydrogels should be applied after they have been swelled. Studies 

are needed to quantify the benefit of applying swollen hydrogels and, if useful, to 

determine how to effectively apply swollen hydrogels. 

6. There are limited studies on the impacts of hydrogels on soil unsaturated hydraulic 

conductivity (K). Most studies concentrate on the effects of hydrogels on saturated 

hydraulic conductivity and in laboratory experiments, likely due to the ease of 

measuring Ks compared to K. However, under field conditions, soils will mostly be 

unsaturated thus more research is needed to understand how hydrogels affect K. 

7. An almost unexplored area is the use of hydrogels to manage drainage, i.e., to 

remove excess water from the plant root zone. While artificial subsurface drainage 

may be installed to remove excess water from poorly drained soils (Franzmeier et 

al., 2001), could hydrogels be placed beneath the surface of soil at a specific depth 

to absorb water from heavy rains and subsequently release the water back during 

dry periods? To fill this gap in our knowledge and test the potential capabilities of 

hydrogels as drainage materials, more field applications of hydrogels are needed in 

addition to real simulations of rainfall in the field. 
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8. When hydrogels are applied to soil, the surrounding soil tends to exert a force 

against the hydrogel, hence reducing the hydrogel’s swelling capacity. Research is 

needed to design hydrogels that can withstand the various biotic, abiotic, and 

mechanical stresses that soil exerts on hydrogels over at least one growing season.  

9. The degradation of both synthetic and biobased hydrogels can eventually lead to 

carbon sequestration. However, there is limited data to quantify how much of the 

carbon from biodegradation of a hydrogel is eventually converted into soil organic 

matter. Hence, quantification of the long-term impacts of hydrogels on soil carbon 

sequestration is needed to confirm the suitability of hydrogels as long-term soil 

amendments for carbon sequestration.  

10. Research is needed to quantify the effects of hydrogels on soil greenhouse gas 

emissions. Depending on the constituents of a particular hydrogel, increased carbon 

dioxide (CO2), nitrous oxide (N2O) or methane gas (CH4) emissions may be 

unintended consequences of hydrogel soil augmentation.      

11. This review raises important questions. To understand the underlying physical 

chemistry at work in the soil/hydrogel system, investigators should be collecting 

data on all the parameters that impact soil physical properties and biodegradation. 

For example, a standard should be developed by the hydrogel research community 

that lays our protocols for quantifying biodegradation rate and extent, and listing 

what other properties would constitute a complete data set along with standard 

protocols to collect those meta-data. Only by having data that is comparable across 

laboratories will progress be made in understanding the underlying mechanisms at 
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work. With complete data sets we can begin to unravel the contradictory or 

inconclusive studies.  

12. Once a complete data set is established, a predictive mathematical model can be 

developed to summarize our understanding of the effects of the various properties 

on soil hydraulic properties and biodegradation. For example, can we predict the 

concentration of hydrogels that when applied to a specific soil decreases/increases 

Ks? This information will increase the usefulness of this knowledge so, for 

example, farmers know the amount of hydrogel to be applied when a particular soil 

is used to grow a crop. Secondly, if that range of suitable hydrogel application is 

obtained, is it system dependent e.g., hydrogel type, soil type, climate, soil 

temperature or can that recommended range be generalized to all hydrogels and soil 

types? 

2.8 Summary and Conclusion 

This systematic review of available literature within the past two decades elucidates the 

impacts of various synthetic and biobased hydrogels on soil hydraulic properties. The 

biodegradability of synthetic hydrogels compared to biobased hydrogel was also critically 

examined. Knowledge of the biodegradability of a hydrogel is important when it is to be 

applied to soil as an amendment. Due to the increased interest in environmental 

sustainability, the research community is moving away from synthetic hydrogels and 

experimenting with biobased hydrogels as they are claimed to be more biodegradable and 

biocompatible.  
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1. This study indicates that there are several ways of measuring biodegradability of 

hydrogels in soil, but the most common method is the soil burial method because it 

is the easiest and least expensive method to conduct. However, a disadvantage of 

the soil burial method is that biodegradation is determined only based on the weight 

loss of the hydrogel and there is usually no further information about the specific 

group of microorganisms that may be causing the biodegradation in soil except 

when the soil used is sterilized and specific microorganisms are inoculated to 

degrade the hydrogels. Another major challenge is the lack of standardized methods 

to measure biodegradation in soil. Standardization can be achieved when the abiotic 

and biotic conditions considered for determination of biodegradation of a hydrogel 

for example, the temperature, pH, moisture content, relative humidity, and enzyme 

availability of a soil used for biodegradation experiments are specified where 

possible. These parameters will help future researchers easily replicate experiments 

and contribute to existing theories regarding the biodegradability of synthetic and 

biobased hydrogels in soil. 

2. In comparing the biodegradability of synthetic hydrogels to biobased hydrogels, 

this review reveals that contrary to the widely held notion that synthetic hydrogels 

are not biodegradable, some polyacrylate and polyacrylamide-based hydrogels do 

undergo degradation in soil (varied from 0.12% to 77.9%) within the first year. 

Nevertheless, certain conditions must be present to make the degradation faster in 

soil such as inoculation with specific bacteria (e.g., Bacillus cereus and Bacillus 

flexu) and fungi (Phanerochaeta chrsosporium). Since most synthetic hydrogels 

have a high molecular weight, the rate of biodegradation will depend on the ability 
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of microorganisms to gradually breakdown the recalcitrant carbon backbone which 

makes up most synthetic hydrogels.  

3. The review also finds that most biobased hydrogels (cellulose, starch, alginate, 

lignin) can degrade in soil rapidly compared to synthetic hydrogels (0.9% to 86%) 

within the first 90 days without inoculation which is an advantage over synthetic 

hydrogels which require inoculation to reach those levels of biodegradation. 

4. Both synthetic and biobased hydrogels were effective at increasing soil water 

retention when applied within a range of 0.1 to 1% hydrogel (w/w). Though the 

increase in water retention was definitive in sandy soils, few studies tested other 

soil textures. 

5. The impact of hydrogels on saturated hydraulic conductivity (Ks) was found to be 

the most inconsistent. Results on the effect of biobased hydrogels on Ks were fewer 

than for synthetic hydrogels. Biobased hydrogels were found to decrease Ks by up 

to 60% in sandy soils. However, biobased hydrogels also tended to increase Ks 

when soil temperature was high i.e., 35 °C. The overwhelming evidence for a 

decrease in Ks was with synthetic hydrogels. The high swelling capacity of 

synthetic hydrogels stores more water and closes drainage pores thus reducing Ks. 

Unsaturated hydraulic conductivity (K) was found to decrease at lower matric 

suctions and increased at higher matric suctions. However, few studies exist that 

investigate the impact of hydrogels on K. 

6. The application of synthetic hydrogels mostly reduced soil water infiltration by up 

to 90%. Only one study was found to measure the impacts of biobased hydrogel on 



 

79 

 

soil water infiltration which also confirmed a decrease in infiltration. Hydrogels 

alter soil structure decreasing the number of drainage pores and retaining water. 

7. Like soil water infiltration, hydrogel application mostly decreased soil evaporation 

as soil water is bound to the hydrogel reducing how much water is lost to the 

atmosphere. Hydrogels near the soil surface can also increase evaporation by 

storing water making it easy for stage one of evaporation to occur. 

In conclusion, the fast degradation of biobased hydrogels may not be suitable for 

their long-term use as water absorbing amendments. Thus, attention should be 

given to hydrogels that are derived from a combination of both biobased and 

synthetic sources as the benefits of higher swelling capacity will be gained from 

the synthetic materials while the ability to degrade moderately will be gained from 

the biobased materials. The performance of both synthetic and biobased hydrogels 

on soil hydraulic properties will depend on the type of hydrogel, soil texture, 

application rate, particle size distribution of the hydrogel, swelling capacity of the 

hydrogel, location of placement, and how these properties vary over time.  
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CHAPTER 3. ALKALI LIGNIN-BASED HYDROGEL: SYNTHESIS, 

CHARACTERIZATION, AND IMPACT ON SOIL WATER RETENTION FROM 

NEAR SATURATION TO DRYNESS 

3.1  Abstract 

Superabsorbent polymers (hydrogels) have been proposed as soil amendments to 

increase plant available water in soil. Synthetic hydrogels have been widely investigated 

for use in agriculture. Due to increasing environmental concerns related to synthetic 

hydrogels, hydrogels from natural sources which should be more degradable and 

biocompatible compared to synthetic hydrogels are being developed. Here, a lignin-based 

hydrogel was synthesized. Using the hanging water column, pressure plate method, and 

water potential using a dew point potentiometer, the soil water retention curve was 

measured from saturation to oven-dryness for silt loam and loamy fine sand soils. For this 

purpose, the soil was amended with the lignin-based hydrogel at concentrations of 0, 0.1, 

0.3, and 1% (w/w) for the silt loam soil and 0 and 1% for the loamy fine sand soil. The 

treatments were replicated three times and analysis of variance was employed to determine 

differences between treatments. Results showed a maximum swelling ratio of 2030% of 

the hydrogel’s original mass in deionized water, 1092% in tap water, and 825% in a 0.9% 

NaCl solution.  FTIR spectra of the hydrogel showed the presence of O-H bonds from the 

lignin structure which we hypothesize renders the hydrogel reactive to a crosslinker i.e., 

Poly (ethylene glycol) diglycidyl ether (PEGDGE) forming insoluble bonds allowing the 

hydrogel to swell with water as a result. SEM images of the lignin-hydrogels showed the 

presence of large macropores which allowed for water absorption. Application of 

hydrogels significantly increased (p < 0.01) water holding capacity of the soil. Hydrogel 

treatment significantly increased (p < 0.05) water retention at saturation/near saturation (-
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3 cm to -10 cm), field capacity (FC), and in the dry range (-20,000 to -500,000 cm) for silt 

loam soil compared to a control treatment with no added lignin hydrogel. Hydrogel 

application increased water retention over the range of soil water retention curve from -3 

to -15,000 cm for the loamy fine sand soil. In the dry range, lignin-based hydrogel treatment 

increased water retention from -20,000 cm to -50,000 cm in the loamy fine sand but not 

between -100,000 to -1,000,000 cm. In the capillary regions of the soil water retention 

curve (SWRC) where soil water is easily accessible to plant roots, volumetric water content 

(VWC) was increased. To demonstrate the feasibility of using hydrogels in the field, 

calculations were carried out based on results from the laboratory study. Our calculations 

demonstrated that at a 1% (w/w) concentration, the application of the lignin-based 

hydrogels to a 15 cm layer of silt loam and loamy fine sand soils in the field would not 

increase plant available soil water storage (PAWS). Hydrogels applied at 1% concentration 

to a 15 cm layer of loamy fine sand soil is equivalent to applying 2300 kg/ha or 1.0 ton/acre. 

These results are useful because it gives us preliminary data upon which further 

lignin-based hydrogel amendment studies could build upon by testing higher ranges of 

hydrogel concentrations to ascertain the impact on soil water retention especially in the 

capillary region of the SWRC. 

3.2 Introduction 

 The growing impacts of climate change, water scarcity, and desertification have 

negatively impacted agriculture (Durpekova et al., 2020). Increasing the amount of plant 

available water in the soil in arid and semiarid regions has become imperative as these 

areas frequently experience droughts which negatively affect plant yield (Saha et al., 
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2020a). Superabsorbent polymers (hydrogels) have been proposed as soil amendments that 

could be used to increase water use efficiency (Suresh et al., 2018), reduce nitrate leaching 

(Islam et al., 2011), reduce seepage losses in irrigation reservoirs (Lentz & Kincaid, 2008), 

and trap water that would have otherwise drained out of the root zone (Andry et al., 2009). 

The addition of hydrogels to soils may improve not only the water retention capacity of a 

soil but also increase the amount of plant available water which is especially important 

during critical growth stages (Agaba et al., 2010). Hydrogels have hydrophilic groups in 

their 3-dimensional polymeric networks which become hydrated upon contact with water 

causing them to swell (Akhtar et al., 2016).  

 Synthetic hydrogels have been the most widely utilized and researched form of 

hydrogels, which are mainly polyacrylamide and polyacrylate polymers (Mikkelsen, 

1994). The wide usage of synthetic hydrogels has drawn the attention of researchers to look 

into producing hydrogels from green alternatives i.e. biopolymers which have the 

advantages of being easily degradable and biocompatible compared to synthetic hydrogels 

(Kalinoski & Shi, 2019; Ma et al., 2015; Meng et al., 2019b). Biobased hydrogels from 

polysaccharides like cellulose (Cannazza et al., 2014; Demitri et al., 2013; Montesano et 

al., 2015) and starch (Sarmah & Karak, 2020) have been successfully used to increase water 

retention in soil. However, due to the rapid  degradation of polysaccharide-based 

hydrogels, their beneficial effects on soil water retention are not long-lasting (Passauer et 

al., 2015). An alternative that has received limited attention is the use of lignin for the 

synthesis of hydrogels. Lignin-based hydrogels have been successfully developed and 

characterized (Kalinoski & Shi, 2019; Passauer, 2012) and have been shown to be a viable 

option for agricultural soils since they are non-toxic and biodegradable (Passauer et al., 
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2015). However, there is limited data quantifying how lignin hydrogels affect soil moisture 

retention.  

 Lignin is the second most abundant plant polymer after cellulose and forms one of 

the three main components of lignocellulosic plants (Meng et al., 2019b). Recently, 

biorefineries mainly process cellulose into ethanol and value-added chemicals while lignin 

(a by-product of biorefineries) can currently not be converted into value-added chemicals 

with the available technologies (Li & Pan, 2010). One reason for the slow progress in 

development of lignin-based products is due to lignin’s heterogeneity, thus most lignin is 

directly combusted for heat and power which does not take full advantage of the lignin 

structure (Chen et al., 2020). Li & Pan (2010) emphasize that lignin, with numerous 

hydrophilic functional groups (hydroxyl and carboxyl) on its backbone, is a good feedstock 

for hydrogels. Lignin possesses properties that makes it suitable for use as agricultural 

hydrogels. For example, they are high in antimicrobial properties, biodegradable and may 

help sequester carbon (Thakur & Thakur, 2015) making it suitable for the synthesis of bio-

based hydrogels. Several studies have investigated different methods for the synthesis of 

lignin-based hydrogels (Feng et al., 2014; Mazloom et al., 2019; Meng et al., 2019a; 

Morales et al., 2020; Nishida et al., 2003; Zerpa et al., 2018), but studies are needed to test 

the applicability of these hydrogels in the soil to understand the benefits they bring in terms 

of managing soil water efficiently.  

 Numerous studies over the past two decades have applied different types of 

hydrogels to increase soil water retention (Abdallah, 2019b; Abedi-Koupai et al., 2008; 

Abrisham et al., 2018; Agaba et al., 2010; Alkhasha & Al-Omran, 2020; Andry et al., 2009; 

Bhardwaj et al., 2007; Leciejewski, 2009; Liao et al., 2016; Montesano et al., 2015; Narjary 
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et al., 2012; Passauer et al., 2011; Saha et al., 2020a; Shahid et al., 2012; Song et al., 2020). 

A few of these studies utilized hydrogels derived from lignin (Passauer et al., 2011; Song 

et al., 2020). Passauer et al. (2011) synthesized an oligo(oxyethylene) lignin hydrogel and 

tested its ability to retain water in sandy soil. They reported a significant increase in soil 

water content specifically in the pressure range of -3.0 to -1,500 cm. Their study also 

revealed that at a hydrogel concentration of 0.5% (w/w) which was the highest 

concentration used, soil water content increased by 14.2% at -316 cm soil water pressure 

head.  Song et al. (2020) synthesized a lignin-based hydrogel by cross-linking 

lignosulfonate, sodium alginate, and konjaku flour. They then applied the lignin-based 

sodium alginate hydrogel to a sandy loam soil and reported an increase of soil water content 

by 2.98 to 8.96% at soil water pressure heads of -1,000 to -15,000 cm.  

The objectives of this study were to (a) synthesize a lignin-based hydrogel using alkali 

lignin as the backbone of the hydrogel, (b) determine the swelling properties of the 

hydrogel formed in three aqueous solutions (deionized water, tap water, 0.9% NaCl), (c) 

determine the water absorption capacity of silt loam soil amended with the lignin-based 

hydrogel, (e) characterize the lignin-based hydrogel using SEM, FTIR, Gas Pycnometry 

and (f) determine the soil water retention curve of a silt loam soil amended with the lignin-

based hydrogel at rates of 0, 0.1, 0.3, and 1% from near saturation to dryness (w/w) 

concentration and loamy fine sand at concentrations of 0 and 1% (w/w). We hypothesized 

that the lignin-based hydrogel will contain macropores and reactive functional groups that 

make it possible to react with a cross-linker hence allowing the hydrogel to swell with 

water. Secondly, we hypothesized that amending soil with the lignin-based hydrogel can 

increase the water absorption capacity of the soil compared to an unamended soil.  The 



 

85 

 

final hypothesis was that by amending soil with lignin-based hydrogels, the amended soils 

will retain more water as soil water pressure head decreased potentially making water 

available to plants.  

3.3 Materials and Methods 

3.3.1 Hydrogel Synthesis 

Analytical grade alkali lignin (low sulfonate content) with an approximate 

molecular weight of 10,000 g/mol and pH 10.5, Poly (ethylene glycol) diglycidyl ether 

(PEGDGE) with average molecular weight ~500 g/mol, and NaOH were purchased from 

Sigma Aldrich (St. Louis, Missouri). The method of hydrogel synthesis followed a similar 

method as described in Passauer et al. (2011) and in Mazloom et al. (2019) with some 

modifications. A 1.5 M NaOH solution was prepared, and 16 ml was added to 10 g of the 

alkali lignin and the mixture was stirred using a glass rod for 5 mins. For thorough mixing 

and to allow the alkali lignin to dissolve completely, the mixture was further stirred on a 

magnetic stirrer (Heidolph™ MR Hei-Tec Magnetic Stirrer with Heating) set at 450 rpm 

for 24 hrs. Stirring the lignin alkali solution increased its viscosity. Then 0.5 mmol (1 ml) 

of a cross-linker (PEGDGE) was added to the alkali lignin solution using a micro-pipette. 

This solution was immediately stirred using a glass rod for 1min. The solution was then 

placed on a heat source (Heidolph™ MR Hei-Tec Magnetic Stirrer with Heating) set at 

50°C while stirring continuously for 10-15 mins until the viscosity increased. The stirring 

was discontinued, and the solution was cast into 35 mm petri plates and placed in ambient 

temperature for 24 hours to allow for complete solidification. The formed hydrogels were 

then removed and soaked in deionized (DI) water for 7 days to wash out unreacted 
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monomers. The DI water was changed daily during the 7-day period. Lastly, the soaked 

hydrogels were freeze dried at -48°C in a freeze-drier (Labonco, Cat. No 7753024) to 

obtain a dried lignin-based hydrogel.   

3.3.2 Characterization of the lignin-based hydrogel 

 The lignin-based hydrogel and alkali lignin were characterized by FTIR 

spectroscopy (Nicolet is50 FT-IR spectrometer, Thermo Fisher) in the frequency range of 

4000 cm-1 to 500 cm-1  (Mazloom et al., 2019)  at a resolution of 4 cm-1. The morphology 

of the freeze-dried hydrogel was observed by scanning electron microscopy (SEM) using 

a Hitachi S4300 FE-SEM using an incident electron energy of 2 keV. Prior to SEM 

analysis, the hydrogels were freeze-dried at -48°C for 48 hours. The fractured surfaces of 

the freeze-dried hydrogel were directly attached to the holder using carbon tape (Ted Pell 

Inc.) and no conductive coating was deposited prior to imaging. The particle density (ρ) of 

the hydrogel was determined using a fully automated, high-precision helium pycnometer 

(Micromeritics AccuPyc II 1345), an average of 3 consecutive measurements. The 

instrument measured the apparent volume of the hydrogel sample placed in it (total volume 

of the hydrogel, excluding the open pores but including the closed pores). The particle 

density of the hydrogel was then determined by dividing the mass of the hydrogel sample 

by the volume obtained from the pycnometer. The method for determining the apparent 

volume was done following a method described by Adedeji and Ngadi (2011).  

3.3.3 Swelling kinetics of lignin-based hydrogel in aqueous solutions 

 The swelling ratio of a hydrogel is important as it expresses the change in swelling 

capacity per unit of time in the hydrogel (Kipak et al., 2014). To measure the swelling rate 
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of a hydrogel, the swelling capacity is plotted against time.  The swelling ratio of the 

hydrogel was determined using a modification of previously described procedures 

(Kalinoski & Shi, 2019; Liang et al., 2015). An initial amount of the freeze-dried hydrogel 

(1 g) was measured into a beaker using a weighing scale (Fisher Science 

Education™ Analytical Balances). Excess (1000 ml) deionized water, tap water, or 0.9% 

NaCl were then added to 1g of the hydrogel and stirred with a glass rod to ensure the 

hydrogel particles made full contact with the solutions. After 20 mins of swelling, the 

solutions were passed through a cloth filter to remove excess water and retain the hydrogel. 

The mass of the swollen hydrogel was then recorded. The swollen hydrogel was re-

immersed into the same beaker of water, filtered and the mass recorded after 40, 60, 80, 

100, and 120 min. The formula for calculating the swelling ratio of the hydrogel is given 

as: 

Equation 3.1 

                                                         𝑆𝑡 =
𝑀𝑓−𝑀𝑖

𝑀𝑖
 ×100% (3.1) 

 

where St is the swelling at time (t), Mf is the mass of the swollen hydrogel at time (t) and 

Mi is the mass of the initial dry hydrogel. 

3.3.4 Water absorption capacity of lignin-based hydrogel in soil 

 The water absorption capacity of the hydrogel in soil was determined using a 

modification of methods described by (Singh et al., 2011). Air-dried soil (silt loam) was 

ground and sieved through a 2 mm sieve. The lignin hydrogel was hand mixed into soil at 
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rates of 0% (10 g of soil with no hydrogel added), 1% w/w (0.1 g of hydrogel mixed with 

10 g of soil), and 3%. The mixed samples were transferred into pre-weighed ceramic cups 

with perforated bases fitted with filter papers. Each cup was immersed in a beaker of DI 

water overnight to saturate the soil samples through capillary water rise. The samples were 

then dried in an oven at 104°C overnight. The water absorption capacity of the hydrogel in 

soil was calculated based on the difference between the saturated sample mass minus the 

oven-dried mass   divided by the oven-dried mass.  

3.3.5 Soil properties 

The silt loam soil was obtained from the University of Kentucky North Farm 

located north of Lexington, Fayette County, Kentucky (38° 6’18.07 “N 84° 29’36.11” W). 

The silt loam soil was obtained from the University of Kentucky Spindletop Farm located 

north of Lexington, Fayette County, Kentucky (38° 6’18.07 “N 84° 29’36.11”W). The 

loamy fine sand was obtained from Maceo, a town 8 miles northeast of Owensboro in 

Daviess County, Kentucky (37° 55’ 21’’N). The soils were air-dried, ground, and sieved 

through a 2 mm sieve. Total nitrogen and carbon, cation exchange capacity, base saturation, 

exchangeable K, Ca, Mg, Na, pH and soil texture were determined on the prepared soil. 

The texture of the soil was determined using the micropipette method (Miller & Miller, 

1987). Cation exchange capacity (CEC) was analyzed using ammonium acetate extraction, 

bases (Mg, Ca, Na, K) were analyzed using inductively coupled plasma spectrophotometry 

(Jones Jr, 1999), and base saturation was determined as total bases/CEC x 100% . Total 

nitrogen was determined using the LECO combustion method (Yeomans et al., 1991). The 

pH of the soil was determined in water by using a glass electrode (Reed & Cummings, 
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1945). The physical and chemical properties of the soils used in this study are shown in 

Table 3.1. 

Table 3.1. The physical and chemical properties of the soils used in this study. 

 

Soil 

texture 

Clay 

(%) 

Silt 

(%) 

Sand 

(%) 

Total 

N 

(%) 

Total 

C 

(%) 

CEC  Ex. 

Mg 

 

Ex. 

Ca 

 

Ex. 

Na 

 

Ex. 

K 

 

Base 

saturation 

(%) 

pH 

Silt 

loam 

18.18 72.25 9.57 0.178 1.769 18.68 1.37 11.2 0.03 0.67 71 5.73 

Loamy 

fine 

sand 

4.87 9.66 85.47 0.081 1.198 5 2.09 6.42 0.04 0.26 176.31 7.76 

CEC - cation exchange capacity, exchangeable (Ex.) Mg, Ca, Na, and K were all measured in meq/100g of 

soil. The pH was measured in water. 

 

 

3.3.6 Determination of soil water retention curve 

3.3.6.1 Soil water retention 

 Freeze-dried hydrogel was ground with a blender to obtain micron sized particles 

of the hydrogel. Three treatments were prepared by mixing soil and hydrogel at 

concentrations of 0, 0.1, 0.3 and 1% (w/w) for the silt loam soil and at concentrations of 0 

and 1% for the loamy fine sand soil. The samples were then packed into three metal rings 

with a volume of 136.4 cm3 (radius of 2.69 cm and height of 6 cm). There were three 

replications for each treatment. Packing was done by compacting the soil into the rings to 

a target bulk density of 1.33 g cm-3 for both soil textures using a metallic plunger. The 

samples were then placed in a glass container and saturated through capillary rise for 48 h. 

After the first wetting cycle, saturated water content of the samples was measured, and the 

samples were then allowed to dry through evaporation. Three subsequent wetting and 
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drying cycles were conducted for particle reorientation and to observe a stable 

swelling/shrinking behavior of the samples. 

After the 4th wetting and drying cycles, the samples were placed in a hanging water 

column apparatus and saturated for 48 h. After sample saturation, the hanging water 

column method (Berliner et al., 1980) was used to measure the soil water pressure head 

and volumetric water content in the samples at -3, -10, -20, and -50 cm soil water pressure 

heads. In our setup, the hanging water column method is limited to water pressure heads 

down to -50 cm. The pressure plate apparatus (Soil Moisture Equipment Company, Santa 

Barbara, California) was then used to determine the soil water retention curve from -100 

cm to -15,000 cm. Briefly, the low-pressure plate was first pre-saturated. The sample cores 

taken from the hanging water column were placed on the wet ceramic plate of the pressure 

plate apparatus. The plate was connected to outlet tubes for later draining the excessive 

water from the samples at a given pressure head. The pressure chamber was then closed, 

and air pressure of 100 cm was applied from an air compressor. Pressure within the pressure 

plates were frequently checked using a manometer. Once the pressure was established, 

water flowed out of the samples. After outflow of water stopped, the core samples were 

retrieved 24 hours later, and their weights recorded. The procedure was repeated for 

pressure head steps of -330, -500, -1000, -3000, -5000, and -15,000 cm. Volumetric water 

content (VWC) at -1000, -3000, -5000, and -15,000 cm soil water pressure head was 

calculated by multiplying the gravimetric water content (GWC) by the bulk density of the 

three treatments samples. To determine the VWC at -3000, -5000, and -15,000 cm, sub 

samples were taken from each sample after pressure head step -1000 cm. These sub 

samples were placed in plastic rings, rewetted, and placed in their respective pressure 
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chambers (3, 5, and 15 bar pressure chambers). The sub samples were placed in plastic 

rings to shorten the equilibration time of the samples. Once the respective pressure heads 

were established and outflow of water ceased, the samples were retrieved, and their 

gravimetric water content determined.  

 To determine the soil water retention curve beyond the permanent wilting point, the 

WP4 Dewpoint PotentiaMeter (Decagon Devices, Inc. Pullman, WA, USA) for water 

potentials from -6,000 cm to -100,000 cm was used. An AQUALAB water activity meter 

(Decagon Devices, Inc. Pullman, WA, USA) was used to measure water potentials from -

100,000 cm to -1,000,000 cm. Both devices are based on a chilled mirror to measure the 

soil water pressure head after the tests with the pressure plate apparatus were completed 

(Schelle et al., 2013). At equilibrium, the water potential of the air in the headspace of the 

chamber containing the sample equals the water potential of the sample when using the 

WP4. While at equilibrium, the relative humidity of the air in the chamber is the same as 

the water activity of the sample when using the AQUALAB (Decagon Devices, 1998-

2007). Prior to measurement, the WP4 Dewpoint PotentiaMeter and AQUALAB were 

calibrated using a standard 0.5 M KCl solution with known water potential. About 8 g of 

each sample was measured into sample cups and placed into the meter chamber. After a 

reading was taken, the lid of the sample cups was removed to allow water to evaporate 

from the samples for 15-20 min until the humidity of the atmosphere was in equilibrium 

with the soil moisture status at the next soil water pressure head. The soil water pressure 

head and the weight of the samples were recorded. At the end, the samples were oven-dried 

to calculate the final GWC and the VWC. The GWC and VWC at each soil water pressure 

head were calculated from the final GWC and the weights of the samples at each soil water 



 

92 

 

pressure head. Figure 3.1 presents a summary schematic of the set-up used to obtain data 

for the soil water retention curve of the amended soil to dryness. 
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Figure 3.1. Schematic for determining soil water retention curve. 

 The experimental data for soil water pressure head, h (-cm) was plotted on a log 

scale against the volumetric water content data (θ) on a linear scale. The soil water pressure 

head and volumetric water content data were also fitted to a non-linear relationship using 

a least-squares optimization technique, i.e., the RETC program for describing the hydraulic 

properties of unsaturated soils (Van Genuchten et al., 1991). The program was used to 

obtain optimal model parameters (θr , θs, α, m, and n ) where m = 1-1/n for nonlinear 

equations with multiple parameters (Van Genuchten et al., 1991) for measured data from -

3 cm soil water pressure head to the permanent wilting point. The Van Genuchten function 

is given as: 

Equation 3.2 

𝜃 =  𝜃𝑟  +  
(𝜃𝑠 − 𝜃𝑟)

[1 +  (𝑎ℎ)𝑛]𝑚
 (3.2) 

where α (cm-1) and n (dimensionless) are fitting parameters which can be estimated from 

observed soil-water retention data. θr (cm3 cm-3) and θs (cm3 cm-3) are and represent the 

saturated and residual volumetric water contents, respectively. 

3.3.7 Statistical analysis 

 Analysis of variance (ANOVA) was used to test for the difference among the three 

treatments for the silt loam samples and if a difference was detected, Tukey’s test (Tukey, 

1949) was used to determine which treatment(s) differed significantly from the others. For 

the loamy fine sand samples, a two-tailed Student’s t-test was used to test for significant 

differences between the two treatments. Before the statistical tests were conducted the data 

were checked for normality and equal variance assumptions and appropriate tests were 
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applied. All statistical tests and graphing were done in (SigmaPlot version 14.0, Systat 

Software, Inc., San Jose, CA, USA, www.systatsoftware.com). An alpha of 0.05 was used 

for all statistical comparisons. 

 

3.4 Results and Discussions 

3.4.1 Hydrogel synthesis 

 The alkali lignin served as the primary biopolymer while NaOH dissolved the alkali 

lignin allowing the crosslinker (PEGDGE) to form insoluble bonds producing a gel. Three 

concentrations of the PEGDGE were tested for synthesizing the hydrogel (0.1, 0.5, and 1 

mmol). The concentration of the crosslinker that produced an insoluble hydrogel was 0.5 

mmol which is consistent with Mazloom et al. (2019).  At PEGDGE concentration of 0.1 

mmol, it took 30-45 min of stirring at 50°C for the lignin alkali solution to increase in 

viscosity compared to 5-10 min for 0.5 mmol concentration of PEGDE. When 0.1 mmol 

of the PEGDGE was used, the formed hydrogel was completely solubilized after only 24 

h of washing in deionized water indicating there was not enough cross-linker to form a 

strong permanent network in the hydrogel. According to Passauer et al. (2011), smaller 

amounts of the PEGDGE result in the formation of water-soluble hydrogels indicating that 

to form an insoluble hydrogel, a critical network density should be reached. However, a 

high amount of cross-linker produces additional network structures that do not allow water 

to enter the network structure hence decreasing the swelling capacity (Xie et al., 2009). At 

PEGDGE concentration of 0.5 mmol, a hydrogel was formed after only 5 min of stirring 

at 50°C. The hydrogel formed was insoluble in water after soaking in deionized water for 

http://www.systatsoftware.com/
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a week with daily changing of the water. APPENDIX A. 1 (Figure A. 1) shows the process 

for the synthesis of the lignin-based hydrogel. 

3.4.2 Characterization of hydrogel 

 Figure 3.2 illustrates the FTIR spectra of the alkali lignin powder, and the 

synthesized lignin-based hydrogel. The FTIR spectra show the presence of active 

functional groups in the hydrogel and alkali lignin. The broad peak in both the alkali lignin 

powder and the lignin hydrogel which occur at a wavenumber between 3300 - 3500 cm-1 

was identified to be the O-H stretching absorption band. This is formed due to the 

intermolecular and intramolecular hydroxy stretching vibration which makes the hydrogel 

hydrophilic (Saha et al., 2020a). The O-H group allows the hydrogel to absorb water and 

other aqueous solutions that result in hydrogel expanding and occupying a larger volume 

referred to as swelling (Peppas, 2000). The presence of C-O stretching found in lignin was 

observed at 1267 cm-1 (Shi et al., 2012). The appearance of the C-O bonds in the lignin 

hydrogel indicates a successful introduction of crosslinking from the PEGDGE (Mazloom 

et al., 2019). According to Rico-García et al. (2020) crosslinking occurs by an etherification 

reaction between the PEGDGE and the phenolic O-H groups of lignin due to the phenoxide 

nucleophile attack on the epoxide groups of PEGDGE. As a result of the crosslinking, 

during swelling, the cross-linked structure of hydrogels prevents the dissolution and 

destruction of the linkages (Peppas, 2000). In addition, a C-H stretching bond was observed 

at frequency range of 2929 cm-1 while a C-H deformation appeared at 1460 cm-1 which 

both came from the alkali lignin (Rashid et al., 2016).  



 

96 

 

 

Figure 3.2. FTIR spectra for freeze-dried hydrogel and the alkali lignin backbone used to 

synthesize the hydrogel. 

 Figure 3.3 presents the SEM analysis showing the morphology of the alkali-lignin 

based hydrogel. The magnification of the images moves from lowest (x50) shown in (a) to 

highest (x1000) shown in (d). Figure 3.3 (b) and (c) shows the surface of the hydrogel with 

several large pore structures. According to Dinu & Dragan (2018), hydrogels with 

macropores have large and/or interconnected pores which allows them to absorb water at 

a faster rate. These large pores serve as entry points for permeation of water into the 

polymeric network of the hydrogel causing swelling (Baki & Abedi-Koupai, 2018). Cross-

linking of the hydrogel with PEGDGE helped to produce the large pores seen in Figure 

3.3. This property is especially important for hydrogels that would be amended to soil for 
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their water retention property. As shown in Figure 3.3, the hydrogel produced varied pore 

sizes ranging from 5 µm (d) to 140 µm (a). 

 

 

Figure 3.3. SEM images of a cross-section of freeze-dried lignin-based hydrogel at various 

magnifications A) x50, B) x100, (C) x250, and (D) x1000 

The apparent volume of the lignin-based hydrogel was measured using a gas pycnometer 

after which particle density (ρ) was calculated. Two replicates of the particle density were 

obtained. Each replicate consisted of three cycles. A cycle refers to a series of commands 

implemented to obtain a single volume measurement. After the three cycles, the density of 

the hydrogel was determined to be 1.52 g cm-3 with a standard deviation of 0.01. The 

density for the second replicate was determined to be 1.49 g cm-3 with a standard deviation 
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of 0.01. Thus, the average of the two replicates gave a value of 1.5 g cm-3 as the particle 

density of the lignin-based hydrogel. The particle density of hydrogels can affect soil 

physical properties like porosity and bulk density which in turn affects how water moves 

through soil. The impact of the hydrogel concentration on soil particle density, bulk 

density, and porosity were out of the scope of this study. However, considering the low 

particle density of the hydrogel in this study compared to the particle density of soil 

(assumed to be constant at 2.65 g cm-3) indicates a potential to reduce bulk density and 

particle density of soil while increasing porosity with high application rates of hydrogels.  

3.4.3 Swelling kinetics of lignin-based hydrogel in aqueous solutions 

 The swelling of a hydrogel is influenced by the properties of the surrounding 

solution such as the charge number and ionic strength (Zhang et al., 2006). Figure 3.4 

reports the swelling ratio of the lignin-based hydrogel with time. The swelling ratio was 

measured in deionized water (DI), tap water, and 0.9% NaCl solution. The equilibrium 

swelling ratio in the DI water was 2030% at 60 min. The equilibrium swelling ratio of the 

hydrogel in the tap water and 0.9% NaCl solution was 1092% and 825%, each occurring 

after 20 min of immersion. Statistical analysis conducted suggest the equilibrium swelling 

ratio in DI was significantly higher (p < 0.001) than tap water and 0.9% NaCl solution. 

Equilibrium swelling ratio in tap water was significantly higher than the equilibrium 

swelling ratio in 0.9% NaCl (p < 0.05). The lower swelling ratio in the tap water and the 

0.9% NaCl solution is due to the presence of salt ions (Saha et al., 2020a). Since the tap 

water and the 0.9% NaCl solution had more free ions i.e., Na+ ions, the osmotic pressure 

in the solutions increased thus leading to a reduction in swelling ratio (Feng et al., 2014; 

Saha et al., 2020a). 
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Figure 3.4. Swelling ratio of the freeze-dried lignin-based hydrogel after immersing in 

deionized water, tap water, and 0.9% NaCl at room temperature. Error bars indicate 

standard error of the means (n=3). 

 In addition, the free Na+ ions tended to bond with hydrophilic groups i.e. OH groups 

present in the lignin hydrogel thus decreasing the attraction between the hydrogel and water 

molecules (Feng et al., 2014). It can thus be deduced that, as the soil salinity increases, the 

swelling ratio of lignin-hydrogels tends to decrease (Mazloom et al., 2019). When the 

swelling ratio of a commercial hydrogel i.e., Stockosorb was measured in DI water, 0.9% 

NaCl solution and tap water by Saha et al. (2020a), the 0.9% NaCl solution reduced the 

swelling ratio of the hydrogel by 74% compared to the DI water while a decrease in 

swelling ratio of 37% was recorded in tap water. Mazloom et al. (2019) reported a reduction 

of 64% in the swelling of a lignin-based hydrogel in a salt solution (with EC = 8 dSm-1) 

compared to swelling in DI water when a lignin-based hydrogel was studied. This study 
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found a decrease in swelling of the lignin-based hydrogel by 46% in tap water and 59% in 

0.9% NaCl that was similar to previous studies. 

 The swelling ratio of a hydrogel is an important metric used to ascertain how well 

a hydrogel will perform in retaining water in the soil matrix. This swelling phenomenon 

results from the diffusion of solvent molecules into the 3D structure of the hydrogel due to 

its high hydrophilicity caused by the expansion of the polymeric chains (Tomadoni et al., 

2019). Compared to synthetic hydrogels which can easily attain a swelling capacity of 100 

g water/ g hydrogel, the swelling capacity of lignin-based hydrogels is generally less than 

5 g water/ g hydrogel (Li & Pan, 2010). The maximum swelling in terms of amount of 

water the lignin-based hydrogel in our study could hold was 20.3 g of water/ g hydrogel in 

deionized water which is higher than is expected for most lignin-based hydrogels according 

to Li & Pan (2010). Li & Pan (2010) note that while lignin-based hydrogels have 

environmentally friendly benefits, there are still challenges with regards to developing 

simple procedures to enhance the water absorbency and mechanical strength of lignin-

based hydrogels. 

3.4.4 Water absorption capacity of hydrogels in soil 

 While there are numerous studies published in the literature that measure the 

swelling ratio of hydrogels in water and other aqueous solutions (Bao et al., 2011; Demitri 

et al., 2013; Isık & Kıs, 2004; Li et al., 2004; Xie et al., 2009), the quantification of the 

water absorption capacity (WAC) of a hydrogel in soil is needed to give us information 

about how that hydrogel will perform when amended to soil. In soil, conditions are often 

different with varying temperatures, pH, electrical conductivities, and salinity which 

influence the WAC of the hydrogel. The WAC of the soil was first measured at hydrogel 
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concentrations of 0.1% and 0.3% but there was no difference between the two treatments 

and the control treatment (no hydrogel added). Thus, higher concentrations (1% and 3%) 

were tested. Figure 3.5 presents the WAC of the lignin-based hydrogel in soil. The WAC 

of the hydrogel in the control treatment was 59% followed by the 1% (w/w) treatment at 

64% and 3% (w/w) treatment was 77%. The 3% treatment was significantly higher (p < 

0.01) than the control and the 1%. There was however no significant difference between 

the control and the 1% treatment. The WAC of the 3% treatment was 16.9% and 23.4% 

more than the 1% and 0% treatments, respectively. These results indicate that WAC of the 

lignin-based hydrogel in soil increased with higher application rate. 

 

Figure 3.5. Water absorption capacity of lignin-based hydrogel in soil at 0, 1, and 3% (w/w) 

concentration.  Error bars indicate standard error of the means (n=3). 

 Bai et al. (2015a) determined the water holding capacity of a starch-based hydrogel 

by mixing (2.6, 7.8, and 13.0 mg) of the hydrogel with 10 g of soil in a tube and saturated 
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the tube with water. They reported a 52.2% water holding capacity of soil with application 

rate of 0.13% (w/w) compared to 44% for the control treatment. Singh et al. (2011) 

determined the water absorption capacity of a sandy loam soil by mixing 50 g of soil with 

a hydrogel at rates of 0.5% and 0.75%. The mixtures were placed in a cup with a perforated 

base fitted with filter paper. Samples with 0.5% and 0.75% treatment had water absorption 

capacities of ~ 90% and 115% compared to ~ 45% in the control treatment at 25°C. In a 

study by Baki & Abedi-Koupai (2018), 5 g of a sodium alginate-based hydrogel was mixed 

with 200 g of dry soil i.e., 2.5% (w/w) and 200 g of tap water in a beaker at room 

temperature and left for 5 days. They concluded that with hydrogel amendment, water 

retention was above 70% compared to 53.4% in a control treatment after 20 days on a dry 

basis (Baki & Abedi-Koupai, 2018). Our results closely mirror their results as 3% treatment 

resulted in a 77% water holding capacity in our study while with the 2.5% treatment in 

Baki & Abedi-Koupai (2018), 70% swelling capacity was obtained.  

3.4.5 Observation of swelling in hydrogel-soil mixture 

 Prior to beginning the water retention experiment, the swelling behavior of the soil-

hydrogel treatments were observed. Observation of the hydrogel swelling behavior was 

done to evaluate the potential of the soil to expand over the metallic rings used to hold the 

samples in the hanging water column. Additionally, allowing the samples to undergo 

multiple wetting and drying cycles allowed the samples to attain a structure similar to 

undisturbed field soil. After the swelling tests, samples were placed in the pressure plate 

apparatus. 

 After the first wetting and drying cycle of the samples, there were visual structural 

changes in the samples. All treatment samples swelled vertically which was more apparent 
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in the 1% treatment. The samples swelled about 1 mm above the top edge of the metallic 

ring. After the samples dried at room temperature, cracks due to lateral shrinkage 

developed in all treatment samples. Prior to the 2nd wetting cycle, 1 g of soil was used to 

fill the visible cracks in the samples and a load (2.5 kg) was placed on the samples to 

prevent further swelling. Upon saturation for 48 hours, the load was removed, and the 

extent of swelling was reduced in all treatments. Though the extent of swelling was not 

quantified, a visual observation showed minimal swelling after the load was removed.   

 The 3rd drying cycle resulted in less shrinkage but there were a few cracks and 

shrinkage which mostly occurred laterally away from the walls of the metallic rings. 

According to Taboada (2004), when a soil sample is dried, the soil decreases its volume by 

shrinkage, and desiccation cracks appear because of internal stresses in the shrunken and 

dried soil mass.  As a result of shrinkage, soil decreases its height by caving inwards. Upon 

wetting, the soil increases its volume by swelling, the cracks are closed, and soil level rises 

(Taboada, 2004). The increase in water content of the soil when it is rewetted causes an 

increase in volume of the voids in the sample (swelling) (Estabragh et al., 2015).  

 To minimize the shrinkage, approximately 1 g of soil was used to fill the visible 

cracks in the samples using a spatula APPENDIX A. 2 (Figure A.2). The additional soil 

was considered when determining the bulk densities of the samples. After the 4th cycle, 

minimal cracking and shrinkage were observed. According to Haines (1923), at the 

shrinkage limit of a soil sample, the decrease in the volume of soil is less than the volume 

of water lost as the particles come in contact. When all the particles are close together, no 

further shrinkage occurs even while water is still being lost (Estabragh et al., 2015; 

Tripathy et al., 2002). After the swelling and shrinkage experiments, the soil samples were 
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ready for further experiments. Swelling and shrinkage in the samples affects the accuracy 

of results obtained when using the pressure plate apparatus (Gee et al., 2002).  

3.4.6 Water retention curve 

 The rationale for applying hydrogels to soil is that their structures allow them to 

store large quantities of water which can be used by plants in soil. The water potential of 

soil is useful for determining the amount of water available to crops and how easy plant 

roots can gain access to that water. This study determined the water retention curve of a 

silt loam soil amended with hydrogels at 0, 0.1, 0.3 and 1% (w/w) and a loamy fine sand 

amended at 0 and 1%.  

  Figure 3.6 (a) and (b) show measured and fitted data for the water retention curve 

from near saturation to dryness for the silt loam and loamy fine sand soils respectively 

when treated with the lignin-based hydrogel.  
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Figure 3.6 (a) Water retention curve of silt loam soil amended with lignin-base hydrogel to 

dryness using the combined methods (hanging water column, pressure plate apparatus, and 

dew point meter) (b) Water retention curve of the loamy fine sand soil amended with lignin-

based hydrogel up to dryness using the combined methods (hanging water column, pressure 

plate apparatus, and dew point meter).  

 The results of the soil moisture retention curves (SWRC) suggest that the control 

treatment retained less water at any soil water pressure head compared to the 1% (w/w) 

treatment. For the silt loam soil, the SWRC demonstrates an increase in water retention in 

the 1% (w/w) treatment compared to the control sample at near saturation (-3 to -10 cm) (p 

= 0.006) and field capacity (-100 cm) (p = 0.04). At field capacity, the 1% (w/w) treatment 

was 16% (0.08 cm3 cm-3) higher than the control treatment. It could be inferred that the 

lignin hydrogel is effective in the capillary regime of the soil water retention curve i.e. 0 to 

100 cm where soil water is controlled mainly by capillary water and less by absorbed water 

(Lu, 2016). This region of the SWRC also corresponds to the range dominated by large 

pores with effective pore diameters of 30 to 3000 µm (Goss & Ehlers, 2003). For the loamy 
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fine sand soil, the 1% (w/w) treatment significantly increased water retention at -3, -10 , -

20, -50, -100, -500, -1000,  -3000, and -15000 cm (p < 0.05).  

 For the silt loam soil in the dry range i.e., below PWP of the SWRC, the highest 

application rate of hydrogel (1%) significantly increased water retention at -20,000, -

30,000, -50,000, -100,000, and -500,000 cm (p < 0.05). Similarly, hydrogel application 

significantly increased soil water retention at -20,000, -30,000 and -50,000 cm (p < 0.05) 

in the loamy fine sand soil. However, there was no significant increase in water retained in 

the loamy fine sand soil between -100,000 cm to -1,000,000 cm (p > 0.05). The increase 

in water retention due to hydrogel application in the dry range of the SWRC curve is 

consistent with (Mohawesh & Durner, 2019) who found that a synthetic hydrogel 

(Luquasorb) increases water retention of sandy soil at low matric potentials i.e.-10,000 to 

-10,000,000 cm.   

 Measurements using the dew point meters enabled us to extend the SWRC into the 

dry region where the SWRC is rarely reported in literature examining the impacts of 

hydrogels on soil water retention.  At such high soil water pressure heads, soil water 

retention is modulated by the absorptive forces existing between the solid surfaces and the 

soil solution (Mohawesh & Durner, 2019). At those high soil pressures, the bound water in 

the micron sized lignin hydrogel is likely released due to water potential differences 

between the soil particles and the lignin hydrogel which increases the soil water. According 

to Yang et al. (2014), the increase in soil water retention with hydrogel application may 

also be due to the strong adsorption and complexing capacities from the hydrophilic 

functional groups e.g., hydroxy group in the hydrogel. 
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 Figure 3.7  (a) and (b) show measured and fitted data for the water retention curve 

from near saturation to dryness for the silt loam and loamy fine sand soils respectively 

when treated with the lignin-based hydrogel. To obtain the fitted values, the three 

replicates of the experimentally measured data from -3 cm soil water pressure head to the 

permanent wilting point for each treatment were averaged before using the Retention 

Curve (RETC) program to obtain the fitted values. We used the Van Genuchten model 

because it is an acceptable model in literature for describing the water content (θ) as a 

function of the soil water pressure head (h) for the range from saturation to the permanent 

wilting point (Van Genuchten, 1980). Fitting the data to the Van Genuchten model 

allowed us to compare model parameters between treatments as has been done by similar 

studies (Abedi-Koupai et al., 2008; Al-Darby, 1996; Alkhasha & Al-Omran, 2020; 

Kashkuli & Zohrabi, 2013) when  hydrogels were amended to soil. In both   Figure 3.7 

(a) and (b), we observed slight hump-like deviations in the measured data especially for 

the 1% (w/w) treatment when the SWRC transitioned from the capillary water regime 

into the absorbed water regime (i.e., below -1000 cm).  
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Figure 3.7. (a) Fitted curves and measured data of the silt loam soil amended with lignin-

base hydrogel from near saturation to the permanent wilting point (b) fitted and measured 

curves of the loamy fine sand soil amended with lignin-base hydrogel from near saturation 

to the permanent wilting point. 

 

 Table 3.2 shows the optimized values for the fitted Van Genuchten parameters of 

the silt loam and loamy fine sand soils amended with lignin-based hydrogel. 

Comparatively, the parameter θs  was higher in the 1% treatment than in the 0% treatment 

for both the silt loam and loamy fine sand soils. While α is an empirical parameter in the 

Van Genuchten model, its inverse is often considered as the air-entry pressure or bubbling 

pressure (Van Genuchten et al., 1991). At the air-entry pressure i.e. the pressure in the 

SWRC where air first starts to enter the largest pores in the soil and desaturation begins 

(Lu & Likos, 2004), there is a significant difference (p = 0.01) between the  1% (w/w) 

treatment and the control treatment in the silt loam soil, suggesting the control treatment 

transitions into an unsaturated state faster than for the 1% (w/w) treatment. The air-entry 

pressure for the control treatment was -29 cm while the air-entry pressure for the 1% (w/w) 

was -83 cm. The air-entry pressure was calculated by taking the average of the α values of 

three replicates before finding the inverse of the average α values for each treatment. Again, 

there is a significant difference (p < 0.01) in air-entry pressure between the 1% (w/w) 

treatment and the control treatment. Air-entry pressure in the control treatment was -9.8cm 

while air-entry pressure in the 1% (w/w) treatment was -59 cm. 
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Table 3.2  Van Genuchten parameters fitted to measured water retention curves for 

different soil-hydrogel mixtures and the control. 

Treatment     θr (cm3 cm-3)   θs (cm3 cm-3)     α (cm-1)       n (-) 

Silt loam 

Control 0.040 0.498 0.034 1.170 

0.1% (w/w) 0.199 0.514 0.022 1.410 

0.3% (w/w) 0.132 0.507 0.026 1.250 

1% (w/w)       0.219 0.529     0.012 1.446 

Loamy fine sand 

    Control                0.095 0.385 0.102 2.464 

1% (w/w)                0.121 0.41 0.016 2.000 

 

 There are limited studies in literature that investigate the effects of hydrogels, 

especially lignin-based hydrogels, on soil beyond the PWP of soil (-15,000 cm). The few 

studies that applied lignin-based hydrogels (Passauer et al., 2011; Song et al., 2020) to soil 

and measured water retention up to PWP found similar results to this study. Passauer et al. 

(2011) reports a significant increase in soil water content specifically for the soil water 

pressure range of -1,000 to -15,000 cm while Song et al. (2020) reported an increase of soil 

water content by 2.98-8.96% at soil water pressure heads of -1000 to -15,000 cm. While 

water retained beyond the PWP of soil may not be readily available for plant use, this study 

offers preliminary evidence of the potential of increasing soil water which could be useful 

for dry soil conditions present in arid regions. 
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3.4.7 Effect of lignin-based hydrogel on saturated water content, field capacity, 

permanent wilting point, and plant available water capacity 

 Plant available water capacity (PAWC) is considered an important parameter used 

to quantify the amount of water held in soil that is accessible to plant roots (Saha et al., 

2020a). PAWC describes the water content between field capacity (FC) and permanent 

wilting point (PWP) which has practical implications for irrigation (Silva et al., 2014). First 

described by Veihmeyer & Hendrikson (1927), FC can be considered the upper limit of 

PAWC and occurs at a range of (-100 cm to  -330 cm) depending on the location and the 

method used for determining it (Wendroth et al., 2018). FC in Kentucky soils is considered 

to occur at -100 cm soil water pressure head (Wendroth et al., 2018; Zhang et al., 2019), 

thus, for this study, FC was chosen to be -100 cm. PWP is also considered the lower limit 

of PAWC since at this soil water pressure head, plants irreversibly wilt and die due to 

inadequate water available  (Wendroth et al., 2018) 

Equation 3.3 

𝑃𝐴𝑊𝐶 =  𝜃𝐹𝐶  – 𝜃𝑃𝑊𝑃 ( 3.3) 

 Figure 3.8. illustrates the VWC at saturation, FC, and PWP of the silt loam and 

loamy fine sand soils. For the silt loam soil, saturated volumetric water content was 0.45 

cm3 cm-3 in the control treatment, and 0.51, 0.48, and 0.57 cm3 cm-3 in the 0.1%, 0.3%, and 

1% (w/w) treatment, respectively. The 1% (w/w) treatment significantly increased (p < 

0.001) saturated water content compared to all other treatments in the silt loam soil. In 

addition, the 0.1 and 0.3% (w/w) treatments also significantly increased saturated water 

content compared to the control treatment (p < 0.01). For the loamy fine sand soil, saturated 
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water content was 0.44 cm cm-3 in both the control and 1% (w/w) treatment. Thus, hydrogel 

treatment did not increase saturated water content in the loamy fine sand soil. Our finding 

of increased saturated water content in the silt loam soil agrees with findings in (Abedi-

Koupai et al., 2008; Dehkordi, 2018; Han et al., 2013; Kashkuli & Zohrabi, 2013; Saha et 

al., 2020a) as they reported increases in saturated water content with hydrogel application. 

 

Figure 3.8. Volumetric water content (VWC) at saturation, field capacity (FC), permanent 

wilting point (PWP), and plant available water content (PAWC) of silt loam soil amended 

with 0, 0.1, 0.3, and 1% (w/w) lignin-hydrogel for the silt loam soil (a) and 0 and 1% (w/w) 

amendment for the loamy fine sand soil. Error bars indicate standard error of the means 

(n=3). 

 At FC, VWC was 0.40 cm3 cm-3in the control treatment and 0.44, 0.43, and 0.47 

cm3 cm-3 for the 0.1%, 0.3%, and 1.0% (w/w) treatment, respectively in the silt loam soil. 

VWC at FC in the 1% (w/w) treatment was 0.08 cm3 cm-3 higher and significantly different 

than the control treatment (p = 0.04).  Application of hydrogel to the loamy fine sand soil 

also increased VWC at FC (p = 0.005). The increase in VWC at FC in this study is 

consistent with previous studies (Guo et al., 2019; Montesano et al., 2015; Shahid et al., 
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2012). At the maximum hydrogel concentration (1%), the increase in VWC at PWP was 

0.06 cm3 cm-3 compared to the control treatment, but that increase was not significantly 

different (p = 0.05) for silt loam soil. On the contrary, there was a significant (p = 0.001) 

increase by 0.019 cm3 cm-3 in VWC at PWP for the 1% (w/w) treatment compared to the 

0% (w/w) treatment in the loamy fine sand soil. These results indicate that a higher water 

retention does not always translate to available water for crop use as water retained at PWP 

is held in soil pores finer than 0.2 – 0.5 µm which cannot be extracted by plant roots (Saha 

et al., 2020a). 

 This study found no significant difference between the PAWC due to hydrogel 

treatment in the silt loam soil or the loamy fine sand soil (p > 0.05). While studies on the 

impact of hydrogel on PAWC have been mostly consistent i.e. PAWC increases with 

increasing application rate of hydrogels, this increase has been observed mostly in coarse-

textured soils i.e. sandy soil (Abdallah, 2019a; Agaba et al., 2011; Andry et al., 2009; 

Banedjschafie & Durner, 2015; Bhardwaj et al., 2007; Narjary et al., 2012) and with 

synthetic hydrogels. PAWC is generally lowest in sandy soil and largest in silt loam (Goss 

& Ehlers, 2003). To increase water retention, Narjary et al. (2012) argue that hydrogel 

decreases the median pore diameter in soil. The decrease in pore diameter can increase 

smaller retention pores which can hold water due to an increase in porosity (Narjary et al., 

2012). Silt loam soil which contains a large percentage of medium-sized pores (3 µm to 30 

µm ) (Goss & Ehlers, 2003) may be much less affected by hydrogel application at any rate 

compared to sand soil with large pores with effective diameter between 300 and 50 μm.  

3.4.8 Potential field applications 

To demonstrate the potential field applications of this study, we performed calculations 
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based on results from the laboratory study following example calculations  in Wendroth et 

al. (2018). We first calculated the plant available water content from the field capacity and 

the permanent wilting point. To determine the potential amount of water that would be 

available at a depth of 15 cm (5.9 inches), we calculated the total amount of that could be 

stored in the soil profile given the depth. We chose a depth of 15 cm because hydrogel will 

typically be applied to the topsoil in the field. Table 3.3 shows the measured volumetric 

water content at FC, PWP, and calculated plant available water storage (PAWS) for two 

soil textures based on a lignin-based hydrogel amendment at 1% (w/w) concentration 

compared to control treatments. The PAWS was calculated by multiplying the value of 

PAWC by the depth of the soil layer. As shown, PAWS was equal (3.45 cm) in the 0% and 

1% (w/w) treatments in the silt loam soil. Thus, application of lignin-based hydrogel at 1 

% (w/w) to a silt loam soil at a 15 cm depth will not increase PAWS. Additionally, for the 

loamy fine sand, the increase in PAWS was not significant (0.15 cm). Therefore, based on 

results from the laboratory experiments, there is no evidence to indicate that application of 

lignin-based hydrogel at 1% (w/w) will increase PAWS in both silt loam and loamy fine 

soils. A higher concentration of the lignin-based hydrogel may lead to an increase in 

PAWS, but our data do not support an increase in PAWS 
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Table 3.3. Soil water contents at field capacity (θ FC), permanent wilting point (θ PWP), 

plant-available soil water capacity (PAWC), and calculated plant available water storage 

(PAWS) result from the application of the lignin-based hydrogel at 1% (w/w) concentration 

for soil layers of different thickness.  

 

Soil type/ 

Application 

concentration 

θ FC θ PWP PAWC PAWS PAWS 

 (cm3/cm3) 

 

(cm3/cm3) 

 

(cm3/cm3) 

 

15 cm field 

soil depth 

 

Inches soil 

depth 

(5.9) 
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Silt loam/ 

1% (w/w) 

0.47 

 

0.24 0.23 3.45 1.36 

Silt loam/ 

0% (w/w) 

0.40 0.18 0.23 3.45 1.36 

Loamy fine 

sand /1% 

(w/w) 

0.22 0.09 0.13 1.95 0.77 

Loamy fine 

sand /0% 

(w/w) 

0.20 0.08 0.12 1.8 0.71 

 

To determine the amount of lignin-based hydrogel that will be needed to be applied to a 1 

ha field of a 15 cm loamy fine sand layer at 1 % (w/w), we made the following assumptions 

given: Bulk density of silt loam soil = 1.5 g cm-3  

Depth of hydrogel application = 15 cm 

 

Volume of soil layer in 1 ha of the silt loam at a depth of 15 cm is calculated as: 

𝑉𝑠 = 𝐴𝑟𝑒𝑎 𝑜𝑓 1 ℎ𝑎 𝑜𝑓 𝑓𝑖𝑒𝑙𝑑 × 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑡𝑜𝑝 𝑠𝑜𝑖𝑙 

𝑉𝑠 = 10,000 𝑚2 × 0.15 𝑚 

𝑉𝑠 = 1500 𝑚
3 
 = 1.5 × 109 𝑐𝑚3  
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                 Mass of soil in 1 ha of the field =  𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙 𝑙𝑎𝑦𝑒𝑟 × 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

= (1.5 × 109 𝑐𝑚3 ) × 1.5 𝑔 𝑐𝑚3 

= 2.3 ×  109𝑔 = 2.3 ×  106𝑘𝑔 = 2300 MT 

From Table 3.3, at 1% (w/w) treatment of the lignin-based hydrogel, change in PAWS = 

0.15 cm (0.06 inches)  

To store 0.15 cm in a 15 cm layer of 1 ha of a loamy fine sand soil 

Concentration (%) =  
𝑚𝑎𝑠𝑠 𝑜𝑓 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑙

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑜𝑖𝑙
 × 100% 

1 (%) =  
𝑚𝑎𝑠𝑠 𝑜𝑓 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑙

2.3 ×  106𝑘𝑔
 × 100 

𝑚𝑎𝑠𝑠 𝑜𝑓 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑙 =  2300 𝑘𝑔 = 2.3 𝑀𝑇 

Hence, to store 0.15 cm of rain or irrigation water in a loamy fine sand soil, 2.3 MT of dry 

lignin-hydrogel will be needed to amend the top 15 cm of the soil. A 0.15 cm increase in 

PAWS is not economically feasible from a farmer’s perspective. 

3.5 Conclusions 

 The shift from the use of synthetic hydrogels to biobased hydrogels especially 

hydrogels made from lignin creates an opportunity to limit the environmental impacts of 

synthetic hydrogels. In this study, a lignin-based hydrogel was synthesized. Our main 

hypothesis was that by amending soil with lignin-based hydrogel, the amended soils will 

retain more water with increasing soil water suction than soils not amended with hydrogel, 

which could be beneficial for crop water uptake. The swelling properties of the hydrogel 
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were tested in different aqueous solutions, and found to have a high swelling ratio 

compared to other lignin-based hydrogels (Kalinoski & Shi, 2019; Morales et al., 2020). 

Using FTIR spectroscopy, the hydrogel was confirmed to contain hydroxyl (O-H) 

functional groups that enable the hydrogel to react with a cross-linker forming hydrophilic 

3D networks further allowing the hydrogel to swell with water. SEM analysis of the lignin-

based hydrogel showed the presence of large interconnected macropores which allowed 

them to absorb water at a faster rate.  The lignin-based hydrogel significantly increased the 

water holding capacity in soil. Analysis of the soil water retention curve (SWRC) indicated 

that application of the lignin-based hydrogel increased water retention at saturation, near 

saturation (-3 cm to -10 cm soil water pressure head), field capacity (FC), and in the dry 

range i.e., -20,000, -30,000, -50,000, -100,000, and -500,000 cm soil water pressure head 

for silt loam soil.  For the loamy fine sand soil, the lignin-based hydrogel increased water 

retention over the range of SWRC from -3 cm to -15000 cm soil water pressure head except 

at -5000 cm. In the dry range, lignin-based hydrogel treatment increased water retention 

between -20,000 cm to -50,000 cm soil water pressure head in the loamy fine sand but not 

between -50,000 cm to -1,00,000 cm soil water pressure head. While plant available water 

capacity was not different in amended and unamended samples in either soil types, in the 

capillary regions of the SWRC where soil water is easily accessible to plant roots, 

volumetric water content (VWC) was increased. To demonstrate the feasibility of using 

hydrogels similar to those used this study in an agricultural field, calculations were carried 

out based on results from the laboratory study. Our calculations indicate that at a 1% (w/w) 

concentration, the application of the lignin-based hydrogels to a 15 cm layer will not 

increase PAWS in both silt loam and loamy fine sand soils. It is possible a higher 
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concentration than 1% (w/w) may be needed to observe an increase in PAWS in the two 

soils.  
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CHAPTER 4. LABORATORY DETERMINATION OF THE IMPACT OF 

INCORPORATED ALKALI LIGNIN-BASED HYDROGEL ON THE 

HYDRAULIC CONDUCTIVITY OF SOIL  

4.1 Abstract 

Superabsorbent polymers (hydrogels) have been studied for their ability to improve soil 

hydraulic conductivity as hydrogels are able to store and release water due to their swelling 

properties. However, concerns related to the increased use of synthetic hydrogels has led 

researchers to switch their focus to biobased hydrogels which have the advantages of being 

more biocompatible, renewable, and biodegradable when compared to synthetic hydrogels. 

Here, we synthesized a lignin-based hydrogel, and amended a silt loam soil with it at 

concentrations of 0, 0.1, and 0.3% (w/w). The treatments were replicated three times and 

analysis of variance was employed to determine differences between treatments.  A 

laboratory permeameter and double membrane tension infiltrometer were used to measure 

saturated and near-saturated hydraulic conductivity, respectively. The laboratory 

evaporation method coupled with Wind’s iterative procedure were used in this study to 

obtain data for two main hydraulic conductivity functions i.e. hydraulic conductivity as a 

function of soil water pressure head K(h) and hydraulic conductivity as a function of 

volumetric water content K(θ). Saturated hydraulic conductivity was statistically 

significantly decreased with the application of hydrogel at 0.1 and 0.3% (w/w) compared 

to the control treatment. In the near-saturation zone (−10 cm < h < 0 cm soil water pressure 

head), application of 0.3% (w/w) lignin-based hydrogel significantly decreased hydraulic 

conductivity only at -1 cm soil water pressure head. Hydraulic conductivity in the 0.1 and 

0.3% (w/w) treatments was increased along the K (θ) curve in the unsaturated zone (-750 

cm < h < -10 cm) compared to the control treatment which we hypothesized was due to 
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bound water in the hydrogel being released creating a wider path for movement of water. 

The 0.1 and 0.3% hydrogel treatments also tended to store more water than the control 

treatment especially after 24 hours of evaporation. The implication of this study is that 

lignin-based hydrogel could be used to retain water in saturated soils and the bound water 

could be useful for improving the flow of soil water when in unsaturated state thereby 

reducing the water stress of plants as plants require less energy to move and absorb water. 

However, the lignin-based hydrogel should be tested on other textures of soil to ascertain 

its ability to influence hydraulic conductivity in those soil textures. 

4.2 Introduction 

 Hydraulic conductivity describes the ability of soil to transmit water (Klute & 

Dirksen, 1986). Water flow in the vadose zone is regulated by unsaturated hydraulic 

conductivity (K) which is a function of the water retention curve θ(h) (Van Genuchten, 

1980), where h is the soil matric potential. According to Gallage et al. (2013), when matric 

potential decreases as soil becomes unsaturated, some large pores become filled with air 

thus forcing water to flow through the smaller pores. A further decrease in matric potential 

decreases water filled pores thus increasing resistance to water flow and thus decreasing 

hydraulic conductivity. Perkins (2011)  notes that to describe most models of water flow 

and solute transport, you need to know the relationship between K and volumetric water 

content (θ) which is a nonlinear relationship.  

 Hydrogels have been studied for their ability to influence soil hydraulic 

conductivity. Hydrogels are three dimensional hydrophilic materials that form a network 

in the presence of an aqueous solution (Peppas, 2000). Hydrogels are known to possess a 
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high swellability hence their use in various industries i.e., medicine, food, and agriculture. 

The formation of hydrogels occurs through the crosslinking of polymer chains dispersed 

in any aqueous medium by mechanisms including physical entanglements, ionic 

interactions, and chemical crosslinking (Zhang & Khademhosseini, 2017). In recent times, 

the increased usage of synthetic hydrogels has led researchers to switch their focus to 

biobased hydrogels which have the advantages of being easily degradable and 

biocompatible relative to synthetic hydrogels (Meng et al., 2019b). The application of 

hydrogels can affect hydraulic conductivity of soil as the high swelling capacity of some 

hydrogels stores substantial amounts of water in soil which blocks drainage pores thus 

reducing saturated hydraulic conductivity (Ks) (Al-Darby, 1996). 

 Numerous studies within the past few decades have investigated the impacts of 

hydrogel application on saturated hydraulic conductivity (Ks). In terms of the types of 

hydrogels applied to soil to investigate Ks, some studies applied biobased hydrogels 

(Demitri et al., 2013; Narjary & Aggarwal, 2014; Narjary et al., 2012; Song et al., 2020) 

while most studies in literature applied synthetic hydrogels (Abdallah, 2019b; Alkhasha et 

al., 2018; Andry et al., 2009; Bhardwaj et al., 2007; Han et al., 2013; Hussien et al., 2012; 

Mohawesh & Durner, 2019; Shahid et al., 2012; Smagin et al., 2019; Zhuang et al., 2013). 

While the addition of hydrogel to soil mostly decreased saturated hydraulic conductivity 

(Ks) (Abdallah, 2019b; Alkhasha et al., 2018; Mohawesh & Durner, 2019; Narjary & 

Aggarwal, 2014; Narjary et al., 2012; Shahid et al., 2012; Smagin et al., 2019; Song et al., 

2020; Zhuang et al., 2013), some studies have observed an increase (Andry et al., 2009; 

Hu et al., 2019; Hussien et al., 2012)  and others report a decrease and then a subsequent 

increase with time (Bhardwaj et al., 2007; Han et al., 2013; Hussien et al., 2012). The 
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inconsistency of results regarding the effects of hydrogel application to Ks leaves room for 

further studies to probe into applying other types to hydrogels to ascertain their effects on 

soil Ks. 

 Similarly, a survey of literature found three studies that measured unsaturated 

hydraulic conductivity (K) after applying hydrogel (Al-Darby, 1996; Liao et al., 2018; 

Smagin et al., 2019). All three studies reported a decrease in K. Al-Darby (1996) estimated 

K using a numerical method i.e., using Van Genuchten hydraulic function. Al-Darby 

(1996) observed a 63, 92 and 9% decrease in K corresponding to application rates of 0.2,0.4 

and 0.8% (w/w) hydrogel. Liao et al. (2016) measured the K of a sandy loam soil when a 

synthetic polyacrylamide and acrylic acid-based hydrogel were applied at rates of 0, 0.01, 

0.03 and 0.06% (w/w). Their results revealed a decrease in K of 85.5 to 94.1% on day 0, 

75.1 to 82.9% on day 30 and 65 to 76.2% on day 50. Smagin et al. (2019) noticed that at 

high matric potentials i.e., < -10 to -15kPa, K reduced up to 2-3 times at concentrations 

ranging from 0.01-0.05% (w/w) and a reduction of 10-50 times at 0.1-0.2% concentration. 

However, at low matric potentials i.e., -20 to -700kPa, K increased with an increase in 

application rate. The lack of studies investigating the impacts of bio-based hydrogels on K 

necessitates a further probe into applying and studying the impact of alternative bio-based 

hydrogels on K. 

 To the best of the author’s knowledge, there are currently no studies that investigate 

the impacts of alkali lignin-based hydrogels on soil hydraulic conductivity under saturated 

and unsaturated conditions. Thus, there is a critical need to explore the impact of alkali 

lignin-based hydrogels on these two soil hydraulic properties especially for silt loam soil 

which is rarely considered in soil amendment studies involving hydrogels. Information on 
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the impact of lignin-based hydrogels on soil hydraulic conductivity will add to the growing 

evidence for the application of lignin-based bioproducts to soils to reduce waste and 

enhance carbon sequestration into the soil. The objectives of this study were thus to (a) 

determine the impacts of amending the lignin-based hydrogel on the saturated hydraulic 

conductivity (Ks), (b) determine the impacts of the lignin-based hydrogel on near saturation 

hydraulic conductivity, (c) determine the impacts of the lignin-based hydrogel on the 

change in total water storage in the soil and, (d) estimate the unsaturated soil hydraulic 

conductivity (K) of a disturbed silt loam soil amended with a lignin-based hydrogel from 

evaporation experiments using the Wind method. It was hypothesized that amending soils 

with the lignin-based hydrogel could reduce hydraulic conductivity compared to 

unamended soil.  The lower hydraulic conductivity would reduce deep percolation of water 

in the soil while increasing soil water storage. 

4.3 Materials and Methods 

4.3.1 Lignin-based hydrogel 

A lignin-based hydrogel was first synthesized following a synthesis method similar 

to that described in Passauer et al. (2012)  and in Mazloom et al. (2019) with some 

modifications. A 1.5 M NaOH solution was added to the lignin alkali and the mixture was 

stirred using a glass rod for 5 min. For thorough mixing and to allow the lignin alkali to be 

dissolved completely, the mixture was further stirred on a magnetic stirrer (Heidolph™ 

MR Hei-Tec Magnetic Stirrer with Heating) set at 450 rpm for 24 hours. Then 0.5mmol of 

the cross-linker (PEGDGE) was added to the lignin alkali solution. This solution was 

placed on a heat source (Heidolph™ MR Hei-Tec Magnetic Stirrer with Heating) at 50°C 
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while stirring continuously for 10-15 minutes until the hydrogel was formed. The formed 

hydrogel was then removed and soaked in deionized (DI) water for 7 days to wash out 

unreacted monomers. Lastly the soaked hydrogels were freeze dried at -48°C in a freeze-

drier (Labonco, Cat. No 7753024) to obtain a dried lignin-based hydrogel. The freeze-dried 

hydrogel was ground with a blender to obtain micron sized particles. 

4.3.2 Soil properties 

Bulk silt loam soil was obtained from the University of Kentucky Spindletop Farm located 

north of Lexington, Fayette County, Kentucky (38° 6’18.07 “N 84° 29’36.11”W). Silt loam 

soil was selected because most of the studies on the effects of hydrogel on soil hydraulic 

properties have mainly investigated sandy soils with few based on silt loam soil. Secondly, 

silt loam soil was selected because it is the most common soil type in Kentucky and the 

southeastern United States, and it does not excessively expand in volume with changing 

moisture content (Arias et al., 2019). The soil was air-dried, ground, and sieved through a 

2 mm sieve to obtain a homogeneous soil sample. Total nitrogen and carbon, cation 

exchange capacity, base saturation, exchangeable K, Ca, Mg, Na, pH, and soil texture were 

determined on the prepared soil. The texture of the soil was determined using the 

micropipette method (Miller & Miller, 1987). Cation exchange capacity (CEC) was 

analyzed using ammonium acetate extraction, bases (Mg, Ca, Na, K) were analyzed using 

inductively coupled plasma spectrophotometry (Jones Jr, 1999), and base saturation was 

determined as total bases/CEC x 100%. Total nitrogen was determined using the LECO 

combustion method (Yeomans et al., 1991). The pH of the soil was determined in water by 

using a glass electrode (Reed & Cummings, 1945).   
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4.3.3 Laboratory experiments 

All hydraulic conductivity experiments were conducted in the soil physics laboratory of 

the Kentucky Agricultural Experiment Station, University of Kentucky, Lexington. Nine 

cylindrical metal rings of volume 245.12 cm3 (height of 6 cm and diameter of 8.58 cm) 

were obtained. Three treatments were prepared by mixing soil and hydrogel at 

concentrations of 0, 0.1, and 0.3 (w/w). There were three replications for each treatment. 

The prepared soil samples were then packed into the metal rings to an approximate bulk 

density of 1.3 g cm-3 by gradually adding the samples and compacting with a wooden 

rummer with a flat bottom that fits into the metal rings. The samples were then placed into 

ring holders and double-sieve rings mounted to the bottom of the samples. The ring holders 

were placed in the permeameter in which there is a reservoir of water and gradually 

saturated by regulating the water table. The saturated hydraulic conductivity (Ks) of the 

hydrogel-amended soils was measured using the permeameter (Eijkelkamp, 2017). The 

experimental set-up for measuring Ks is shown in APPENDIX B. 1(Figure B. 1). The Ks 

was measured using the constant water head method based on the percolation rate of the 

samples (Klute & Dirksen, 1986). The water table within the ring holder rose quickly 

(within minutes to hours) to the level of the reservoir, thus a constant water head method 

was used for determining the Ks. 

For the constant head, the volumetric water flow rate through the soil samples was recorded 

at time intervals. The hydraulic head applied to a sample was determined by taking the 

difference between the water level in the container and the water in the ring holder. 

Ks was then calculated by rearranging the Darcy equation: 
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Equation 4.1 

𝐾𝑠 =  
𝑄𝐿

𝐴∆ℎ
 ( 4. 1 ) 

 

Where Q is the water flowing per unit time (cm3/day) 

 A is the cross-sectional area of the sample (cm2) 

 ∆ℎ is the hydraulic head causing the flow as measured by the level of water in the 

manometer (cm) 

 L is the length of the sample (cm) 

 Ks is the proportionality constant/ saturated hydraulic conductivity 

To determine hydraulic conductivity near saturation, a tension infiltrometer 

apparatus consisting of a double pressure plate-membrane at the top and the bottom of the 

soil core was used (Wendroth et al., 1999). After Ks measurements were completed, the 

soil samples were transferred to the tension infiltrometer apparatus. Similar pressure heads 

were applied to both the upper and the lower boundaries of the soil cores to achieve steady-

state flow conditions (Wendroth et al., 1999). The main parts of the double plate tension 

infiltrometer (Figure 4.1) include the water reservoir, the upper and the lower membrane 

plates, and the bubbling tower. The bubbling tower is connected to the water reservoir and 

water flows through the permeable membrane into the soil when air enters the air entry 

tube and into the water reservoir. The same pressure heads are then applied to the upper 

and lower permeable membrane by controlling the height of water in the bubbling tower 
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using a suction control tube. Hydraulic conductivity was determined by applying pressure 

heads of -10, -5 and -1 cm. 

 

 

 

Figure 4.1. Schematic of the double membrane tension infiltrometer method, redrawn from   

(Wendroth et al., 1999) for measuring hydraulic conductivity near saturation. 

To calculate the hydraulic conductivity in the different hydrogel-soil samples, the 

infiltration of water into the sample was first determined. The application of the same 

pressure head at both ends of the soil cores allowed for the establishment of steady-steady 

infiltration conditions which was obtained when flowrate of the percolating water through 

the samples became constant. This constant infiltration rate was then multiplied by the area 
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of the reservoir and divided by the area of the metallic core to obtain the hydraulic 

conductivity in the sample. 

The laboratory-based evaporation method was used to determine the unsaturated 

hydraulic conductivity relationship [K(h) or K (θ)] on the cores of treatments (Wendroth et 

al., 2008) from the range of -10 to -750 cm soil water pressure head at two soil depths. The 

evaporation method was conducted following methods described in (Schindler & Müller, 

2006; Tamari et al., 1993; Wendroth et al., 2008; Wind, 1966). Two electronic pressure 

transducer tensiometers with cups of length 6 cm and 0.6 cm outer diameter (o.d) were 

inserted horizontally into pre-drilled holes in cylindrical metal rings of volume 245.12 cm3 

(height of 6 cm and diameter of 8.56 cm) containing the soil treatments. The holes were 

located at 1.5 cm and 4.5 cm respectively from the surface of the soil core.  

 The cylindrical metal rings with samples were then placed on an in-house designed 

box containing the data logging system (CR3000 datalogger, Campbell Scientific Inc.) 

which was used to record the change in pressure in the tensiometers. The contact points 

between the bottom of the metal rings and the box were fitted with O-rings to prevent 

evaporation of water. The set-up for the evaporation is shown in APPENDIX B. 1(Figure 

B. 2). The samples were covered with plastic wraps and left standing for 24 hours to avoid 

evaporation while hydrostatic equilibrium was being established. Hydrostatic equilibrium 

was indicated by steady tensiometer readings equal to the height difference between the 

two tensiometers (3 cm) (Wendroth et al., 2008). After establishing the initial pressures in 

the upper and lower tensiometers, the evaporation process was initiated by removing the 

plastic wraps from the top of the soil cores. Initial sample weights were recorded using the 

data logger. The evaporation process was started and terminated when the top tensiometer 
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(1. 5 cm from the soil core surface) reached a soil water pressure head of h ≈ -750 cm. 

Pressure head and water content in the samples were logged every 5 minutes. At the end 

of evaporation, the mass of the tensiometers, the box, the ring, and wet soil were recorded. 

Residual water content was determined by drying the wet soil with the ring at 105°C for 

24 hours. A schematic of the experimental set-up is shown in Figure 4.2. 

 

Figure 4.2. Experimental set-up for determining the hydraulic conductivity of the hydrogel 

amended soils using the evaporation method. Redrawn from Wendroth et al. (1993), where 

q1 and q2 represent the upward volume flux density of water across the 4.5 cm and 1.5 cm 

boundaries respectively in the soil cores. The average upward volume flux density of water 

between the 1.5 and 4.5 cm boundaries is represented by q. 
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4.3.4 Theory for determination of soil hydraulic functions 

To derive the functions for unsaturated hydraulic conductivity, we assumed that the soil 

water retention and the unsaturated hydraulic conductivity curves which are both non-

linear functions can be described using the analytical form closed-form equation proposed 

by van Genuchten (Van Genuchten, 1980): 

Equation 4.2 

                              

𝜃 =  𝜃𝑟  +  
(𝜃𝑠−𝜃𝑟)

[1 + (𝑎h)𝑛]𝑚  (4.2) 

                               

Where h is the measured soil water pressure head from the tensiometer readings, Ѳs, Ѳr, α, 

and n are fitting parameters.  The hydraulic conductivity (K) was then estimated for each 

time interval following the reevaluated procedure via numerical simulations described by 

Wendroth et al. (Wendroth et al., 1993; Wendroth et al., 2008).  

 Briefly, the schematic of the soil sample shown in Figure 4.2 is composed of two 

compartments and the water content in the soil is assumed to change with time according 

to the measured soil water pressure head values at the two tensiometer locations (1.5 cm 

and 4.5 cm). An initial guess for the water retention parameters was used to calculate the 

water storage in the upper 3 cm and lower 3 cm of the soil core. The total water storage in 

the two compartments was then estimated based on the volumetric water content calculated 

using the van Genuchten function. That estimated total water storage was then compared 

with the total amount of water in the soil core determined using mass loss of the soil core. 

The curve fitting van Genuchten equation was then used to update the water contents to 

get new set of fitting parameters (Ѳs, Ѳr, α, and n). This process is repeated until the 

difference between the estimated water content and the measured water contents were < 
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0.0001 cm3 cm-3. After convergence of the solution i.e., when the measured soil water 

storage equals the estimated soil water storage for the two depths, the final water content 

values were then used for calculating the water fluxes between the two depths (Arias et al., 

2019). The hydraulic conductivity (K) for a given time was calculated using: 

Equation 4.3 

𝐾 =  −
𝑞

𝐴𝑣𝑒. 𝑔𝑟𝑎𝑑
 (4.3) 

 

Where q (cm s-1) is the average water flux between the two tensiometers and 𝐴𝑣𝑒. 𝑔𝑟𝑎𝑑 is 

the average hydraulic head gradient causing flux between two successive time intervals of 

measurements. 

The corresponding h and 𝜃 values were calculated using: 

Equation 4.4 

ℎ̅ =  
ℎ𝑖,−1.5𝑐𝑚 +  ℎ𝑖+1,−1.5𝑐𝑚 +  ℎ𝑖,−4.5𝑐𝑚 + ℎ𝑖+1,−4.5𝑐𝑚 

4
 (4.4) 

Equation 4.5 

 

�̅� =  
𝜃𝑖,−1.5𝑐𝑚 + 𝜃𝑖+1,−1.5𝑐𝑚 +  𝜃𝑖,−4.5𝑐𝑚 +  𝜃𝑖+1,−4.5𝑐𝑚  

4
(4.5) 

 

Where ℎ𝑖,𝑧 and 𝜃𝑖,𝑧 represent the measured soil water pressure head and the volumetric 

water content from the water retention curve estimated, respectively, while 𝑖 and 𝑧 

represent the time step and depth of insertion of the tensiometers. 
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4.3.5 Statistical analysis 

 Analysis of variance (ANOVA) was used to test for the difference in means among 

the three treatments for the samples and if a difference was detected, Tukey’s test (Tukey, 

1949) was used to determine which treatment(s) differed significantly from the others. 

Before the statistical tests were conducted the data were checked for normality and equal 

variance assumptions and appropriate tests were applied. All statistical tests and graphing 

were done in (SigmaPlot version 14.0, Systat Software, Inc., San Jose, CA, USA, 

www.systatsoftware.com). A significant level of 5% (alpha = 0.05) was used for all 

statistical comparisons. 

4.4 Results and Discussion 

The physical and chemical properties of the soils used in this study are shown in Table 4.1. 

Table 4.1. Physical and chemical properties of silt loam soil. 

 

Soil 

texture 

Clay 

(%) 

Silt 

(%) 

Sand 

(%) 

Total 

N 

(%) 

Total 

C 

(%) 

CEC  Ex. 

Mg 

 

Ex. 

Ca 

 

Ex. 

Na 

 

Ex. 

K 

 

Base 

saturation 

(%) 

pH 

Silt 

loam 

18.18 72.25 9.57 0.178 1.769 18.68 1.37 11.2 0.03 0.67 71 5.73 

CEC is the cation exchange capacity, exchangeable (Ex.) Mg, Ca, Na, and K were all measured in meq/100g 

of soil. The pH was measured in water. 

A detailed description of characteristics of the synthesized lignin-based hydrogel is 

reported in Chapter 3.4.2 of this dissertation. The synthesized hydrogel was freeze-dried 

and ground with a blender to obtain micron sized particles before proceeding to amend the 

soil with it. 

http://www.systatsoftware.com/
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4.4.1 Effect of lignin-based hydrogel on saturated hydraulic conductivity 

The first objective of this study was to amend the silt loam soil with lignin-based hydrogels 

and quantify the variation of Ks in the soil by laboratory measurements and calculations 

using Darcy’s law. Figure 4.3 presents the measured values of Ks for the lignin-based 

hydrogel-soil mixtures at different hydrogel concentrations. The Ks in the 0% (w/w) 

treatment was 339.19 ± 104.5 cm d-1 , 38.81± 15.80 cm d-1 in the 0.1% (w/w) treatment, 

and 45.04 ± 19.60 cm d-1 in the 0.3% (w/w) treatment. 
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Figure 4.3. Saturated hydraulic conductivity (Ks) of the lignin-based hydrogel-soil 

mixtures at 0%, 0.1%, and 0.3% (w/w) treatment application rates. Error bars indicate 

standard error of the means (n=3). 

Saturated hydraulic conductivity was statistically significantly decreased with the 

application of hydrogel at 0.1 and 0.3% (w/w) compared to the control treatment (p < 0.05). 

The 0.1% (w/w) treatment decreased Ks by 88.5% while the 0.3% (w/w) treatment 

decreased Ks by 87%. However, there was no statistically significant difference in Ks 

between the 0.1 and 0.3% (w/w) treatments. Our results agree with previous studies 

(Abdallah, 2019b; Alkhasha et al., 2018; Mohawesh & Durner, 2019; Narjary & Aggarwal, 

2014; Narjary et al., 2012; Shahid et al., 2012; Smagin et al., 2019; Song et al., 2020; 

Zhuang et al., 2013) that reported a decrease in Ks with application of hydrogels to various 

soils. Half the studies reported similar decreases in Ks and half reported decreases in Ks 

one order of magnitude smaller than what we found.   

Among the studies listed above, only one study (Song et al., 2020) applied a similar 

bio-based hydrogel. Song et al. (2020) applied a lignin-sodium alginate hydrogel to a 

sandy-loam soil and observed a decrease of 63.2-89.5% in Ks of a sandy loam soil with an 

increase in concentration of the hydrogel from 0 to 0.975% (w/w). The magnitude of 

decrease in Ks in Song et al. (2020) is similar to the decrease observed in our study. Our 

results indicate that alkali lignin could be used with other polymers to synthesize hydrogels 

that could be useful in reducing Ks in soils.  A possible explanation for the decrease in Ks 

could be attributed to the swelling characteristic of the lignin-based hydrogel. Swelling 

experiments conducted on the lignin-based hydrogel in Chapter 3 determined the swelling 

rate to be 20.3 g of water/ g hydrogel in deionized water. Due to the swelling characteristic 
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of the lignin-based hydrogel, its expansion in the presence of water reduced the size of 

drainage pores in the soil while causing aggregation of the soil particles (Al-Darby, 1996; 

Narjary et al., 2012) which reduced the number of pores available for downward movement 

of water in soil. 

4.4.2 Effect of lignin-based hydrogel on near-saturated hydraulic conductivity 

Near saturation K was determined using the double membrane tension infiltrometer 

apparatus. Figure 4.4 presents results of the effect of the different treatments of the lignin-

based hydrogel at soil water pressure of -1, -5, and -10 cm on hydraulic conductivity. Near 

saturated K values were two orders of magnitude lower than Ks values. The sharp decrease 

in hydraulic conductivity across small soil water head pressure range changes near 

saturation (−10 cm < h < 0 cm) is attributed to the effects of structural macropores (Jarvis 

& Messing, 1995; Jarvis et al., 2002). At h = -1 cm, the K value in the 0% (w/w) treatment 

was 2.16 ± 0.14 cm d-1 , 2.08 ± 0.25 cm d-1 in the 01% (w/w) treatment, and 0.45 ± 0.03 cm 

d-1 in the 0.3% (w/w) treatment. Hydraulic conductivity was statistically significantly 

decreased with the application of hydrogel at 0.3% (w/w) compared to the 0 and 0.1% 

(w/w) treatments (p < 0.01). However, there was no statistically significant difference in K 

between the 0 and 0.1% (w/w) treatments. Our results imply that the effect of lignin-based 

hydrogels in decreasing hydraulic conductivity is intensified as soil water pressure 

increases towards saturation. In saturated and near saturated states, a higher dose of lignin-

based hydrogel decreases hydraulic conductivity, but that decreasing effect diminishes as 

soil water pressure head decreases. 
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Figure 4.4. Near-saturated hydraulic conductivity (K) of the lignin-based hydrogel-soil 

mixtures at 0%, 0.1%, and 0.3% (w/w) treatment application rates. Error bars indicate 

standard error of the means (n=3). 

 

While several studies have mostly focused on exploring the effects of hydrogel 

applications on saturated hydraulic conductivity, few studies (Smagin et al., 2019) 

attempted to extend the measurement to near saturated condition i.e. (−10 cm < h < 0 cm) 

through modeling techniques. Smagin et al. (2019) tested a radiated-cross-linked technical 

polyacrylamide hydrogel on a silty sand soil at 0.01 to 0.3 % (w/w) application rates. They 

reported 2-3 times decrease in hydraulic conductivity between soil water pressure heads of 
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less than -100 cm at hydrogel application rates of 0.01 to 0.05% (w/w) and a decrease of 

10-50 times in hydraulic conductivity with application rates of 0.1 to 0.2% (w/w). 

 

4.4.3 Effect of lignin-based hydrogel on unsaturated hydraulic conductivity 

relationships using the evaporation method 

The evaporation method coupled with Wind’s iterative procedure (Wind, 1966) 

was used to determine the unsaturated hydraulic conductivity relationship [K(h) or K (θ)] 

when the silt loam soil was amended with lignin-based hydrogel. Figure 4.5a depicts the 

estimated volumetric water content plotted against the hydraulic conductivity while Figure 

4.5b depicts the estimated soil water pressure head plotted against the hydraulic 

conductivity for the three soil-hydrogel treatments. While running simulations using the 

Wind’s method, some values for K were rejected. Due to high uncertainty of tensiometer 

readings at low gradients i.e., close to 0, all K values obtained from gradients < 0.2 cm 

were rejected in this study (Peters & Durner, 2008; Wendroth et al., 1993). Three replicates 

of each treatment were obtained and averaged for volumetric water content, soil water 

pressure head, and hydraulic conductivity. From Figure 4.5a, hydraulic conductivity 

decreased with a decrease in volumetric water content in all treatments. This decrease is 

due to soil becoming increasingly unsaturated since less pore spaces are filled with water, 

thus flow paths become tortuous, and drag forces between the soil particles and the water 

increases (Van Genuchten & Pachepsky, 2011). The textural properties of the silt loam soil 

used in this experiment will also affect the K as soil texture is less variable and will 

dominantly affect K in the unsaturated range (Lal & Shukla, 2004). Noticeably, K in the 

0.1 and 0.3% (w/w) treatments was increased along the entire curve compared to the 

control treatment. Similarly, from Figure 4.5b, K decreased drastically by three orders of 
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magnitude from -80 cm to -750 cm which is typical as soil becomes unsaturated regardless 

of hydrogel treatment. While we see a clear increase in K as soil water content decreased, 

the difference between the three treatments is not apparent when soil water pressure is 

plotted against K.  
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Figure 4.5. Hydraulic conductivity functions for the silt loam soil when amended with 0, 

0.1, and 0.3% (w/w) lignin-based hydrogel determined with the evaporation method (a) 

volumetric water content against hydraulic conductivity K (θ), and (b) soil water pressure 

head against hydraulic conductivity K(h). 

A hypothesized reason the application of the lignin-hydrogel at 0.1 and 0.3% (w/w) 

increased K is that as soil moves from the saturated phase into the unsaturated phase, the 

swollen hydrogels particles create smaller drainage pores. The hydrogel which retains 

bound water for a period gradually releases the bound water as soil dries which creates a 

wider path/increases cross sectional area for the movement of water thus increasing K. 

There are limited studies in literature that investigate the effects of hydrogels, 

especially lignin-based hydrogels on unsaturated hydraulic conductivity compared to 

saturated hydraulic conductivity. The few studies that determined the unsaturated hydraulic 

conductivity of soils after hydrogel amendment used various synthetic-based hydrogels 

(Al-Darby, 1996; Liao et al., 2018; Mohawesh & Durner, 2019; Smagin et al., 2019). Al-

Darby (1996) estimated K using a numerical method i.e., using Van Genuchten hydraulic 

function. Al-Darby (1996) observed a 63, 92 and 99% decrease in K corresponding to 

application rates of 0.2,0.4 and 0.8% (w/w) of the hydrogel. Liao et al. (2016) observed a 

decrease in K of 85.5 to 94.1% on day 0, 75.1 to 82.9% on day 30 and 65 to 76.2% on day 

50 when synthetic polyacrylamide and acrylic acid-based hydrogels were applied to sandy 

loam soil. Mohawesh & Durner (2019) measured the unsaturated hydraulic conductivity of 

a sandy soil after applying bentonite, biochar, and hydrogel to the soil. The hydrogel was 

amended at rates of 0, 0.1, 0.25, and 0.5% (w/w). The authors reported that all soil 

amendments decreased unsaturated hydraulic conductivity in the wet range i.e., saturated 
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and near saturated conditions. They attributed the decrease to an increase in tortuosity and 

particle packing. Smagin et al. (2019) observed that at high matric potentials i.e., < 10 to 

15kPa, K reduced up to 2-3 times at concentrations ranging from 0.01-0.05% (w/w) and a 

reduction of 10-50 times at 0.1-0.2% concentration. However, at low matric potential i.e., 

200 to 3030 kPa, K increased with an increase in application rate.   

Our results contrast with the findings of Al-Darby (1996) and Liao et al. (2016) as 

they report decreases in K. It is possible the different soil types used in Al-Darby (1996) 

and Liao et al. (2016) was the reason K decreased as opposed to increased. The two studies 

used mostly sandy soils which have large pores which drain faster compared to fine-

textured soils like silt loam soil (Lal & Shukla, 2004) used in our study. Thus, the presence 

of the hydrogels in their sandy soils tended to increase tortuosity which reduced K 

(Mohawesh & Durner, 2019). Our results, however, agree with Smagin et al. (2019) who 

reported 10-20 times increase in K in the unsaturated regions. The authors attributed the 

increase in K to a change (increase) in the pore space of the sandy soil used in their study 

because of the hydrogels applied.  

4.4.4 Effect of lignin-based hydrogel on change in total water storage in the soil 

The total soil water storage was estimated for each treatment by first calculating the 

volumetric water contents at the two tensiometer elevations (θ1.5 and θ4.5) at each time 

step. The two volumetric water contents were then added, and the result multiplied by the 

depth between them i.e., 3 cm to obtain the total soil water storage. Change in total soil 

water storage over time is shown in Figure 4.6. From Figure 4.6, at the start of evaporation, 

the amount of water stored in all treatments was approximately 2.6 cm. As evaporation 

continued, the 0.1 and 0.3% treatments tended to store more water than the control 
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treatment especially after 24 hours (p < 0.005) and to lesser extent after 48 hours (p = 

0.059). At the end of the evaporation experiment, total soil water storage was similar in all 

treatments (p = 0.23) at 1.51 cm for the control treatment, 1.58 cm for the 0.1% (w/w) 

treatment, and 1.55 cm for the 0.3% (w/w) treatment. Overall, the effect of the 

concentration of the hydrogel on total soil water storage was not significant at the 

beginning of the evaporation experiment, however, we hypothesize there was an influence 

of the lignin-based hydrogel on the total soil water storage during stage 2 of evaporation. 

During stage one, evaporation is influenced by environmental factors like atmospheric 

temperature, wind speed, and humidity (Idso et al., 1974). During stage 2, evaporation 

shifts from the surface water to the sub-surface water resulting in the formation of a dry 

surface layer (Rose, 1968). Hydrogels can intercept the movement of water upwards as 

some water will be absorbed and kept at the level just beneath the soil surface thus 

increasing total soil water storage. 
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Figure 4.6. Change in total soil water storage in the 0, 0.1, and 0.3% (w/w) lignin-based 

hydrogel treatment after 73 hours of evaporation. 

4.5 Conclusions 

This study resolved the impacts of three application rates of lignin-based hydrogel on the 

saturated hydraulic conductivity, near saturated hydraulic conductivity, unsaturated 

hydraulic conductivity, and soil water storage in a silt loam soil. Our main hypothesis of a 

decrease in hydraulic conductivity was supported but only in the saturated and near-

saturation zone (−10 cm < h < 0 cm) of soil water pressure head. Saturated hydraulic 

conductivity was statistically significantly decreased with the application of hydrogel at 

0.1 and 0.3% (w/w) compared to the control treatment. In the near-saturation zone (−10 



 

143 

 

cm < h < 0 cm), application 0.3% (w/w) lignin-based hydrogel significantly decreased 

hydraulic conductivity. Noticeably, unsaturated hydraulic conductivity (K) in the 0.1 and 

0.3% (w/w) treatments was increased along the K (θ) curve in the unsaturated zone (750 

cm < h < 10 cm) compared to the control treatment. A clear trend was however not seen in 

the K(h) curve as the three treatments were indistinguishable. Our results also suggest the 

0.1 and 0.3% treatments tended to store more water than the control treatment especially 

after 24 hours of evaporation. Future studies should be conducted to test the lignin-based 

hydrogel on other textures of soil. Regardless, the implication of this study is that lignin-

based hydrogel could be used to retain water in saturated silt loam soils and the bound 

water could be useful for improving the flow of soil water when in unsaturated state   

thereby reducing the water stress of plants as plants require less energy to absorb water.  
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CHAPTER 5. FEATURE SELECTION AND MACHINE LEARNING REGRESSION 

METHODS TO PREDICT SATURATED HYDRAULIC CONDUCTIVITY FROM 

A LARGE PUBLIC SOIL DATABASE 

5.1 Abstract 

 One of the most important soil hydraulic properties for modeling water transport in 

the vadose zone is saturated hydraulic conductivity. However, it is challenging to measure 

it in the field. Pedotransfer Functions (PTFs) are mathematical models that can predict 

saturated hydraulic conductivity (Ks) from easily measured soil characteristics. Though the 

development of PTFs for predicting Ks is not new, the tools and methods used to predict 

Ks are continuously evolving. Most current PTFs do not justify the selection of features 

from the soil database while developing PTFs. However, ideal model performance depends 

on choosing soil features that explain the most amount of Ks variance with the fewest input 

variables. In addition, the lack of interpretability in most “black box” machine learning 

models makes it difficult to extract practical knowledge as the learning process obfuscates 

the relationship between inputs and outputs in the PTF models. The objective of this study 

was to develop a set of new PTFs for predicting Ks using machine learning algorithms and 

a large database of over 8000 soil samples while incorporating statistical methods to inform 

feature selection for the model inputs. Feature selection using principal component analysis 

coupled with correlation analysis was used to select five influential soil properties (% clay, 

% silt, % fine sand, % medium sand, and bulk density) for model development. Using six 

different machine learning (ML) algorithms i.e., multiple linear regression (MLR), k- 

nearest neighbor (KNN) regression, support vector regression (SVR), deep neural networks 

regression (DNNR), random forest regression (RF), and gradient boosted regression (GB), 

PTFs were developed to predict Ks using a training data set. The performance of the PTFs 
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in estimating Ks was evaluated using coefficient of determination (R2), mean absolute error 

(MAE), and root mean square error (RMSE) on an independent test data set (data not used 

in the training of the model). 

 Of the ML models tested, random forest regression and GB both gave the best 

performances with R2 = 0.71 and RMSE = 0.47 cm h-1 on the test data (validation data set). 

However, the RF regression model produced a slightly lower MAE = 0.32 cm h-1 than the 

GB regression model with MAE = 0.33 cm h-1 on the validation data. The permutation 

feature importance technique was applied to determine which variables described the most 

variability for predicting Ks in a validation (data not used in training the models). The GB 

and RF regression models showed comparable results where clay content described the 

most variation in the data, followed by bulk density. Both GB and RF algorithms use 

regression trees, and despite the complex nature of boosted regression trees, they do 

possess advantages that make them favorable for predictive modeling. Regression trees can 

reduce bias and mean square error compared to traditional machine learning algorithms 

and are also suited for predicting non-linear relationships between input and output 

variables. While the PTFs developed in this study are not generalizable for all soils and 

geographical locations, this study offers a process to compare alternative machine learning 

based PTFs when using large public soil databases. The implication of this study is that, 

when predicting Ks using the Florida Soil Characterization Database, priority should be 

given to obtaining quality data on clay content and bulk density as they are the most 

influential predictors for estimating Ks in the random forest and gradient boosted 

regressions, the ML algorithms that performed the best on both the training and the testing 

datasets. 
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5.2 Introduction 

 Saturated hydraulic conductivity (Ks) is the most important hydraulic property of 

soil measured in the laboratory (Reynolds, 2008) or in the field. The hydraulic conductivity 

as a function of soil water content or soil water pressure head and the water retention 

properties of soil determines the behavior of soil water flow systems. Hydraulic 

conductivity describes the ability of the soil to transmit water (Klute & Dirksen, 1986) and 

is important for describing the dynamic processes in fluid flow (Schwartz, 2002). 

Additionally, saturated hydraulic conductivity is often used in combination with soil water 

retention functions to predict unsaturated hydraulic conductivity due to the difficulty in 

measuring the complete unsaturated hydraulic conductivity function directly (Zhang et al., 

2019).  

 One option for indirectly determining saturated hydraulic conductivity in soil is 

using pedotransfer functions (PTFs). PTFs are models that can predict soil hydraulic 

properties, i.e., water retention curve and the saturated hydraulic conductivity, from easily 

measured soil characteristics like particle-size distribution, organic matter content and bulk 

density (Cornelis et al., 2001; Padarian et al., 2018; Wösten et al., 1995). PTFs are 

essentially regression functions that are used to predict soil properties whose measurements 

may be impeded by cost, time, difficulty, or hazards involved in obtaining reliable 

measurements (Padarian et al., 2018). PTFs have been broadly categorized into class PTFs 

and continuous PTFs (Rasoulzadeh, 2011; Van Looy et al., 2017; Wösten et al., 1995). 

Class PTFs predict hydraulic properties from textural classes (the USDA defines twelve 

major soil texture classifications (sand, loamy sand, sandy loam, loam, silt loam, silt, 

sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, and clay) while 



 

147 

 

continuous PTFs utilize measured percentages of clay, silt, sand, bulk density, and organic 

matter to determine various hydraulic properties (Rasoulzadeh, 2011; Van Looy et al., 

2017). In recent times, large international soil datasets e.g., UNSODA (Leij, 1996), 

HYPRES (Wösten et al., 1999) and NRCS National Soils Information System (Rawls et 

al., 2007) have been used by various researchers to develop PTFs. The past two decades 

have seen a drastic increase in PTF developments in literature. These recent studies also 

developed PTFs for soil water retention (Haghverdi et al., 2015; Lamorski et al., 2008; 

Nemes et al., 2006; Schaap & Leij, 1998b; Twarakavi et al., 2009; Wang et al., 2012; 

Wösten et al., 1999) and saturated hydraulic conductivity PTFs which we will introduce 

below. 

 Despite the success of using more traditional regression equations (e.g., linear 

logarithmic, or exponential) for estimating parameters for PTFs, their application may be 

limited in the sense that, the mathematical relationship between the predictors and soil 

property of interest may vary within the training dataset used, i.e., the underlying model 

may change over the geographical area of interest (Van Looy et al., 2017). In addition, 

regression is often limited by the assumptions implicit in traditional statistical methods 

(Elith et al., 2008). However, another approach for predicting soil hydraulic properties 

which does not require an assumed underlying model or the existence of a pre-assumed 

relationship within the predictor variables is machine learning (ML) modeling (Elith et al., 

2008). For example, according to Nemes et al. (2006), in regression-based models, one 

first identifies the right equations while assuming that the probability distribution of the 

error is similar across the data space, an assumption that may be difficult to prove. 

However, ML techniques use similarities between samples to predict a new sample, which 
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is advantageous when the form of the relationship between the input and output variables 

are unknown before analysis (Nemes et al., 2006). Machine learning methods develop 

models based on patterns identified in the dataset used to train them. Along with big data 

technologies and high-performance computing, ML has emerged as a tool to create new 

opportunities to reveal, quantify and understand data-intensive processes in agriculture 

(Liakos et al., 2018), such as modeling soil physical properties.  

 Several researchers have developed PTFs for predicting saturated hydraulic 

conductivity (Agyare et al., 2007; Arshad et al., 2013; Elbisy, 2015; Jorda et al., 2015; 

Kashani et al., 2020; Kotlar et al., 2019; Nivetha et al., 2019; Rasoulzadeh, 2011) and near 

saturated hydraulic conductivity (Jarvis et al., 2002; Jorda et al., 2015; Kotlar et al., 2019) 

using various machine learning techniques. Machine learning (ML) algorithms use pattern 

recognition approaches, which help describe relationships between input parameters and 

output parameters by “learning” characteristics of the relationships using a training dataset 

(Twarakavi et al., 2009). Because ML is not restricted to the same assumptions as 

traditional regression modeling techniques, machine learning can achieve more accurate 

and more reliable predictions than traditional regression models (Achieng, 2019; Lamorski 

et al., 2008; Schaap & Leij, 1998a).  

 While considerable research has been devoted to developing machine learning 

based PTFs for predicting Ks, the current PTFs developed rarely justify the a priori 

selection of predictors used for developing PTFs. However, model performance depends 

on choosing appropriate predictors that result in explaining the optimal amount of data 

variance with the model when used to predict a response variable. Lastly, the lack of 

interpretability in most “black box” machine learning models used to develop PTFs makes 
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it difficult to understand the practical implications of PTFs. One of the key contributions 

of this study is that correlation analysis was used to complement principal component 

analysis (PCA) in selecting relevant predictors to develop the ML-based models. To the 

best of our knowledge, only few papers have applied tree-based ML methods to large soil 

databases to predict Ks (Jorda et al., 2015; Araya & Ghezzehei, 2019), thus this study 

describes a process which represents an alternative approach (using various turn-key 

machine learning tools available in Python) to predict Ks using large public databases while 

intentionally selecting the most influential predictors a priori to training the ML 

algorithms. 

 The main objectives of this paper were to (i) select influential predictors by 

applying principal component analysis coupled with correlation analysis and (ii) train 

commonly available ML algorithms to predict Ks using the influential predictors selected 

in step (i). Multiple machine learning algorithms should be used to develop the models 

including multiple linear regression (MLR), support vector regression (SVR), K-nearest 

neighbor regression (KNN), deep neural networks regression (DNNR), random forest 

regression (RF), and gradient boosted regression (GB). Additional objectives include (iii) 

comparing ML model predictions using an independent test data set and (iv) applying the 

permutation importance technique to determine which soil properties where most 

influential post-model development in the test model and interpreted this information into 

practical advice for improving data quality. The central hypothesis of this objective was 

that there is a relationship between easily measured soil properties (e.g., bulk density, % 

silt, % clay, % sand) and saturated hydraulic conductivity. Thus, by applying feature 

selection (principal component analysis coupled with correlation analysis) to the input data, 
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the minimum relevant input variables that explain a greater variation in Ks can be used to 

build the models.  

5.3 Machine Learning Techniques 

5.3.1 Multiple linear regression 

Multiple linear regression models (Yan & Su, 2009) are generally represented by the 

following equation: 

Equation 5.1 

𝑌 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑖𝑋𝑖 , (5.1)  

Where Y is the output variable (Ks), 𝑎 represents the intercept, 𝑏1,…, 𝑏𝑖 represent the 

regression coefficients, 𝑋1 to 𝑋𝑖 represent the input variables. 

5.3.2 Support vector regression 

Support vector regression (SVR) employs regression analysis by regressing a 

dependent variable on an independent variable according to a weight vector and a bias term 

(Achieng, 2019). SVR was adopted from the support vector machine (SVM) learning 

algorithm (Drucker et al., 1997). The underlying principle behind SVM is to determine the 

optimal separation of classes by selecting the class which has the least generalization error 

from an infinite number of linear classifiers (Sihag, 2017). An important property of SVR 

models is the ability to generalize on test datasets which increases model accuracy for 

prediction on future datasets (Lamorski et al., 2014). A detailed explanation of the theory 

behind the SVR algorithm can be found in (Awad & Khanna, 2015; Elbisy, 2015; Pasolli 

et al., 2011; Smola & Schölkopf, 2004; Twarakavi et al., 2009). 
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5.3.3 K-nearest neighbor regression 

The k- nearest neighbor regression (KNN) algorithm is an adaptation of the KNN 

classification algorithm. In the KNN algorithm, predictions for new instances are made 

based on the average of the values of its “k” nearest (most similar) neighbors in the training 

dataset (Araya, 2019). KNN regression is used for estimating continuous variables. KNN 

algorithms are considered as simple algorithms with respect to their underlying principle 

(Araya & Ghezzehei, 2019) and their easy interpretability. In KNN classification, the 

algorithm predicts a target class of a new observation by comparing it to “k” similar cases 

in the training data set, where “k” is a parameter specified by the user. In applying KNN 

regression, the KNN algorithm computes the average outcome of the “k” training 

observations that are most similar to the new observations and returns the output as the 

predicted value of the new observation (Al-Dosary et al., 2019). A detailed explanation of 

the theory behind the KNN regression algorithm can be found in (Altman, 1992) while an 

easy implementation of the KNN algorithm in the Scikit-learn module in python can be 

found in (Müller & Guido, 2016).  

5.3.4 Deep neural network regression 

 Artificial neural networks (ANN), also called neural networks, can be described as 

a collection of units/nodes organized into layers, that receive inputs and deliver outputs 

usually compared to how neurons in biological systems transmit information in the brain. 

The basic components of neural networks are input layers, hidden layers, and output layers. 

In between the input and the output layer lies at least a layer consisting of neurons with 

connections called weights that carry information from one layer to the next layer 

(Achieng, 2019). Outputs are generated through the neurons based on activation functions 
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e.g., sigmoid, rectified linear units (RELU), and linear functions (Achieng, 2019). During 

training, input data are fed into the neural network to compute the output of every neuron 

in each consecutive layer. The output error (difference between measured and predicted 

value) is then measured and the algorithm computes how much each neuron in the previous 

hidden layer contributed to each output neuron’s error (Géron, 2017). Deep neural 

networks are neural networks of multiple non-linear layers (Min et al., 2016). 

5.3.5 Random forest regression 

The random forest (RF) algorithm is another ML technique that has gained 

popularity (Van Looy et al., 2017) for its use in predicting soil hydraulic properties. RF 

regression is based on the decision tree algorithm. It works by constructing several decision 

trees during training of the data and outputs the class that occurs most (classification) or 

the mean prediction (regression) of the individual trees (Ho, 1995). However, a weakness 

of decision trees is the limitation on how complex a tree can grow. Thus, decision trees risk 

overfitting the training data if it becomes too complex (Ho, 1995). The technique of using 

multiple trees to make the prediction is called bootstrap aggregation (Liaw & Wiener, 

2002). The algorithm for RF regression involves creating a random bootstrap dataset from 

the original dataset with replacement, then a RF regression tree is created using the 

bootstrapped dataset by randomly selecting a subset of the predictors and choosing the best 

split from the subset of predictors. Finally, based on the resulting ensemble tree, a new 

prediction is made by averaging the predictions. A detailed explanation of the RF algorithm 

for regression is described in (Breiman, 2001). 
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5.3.6 Gradient boosted regression 

 Gradient boosted regression (GB) is based on the idea of “boosting” which is a 

method of improving the performance of a learning algorithm by reducing errors of “weak” 

learning algorithms (Freund & Schapire, 1996). Originally proposed by Freund & Schapire 

(1996) in which the AdaBoost algorithm was developed, GB connected the AdaBoost 

algorithm to statistical concepts of loss functions, additive modeling, and logistic 

regression (Kuhn & Johnson, 2013). According to Kuhn & Johnson (2013), the main 

principle of gradient boosting is that given a loss function (e.g., mean square error) and a 

weak learner (e.g., regression trees), the algorithm seeks to find an additive model that 

reduces the loss function. In other words, once a loss has been calculated, gradient descent 

is calculated, and trees are sequentially added to reduce the loss function. A detailed 

description of the algorithm for the GB algorithm is described in Friedman (2002). 

5.4 Materials and Methods 

5.4.1 Process for the development of PTFs 

5.4.1.1 The database 

The data used in this modeling study were obtained from the Florida Soil 

Characterization Database (FSCD) (https://soils.ifas.ufl.edu/flsoils/index.asp). The 

database consisted of 1292 soil profiles with 8235 horizons distributed in 58 of 68 counties 

in Florida collected from 1965-1996 (Florida Soil Characterization Database, 2009). The 

FSCD was chosen for this study for several reasons; the database contained a wide range 

of soil horizons, the number of observations was large (8235), and the database contains 

many predictors to choose from, making it a favorable alternative to other large soil 
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databases (e.g., USKSAT database) used by others (Pachepsky & Park, 2015). Data were 

retrieved from seven printed books spanning the period from 1974-1990 and are the most 

comprehensive database of soils in Florida from 1965-1996 (Florida Soil Characterization 

Database, 2009). The database tracks 144 parameters which include physical and chemical 

properties of various soil samples. According to the Florida Soil Characterization Database 

(2009), the field and laboratory standards of the Natural Resources Conservation Service 

and Soil and Water Science Department were followed in checking the quality of the data 

in the database. Data for the particle size distribution i.e., sand, clay, and silt were obtained 

using the pipette method (Florida Soil Characterization Database, 2009) and Ks was 

determined using the constant head method.  

5.4.1.2 Preprocessing 

Since the Florida Soil Characterization Database is a large database, there are 

missing data points. The first step of preprocessing was to identify and remove soil samples 

from the database with missing data points. The original dataset contains 8216 samples and 

after missing datapoints were removed, the total number of samples remaining was 4686, 

which constituted the subset database. Where replicates of measured parameters for each 

soil sample were present in the original database these were averaged to obtain a mean 

parameter in the subset database. However, because values of Ks vary by orders of 

magnitude across soil types and form a log-normal distribution (See Results and Discussion 

Section), it is the custom when working with Ks to log-transform the data to bring the data 

to a normal distribution. Therefore, the three replicates of Ks were log-transformed before 

averaging Ks. For this study, a subset of parameters (very coarse sand content, coarse sand 

content, medium sand content, fine sand content, very fine sand content, total sand content, 
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silt content, clay content, and bulk density) were chosen as the most probable predictors 

for saturated hydraulic conductivity based on knowledge of soil physics and previous 

modeling studies (Araya & Ghezzehei, 2019; Arshad et al., 2013; Twarakavi et al., 2009). 

5.4.1.3 Predictor selection 

  Prior to implementing the machine learning algorithms, it was important to 

eliminate any input variables that did not significantly explain variation in the output 

variable (Ks). Using the scikit-learn library (Pedregosa et al., 2011) in Python, principal 

component analysis (PCA) and Pearson correlation analysis were used to identify the most 

influential predictive variables among the input predictors. PCA is a mathematical 

algorithm that can be used to reduce the dimensionality (number of model input variables) 

while retaining the amount of variation in the original data explained by the model input 

variables (Jolliffe, 2002). Dimensional reduction is achieved by identifying principal 

components along which the variation in the data is highest (Ringnér, 2008). PCA results 

in new variables i.e., the principal components that are linear combinations of the original 

input variables (Ringnér, 2008). The component loadings of each variable in a PC indicates 

the amount of influence each variable has on that PC. Variables with moderate to high 

component loadings were assumed to represent variables that explained a high portion of 

the variation in Ks and best represented the system attributes (Mandal et al., 2015; Yao et 

al., 2015; Zhang et al., 2019). The principal components (PCs) obtained were then analyzed 

and the PCs comprised of variables with moderate to high component loadings were 

retained (Mandal et al., 2015).  

  The Pearson correlation matrix was then used to determine the strength of 

the relationships between the variables chosen after PCA analysis with Ks and between 
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themselves. Data were normally transformed using a Box-Cox normal transformation (Box 

& Cox, 1964) prior to Pearson correlation analysis. Thus, variables chosen to represent the 

PCs will ideally be strongly correlated with Ks and have weak correlations between the 

other variables. 

5.4.2 Machine Learning Programming Method 

5.4.2.1 Computational software 

 The DNNR was programmed using Tensorflow software library (Version 2.3.0, 

Tensorflow developers) (Abadi et al., 2016) in Python. Specifically, the Tensorflow 

implementation of Keras (tf.keras) which is an integration of the Keras API (Gulli & Pal, 

2017) into Tensorflow was used in this study. Tensorflow is an open-source software 

library which provides a platform for implementing deep neural networks in Python. For 

easy understanding of the workflow of this study, the code was written in Jupyter Notebook 

(Kluyver et al., 2016). Jupyter Notebook is an open-source web application that allows for 

easy creation and sharing of code, data cleaning, machine learning modeling and data 

visualization. 

5.4.2.2 Machine learning implementation 

 The preprocessing and feature selection steps described above were done for all 

ML algorithms. The steps that were followed in implementing four of the machine learning 

algorithms (KNN, RF, GB, and SVR) using the scikit-learn module are similar and shown 

in APPENDIX C. 1 (Figure C. 1). In detail, after the preprocessing and feature selection 

steps, the input variables were normalized to ensure all input variables had a mean and 

standard deviation of 0 and 1, respectively. Normalization was necessary so that no variable 
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had an undue influence on the regression just by virtue of having larger values. The dataset 

was randomly split into two as follows: a training set (80%) with 3748 soil samples used 

to build the models and a test set (20%) containing 938 soil samples that was used as an 

independent data set to see how the trained model performed on data not used in the model 

training.  

 Hyperparameter tuning was done using the GridSearchCV function in scikit learn. 

Hyperparameters refer to the parameters used to configure an algorithm to minimize the 

loss function thus increasing performance of the final models obtained (Yang & Shami, 

2020). The loss functions here describe the optimization functions to evaluate how well the 

algorithms modeled the subset data (i.e., the training dataset). The GridSearchCV function 

works by combining all given hyperparameter configurations to obtain the best set of 

hyperparameters that give the best performance. The training dataset is passed to 

GridSearchCV which then repeatedly combines the various hyperparameters, calculates 

the accuracy metrics and results in the best values for the hyperparameters. In selecting the 

optimum parameters, k-fold cross validation was implemented within the GridSearchCV 

algorithm. In the k-fold cross validation implementation, the entire data set was randomly 

split into k equal sizes (k = 5 for this study). In the first fold, a single subsample was 

reserved as the “validation data” for testing the trained model, and the remaining k-1 

subsamples used to train the model and the accuracy calculated. The cross-validation was 

then repeated five times with each of the five subsamples used exactly once as the 

validation set. A single estimate was calculated by averaging the five evaluations. This 

method is known to increase out-of-sample accuracy while reducing overfitting in the 

model during training (Vabalas et al., 2019).  



 

158 

 

 The optimum hyperparameters obtained were used to rerun the model. A validation 

prediction of Ks was found using the testing dataset. The separate test dataset was used to 

ensure that the models were not overfitted to the training dataset. Overfitting occurs when 

the performance of a model on a test dataset differs from the performance observed on the 

training dataset, thus its generalizable error is high (Yeom et al., 2020). Implementation of 

the MLR algorithm followed the same steps as for KNN, RF, GB, and SVR except in the 

MLR, there was no hyperparameter search since MLR has no hyperparameters. Thus, 

immediately after training the model, predictions on the validation dataset were made. 

 In addition to the traditional machine learning models, this study implemented a 

DNNR to predict Ks which differed from how the KNN, RF, GB, SVR, and MLR were 

implemented. For the DNNR, a sequential model with two densely connected hidden layers 

each with 64 nodes, and an output layer that returned a single, continuous value (Ks) were 

built. A batch size of 10 with 1000 iterations were used to train the model. One advantage 

of DNNR is that it can unravel feature combinations, combine them to reduce complexity 

which leads to better generalization capability of a model (Cai et al., 2019). The DNNR 

was trained using the five input parameters obtained after predictor selection (clay content, 

silt content, bulk density, medium sand content, and fine sand content). The optimization 

function used in Python was the ‘RMSprop’.  

 The criteria for evaluating the accuracy of the predictive models were statistical 

performance measurements of mean absolute error (MAE), root mean squared error 

(RMSE), and the coefficient of determination or R-Squared (R2).  
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 The equations for the evaluation criteria are given below: 

Equation 5.2 

 
𝑀𝐴𝐸 =  

1
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Equation 5.3 
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Equation 5.4  
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Where 𝑦 is the measured Ks, ŷ is the predicted Ks, ȳ is the mean of the measured Ks, and 

n is an observation in the data. 

5.5 Results and Discussion 

5.5.1 Descriptive statistics of soil properties 

Descriptive statistics of the measured saturated hydraulic conductivity (Ks) and the selected 

input variables (from the database) were calculated and are shown in Table 5.1. The 

descriptive statistics shown are using the untransformed measured data from the original 

database. The measured untransformed Ks values of the studied soils ranged from 0.01– 

362 cm h-1 with standard deviation of 24.33 cm h-1 (Figure 1). The mean Ks in the selected 
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samples was 20.07 cm h-1. The range of clay, silt, and total sand were 0-93.4%, 0-94.5%, 

and 0.2 – 100% respectively.  

 

Figure 5.1. Histogram showing frequency distribution of the measured untransformed Ks 

data (n =4686). 

All textural classes of the USDA soil texture classification triangle except silty clay 

soils were present in the subset database (Figure 5.2). From Figure 5.2, most of the soils 

were predominantly in five soil texture classes (sandy clay, sandy clay loam, sandy loam, 

loamy sand, and sand). A high percentage of the soils could be described as sandy as the 

mean of the total sand fraction was 85.6% with a standard deviation of 15.6%. Expectedly, 

bulk density was negatively correlated with Ks (Figure 5.3). The amount of silt was also 

negatively correlated with Ks. 
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Table 5.1. Descriptive statistics of the saturated hydraulic conductivity and the various 

input variables (n = 4686). 
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Input Variables Max. Min Mean SD 

Very Coarse Sand (%) 19.6 0 0.291 0.906 

Coarse Sand (%) 44.6 0 3.55 4.278 

Medium Sand (%) 77.7 0 20 15.88 

Fine Sand (%) 96.2 0.1 50.89 20.05 

Very Fine Sand (%) 56.4 0 10.77 8.59 

Total Sand (%) 100 0.2 85.6 15.6 

Clay (%) 93.4 0 8.74 11.79 

Silt (%) 94.5 0 5.63 7.16  

Bulk density (g cm-3) 2.09 0.49 1.53 0.163 

 Ks (cm h-1 ) 361.50 0.01 20.06 24.32 
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Figure 5.2. USDA soil texture classification triangle showing the distribution of the soils 

used for this study. 

5.5.2 Predictor selection 

The degree of linear association between the input and output variables were 

determined using Pearson correlation analysis (Figure 5.3). Three predictors (% very 

coarse sand, % coarse sand, % very fine sand) had a significant (p < 0.001) but low 

correlation with Ks (r = 0.02, 0.16, and -0.23 respectively). While there was significant (p 

< 0.001) moderate correlation between Ks and medium sand, fine sand, bulk density, and 

clay content (r = 0.33, 0.30, -0.34, and -0.28, respectively). There was a significant negative 

correlation (p < 0.001) between silt content and Ks (r = -0.68) and a significant positive 

correlation (p < 0.001) between total sand and Ks (r = 0.64). The first five PCs accounted 

for 92% of the variation in the measured soil properties (Table 5.2). The first PC explained 
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31.3% of the total variation in the data when all the terms were included. The first PC had 

moderate negative component loadings from silt (-0.57), and moderate positive loadings 

from clay (0.49) and fine sand (0.45) which together constituted 75% of the variation in 

the first PC. From the Pearson correlation, the Ks was significantly negatively correlated 

with silt content and moderately correlated with clay and fine sand content. The silt, clay 

and fine sand content were thus retained as dominant variables in PC1. The second PC 

explained 27.7% of the total variation in the data. The second PC had positive component 

loading from coarse sand (0.57), medium sand (0.53), and very coarse sand (0.36). 

However, coarse sand and very coarse sand had very weak correlations with Ks. Thus, 

because Ks was strongly correlated with % medium sand than with % coarse and with % 

very coarse sand, medium sand was assumed to be a dominant variable in PC2. The third 

PC was clearly dominated by bulk density with a negative component loading of 0.77 

which accounted for 59% of the variance explained by PC3. The fourth PC had positive 

component loading of 0.57 from very coarse sand and 0.42 from total sand. Here, total sand 

was chosen to represent PC4 because of its high correlation with Ks (r = 0.64) compared 

to very coarse sand (r = 0.02). The fifth PC was also dominated by total sand and very 

coarse sand with positive component loads of (0.52 and 0.5, respectively). Total sand was 

again chosen to represent PC5. From the PCA and correlation analysis, six variables (% 

clay, % silt, % fine sand, % medium sand, % total sand, and bulk density) were chosen as 

potential predictors for developing the ML models.  
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Table 5.2. Component loadings for 9 soil physical properties and the explained variance of 

the principal components (PCs). PCs that explained small variances (PC6 – PC9) i.e., < 6 

% of the total variance are not included. 

 

Soil property PC1 PC2 PC3 PC4 PC5 

VCS 0.16 0.36 -0.14 0.57 0.50 

CS 0.11 0.57 -0.04 0.22 0.03 

MS -0.08 0.53 0.18 -0.30 -0.38 

FS -0.45 -0.32 0.05 0.09 0.40 

VFS 0.43 -0.11 0.25 0.28 -0.23 

T_sand 0.09 -0.29 -0.53 0.42 -0.52 

Silt -0.57 0.15 -0.06 0.14 -0.12 

Clay 0.49 -0.13 -0.07 -0.35 0.30 

BD -0.00 0.17 -0.77 -0.36 0.11 

Variance  

explained (%) 

31.3 27.7 12.5 11.2 9.4 

 

Silt content was highly correlated with total sand content (r = -0.9) which introduces 

the problem of multicollinearity. Multicollinearity exists whenever an independent variable 

has a high correlation with one or more other independent variables in a regression model 
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(Allen, 1997). Multicollinearity poses a challenge as it can negatively affect the precision 

of estimates of the coefficients and affect statistical significance of an independent variable 

(Allen, 1997). To reduce multicollinearity, % total sand was removed as a predictor while 

% silt content was retained. Silt content (%) was retained because it had a higher correlation 

(-0.68) with Ks than total sand (%) (0.64). 

 

 Figure 5.3. Pearson Heat Map showing the correlation matrix between the predictor 

variables and saturated hydraulic conductivity. Ks, saturated hydraulic conductivity; VCS, 

very coarse sand; CS, coarse sand; MS, medium sand; FS, fine sand; VFS, very fine sand; 

T_sand, total sand; Silt, silt content; Clay, clay content; BD, bulk density. 
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5.5.3 Model performance assessment 

Table 5.3 presents the evaluation metrics for the different predictive models. Model 

hyperparameters obtained after implementing GridSearchCV are shown in APPENDIX C. 

2 (Table C. 1). 

Table 5.3. Evaluation metrics of machine learning models for predicting saturated 

hydraulic conductivity. 

 

 Training dataset Testing dataset 

Model R2 RMSE (cm h-1) MAE 

(cm h-1) 

R2 RMSE  

(cm h-1 ) 

MAE 

(cm h-1) 

Multiple Linear  

Regression 

0.61 

 

0.55 

 

0.39 

 

0.60 

 

0.56 

 

0.39 

 

KNN Regression 0.68 

 

0.50 

 

0.35 

 

0.63 

 

0.54 

 

0.37 

 

Support Vector  

Regression 

0.70 

 

0.49 

 

0.32 

 

0.67 

 

0.49 

 

0.33 

 

Deep Neural  

Network Regression 

0.80 

 

0.39 

 

0.26 

 

0.57 

 

0.50 

 

0.34 

 

Random Forest 0.82 

 

0.37 

 

0.22 

 

0.71 

 

0.47 

 

0.32 

 

Gradient Boosted 

 Regression 

0.86 

 

0.33 

 

0.23 0.71 

 

0.47 

 

0.33 

 

 

5.5.3.1 Multiple linear regression 

The multiple linear regression (MLR) model generally performed satisfactorily in 

terms of evaluation metrics for the training dataset with (R2 = 0.61, MAE = 0.39 cm h-1, 
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and RMSE = 0.55 cm h-1). The MLR did not overfit the training data and was able to 

perform almost as well on the test dataset with (R2 = 0.60, MAE = 0.39 cm h-1, and RMSE 

= 0.56 cm h-1). After training the MLR algorithm on the training dataset, the regression 

equation that was derived is shown in equation (5). Coefficients of the MLR model were 

tested for significance after model development. All coefficients were statistically 

significant (p < 0.001) in predicting Ks in the MLR model (equation (5)). 

Equation 5.5  

𝐾𝑠 = 3.279 + 0.017𝑀𝑆 + 0.006𝐹𝑆 − 0.037𝐶𝑙𝑎𝑦 − 1.791𝐵𝐷 − 0.007𝑆𝑖𝑙𝑡 ( 5. 4 ) 

Where 𝐾𝑠 is saturated hydraulic conductivity, 𝑀𝑆 is % medium sand, 𝐹𝑆 is % fine 

sand, 𝐶𝑙𝑎𝑦 is % clay content, 𝐵𝐷 is bulk density in kg/m3, and 𝑆𝑖𝑙𝑡 is % silt content. 

 

The correlation coefficients (r) of those input variables with Ks were low to 

moderate except for % silt content which had an r = 0.68 with Ks. These low correlations 

for the input variables could indicate a non-linear relationship between the input variables 

and Ks for this database. Garguilo & Morgan (2015) developed multiple regression models 

using the Florida Soil Characterization Database (same for this study) to simulate missing 

data soil parameters and found that models with very good performance could be obtained 

to predict silt, clay, organic carbon, CEC, bulk density, and sand content while Ks was not 

satisfactorily predicted. Garguilo & Morgan’s (2015) findings support our results that 

multiple linear regression is not appropriate for predicting Ks using the Florida Soil 

Characterization Database. Kotlar et al. (2019) reported an R2 = 0.26 on their test dataset 

when a stepwise linear model was used to predict Ks. Arshad et al. (2013) reported an R2 

value of 0.69 on their training data and 0.5 on their testing dataset when MLR model was 
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developed to predict Ks. The MLR model developed in this study performed relatively 

better and was more generalizable compared to the studies mentioned above based on the 

R2 values on the test dataset.  

5.5.3.2 KNN regression 

A slightly better performing algorithm than the MLR model was the KNN 

regression model. Using the KNN, the training dataset resulted in: R2 = 0.68, MAE = 0.35 

cm h-1, and RMSE = 0.50 cm h-1and the results for the test dataset were R2 = 0.63, MAE = 

0.37 cm h-1, and RMSE = 0.54 cm h-1. The hyperparameters tuned for the KNN was the K 

neighbors (in this case the number of soil samples) to use for estimating the output Ks for 

a particular soil sample. The optimal k obtained was 10. An initial guess for k was from 1 

– 50, with increments of 1. It was observed that as k increased, the scores were constant 

until k reached 11 and the scores started decreasing. The range for k was then restricted to 

a range of 1-11 which resulted in 10 being the optimal number of k that gave the best score 

for predicting the test results. Among the three distance functions (Euclidean, Manhattan 

or Minkowski), the Manhattan distance function gave the best scores hence was chosen as 

the optimal distance function.  

5.5.3.3 Support vector regression 

The SVR algorithm performed better on the training dataset with R2 = 0.70, MAE 

= 0.32 cm h-1, RMSE = 0.49 cm h-1 compared to the MLR and KNN algorithms. The results 

on the test dataset using SVR were: R2 = 0.67, MAE = 0.33 cm h-1, RMSE = 0.49 cm h-1. 

The hyperparameters that were tuned in this study were C, ε, γ and the kernel function. 

(Elbisy, 2015). As the hyperparameter C increased, the algorithm tended to overfit the data 

as it tried to limit the error in prediction of the output which led to a high variance. On the 
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other hand, as γ increased, bias increased and the accuracy of the model on the training 

dataset decreased drastically. The training stage of the SVR algorithm aimed to find 

optimal estimates of the hyperparameters in order to get the best generalization of the 

model (Twarakavi et al., 2009) using the GridSearchCV module. Using GridSearchCV to 

select the optimum hyperparameters resulted in C = 40, ε = 0.1, γ=0.001. Overall, the radial 

basis function (RBF) kernel model performed better than the other kernels tested (linear 

and sigmoid). 

5.5.3.4 Deep neural network regression 

The DNNR algorithm performed well on the training dataset with R2 = 0.80, MAE 

= 0.26 cm h-1, and RMSE = 0.39 cm h-1 but tended to overfit the data thus resulting in a 

lower performance on the test dataset with R2 = 0.57, MAE = 0.34 cm h-1, RMSE = 0.50 

cm h-1. A possible reason for this low generalization performance on the test set is the lack 

of a bigger test set and the small nature of the DNNR architecture. It is useful to observe 

how the accuracy of the DNNR model increases on the training and validation set as the 

number of epochs increase. Comparison of the training and test error before and after early 

stopping is illustrated in Figure. C.3 (a) and (b) respectively (APPENDIX C. 3). There was 

only a little improvement, or even an increase in the test error after about 10 epochs, 

therefore there was no need to train further. As the size of the dataset used to train and test 

a DNNR increases, the performance of the algorithm also increases (Ng, 2019). For this 

study, obtaining more training and test data may improve the performance of the DNNR 

model. Alternative machine learning algorithms, e.g., tree-based algorithms, SVR or KNN 

may be more suitable when training small datasets as deep neural networks perform better 

particularly when training large datasets (Sarker, 2021; Sarker et al., 2019).  
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5.5.3.5 Tree-based algorithms 

Tree-based algorithms like random forest regression (RF) and gradient boosted 

regression (GB) are two of the best performing algorithms for supervised learning as they 

average many individual tree-based models by searching for a predictor that ensures the 

best node split that results in the lowest error (Araya & Ghezzehei, 2019) . The random 

forest regression and the gradient boosted regression algorithms produced higher model 

performance compared to the other algorithms used to predict Ks in this study, especially 

the multiple linear regression model. Linear regression assumes a linear relationship 

between input and output variables, however in this study, it was shown that there was low 

correlation between the input variables and the output variables, thus the absence of a linear 

relationship. Thus, alternative algorithms (tree-based algorithms) performed better 

especially on the test dataset since a linear relationship does not need to exist between the 

input and output variables to develop high performing models. The evaluation metrics for 

the test dataset for the RF regression models were: R2 = 0.71, MAE = 0.32 cm h-1, and 

RMSE = 0.47 cm h-1 (Figure 5.4).  

The GB model had similar performance as the RF model with (R2 = 0.71, MAE = 

0.33 cm h-1, and RMSE = 0.47 cm h-1) on the test dataset. However, the GB model attained 

a slightly higher R2 value of 0.85 compared to R2 = 0.83 on the training dataset for the RF 

model. Araya & Ghezzehei (2019) compared the performance of four different machine 

learning algorithms for predicting Ks using the USKSAT database. Their results suggest 

that the GB algorithm outperformed all other algorithms with RF regression algorithm 

following closely behind. They reported a prediction accuracy for root-mean-squared log-

transform error RMSLE = 0.295 cm/day using a test dataset of 4461 soil samples. While 
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the performance of the model obtained in Araya & Ghezzehei (2019) is higher than this 

model, the results in this study agreed with Araya & Ghezzehei (2019) that GB and RF 

were the two superior performing models for predicting Ks. Jorda et al. (2015) used an 

assembled database of 487 data entries from 85 different peer-reviewed articles to develop 

Boosted regression tree (BRT) models to predict Ks and near saturated hydraulic 

conductivity. The highest R2 = 0.15 was achieved when they used a four- parameter model. 

The R2 obtained in this study for predicting Ks using the GB regression model was thus 

78% higher than the reported R2 in Jorda et al. (2015). 

Although GB has many hyperparameters that can be tuned to increase the accuracy 

of a model, for this study, we focused our attention on optimizing the number of estimators 

(n_estimators), the learning rate, maximum depth (max_depth), the loss function, alpha, 

and min_sample_split. Like the RF algorithm, the number of estimators represents the 

number of trees in the forest. As the number of estimators increase, so does the learning 

ability of the algorithm on the training dataset. However, increasing n_estimators comes 

with a computational cost and thus requires more time to train the model. Secondly, the 

learning rate of the algorithm controls the size of the steps the algorithm takes to minimize 

the loss function. If a higher learning rate is chosen, the algorithm may miss the target of 

the minimum and keep oscillating. However, a smaller learning rate means the algorithm 

may take many iterations to reach the minimum which can prolong training time. Thus, the 

essence of implementing the GridSearchCV module was to find a combination of the 

parameters (n_estimators, learning rate, maximum depth, alpha and minimum sample split) 

that achieves a minimum predictive error (Elith et al., 2008). The advantage of the GB 

model is that decision trees are iteratively fitted to the training data to increase emphasis 
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on observations that were poorly predicted by the existing collection of trees (Elith et al., 

2008). 
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Figure 5.4. Scatter plots of observed and predicted saturated hydraulic conductivities (n = 

937) on the test datasets. Each of the algorithms randomly samples 20% of the original 

8216 observations to use as testing datasets for the scatter plots.  Linear regression (a), 

SVR (b), KNN regression (c), DNN regression (d), RF regression (e), and GB regression 

(f). The dotted diagonal line represents the 1:1 mapping of the observed vs predicted 

values. 

 

5.5.4 Performance improvement 

While log10 Ks was well predicted at low Ks range for all models, at the high Ks 

range i.e., log10 Ks between 1.0-2.0, Ks was underpredicted which is reflected in the mean 

bias error of -0.022 for all the models in this study. The mean bias error refers to the average 

of the errors of a sample space and captures the average bias in the prediction (Pal, 2016; 

Ruiz & Bandera, 2017). Thus, a negative value indicates that the model underpredicted Ks 

whereas a positive value indicates an overprediction. This could be due to a few reasons. 

The first is an inherent weakness of the Florida Soil Characterization Database (FSCD). 

The FSCD contains numerous missing data and efforts have been made to fill in missing 

data using statistical estimation methods (Gargiulo & Morgan, 2015). The performance of 

machine learning models often depends on obtaining a complete and accurate database of 

measured soil properties for agricultural and environmental research studies especially at 

larger regional scales (Gargiulo & Morgan, 2015). 

  Secondly, errors could have been introduced during measurement of Ks in the field 

and laboratory due to the use of different measuring methods which can lead to 

heterogeneity in the entire database. This situation could lead to the loss of many data 
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elements critical for modeling Ks. Zhang et al. (2019) recommend that to improve data 

quality in large databases for the development of PTFs, methods and protocols for 

measuring Ks be consistent across all studies. Lastly, it is possible certain input parameters 

in the FSCD could have been more relevant for predicting Ks were not included in the 9 

variables chosen for this study e.g., pH, organic carbon, and CEC. 

5.5.5 Predictor importance 

The purpose of intentionally implementing feature selection prior to ML model 

development is to select a minimal-size subset of predictors that leads to a parsimonious 

model which is easily interpretable and less computationally expensive for predicting 

output variables (Borboudakis & Tsamardinos, 2019; Tsamardinos & Aliferis, 2003) 

Following model development, model interpretation is also introduced in interpreting the 

influence of the predictors in the model using a novel method, Permutation Feature 

Importance (Breiman, 2001). 

In machine learning, it is often useful to interpret a developed model in terms of the 

relative importance of the various predictors in a model. Typically, when parametric 

models e.g., linear models are developed to predict an output variable, the practical 

interpretation of the model is easily done. However, with non-parametric and non-linear 

models such as random forests, boosted regression and neural networks with superior 

predictive abilities have led to development of predictor importance methods which are 

able to provide insights into how influential predictors are to the overall models developed 

(Molnar et al., 2020).  

One such method is the permutation feature importance technique (Breiman, 2001). 

Elith et al. (2008) notes that the numerous trees that are created in gradient boosting pose 
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a challenge for interpretability, however there are ways of interpreting these models similar 

to regression models. Variable importance in gradient boosting aims to quantify the 

improvement in squared error due to each predictor which is then summed within each tree 

(Kuhn & Johnson, 2013). The “permutation feature importance” function in scikit-learn 

was used to calculate the feature importance of the estimators in this study. Permutation 

importance refers to the decrease in a model’s score when a single predictor is randomly 

shuffled (Breiman, 2001). Thus, a predictor will be considered important if shuffling its 

value leads to an increase in the error of the prediction. It is worth noting that permutation 

importance on the test dataset is of more importance or interpretability than that on the 

training dataset. When fitting a model to a training dataset, the algorithm learns minute 

details of the data thus typically resulting in a much lower error rate than on the test dataset. 

Since the permutation importance technique depends on the estimation of the error to 

choose which predictor is important, it may be useful to place more emphasis on the 

permutation importance obtained on the test set i.e., independent data not used to train the 

model since the test set is a proxy for real world data and reflect the actual variables which 

are important for predicting Ks.  

The GB and the RF models both indicate clay content to be the most important 

predictor and bulk density to be the second most important variable of the five selected for 

predicting Ks (APPENDIX C. 4, Figure C. 4). These results are corroborated by the MLR 

model developed in this study which also found clay content and bulk density to be the 

most dominant variables in predicting Ks. Our results are also in agreement with (Araya & 

Ghezzehei, 2019) who found clay followed by bulk density to be the most important 

predictors of Ks. A study by (Zhang et al., 2019) also found that about 60% of variance in 
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Ks could be explained by soil texture and macroporosity. They concluded that clay content 

and macroporosity for pores with diameters > 75 µm better represented each component in 

their PCA analysis than all the other soil properties investigated in their study. 

5.6 Conclusion 

In this study, we demonstrate the application of popular machine learning algorithms 

to develop models that can be used to predict Ks using a readily available database (Florida 

Soil Characterization Database) of 4686 soil samples distributed across 58 counties in 

Florida. Our central that feature selection (principal component analysis and correlation 

analysis) could be applied to input soil data to develop machine learning models to predict 

saturated hydraulic conductivity was confirmed. This hypothesis was made based on there 

being a relationship between easily measured soil properties and saturated hydraulic 

conductivity. We tested PTF models developed using MLR, KNN, SVR, DNNR, RF 

regression, and GBR with a total of five predictors (total clay, total silt, bulk density, 

medium sand, and fine sand) chosen from an original set of nine predictors. Based on our 

analysis, GBR outperformed all the algorithms on the training dataset with R2 = 0.86, MAE 

= 0.23 cm h-1, and RMSE = 0.33 cm h-1 but was equal in performance to the RF regression 

with (R2 = 0.71, MAE = 0.32 cm h-1, and RMSE =0.37 cm h-1) on the test dataset.  

Since the GB and the RF models were determined to be the best performing models, 

permutation feature importance technique was also applied to determine which predictors 

were most important for predicting Ks when using a test dataset. The GB and RF models 

both showed a similar ranking on the most important predictor which is the clay content 

followed by bulk density. The substantial impact and relevance of clay content may be 
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because the FSCD mainly consisted of sandy soils. Thus, priority should be given to 

obtaining quality data on clay content as it is the most influential predictor for Ks in the 

FSCD. Due to the ensemble nature of boosted regression tree algorithms, they can reduce 

overfitting and underfitting when used for prediction thus are known to be superior 

predictive machine learning tools.  

It should be noted that this study was primarily concerned with comparing the 

capabilities of different machine learning algorithms to predict Ks and so there was limited 

comparison of the performance of the models developed with the numerous PTFs already 

existing. Regardless, this study offers an alternative process to developing PTFs using 

parametric models and notwithstanding its limitations, the prediction of Ks is approaching 

the accuracy where the GB PTF would be useable for design and deployment.  
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CHAPTER 6. EVALUATING THE FEASIBILITY OF USING A LIGNIN/ALGINATE 

HYDROGEL AS A CARRIER FOR ENCAPSULATING AND RELEASING 

RHIZOBIUM SPP. 

6.1 Abstract 

Immobilizations in polymers have proven successful in protecting the nitrogen-fixing 

bacteria Rhizobium for over four decades. Cell immobilization provides a physical 

protection for viable Rhizobial cells in a confined carrier material allowing for the cells’ 

slow release into the environment. One material that has been underutilized as a Rhizobial 

cell carrier is lignin. The present study was conducted to evaluate the feasibility of using 

lignin-alginate beads with a starch additive to bioencapsulate and release Rhizobial cells 

slowly. First, a compatibility study was conducted. A lignin-alginate hydrogel was 

synthesized and cultured at different concentrations (0%, 3%, and 5% hydrogel) with 

inoculum of Rhizobium meliloti and Rhizobium leguminosarum and growth quantified. The 

Rhizobium cells were then bioencapsulated into the lignin-alginate beads (ratio of 2 g lignin 

to 1 g alginate) and their efficiency [(log of number of cells in wet beads/log of number of 

cells in solution matrix) x 100%] and release kinetics determined. Finally, light microscopy 

and scanning electron microscopy were used to investigate the surface morphology of the 

beads. Increasing the concentration of lignin-alginate hydrogel does not affect the survival 

of Rhizobial cells with time (p = 0.71). After 7 days of incubation, Rhizobial populations 

in the control treatment was 7.53 ± 0.28 log CFU/mL, 7.90 ± 0.67 log CFU/mL in the 3% 

treatment, and 8.03 ± 0.12 log CFU/mL in the 5% treatment. Our results show that all 

variations (alginate, lignin-alginate, and lignin-alginate with starch additive) of the wet 

bioencapsulated beads achieved a similar efficiency of approximately 97%. However, the 

presence of starch in the lignin-alginate beads increased the survival of Rhizobium cells 
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after oven-drying from 61 to 84% compared to only alginate encapsulation. These results 

imply that lignin, a readily available plant biopolymer is a potential component for the 

manufacture of carrier materials for encapsulating Rhizobium cells. 

6.2 Introduction 

The introduction of beneficial microbes into the soil environment is not new, as it 

has been done for centuries by farmers when they mixed soil taken from previous 

leguminous crops and applied it to new plots on which non-leguminous crops were grown 

for higher yields (Bashan, 1998). However, the carrier material used to protect/encapsulate 

these beneficial microbes is still an evolving research area. Some concerns are that carrier-

based inoculants typically have are lower shelf-life of the microorganisms, poor survival 

of the microorganisms under unfavorable weather conditions, as well as conflicting field 

results on the performance of hydrogel-based bioinoculants (Suman et al., 2016). Cell 

immobilization in biopolymers has been shown to increase survival during production and 

storage of Azospirillum brasilense Cd (ATCC 29710) and Pseudomonas sp. strain 84313, 

important nitrogen-fixing bacteria (Bashan, 1986). Cell immobilization in this context 

refers to the physical confinement of viable microbial cells within a specific area of a 

carrier material in order to limit free movement while retaining their catalytic activities 

(Martins et al., 2013; Żur et al., 2016).  

The use of peat has been the standard commercial carrier material for Rhizobial 

immobilization and inoculation  (Bashan, 1998) due to its favorable characteristics like 

high water holding capacity and high surface area enabling the survival and growth of 

Rhizobia (Tittabutr et al., 2007). However, Tittabutr et al. (2007) argue that peat-based 
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inoculants requires considerable processing such as harvesting, drying, and milling which 

makes production in commercial quantities expensive. To improve on the use of peat-based 

inoculants, others have investigated the use of different polymeric materials as carriers for 

Rhizobia (Deaker et al., 2007; Denardin & Freire, 2000; Dommergues et al., 1979; Jung et 

al., 1982; Rivera et al., 2014; Suman et al., 2016; Tittabutr et al., 2007). For example, 

Rivera et al. (2014) assessed the effectiveness of eight different polymers on the cellular 

viability of Rhizobium sp. G58 during a 2-month period. Among eight different polymers 

investigated, sodium alginate (0.5-1%) and hydroxypropyl methyl cellulose- HPMC 

(0.125-0.5%) were most effective in improving the viability of Rhizobium sp. G58. Suman 

et al. (2016) found that beneficial microbes (Azotobacter chroococcum, Pseudomonas 

fluorescence and Trichoderma viride) encapsulated with a cellulose-based hydrogel 

enhanced the growth of wheat seeds.  Other existing carriers for Rhizobia  include; mineral 

soil (silt loam) (Chao & Alexander, 1984), alginate (Bashan, 1986), saw dust (Arora et al., 

2008), and polyacrylamide (Dommergues et al., 1979; Jung et al., 1982).  

Encapsulating microorganisms in synthetic and/or natural-based polymeric 

inoculants is currently an experimental field of research for introducing microorganisms 

into the soil environment (Bashan et al., 2014) unlike the organic-based inoculants such as 

peat which have been used on a large-scale. According to John et al. (2011), encapsulation 

involves the creation of a protective covering around an active ingredient or cells (e.g., 

microbe) for better functionality of the cells in the soil. Typically, the encapsulation process 

involves the immobilization of live microorganisms in a polymeric matrix to keep the cells 

viable (Bashan et al., 2014). Ideally, the polymeric matrix will then protect and keep the 

immobilized microbial cells viable until their subsequent release to colonize plant roots 
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when the polymeric matrices are biodegraded by native soil microorganisms (Bashan et 

al., 2014).  

While several petroleum-based polymers e.g., from acrylic monomers have been 

tested for encapsulating microbes, petroleum-based polymers are often less biodegradable 

in the environment and are toxic to cells which may adversely affect the viability of the 

cells (Rathore et al., 2013; Rosevear, 1984). Numerous studies have also utilized different 

biopolymers (e.g. starch, chitosan, pectin, gelatin, and alginate) for encapsulating 

microorganisms (Saberi-Riseh et al., 2021) for agricultural applications, but no studies 

have attempted to encapsulate microorganisms (Rhizobium) using lignin-alginate hydrogel 

beads. Lignin is a readily abundant plant polymer which forms one of the three main 

components of lignocellulosic plants (Meng et al., 2019b).  

Lignin is classified into native and technical lignin (Chio et al., 2019). Native lignin 

is lignin that is isolated from lignocellulosic material without any modification (e.g. the 

solvent used for isolation does not react or alter its original structure) (Brauns, 1939). On 

the other hand, technical lignin refers to lignin that has been modified during the extraction 

process of lignin from biomass or industrial by-products (Chio et al., 2019). Thus, there 

are different forms and structures of technical lignins depending on the source and method 

of  extraction of the lignin (Ekielski & Mishra, 2020). Alkali lignin is one form of a 

technical lignin which has been used to synthesize lignin-based hydrogels (Jiang et al., 

2018) but have been underutilized as biopolymers for encapsulating Rhizobium sp. 

 The most common application of technical lignin in the encapsulation industry has 

been for the controlled release of fertilizers (Vejan et al., 2019). Other studies have also 

investigated the use of nano and micro-scaled lignin materials but mainly to study their 
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anti-bacterial and cytotoxicity characteristics on living cells (Sipponen et al., 2019). It 

would seem, therefore, that further investigations are needed to ascertain the suitability of 

alkali-lignin as a potential biopolymer for encapsulation of microorganisms.  

  Thus, the objectives of this study were to (a) investigate the biocompatibility of a 

alkali lignin-alginate hydrogel with a mixture of Rhizobium meliloti and Rhizobium 

leguminosarum (b) investigate the surface morphology of alginate beads, lignin-alginate 

beads, and lignin-alginate starch beads to confirm the presence of cells and (c) to compare 

the encapsulation efficiency and release kinetics of the Rhizobial species when 

encapsulated in only alginate beads, lignin-alginate beads, and lignin-alginate starch beads. 

The central hypothesis of this objective was that the addition of the different concentrations 

of the lignin-based hydrogel in a growth medium containing Rhizobium spp. will provide 

a better condition for the growth of the Rhizobium meliloti and Rhizobium leguminosarum 

cells. It was also hypothesized that the encapsulation efficiency and release kinetics of the 

bioencapsulated cells will differ based on the different combinations of lignin, alginate, 

and starch. 

6.3 Materials and Methods 

Rhizobium inoculum containing Rhizobium meliloti and Rhizobium leguminosarum 

biovar trifolli was obtained from Carolina Biological Supply Company (Charlotte, NC). 

Analytical grade alkali lignin (low sulfonate content) with molecular weight ~ 10,000, pH 

10.5, and 3 wt. % in water was obtained from Sigma Aldrich (St. Louis, MO). Alginic acid 

sodium salt from brown algae (sodium alginate with medium viscosity) was obtained from 

Sigma Aldrich (St. Louis, MO). Low viscosity sodium alginate and corn starch were 
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obtained from Fisher Scientific (Waltham, MA, USA). Sodium citrate, sodium chloride, 

and calcium chloride were obtained from VWR International (Radnor, PA). Premixed yeast 

mannitol broth (YMB) and yeast mannitol agar (YMA) were obtained from Sigma Aldrich. 

The YMA consisted of yeast extract (1g/l), Mannitol (10 g/l), Dipotassium Phosphate (0.5 

g/l), Magnesium Sulfate (0.2 g/l), Sodium Chloride (0.1 g/l), Calcium Carbonate (1 g/l) 

and Agar (15 g/l) with a pH of 6.8 +/- 0.2. The YMB had the same ingredients as the YMA 

but without the agar component. 

6.3.1 Synthesis of lignin-alginate hydrogel 

Optimum amounts of the reagents used for synthesizing the lignin-alginate 

hydrogel were 2 g of alkali lignin, 5 ml of DI water, 2% (w/v) of low-density sodium 

alginate, and 150 ml of CaCl2. Briefly, two grams of alkali lignin were dissolved in 5 ml 

of deionized water. The mixture was stirred for 1 hour on a magnetic stirrer (Heidolph™ 

MR Hei-Tec Magnetic Stirrer with Heating) at 450 rpm and 25°C to allow for complete 

dissolution of the alkali lignin. Sodium alginate powder (1 g) was then dissolved in 50 ml 

deionized water to a concentration of 2% (w/v) and stirred continuously for 30 minutes for 

complete dissolution. The sodium alginate solution was added to the alkali lignin solution 

and stirred for 1 hour. The lignin-alginate mixture was then added to 0.1M calcium chloride 

solution (150 ml) and stirred. Upon contacting the calcium chloride, crosslinking between 

the Ca ions and the polymers occurred and the hydrogel was formed. The mixture was then 

cast into 35 mm petri dishes before freeze drying at -48°C for 48 hours to obtain the lignin-

alginate hydrogel. 
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6.3.2 Rhizobium compatibility at different hydrogel concentrations 

To determine the compatibility of the Rhizobium cells in the different 

concentrations of the lignin-alginate hydrogel, 10 g of the Rhizobium inoculum was 

suspended in 100 ml of deionized water to obtain a stock solution. Different concentrations 

of hydrogel (0%, 3%, and 5%) were prepared by mixing 0, 0.3, and 0.5 g of the lignin-

alginate hydrogel in 10 ml of deionized water and shaken on a rotary shaker at 150 rpm for 

12 hours to dissolve. The dissolved hydrogel solutions were transferred into test tubes and 

sterilized in an autoclave at 121°C for 15 minutes. After sterilization, each hydrogel sample 

was cooled to room temperature, and transferred into the 250 ml incubation flasks 

containing 10 ml of yeast mannitol broth growth media. One milliliter of the Rhizobium 

inoculum was added into each flask containing the hydrogel and growth media. The flasks 

were then incubated at 28°C with shaking at 150 rpm to enable aeration and to prevent the 

cells from settling down at the bottom of the flask. To quantify the effect of the different 

hydrogel concentrations on the growth of the Rhizobium cells, one ml samples from the 

different treatment flasks were taken on days 0, 3, and 7 after incubation and were 

transferred with a pipette into 10 ml test tubes containing 9 ml of a diluent (0.85% sodium 

chloride solution) to obtain a 1/10 dilution. The function of the salt solution was to adjust 

the tonicity of the suspending medium to that of the Rhizobial cells to avoid osmotic shock 

(Zuberer, 1994). Subsequent serial dilutions were done to obtain a final dilution of 1/107. 

The surface spread method (Buck & Cleverdon, 1960) was used to enumerate the Rhizobia. 

Briefly, 0.1ml of four dilutions (1/104 , 1/105 , 1/106 , and 1/107) were pipetted into YMA 

plates. With a sterile bent glass rod ("hockey" stick), the inoculum was evenly distributed 

over the surface of the plates. The inoculum was allowed to be absorbed into the YMA 
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plates which were then inverted and incubated at 28°C. After 48 hours of incubation, the 

Rhizobia colonies were counted using the standard plate count method and used to 

determine the number colony forming units (CFUs) in the treatments, with the assumption 

that each CFU was started by one cell. There were three replications for all the hydrogel 

concentrations. Aseptic techniques were implemented, thus all labware used for the 

experiment were sterilized prior to use. In addition, experiments were conducted under a 

lamina flow biosafety cabinet to prevent contamination. The population of Rhizobia was 

then determined for each treatment using the standard plate count method.  

6.3.3 Bioencapsulation of Rhizobia 

6.3.3.1 Preparation of Rhizobial cells 

The bioencapsulation process was achieved using a modification of the ionic 

gelation technique (Bashan, 1986; Schoebitz et al., 2012; Young et al., 2006). All labware 

and solutions used in the bioencapsulation process were sterilized in an autoclave at 121°C 

for 15 minutes. Rhizobium cells were prepared by pipetting 1 ml of the Rhizobium inoculum 

into 100 ml of a sterilized YMB in a volumetric flask and allowed to grow for 48 hours at 

28°C. The Rhizobium broth was then streaked onto YMA and incubated at 28°C for 48 

hours. Cultures were prepared by transferring a single colony of the Rhizobium cells into a 

100 ml aliquot of YMB in 250 ml Erlenmeyer flasks and incubated at 28°C on a shaker 

rotating at 150 rpm for 48 hours to obtain a fresh inoculum broth. Next, 40 ml of the 

bacterial culture was then pipetted and separated from the media by centrifugation (3150 

× g, for 5 mins at 4°C) in a Marathon 2100 Fisher Scientific centrifuge. After 
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centrifugation, the cell pellets were resuspended in (0.85% NaCl, w/v) and mildly agitated 

with a vortex mixer.  

6.3.3.2 Preparation of alginate, lignin-alginate, and lignin-

alginate starch beads 

Alkali lignin (2 g) was dissolved in 5 ml of deionized water. The mixture was stirred 

for 1 hour on a magnetic stirrer (Heidolph™ MR Hei-Tec Magnetic Stirrer with Heating) 

at 300 rpm and 25°C to allow for complete dissolution of the alkali lignin. One gram 

sodium alginate (medium viscosity) powder was dissolved in 50 ml deionized water to 

obtain a concentration of 2% (w/v). The mixture was manually stirred continuously with a 

spatula for 1 hour till dissolution. Air bubbles were formed during stirring; thus, the sodium 

alginate solution was placed in a Bransonic ® Ultrasonic bath to degas the solution. The 

mixture was subsequently added to the alkali-lignin solution and stirred for 1 hour for 

complete dissolution. Two grams of corn starch were added to the mixture before stirring 

for another hour. At this stage, three different solutions/treatments were prepared 

separately: 2% alginate solution, 2% alginate solution added to the alkali lignin solution, 

and 2% alginate solution added to the alkali lignin solution with starch 2% starch added. 

The separated Rhizobium cells were resuspended in the three solutions and stirred for 30 

minutes. 

The three solutions were each added dropwise with syringes (BD 3 ml Syringe 

Luer-Lok TM Tip) into three beakers of 150 ml of 0.1M CaCl2 solution and gently stirred at 

150 rpm at room temperature on a magnetic stirrer. After adding the mixtures dropwise 

into the 0.1M CaCl2 solution, beads started forming upon contact. The beads were 

maintained in the solution for another 1 hour for complete crosslinking before the solutions 
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were filtered through a filter paper to obtain the respective beads. The beads were 

immediately washed with sterilized DI water twice and incubated in YMB for another 48 

hours on a rotary shaker at 30°C to allow the Rhizobium to multiply inside the beads. After 

incubation, the beads were washed again with sterilized DI water three times. The beads 

were then collected, placed on a filter paper in a petri dish and dried in an oven at 30°C for 

24 hours, after which they were stored in hermitically sealed bottles at 4°C in 0.1M citrate 

buffer.  

6.3.4 Efficiency of Rhizobium encapsulation 

To determine the encapsulation efficiency, the encapsulated beads were dissolved 

following methods used in (Schoebitz et al., 2012). Briefly, 10 beads were immersed in 10 

ml of sterilized sodium citrate solution (pH 8.5; 60 g l-1) in a 50 ml Erlenmeyer flask for 

30 mins at 20°C on a rotary shaker till complete dissolution. The released Rhizobium cells 

were counted by plate count method on a YMA. The Rhizobium cells were counted at the 

initial culture stage i.e., after growing the cells in YMB, after mixing with the three 

solutions, after the formation of the beads, and after drying. The efficiency of the 

Rhizobium cells was calculated following a method used in (Lotfipour et al., 2012). 

Equation 6.1  

 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝐿𝑜𝑔10𝑁𝑏𝑒𝑎𝑑𝑠

𝐿𝑜𝑔10𝑁𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛
× 100 ( 6. 1 )  

Where 𝑁𝑏𝑒𝑎𝑑𝑠   is the total viable counts recovered from the encapsulated beads and 

𝑁𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 refers to the total viable cell count in the three solutions (cells added to the 

biopolymer mixture). 
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6.3.5 Release kinetics of Rhizobium 

Release kinetics of Rhizobia cells was determined according to a method by 

(Bashan, 1986). Twenty beads containing the immobilized Rhizobia cells were immersed 

into 75 ml of sterile saline solution (0.85% w/v NaCl) and shaken at 30 °C for 24 hours. 

Three samples of the 0.5 ml of the saline solution were plated on YMA media and the 

number of released Rhizobia cells determined using the plate count method. The beads 

were then rinsed twice with deionized water and immersed in fresh saline solution again. 

Counting of released Rhizobia cells was done after 24 hours. 

 

6.3.6 Microscopic observation and scanning electron microscopy of encapsulated beads 

Dry alginate beads, lignin-alginate beads, and lignin-alginate starch beads were 

investigated under a VWR Compound Microscope (76122-380, VWR International, LLC., 

Compound Microscope) equipped with a camera (Motic Moticam 1SP 1.3PM) and 

(software Motic Images Plus 3.0) at 4× magnification. For scanning electron microscopy, 

the three bead samples were first rinsed by immersion in ultrapure de-ionized (UP DI) 

water for 15 minutes. They were then fixed by immersion in 3% glutaraldehyde in 

Sorenson phosphate buffer (pH 7.2) for 24 hours. After rinsing for 5 minutes in UP DI 

water, the fixed samples were dehydrated in ethanol series: 50%, 75%, 95% (ethanol 

volume in UP DI water) for 15 minutes each, then immersed in 100% ethanol (200 proof) 

for 1 hour. The samples were then dried using an automated critical point dryer (EM CPD 

300, Leica, Wetzlar, Germany) and sputter coated with 4 nm of platinum (EM ACE 600, 

Leica, Wetzlar, Germany) to provide surface electrical conductivity for electron 

microscopy. High-resolution imaging was conducted on a scanning electron microscope 



 

190 

 

(Quanta 250 FEG-SEM, FEI/Thermo Fisher Scientific, Hillsboro, OR USA) at 5 kV 

accelerating voltage for surface sensitivity and low beam current for mitigation of charging 

effects. 

6.4 Statistical Analysis 

Two types of statistical analyses were conducted. The first was to compare the 

Rhizobial populations between the three treatments on days 0, 3, and 5 using a one-way 

ANOVA and Tukey’s pairwise test. Secondly, since multiple measures of the Rhizobium 

population were taken from the same treatments over a 1-week period, a one-way repeated 

measures ANOVA was used to analyze the difference between the Rhizobium population 

at the different time points (0, 3, and 7 days) within each treatment. Secondly, statistical 

analysis was also done to determine if there was a significant difference between the 

Rhizobium cell counts at various stages of the bioencapsulation. There were three 

treatments in this case: alginate beads, lignin-alginate beads, and lignin-alginate starch 

beads. There were three replicated trials for each experiment and the results are presented 

as averages with standard error. All statistical tests and graphing were done in (SigmaPlot 

version 14.0, Systat Software, Inc., San Jose, CA, USA, www.systatsoftware.com). An 

alpha of 0.05 was used for all statistical comparisons. 

6.5 Results and Discussion 

6.5.1 Lignin-alginate hydrogel synthesis 

The formation of the hydrogel suggests that the alkali lignin did not impede the 

crosslinking reaction between the sodium alginate and the CaCl2. However, we speculate 

that the phenolic O-H groups of alkali lignin may form hydrogel bonding with H+ of the 

http://www.systatsoftware.com/
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sodium alginate to form water which changes the pH of the solution thus affecting the 

crosslinking reaction. The production of additional water explains why when larger 

amounts of the alkali lignin were used, no crosslinking occurred. The main mechanism for 

the formation of the hydrogel is the crosslinking between calcium ions (Ca2+) and the 

carboxyl groups in the alginate molecules which occurs instantaneously at the interface of 

the lignin-alginate matrix and the CaCl2 solution (Hu et al., 2020). As stirring continued, 

the reaction continued until the Ca2+ cations diffused into the lignin-alginate matrix to react 

with all the alginate available.  

6.5.2 Rhizobium compatibility at different lignin-alginate hydrogel concentrations 

Figure 6.1 depicts the log of the Rhizobial populations in the three treatments of 

lignin-alginate hydrogel on days 0, 3, and 7. On day 0, the Rhizobial population was 6.66 

± 0.13 log CFU/mL in the 0% treatment, 6.49 ± 0.18 log CFU/mL in the 3% treatment, and 

6.60 ± 0.20 log CFU/mL in the 5% treatment. A one-way ANOVA test conducted found 

no difference in populations between the three treatments on day 0 (p = 0.809). On day 3, 

the Rhizobial population was 8.83 ± 0.07 log CFU/mL in the 0% treatment, 9.06 ± 0.12 log 

CFU/mL in the 3% treatment, and 8.81 ± 0.06 log CFU/mL in the 5% treatment. There was 

no significant difference in populations between the three treatments on day 3 (p = 0.153). 

On day 7, the Rhizobial population was 7.53 ± 0.28 log CFU/mL in the 0% treatment, 7.90 

± 0.67 log CFU/mL in the 3% treatment, and 8.03 ± 0.12 log CFU/mL in the 5% treatment. 

There was no significant difference (p = 0.711) between the Rhizobial populations in the 

three treatments.  
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Figure 6.1. Survival of Rhizobium in 0, 3, and 5% hydrogel concentration. Error bars 

represent the standard error of the mean (n=3) 

Overall, the results suggest that the growth and survival of the Rhizobial cells were 

not affected by increasing the concentration of the lignin-alginate hydrogel in the culture 

broth. While our results do not show that the presence of hydrogel enhanced the growth of 

the Rhizobial cells, we can however infer that lignin-alginate hydrogel does not adversely 

affect growth of Rhizobium. A similar study by Suman et al. (2016) incubated Pusa 

hydrogel at concentrations of 0, 0.5, 1, 2, and 3% with a microbial consortia (Azotobacter 

chroococcum, Pseudomona fluorescence, and Trichoderma viride) and observed their 

compatibility. They concluded that the 2% concentration of hydrogel increased the 

population and provided better conditions for growth of the microbial species. It is possible 
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in their study the hydrogel used contained sufficient C and N sources which complemented 

the C and N supplied by tryptone yeast extract agar to the microbes. In our study, the C 

and N content of the hydrogel added was not quantified, hence, we were unable to deduce 

if the hydrogel provided any labile C and N to the microbes. 

While the presence of hydrogel did not significantly enhance Rhizobial growth, 

statistical analysis showed that it did not impede growth of Rhizobium. A one-way repeated 

measures ANOVA was used to analyze the effect of the hydrogel concentrations within 

treatments in the 7-day period of incubation. Our results suggest there was a statistically 

significant difference (p = 0.001) in Rhizobial population in the 0% (control) treatment 

between days 0, 3, and 7. Day 3 population was higher than days 0 (p = 0.001) and 7 (p = 

0.005). Day 7 population was also higher than day 0 (p =0.023). Similarly, the Rhizobial 

population for the 3% treatment was significantly different (p = 0.01) for the three days. 

Rhizobial population on day 3 was higher than day 0 (p = 0.012). However, day 3 was 

similar to day 7 (p = 0.164) and day 7 was similar to day 0 (p = 0.094). For the 5% 

treatment, Rhizobial population on day 3 was higher than day 0 (p = 0.002). Rhizobial 

population was higher on day 7 than day 0 (p = 0.004).  

From our results, the growth phases of the Rhizobium cells occurred in the treatment 

cultures shown in Figure 6.1. Upon inoculating the Rhizobial culture into the three 

treatments of hydrogel with YMB, the cells entered the lag phase on day 0 with no apparent 

increase in number. At this stage, the Rhizobial cells were getting accustomed to their new 

environment, synthesizing new proteins needed for the coming log phase. By day 3, the 

cells entered the exponential growth phase whereby growth was increased in all treatments. 

On day 7, the cell numbers decreased in all treatments and went into the stationary and 
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death phase. However, the extent of decrease in cell number was larger in control treatment 

since cells numbers on day 3 and 7 were significantly different. Though C and N were not 

quantified in the treatments pre and post incubation, we speculate that the presence of the 

lignin-alginate hydrogel provided a better condition for the survival of the Rhizobium cells. 

6.5.3 Efficiency of Rhizobium encapsulation 

The efficiency of the bioencapsulation process was quantified at various stages 

during formation of the beads. Cell numbers were counted at the initial culture stage i.e., 

after growing the cells in YMB, after mixing with lignin, sodium alginate and starch, after 

the formation of the beads, and after drying. The survival of Rhizobium at various stages 

of the bioencapsulation process using the different combinations is shown in Figure 6.2.  

For the alginate beads, the initial cell count was 9.64 ± 0.29 log CFU/mL. After mixing the 

cells with the alginate solution, the cell count decreased to 8.29 ± 0.08 log CFU/mL. After 

encapsulation, cell count was 8.1 ± 0.05 log CFU/mL which further dropped to 5.07 ± 0.12 

log CFU/mL after oven drying. A one-way ANOVA test conducted to test the difference 

in cell numbers between the four stages during encapsulation indicated a statistically 

significant difference (p = 0.001). Initial cell number was significantly higher than cell 

numbers in the matrix solution (p = 0.002), wet encapsulated beads (p < 0.001), and dry 

encapsulated beads (p < 0.001). Cell numbers in the solution matrix were not significantly 

different from cell numbers in the wet beads (p = 0.859). Expectedly the wet encapsulated 

beads had higher cell numbers than the dry encapsulated beads (p < 0.001). 
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Figure 6.2. Survival of Rhizobium at various stages of microencapsulation process of the 

lignin-alginate beads (per 10 beads). Error bars represent the standard error of the mean 

(n=3). 

  For the lignin-alginate beads, the initial cell count of Rhizobium before bead 

preparation was 9.36 ± 0.16 log CFU/mL. After mixing Rhizobium cells in the lignin and 

alginate component and stirring for 1 hr, cell numbers reduced to 8.19 ± 0.27 log CFU/mL. 

After encapsulation, cell count was reduced to 7.92 ± 0.12 log CFU/mL which further 

reduced to 5.95 ± 0.42 log CFU/mL after drying. Initial cell number was significantly 

higher than cell numbers in the wet encapsulated beads (p < 0.001) and in the dry beads (p 

< 0.001). There was no difference between cell numbers in the solution matrix and the wet 

encapsulated beads (p = 0.883). Thus, the solution matrix did not adversely affect cell 
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numbers. Expectedly the dry beads had significantly lower cell numbers than the wet 

encapsulated beads (p < 0.004). 

For the lignin-alginate-starch beads, initial cell numbers were 9.73 ± 0.46 log CFU/mL, 

7.67 ± 0.51 log CFU/mL in the matrix solution, 7.48 ± 0.23 log CFU/mL in the wet 

encapsulated beads, and 6.42 ± 0.25 log CFU/mL in the dry encapsulated beads. Initial cell 

numbers were significantly higher than cells numbers in the wet encapsulated beads (p < 

0.016), solution matrix (p < 0.021), and dry beads (p < 0.002). Cell numbers in the solution 

matrix, wet encapsulated beads, and dry beads were not significantly different (p > 0.05).  

From the statistical analysis, encapsulated beads made with only sodium alginate 

protected the Rhizobium cells the least, followed by the lignin-alginate beads. The lignin-

alginate beads with starch additive were most efficient at protecting cell viability. Table 

6.1 shows the encapsulation efficiency of the Rhizobial cells in the three treatments. All 

encapsulation methods achieved a high yield (efficiency) in retaining viability of cells in 

the beads of at least 97% before drying. The difference, however, is seen during the drying 

stage of the beads after encapsulation. Drying the beads significantly reduced the cell 

viability in all treatment albeit less in the lignin-alginate -starch beads. Drying led to a 3-

log reduction in cell numbers in the alginate beads, a 2-log reduction in the lignin-alginate 

beads, and only a 1-log reduction in the cell numbers in the lignin-alginate beads with 

starch additive. As seen in Table 6.1, the presence of starch in the lignin-alginate beads 

increased the survival of Rhizobium cells after drying from 61 to 84% compared to only 

alginate encapsulation. When compared to lignin-alginate beads only, there was an increase 

from 73 to 84% in encapsulation efficiency.  
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Table 6.1. The yield of Rhizobium cells in alginate, lignin-alginate, lignin-alginate-starch 

beads  

Encapsulated bead type Yield (%) 

(Wet beads) 

Yield (%) 

 (Dry beads) 

Alginate 97.8 61.2 

Lignin + Alginate 96.6 72.7 

Lignin +Alginate+ Starch 97.6 83.6 

 

Results in this study agree with results observed by Schoebitz et al. (2012) who 

found a significant improvement in yield of Azospirillum brasilense from 0.63 to 10.4% 

after oven-drying when alginate beads were supplemented with starch. Jankowski et al. 

(1997) developed alginate-starch capsules for encapsulating Lactobacillus acidophilus 

cells. Cell viability in their study was measured by the fermentation activity through 

acidification of the encapsulated Lactobacillus acidophilus cells compared to the 

fermentation activity of the free cell culture. Their study observed that cell viability in 

encapsulated capsules made with alginate-starch were comparable to cell viability in free 

culture solution. Sultana et al. (2000) encapsulated probiotic bacteria (Lactobacillus 

acidophilus and Bifidobacterium spp.) in alginate starch beads and observed that as the 

concentration of starch increased from 0 to 2%, the recovery of the probiotic bacteria 

increased from 4 × 108 CFU/g to 3 × 1011 CFU/g. During drying, an increase in osmotic 

stress coupled with a decrease in water activity leading to plasmolysis reduces the survival 

of viable bacterial cells (Morgan et al., 2006; Schoebitz et al., 2012). Schoebitz et al. (2012) 

hypothesized that the presence of starch in the beads slows down the drying rate as a result 

of a reduced water content of the alginate beads. Paul et al. (1993) showed that a high 
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drying (5 g/g dry weight per hour) was more detrimental to the survival of Azospirillum 

lipoferum than a low drying rate (1.18 g/g dry weight per hour) when bioencapsulated in 

alginate. While the water activity was not a parameter measured in our study, Przyklenk et 

al. (2017) also found that an increase in starch content in bioencapsulate Metarhizium 

brunneum conidia reduced the water activity of the bioencapsulated beads which increased 

the survival of the Metarhizium brunneum conidia by 85% after drying. Starch also serves 

as a platform for the bacterial cells to adhere to thus protecting them during adverse 

conditions such as drying (Vassilev et al., 2020). 

6.5.4 Microscopic Observation and Scanning Electron Microscopy 

The size of the lignin-alginate and lignin-alginate starch beads were similar while 

the alginate beads were slightly bigger (Figure 6.3). The wet lignin-alginate beads had 

similar sizes to the wet lignin-alginate starch beads. All beads exhibited spherical and 

smooth surfaces. The average diameter of the wet lignin-alginate and lignin-alginate starch 

beads was 2.5 mm while the average diameter of the wet alginate beads was 3.5 mm. The 

wet alginate beads were creamy-transparent in color. The color of the lignin-alginate beads 

and lignin alginate starch beads were deep brown caused by the dark-brown color of the 

alkali-lignin used to synthesize them. 
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Figure 6.3. Macroscopic images of the wet (a) lignin-alginate beads additive and (b) 

alginate beads. Images were not taken at the same camera zoom level and so not shown at 

scale. 

After drying the beads in an oven, microscopic structure of the beads was observed 

at a magnification of 4X (Figure 6.4). The size of the dry beads was determined using 

Image J (version 1.53k) (Schneider et al., 2012). All beads shrunk significantly due to the 

loss of water. While the dried lignin-alginate and lignin-alginate starch beads maintained a 

spherical shape after oven drying, the alginate beads assumed a distorted shape with rough 

surfaces. Chan et al. (2011) showed that when alginate beads were lyphilized, the drying 

process caused the beads to collapse as water sublimated from the beads. However, when 

starch (100g/L) was added to the alginate beads, the beads maintained their sphericity after 

drying. Thus, the starch acts as a structural support for the bead to control the level of 

shrinking (Chan et al., 2011). The dried alginate beads (Figure 6.4a) had an average 

diameter of 0.89 ± 0.02 mm which indicated a decrease in diameter of 74% compared to 
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the wet alginate beads. This result is similar to Arriola et al. (2016) who reported a decrease 

in diameter of 65% after drying alginate beads used to encapsulate aqueous leaf extract of 

Stevia rebaudiana Bertoni. The dried lignin-alginate beads (Figure 6.4b) had an average 

diameter of 0.52 ± 0.03 mm while the dried lignin-alginate beads with starch (Figure 6.4c) 

had an average diameter of 0.69 ± 0.01 mm.  

 



 

201 

 

 

Figure 6.4. Microscopic images of the surface structure of the different bead formulations 

(a) alginate; (b) lignin-alginate; (c) lignin-alginate with starch additive. 

Scanning electron microscopy (SEM) analysis was done to examine the surface 

morphology of the unfixed alginate, lignin-alginate, and lignin-alginate starch beads after 

oven-drying and after freeze-drying. As shown in Figure 6.5 (c) and (e), freeze-drying of 

the lignin-alginate and lignin-alginate starch beads produced beads with several large 

pores. Figure 6.5 (d) and (f) show the oven-dried lignin-alginate and lignin-alginate starch 

beads respectively with undulating spongy structures packed together without the presence 

of pores. Figure 6.5 (a) shows the freeze-dried alginate bead surface with no visible pores 

while Figure 6.5 (b) shows the oven-dried alginate bead surface with closely packed 

undulating spongy structures like Figure 6.5 (d) and (f). Using the SEM images of the dried 

beads, the average diameter of the pores was determined using Image J (version 1.53k) 

(Schneider et al., 2012). The average diameter of the pores in freeze-dried lignin-alginate 

beads (Figure 6.5c) was 19.87 ± 6.01 µm. The average diameter of the pores in freeze-

dried lignin-alginate starch beads (Figure 6.5e) was 234.93 ± 77.06 µm. Thus, the pores in 

the lignin-alginate starch beads were on average 11 times larger than the pores in the lignin-

alginate beads. While Vassilev (2020) remarks that the porosity of starch-based beads 

decrease with an increase in the starch content, the authors also emphasize that porosity 

can increase with time in storage which could be caused by the immobilized cells utilizing 

the starch. In addition, the rapid sublimation of frozen water during freeze-drying could 

result in the formation of pores at areas originally occupied by ice crystals (Amine et al., 

2014; Smrdel et al., 2008). 
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Figure 6.5. Scanning electron micrographs of the surface of the dried beads (a) freeze-dried 

alginate bead, (b) oven-dried alginate bead, (c) freeze-dried lignin-alginate bead, (d) oven-

dried lignin-alginate bead, (e) freeze-dried lignin-alginate beads with starch additive, and 

(d) oven-dried lignin-alginate bead with starch additive. 

 

After 2 weeks of storage, the survival of Rhizobium cells in lignin-alginate and 

lignin-alginate with starch was evaluated. This was done by immersion of the beads in 3% 

glutaraldehyde in Sorenson phosphate buffer (pH 7.2) for 24 hours and subsequently 

dehydrated using ethanol prior to observation using the scanning electron microscope.  All 

alginate beads dissolved during the storage period when they were stored at 4°C in a 0.1M 

citrate buffer. The SEM micrographs of the lignin-alginate and lignin-alginate starch beads 

are shown in Figure 6.6. Attempts to locate Rhizobium cells on the surface of the lignin-

alginate beads after fixation were not successful. Since the SEM images were taken on the 

surface of the beads, it is possible there could be Rhizobium cells immobilized inside the 

beads such that the SEM could not capture the cells. In contrast, clusters of Rhizobium cells 

were found at different magnifications on the surface of the lignin-alginate starch beads 

seen in Figure 6.6 (a). These Rhizobium cells were observed to be immobilized and adhered 

to the starch granules in the lignin-alginate starch beads. These results agree with Schoebitz 

et al. (2012) who reported that R. terrigena, a rhizobacteria immobilized on and adhered to 

the surface of starch granules under scanning electron microscope. The starch granules 

served as a platform on which the Rhizobium cells attached to during storage which protects 

them from desiccating (Vassilev et al., 2020). The Rhizobium cells were rod-shaped with 

an average length of 2.52 ± 0.35 µm and an average width of 0.49 ± 0.05 µm. These results 
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agree with the typical length (1.2-3.0 µm) and width (0.5-0.9 µm) of Rhizobium cells 

(Somasegaran & Hoben, 2012). 

 

Figure 6.6. Scanning electron micrographs of (a) immobilized Rhizobium cells adhering to 

surface of starch granules in the lignin-alginate beads with starch additive; (b) lignin-

alginate bead with no visible Rhizobium cells. 

6.5.5 Release kinetics 

The release kinetics of the Rhizobial cells from the encapsulated beads were 

investigated after immersing the wet beads in 0.85% saline water and then enumerating the 

number of cells released into the 0.85% saline water after 24 and 48 hours. Figure 6.7 

illustrates the release kinetics in the three encapsulation treatments. After 24 hours, alginate 

beads released 7.10 ± 0.05 log CFU/mL Rhizobial cells, lignin-alginate beads released 7.32 

± 0.03 log CFU/mL, and lignin-alginate starch beads released 7.14 ± 0.01 log CFU/mL. 

After 24 hours, the number of cells released from the lignin-alginate beads were 

significantly higher than the number of cells released from the alginate beads (p < 0.008) 

and the lignin-alginate-starch beads (p < 0.021). Cell numbers in alginate beads were not 
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significantly different than cells numbers in the lignin-alginate-starch beads (p > 0.621). 

After 48 hours of shaking the beads in the 0.85% saline water, all alginate beads completely 

dissolved. For the lignin-alginate beads, 18 out of 20 beads disintegrated. However, the 

lignin-alginate starch beads were not dissolved after 48 hours and released 7.13 ± 0.19 log 

CFU/mL Rhizobium cells, which was not significantly different from the number of cells 

released after 24 hours (p > 0.05). The presence of the starch in the beads increases the 

mechanical strength of the beads (Chan et al., 2011; Ramdhan et al., 2020) which may 

explain why the lignin-alginate-starch beads did not dissolve after 48 hours. We 

hypothesize that the presence of the lignin may have improved the mechanical strength of 

the lignin-alginate beads (Kalinoski et al., 2020) which explains why the lignin-alginate 

beads only disintegrated but not completely dissolved. While alginate encapsulated beads 

were able to encapsulate and release Rhizobium as shown in this study, the addition of 

biopolymers like lignin and starch helped to strengthen the beads against dissolution in 

aqueous solutions. 
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Figure 6.7. Release of Rhizobial cells from encapsulated beads after 24 hours. (per 20 

beads) (n=3). 

6.6 Conclusions 

This study sought to evaluate the feasibility of synthesizing beads using alginate, 

lignin, and starch to encapsulate and release Rhizobium species. Lignin, a less utilized part 

of lignocellulosic material was used to synthesize a lignin alginate hydrogel and the 

compatibility of the hydrogel with Rhizobium bacterial cells tested. While our hypothesis 

of lignin-alginate hydrogel providing a better condition for the grow of Rhizobium meliloti 

and Rhizobium leguminosarum cells was not directly confirmed, our results suggest that 

the growth and survival of the Rhizobial cells were not affected by increasing the 
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concentration of the lignin-alginate hydrogel. Our second hypothesis that encapsulation 

efficiency of the different variations of bioencapsulation will differ was not directly 

confirmed. While all variations of the biopolymers (alginate, lignin-alginate, and lignin-

alginate starch) used for the bioencapsulation of the Rhizobial cells attained a high (97%) 

encapsulation efficiency with wet beads, the presence of starch in the lignin-alginate beads 

increased the survival of Rhizobial cells after drying from 61 to 84% compared to only 

alginate encapsulation. Oven-drying of the beads caused the surface to shrink into tightly 

packed structures with no visible pores in all three variations of the beads. Freeze-drying 

of the lignin-alginate and lignin-alginate starch beads produced beads with several large 

pores. SEM images of fixed beads highlight the importance of starch for the storage of 

Rhizobial cells since they were found attached in clusters to beads with the starch additive 

which were not visible in lignin-alginate beads with no starch. While the lignin-alginate 

and lignin-alginate starch beads did not increase the slow release of Rhizobial cells after 

24 hours compared to sodium alginate beads, the presence of lignin and starch enhanced 

the structure of the beads and prevented them from dissolving in aqueous solutions during 

storage. Unfortunately, we were unable to determine the C and N mineralization of the 

different lignin-alginate concentrations that were incubated with Rhizobial cells from this 

data. Thus, we only hypothesize that the presence of lignin-alginate hydrogel could provide 

a better nutritional condition for the survival of Rhizobium cells. The findings for this study 

are restricted to the short term (one week) effect of the lignin-alginate beads encapsulation 

on the efficiency and release kinetics of the Rhizobial cells. Future studies will test the 

potential of using lignin with other biopolymers as carriers for microbial encapsulation and 

release. Future studies will also test the release of Rhizobial cells form bioencapsulated 
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lignin-alginate beads into a soil environment. Notwithstanding its limitations, this study 

does suggest that alkali-lignin should be considered as a viable biopolymer for the 

bioencapsulation of Rhizobium since it is readily available and helps repurpose lignin waste 

streams especially from pulp and paper making industries and biofuel processing 

industries. Lignin-alginate microbial encapsulated beads may lead to potential applications 

in nutrient and microbial delivery systems in agricultural soils.  
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CHAPTER 7. GENERAL CONCLUSIONS AND FUTURE WORK 

7.1 General Conclusions 

This dissertation explored lignin-based hydrogels to be used to manage soil water 

and as engineered carriers of beneficial soil microorganisms. In addition, machine learning 

methods were used to develop new pedotransfer functions (PTFs) for predicting saturated 

hydraulic conductivity which is an important soil hydraulic property that affects how water 

moves in the soil. 

The first question addressed in this dissertation was how effective lignin-based 

hydrogels were at influencing soil water retention in two soils (silt loam and loamy fine 

sand) from soil water at near saturation to dryness. 

• While plant available water capacity was not increased, in the capillary 

regions of the soil water retention curve where soil water is easily accessible 

to plant roots, volumetric water content was increased after lignin-based 

hydrogel amendment at 0.1 and 0.3% (w/w) concentration for silt loam and 

loamy fine sand soils. 

• To demonstrate the feasibility of this study on the field, calculations were 

carried out based on results from the laboratory study. Our calculations 

indicate that at a 1% (w/w) concentration, the application of the lignin-based 

hydrogels to a 15 cm layer of silt loam and loamy fine soils will not 

significantly increase plant available soil water storage. 

Secondly, the impacts of incorporated lignin-hydrogel on saturated and unsaturated 

hydraulic conductivity of a silt loam soil were evaluated. Until now, there was no study 

that tested the effect of lignin-based hydrogel on unsaturated soil hydraulic conductivity. 

Key conclusions from this objective were: 

• Amending a lignin-based hydrogel at concentrations of 0.1 and 0.3% (w/w) 

to a silt loam soil decreased saturated hydraulic conductivity by up to 88% 

but increased unsaturated hydraulic conductivity from a soil water pressure 

head range from -10 to -750 cm. Our results implied that lignin-based 
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hydrogel could reduce deep percolating water in saturated soils and release 

bound water in unsaturated soils which could be useful for improving the 

flow of soil water for easier plant root access. 

In the third study, our objective was to use data from a large public database of soils 

to test the ability of several machine learning algorithms to develop new pedotransfer 

functions (PTFs) for predicting saturated hydraulic conductivity (Ks) in soil.  

• Out of the six machine learning algorithms tested, random forest regression 

and gradient boosted regression both gave the best model performances with 

R2 = 0.71 and RMSE = 0.47 cm h-1 on the test data (validation data set).  

• Using the permutation feature importance technique, we showed that clay 

content described the most variation in the data, followed by bulk density. 

Finally, we investigated the feasibility of using lignin-alginate beads with a starch additive 

to bioencapsulate and release Rhizobium meliloti and Rhizobium leguminosarum cells. This 

study introduced lignin, an abundant natural biopolymer that is often a waste stream in 

most pulp and paper making industry and biorefineries, along with alginate, a naturally 

occurring edible polysaccharide found in brown algae as base materials for encapsulating 

and releasing Rhizobium sp.  

• Increasing the concentration of lignin-alginate hydrogel did not affect the survival 

of Rhizobial cells after 7 days which made it possible to bioencapsulate the 

Rhizobial cells using different biopolymer combinations (alginate, lignin-alginate, 

and lignin-alginate with starch additive) leading to a bioencapsulation efficiency of 

97%.  

• We found that alginate beads released significantly more Rhizobial cells than 

lignin-alginate and lignin-alginate-starch beads but the starch in the lignin-alginate-

starch beads possibly enhanced the structure of the beads and prevented them from 

dissolving in aqueous solutions during storage. Our results indicate the potential 

applicability of lignin as a component for the manufacture of carrier materials for 

encapsulating Rhizobial cells. 
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7.2 Future Work 

While copious amounts of data were gathered to answer the main research questions 

posed in this dissertation, further research work will be needed to fill the gaps that this 

dissertation did not address. The lignin-based hydrogels and bioencapsulated beads 

developed in this dissertation exhibited qualities that made them suitable for agricultural 

applications, however, their biodegradability in the plant/soil environment needs to be 

tested to ascertain their residence time in soil, as residence time could affect performance 

of the hydrogels in soil. To achieve this goal, data on all parameters that impact 

biodegradation such as soil temperature, pH, moisture, soil type, and duration should be 

investigated. There may also be benefits resulting from the application of lignin-based 

hydrogels such as long-term carbon sequestration which were not quantified in this study. 

Therefore, the amount of carbon added by the lignin-based hydrogel into the soil should be 

quantified by measuring the change in soil carbon at a given depth. Future work on 

objectives one and two should focus on testing other ranges of soil types at a wide range 

of hydrogel application rates i.e., 0 to 2% (w/w) to fully understand the extent to which 

lignin-based hydrogels affect soil water retention and soil hydraulic conductivity for 

practical field applications.  

Furthermore, an extended study where the unsaturated hydraulic conductivity data 

from different textures of soil amended with lignin-based hydrogels are used to develop 

pedotransfer functions for predicting unsaturated hydraulic conductivity is needed. Past 

studies which estimated the unsaturated hydraulic conductivity of soil under hydrogel 

amendments seldom used measured data but estimated unsaturated hydraulic conductivity 

from the water retention curve and matched it to saturated hydraulic conductivity (Ks) of a 

single measured conductivity value. Estimated unsaturated hydraulic conductivity data are 

rarely validated using directly measured data. Thus, independent hydraulic conductivity 

data from a wide range of soil water pressure values will allow us to validate the models 

obtained using the machine learning algorithms.  

Future work based on objective four should determine the carbon and nitrogen 

mineralization of the different lignin-alginate concentrations that were incubated with the 

Rhizobial cells in the Rhizobial compatibility with different lignin-alginate study. Data 
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from such a study could validate if Rhizobial cells consumed and metabolized carbon and 

nitrogen from the lignin-alginate hydrogel which improved their survivability. The 

findings for the encapsulation study were also restricted to the short term (one week) effect 

of the lignin-alginate beads encapsulation on the efficiency and release kinetics of the 

Rhizobial cells, thus the results should be investigated over a longer period (1 month to 1 

year) to ascertain how storage time affects efficiency and release kinetics after 

encapsulation. Future studies should test the potential of using lignin with other 

biopolymers as carriers for microbial encapsulation and release. Future studies should also 

test the release of Rhizobial cells from bioencapsulated lignin-alginate beads into a soil 

environment. Finally, economic analysis of synthesizing lignin-based hydrogels and their 

subsequent application to field soils compared to direct irrigation should be investigated. 
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APPENDICES 

 APPENDIX A. 1. Lignin-based Hydrogel Synthesis 

 

 

Figure A. 1. Synthesized hydrogel showing its swollen, freeze-dried and ground form. 
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APPENDIX A. 2. Observation of swelling in hydrogel-soil mixture. 

 

 

Figure A. 2. A visual representation of the various stages of multiple wetting and drying 

cycles of the hydrogel-soil mixtures: (A) shows the initial wetting of the samples with a 

nylon screen on top of the samples, (B) shows a load of (2.5 kg) placed on a glass slab and 

onto the samples to restrict swelling, (C) shows the cracks developed due to shrinkage in 

the samples after the first drying cycle, (D) shows when 1g of soil was used to fill in cracks 

in the samples after the 3rd wetting and drying cycle (E) shows the 4th wetting cycle and 

(F) shows the samples after the 4th drying cycle. 
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APPENDIX B. 1. Determination of the impact of lignin-based hydrogel on soil 

hydraulic conductivity. 

 

 

Figure B. 1. The Eijkelkamp laboratory permeameter used to measure saturated hydraulic 

conductivity. 
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Figure B.2. Experimental set-up of evaporation method 
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APPENDIX C. 1 Machine Learning Implementation 

 

 

Figure C. 1. Steps used in developing machine learning models (RF, GB, KNN, and SVM). 
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APPENDIX C. 2. Machine learning algorithm hyperparameters 

Table C.1. Hyperparameters for machine learning algorithms used for predicting saturated 

hydraulic conductivity. 

Learning Algorithm Hyperparameter 

Multiple Linear Regression None 

K Nearest Neighbor Regression 

(KNN) 

n_neighbors = 10, distance function = “Manhattan” 

Support Vector Regression (SVR) kernel = ‘rbf’, C= 40, ε = 0.1, and γ= 0.001 

 

Gradient Boosted Regression (GB) n_estimators = 36, learning rate = 0.1, max_depth = 7, 

loss = ‘huber’, alpha = 0.95, min_samples_split = 2 

 

Random Forest Regression (RF) n_estimators = 41, max_depth = 20, max_features = ‘sqrt’ 

 

 

Deep Neural Network Regression 

(DNN) 

Epochs = 10, activation = ‘relu’, loss = ‘mean square error’, 

optimizer = ‘RMSprop’, neurons = 64, patience = 10 
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APPENDIX C. 3. Early Stopping for DNNR 

Figure. C.3 (a) and (b) illustrate the average error of the training and test set prior to 

implementation of early stopping and after implementation of early stopping respectively. 

Early stopping simply tells the algorithm to monitor the metric (i.e., mean square error) 

and to stop training the model once the error stops improving. Figure C.1 implies that 

increasing the number of epochs used for training will not necessarily improve 

performance of the model but would certainly increase computation time. Thus, the optimal 

number of epochs chosen was 10. 

 

Figure C. 3. (a) Training and test error for the DNNR model; (b) Training and validation 

error for the DNNR model after implementation of early stopping. 
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APPENDIX C. 4. Predictor Importance 

 

Figure C. 4. Permutation importance of the five predictors; (a) shows the permutation 

importance on the training dataset of the GB regression model (b) shows the permutation 

importance on the test dataset of the GB regression model; (c) shows the permutation 

importance on the train dataset of the RF model and (d) shows the permutation importance 

on the test set of the RF model. MS, medium sand; FS, fine sand; T_clay, total clay; T_silt, 

total silt; BD, bulk density 
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APPENDIX C. 5. Nomenclature 

 

PTFs            Pedotransfer Functions 

Ks  Saturated hydraulic conductivity 

ML Machine learning 

MLR Multiple linear regression 

KNN k-Nearest Neighbor 

k      Parameter specified by a user in the KNN algorithm 

SVR Support Vector Regression 

DNNR  Deep Neural Networks Regression 

ML  Machine learning 

MAE  Mean absolute error 

RMSE  Root mean square error 

R2   Coefficient of determination 

𝑦  Observed (measured) saturated hydraulic conductivity (Ks) in cm h-1 

ŷ  Model predicted saturated hydraulic conductivity (Ks) in cm h-1 

ȳ  Mean of the measured saturated hydraulic conductivity (Ks) 

n   The number of observations in the dataset 

VCS  Very coarse sand 
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CS  Coarse sand 

MS  Medium sand 

FS  Fine sand 

T_sand  Total sand 

Clay  Clay content (% by mass) 

Silt   Silt content (% by mass) 

BD  Bulk density 

R   Correlation coefficient 
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APPENDIX C. 6. Python code for developing machine learning models to predict 

saturated hydraulic conductivity. 

 

Machine Learning Ksat Prediction Using FSCD 
 

This code details the steps followed in developing machine learning regression models to 
predict saturated hydraulic conductivity using the Florida Characterization Database. 
Email: adjuiktoby@gmail.com 
Department of Biosystems and Agricultural Engineering 
University of Kentucky 
April 11, 2022 
 

 Download general packages needed for the simulation 

import pandas as pd 
import numpy as np 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.neighbors import KNeighborsRegressor 
from sklearn.metrics import confusion_matrix 
from sklearn.model_selection import cross_val_score 
from scipy.stats import spearmanr, pearsonr 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.tree import DecisionTreeRegressor 
from sklearn.neighbors import KNeighborsRegressor 
from sklearn.metrics import mean_squared_error 
from sklearn.metrics import r2_score 
from sklearn.model_selection import cross_validate 
from sklearn.model_selection import validation_curve 
from sklearn import preprocessing 
from sklearn.preprocessing import StandardScaler 
from sklearn.preprocessing import MinMaxScaler 
import numpy as np 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split,cross_val_score 
from sklearn.ensemble import RandomForestClassifier,RandomForestRegressor 
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score 
from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor 

from sklearn.svm import SVC,SVR 

from sklearn import datasets 
import scipy.stats as stats 
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%matplotlib inline # allows plots to appear in the notebook 

 

Data Cleaning and Preprocessing 

 

 #Creating a dataframe from the uploaded CSV file containing the original data 
Florida_Soil_Data=pd.read_csv(r"D:\Data\Florida Soil Characterization Data.csv") 
 
#Make new dataframe with empty cells dropped 
Clean_Florida_Data= Florida_Soil_Data.dropna(axis=0, how="any") 
 
#Comparing sizes of dataframe 
print("Old data frame length:", len(Florida_Soil_Data), "\nNew data frame legnth: 
", len(Clean_Florida_Data), "\nNumber of rows with at least 1 NA value: 

,",len(Florida_Soil_Data)-len(Clean_Florida_Data)) 

#Finding the average of the three replicates of bulk density and storing it as a 
new column (Bulk_density_mean) 
Bulk_density_mean = Clean_Florida_Data.loc[: , "Bulk_density_1":"Bulk_density_3"] 
Bulk_density_mean= Bulk_density_mean.mean(axis=1) 
Bulk_density_mean.head 

#Finding the average of the three replicates of saturated hydraulic conductivity and storing it as 
a new column (Sat_Conductivity_mean) 
Sat_Conductivity_mean = Clean_Florida_Data.loc[: , "Sat_Hydrualic_Cond_1": 
"Sat_Hydrualic_Cond_3"] 
Sat_Conductivity_mean= Sat_Conductivity_mean.mean(axis=1) 
Sat_Conductivity_mean 

#Saving the new dataframe as a CSV file 
Clean_Florida_Data.to_csv("clean_Florida_data.csv") 

#Uploading a cleaned version of the dataset and creating a dataframe 
New_soil_data=pd.read_csv(r"D:\Data\new_clean_Florida_data.csv") 

# Import packages 
import matplotlib.pyplot as plt 
import matplotlib.cm as cm 
import seaborn as sns 
import scipy.sparse as sparse 

# Create new dataframe containing predictors and target 
New_soil_data = pd.DataFrame(np.c_[New_soil_data['VCS'],New_soil_data['CS'], 
,New_soil_data['MS'],New_soil_data['FS'],New_soil_data['VFS'],New_soil_data['T_sand'], 

New_soil_data[‘Clay'], New_soil_data[‘Silt’], New_soil_data[‘SBD’], New_soil_data[‘Ks’], 

columns = ['VCS','CS','MS','FS','VFS','T_sand','Clay','Silt','BD','Ks']) 

#Descriptive statistics of data 

New_soil_data.describe().transpose() 
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Creating a histogram to illustrate saturated hydrualic conductivity (ks) 

[52]: import numpy as np 
from matplotlib import colors 
from matplotlib.ticker import PercentFormatter 
import pandas as pd 
import matplotlib 
import matplotlib.pyplot as plt 
from pylab import * 
from sklearn.preprocessing import PowerTransformer 
import seaborn as sns 

from sklearn.pipeline import Pipeline 

 

# Assigning predictors and target variables 
X = pd.DataFrame(np.c_[New_soil_data['VCS'],New_soil_data['CS'], 
,New_soil_data['MS'],New_soil_data['FS'],New_soil_data['Clay'],New_soil_data['VFS'],New_soil_
data[',columns = ['VCS','CS','MS','FS','VFS','T_sand','Silt','Clay','BD']) 

y = New_soil_data['Ks'] 

 

# Creating a frequenty distribution of the measured Ks 
fig, ax = plt.subplots(figsize=(12, 9)) 

plt.hist(New_soil_data['Ks'], bins=33, align='right', color='green',␣ 
,→edgecolor='black') 
plt.xscale("log") 
plt.xlabel('Saturated hydraulic conductivity (cm/h)',fontsize=25) 
plt.ylabel('# of observations',fontsize=25) 
matplotlib.rc('xtick', labelsize=25) 
matplotlib.rc('ytick', labelsize=25) 
matplotlib.rc('axes', linewidth=5) 
plt.xlim(0, 1000) 

plt.ylim(0, 4686) 

 

 Principal Component Analysis 

# Create dataframe for Predictors 
X = pd.DataFrame(np.c_[New_soil_data['VCS'],New_soil_data['CS'], 
,New_soil_data['MS'],New_soil_data['FS'],New_soil_data['Clay'],New_soil_data['VFS'],New_soil_
data[',columns = ['VCS','CS','MS','FS','VFS','T_sand','Silt','Clay','BD']) 
 
#Download packages needed to run PCA 
from sklearn.decomposition import PCA 
from sklearn.preprocessing import StandardScaler 
from sklearn import decomposition 
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from sklearn.preprocessing import scale 
import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
from sklearn import decomposition 
from sklearn import datasets 
from sklearn.preprocessing import scale 
import matplotlib.pyplot as plt 
import seaborn as sb 
 
#Get variable/feature names 
feature_names=list(X.columns.values) 
feature_names 
 
#Standardize data 
X_scaled = scale(X) 
 
# apply PCA 
pca = decomposition.PCA(n_components=9) 
X_pca = pca.fit_transform(X_scaled) 

 

Calculation of the factor loadings 

#To get the loadings, we just need to access the attribute components_ of the 
sklearn.decomposition.pca.PCA object. 
loadings = pd.DataFrame(pca.components_.T, columns=['PC1', 

,'PC2','PC3','PC4','PC5','PC6','PC7','PC8','PC9'], index= feature_names) 

Loadings 

 

Explained variance 

# Percentage of variance explained for each components 
variance=(pca.explained_variance_ratio_.round(3)) 

variance 

 

# Cumulative sum of variances 
cumsum=np.cumsum(np.round(variance, decimals=3)*100) 

cumsum #cumulative sum of variance explained with [n] features 

 

Check normality of data 

#Uploading a cleaned dataset and creating a dataframe 
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New_soil_data=pd.read_csv(r"D:\Data\new_clean_Florida_data.csv") 

# Create Datasets for Target and Predictors 
New_soil_data = pd.DataFrame(np.c_[New_soil_data['VCS'],New_soil_data['CS'], 

,New_soil_data['MS'],New_soil_data['FS'],New_soil_data['VFS'],New_soil_data['T_sand'],New_s
oil],New_soil[Clay'],New_soil[‘Silt’],New_soil[‘BD’],New_soil[‘'Log_Ks'’],  

columns = ['VCS','CS','MS','FS','VFS','T_sand','Clay','Silt','BD','Log_Ks']) 

Log_Ks = New_soil_data['Log_Ks'] # Create dataset with Ks 

#Normality test for Ks values 
#Shapiro wilks test of normality 
from scipy.stats import 227hapiro 
stat, p = 227hapiro(Log_Ks) 
print(‘Statistics=%.3f, p=%.3f’ % (stat, p)) 
# interpret 
alpha = 0.05 
if p > alpha: 
print(‘Sample looks Gaussian (fail to reject H0)’) 
else: 

print(‘Sample does not look Gaussian (reject H0)’) 

 

# histogram plot 
from matplotlib import pyplot 
pyplot.hist(Log_Ks) 

pyplot.show() 

 

# Box-cox Transformation of Log Ks values for normality 
from scipy import stats 

Log_Ks_trans, lmbda = stats.boxcox(Log_Ks) 

# histogram plot after transformation 
from matplotlib import pyplot 
pyplot.hist(Log_Ks_trans) 

pyplot.show() 

 

Pearson Correlation Heat Map 

#Uploading a cleaned dataset and creating a dataframe 

New_soil_data=pd.read_csv(r"D:\Data\new_clean_Florida_data.csv") 

# Importing packages 
import numpy as np 
import pandas as pd 
from matplotlib import pyplot as plt 
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import seaborn as sns 

# Create Datasets for Target and Predictors 
df = pd.DataFrame(np.c_[New_soil_data['VCS'],New_soil_data['CS'], 
,New_soil_data['MS'],New_soil_data['FS'],New_soil_data['VFS'],New_soil_data['T_sand'],New_s
oil],New_soil[Clay'],New_soil[‘Silt’],New_soil[‘BD’],New_soil[‘'Log_Ks'’], columns = 
['VCS','CS','MS','FS','VFS','T_sand','Clay','Silt','BD','Log_Ks']) 

 

# Create the correlation matrix 

corr = df.corr() 

# Generate a mask for the upper triangle; True = do NOT show 
mask = np.zeros_like(corr) 

mask[np.triu_indices_from(mask)] = True 

 

# Draw the pearson heatmap  
fig = plt.figure(figsize=(10,7.5)) 
ax = sns.heatmap(corr, mask=mask, cmap='coolwarm', annot=True, vmax=1,vmin=-1, 
square=True, linewidths=.5, cbar = True, 
) 
 
# Set x and y axis tick labal font sizes 
ax.set_xticklabels(ax.get_xmajorticklabels(), fontsize = 14) 
ax.set_yticklabels(ax.get_ymajorticklabels(), fontsize = 14) 
 
# Set tick labal font size of color bar 
cax = plt.gcf().axes[-1] 

cax.tick_params(labelsize=14) 

 

Normalize predictors 

from sklearn.preprocessing import StandardScaler 
scaler = StandardScaler() 

X = scaler.fit_transform(X) 

 

Random Forest Algorithm 

# Create Datasets for Target and Predictors 
X = pd.DataFrame(np.c_[New_soil_data['VCS'],New_soil_data['CS'], 
,New_soil_data['MS'],New_soil_data['FS'],New_soil_data['VFS'],New_soil_data['T_sand'],New_s
oil],New_soil[Clay'],New_soil[‘Silt’],New_soil[‘BD’], columns = 
['VCS','CS','MS','FS','VFS','T_sand','Clay','Silt','BD']) 

y = New_soil_data['Log_Ks'] 
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# Splitting the data into training and testing sets 
from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=10) 
print("The shape of the X_trainset is",X_train.shape) # The shape of the X_trainset 
print("The shape of the X_testset is", X_test.shape) # The shape of the X_testset 
print("The shape of the Y_trainset is",y_train.shape) # The shape of the X_trainset 

print("The shape of the y_testset is", y_test.shape) # The shape of the y_testset 

#Download pakages 

from sklearn.model_selection import train_test_split 
from sklearn.ensemble import RandomForestRegressor 

from sklearn.metrics import r2_score,mean_squared_error 

 

0.0.13 Parameter search 

#Hyparameter Search 
from sklearn.model_selection import cross_val_score 
from sklearn.model_selection import GridSearchCV 
# Define the hyperparameter configuration space 
rf_params = { 'n_estimators': [40,41,42,43,44,45,46,47,48,49,50], 'max_features': ["sqrt"], 
'max_depth': [10,15,20,25,30], 
} 
 
clf = RandomForestRegressor(random_state=0) 
grid = GridSearchCV(clf, rf_params, cv=5, scoring='r2') 
grid.fit(X_train, y_train.ravel()) 
print(grid.best_params_) 

print("R2:"+ str(grid.best_score_)) 

 

clf = RandomForestRegressor(n_estimators=41, criterion='mae', max_depth=20, 
min_samples_split=10, min_samples_leaf=6, 
min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_nodes=None, 
min_impurity_decrease=0.0, min_impurity_split=None, 

bootstrap=False, oob_score=False, n_jobs=-1, random_state=5, verbose=0,␣ 
,warm_start=False) 
 
#Fit model to training dataset 

clf.fit(X_train, y_train.ravel()) 

 

#Predict using train dataset 
y_train_RF = clf.predict(X_train) 
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# Predicting the test set results 
y_pred_RF = clf.predict(X_test) 

 

#Evaluation metrics for random forest 
from sklearn.metrics import mean_absolute_error 
import sklearn.metrics as metrics 
 
#R2 metric 
score =r2_score(y_train, y_train_RF) 
print("Train accuracy (R2) for random forest regression: {}".format(score)) 
score_R2_RF =r2_score(y_test, y_pred_RF) 
print("Test accuracy (R2) for random forest regression: {}".format(score_R2_RF)) 
 
#Mean absolute value metric 
score = mean_absolute_error(y_train, y_train_RF) 
print("Train accuracy(MAE) for random forest regression: {}".format(score)) 
score_MAE_RF = mean_absolute_error(y_test, y_pred_RF) 
print("Test accuracy(MAE) for random forest regression: {}".format(score_MAE_RF)) 
 
#RMSE metric 
score = np.sqrt(metrics.mean_squared_error(y_train, y_train_RF)) 
print("Train accuracy (RMSE) for RF: {}".format(score)) 
score_RMSE_RF =np.sqrt(metrics.mean_squared_error(y_test, y_pred_RF)) 

print("Test accuracy (RMSE) for RF: {}".format(score_RMSE_RF)) 

 

#Displaying evaluation metrics 
Metric = " MAE = " + str(round(score_MAE_RF, 2)) +" (cm h$^{-1}$)"+ "\n"+ " 
R$^2$ = " + str(round(score_R2_RF, 2))+ "," + " RMSE = "+ 
str(round(score_RMSE_RF, 2))+" (cm h$^{-1}$)" 

print("Random Forest Model Performance: ", Metric) 

 

#Scatter plot of predicted Ks vs measured Ks 
import matplotlib.pyplot as plt 
from pylab import * 
import matplotlib as mpl 
#Plot for multi linear regression 
from scipy.optimize import curve_fit 
from sklearn.model_selection import cross_val_predict 
from sklearn import linear_model 
lr = linear_model.LinearRegression() 
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predicted = cross_val_predict(lr, y_pred_RF, y_test, cv=10) 

fig, ax = plt.subplots(figsize=(12, 9)) 
ax.set_title('Random Forest Regression', fontsize=30) 
ax.scatter(y_test,predicted) 
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=5) 
ax.set_xlabel('Observed Ks log (cm h$^{-1}$)',fontsize=30) 
ax.set_ylabel('Predicted Ks log (cm h$^{-1}$)',fontsize=30) 
ax.tick_params(axis="x", direction="out",length=8, width=2) 
ax.tick_params(axis="y", direction="out",length=8, width=2) 
plt.xlim(-2, 3) 
plt.ylim(-2, 3) 
plt.tick_params(axis='both', which='major', labelsize=30) 
plt.text(-1.5, 2.2,Metric,fontsize=25, bbox=dict(facecolor='none', alpha=0.5)) 
rc('axes', linewidth=5) 

plt.show() 

 

 Feature Importance for RF model created 

#Import packages 

import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.inspection import permutation_importance 
from sklearn.pipeline import make_pipeline 
from sklearn.inspection import permutation_importance 
from sklearn.metrics import mean_squared_error 
 
#Feature importance on training dataset 
result = permutation_importance(clf, X_train, y_train, n_repeats=10, random_state=42, 
n_jobs=2) 
sorted_idx = result.importances_mean.argsort() 
plt.boxplot(result.importances[sorted_idx].T, 
vert=False, labels=np.array(X.columns)[sorted_idx]) 
plt.xticks(size = 15) 
plt.yticks(size = 15) 
plt.title("Permutation Importance (train set)",fontsize=15) 
fig.tight_layout() 
plt.show() 

 

#Feature importance on testing dataset 
result = permutation_importance(clf, X_test, y_test, n_repeats=10, 
random_state=42, n_jobs=2) 
sorted_idx = result.importances_mean.argsort() 
plt.boxplot(result.importances[sorted_idx].T, 
vert=False, labels=np.array(X.columns)[sorted_idx]) 
plt.xticks(size = 15) 



 

232 

 

plt.yticks(size = 15) 
plt.title("Permutation Importance (test set)",fontsize=15) 
fig.tight_layout() 
plt.show() 

 

 

Multi linear regression 

# Download packages 
import matplotlib.pyplot as plt 
import pandas as pd 
import pylab as pl 
import numpy as np 
from sklearn import linear_model 
from sklearn.linear_model import LinearRegression 
from sklearn import metrics 
 
#Fit model to training set 
regressor = LinearRegression() 
regressor.fit(X_train, y_train) 
 
#Predict trainset 
y_train_MLR = regressor.predict(X_train) 

y_train_MLR 

# Predicting the test set results 

y_pred_MLR = regressor.predict(X_test) 

 
#Evaluation metrics 
from sklearn.metrics import mean_absolute_error 
 
#R2 metrics 
score =r2_score(y_train, y_train_MLR) 
print("Train accuracy (R2) for multi linear regression: {}".format(score)) 
score_R2_MLR =r2_score(y_test, y_pred_MLR) 
print("Test accuracy (R2) for multi linear regression: {}".format(score_R2_MLR)) 
 
#Mean absolute error metrics 
score = mean_absolute_error(y_train, y_train_MLR) 
print("Train accuracy(MAE) for multi linear regression: {}".format(score)) 
score_MAE_MLR = mean_absolute_error(y_test, y_pred_MLR) 
print("Test accuracy(MAE) for multi linear regression: {}".format(score_MAE_MLR)) 
score = np.sqrt(metrics.mean_squared_error(y_train, y_train_MLR)) 
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#RMSE metrics 
print("Train accuracy (RMSE) for MLR: {}".format(score)) 
score_RMSE_MLR =np.sqrt(metrics.mean_squared_error(y_test, y_pred_MLR)) 

print("Test accuracy (RMSE) for MLR: {}".format(score_RMSE_MLR)) 

 

#Formatting evaluation metrics to be displayed on the scatter plot 
Metric = " MAE = " + str(round(score_MAE_MLR, 2)) +" (cm h$^{-1}$)"+ "\n"+ "R$^2$ = " + 
str(round(score_R2_MLR, 2))+ "," + " RMSE = "+str(round(score_RMSE_MLR, 2))+" (cm h$^{-
1}$)" 

print("Random Forest Model Performance: ", Metric) 

 

#Scatter plot for multi linear regression 
import matplotlib.pyplot as plt 
from pylab import * 
import matplotlib as mpl 
from scipy.optimize import curve_fit 
from sklearn.model_selection import cross_val_predict 
from sklearn import linear_model 
lr = linear_model.LinearRegression() 
predicted = cross_val_predict(lr, y_pred_MLR, y_test, cv=10) 
fig, ax = plt.subplots(figsize=(12, 9)) 
ax.set_title('Multiple Linear Regression', fontsize=30) 
ax.scatter(y_test,predicted,c="orange") 
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=5) 
ax.set_xlabel('Observed Ks log (cm h$^{-1}$)',fontsize=30) 
ax.set_ylabel('Predicted Ks log (cm h$^{-1}$)',fontsize=30) 
ax.tick_params(axis="x", direction="out",length=8, width=2) 
ax.tick_params(axis="y", direction="out",length=8, width=2) 
plt.xlim(-2, 3) 
plt.ylim(-2, 3) 
plt.tick_params(axis='both', which='major', labelsize=30) 
plt.text(-1.5, 2.2,Metric,fontsize=25, bbox=dict(facecolor='none', alpha=0.5)) 
rc('axes', linewidth=2) 
plt.show() 

 

Coefficients of Multiple Linear Regression 

from sklearn.preprocessing import StandardScaler 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.linear_model import LinearRegression 
from sklearn.metrics import r2_score 
import statsmodels.api as sm 
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X=New_soil_data[['MS','FS','BD','Silt','Clay']] 

y = New_soil_data[['Log_Ks']] 

 

# Multiple Regression Model 
 
from sklearn.linear_model import LinearRegression 
regression_model = LinearRegression() 

regression_model.fit(X_train, y_train) 

 

# Coefficients of MLR 
for idx, col_name in enumerate(X_train.columns): 
print("The coefficient for {} is {}".format(col_name, regression_model. 

coef_[0][idx])) 

 

# The intercepts of the MLR model 
intercept = regression_model.intercept_[0] 

print("The intercept for our model is {}".format(intercept)) 

 

#Determining statistical significance of model coefficients 
X = np.column_stack((New_soil_data['MS'], New_soil_data['FS'], 
New_soil_data['BD'],New_soil_data['Silt'],New_soil_data['Clay'])) 
y = New_soil_data['Log_Ks'] 
X2 = sm.add_constant(X) 
est = sm.OLS(y, X2) 
est2 = est.fit() 

print(est2.summary()) 

 

KNN Regression Algorithm 

 

#Cross-validation to find the best n_estimators 
 
from sklearn.model_selection import cross_val_score 
neighbors = list(range(10, 20)) 
cv_scores = [] 
cv_r2 = [] 
 
# perform 10-fold cross validation 
for k in neighbors: 
knn = KNeighborsRegressor(n_neighbors=k, weights='uniform', algorithm='auto', leaf_size=1, 
p=2, metric='manhattan', metric_params=None, n_jobs=-1) 
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scores_cv = cross_validate( knn, X_train, y_train.ravel(), groups=None, 
scoring=('r2','neg_mean_squared_error'), cv=10, n_jobs=None, verbose=0, 
fit_params=None, pre_dispatch='2*n_jobs', return_train_score=True, 
return_estimator=False) 
print(scores_cv['test_neg_mean_squared_error']) 
print(scores_cv['train_r2']) 
cv_r2.append(scores_cv['train_r2'].mean()) 
cv_scores.append(np.mean(list(scores_cv.values()))) 
 
 
# Calculating misclassification error of the cross-validation 
mse = [1 - x for x in cv_scores] 
 
# determining best optimal k 
optimal_k = neighbors[mse.index(min(mse))] 
opt_r2 = cv_r2[mse.index(min(mse))] 
print("The optimal number of neighbors is {}".format(optimal_k)) 
print("The R_Squared for optimal number of neighbors is {}".format(opt_r2)) 
 
# plot misclassification error vs k 
plt.plot(neighbors, mse) 
plt.xlabel("Number of K neighbors") 
plt.ylabel("Misclassification Error") 
plt.show() 
 
# Fitting the KNN algorithm to the training data 
from sklearn.neighbors import KNeighborsRegressor 
knn = KNeighborsRegressor(n_neighbors=10, weights='uniform', algorithm='auto', leaf_size=1, 
p=2, metric='manhattan', metric_params=None, n_jobs=-1) 

knn.fit(X_train, y_train) 

#Predict training dataset 
y_train_KNN = knn.predict(X_train) 
 
# Predicting the test set results 
y_pred_KNN = knn.predict(X_test) 

 

# Evaluation Metrics 

from sklearn.metrics import mean_squared_error 

#R2 metric 
score = r2_score(y_train, y_train_KNN) 
print("Train accuracy (R2) for KNN regression: {}".format(score)) 
score_R2_KNN = r2_score(y_test, y_pred_KNN) 
print("Test accuracy (R2) for KNN regression: {}".format(score_R2_KNN)) 
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# Mean absolute error metric 
score = mean_absolute_error(y_train, y_train_KNN) 
print("Train accuracy (MAE) for KNN regression: {}".format(score)) 
score_MAE_KNN = mean_absolute_error(y_test, y_pred_KNN) 
print("Test accuracy (MAE) for KNN regression: {}".format(score_MAE_KNN)) 
 
#RMSE metric 
score = np.sqrt(metrics.mean_squared_error(y_train, y_train_KNN)) 
print("Train accuracy (RMSE) for KNN: {}".format(score)) 
#Test set 
score_RMSE_KNN =np.sqrt(metrics.mean_squared_error(y_test, y_pred_KNN)) 

print("Test accuracy (RMSE) for KNN: {}".format(score_RMSE_KNN)) 

 

#Formatting evaluation metrics to be displayed on the scatter plot 
Metric= " MAE = " + str(round(score_MAE_KNN, 2)) +" (cm h$^{-1}$)"+ "\n"+ " 
R$^2$ = " + str(round(score_R2_KNN, 2))+ "," + " RMSE = "+ 
str(round(score_RMSE_KNN, 2))+" (cm h$^{-1}$)" 

print("Random Forest Model Performance: ", Metric) 

 

# Create scatter plot for test and prediction values 

import matplotlib.pyplot as plt 

from pylab import * 
from scipy.optimize import curve_fit 
from sklearn.model_selection import cross_val_predict 
from sklearn import linear_model 
import matplotlib as mpl 
 
lr = linear_model.LinearRegression() 
predicted = cross_val_predict(lr, y_pred_KNN, y_test, cv=10) 
fig, ax = plt.subplots(figsize=(12, 9)) 
ax.set_title('KNN Regression', fontsize=30) 
ax.scatter(y_test,predicted,c="red") 
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=5) 
ax.set_xlabel('Observed Ks log (cm h$^{-1}$)',fontsize=30) 
ax.set_ylabel('Predicted Ks log (cm h$^{-1}$)',fontsize=30) 
ax.tick_params(axis="x", direction="out",length=8, width=2) 
ax.tick_params(axis="y", direction="out",length=8, width=2) 
plt.xlim(-2, 3) 
plt.ylim(-2, 3) 
plt.tick_params(axis='both', which='major', labelsize=30) 
plt.text(-1.6, 2.2,Metric,fontsize=25, bbox=dict(facecolor='none', alpha=0.5)) 
rc('axes', linewidth=5) 

plt.show() 
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Support Vector Regression 

#Hyperpameter search  
from sklearn.model_selection import GridSearchCV 
rf_params = { 
'C': [10,50,100], 
"kernel":[‘rbf’, ‘linear’, ‘sigmoid’], 
"epsilon":[0.01,0.1,1], 
"gamma":[0.001,0.01,0.1,1] 
} 
clf = SVR(gamma='scale') 
grid = GridSearchCV(clf, rf_params, cv=10, scoring='neg_mean_squared_error') 
grid.fit(X_train, y_train.ravel()) 
print(grid.best_params_) 

print("MSE:"+ str(-grid.best_score_)) 

 

# Fitting the KNN algorithm to the training data 
from sklearn.svm import SVR 
sv_reg = SVR(kernel='rbf', degree=3, gamma=0.001, coef0=0.0, tol=0.001, C=40, 

epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1) 

sv_reg.fit(X_train, y_train.ravel()) # fit the model for training data 

 

#Predict trainset 
y_train_SVR = sv_reg.predict(X_train) 
 
# Predicting the test set results 
y_pred_SVR = sv_reg.predict(X_test) 
 
#Evaluation metrics 
from sklearn.metrics import mean_squared_error 
from sklearn.metrics import mean_absolute_error 
import sklearn.metrics as metrics 
 
 
#R2 metric 
score = r2_score(y_train, y_train_SVR) 
print("Train accuracy (R2) for SVR: {}".format(score)) 
score_R2_SVR = r2_score(y_test, y_pred_SVR) 
print("Test accuracy (R2) for SVR: {}".format(score_R2_SVR)) 
 
#Mean absolute error metric 
score = mean_absolute_error(y_train, y_train_SVR) 
print("Train accuracy (MAE) for SVR: {}".format(score)) 
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score_MAE_SVR = mean_absolute_error(y_test, y_pred_SVR) 
print("Test accuracy (MAE) for SVR: {}".format(score_MAE_SVR)) 
 
#RMSE Metric 
score = np.sqrt(metrics.mean_squared_error(y_train, y_train_SVR)) 
print("Train accuracy (RMSE) for SVR: {}".format(score)) 
score_RMSE_SVR =np.sqrt(metrics.mean_squared_error(y_test, y_pred_SVR)) 
print("Test accuracy (RMSE) for SVR: {}".format(score_RMSE_SVR)) 

 

#Formatting evaluation metrics to be displayed on the scatter plot 
Metric= " MAE = " + str(round(score_MAE_SVR, 2)) +" (cm h$^{-1}$)"+ "\n"+ " 
R$^2$ = " + str(round(score_R2_SVR, 2))+ "," + " RMSE = "+ str(round(score_RMSE_SVR, 2))+" 
(cm h$^{-1}$)" 

print("Random Forest Model Performance: ", Metric) 

 

#Create Scatter Plot for Test and Prediction values 
import matplotlib.pyplot as plt 
from pylab import * 
from scipy.optimize import curve_fit 
from sklearn.model_selection import cross_val_predict 
from sklearn import linear_model 
import matplotlib as mpl 
 
lr = linear_model.LinearRegression() 
predicted = cross_val_predict(lr, y_pred_SVR, y_test, cv=10) 
fig, ax = plt.subplots(figsize=(12, 9)) 
ax.set_title('Support Vector Regression', fontsize=30) 
ax.scatter(y_test,predicted,c="green") 
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=5) 
ax.set_xlabel('Observed Ks log (cm h$^{-1}$)',fontsize=30) 
ax.set_ylabel('Predicted Ks log (cm h$^{-1}$)',fontsize=30) 
ax.tick_params(axis="x", direction="out",length=8, width=2) 
ax.tick_params(axis="y", direction="out",length=8, width=2) 
plt.xlim(-2, 3) 
plt.ylim(-2, 3) 
plt.tick_params(axis='both', which='major', labelsize=30) 
plt.text(-1.6, 2.2,Metric,fontsize=25, bbox=dict(facecolor='none', alpha=0.5)) 
rc('axes', linewidth=4) 

plt.show() 

 

Gradient Boosting Regression 

# Download packages 
from sklearn.metrics import mean_squared_error,r2_score,mean_absolute_error 
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from sklearn.ensemble import GradientBoostingRegressor 
from sklearn.model_selection import GridSearchCV 
 
#Hyperparameter search 
GBR_params = { 
'n_estimators': [35], 
'learning_rate':[0.1,0.2,0.3,0.4,0.5], 
'max_depth': [7], 
'loss': ['huber'], 
'min_samples_split':[2], 

} 

GBR = GradientBoostingRegressor(**GBR_params) 
grid = GridSearchCV(GBR, GBR_params, cv=5, scoring='neg_mean_squared_error') 
grid.fit(X_train, y_train.ravel()) 
print(grid.best_params_) 

print("MSE:"+ str(-grid.best_score_)) 

 
#Fit GBR model 
GBR_params = {'n_estimators': 36, 'max_depth': 7, 
'learning_rate': 0.1, 'loss': 'huber','alpha':0.95, 'min_samples_split':2} 

GBR = GradientBoostingRegressor(**GBR_params) 

GBR.fit(X_train, y_train.ravel()) 

 

#Predict trainset 
y_train_GBR = GBR.predict(X_train) 
 
# Predicting the test set results 
y_pred_GBR = GBR.predict(X_test) 

 

from sklearn.datasets import make_regression 
from sklearn.ensemble import GradientBoostingRegressor 
from matplotlib import pyplot 
 
#Evaluation Metrics 
import sklearn.metrics as metrics 
 
#R2 
score = r2_score(y_train, y_train_GBR) 
print("Train accuracy (R2) for GBR: {}".format(score)) 
score_R2_GBR = r2_score(y_test, y_pred_GBR) 
print("Test accuracy (R2) for GBR: {}".format(score_R2_GBR)) 
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#Mean absolute error metric 
score = mean_absolute_error(y_train, y_train_GBR) 
print("Train accuracy (MAE) for GBR: {}".format(score)) 
score_MAE_GBR = mean_absolute_error(y_test, y_pred_GBR) 
print("Test accuracy (MAE) for GBR: {}".format(score_MAE_GBR)) 
 
#RMSE metric 
score = np.sqrt(metrics.mean_squared_error(y_train, y_train_GBR)) 
print("Train accuracy (RMSE) for GBR: {}".format(score)) 
score_RMSE_GBR =np.sqrt(metrics.mean_squared_error(y_test, y_pred_GBR)) 

print("Test accuracy (RMSE) for GBR: {}".format(score_RMSE_GBR)) 

 

#Formatting evaluation metrics to be displayed on the scatter plot 
Metric= " MAE = " + str(round(score_MAE_GBR, 2)) +" (cm h$^{-1}$)"+ "\n"+ " 
R$^2$ = " + str(round(score_R2_GBR, 2))+ "," + " RMSE = "+ 
str(round(score_RMSE_GBR, 2))+" (cm h$^{-1}$)" 

print("GBR Model Performance: ", Metric) 

 

#Create Scatter Plot for Test and Prediction values 
 
import matplotlib.pyplot as plt 
from pylab import * 
from scipy.optimize import curve_fit 
from sklearn.model_selection import cross_val_predict 
from sklearn import linear_model 
import matplotlib as mpl 
 
lr = linear_model.LinearRegression() 
predicted = cross_val_predict(lr, y_pred_GBR, y_test, cv=10) 
fig, ax = plt.subplots(figsize=(12, 9)) 
ax.set_title('Gradient Boosted Regression', fontsize=30) 
ax.scatter(y_test,predicted,c="yellow") 
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=5) 
ax.set_xlabel('Observed Ks log (cm h$^{-1}$)',fontsize=30) 
ax.set_ylabel('Predicted Ks log (cm h$^{-1}$)',fontsize=30) 
ax.tick_params(axis="x", direction="out",length=8, width=2) 
ax.tick_params(axis="y", direction="out",length=8, width=2) 
plt.xlim(-2, 3) 
plt.ylim(-2, 3) 
plt.tick_params(axis='both', which='major', labelsize=30) 
plt.text(-1.5, 2.2,Metric,fontsize=25, bbox=dict(facecolor='none', alpha=0.5)) 
rc('axes', linewidth=5) 

plt.show() 
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Determine the Features Importance for GBR Model 

import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.inspection import permutation_importance 
from sklearn.pipeline import make_pipeline 
from sklearn.inspection import permutation_importance 
from sklearn.metrics import mean_squared_error 

 

#Feature importance on train set 
result = permutation_importance(GBR, X_train, y_train, n_repeats=10, 
random_state=42, n_jobs=2) 
sorted_idx = result.importances_mean.argsort() 
plt.boxplot(result.importances[sorted_idx].T, 
vert=False, labels=np.array(X.columns)[sorted_idx]) 
plt.xticks(size = 15) 
plt.yticks(size = 15) 
plt.title("Permutation Importance (train set)",fontsize=15) 
fig.tight_layout() 
plt.show() 
 
#Feature importance on test set 
result = permutation_importance(GBR, X_test, y_test, n_repeats=10, 
random_state=42, n_jobs=2) 
sorted_idx = result.importances_mean.argsort() 
plt.boxplot(result.importances[sorted_idx].T, 
vert=False, labels=np.array(X.columns)[sorted_idx]) 
plt.xticks(size = 15) 
plt.yticks(size = 15) 
plt.title("Permutation Importance (test set)",fontsize=15) 
fig.tight_layout() 
plt.show() 

 

Deep Neural Networks 

#Import packages needed 
 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.wrappers.scikit_learn import KerasRegressor 
from sklearn.model_selection import train_test_split 
from sklearn.model_selection import cross_val_score 
from sklearn.model_selection import cross_validate 
from sklearn.preprocessing import StandardScaler 
from sklearn.pipeline import Pipeline 
import tensorflow as tf 
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from tensorflow import keras 
from tensorflow.keras import layers 
from tensorflow.keras.layers.experimental import preprocessing 
 
 
# Create Datasets for Target and Predictors 

New_soil_data=New_soil_data.loc[:,['MS','BD','Silt','FS','T_sand', 'Log_Ks']] 

 
X = pd.DataFrame(np.c_[New_soil_data['VCS'],New_soil_data['CS'], 
,New_soil_data['MS'],New_soil_data['FS'],New_soil_data['VFS'],New_soil_data['T_sand'],New_s
oil],New_soil[Clay'],New_soil[‘Silt’],New_soil[‘BD’], columns = 
['VCS','CS','MS','FS','VFS','T_sand','Clay','Silt','BD']) 

y = New_soil_data['Log_Ks'] 

Split the data into train and test 

train_dataset = New_soil_data.sample(frac=0.8, random_state=0) 

test_dataset = New_soil_data.drop(train_dataset.index) 

 

Split features from labels 

from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, 
random_state=10) 
print("The shape of the X_trainset is",X_train.shape) # The shape of the X_trainset 
print("The shape of the y_trainset is", y_train.shape) # The shape of the y_trainset 
print("The shape of the X_testset is", X_test.shape) # The shape of the X_testset 

print("The shape of the y_testset is", y_test.shape) # The shape of the y_testset 

 

Normalization 

def norm(x): 
return (x - train_stats['mean']) / train_stats['std'] # Function to normalize imput variables 

normed_train_data = norm(train_dataset) 

normed_test_data = norm(test_dataset) 

 

Model building 

# Function to build model 

def build_model(): 
model = keras.Sequential([ 
layers.Dense(64, activation=tf.nn.relu, input_shape=[len(train_dataset. keys())]), 
layers.Dense(64, activation=tf.nn.relu), 
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layers.Dense(1)]) 
optimizer = tf.keras.optimizers.RMSprop(0.001) 
model.compile(loss='mean_squared_error', optimizer=optimizer, 
metrics=['mean_absolute_error', 'mean_squared_error']) 

return model 

model = build_model() 

 

Train model 

Training the model for 1000 epochs, and recording the training and validation accuracy in the 
history object. 
 
# Display training progress by printing a single dot for each completed epoch 
class PrintDot(keras.callbacks.Callback): 
def on_epoch_end(self, epoch, logs): 
if epoch % 100 == 0: print('') 
print('.', end='') 

EPOCHS = 1000 

history = model.fit( 
normed_train_data, y_train, 
epochs=EPOCHS, validation_split = 0.2, verbose=0, 

callbacks=[PrintDot()]) 

 

Evaluation metrics for training data 

from sklearn.metrics import mean_squared_error,r2_score,mean_absolute_error 
from sklearn.metrics import mean_squared_error 
from sklearn.metrics import mean_absolute_error 
import sklearn.metrics as metrics 
 
#Predict training dataset MAE 
y_train_DNN = model.predict(normed_train_data) 
score = mean_absolute_error(y_train, y_train_DNN) 
print("Train accuracy (MAE) for DNN: {}".format(score)) 

 

# R2 metric for training dataset 
score = r2_score(y_train, y_train_DNN) 

print("Train accuracy (R2) for DNN: {}".format(score)) 

 

#RMSE metric for training dataset 
score = np.sqrt(metrics.mean_squared_error(y_train, y_train_DNN)) 
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print(“Train accuracy (RMSE) for DNN: {}”.format(score)) 

 

# Displaying graph for early stopping  
def plot_history(history): 
hist = pd.DataFrame(history.history) 
hist['epoch'] = history.epoch 
plt.figure() 
plt.xlabel('Epoch') 
plt.ylabel('Mean Abs Error') 
plt.plot(hist['epoch'], hist['mean_absolute_error'], 
label='Train Error') 
plt.plot(hist['epoch'], hist['val_mean_absolute_error'], 
label = 'Test Error') 
plt.ylim([0,1]) 
plt.legend() 
rc('axes', linewidth=3) 
plt.figure() 
plt.xlabel('Epoch') 
plt.ylabel('Mean Square Error') 
plt.plot(hist['epoch'], hist['mean_squared_error'], 
label='Train Error') 
plt.plot(hist['epoch'], hist['val_mean_squared_error'], 

label = 'Test Error') 

plt.ylim([0,1]) 
plt.legend() 
plot_history(history) 

plt.show() 

 

Making predictions on test dataset for Ks 

from sklearn.metrics import accuracy_score 
from sklearn.metrics import mean_squared_error 
from math import sqrt 
 
loss, mae, mse = model.evaluate(normed_test_data, y_test, verbose=0) 
RMSE_DNN= sqrt(mse) 
print("Testing set Mean Abs Error: {:5.2f}".format(mae)) 
print("Testing set MSE: {:5.2f}".format(mse)) 

print("Testing set RMSE: {:5.2f} cm/day".format(RMSE_DNN)) 

test_predictions = model.predict(normed_test_data).flatten() 

 

#Formatting evaluation metrics to be displayed on the scatter plot 
Metric= " MAE = " + str(round(mae, 2)) +" (cm h$^{-1}$)"+ "\n"+ " R$^2$ = " + 
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str(round(score_R2_DNN, 2))+ "," + " RMSE = "+ str(round(RMSE_DNN, 2))+" (cm h$^{-1}$)" 

print("DNN Model Performance: ", Metric) 

 

Scatter plot for model 

# Create Regression Plot for Test and Prediction values 
import matplotlib.pyplot as plt 
from pylab import * 
from scipy.optimize import curve_fit 
from sklearn.model_selection import cross_val_predict 
from sklearn import linear_model 
lr = linear_model.LinearRegression() 
predicted = cross_val_predict(lr, test_predictions, y_test, cv=10) 
fig, ax = plt.subplots(figsize=(12, 9)) 
ax.set_title('Deep Neural Network Regression', fontsize=30) 
ax.scatter(y_test,predicted,c="gray") 
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=5) 
ax.set_xlabel('Observed Ks log (cm h$^{-1}$)',fontsize=30) 
ax.set_ylabel('Predicted Ks log (cm h$^{-1}$)',fontsize=30) 
ax.tick_params(axis="x", direction="out",length=8, width=2) 
ax.tick_params(axis="y", direction="out",length=8, width=2) 
plt.xlim(-2, 3) 
plt.ylim(-2, 3) 
plt.tick_params(axis='both', which='major', labelsize=30) 
plt.text(-1.5, 2.2,Metric,fontsize=25, bbox=dict(facecolor='none', alpha=0.5)) 
rc('axes', linewidth=4) 

plt.show() 
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