1,2-DIAMINATION OF ALKENES VIA REDUCTION OF 1,2,3-TRIAZOLINIUM IONS

Setareh Saryazdi
University of Kentucky, s.saryazdi@uky.edu
Author ORCID Identifier:
https://orcid.org/0000-0002-2422-0281
Digital Object Identifier: https://doi.org/10.13023/etd.2022.319

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Saryazdi, Setareh, "1,2-DIAMINATION OF ALKENES VIA REDUCTION OF 1,2,3-TRIAZOLINIUM IONS" (2022). Theses and Dissertations--Chemistry. 166.
https://uknowledge.uky.edu/chemistry_etds/166

This Doctoral Dissertation is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemistry by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student's advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student's thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above.

Setareh Saryazdi, Student
Dr. Robert B. Grossman, Major Professor
Dr. Dong-Sheng Yang, Director of Graduate Studies

1,2-DIAMINATION OF ALKENES VIA REDUCTION OF 1,2,3TRIAZOLINIUM IONS

DISSERTATION

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Art and Sciences at the University of Kentucky

By

Setareh Saryazdi
Lexington, Kentucky
Director: Prof. Robert B. Grossman, Professor of Chemistry
Lexington, Kentucky 2022

Copyright © Setareh Saryazdi 2022
https://orcid.org/0000-0002-2422-0281

ABSTRACT OF DISSERTATION

1,2-DIAMINATION OF ALKENES VIA REDUCTION OF 1,2,3TRIAZOLINIUM IONS

1,2-Diamine substructures are prevalent functional motifs in natural products, pharmaceutical compounds, and ligands. The interesting functionalities of 1,2-diamines have inspired many synthetic chemists to design various methodologies for preparing these structures from simple precursors such as alkenes. In this work, we described two different but related methods using simple and easily accessible reagents for 1,2-diamination of alkenes. In the first method, an alkene undergoes 1,3-dipolar cycloaddition with an organic azide to form a 1,2,3-triazoline. Subsequent N-alkylation of the generated 1,2,3-triazoline gives the 1,2,3-triazolinium ion, which is then hydrogenated over Raney Ni with a balloon of H_{2} to produce 1,2-diamine. Traditionally, it has been believed that a 1,2,3-triazoline is an unstable species in the presence of heat or light and will readily extrude N_{2} to form an imine or an aziridine. However, most of the 1,2,3-triazolines prepared in this work were stable to the extrusion of N_{2} at the temperature required for their formation.

In the second method, an alkene undergoes 1,3-dipolar cycloaddition with a 1,3-diaza-2-azoniaallene (azidium ion, our neologism) to afford a 1,2,3-triazolinium ion directly. The 1,2,3-triazolinium ions are reduced to the corresponding 1,2-diamines using the same conditions described above. As was expected, cyclic alkenes provide cis 1,2diamines, and acyclic trans alkenes provide threo 1,2-diamines due to syn cycloaddition of the alkene to the azidium ion and preservation of the stereochemistry of the $1,2,3-$ triazolinium ion during the hydrogenation. Surprisingly, the reduction of acyclic cis alkenes proceeded with complete or partial inversion of relative stereochemistry instead of the complete formation of the expected erythro isomer. We hypothesized that this isomerization occurs during the hydrogenation step by Raney Ni. More surprisingly, the reduction of the 1,2,3-triazolinium derived from 5-hexen-2-one produced the diamine product with an additional $\mathrm{C}-\mathrm{C}$ bond. The X-ray crystallographic analysis and $1 \mathrm{D} / 2 \mathrm{D}$ NMR spectra confirmed the structure and the relative stereochemistry of the synthesized 1,2,3-triazolinium ions and 1,2-diamines.

Additionally, we had planned to apply the developed 1,2-diamination methodology toward the total synthesis of loline alkaloids. Lolines are a group of nitrogen-containing natural products produced in cool-season grasses and have shown insecticidal and antifeedant properties. In our designed retrosynthesis, disconnection between $\mathrm{C}(3)$ and $\mathrm{N}(4)$ in loline tricyclic ring, will lead us to the bicyclic intermediate consist of tetrahydrofuran and pyrrolidine ring. We hypothesized that this intermediate can be produced by hydrogenolysis of the corresponding 1,2,3-triazolinium ion synthesized from 2-deoxy-D-ribose (the ether linkage provider). In my attempt toward this total synthesis, the corresponding 1,2,3-triazoline was synthesized as a first key intermediate in seven steps from 2-deoxy-D-ribose. The N-alkylation of the 1,2,3-triazoline, reduction of the produced 1,2,3-triazolinium ion, and completion of the final stages of this total synthesis are still under investigation.

Keywords: 1,2-diamines, hydrogenolysis, 1,2,3-triazolinium ion, azide-alkene cycloaddition, azidium ion-alkene cycloaddition, loline alkaloids total synthesis.

Setareh Saryazdi

1,2-DIAMINATION OF ALKENES VIA REDUCTION OF 1,2,3TRIAZOLINIUM IONS

 BySetareh Saryazdi

Prof. Robert B. Grossman
Director of Dissertation

Prof. Dong-Sheng Yang
Director of Graduate Studies
08/04/2022
Date

To my beloved family,
for their unconditional love and support

ACKNOWLEDGEMENT

My sincere gratitude goes to my advisor Dr. Robert B. Grossman for his constant guidance, motivation, and insightful feedback. I would like to thank him for being extremely supportive and incredibly patient during my PhD . He has been an exemplary mentor who cared about my academic success and future career. I will always be honored and grateful that he accepted me in his group and provided me the opportunity to thrive and learn from his wealth of knowledge.

I would like to express my gratitude to my committee members: Dr. Arthur Cammers, Dr. Yinan Wei, and Dr. Steven Van Lanen. Their immense support, guidance, and constructive feedback helped me to navigate through my PhD. I also would like to thank Dr. Joseph Brill, who served as the outside examiner on my final examination.

I would like to thank Dr. Steven Van Lanen and his team that generously helped me to benefit from their knowledge and equipment. Particularly, I would like to acknowledge two of his lab members: Dr. Zheng Cui, who thought me about protein purification and running enzymatic reactions, and Hoda Saghaian, who helped me to run HRMS of the synthesized compounds.

I would like to thank Dr. Mark Watson for his support and guidance. He was always willing to answer my questions and share his experience on research and academic life. His thoughtful insight greatly helped me with my professional development.

I would like to appreciate Dr. Sean Parkin for his help with X-ray crystallography. I would like to thank Mr. Art Sebesta for all the help he provided to fix the broken instruments. I would like to thank Mr. Jeff Babbitt for repairing and making glassware for
me. My appreciation also extends to Dr. Manjiri Patwardhan and Dr. Joshua Owen who supervised me when I was an organic chemistry and a recitation Teaching Assistant.

I would like to express my appreciation to the UK Department of Chemistry's NMR Center. I am particularly grateful for the help provided by Dr. Anne-Frances Miller and Stephanie Sorenson in the process of learning NMR skills and running the NMR of my samples.

I would like to thank my previous and current lab members: Dr. Minakshi Bhardwaj, for training me to conduct experiments and operate different instruments, and Dr. Nabin Panth, for his help and friendship during my PhD. I also would like to thank Dr. Shubhankar Dutta, David Harris, Amanda Medina, and Ugochukwu B. Odagwe. I would like to appreciate all my friends at University of Kentucky especially, Kathryn Pitton and Debarati Das.

I want to acknowledge Dr. Robert B. Grossman and UK Department of Chemistry for supporting me financially during my PhD .

Last but not the least, I would like to express my profound gratitude to my dear family. I am incredibly grateful to my parents Hamidreza Saryazdi and Shahnaz Shashaei for their unconditional love, patience, and encouragement throughout my life. My deepest thanks go to my husband, Soroosh Torabi, for his unwavering support and love during the challenges of graduate school. I am truly grateful to have him in my life. Also, I would like to mention our dog, Lucy, who was there to joyfully greet me every day after work.

Table of Contents

ACKNOWLEDGEMENT iii
LIST OF TABLES vii
LIST OF FIGURES viii
LIST OF SCHEMES x
LIST OF ABBREVIATION xii
Chapter 1 Introduction. 1
1.1 Importance of 1,2-diamines 1
1.1.1 1,2-Diamines in natural products 1
1.1.2 1,2-Diamines applications in medicinal chemistry 2
1.1.3 1,2-Diamines applications in catalysis 5
1.2 1,2-Diamination of alkenes 8
1.2.1 1,2-Diamination of alkenes: Both N atoms are tethered to an alkene 9
1.2.2 1,2-Diamination of alkenes: one N atom is tethered to the alkene, and the other is delivered externally 12
1.2.3 1,2-Diamination of alkenes: both N atoms are delivered externally 16
Chapter 2 1,2-Diamination of alkenes via azide-alkene cycloaddition 20
2.1 Introduction 20
2.1.1 Examples of stable 1,2,3-triazolines reported in the literature 21
2.1.2 1,2-Diamination of alkenes via reduction of 1,2,3-triazolinium ions 23
2.2 Results and Discussion 25
2.2.1 Exploring the scope of the 1,2-diamination of alkenes through intramolecular azide-alkene cycloaddition 25
2.2.2 Exploring the scope of the 1,2-diamination of alkenes through intramolecular azide-alkene cycloaddition 30
2.3 Conclusion 33
2.4 Experimental Section 34
2.4.1 Safety for handling of azido compounds ${ }^{42}$ 34
2.4.2 Experimental procedures 35
Chapter 3 1,2-Diamination of alkenes via azidium ion-alkene cycloaddition. 48
3.1 Introduction 48
3.2 Results and discussion 48
3.2.1 Reduction of 1,2,3-triazolinium ions from cyclic alkenes 49
3.2.2 Reduction of 1,2,3-triazolinium ion from the acyclic trans and terminal alkenes 54
3.2.3 Reduction of the 1,2,3-triazolinium ion from acyclic cis alkenes 56
3.2.4 Reduction of the 1,2,3-triazolinium ion derived from 5-hexen-2-one 59
3.3 Summary 61
3.4 Experimental Section 64
Chapter 4 Attempt towards total synthesis of loline alkaloids 87
4.1 Introduction 87
4.2 Previously reported total synthesis of lolines 89
4.2.1 Tufariello et al. approach 89
4.2.2 White et al. approach 90
4.2.3 Trauner et al. approach 92
4.2.4 Huang et al. approach 93
4.2.5 Scheerer et al. approach 94
4.3 Grossman's proposed total synthesis of loline alkaloids 97
4.3.1 Synthesis of 2,5-dihydrofuran ring 98
4.3.2 Synthesis of 1,2,3-triazoline 99
4.3.3 Future plan for completion of the loline total synthesis 103
4.4 Experimental Section 105
Chapter 5 Conclusions and Future Directions 115
Appendix 118
References 228
Vita 232

LIST OF TABLES

Table 2.1 List of 1,2-diamines synthesized through azide-alkene cycloaddition 34
Table 3.1 List of 1,2-diamines synthesized through azidium ion-alkene cycloaddition.. 63

LIST OF FIGURES

Figure 1.1 1,2-Diamine moieties in natural products 2
Figure 1.2 Examples of anti-infective therapeutic agents containing 1,2-diamine moieties3
Figure 1.3 Examples of anticancer therapeutic agents containing 1,2-diamine moieties.. 4
Figure 1.4 Cyclometalated gold (III) complexes bearing trans-1,2-diaminocyclohexane ligand 4
Figure 1.5 Examples of antagonist agents bearing 1,2-diamine moieties 5
Figure 1.6 Examples of NHC-metal complexes useful in medicine and catalysis 8
Figure 1.7 Stereospecific syn or anti addition of N atoms across the π bond of an alkene 8
Figure 2.1 Structures of 1,2,3-triazoline and 1,2,3-triazolinium ion and their analogous structures 24
Figure $2.2{ }^{1} \mathrm{H}$ NMR 1,2,3-triazoline 69 26
Figure $2.3{ }^{13} \mathrm{C}$ NMR 1,2,3-triazoline 69 26
Figure 2.4 HSQC spectrum of 4,4-diethyl 2-[(benzylamino)methyl]piperidine-4,4- dicarboxylate 72 28
Figure $2.5{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlation of H atoms at $\mathrm{C}(2)$ and $\mathrm{C}(3)$, and $\mathrm{C}(5)$ and $\mathrm{C}(6)$ in 1,2- diamine 72 29
Figure $2.6{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 4,4-diethyl 2-[(benzylamino)methyl]piperidine-4,4- dicarboxylate 72 29
Figure 2.7 Thermal ellipsoid plot of 77 as a triflate salt. 31
Figure 2.8 Potential anticancer Au (III) complexes bearing 1,2-diamine 77 as chelating ligands 32
Figure 3.1 Cis and trans isomers of N^{1}, N^{2}-bis(4-chlorophenyl)cyclopentane-1,2-diamine 89 50
Figure 3.2 HSQC spectrum of N^{1}, N^{2}-bis(4-chlorophenyl)cyclopentane-1,2-diamine 51
Figure $3.3{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY correlations between H atoms at $\mathrm{C}(1)$ and $\mathrm{C}(2)$ in N^{1}, N^{2}-bis(4- chlorophenyl)-2,3-dihydro-1H-indene-1,2-diamine 91 51
Figure $3.4{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of N^{1}, N^{2}-bis(4-chlorophenyl)-2,3-dihydro- 1 H -indene- 1,2-diamine 91 52
Figure 3.5 The thermal ellipsoid plot of N^{1}, N^{2}-bis(4-chlorophenyl)cyclohexane-1,2- diamine 92 as a HCl salt 53
Figure 3.6 Thermal ellipsoid plots of the 1,2,3-triazolinium 96, and the 1,2-diamine 9755Figure 3.7 Fischer projection of D-erythrose and D-threose56
Figure 3.8 Thermal ellipsoid plots of the 1,2,3-triazolinium 104, and the 1,2-diamine 105
(as a trifluoroacetate salt) 57
Figure 3.9 Thermal ellipsoid plot of 1,2,3-triazolinium 111, and 1,2-diamine 112 60
Figure 4.1 Various naturally occurring loline alkaloids 88
Figure 4.2 Comparison of previously reported total synthesis of loline alkaloids 97
Figure 4.3 HSQC spectrum of 1,2,3-triazoline 156 100
Figure $4.4{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlation of H atoms at $\mathrm{C}(7)$ and $\mathrm{C}(8)$, and $\mathrm{C}(8)$ and $\mathrm{C}(9)$ in1,2,3-triazoline 156100
Figure $4.5{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 1,2,3-triazoline 156 101

Figure $4.6{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlation of H atoms at $\mathrm{C}(7)$ and $\mathrm{C}(10)$; at $\mathrm{C}(4)$ and $\mathrm{C}(10)$; at $C(4)$ and $C(5)$; and at $C(5)$ and $C(11)$ in 1,2,3-triazoline 156 101
Figure 4.7 Thermal ellipsoid plot of epi-1,2,3-triazoline 159... 102
Figure A.1 GC-MS analysis of the 1,2-diamines derived from cis-3-hexene 118
Figure A. 2 HSQC spectrum of 2,3-bis[(4-chlorophenyl)amino]-1-methylcyclopentan-1-ol 112 119
Figure A. ${ }^{1}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of spectrum of 2,3-bis[(4-chlorophenyl)amino]-1-methylcyclopentan-1-ol 112 120

LIST OF SCHEMES

Scheme 1.1 Conversion of α, β-acetylenic ketones to propargylic alcohol by $\mathrm{Ru}(\mathrm{II})$ catalyst6
Scheme 1.2 Enantioselective alkene epoxidation catalyzed by [Mn(salen)] complex 6
Scheme 1.3 Asymmetric aldol condensation catalyzed by 1,2-diamine organocatalyst 7
Scheme 1.4 1,2-Diamination of alkenes catalyzed by $\mathrm{Pd}(\mathrm{OAc})_{2}$ 10
Scheme 1.5 1,2-Diamination of alkenes catalyzed by $\mathrm{PPh}_{3} \mathrm{Au}(\mathrm{OAc})$ 10
Scheme 1.6 1,2-Diamination of alkenes catalyzed by $\mathrm{Cu}(\mathrm{II})$ catalyst 11
Scheme 1.7 1,2-Diamination of alkenes catalyzed by $\mathrm{IPy}_{2} \mathrm{BF}_{4}$ 12
Scheme 1.8 1,2-Diamination of alkenes catalyzed by $\mathrm{Cu}(\mathrm{II})$ catalyst with $O-$ benzoylhydroxylamine 13
Scheme 1.9 anti-1,2-Diamination of alkenes catalyzed by $\mathrm{Pd}(\mathrm{II})$ catalyst with O - benzoylhydroxylamine 14
Scheme 1.10 Regioselective 1,2-diamination of alkenes catalyzed by $\mathrm{Pd}(\mathrm{II})$ catalyst with $\mathrm{F}-\mathrm{N}\left(\mathrm{SO}_{2} \mathrm{Ph}\right)_{2}$ 16
Scheme 1.11 Asymmetric 1,2-diamination of alkenes by arylselenium (II) catalyst with urea and N-fluorocollidinium tetrafluoroborate 17
Scheme 1.12 a) Syn and anti 1,2-diamination of alkenes catalyzed by I_{2} with use of different nitrogen sources, b) Mechanism of syn 1,2-diamination of alkenes catalyzed by I_{2} with chloramine-BBS 18
Scheme 2.1 Azide-alkene cycloaddition route to 1,2,3-triazoline and possible reduction of $\mathrm{N}-\mathrm{N}$ bond to 1,2-diamine (blue route), or extrusion of N_{2} to form imine or aziridine (red route) 20
Scheme 2.2 Thermolysis of 1,2,3-triazoline at $140^{\circ} \mathrm{C}$ to extrude N_{2}
Scheme 2.2 Thermolysis of 1,2,3-triazoline at $140^{\circ} \mathrm{C}$ to extrude N_{2} 21 21
Scheme 2.3 Production of stable 1,2,3-triazoline at $110^{\circ} \mathrm{C}$ and its treatment with silica gel to extrude N_{2} 22
Scheme 2.4 Production of stable 1,2,3-triazoline from aliphatic azide at $60^{\circ} \mathrm{C}$ 22
Scheme 2.5 Our initial approach to reduce 1,2-triazoline to 1,2-diamine 23
Scheme 2.6 Mohr and Hertel's reduction of 1,2,3-triazolinium ions to 1,2-diamine 23
Scheme 2.7 Our modified approach for 1,2-diamination of alkenes via reduction of 1,2,3- triazolinium ion 24
Scheme 2.8 Production of 1,2,3-triazoline 69 from diethyl allylmalonate 25
Scheme 2.9 Use of alkyl perchlorates or triflates to prevent decomposition of sulfonium cation 27
Scheme 2.10 Synthesis of 4,4-diethyl 2-[(benzylamino)methyl]piperidine-4,4- dicarboxylate 72 27
Scheme 2.11 Synthesis of benzyl[(1,2,3,4-tetrahydroisoquinolin-3-yl)methyl]amine 7530
Scheme 2.12 Synthesis of N^{2}, N^{3}-dibenzylbicyclo[2.2.1]heptane-2,3-diamine 77 31
Scheme 2.13 Synthesis of N-methyl-3-[(2-phenylethyl)amino]bicyclo[2.2.1]heptan-2- aminium trifluoromethanesulfonate 81 32
Scheme 2.14 Extrusion of N_{2} from 1,2,3-triazoline 83 33
Scheme 3.1 Jochims et al. approach to synthesize 1,2,3-triazolinium ions 48
Scheme 3.2 Synthesis of N^{1}, N^{2}-bis(4-chlorophenyl)cyclopentane-1,2-diamine 50
Scheme 3.3 Synthesis of N^{1}, N^{2}-bis(4-chlorophenyl)cyclohexane-1,2-diamine 92 52
Scheme 3.4 Formation of mono adduct 1,2,3-triazolinium ion 93 via cycloaddition of the azidium ion with cycloocta-1,5-diene 53
Scheme 3.5 Synthesis of N^{1}, N^{2}-bis(4-chlorophenyl)cyclooct-5-ene-1,2-diamine 95 54
Scheme 3.6 Synthesis of various 1,2-diamines from trans and terminal alkenes 55
Scheme 3.7 Synthesis of 2,3-bis[(4-chlorophenyl)amino]butane-1,4-diol 105, and 1,4- bis(benzyloxy)- N^{2}, N^{3}-bis(4-chlorophenyl)butane-2,3-diamine 107 56
Scheme 3.8 Possible mechanism by which Raney Ni converts the cis-1,2,3-triazolinium ions to the threo 1,2-diamines 58
Scheme 3.9 Replacement of D with H by Raney Ni. 58
Scheme 3.10 Reduction of the 1,2,3-triazolinium 109 formed the 1,2-diamine product with partial inversion of the stereochemistry 59
Scheme 3.11 Synthesis of 2,3-bis[(4-chlorophenyl)amino]-1-methylcyclopentan-1-ol 59
Scheme 3.12 Possible mechanism by which Raney Ni converts 1,2,3-triazolinium 111 to 1,2-diamine 112 61
Scheme 4.1 Conversion of AcAP to NANL catalyzed by LolO. 88
Scheme 4.2 Tufariello et al. total synthesis of loline 90
Scheme 4.3 White et al. total synthesis of loline 91
Scheme 4.4 Trauner et al. total synthesis of loline 93
Scheme 4.5 Huang et al. total synthesis of N -acetylnorloline 94
Scheme 4.6 Scheerer et al. total synthesis of loline 96
Scheme 4.7 Grossman's proposed total synthesis of loline alkaloids 98
Scheme 4.8 Synthesis of 2,5-dihydrofuran ring 154 98
Scheme 4.9. Synthesis of 1,2,3-triazoline 156 as a first key intermediate in the total synthesis of loline alkaloids 99
Scheme 4.10 Synthesis of epi-1,2,3-triazoline 159 102
Scheme 4.11 Our plan to complete the total synthesis of loline from 1,2,3-triazoline 156

LIST OF ABBREVIATION

1D	One Dimentional
2D	Two dimentional
AcAP	1-exo-Acetamidopyrrolizidine
BnOTf	Benzyl triflate
Boc	tert-Butyloxycarbonyl
$\mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}$	Triflouroacetate
${ }^{13} \mathrm{C}$ NMR	Carbon-13 Nuclear Magnetic Resonance
COSY	Correlation Spectroscopy
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DIAD	Diisopropyl azodicarboxylate
DMAP	4-Dimethylaminopyridine
DMSO	Dimethyl sulfoxide
DPPA	Diphenylphosphoryl azide
EtOAC	Ethyl acetate
GC-MS	Gas Chromatography-Mass Spectrometer
${ }^{1} \mathrm{H}$ NMR	Proton Nuclear Magnetic Resonance
HRMS	High Resolution Mass Spectrometry
HSQC	Heteronuclear Single Quantum Coherence
IR	Infrared
MgSO4	Magnesium sulfate
NEt_{3}	Triethylamine
NOESY	Nuclear Overhauser Effect Spectroscopy
PPh_{3}	Triphenylphosphine
RT	Room Temperature
TLC	Thin Layer Chromatography
TFA	Triflouroacetic acid
TfO-	Triflate
TBAF	Tetra-n-butylammonium fluoride
TBSCl	tert-Butyldimethylsilyl chloride

TBDPSCl tert-Butyl(chloro)diphenylsilane

Chapter 1 Introduction

The 1,2- diamine moiety is a prevalent structural motif across various disciplines. They are in biologically active natural products such as loline alkaloids, biotin, and agelastatin A . They are found in various drugs and medicinal agents, including but not limited to anti-infective, anticancer, and antagonist molecules. ${ }^{1}$ They are also employed as ligands for organic transformations and can be served as precursors to N -heterocyclic carbenes and imidazolines, which themselves have numerous applications in catalysis and pharmaceuticals sciences. ${ }^{2}$ To date, significant signs of progress have been achieved in developing a broad range of strategies for preparing 1,2-diamines. ${ }^{3}$ The interesting utilities of 1,2-diamines have encouraged chemists to establish new methodologies for their synthesis. Among all the reported methods, 1,2-diamination of alkenes is one of the interesting approaches considering the availability and easy handling of the alkene substrates. ${ }^{4}$ This chapter includes an overview of the importance of 1,2-diamines and explains some of the previously reported methodologies for 1,2-diamination of alkenes.

1.1 Importance of 1,2-diamines

1.1.1 1,2-Diamines in natural products

Loline alkaloids are a group of tricyclic natural products containing the 1,2-diamine moiety in their skeleton. They are produced by fungal endophytes (Epichloe or Neotyphodium species) in cool-season grasses and provide a remarkable range of survival benefits to the host plants. Loline alkaloids protect their host against certain insects and aphids, enhance the host plant's resistance to numerous stress conditions such as drought and poor soil conditions, and improve root growth and seed production. Although most
loline alkaloids have anti-feedant and insecticidal properties, it has been reported that they are nontoxic to mammalian herbivores (Figure 1.1). ${ }^{5}$

Biotin is another example of a natural compound that has the 1,2-diamine moiety included in its imidazolidinone ring. Biotin is a bicyclic water-soluble vitamin and serves as a required coenzyme for five carboxylases in humans that are involved in the metabolism of carbohydrates and amino acids. Biotin is also covalently attached to the histones in the chromatin core to affect chromatin stability and mediate gene regulation (Figure 1.1). ${ }^{6}$

Agelastatin A is a marine natural product isolated from the axinellid marine sponge Agelas dendromorpha in 1993. It belongs to the pyrrole-aminoimidazole family and contains two 1,2-diamine moieties in its tetracyclic structure. Agelastatin A demonstrates cytotoxic activity against various human cancer cell lines and inhibits the glycogen synthase kinase-3 (GSK-3), an important kinase in the early stages of Alzheimer's disease (Figure 1.1). ${ }^{7}$

N-Acetylnorloline

Biotin

Agelastatin A

Figure 1.1 1,2-Diamine moieties in natural products

1.1.2 1,2-Diamines applications in medicinal chemistry

The 1,2-diamine functionality is found in various synthetic therapeutic agents and has been utilized as a remarkable template for synthesizing medicinal agents. ${ }^{1}$ For instance, oseltamivir- the antiviral medication bearing a 1,2-diamine moiety- is used to treat
influenza A and B infections by inhibition of the influenza's neuraminidase enzymes which is an enzyme that helps the virus particles to escape the human cells and infect the others (Figure 1.2). ${ }^{8}$ Another anti-infective example is moxifloxacin that contains a 1,2 -diamine substituent at the 7 -position of flouroquinolone ring. ${ }^{9}$ This 1,2-diamine substituent appeared to be essential for moxifloxacin effectiveness (Figure 1.2). ${ }^{10}$

Figure 1.2 Examples of anti-infective therapeutic agents containing 1,2-diamine moieties

In addition to anti-infectives, 1,2-diamines are also found in anticancer agents such as 1,2-diaminocyclohexane platinum (II) complexes (Figure 1.3). ${ }^{11}$ These complexes are designed after the discovery of anticancer properties of cis-diamminedichloroplatinum(II) (cisplatin) by Rosenberg et al. in late 1960s. ${ }^{12}$ These 1,2-diaminocyclohexane platinum (II) complexes have shown higher antitumoral activity and less toxicity to humane cells compared to cisplatin. Modification of the ligands X (such as oxaliplatin) ${ }^{11}$ as well as the diamine ligands (such as 1,2-dihydroxy-4,5-diaminocyclohexane platinum (II) complex) ${ }^{13}$ have evolved various generations of the 1,2-diamine platinum (II) complexes that have been evaluated for antitumor activities over the decades (Figure 1.3).

1,2-Diaminocyclohexane platinum (II) complexes

Oxaliplatin

1,2-Dihydroxy-4,5diaminocyclohexane platinum (II) complex

Figure 1.3 Examples of anticancer therapeutic agents containing 1,2-diamine moieties

In 2019, Awuah et al. reported synthesis of cyclometalated gold (III) complexes bearing the trans-1,2-diaminocyclohexane ligand (Figure 1.4). ${ }^{14}$ These complexes display IC_{50} in the low micromolar range against various humane cancer cell lines. They also proposed that the presence of this ligand increases the stability of these complexes, which can potentially encourage synthetic chemists to employ similar 1,2-diamines in designing future anticancer complexes. ${ }^{14}$ In collaboration with Dr. Awuah's group, one of the 1,2diamines I synthesized was utilized as a chelating ligand to prepare similar cyclometalated gold (III) complexes with different scaffolds. The synthesis of this 1,2-diamine will be discussed in chapter 2.

Figure 1.4 Cyclometalated gold (III) complexes bearing trans-1,2-diaminocyclohexane ligand

Figure 1.5 illustrates other significant examples of medicinal agents that incorporate 1,2-diamines in their structures. Nutlin-3 is a cis-imidazoline antagonist that inhibits the binding between MDM2 and the p53 protein. In many human tumors, the MDM2 is overexpressed, which can impair the tumor suppression ability of p35 protein. Nutlin-3 inhibits the MDM2-p53 interaction by displacing the p53 in the MDM2-p53 complex ${ }^{15}$. Rolapitant is another antagonist that prevents nausea in chemotherapy patients in combination with other antiemetic agents. It blocks the neurokinin NK1 receptors in the brain, which are responsible for the physiological responses of the stomach. ${ }^{16}$

Nutlin-3

Rolapitant

Figure 1.5 Examples of antagonist agents bearing 1,2-diamine moieties

1.1.3 1,2-Diamines applications in catalysis

1,2-Diamines have been employed as chiral ligands in transition metal complexes to catalyze stereoselective organic transformations. ${ }^{17,18}$ Noyori et al. developed the asymmetric transfer hydrogenation of α, β-acetylenic ketones mediated by Ru (II) catalysts 1 to synthesize the propargylic alcohols (Scheme 1.1). ${ }^{18}$ This chemo- and enantioselective method utilizes 2-propanol as a source of hydrogen, facilitating the hydrogen transfer to the carbonyl without affecting the alkyne functional group.

Scheme 1.1 Conversion of α, β-acetylenic ketones to propargylic alcohol by $\mathrm{Ru}(\mathrm{II})$ catalyst

Manganese salen complexes [Mn (salen)] can catalyze epoxidation of alkenes and their tetradentate salen ligands contain the 1,2-diamine moiety. ${ }^{19,20}$ Jacobson et al. reported the enantioselective epoxidation of alkyl- and aryl-substituted alkenes in the presence of the chiral manganese salen complex $\mathbf{2}$ and iodosylmesitylene as the oxygen source. ${ }^{19}$ They reported alkenes with bulky terminal groups resulted in higher enantioselectivity due to unfavorable steric interaction of the hindered terminus in alkenes with tert-butyl groups on the salen complex (Scheme 1.2). ${ }^{19}$

Scheme 1.2 Enantioselective alkene epoxidation catalyzed by [Mn(salen)] complex

1,2-Diamine moieties are found in organocatalysts. Maruoka et al. reported syntheses of two chiral organocatalysts $\mathbf{3}$ and $\mathbf{4}$ that can catalyze asymmetric aldol condensation of cyclic ketones and substituted benzaldehydes (Scheme 1.3). ${ }^{21}$ Both catalysts $\mathbf{3}$ and $\mathbf{4}$ showed anti selectivity. Catalyst $\mathbf{3}$ afforded the enantiomeric aldol products of $\mathbf{5}$, while the use of catalyst $\mathbf{4}$ yielded the product $\mathbf{6}$. ${ }^{21}$

Scheme 1.3 Asymmetric aldol condensation catalyzed by 1,2-diamine organocatalyst

1,2-Diamines can also serve as precursors for the synthesis of imidazolines and N heterocyclic carbenes (NHCs) which have the ability to coordinate to metals to make various complexes useful in medicines and catalysis (Figure 1.6). ${ }^{2,22,23}$ The antimicrobial and anticancer properties of silver-NHC and gold-NHC complexes have been investigated over the years. For instance, gold (I) complexes of 7 can selectively inhibit the selenoenzyme thioredoxin reductase and induce apoptosis of cancer cells. ${ }^{24} \mathrm{~N}$ hetereocyclic carbenes coordinate to transition metals to catalyze various reactions such as $\mathrm{C}-\mathrm{H}$ activation reactions $\left(\mathrm{Pd}, \mathrm{Ru}, \mathrm{Ir}\right.$ complexes) ${ }^{23}$ and alkene metathesis (Grubbs II generation and Hoveyda-Grubbs II generation) ${ }^{2}$.

NHC-Au (I) Complexes (7)

Grubbs catalyst II generation
Figure 1.6 Examples of NHC-metal complexes useful in medicine and catalysis

1.2 1,2-Diamination of alkenes

The presence of 1,2-diamine substructures in natural products, pharmaceutical compounds, and ligands has motivated chemists to design new methods for preparing these structures. A very simple and interesting approach to synthesize 1,2-diamines is by adding two nitrogen atoms across the π bond of an alkene. The syn or anti stereospecificity of the reaction is determined by the mechanism of addition of the N atoms (Figure 1.7).

Figure 1.7 Stereospecific syn or anti addition of N atoms across the π bond of an alkene
This approach is appealing because it converts readily accessible simple hydrocarbon (alkene) to a more complicated and advanced product (1,2-diamine) with various practical applications. The approach is interesting enough that it has encouraged many organic synthetic chemists to develop new methodologies for the 1,2-diamination of alkenes over the years. In this section, I will provide some of the significant examples of
these synthetic approaches, which are divided into three groups: Those in which a) both N atoms are tethered to an alkene; b) one N atom is tethered to the alkene, and the other is delivered externally, and c) both N atoms are delivered externally.

1.2.1 1,2-Diamination of alkenes: Both \mathbf{N} atoms are tethered to an alkene

In this group, most of the reported alkene substrates are bearing a pendant $\mathrm{N}-\mathrm{X}-\mathrm{N}$ linkage ($\mathrm{X}=\mathrm{CO}, \mathrm{SO}_{2}$), which can be activated in the presence of a transition metal (such as $\mathrm{Pd}(\mathrm{II}), \mathrm{Au}(\mathrm{III}), \mathrm{Cu}(\mathrm{II}))$ or a reagent such as $\mathrm{IPy}_{2} \mathrm{BF}_{4}$) to internally install both N atoms across the double bond of an alkene.

Muñiz et al. reported intramolecular 1,2-diamination of ω-alkenyl-substituted ureas $\mathbf{8}$ in the presence of palladium (II) catalyst, oxidant $\mathrm{PhI}(\mathrm{OAc})_{2}$, and acetate base (Scheme 1.4). ${ }^{25}$ They proposed a diamination mechanism using spectroscopic and labeling studies. First, a urea anion was produced using the acetate base. Palladium coordination and aminopalladation formed the complex $\mathbf{1 0}$. Oxidation of $\mathrm{Pd}(\mathrm{II})$ complex $\mathbf{1 0}$ with iodobenzene diacetate forms the $\operatorname{Pd}(I V)$ complex. Dissociation of the urea from the palladium (IV) center forms complex 11 and further S $_{\text {N }}$-type amination forms the cyclic product 9 and regenerates the $\mathrm{Pd}(\mathrm{II})$ catalyst.

Deprotonation (AcO$)^{-}$
Pd coordination anti-aminopalladation

Scheme 1.4 1,2-Diamination of alkenes catalyzed by $\mathrm{Pd}(\mathrm{OAc})_{2}$

In 2009, Muñiz et al. developed a 1,2-diamination of cyclic alkene in the presence of Triphenylphosphine gold(I) acetate catalyst (synthesized from $\mathrm{Ph}_{3} \mathrm{AuCl}$ and AgOAc), $\mathrm{PhI}(\mathrm{OAc})_{2}$ as an oxidant and acetate base (Scheme 1.5). ${ }^{26}$ The overall syn-1,2-diamination was confirmed by the formation of tricyclic product $\mathbf{1 3}$ and a deuterium-labeling study.

Scheme 1.5 1,2-Diamination of alkenes catalyzed by $\mathrm{PPh}_{3} \mathrm{Au}(\mathrm{OAc})$

In 2012, Chiba et al. reported the intramolecular 1,2-diamination of alkenes bearing a pendant amidine functional group through Cu -mediated aerobic [3+2]-cycloaddition (Scheme 1.6). ${ }^{27}$ The proposed mechanism begins with oxidation of $\mathrm{Cu}(\mathrm{I})$ catalyst with oxygen to generate $\mathrm{Cu}(\mathrm{II})$ superoxo or peroxo species. This catalyst species converts the N -alkenyl amidine $\mathbf{1 4}$ to the radical 16 through one-electron oxidation. Further oxidation
of $\mathbf{1 6}$ with another $\mathrm{Cu}(\mathrm{II})$ species produces nitrene intermediate $\mathbf{1 7}$ which potentially can undergo concerted [3+2] cycloaddition with the alkene to form the cyclic amidine $\mathbf{1 5}$.

Scheme 1.6 1,2-Diamination of alkenes catalyzed by $\mathrm{Cu}(\mathrm{II})$ catalyst

Besides using transition metals, alkenes can be electrophilically activated using reagents such as $\mathrm{IPy}_{2} \mathrm{BF}_{4}$. Muñiz et al. reported the 1,2 -diamination of ω-alkenyl ureas $\mathbf{1 8}$ in the presence of $\mathrm{IPy}_{2} \mathrm{BF}_{4}$, bis(pyridine)iodonium tetrafluoroborate, to form the iodonium intermediate 20 (Scheme 1.7). ${ }^{28}$ Nucleophilic attack of the proximal N atom on the proximal C of the electrophilic alkene forms the iodoamine $\mathbf{2 1}$, causing the iodine to migrate to the terminal C. Nucleophilic attack of the distal N on the terminal C of the electrophilic alkene affords the cyclic urea 19. Despite the efficient formation of $\mathbf{1 9}$, undesired product 22 also forms by nucleophilic attack of carbonyl oxygen and ringopening of the iodonium cation in intermediate 20. The nucleophilicity of the oxo group increases by a mesomeric effect of urea functionality which causes competition between desired N -alkylation and O -alkylation reactions.

Scheme 1.7 1,2-Diamination of alkenes catalyzed by $\mathrm{IPy}_{2} \mathrm{BF}_{4}$

1.2.2 1,2-Diamination of alkenes: one \mathbf{N} atom is tethered to the alkene, and the other is delivered externally

In this group, the introduction of N atoms to the double bond occurs via two different N sources. This process uses a substrate that already contains one of the two N atoms in a product, and an external N source delivers the second N atom.

Wang et al. developed 1,2-diamination of alkenes in N-alkoxypentamides using $\mathrm{Cu}(\mathrm{II})$ catalyst and O-acylatedhydroxylamine derivatives as both oxidants and the electrophilic external nitrogen source (Scheme 1.8). ${ }^{29}$ They reported that this reagent offered a good N source for installation of various amino groups without poisoning the $\mathrm{Cu}(\mathrm{II})$ catalyst despite the free amines. The reaction proceeds through the formation of $\mathrm{Cu}(\mathrm{II})$ complex 25 via intramolecular aminocupration of the alkene substrate 23 . The complex 25 can proceed via two proposed pathways to form $\mathrm{Cu}(\mathrm{III})$ complex 27: A)
coordination to the amino radical (formed from O-benzoylhydroxylamine in the presence of copper catalyst), B) reduction to $\mathrm{Cu}(\mathrm{I})$ complex 26 followed by amination with O benzoylhydroxylamine. Complex 27 underwent reductive elimination to form the 1,2diamine product 24 and regenerate $\mathrm{Cu}(\mathrm{II})$ complex. They proposed that homolytic cleavage of $\mathrm{C}-\mathrm{Cu}(\mathrm{II})$ in complex $\mathbf{2 5}$ can form the radical intermediate $\mathbf{2 8}$, making this methodology nonstereospecific.

Scheme 1.8 1,2-Diamination of alkenes catalyzed by $\mathrm{Cu}(\mathrm{II})$ catalyst with O benzoylhydroxylamine

In 2018, Wolfe et al. reported anti-1,2-diamination of alkenes in N-allylguanidines and N -allylureas in the presence O-benzoylhydroxylamine (similar to Wang's method) and $\operatorname{Pd}(\mathrm{II})$ catalyst (Scheme 1.9). ${ }^{30}$ However, the reaction proceeded through a different mechanism (not forming radical intermediate) using the $\operatorname{Pd}(I I)$ catalyst catalyst, which caused their methodology to be stereospecific. They proposed that the intermediate $\mathbf{3 1}$ can
be formed after coordination of the alkene to the $\mathrm{Pd}(\mathrm{II})$ complex, which can undergo deprotonation and anti-aminopalladation to form complex 32. Further reductive elimination and $\mathrm{C}-\mathrm{N}$ bond formation regenerated the catalyst and produced the desired anti product 30.

31
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$

Scheme 1.9 anti-1,2-Diamination of alkenes catalyzed by $\mathrm{Pd}(\mathrm{II})$ catalyst with O benzoylhydroxylamine

In 2020, Peng, Chen, and Liu reported regioselective palladium-catalyzed 1,2diamination of alkenes with N -fluorobenzenesulfonimide $\left[\mathrm{F}-\mathrm{N}\left(\mathrm{SO}_{2} \mathrm{Ph}\right)_{2}\right]$ as an oxidant and external aminating agent (Scheme 1.10$)^{31}$. They controlled the regioselectivity of the reaction by employing pyridinyloxazoline ligands $\mathbf{L 3 4}$ and $\mathbf{L 3 5}$ to form various pyrrolidine and piperidine products. Coordination of $\mathrm{Pd}(\mathrm{II})$ to the alkene formed the π-complex $\mathbf{3 8}$. Use of the less sterically hindered ligand $\mathbf{L 3 4}$ promotes the 6 -endo cyclization which followed by oxidative addition of $\mathrm{F}-\mathrm{N}\left(\mathrm{SO}_{2} \mathrm{Ph}\right)_{2}$ to form the $\mathrm{Pd}(\mathrm{IV})$ complex 39 (black route). On the other hand, the bulky ligand $\mathbf{L 3 5}$ promotes the 5-exo cyclization and further
oxidative addition of $\mathrm{F}-\mathrm{N}\left(\mathrm{SO}_{2} \mathrm{Ph}\right)_{2}$ formed the $\mathrm{Pd}(\mathrm{IV})$ complex 40 (red route). In both cases, reductive elimination and second $\mathrm{C}-\mathrm{N}$ bond formation regenerated the catalysts and produced the desired products 36 and 37, respectively.

L34

L35

Scheme 1.10 Regioselective 1,2-diamination of alkenes catalyzed by Pd(II) catalyst with $\mathrm{F}-\mathrm{N}\left(\mathrm{SO}_{2} \mathrm{Ph}\right)_{2}$

1.2.3 1,2-Diamination of alkenes: both \mathbf{N} atoms are delivered externally

In this group, both N atoms are delivered externally to an electrophically activated alkene to form a 1,2-diamine product. These N atoms can be provided from a single or two different nitrogen sources.

In 2019, Denmark et al. described the first catalytic asymmetric 1,2-diamination of alkenes (Scheme 1.11). ${ }^{32}$ Their methodology employs a chiral organoselenium reagent together with N-fluorocollidinium tetrafluoroborate ($2,4,6-\mathrm{Me}_{3}-\mathrm{F}^{+} \mathrm{BF}_{4}^{-}$) and sodium fluoride to catalyze the syn 1,2-diamination of alkenes. In their proposed mechanism, oxidation of the diselenide precatalyst 42 with $2,4,6-\mathrm{Me}_{3}-\mathrm{F}^{+} \mathrm{BF}_{4}^{-}$produces the arylselenium (II) intermediate 44. Reaction of the alkene with arylselenium (II) formed the seleniranium ion intermediate 45 in the concerted fashion. The nucleophilic ring opening reaction of the urea with intermediate 45 afforded the intermediate 46 which then oxidized to arylselenium (IV) 47. The displacement of selenium with the urea distal N formed the product 43 and regenerate the selenium species.

chiral catalyst 42
Scheme 1.11 Asymmetric 1,2-diamination of alkenes by arylselenium (II) catalyst with urea and N-fluorocollidinium tetrafluoroborate

In 2021, Minakata et al. reported syn and anti 1,2-diamination of alkenes to form variety of racemic 1,2-diamines (Scheme 1.12). ${ }^{33}$ The reaction was catalyzed in the presence of iodine and the stereospecificity of the reactions were controlled by the choice of nitrogen source. For instance, the syn-1,2-diamination was achieved by using chloramine-BBS 51 as a source of nitrogen. Transfer of the iodine to chloramine salt produced the N -iodonated reactive species $\mathbf{5 2}$ which transfers iodine to the alkene to form the iodonium intermediate 53. Ring opening of the iodonium ion with nucleophilic nitrogen
generated the iodoaminated intermediate $\mathbf{5 4}$, which can further produce the product of syn-1,2-diamination and regenerate the catalyst.

b)

Scheme 1.12 a) Syn and anti 1,2-diamination of alkenes catalyzed by I_{2} with use of different nitrogen sources, b) Mechanism of syn 1,2-diamination of alkenes catalyzed by I_{2} with chloramine-BBS

In chapter 1, an overview of the application of 1,2-diamines in natural products, medicinal agents, and catalysis was provided. All these uses of 1,2-diamines have convinced chemists to develop various methodologies for their synthesis from different substrates such as alkenes. Some of the significant approaches for 1,2-diamination of
alkenes were also discussed. Despite all the advances in this area, new methodologies that provide molecules with novel and interesting features, use simple and various substrates, and limit the use of expensive catalysts and reagents are worth exploring. In this dissertation, development of two methods for 1,2-diamination of alkenes is discussed in chapter 2 and 3. In these methods, 1,2,3-triazolinium ions are formed and then hydrogenated over Raney Ni with a balloon of H_{2}. The potential application of our 1,2diamination methodology in the total synthesis of loline alkaloids is discussed in chapter 4.

Chapter 2 1,2-Diamination of alkenes via azide-alkene cycloaddition

2.1 Introduction

In the last few years, we turned our attention towards designing new methods for the synthesis of 1,2-diamines from alkenes. We were fascinated by the idea of using an azide as a source of nitrogen. We hypothesized that we could install two N atoms across a π bond of alkene through azide-alkene cycloaddition and make a 1,2,3-triazoline. Further reduction of $\mathrm{N}-\mathrm{N}$ bonds in the 1,2,3-triazoline with an appropriate reducing agent would excise the middle N atom and form a 1,2-diamine (Scheme 2.1, blue route).

Scheme 2.1 Azide-alkene cycloaddition route to 1,2,3-triazoline and possible reduction of $\mathrm{N}-\mathrm{N}$ bond to 1,2-diamine (blue route), or extrusion of N_{2} to form imine or aziridine (red route)

This method is atom-economical as it utilizes an azide to make two new $\mathrm{C}-\mathrm{N}$ bonds across a double bond of an alkene. It is appealing because an azide can easily react with alkenes in both inter- and intramolecular fashions, which can potentially allow us to achieve a wide variety of skeletal structures in the final 1,2-diamine products. However, this method can be challenging because 1,2,3-triazolines are generally reported to be unstable in the presence of heat or light. In fact, most organic chemists who have reported making 1,2,3-triazolines did not isolate them; instead, they deliberately heated them up or
photolyzed them to extrude the N_{2} to obtain the desired imine or aziridine (Scheme 2.1, red route). Thus, two important questions to ask were, (1) can we synthesize stable 1,2,3triazolines, and (2) under what conditions can we prevent extrusion of N_{2} ?

2.1.1 Examples of stable 1,2,3-triazolines reported in the literature

Mann et al. reported the first total synthesis of pyrrolizidine alkaloid amphorogynine C using azide-alkene cycloaddition to form desired imine $\mathbf{5 9}$ in their retrosynthesis. ${ }^{34}$ They reported that they thermolyzed 1,2,3-triazoline intermediate 58 at $140{ }^{\circ} \mathrm{C}$ to extrude N_{2} and form the desired product (Scheme 2.2), albeit a product that retained only one of the three N atoms of 58.

Scheme 2.2 Thermolysis of 1,2,3-triazoline at $140^{\circ} \mathrm{C}$ to extrude N_{2}

In 2008, Murphy et al. developed a synthetic route towards 1-deoxynojirimycine derivatives utilizing intramolecular azide-alkene cycloaddition. ${ }^{35}$ In their synthesis, heating up the organic azide in toluene or DMF at $110^{\circ} \mathrm{C}$ yielded a 1,2,3-triazoline $\mathbf{6 2}$ that was
stable at that high temperature. Further treatment of the 1,2,3-triazoline with silica gel was necessary to promote loss of N_{2} to give the desired aziridine $\mathbf{6 3}$ (Scheme 2.3).

Scheme 2.3 Production of stable 1,2,3-triazoline at $110^{\circ} \mathrm{C}$ and its treatment with silica gel to extrude N_{2}

In 2003, Kokotos et al. also reported formation of a stable 1,2,3-triazoline $\mathbf{6 5}$ from intramolecular azide-alkene cycloaddition of the aliphatic azide 64 at $60{ }^{\circ} \mathrm{C}$ in THF (Scheme 2.4). ${ }^{36}$ In addition, they described that solvent, temperature, and substituents are important factors controlling the stability of produced 1,2,3-triazoline.

Scheme 2.4 Production of stable 1,2,3-triazoline from aliphatic azide at $60^{\circ} \mathrm{C}$
These observations helped us realize that the temperature required for the extrusion of N_{2} (usually $>100{ }^{\circ} \mathrm{C}$) from 1,2,3-triazolines was usually much higher than the temperature required for the formation of 1,2,3-triazolines. This suggested that if we keep the temperature of cycloaddition fairly low, we should be able to prevent the extrusion of N_{2} and isolate the 1,2,3-triazolines.

2.1.2 1,2-Diamination of alkenes via reduction of 1,2,3-triazolinium ions

Now that we knew that formation of the stable 1,2,3-triazolines was possible, another key question to ask was: what reducing agent should we use to excise the middle N atom in 1,2,3-triazolines and synthesize the desired 1,2-diamines?

In an attempt to reduce 1,2,3-triazolines to their corresponding 1,2-diamines, I used a wide variety of reducing agents such as $\mathrm{LiAlH}_{4}, \mathrm{Ni}_{2} \mathrm{~B}$, Raney $\mathrm{Ni}, \mathrm{Pd} / \mathrm{C}, \mathrm{Pd}(\mathrm{OH}), \mathrm{PtO}_{2}$, etc. However, I was not able to find any conditions under which the 1,2,3-triazoline could be reduced to a 1,2-diamine (Scheme 2.5).

Scheme 2.5 Our initial approach to reduce 1,2-triazoline to 1,2-diamine

In 1963, Mohr and Hertel reported hydrogenation of the 1,2,3-triazolinium ions 66 (not the 1,2,3-triazoline) with 50-60 atm of H_{2} over Raney Ni to give the corresponding 1,2-diamine 67 in high yields (Scheme 2.6). ${ }^{37}$

Scheme 2.6 Mohr and Hertel's reduction of 1,2,3-triazolinium ions to 1,2-diamine

The work of Mohr and Hertel suggested that we could modify our method by N alkylation of the 1,2,3-triazolines to form 1,2,3-triazolinium ions and their subsequent reduction over Raney Ni with $50 \mathrm{~atm} \mathrm{H}_{2}$ (Scheme 2.7). In the following sections, I show
that a balloon of H_{2} was sufficient to hydrogenate the 1,2,3-triazolinium ion, despite Mohr and Hertel's use of high pressure of H_{2}.

Scheme 2.7 Our modified approach for 1,2-diamination of alkenes via reduction of 1,2,3triazolinium ion

Note: Figure 2.1 shows the structures of 1,2,3-triazoline and 1,2,3-triazolinium ions and their more- or less-hydrogenated structures. One should not confuse the 1,2,3-triazole, which contains $\mathrm{N}=\mathrm{N}$ and $\mathrm{C}=\mathrm{C}$ bonds, with the 1,2,3-triazoline, which contains an $\mathrm{N}=\mathrm{N}$ bond but not a $\mathrm{C}=\mathrm{C}$ bond, and the $1,2,3$-triazolidine, which is a completely saturated molecule. The structures of their corresponding ions are also shown in Figure 2.1. The molecules of interest in this dissertation are 1,2,3-triazolines and 1,2,3-triazolinium ions (red box).

Figure 2.1 Structures of 1,2,3-triazoline and 1,2,3-triazolinium ion and their analogous structures

2.2 Results and Discussion

2.2.1 Exploring the scope of the 1,2-diamination of alkenes through intramolecular azide-alkene cycloaddition

We were interested to synthesize 1,2,3-triazolines by intramolecular cycloaddition, N-alkylate them to convert them into 1,2,3-triazolinium ions, and subject them to hydrogenation over Raney Ni. Therefore, I synthesized the alkenyl azide $\mathbf{6 8}$ from diethyl allylmalonate and converted it to the bicyclic 1,2,3-triazoline 69 at $65^{\circ} \mathrm{C}$ in 95% yield (Scheme 2.8).

Scheme 2.8 Production of 1,2,3-triazoline $\mathbf{6 9}$ from diethyl allylmalonate
${ }^{1} \mathrm{H}$ NMR (Figure 2.2) and ${ }^{13} \mathrm{C}$ NMR (Figure 2.3) confirmed formation of the desired 1,2,3-triazoline, but not the corresponding imine or aziridine. The absence of $\mathrm{C}=\mathrm{C}$ resonances in the ${ }^{13} \mathrm{C}$ NMR spectrum confirmed that the corresponding imine was not produced. In the ${ }^{1} \mathrm{H}$ NMR spectrum, I expected to see five downfield H atoms in both the 1,2,3-triazoline and aziridine. However, it was also expected that the H atoms in the 1,2,3triazoline would be more deshielded than the corresponding H atoms in the aziridine due to the presence of an $\mathrm{N}=\mathrm{N}-\mathrm{N}$ group. In 2018, Diez-Gonzalez reported synthesis of various 1,2,3-triazolines and aziridines using choline chloride/urea (deep eutectic solvent) as a reaction medium. ${ }^{38}$ Looking at their reported ${ }^{1} \mathrm{H}$ NMR chemical shifts, I realized the most downfield H atoms in aziridine usually show resonances below 3.5 ppm . In the ${ }^{1} \mathrm{H}$ NMR of the synthesized 1,2,3-triazoline $\mathbf{6 9}$, I observed two H atoms at above 4.0 ppm which is more likely due to the deshielding effect of the $\mathrm{N}=\mathrm{N}-\mathrm{N}$ group in 1,2,3-triazolines.

Figure $2.2{ }^{1} \mathrm{H}$ NMR 1,2,3-triazoline $\mathbf{6 9}$

Figure $2.3{ }^{13} \mathrm{C}$ NMR 1,2,3-triazoline 69
One option for N-alkylation of the 1,2,3-triazoline $\mathbf{6 9}$ was the use of alkyl halides. However, in 2002, Bols et al. reported decomposition of a sulfonium cation 71 while using
the alkylating agents with nucleophilic counterion (e.g. halides). They suggested using alkyl perchlorates or triflates to bypass this undesired reaction (Scheme 2.9). ${ }^{39}$

Scheme 2.9 Use of alkyl perchlorates or triflates to prevent decomposition of sulfonium cation
Therefore, I chose to use benzyl triflate as an alkylating agent instead of chloride or bromide. Benzyl triflate was prepared in situ from $\mathrm{BnOH}, \mathrm{Tf}_{2} \mathrm{O}$, and sym-collidine at $60{ }^{\circ} \mathrm{C}$. N-Alkylation of the 1,2,3-triazoline 69 produced the corresponding 1,2,3triazolinium ion. I hydrogenated the crude 1,2,3-triazolinium ion over Raney Ni with a balloon of H_{2}. Further basic extraction and purification afforded the 1,2-diamine 72 as a free base in 61\% yield (Scheme 2.10).

69

1. BnOTf, DCM, $-60^{\circ} \mathrm{C}$

72

Scheme 2.10 Synthesis of 4,4-diethyl 2-[(benzylamino)methyl]piperidine-4,4-dicarboxylate 72
The NMR spectroscopic data was consistent with the structure of 1,2-diamine 72. The HSQC spectrum (Figure 2.4) showed the presence of one methine group, seven methylene groups and two methyl groups. The methine H atom at $\mathrm{C}(6)$ appeared at 2.80 ppm. I determined the geminal H atoms on methylene groups using the HSQC spectrum. The geminal pairs (excluding the ester groups) are: two H atoms resonating at 3.79 ppm ;

H atoms resonating at 3.14 ppm and 2.74 ppm ; two H atoms resonating at 2.75 ppm and $2.66 \mathrm{ppm} ; \mathrm{H}$ atoms resonating at 2.33 ppm and $1.92 \mathrm{ppm} ; \mathrm{H}$ atoms resonating at 2.29 ppm and at 1.61 ppm .

Figure 2.4 HSQC spectrum of 4,4-diethyl 2-[(benzylamino)methyl]piperidine-4,4-dicarboxylate 72

I assigned these pairs of H atoms based on their chemical shifts and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations (Figure 2.6). I looked at the possible ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlation between the two upfield pairs of methylene H and the methine H atom at 2.80 ppm connected to $\mathrm{C}(6)$. The first pair of H atoms at 2.29 ppm and 1.61 showed strong correlation to the methine H atom at 2.80 ppm ; however, the second pair of H atoms at 2.33 ppm and 1.92 ppm did not show any correlations to the methine H atom in COSY. This data suggested that the H atoms at 2.29 ppm and 1.61 are connected to $\mathrm{C}(5)$ and the H atoms at 2.33 ppm and 1.92 ppm are connected to $\mathrm{C}(3)$. Also, the methylene H atom connected to $\mathrm{C}(3)$ showed strong
correlation to the H atoms at 3.14 ppm and 2.74 ppm suggesting that these pair of geminal H atoms are connected to $\mathrm{C}(2)$ (Figure 2.5). The two H atoms resonating at 3.79 ppm did not correlate to any H atoms, suggesting that they are the benzylic H atoms connected to $\mathrm{C}(8)$. The only unassigned H atoms are the geminal H atoms resonating at 2.75 ppm and 2.66 ppm , which I assigned to $\mathrm{C}(7)$.

Figure $2.5{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlation of H atoms at $\mathrm{C}(2)$ and $\mathrm{C}(3)$, and $\mathrm{C}(5)$ and $\mathrm{C}(6)$ in 1,2diamine 72

Figure $2.6{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 4,4-diethyl 2-[(benzylamino)methyl]piperidine-4,4dicarboxylate 72

In addition to NMR evidence, HRMS revealed that the synthesized product had the molecular formula $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$, which further confirmed formation of the desired 1,2diamine 72.

In another example, I synthesized the 1,2,3-triazoline $\mathbf{7 4}$ by intramolecular azidealkene cycloaddition of allyl benzyl azide 73 at $55^{\circ} \mathrm{C}$. I then alkylated this 1,2,3-triazoline with BnOTf. I hydrogenated the 1,2,3-triazolinium ion over Raney Ni with a balloon of H_{2} and basified and purified the crude product to yield the desired 1,2-diamine 75 (Scheme 2.11). The NMR spectroscopy confirmed formation of the product. HRMS revealed that the synthesized product had the molecular formula $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2}$, which further confirmed formation of the desired 1,2-diamine target product. This 1,2-diamine belongs to the family of tetrahydroisoquinolines which are found in a number of medicines and bioactive compounds. ${ }^{40}$

Scheme 2.11 Synthesis of benzyl[(1,2,3,4-tetrahydroisoquinolin-3-yl)methyl]amine 75

2.2.2 Exploring the scope of the 1,2-diamination of alkenes through intramolecular azide-alkene cycloaddition

Besides making 1,2,3-triazolines through intramolecular cycloaddition, we were interested to synthesize 1,2,3-triazolines by intermolecular cycloaddition, N-alkylate them to convert them into 1,2,3-triazolinium ions, and subject them to hydrogenation over Raney Ni. Therefore, I combined the benzyl azide and norbornene to make the 1,2,3-triazoline 76. N-Benzylation of this 1,2,3-triazoline formed the corresponding symmetrical 1,2,3-
triazolinium ion, which was hydrogenated over Raney Ni to afford the 1,2-diamine 77 after basic extraction and column chromatography. (Scheme 2.12).

Scheme 2.12 Synthesis of N^{2}, N^{3}-dibenzylbicyclo[2.2.1]heptane-2,3-diamine 77

The X-ray crystallography analysis of the triflate salt of 1,2-diamine confirmed formation of the target product (Figure 2.7).

Figure 2.7 Thermal ellipsoid plot of 77 as a triflate salt

In collaboration with Dr. Samuel Awuah's medicinal inorganic group at University of Kentucky, the 1,2-diamine 77 (both as a free base and triflate salt) was employed as a chelating ligand for formation of cyclometalated $\mathrm{Au}(\mathrm{III})$ complexes 78 and 79 with various scaffolds (Figure 2.8). Previously, they have synthesized similar cyclometalated $\mathrm{Au}($ III $)$ complexes which have shown low micromolar cytotoxicity against human cancer cell
lines. ${ }^{14}$ This opens the doors to investigate the potential application of the synthesized cyclometalated $\mathrm{Au}($ III) complexes shown in Figure 2.8 in medicinal chemistry.

78

79

Figure 2.8 Potential anticancer Au (III) complexes bearing 1,2-diamine 77 as chelating ligands

Shown in Scheme 2.13 is the preparation of a non-symmetrical 1,2-diamine $\mathbf{8 1}$ in 25% yield (Scheme 2.13). 1,3-Dipolar cycloaddition of phenethyl azide and norbornene formed the 1,2,3-triazoline 80. I synthesized the corresponding 1,2,3-triazolinium ion after subjecting 1,2,3-triazoline $\mathbf{8 0}$ to MeOTf (or $\mathrm{Me}_{2} \mathrm{SO}_{4}$) and hydrogenated that over Raney Ni to form the 1-amino-2-ammonium product $\mathbf{8 1}$ after column chromatography.

Scheme 2.13 Synthesis of N-methyl-3-[(2-phenylethyl)amino]bicyclo[2.2.1]heptan-2-aminium trifluoromethanesulfonate $\mathbf{8 1}$

Although this method of 1,2-diamination of alkene is very interesting, it can only work when the 1,2,3-triazolines are stable enough to be alkylated. For example, I attempted to prepare the 1,2,3-triazoline $\mathbf{8 3}$ from intramolecular azide-alkene cycloaddition of the 2allyl phenyl azide 82. This 1,2,3-triazoline was not as stable as the others, extruding N_{2} as
fast as it forms to yield 2-methylindole $\mathbf{8 4}$ (Scheme 2.14). This can be explained by the tendency of the $1,2,3$-triazoline $\mathbf{8 3}$ to undergo homolytic cleavage at the $\mathrm{N}-\mathrm{N}$ bond to produce the benzylic N radical. This radical is stabilized by resonance with aromatic ring and is converted to the 2-methylindole after H atom shift. ${ }^{41}$

Scheme 2.14 Extrusion of N_{2} from 1,2,3-triazoline $\mathbf{8 3}$

2.3 Conclusion

In this chapter, we showed that 1,2,3-triazolinium ions can be hydrogenated over Raney Ni with a balloon of H_{2} to give 1,2-diamines. In our methodology, a balloon of H_{2} was sufficient to complete the 1,2-diamination reactions which made our approach accessible and easy to apply. We also illustrated that stable 1,2,3-triazolines can be produced via inter- and intramolecular azide-alkene cycloaddition. The fact that 1,2,3triazolines can potentially be isolated and manipulated, would open new doors for the possible application of these compounds in different transformations other than extrusion of N_{2}. A summary of the synthesized 1,2,3-triazolines and 1,2-diamines in this chapter is depicted in Table 2.1.

Table 2.1 List of 1,2-diamines synthesized through azide-alkene cycloaddition

${ }^{\text {a }}$ Yields are calculated for N -alkylation and hydrogenation steps.

2.4 Experimental Section

2.4.1 Safety for handling of azido compounds ${ }^{42}$

Sodium azide $\left(\mathrm{NaN}_{3}\right)$ is a toxic compound (LD50 oral $=27 \mathrm{mg} / \mathrm{kg}$ for rats), so appropriate personal protective equipment (gloves, safety glasses) is required for the safe handling of the chemical. Sodium azide is a health and safety hazard, and the excess amount of that must be quenched following the procedure described in Prudent Practices before disposal ${ }^{43}$. Chlorinated solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3} can produce di- and triazidomethanes (explosive and unstable) in reaction with NaN_{3}, so these solvents should not be used as a reaction medium. Substitution reaction with NaN_{3} can be performed in polar aprotic solvents such as DMSO; these solvents can carry the toxic azide ion through the skin, so extra caution must be taken while handling the reaction mixture.

Organic azides are potentially explosive and can decompose with introduction of energy. All organic azides should be stored at $-20^{\circ} \mathrm{C}$. When designing the synthesis for organic azides, the following equation must be taken to account.

$$
\frac{N_{C}+N_{O}}{N_{N}} \geq 3
$$

Organic azides with a $(C+O) / N>3$ are not explosive and can be stored safely at $-20^{\circ} \mathrm{C}$. We did not isolate the organic azides that contain the ratio of $(C+O) / N \leq 3$; instead, we carry them immediately to the next step after preparation.

2.4.2 Experimental procedures

1,3-Diethyl-2-(2-bromoethyl)-2-(prop-2-en-1-yl)propanedioate

The procedure was adapted from Kuehne, M. E. et al. ${ }^{44}$ A solution of diethyl allylmalonate ($2.52 \mathrm{~g}, 12.6 \mathrm{mmol}$) in dry THF $(3.5 \mathrm{~mL})$ was added dropwise to the stirred suspension of NaH (60% dispersion in mineral oil, $0.76 \mathrm{~g}, 18.9 \mathrm{mmol}$) in dry THF (3.5 $\mathrm{mL})$ at room temperature over a period of 15 minutes. The reaction mixture stirred at room temperature for 1 h . Then a solution of 1,2-dibromoethane ($9.47 \mathrm{~g}, 50.4 \mathrm{mmol}$) in dry THF (3.5 mL) was added dropwise over a period of 15 minutes. The reaction mixture stirred at room temperature for 30 h . Then, $\mathrm{H}_{2} \mathrm{O}$ was added, and the mixture was extracted with ether $(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Further purification of the crude mixture with flash column chromatography (2% EtOAc in hexanes) yielded the pure bromoester
$85(2.92 \mathrm{~g}, 9.51 \mathrm{mmol}, 75 \%)$ as a colorless viscous oil. The experimental data was in accordance with the previously reported data. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.71-5.60(\mathrm{~m}$, $1 \mathrm{H}), 5.18-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.39-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.47-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.3,131.9,119.8,61.7,57.6,37.9,36.3,27.2,14.2$; IR (ATR) 3080, 2938, $1724 \mathrm{~cm}^{-1}$; GC-MS (EI) 263 (4\%), 234 (64\%), 200 (82\%), 199 (100\%), 153 (61\%), 125 (47\%), 79 (52\%).

1,3-Diethyl 2-(2-azidoethyl)-2-(prop-2-en-1-yl)propanedioate

To the solution of bromoester $\mathbf{8 5}(2.26 \mathrm{~g}, 7.36 \mathrm{mmol})$ in dry DMSO $(20 \mathrm{~mL})$ was added $\mathrm{NaN}_{3}(956 \mathrm{mg}, 14.7 \mathrm{mmol})$ in one portion. The mixture stirred at room temperature for 7 h . After reaction completion, $\mathrm{H}_{2} \mathrm{O}$ was added, and the mixture was extracted with ether $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ one more time to remove the remaining DMSO. (Caution: The unreacted sodium azide in the aqueous layer was quenched according to the previously reported protocol. $)^{43}$ The combined organic layer was dried over anhydrous MgSO_{4} and concentrated under vacuum to yield the azide $68(1.79 \mathrm{~g}, 6.65 \mathrm{mmol}, 90 \%)$ as a colorless liquid. The crude product was carried to the next step without further purification and was kept at $-20^{\circ} \mathrm{C}$ to prevent formation of the corresponding 1,2,3-triazoline. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.70-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.18-$ $5.10(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.6,
132.0, 119.7, 61.7, 55.8, 47.3, 37.7, 31.7, 14.1; IR (ATR) 3081, 2982, 2938, 2094, 1727 cm^{-1}; GC-MS (EI) 241 (10\%), 195 (10\%), 168 (100\%), 138 (18\%), 127 (44\%), 99 (40\%).

5,5-Diethyl 3H,3aH,4H,5H,6H,7H-[1,2,3]triazolo[1,5-a]pyridine-5,5-dicarboxylate

A solution of azide $68(1.77 \mathrm{~g}, 6.57 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ was transferred to the sealed tube and heated at $65^{\circ} \mathrm{C}$ for 17 h . (Attention: a NMR sample in CDCl_{3} was also prepared and put into the same oil bath with the sealed tube. Progress of the reaction was monitored by NMR to prevent overheating of the sample and extrusion of N_{2}.) After completion of the cycloaddition, the solvent was evaporated to yield the 1,2,3-triazoline 69 as a colorless liquid ($1.72 \mathrm{~g}, 6.39 \mathrm{mmol}, 97 \%$). The crude product was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.41(\mathrm{dd}, J=14.4,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-4.10(\mathrm{~m}, 3 \mathrm{H}), 3.92(\mathrm{dd}, J=15.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (dddd, $J=11.9,9.4,4.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{ddd}, J=14.7,13.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1 \mathrm{H})$, $1.93(\mathrm{ddd}, J=13.4,4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.84\left(\mathrm{dt}, J_{\mathrm{d}}=5.1 \mathrm{~Hz}, J_{\mathrm{t}}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.40(\mathrm{dd}, J=$ $13.3,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.6,169.9,71.1,62.0,61.9,52.5,51.2,43.3,31.7,30.4,14.2,14.1 ;$ IR (ATR) 2979, 2937, 2868, $1724 \mathrm{~cm}^{-1}$; GC-MS (EI) 241 (20\%), 195 (17\%), 168 (100\%), 138 (20\%), 127 (47\%), 99 (54\%).

4,4-Diethyl 2-[(benzylamino)methyl]piperidine-4,4-dicarboxylate

69

1. BnOTf, DCM, $-60^{\circ} \mathrm{C}$ 2. Raney Ni, 1 atm H_{2}, $\xrightarrow{ }$ 3. Basic extraction 61% for 2 steps

72

A solution of 2,4,6-trimethylpyridine ($104 \mathrm{mg}, 0.860 \mathrm{mmol}$) and benzyl alcohol ($93.0 \mathrm{mg}, 0.860 \mathrm{mmol}$) in 0.5 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to the solution trifluoromethanesulfonic anhydride ($243 \mathrm{mg}, 0.860 \mathrm{mmol}$) in 3 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-60{ }^{\circ} \mathrm{C}$. The mixture stirred at the same temperature for 30 minutes. Then, a solution of 1,2,3triazoline 69 (193 mg, 0.717 mmol$)$ in 2 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise and the mixture stirred at $-60^{\circ} \mathrm{C}$ for 30 minutes. The crude mixture was transferred to another flask and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated under reduced pressure at room temperature. The crude product was used in the next step without further purification.

One small spatula of Raney Ni 2400 slurry in water $(0.7 \mathrm{~g})$ was added to the mixture in isopropanol (6 mL), under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred for 4 h at room temperature. After reaction completion, the mixture was filtered through a short pad of Celite, washed with isopropanol and concentrated under vacuum. The crude mixture was dissolved in CHCl_{3} and subjected to basic extraction using NaOH solution $(\mathrm{pH}=9-10)$ and extracted with $\mathrm{CHCl}_{3}(2 \times 7 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure. Flash chromatography of the residue $(5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the 1,2-diamine 72 as a colorless viscous liquid ($152 \mathrm{mg}, 0.436 \mathrm{mmol}$, 61% for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.19(\mathrm{~m}, 5 \mathrm{H}), 4.26-4.17(\mathrm{~m}, 2 \mathrm{H})$, $4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\operatorname{broad} \mathrm{~s}, 2 \mathrm{NH}), 3.14(\mathrm{ddd}, J=12.7$,
$4.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{dd}, J=12.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31\left(\mathrm{ddt}, J_{\mathrm{d}}=15.9\right.$ $\left.\mathrm{Hz}, J_{\mathrm{d}}=13.4 \mathrm{~Hz}, J_{\mathrm{t}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.92\left(\mathrm{dt}, J_{\mathrm{d}}=4.5 \mathrm{~Hz}, J_{t}=13.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.60(\mathrm{dd}, J=$ $13.3,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.3,170.6,140.0,128.5,128.3,127.2,61.7,61.6,54.0,53.7,52.8,42.8,34.6$, 30.8, 29.8, 14.2, 14.1; IR (ATR) 3313, 2976, 2916, 2847, $1724 \mathrm{~cm}^{-1}$; GC-MS (EI) 303 (3\%), 228 (100\%), 154 (58\%), 91 (23\%); HRMS (ESI) Calcd. For $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 349.2122; Found: 349.2114.

1-(bromomethyl)-2-(prop-2-en-1-yl)benzene

86
A solution of 2-allyl benzyl alcohol ${ }^{45}(954 \mathrm{mg}, 6.44 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was placed in the ice bath for 15 minutes. Then, $\operatorname{PBr}_{3}(2.27 \mathrm{~g}, 8.38 \mathrm{mmol})$ was added dropwise to the cold solution. The resulting mixture was warmed up to room temperature and stirred for 15 minutes. Then the reaction cooled to $0^{\circ} \mathrm{C}$, quenched slowly with ice cooled water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layer was dried over anhydrous MgSO_{4} and concentrated under vacuum. The crude mixture was purified with flash column chromatography (100% hexanes) to afford the bromide $\mathbf{8 6}$ as a colorless liquid ($920 \mathrm{mg}, 4.36 \mathrm{mmol}, 68 \%$). The experimental data was in accordance with the previously reported data ${ }^{46} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.20(\mathrm{~m}, 4 \mathrm{H}), 6.07-5.97$ $(\mathrm{m}, 1 \mathrm{H}), 5.14-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.0,136.7,135.9,130.7,130.4,129.3,127.1,116.4,36.8,31.8 ;$ IR (ATR) 3075, 2980, 2889, 1638, $606 \mathrm{~cm}^{-1}$; GC-MS (EI) 210 (8\%), 131 (100\%), 115 (34\%),

91 (37\%).

1-(azidomethyl)-2-(prop-2-en-1-yl)benzene

To the solution of 2-allyl benzyl bromide $86(483 \mathrm{mg}, 2.29 \mathrm{mmol})$ in dry DMSO (8 $\mathrm{mL})$ was added $\mathrm{NaN}_{3}(223 \mathrm{mg}, 3.43 \mathrm{mmol})$ in one portion. The mixture stirred at room temperature for 45 minutes. After reaction completion, $\mathrm{H}_{2} \mathrm{O}$ was added, and the mixture was extracted with ether $(3 \times 5 \mathrm{~mL})$. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ one more time to remove the rest of DMSO. (Caution: The unreacted sodium azide in the aqueous layer was quenched according to the previously reported protocol. ${ }^{43}$ Then the combined organic layer was dried over anhydrous MgSO_{4} and concentrated under vacuum to yield the azide 73 as a pale yellow liquid ($349 \mathrm{mg}, 2.01 \mathrm{mmol}, 88 \%$). The crude product was kept at $-20^{\circ} \mathrm{C}$ to prevent formation of corresponding triazoline. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.33-7.21(\mathrm{~m}, 4 \mathrm{H}), 5.96\left(\mathrm{ddt}, J_{\mathrm{d}}=16.7 \mathrm{~Hz}, J_{\mathrm{d}}=9.8 \mathrm{~Hz}, J_{\mathrm{t}}=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.09$ (dd, $J=10.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{dd}, J=6.1$, $1.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.5,136.6,133.5,130.4,129.8,129.0$, $126.9,116.3,52.6,37.0$; IR (ATR) $3074,2972,2859,2089 \mathrm{~cm}^{-1}$; GC-MS (EI) $143(100 \%)$, 115 (52\%), 104 (31\%), 128 (4\%), 89 (10\%), 63 (10\%).

$\mathbf{3 H}, \mathbf{3 a H}, 4 \mathrm{H}, 9 \mathrm{H}-[1,2,3]$ triazolo[1,5-b]isoquinoline

A solution of azide $73(349 \mathrm{mg}, 2.01 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was transferred to the sealed tube and heated at $50^{\circ} \mathrm{C}$ for 12 h . (Attention: a NMR sample in CDCl_{3} was also prepared and put into the same oil bath with the sealed tube. Progress of the reaction was monitored by NMR to prevent overheating of the sample and extrusion of N_{2}.) After completion of the cycloaddition, the solvent was evaporated to yield a crude 1,2,3triazoline 74 as a pale yellow solid ($322 \mathrm{mg}, 1.86 \mathrm{mmol}, 92 \%$). The crude product was kept at $-20^{\circ} \mathrm{C}$ to prevent loss of N_{2}. The crude product was used in the next step without further purification. m.p.: $42.5-44.6{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.07(\mathrm{~m}, 4 \mathrm{H}), 5.35$ $(\mathrm{d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=15.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J$ $=15.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67\left(\mathrm{ddt}, J_{\mathrm{d}}=9.3 \mathrm{~Hz}, J_{\mathrm{d}}=4.6 \mathrm{~Hz}, J_{\mathrm{t}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.55(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) 133.6, 133.2, 129.0, 126.9, 126.8, 126.4, 70.2, 52.5, 48.6, 32.0; IR (ATR) 3062, 2956, 2827, $2096 \mathrm{~cm}^{-1}$; GC-MS (EI) 143 (100\%), 115 (55\%), 104 (36\%), 89 (11\%), 63 (10\%).

Benzyl[(1,2,3,4-tetrahydroisoquinolin-3-yl)methyl]amine

74

A solution of 2,4,6-trimethylpyridine ($134 \mu \mathrm{~L}, 1.02 \mathrm{mmol}$) and benzyl alcohol (106 $\mu \mathrm{L}, 1.02 \mathrm{mmol}$) in 0.5 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to the solution trifluoromethanesulfonic anhydride ($171 \mu \mathrm{~L}, 1.02 \mathrm{mmol}$) in 3 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-60{ }^{\circ} \mathrm{C}$. The mixture stirred at the same temperature for 30 minutes. Then solution of 1,2,3triazoline $74(176 \mathrm{mg}, 1.02 \mathrm{mmol})$ in 1 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise and the mixture stirred at $-60^{\circ} \mathrm{C}$ for 20 minutes. The crude mixture was transferred to another flask and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated under reduced pressure at room temperature. The crude product was used in the next step without further purification.

One small spatula of Raney Ni 2400 slurry in water $(0.7 \mathrm{~g})$ was added to the mixture in isopropanol (6 mL), under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred for 1 h at room temperature. After reaction completion, the mixture was filtered through a short pad of Celite, washed with isopropanol and concentrated under vacuum. The crude mixture was dissolved in chloroform and subjected to basic extraction using NaOH solution $(\mathrm{pH}=10)$ and extracted with $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated. Flash chromatography of the residue $\left(5 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded the 1,2-diamine 75 as a white solid ($87.0 \mathrm{mg}, 0.345 \mathrm{mmol}, 34 \%$). m.p.: $154.4-157.3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.43-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.09-6.97(\mathrm{~m}, 2 \mathrm{H}), 4.89$ $(\mathrm{s}, 2 \mathrm{NH}), 4.15-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.26\left(\mathrm{ddt}, J_{\mathrm{d}}=10.2 \mathrm{~Hz}, J_{\mathrm{d}}=8.8, J_{\mathrm{t}}=4.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=12.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{dd}, J=16.5,10.1 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.3,133.2,133.1,129.3,128.8,128.7,127.7,126.9$, $126.4,126.4,53.5,52.9,52.1,46.7,32.1$; IR (ATR) $3270,3221,3022,2917,2863 \mathrm{~cm}^{-1}$;

GC-MS (EI) 145 (2\%), 132 (100\%), 130 (37\%), 117(5\%), 105 (4\%), 91 (32\%); HRMS (ESI) Calcd. For $\mathrm{C}_{17} \mathrm{H}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 253.1699; Found: 253.1686.

5-benzyl-3,4,5-triazatricyclo[5.2.1.0 $\left.{ }^{2,6}\right]$ dec-3-ene

To the solution of benzyl azide ${ }^{47}(3.51 \mathrm{~g}, 26.4 \mathrm{mmol})$ in toluene $(40 \mathrm{~mL})$, norbornene $(2.98 \mathrm{~g}, 31.7 \mathrm{mmol})$ was added and the reaction mixture was warmed up to 90 ${ }^{\circ} \mathrm{C}$ and stirred for 10 h . After the completion of the reaction, solvent was evaporated under reduced pressure. The product was dissolved in ether/ hexane (1:1) and solvents were evaporated under medium flow of N_{2} to afford the solid product. Then, the solid was placed on a filter paper and washed with cold hexanes to obtain the 1,2,3-triazoline 76 as a white solid (5.52 g, $24.3 \mathrm{mmol}, 92 \%$).). m.p.: $72.5-73.7^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-$ $7.12(\mathrm{~m}, 5 \mathrm{H}), 4.90(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.09(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H})$, $1.13(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 137.1,128.8,128.3,127.9,86.4,62.0,52.7$, $41.6,40.5,32.6,25.9,24.8$; IR (ATR) 3030, 2958, $2869 \mathrm{~cm}^{-1}$; GC-MS (EI) 199 (8\%), 170 (42\%), 108 (9\%), 91 (100\%), 65 (20\%).

N^{2}, N^{3}-dibenzylbicyclo[2.2.1]heptane-2,3-diamine

76

A solution of 2,4,6-trimethylpyridine ($117 \mathrm{mg}, 0.966 \mathrm{mmol}$) and benzyl alcohol ($105 \mathrm{mg}, 0.966 \mathrm{mmol}$) in 1.0 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to the solution of trifluoromethanesulfonic anhydride ($273 \mathrm{mg}, 0.966 \mathrm{mmol}$) in 6 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-60{ }^{\circ} \mathrm{C}$. The mixture stirred at the same temperature for 30 minutes. Then solution of 1,2,3triazoline $76(183 \mathrm{mg}, 0.805 \mathrm{mmol})$ in 1.5 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise and the mixture stirred at $-60^{\circ} \mathrm{C}$ for 1 h . The crude mixture was transferred to another flask and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated under reduced pressure at room temperature. The crude product was used in the next step without further purification.

To the solution of crude mixture in isopropanol (10 mL), I added one small spatula of Raney Ni 2400 slurry in water $(0.81 \mathrm{~g})$ under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred for 10 h at room temperature. After reaction completion, the mixture was filtered through a short pad of Celite and concentrated under vacuum. The crude mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected to basic extraction using NaOH solution $(\mathrm{pH}=11)$ for 18 h . The crude mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ two more times ($2 \times 7 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated. Flash chromatography of the residue ($3 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the 1,2-diamine 77 as a white solid ($119 \mathrm{mg}, 0.388 \mathrm{mmol}$, 48% for 2 steps). Crystals of the triflate salt of 77 were grown by diffusion method from

DCM/ hexanes for X-ray crystallographic analysis. m.p.: 126.1-128.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.12(\mathrm{~m}, 10 \mathrm{H}), 5.28(\operatorname{broad} \mathrm{~s}, 2 \mathrm{NH}), 4.00(\mathrm{dd}, J=13.4,4.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.84(\mathrm{dd}, J=13.3,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 2 \mathrm{H}), 2.48-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.61-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.11\left(\mathrm{ddt}, J_{\mathrm{d}}=10.9 \mathrm{~Hz}, J_{\mathrm{d}}=3.4, J_{\mathrm{t}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.99(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 129.3,129.2,128.7,127.8,62.9,52.5,40.2,33.4,26.7$; IR (ATR) 3314, 3247, 3059, 2948, 2866, $2807 \mathrm{~cm}^{-1}$; GC-MS (EI) 306 (5\%), 215 (24\%), 200 (49\%), 146 (20 \%), 91 (100\%), 65 (10\%); HRMS (ESI) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 307.2169; Found: 307.2170.
(2-azidoethyl)benzene

Sodium azide ($596 \mathrm{mg}, 9.17 \mathrm{mmol}$) was added to the stirred solution of (2bromoethyl)benzene ($1.13 \mathrm{~g}, 6.11 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}$: Acetone mixture ($1: 4 \mathrm{v} / \mathrm{v}, 2 \mathrm{~mL}: 8 \mathrm{~mL}$). The resulting suspension was stirred at $60^{\circ} \mathrm{C}$ for overnight. Then acetone was evaporated, and the aqueous layer was extracted with diethyl ether $(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, and the solvent was evaporated under reduced pressure to yield the azide 87 as a colorless liquid ($760 \mathrm{mg}, 5.16 \mathrm{mmol}, 84 \%$). The crude product was immediately used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78-6.20(\mathrm{~m}, 5 \mathrm{H}), 2.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-1.78(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 138.2,128.9,128.8,126.9,52.6,35.5$; IR (ATR) 3066, 3029, 2930, $2090 \mathrm{~cm}^{-1}$.

5-(2-phenethyl)-3,4,5-triazatricyclo[5.2.1.0 $\left.{ }^{2,6}\right]$ dec-3-ene

To the solution of phenethyl azide $87(3.25 \mathrm{~g}, 22.1 \mathrm{mmol})$ in toluene (35 mL), norbornene $(2.50 \mathrm{~g}, 26.5 \mathrm{mmol})$ was added and the reaction mixture was warmed up to 90 ${ }^{\circ} \mathrm{C}$ and stirred for 5 h . After the completion of the reaction, solvent was evaporated under reduced pressure. The product was dissolved in ether (2 mL) and solvent was evaporated under medium flow of N_{2} afford the solid product. Then, the solid was placed on a filter paper and washed with cold hexanes to obtain the 1,2,3-triazoline $\mathbf{8 0}$ as a white solid (4.55 g, $18.8 \mathrm{mmol}, 85 \%$). m.p.: $55.8-56.8^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.22(\mathrm{~m}$, $5 \mathrm{H}), 4.37(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{ddd}, J=14.0,8.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (ddd, $J=14.1$, 8.7, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.28(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.17-1.06(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 139.0,128.9,128.7,126.6,85.7,63.1,49.9,41.4,40.9,35.6$, 32.5, 25.9, 24.9; IR (ATR) 3060, 2961, $2867 \mathrm{~cm}^{-1}$; GC-MS (EI) 213 (6\%), 122 (100\%), 105 (44\%), 91 (41\%), 77 (27\%).

N-methyl-3-[(2-phenylethyl)amino]bicyclo[2.2.1]heptan-2-aminium trifluoromethanesulfonate

A solution of $1,2,3$-triazoline $\mathbf{8 0}(152 \mathrm{mg}, 0.630 \mathrm{mmol})$ in 1.0 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to the solution of $\operatorname{MeOTf}(124 \mathrm{mg}, 0.756 \mathrm{mmol})$ in 3 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-25^{\circ} \mathrm{C}$. The resulting mixture stirred at the same temperature for 40 minutes. Then the crude mixture was transferred to another flask and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated under reduced pressure at room temperature. The crude product was used in the next step without further purification.

One small spatula of Raney Ni 2400 slurry in water (0.63 g) was added to the mixture in isopropanol (6 mL), under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred for 7 h at room temperature. After reaction completion, the mixture was filtered through a short pad of Celite washed with isopropanol and concentrated under vacuum. Flash chromatography of the residue $\left(2 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded the 1,2 -diamine $\mathbf{8 1}$ as a white triflate salt (61 $\mathrm{mg}, 0.155 \mathrm{mmol}, 25 \%$ for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-$ $7.20(\mathrm{~m}, 3 \mathrm{H}), 4.82(\mathrm{~s}, 3 \mathrm{NH}), 3.26-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.78(\mathrm{~m}, 3 \mathrm{H}), 2.76(\mathrm{dd}, J=6.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=7.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.26(\mathrm{~m}$, $1 \mathrm{H}), 1.57(\mathrm{ddd}, J=9.2,4.6,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.24\left(\mathrm{dt}, J_{\mathrm{d}}=11.6 \mathrm{~Hz}, J_{\mathrm{t}}=1.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.19-1.10$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.9,129.0,128.9,126.8,122.1,118.9,65.8$, $63.0,51.4,41.9,39.7,35.8,34.5,33.3,26.5,26.4$; IR (ATR) 3311, 3086, 2965, $2880 \mathrm{~cm}^{-}$
${ }^{1}$; HRMS (ESI) Calcd. For $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 245.2012$; Found: 245.2005.

Chapter 3 1,2-Diamination of alkenes via azidium ion-alkene cycloaddition

3.1 Introduction

The idea that 1,2,3-triazolinium ions were reducible to 1,2 -diamines was very captivating. We were eager to expand the scope of our 1,2-diamination methodology by synthesizing 1,2-diamines from 1,2,3-triazolinium ions with various skeletal structures and functional groups. Therefore, we looked for alternative routes for synthesizing 1,2,3triazolinium ions.

In 1996, Jochims et al. reported numerous examples of the intermolecular cycloaddition of alkenes and 1,3-diaza-2-azoniaallene salts (azidium ions, $\mathrm{ArN}=\mathrm{N}^{+}=\mathrm{NAr}$) to give various 1,2,3-triazolinium ions (Scheme 3.1). ${ }^{48}$ The azidium ions were themselves synthesized by oxidation of a triazene with $t-\mathrm{BuOCl}$. We hypothesized that $1,2,3-$ triazolinium ions prepared in this way could be hydrogenated over Raney Ni and a balloon of H_{2} to prepare various 1, 2-diamines.

Scheme 3.1 Jochims et al. approach to synthesize 1,2,3-triazolinium ions

3.2 Results and discussion

I have synthesized various 1,2,3-triazolinium ions using 1,3-bis(4chlorophenyl)triazene, t - BuOCl , and cyclic, terminal, acyclic trans, and acyclic cis alkenes bearing various functional groups such as alcohol and ketone. The stereospecific syn
cycloaddition of the azidium ion to the alkenes was confirmed by obtaining the X-ray crystallographic analysis of eight out of ten synthesized 1,2,3-triazolinium ions.

The 1,2,3-triazolinium ions were hydrogenated over Raney Ni with a balloon of H_{2}, and I could successfully prepare a variety of 1,2-diamines in two steps from the triazene. All of the synthesized 1,2-diamines bore a 4-chlorophenyl group on each N atom. The C Cl bonds of the aryl groups survived the reduction condition and were not cleaved during the time required to complete the reduction of the $\mathrm{N}-\mathrm{N}$ bonds. We have also investigated the possibility of using 1,3-bis(4-methoxyphenyl)triazene, which could install 4methoxyphenyl group on each N atom instead of the 4-chlorophenyl group. The 4methoxyphenyl group can be oxidatively removed by treatment with aqueous ceric ammonium nitrate (CAN) ${ }^{49}$ to afford a more useful 1,2-diamine product. Unfortunately, I have not yet been able to obtain a 1,2,3-triazolinium ion from 1,3-bis(4methoxyphenyl)triazene. The difference may be that during the oxidation of triazene with t - BuOCl , a triazene bearing electron-rich 4-methoxyphenyl group may undergo side reactions more quickly than will the triazene bearing a 4-chlorophenyl group.

We were very careful to clearly establish the relative stereochemistry of the prepared 1,2-diamines and further examine the stereospecificity of this method with respect to the alkene stereochemistry.

3.2.1 Reduction of 1,2,3-triazolinium ions from cyclic alkenes

The X-ray crystallographic analysis of 1,2,3-triazolinium ions $\mathbf{8 8}$ and $\mathbf{9 0}$ confirmed the syn 1,3-dipolar cycloaddition of the azidium ion to their corresponding alkenes. (Appendix). Hydrogenolysis of these triazolinium ions resulted in the formation of the cis-1,2-diamines, as expected (Scheme 3.2).

88

90
 65\%

1. Raney Ni, H_{2} i-PrOH
2. Basic extraction 61\%

89

91
Ar = 4-chlorophenyl

Scheme 3.2 Synthesis of N^{1}, N^{2}-bis(4-chlorophenyl)cyclopentane-1,2-diamine 91, and N^{1}, N^{2}-bis(4-chlorophenyl)-2,3-dihydro-1H-indene-1,2-diamine 93

I used NMR spectroscopy to confirm the cis configurations of the 1,2-diamines $\mathbf{8 9}$
and 91. For cyclopentane-1,2-diamine 89, the HSQC spectrum (Figure 3.2) revealed the presence of two distinct geminal resonances at 1.67 ppm and 1.82 ppm connected to $\mathrm{C}(3)$, which is a result of the diastereotopic relationship between these H atoms. This evidence was consistent with the cis isomer depicted in Figure 3.1.

cis isomer
Vs.
Homotopic

trans isomer

Figure 3.1 Cis and trans isomers of N^{1}, N^{2}-bis(4-chlorophenyl)cyclopentane-1,2-diamine 89

Figure 3.2 HSQC spectrum of N^{1}, N^{2}-bis(4-chlorophenyl)cyclopentane-1,2-diamine 89

The cis configuration of the indane-1,2-diamine 91 was established using the NOESY spectrum (Figure 3.4). I observed a correlation between H atoms at $\mathrm{C}(1)$ and $\mathrm{C}(2)$. This correlation is possible if the two NH groups have the cis orientation, which is consistent with the cis isomer of indane-1,2-diamine 91 (Figure 3.3).

Figure $3.3{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY correlations between H atoms at $\mathrm{C}(1)$ and $\mathrm{C}(2)$ in N^{1}, N^{2}-bis $(4-$ chlorophenyl)-2,3-dihydro-1H-indene-1,2-diamine 91

Figure $3.4{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of N^{1}, N^{2}-bis(4-chlorophenyl)-2,3-dihydro-1H-indene-1,2diamine 91

Similarly, the cyclohexane-1,2-diamine $\mathbf{9 2}$ was synthesized (Scheme 3.3), and the X-ray crystallographic analysis of its HCl salt confirmed the cis stereochemistry of the product (Figure 3.5). This result further confirmed the retention of the stereochemistry during the hydrogenolysis of the corresponding 1,2,3-triazolinium ion.

Scheme 3.3 Synthesis of N^{1}, N^{2}-bis(4-chlorophenyl)cyclohexane-1,2-diamine 92

92 (as a HCl salt)

Figure 3.5 The thermal ellipsoid plot of N^{1}, N^{2}-bis(4-chlorophenyl)cyclohexane-1,2-diamine $\mathbf{9 2}$ as a HCl salt

We also investigated cycloocta-1,5-diene as a substrate that could potentially allow us to prepare the mono or double 1,2,3-triazolinium ions $\mathbf{9 3}$ and $\mathbf{9 4}$, respectively (Scheme 3.4). Combination of one equivalent of azidium ion with cycloocta-1,5-diene formed the mono adduct 1,2,3-triazolinium ion 93 in 66% yield, as confirmed by NMR analysis. However, I was unable to find appropriate conditions to prepare or isolate the double adduct 1,2,3-triazolinium ion 94.

Scheme 3.4 Formation of mono adduct 1,2,3-triazolinium ion $\mathbf{9 3}$ via cycloaddition of the azidium ion with cycloocta-1,5-diene

The reaction of this 1,2,3-triazolinium ion $\mathbf{9 3}$ with Raney Ni and a balloon of H_{2} reduced both the 1,2,3-triazolinium ion and the alkene bond to give the cyclooctane-1,2diamine 95 (Scheme 3.5). In this example, the reduction time was significantly longer comparing to the other examples, which possibly provided enough time for the $\mathrm{C}-\mathrm{Cl}$ bonds to cleave, and I was able to recover the 1,2-diamine product $\mathbf{9 5}$ with only 29% yield.

Scheme 3.5 Synthesis of N^{1}, N^{2}-bis(4-chlorophenyl)cyclooct-5-ene-1,2-diamine 95

Based on the stereochemistry of other mentioned cycloalkane 1,2,3-triazolinium ions and 1,2-diamines being cis, it was reasonable to assume that the 1,2,3-triazolinium ion 93 and cyclooctane-1,2-diamine 95 would have the same cis stereochemistry. However, this assumption was not yet proven, and their stereochemistry had yet to be established rigorously.

3.2.2 Reduction of 1,2,3-triazolinium ion from the acyclic trans and terminal alkenes

The trans configuration of 1,2,3-triazolinium ions $\mathbf{9 6}, \mathbf{9 8}$, and $\mathbf{1 0 0}$ was established by X-ray crystallographic analysis (Appendix). Upon hydrogenation, the corresponding 1,2-diamines 97, 99, and 101 were prepared (Scheme 3.6). These results further confirmed the expected syn cycloaddition of the azidium ion to the trans alkenes and the preservation of the stereochemistry of the $\mathrm{C}-\mathrm{N}$ bonds during hydrogenolysis.

Scheme 3.6 Synthesis of various 1,2-diamines from trans and terminal alkenes

Analysis of the X-ray crystallography of the 1,2-diamine 97 and $\mathbf{9 9}$ (as a HCl salt) confirmed the threo configuration of the products (Appendix). As we expected, the stereochemistry of their corresponding 1,2,3-triazolinium ions was preserved during their hydrogenation over Raney Ni. Figure 3.6 shows an example of the trans-1,2,3-triazolinium ion and its corresponding threo 1,2-diamine.

(trans 1,2,3-triazolinium ion 96)

(threo 1,2-diamine 97)

Figure 3.6 Thermal ellipsoid plots of the 1,2,3-triazolinium 96, and the 1,2-diamine 97

Note: The terms erythro and threo designate the difference between diastereomers containing two adjacent stereocenters and bearing two different pairs of identical substituents. In the Fischer projection, the threo isomer contains the identical substituents
on the opposite side, whereas the erythro isomer has them on the same side (Figure 3.7).
These terminologies are adapted from the saccharides D-erythrose and D-threose.

D-Erythrose

D-Threose

Figure 3.7 Fischer projection of D-erythrose and D-threose

3.2.3 Reduction of the 1,2,3-triazolinium ion from acyclic cis alkenes

I prepared the 1,2,3-triazolinium ions $\mathbf{1 0 4}$ and $\mathbf{1 0 6}$ from their acyclic cis alkenes, and their cis configuration were confirmed by X-ray crystallographic analysis (Appendix).

R	1,2,3-triazolinium ion	1,2-diamine ${ }^{\text {a }}$
H	$104,85 \%$	$105,58 \%$
Bn	$106,56 \%$	$107,58 \%$
Ar		

Ar = 4-chlorophenyl; ${ }^{\text {al }}$ solated yield of 1,2-diamine from 1,2,3-triazolinium ions.

Scheme 3.7 Synthesis of 2,3-bis[(4-chlorophenyl)amino]butane-1,4-diol 105, and 1,4-bis(benzyloxy)- N^{2}, N^{3}-bis(4-chlorophenyl)butane-2,3-diamine 107

Surprisingly, X-ray crystallographic analysis showed that the reduction of these 1,2,3-triazolinium ions with Raney Ni formed the 1,2-diamines 105 and 107, which had the threo configuration instead of the expected erythro configuration (Scheme 3.7). Figure 3.8 illustrates the reduction of the cis 1,2,3-triazolinium ion to the threo 1,2-diamine.

(cis 1,2,3-triazolinium ion 104)

Figure 3.8 Thermal ellipsoid plots of the 1,2,3-triazolinium 104, and the 1,2-diamine $\mathbf{1 0 5}$ (as a trifluoroacetate salt)

The 1,2,3-triazolinium ions $\mathbf{1 0 4}$ and $\mathbf{1 0 6}$ had inherited the cis configuration from the cis alkene, implying that the cycloaddition occurred via syn fashion, as expected. Therefore, we concluded that the isomerization must have happened during the hydrogenation step (Scheme 3.8). We hypothesized that the isomerization had occurred before the ring-opening in the triazolinium ion. The threo and erythro isomers of the 1,2diamines were not likely to be far apart in energy; therefore, the conversion of cis 4,5disubstituted ring to trans 4,5-disubstituted ring was possibly the driving force for the isomerization to occur. We proposed that Raney Ni coordinated to $\mathrm{N}(1)$ or $\mathrm{N}(3)$ of cis 4,5disubstituted ring and underwent β-hydride elimination to form the intermediate 108. This intermediate can undergo reinsertion to afford the more stable trans 4,5-disubstituted ring. The mechanism of hydrogenolysis by Raney Ni is not completely known, but Raney Ni can possibly cleave the $\mathrm{N}-\mathrm{N}$ bonds and form the 1,2-diamine product. ${ }^{50,51}$

Scheme 3.8 Possible mechanism by which Raney Ni converts the cis-1,2,3-triazolinium ions to the threo 1,2-diamines

This is not the first time that we have been shocked by Raney Ni. Previous work in our lab has reported replacing H with D (or vice versa) in the synthesis of pentadeuterated AcAP (Scheme 3.9). ${ }^{52}$ We observed that the products contained 85% monodeuterated, 13% undeuterated, and only a trace amount of dideuterated pyrrolizidine ring. This result suggested that Raney Ni may have catalyzed substitution of the D with H through β-hydride elimination and reinsertion to form a monodeuterated pyrrolizidine ring.

$\left[{ }^{2} \mathrm{H}_{2}\right]$-Oxime

Scheme 3.9 Replacement of D with H by Raney Ni

In another example (Scheme 3.10), the 1,2,3-triazolinium ion 109 was subjected to Raney Ni , and the corresponding 1,2-diamine was purified as a mixture of erythro $\mathbf{1 1 0}$ and
threo 99 isomers (86% : 14% by GC-MS in favor of the expected erythro isomer). Unlike previous examples, the major product was the erythro isomer. In this case, it is likely that the low yield of the undesired threo isomer is because of the slower isomerization.

Scheme 3.10 Reduction of the 1,2,3-triazolinium $\mathbf{1 0 9}$ formed the 1,2-diamine product with partial inversion of the stereochemistry

3.2.4 Reduction of the 1,2,3-triazolinium ion derived from 5-hexen-2-one

The triazolinium ion 111 was prepared from addition of the azidium ion to 5-hexen-2-one. X-ray crystallographic (Figure 3.9) and NMR analysis confirmed formation of the product with the carbonyl group remaining intact. Surprisingly, hydrogenolysis of 1,2,3triazolinium ion over Raney Ni formed the 1,2-diamine 112 in 47\% yield (Scheme 3.11).

Scheme 3.11 Synthesis of 2,3-bis[(4-chlorophenyl)amino]-1-methylcyclopentan-1-ol 112

NMR analysis confirmed formation of the 1,2 diamine $\mathbf{1 1 2}$ (Appendix). The ${ }^{1} \mathrm{H}$ NMR presented two downfield H atoms resonating at 3.44 ppm (doublet) and at 3.92 ppm (doublet of triplet), which were consistent with the H atoms connected to $\mathrm{C}(2)$ and $\mathrm{C}(3)$,
respectively. Also, disappearance of the carbonyl carbon was noticeable in ${ }^{13} \mathrm{C}$ NMR. The HSQC and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations matched the structure of the 1,2 -diamine $\mathbf{1 1 2}$ (Appendix). Additionally, the X-ray crystallographic analysis of 1,2-diamine 112 (as a HCl salt) validated the proposed structure (Figure 3.9).

Figure 3.9 Thermal ellipsoid plot of 1,2,3-triazolinium 111, and 1,2-diamine 112

To explain the $\mathrm{C}-\mathrm{C}$ bond formation in this reaction, we hypothesized that similar to the above mechanism, Raney Ni coordinates to an $\mathrm{N}(1)$ or $\mathrm{N}(3)$ and catalyzes the β hydride elimination to form the hydrazone intermediate $\mathbf{1 1 3}$ (Scheme 3.12). We proposed that deprotonation of the iminium ion at the alpha position formed the enamine intermediate 114. Further nucleophilic attack of the $C(4)$ to the carbonyl group could possibly form the cyclic intermediate 115. Reinsertion of the $\mathrm{Ni}-\mathrm{H}$ to the iminium ion bond in intermediate $\mathbf{1 1 5}$ formed the intermediate 116, which would likely undergo $\mathrm{N}-\mathrm{N}$ bonds cleavage by Raney Ni to form the 1,2-diamine 112.

Scheme 3.12 Possible mechanism by which Raney Ni converts 1,2,3-triazolinium 111 to 1,2diamine 112

3.3 Summary

In chapter 3, I have shown that 1,2,3-triazolinium ions can also be prepared by azidium ion-alkene cycloaddition. I also reduced these 1,2,3-triazolinium ions over Raney Ni with a balloon of H_{2}. Reduction of the 1,2,3-triazolinium ions derived from the cyclic alkenes formed the cis-1,2-diamine, as expected. The stereochemistry of these 1,2diamines was confirmed by NMR or X-ray crystallographic except for cyclooctane-1,2diamine 95. Hydrogenation of the 1,2,3-triazolinium ions from acyclic trans alkenes also proceeded with retention of the stereochemistry. Unexpectedly, the reduction of 1,2,3triazolinium ions derived from the acyclic cis alkenes proceeded with partial or complete inversion of the stereochemistry. The evidence suggested that this isomerization occurred
during the hydrogenation step. Shockingly, the reduction of the 1,2,3-triazolinium ion derived from the 5 -hexen-2-one proceeded by making an additional $\mathrm{C}-\mathrm{C}$ bond. Additionally, I was able to crystalize most of the 1,2,3-triazolinium ions and 1,2-diamines to confirm their structure and stereochemistry with X-ray crystallographic analysis. A summary of the synthesized 1,2,3-triazolinium ions and 1,2-diamines in this chapter is depicted in Table 2.1.

Table 3.1 List of 1,2-diamines synthesized through azidium ion-alkene cycloaddition
entry
$\mathrm{Ar}=4$-chlorophenyl; ${ }^{b}$ Isolated yield of 1,2-diamine from triazene; ${ }^{\mathrm{c}} \mathrm{ND}=$ not determined; ${ }^{d}$ The relative stereochemistry has not yet been proven to be cis.

3.4 Experimental Section

1,3-bis(4-chlorophenyl)-3H,3aH,4H,5H,6H,6aH-cyclopenta[d][1,2,3]triazol-1-ylium chloride

To the suspension of 1,3-bis(4-chlorophenyl)triazene ${ }^{53,54}(503 \mathrm{mg}, 1.89 \mathrm{mmol})$ and cyclopentene ($155 \mathrm{mg}, 2.27 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}), t-\mathrm{BuOCl}(246 \mathrm{mg}, 2.27 \mathrm{mmol})$ was added dropwise at $-60^{\circ} \mathrm{C}$ with exclusion of light. The resulting light red solution was stirred at $-45^{\circ} \mathrm{C}$ for 1 h , then at $0^{\circ} \mathrm{C}$ for 30 minutes, and at room temperature for 20 minutes. Then, the solvent was evaporated under reduced pressure. The resulting yellow solid was precipitated from chloroform $(9 \mathrm{~mL})$ and ether $(20 \mathrm{~mL})$. The solvent was decanted and the yellow solid was washed with ether one more time. To evaporate the residue of ether the yellow solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the mixture of solvents was evaporated under reduced pressure to result the yellow 1,2,3-triazolinium ion 88 as a yellow chloride salt ($594 \mathrm{mg}, 1.61 \mathrm{mmol}, 85 \%$). Crystals of $\mathbf{8 8}$ were grown by dissolving the substrate in CHCl_{3} and the slow evaporation of solvent for X-ray crystallographic analysis. m.p.: 235.0-237.6 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$ 7.94-7.66 (m, 4H), 7.54-7.39 (m, 4H), 6.95-6.71 (m, $2 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{ddd}, J=14.8,6.7,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.96\left(\mathrm{dtt}, J_{\mathrm{d}}=12.8 \mathrm{~Hz}, J_{\mathrm{t}}=6.3 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{t}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.46\left(\mathrm{ddt}, J_{\mathrm{d}}=13.3, J_{\mathrm{d}}=3.3 \mathrm{~Hz}, J_{\mathrm{t}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 136.3,133.3,130.7,121.1,72.7,34.7,24.0 ;$ IR (ATR) $3085,2977,2858 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. For $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{3}[\mathrm{M}]^{+}: 332.0716$; Found: 332.0679.

N^{1}, N^{2}-bis(4-chlorophenyl)cyclopentane-1,2-diamine

One small spatula of Raney Ni 2400 slurry in water (0.43 g) was added to the solution of 1,2,3-triazolinium $88(159 \mathrm{mg}, 0.430 \mathrm{mmol})$ in isopropanol (3 mL), under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred at room temperature for 2 h and 30 min (Reaction completion was accompanied by the reaction mixture color change from yellow to colorless and monitored by running TLC in $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). After reaction completion, the mixture was filtered through a short pad of Celite, washed with isopropanol and concentrated under vacuum. The crude mixture was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected to basic extraction using NaOH solution $(\mathrm{pH}=10)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Flash chromatography of the residue (5\% EtOAc in Hexanes) afforded the 1,2-diamine $\mathbf{8 9}$ as a light orange viscous liquid (89.8 $\mathrm{mg}, 0.279 \mathrm{mmol}, 65 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.67-6.39(\mathrm{~m}$, $4 \mathrm{H}), 4.01($ broad s, 2NH), $3.78(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.76(\mathrm{~m}, 1 \mathrm{H})$, $1.75-1.58(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 146.4,129.2,122.4,114.7,56.7,31.7$, 20.8; IR (ATR) 3387, 3052, 2953, $2862 \mathrm{~cm}^{-1}$; GC-MS (EI) 320 (4\%), 196 (35\%), 194 (100\%), 166 (8\%), 140 (8\%), 127 (23\%); HRMS (ESI) Calcd. For $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 321.0920; Found: 321.0931 .

1,3-bis(4-chlorophenyl)-3H,3aH,8H,8aH-indeno[1,2-d][1,2,3]triazol-1-ylium chloride

To the suspension of 1,3-bis(4-chlorophenyl)triazene (178 mg, 0.669 mmol) and indene ($93.3 \mathrm{mg}, 0.803 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}), t-\mathrm{BuOCl}(87.0 \mathrm{mg}, 0.803 \mathrm{mmol})$ was added dropwise at $-60^{\circ} \mathrm{C}$ with exclusion of light. The resulting light red solution was stirred at $-45^{\circ} \mathrm{C}$ for 1 h , then at $0^{\circ} \mathrm{C}$ for 30 minutes, and at room temperature for 20 minutes. Then, the solvent was evaporated under reduced pressure. The resulting yellow solid was precipitated from chloroform (9 mL) and ether (60 mL). The solvent was decanted and the yellow solid was washed with ether one more time. To evaporate the residue of ether the yellow solid was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the mixture of solvents was evaporated under reduced pressure to result the orangish-yellow 1,2,3-triazolinium ion 90 as a chloride salt ($200 \mathrm{mg}, 0.480 \mathrm{mmol}, 72 \%$). Crystals of $\mathbf{9 0}$ were grown by diffusion method from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / THF for X-ray crystallographic analysis. m.p.: $178.5-182.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 8.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.85-7.64$ $(\mathrm{m}, 4 \mathrm{H}), 7.44(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.44(\mathrm{ddd}, J=11.2,8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.98(\mathrm{dd}, J=17.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=18.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 141.7,137.8,137.1,135.6,135.3,135.1,132.2,131.7,131.7,129.4,126.9$, 126.8, 124.1, 122.3, 76.7, 71.0, 39.4; IR (ATR) 3016, 2980, 2922, $2866 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{3}[\mathrm{M}]^{+}: 380.0716$; Found: 380.0693.

N^{1}, N^{2}-bis(4-chlorophenyl)-2,3-dihydro-1H-indene-1,2-diamine

One small spatula of Raney Ni 2400 slurry in water (0.22 g) was added to the solution of 1,2,3-triazolinium ion $90(89.1 \mathrm{mg}, 0.214 \mathrm{mmol})$ in isopropanol (5 mL), under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred at room temperature for 7 h (Reaction completion was accompanied by the reaction mixture color change from yellow to colorless and monitored by running TLC in $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). After reaction completion, the mixture was filtered through a short pad of Celite, washed with isopropanol and concentrated under vacuum. The crude mixture was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected to basic extraction using NaOH solution $(\mathrm{pH}=10)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Flash chromatography of the residue $(6 \% \mathrm{EtOAc}$ in Hexanes) afforded the 1,2-diamine 91 as a viscous liquid ($48.2 \mathrm{mg}, 0.130 \mathrm{mmol}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.36-7.22 (m, 4H), 7.16-7.06 (m, 4H), $6.65(\mathrm{~d}, J=8.5,2 \mathrm{H})$, $6.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39\left(\mathrm{dt}, J_{\mathrm{t}}=6.0 \mathrm{~Hz}, J_{\mathrm{d}}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.15(\operatorname{broad} \mathrm{~s}, 2 \mathrm{NH}), 3.32(\mathrm{dd}, J=16.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=16.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 146.5,146.1,142.3,140.6,129.4,129.2,128.7,127.5,125.7$, 124.6, 123.0, 122.5, 114.9, 114.8, 61.6, 57.2, 38.0. IR (ATR) 3410, 3356, 3044, 2980, 2896 cm^{-1}; GC-MS (EI) 368 (1.37\%), 242 (100\%), 207 (4.47\%), 127 (8.0\%), 115 (7.0\%), 103 (3.2\%); HRMS (ESI) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 369.0920; Found: 369.0931.

N^{1}, N^{2}-bis(4-chlorophenyl)cyclohexane-1,2-diamine

. Basic extraction
43% for 2 steps
To a suspension of 1,3-bis(4-chlorophenyl)triazene ($529 \mathrm{mg}, 1.99 \mathrm{mmol}$) and cyclohexene ($196 \mathrm{mg}, 2.38 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}), t-\mathrm{BuOCl}(259 \mathrm{mg}, 2.38 \mathrm{mmol})$ was added dropwise at $-60^{\circ} \mathrm{C}$ with exclusion of light. The resulting light red solution was stirred at $-45^{\circ} \mathrm{C}$ for 1 h , then at $0^{\circ} \mathrm{C}$ for 30 minutes, and at room temperature for 20 minutes. Then, the solvent was evaporated under reduced pressure. The resulting yellow solid was precipitated from chloroform (6 mL) and ether $(50 \mathrm{~mL})$. The solvent was decanted and the yellow solid was washed with ether one more time. To evaporate the residue of ether, the yellow solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the mixture of solvents was evaporated under reduced pressure to give the yellow 1,2,3-triazolinium ion as a chloride salt (crude mass: 443 mg).

One small spatula of Raney Ni 2400 slurry in water (1.3 g) was added to the solution of crude 1,2,3-triazolinium ion ($443 \mathrm{mg}, 1.16 \mathrm{mmol}$) in isopropanol (7 mL), under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred at room temperature for 2 h and 30 min . (Reaction completion was accompanied by the reaction mixture color change from yellow to colorless and monitored by running TLC in $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.) After reaction completion, the mixture was filtered through a short pad of Celite, washed with isopropanol and concentrated under vacuum. The crude mixture was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected
to basic extraction using NaOH solution $(\mathrm{pH}=10)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Flash chromatography of the residue (5\% EtOAc in Petroleum ether) afforded the 1,2-diamine 92 as a yellow viscous liquid ($265 \mathrm{mg}, 0.791 \mathrm{mmol}, 43 \%$ from the triazene). Crystals of HCl salt of $\mathbf{9 2}$ were grown by diffusion method from $\mathrm{MeOH} /$ ether for X-ray crystallographic analysis. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-6.81(\mathrm{~m}, 4 \mathrm{H}), 6.72-6.35(\mathrm{~m}, 4 \mathrm{H}), 3.90(\mathrm{broad} \mathrm{s}, 2 \mathrm{NH}), 3.64\left(\mathrm{dt}, J_{\mathrm{d}}=\right.$ $\left.6.3, J_{\mathrm{t}}=3.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.76\left(\mathrm{ddt}, J_{\mathrm{d}}=12.1, J_{\mathrm{t}}=7.8, J_{\mathrm{d}}=4.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.69-1.42(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 146.1,129.3,122.2,115.0,53.0,28.4,22.2$; IR (ATR) 3397, 3024, 2924, $2853 \mathrm{~cm}^{-1}$; GC-MS (EI) 334 (12 \%), 210 (31\%), 208 (100\%), 166 (17\%), 153 (45\%), 152 (35\%), 130 (28\%), 117 (22\%), 91 (22\%); HRMS (ESI) Calcd. For $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 335.1076; Found: 335.1071.

1,3-bis(4-chlorophenyl)-3H,3aH,4H,5H,8H,9H,9aH-cycloocta[d][1,2,3]triazol-1ylium chloride

To the suspension of 1,3-bis(4-chlorophenyl)triazene (338 mg, 1.27 mmol) and cyclooctadiene ($138 \mathrm{mg}, 1.27 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL}), t-\mathrm{BuOCl}(166 \mathrm{mg}, 1.53 \mathrm{mmol})$ was added dropwise at $-60^{\circ} \mathrm{C}$ with exclusion of light. The resulting solution was stirred at $-45^{\circ} \mathrm{C}$ for 1 h and 30 min , at $0^{\circ} \mathrm{C}$ for 40 minutes, and at room temperature for 20 minutes. Then, the solvent was evaporated under reduced pressure. The resulting yellow solid was precipitated from chloroform $(6 \mathrm{~mL})$ and ether $(40 \mathrm{~mL})$. The solvent was decanted and the
yellow solid was washed with ether (8 mL) one more time. The yellow solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the mixture of solvents was evaporated under reduced pressure to result the orange-yellow 1,2,3-triazolinium ion $\mathbf{9 3}$ as a chloride salt ($344 \mathrm{mg}, 0.842$ mmol, 66%). m.p.: $112.2-114.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $4 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.53(\mathrm{t}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-2.30$ (m, 6H), $2.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 136.8, 133.5, 130.7, 130.6, 123.2, 68.6, 27.6, 22.5; IR (ATR) 3085, 3021, 2923, $2866 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. For $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{3}[\mathrm{M}]^{+}: 372.1029$; Found: 372.0991 .

N^{1}, N^{2}-bis(4-chlorophenyl)cyclooct-5-ene-1,2-diamine

One small spatula of Raney Ni 2400 slurry in water (0.64 g) was added to the solution of 1,2,3-triazolinium ion $93(262 \mathrm{mg}, 0.641 \mathrm{mmol})$ in isopropanol $(7 \mathrm{~mL})$, under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred at room temperature for 12 h . (Reaction completion was accompanied by the reaction mixture color change from yellow to colorless and monitored by running TLC in $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.) After reaction completion, the mixture was filtered through a short pad of Celite, washed with isopropanol and concentrated under vacuum. The crude mixture was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected to basic extraction using NaOH solution $(\mathrm{pH}=10)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
filtered and concentrated under vacuum. Flash chromatography of the residue (5\% EtOAc in PE) afforded the 1,2-diamine 95 as a yellow viscous liquid ($67.0 \mathrm{mg}, 0.184 \mathrm{mmol}$, $29 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.56-6.48(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{NH})$, 3.77 (dd, $J=8.1,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.52(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.2,129.3,122.2,115.1,54.7,29.7,27.1,25.0$; IR (ATR) 3385, 3050, 2915, $2850 \mathrm{~cm}^{-1}$; GC-MS (EI) 362 (16\%), 236 (100\%), 166 (91%), 153 (51\%), 140 (70\%), 130 (56\%), 111 (24\%), 91 (19\%), 75 (11\%); HRMS (ESI) Calcd. For $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 363.1389; Found: 363.1384.

1,3-bis(4-chlorophenyl)-5-(hydroxymethyl)-4-methyl-4,5-dihydro-3H-1,2,3-triazol-1ylium chloride

To the suspension of 1,3-bis(4-chlorophenyl)triazene ($388 \mathrm{mg}, 1.46 \mathrm{mmol}$) and trans-Crotyl alcohol (126 mg, 1.75 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL}), t-\mathrm{BuOCl}(190 \mathrm{mg}, 1.75$ mmol) was added dropwise at $-60^{\circ} \mathrm{C}$ with exclusion of light. The resulting solution was stirred at $-45^{\circ} \mathrm{C}$ for 1 h , then at $0{ }^{\circ} \mathrm{C}$ for 45 minutes, and at room temperature for 30 minutes. After the reaction completion the product was precipitated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then 5 mL ether was added to the mixture, filtered and the yellow precipitate was washed with ether two more times. The yellow solid was kept under vacuum to evaporate the residue of solvents and yield a yellow 1,2,3-triazolinium ion 96 as a chloride salt ($475 \mathrm{mg}, 1.27 \mathrm{mmol}$, 88%). Crystals of $\mathbf{9 6}$ were grown by diffusion method from $\mathrm{CH}_{2} \mathrm{Cl}_{2}+1$ drop of $\mathrm{MeOH} /$ hexanes for X-ray crystallographic analysis. m.p.: $220.0-220.9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 7.87-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.73-7.61(\mathrm{~m}, 4 \mathrm{H}), 5.82-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.56\left(\mathrm{dt}, J_{\mathrm{d}}=5.4 \mathrm{~Hz}, J_{\mathrm{t}}\right.$ $=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=13.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=13.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 135.7,135.5,133.4,132.9,130.4,130.3,121.1$, 120.9, 73.0, 64.4, 59.7, 17.8; IR (ATR) 3294, 3072, 2954, $2924 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. For $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}]^{+}: 336.0665$; Found: 336.0620 .

2,3-bis[(4-chlorophenyl)amino]butan-1-ol

One small spatula of Raney Ni 2400 slurry in water $(1.0 \mathrm{~g})$ was added to the solution of 1,2,3-triazolinium ion 96 ($387 \mathrm{mg}, 1.04 \mathrm{mmol}$) in methanol (15 mL), under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred at room temperature for 1 h and 30 min . (Reaction completion was accompanied by the reaction mixture color change from yellow to colorless and monitored by running TLC in $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.) After reaction completion, the mixture was filtered through a short pad of Celite, washed with methanol and concentrated under vacuum. The crude mixture was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected to basic extraction using NaOH solution $(\mathrm{pH}=10)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Flash chromatography of the residue ($25 \% \mathrm{EtOAc}$ in PE) and trituration in hexanes afforded the 1,2-diamine 97 as a white solid ($209 \mathrm{mg}, 0.643 \mathrm{mmol}, 62 \%$). Crystals of $\mathbf{9 7}$ were grown by diffusion method from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes for X-ray crystallographic analysis m.p.: $125.4-127.0^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.21-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.73-6.48(\mathrm{~m}, 4 \mathrm{H}), 3.91-3.67(\mathrm{~m}, 3 \mathrm{H}), 3.44(\mathrm{q}, J=4.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.55(\mathrm{~s}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.6,145.8$, $129.4,123.3,123.1,115.6,115.2,63.2,59.3,51.7,18.5$; IR (ATR) $3369,3277,2964,2925$, $2847 \mathrm{~cm}^{-1}$; GC-MS (EI) 207 (2\%), 170 (11\%), 154 (100\%), 138 (14\%), 127 (4\%), 118 (9\%), 111 (15\%), 91 (2\%), 75 (6\%); HRMS (ESI) Calcd. For $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 325.0869; Found: 325.0868.

1,3-bis(4-chlorophenyl)-4,5-diethyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride

To the suspension of 1,3-bis(4-chlorophenyl)triazene (304 mg, 1.14 mmol) and trans-3-hexene ($115 \mathrm{mg}, 1.37 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL}), t-\mathrm{BuOCl}(149 \mathrm{mg}, 1.37 \mathrm{mmol})$ was added dropwise at $-60^{\circ} \mathrm{C}$ with exclusion of light. The resulting solution was stirred at $-45^{\circ} \mathrm{C}$ for 1 h and 30 min , at $0^{\circ} \mathrm{C}$ for 40 minutes, and at room temperature for 20 minutes. Then, the solvent was evaporated under reduced pressure. The resulting yellow solid was precipitated from chloroform $(6 \mathrm{~mL})$ and ether $(40 \mathrm{~mL})$. The solvent was decanted and the yellow solid was washed with ether (5 mL) one more time. To evaporate the residue of ether the yellow solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the mixture of solvents was evaporated under reduced pressure to result the yellow 1,2,3-triazolinium ion 98 as a chloride salt ($319 \mathrm{mg}, 0.830 \mathrm{mmol}, 73 \%$). Crystals of $\mathbf{9 8}$ were grown by diffusion method from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether for X-ray crystallographic analysis. m.p.: $141.9-143.5^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13-7.93(\mathrm{~m}, 4 \mathrm{H}), 7.62-7.51(\mathrm{~m}, 4 \mathrm{H}), 6.44-6.39(\mathrm{~m}, 2 \mathrm{H})$, 2.23-1.94(m, 4H), $1.05(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 136.7, 133.3,
$130.9,121.8,71.0,25.5,8.2$; IR (ATR) 3032, 2958, $2911 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. For $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{3}[\mathrm{M}]^{+}: 348.1029$; Found: 348.0996.

N^{3}, N^{4}-bis(4-chlorophenyl)hexane-3,4-diamine

One small spatula of Raney Ni 2400 slurry in water (1.2 g) was added to the solution of 1,2,3-triazolinium ion 98 ($406 \mathrm{mg}, 1.05 \mathrm{mmol}$) in isopropanol (5 mL), under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred at room temperature for 8 h . (Reaction completion was accompanied by the reaction mixture color change from yellow to colorless and monitored by running TLC in $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.) After reaction completion, the mixture was filtered through a short pad of Celite, washed with isopropanol and concentrated under vacuum. The crude mixture was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected to basic extraction using NaOH solution $(\mathrm{pH}=10)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Flash chromatography of the residue (5\% EtOAc in Petroleum ether) afforded the 1,2-diamine 99 as a yellow viscous liquid ($229 \mathrm{mg}, 0.680$ $\mathrm{mmol}, 65 \%)$. Crystals of HCl salt of 99 were grown from hot ethanol for X-ray crystallographic analysis. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.69-6.31(\mathrm{~m}$, $4 \mathrm{H}), 3.49(\operatorname{broad~s}, 2 \mathrm{NH}), 3.35(\mathrm{~m}, 4 \mathrm{H}), 1.68\left(\mathrm{ddq}, J_{\mathrm{d}}=14.7, J_{\mathrm{d}}=4.2 \mathrm{~Hz}, J_{\mathrm{q}}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $1.47(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.3,129.3,121.8$, 114.3, 58.4, 26.0, 11.2; IR (ATR) 3409, 3028, 2963, 2931, $2874 \mathrm{~cm}^{-1}$; GC-MS (EI) 336
(0.6 \%), 170 (35\%), 168 (100\%), 152 (4\%), 138 (11\%), 111 (10\%) 91 (3\%); HRMS (ESI) Calcd. For $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 337.1233; Found: 349.1237.

1,3-bis(4-chlorophenyl)-4,5-diphenyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride

To the suspension of 1,3-bis(4-chlorophenyl)triazene ($340 \mathrm{mg}, 1.28 \mathrm{mmol}$) and trans-Stilbene ($276 \mathrm{mg}, 1.53 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL}), t-\mathrm{BuOCl}(166 \mathrm{mg}, 1.53 \mathrm{mmol})$ was added dropwise at $-60^{\circ} \mathrm{C}$ with exclusion of light. The resulting solution was stirred at $-45^{\circ} \mathrm{C}$ for 1 h and 30 min , at $0^{\circ} \mathrm{C}$ for 40 minutes, and at room temperature for 20 minutes. Then, the solvent was evaporated under reduced pressure. The resulting yellow solid was precipitated from chloroform $(6 \mathrm{~mL})$ and ether $(30 \mathrm{~mL})$. The solvent was decanted and the yellow solid was washed with ether (5 mL) one more time. The yellow solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the mixture of solvents was evaporated under reduced pressure to result the orange-yellow 1,2,3-triazolinium ion $\mathbf{1 0 0}$ as a chloride salt ($506 \mathrm{mg}, 1.05$ $\mathrm{mmol}, 82 \%$). Crystals of $\mathbf{1 0 0}$ were grown by diffusion method from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF}$ for X ray crystallographic analysis. m.p.: $137.0-138.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-$ $7.71(\mathrm{~m}, 4 \mathrm{H}), 7.71-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.4,133.8,131.9,130.8,130.1,130.1,128.8,123.1,78.3$; IR (ATR) $3027,2933,2881 \mathrm{~cm}^{-1}$.

N^{1}, N^{2}-bis(4-chlorophenyl)-1,2-diphenylethane-1,2-diamine

One small spatula of Raney Ni 2400 slurry in water (1.6 g) was added to the solution of 1,2,3-triazolinium ion $100(766 \mathrm{mg}, 1.59 \mathrm{mmol})$ in isopropanol $(20 \mathrm{~mL})$, under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred at room temperature for 3 h . (Reaction completion was accompanied by the reaction mixture color change from yellow to colorless and monitored by running TLC in $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.) After reaction completion, the mixture was filtered through a short pad of Celite, washed with isopropanol and concentrated under vacuum. The crude mixture was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected to basic extraction using NaOH solution $(\mathrm{pH}=10)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Flash chromatography of the residue (5\% EtOAc in PE) and trituration in hexanes afforded the 1,2-diamine 101 as a white solid (371 mg , $0.856 \mathrm{mmol}, 54 \%)$. m.p.: $110.8-111.8{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.20(\mathrm{~m}$, 6H), 7.16-7.09 (m, 4H), 7.06-6.99 (m, 4H), 6.48-6.40 (m, 4H), 4.55 (broad s, 2NH), 4.53 (s, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 145.6,139.3,129.1,128.7,128.0,127.4,123.1$, 115.4, 64.1; IR (ATR) 3382, 3026, 2925, $2856 \mathrm{~cm}^{-1}$; GC-MS (EI) 305 (2\%), 216 (100\%), 180 (7\%), 138 (12\%), 111 (19\%), 75 (11\%). HRMS (ESI) Calcd. For $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 433.1233; Found: 433.1233.

1,3-bis(4-chlorophenyl)-4-phenyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride

To the suspension of 1,3-bis(4-chlorophenyl)triazene ($186 \mathrm{mg}, 0.699 \mathrm{mmol}$) and styrene ($87.4 \mathrm{mg}, 0.839 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL}), t-\mathrm{BuOCl}(91.1 \mathrm{mg}, 0.839 \mathrm{mmol})$ was added dropwise at $-60^{\circ} \mathrm{C}$ with exclusion of light. The resulting solution was stirred at -45 ${ }^{\circ} \mathrm{C}$ for 1 h and 30 min , at $0^{\circ} \mathrm{C}$ for 40 minutes, and at room temperature for 20 minutes. Then, the solvent was evaporated under reduced pressure. The resulting yellow solid was precipitated from chloroform $(4 \mathrm{~mL})$ and ether $(20 \mathrm{~mL})$. The solvent was decanted and the yellow solid was washed with ether (5 mL) one more time. The yellow solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the mixture of solvents was evaporated under reduced pressure to result the orange-yellow 1,2,3-triazolinium 102 as a chloride salt $(235 \mathrm{mg}, 0.580 \mathrm{mmol}$, 83%). m.p.: $147.2-148.3^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{dd}, J=14.6,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~m}, 5 \mathrm{H})$, $6.33(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=13.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $136.5,136.3,134.5,134.4,133.6,130.6,130.5,130.3,130.1,127.4,122.1,120.5,69.9$, 61.9; IR (ATR) $3094,2986,2907 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. For $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{3}[\mathrm{M}]^{+}$: 368.0716; Found: 368.0666.

N^{1}, N^{2}-bis(4-chlorophenyl)-1-phenylethane-1,2-diamine

One small spatula of Raney Ni 2400 slurry in water $(0.6 \mathrm{~g})$ was added to the solution of 1,2,3-triazolinium ion 102 ($257 \mathrm{mg}, 0.635 \mathrm{mmol}$) in isopropanol (8 mL), under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred at room temperature for 2 h . (Reaction completion was accompanied by the reaction mixture color change from yellow to colorless and monitored by running TLC in $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.) After reaction completion, the mixture was filtered through a short pad of Celite, washed with isopropanol and concentrated under vacuum. The crude mixture was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected to basic extraction using NaOH solution $(\mathrm{pH}=10)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Flash chromatography of the residue (5\% EtOAc in PE) and trituration in hexanes afforded the 1,2-diamine $\mathbf{1 0 3}$ as a white solid (131 mg , $0.367 \mathrm{mmol}, 58 \%)$. m.p.: $122.3-123.4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.34(\mathrm{~m}$, $4 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.6,2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.47(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{broad} \mathrm{s}, 2 \mathrm{NH}), 3.49(\mathrm{dd}$, $J=12.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=12.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $146.4,145.6,140.7,129.4,129.2,128.0,126.5,123.0,122.7,115.0,114.5,57.5,51.0$; IR (ATR) 3380, 3035, 2917, $2847 \mathrm{~cm}^{-1}$; GC-MS (EI) 356 (0.03\%), 216(100\%), 180 (5\%), 138 (22\%), 111 (31\%), 75(30\%); HRMS (ESI) Calcd. For $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 357.0920$; Found: 357.0910.

1,3-bis(4-chlorophenyl)-4,5-bis(hydroxymethyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride

To the suspension of 1,3-bis(4-chlorophenyl)triazene ($610 \mathrm{mg}, 2.29 \mathrm{mmol}$) and cis-2-Butene-1,4-diol (242 mg, 2.75 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}), t$ - $\mathrm{BuOCl}(299 \mathrm{mg}, 2.75$ mmol) was added dropwise at $-60^{\circ} \mathrm{C}$ with exclusion of light. The resulting solution was stirred at $-45{ }^{\circ} \mathrm{C}$ for 1 h , then at $0^{\circ} \mathrm{C}$ for 30 minutes, and at room temperature for 20 minutes. After the reaction completion the product was precipitated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then 10 mL ether was added to the mixture and the solvents were decanted. The yellow precipitate was washed with ether two more times and it was kept under vacuum to evaporate the residue of solvent and yield a yellow 1,2,3-triazolinium ion 104 as a chloride salt (756 mg , $1.95 \mathrm{mmol}, 85 \%)$. Crystals of $\mathbf{1 0 4}$ were grown by diffusion method from $\mathrm{CH}_{2} \mathrm{Cl}_{2}+1$ drop of $\mathrm{MeOH} / \mathrm{THF}$ for X-ray crystallographic analysis. m.p.: $186.0-187.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.97-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.77-7.51(\mathrm{~m}, 4 \mathrm{H}), 5.87(\mathrm{dd}, J=3.0,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.17(\mathrm{t}, J=1.5 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 137.6, 135.3, 131.4, 124.2, 70.9, 57.3; IR (ATR) 3716, 3061, 2961, $2889 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. For $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$ $[\mathrm{M}]^{+}: 352.0614 .2122$; Found: 352.0552.

2,3-bis[(4-chlorophenyl)amino]butane-1,4-diol

One small spatula of Raney Ni 2400 slurry in water (0.23 g) was added to the solution of 1,2,3-triazolinium ion $104\left(91.5 \mathrm{~g}, 0.235 \mathrm{mmol}\right.$) in methanol (3 mL), under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred at room temperature for 1 h . (Reaction completion was accompanied by the reaction mixture color change from yellow to colorless and monitored by running TLC in $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.) After reaction completion, the mixture was filtered through a short pad of Celite, washed with methanol and concentrated under vacuum. The crude mixture was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected to basic extraction using NaOH solution $(\mathrm{pH}=10)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Flash chromatography of the residue $(60 \% \mathrm{EtOAc}$ in PE) and trituration in hexanes afforded the 1,2-diamine 105 as a white solid (46.8 mg , $0.137 \mathrm{mmol}, 58 \%)$. Crystals of triflouroacetate salt of $\mathbf{1 0 5}$ were grown from hot EtOAc for X-ray crystallographic analysis. m.p.: $132.7-134.8^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 7.09-7.01 (m, 4H), 6.73-6.66 (m, 4H), 3.85-3.78 (broad s, 2H), 3.66-3.54 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) ~ \delta 148.8,129.8,122.1,115.3,62.3,56.1$; IR (ATR) 3407,3387, 3319, 3024, 2927, $2875 \mathrm{~cm}^{-1}$; GC-MS (EI) after treatment with BSTFA: 251 (5\%), 220 (27\%), 205 (100\%), 175(11\%), 161 (31\%), 105 (8\%), 91 (10\%); HRMS (ESI) Calcd. For $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 341.0818; Found: 341.0811.

4,5-bis[(benzyloxy)methyl]-1,3-bis(4-chlorophenyl)-4,5-dihydro-3H-1,2,3-triazol-1ylium chloride

To the suspension of 1,3-bis(4-chlorophenyl)triazene ($407 \mathrm{mg}, 1.53 \mathrm{mmol}$) and cis-1,4-Bis(benzyloxy)but-2-ene ${ }^{55}(494 \mathrm{mg}, 1.84 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}), t-\mathrm{BuOCl}(199$ $\mathrm{mg}, 1.84 \mathrm{mmol}$) was added dropwise at $-60{ }^{\circ} \mathrm{C}$ with exclusion of light. The resulting solution was stirred at $-45^{\circ} \mathrm{C}$ for 1 h and 30 min , at $0^{\circ} \mathrm{C}$ for 40 minutes, and at room temperature for 20 minutes. Then, the solvent was evaporated under reduced pressure. The resulting yellow solid was precipitated from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and ether $(40 \mathrm{~mL})$. The solvent was decanted and the yellow solid was washed with ether $(10 \mathrm{~mL})$ one more time. The yellow solid was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the mixture of solvents was evaporated under reduced pressure to result the light yellow 1,2,3-triazolinium ion 106 as a chloride salt (484 $\mathrm{mg}, 0.850 \mathrm{mmol}, 56 \%)$. Crystals of $\mathbf{1 0 6}$ were grown by diffusion method from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / Petroleum ether for X-ray crystallographic analysis. m.p.: 121.9-123.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.75-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.12-7.05(\mathrm{~m}$, $4 \mathrm{H}), 6.01(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 137.9,137.7,135.0,131.3,129.6,129.4,129.3,124.6$, 74.3, 69.4, 65.1; IR (ATR) 3087, 2948, $2895 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. For $\mathrm{C}_{3} 0 \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$ $[\mathrm{M}]^{+}$: 532.1553; Found: 532.1475.

1,4-bis(benzyloxy)- N^{2}, N^{3}-bis(4-chlorophenyl)butane-2,3-diamine

One small spatula of Raney Ni 2400 slurry in water (0.23 g) was added to the solution of 1,2,3-triazolinium ion $106(136 \mathrm{mg}, 0.239 \mathrm{mmol})$ in methanol (3 mL) it was added under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred at room temperature for 1 h . The product was precipitated as a white solid as it is not soluble in MeOH . (Reaction completion was accompanied by the reaction mixture color change from yellow to colorless and monitored by running TLC in $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.) After reaction completion, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added to the mixture to dissolve the product. The mixture was filtered through a short pad of Celite, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated under vacuum. The crude mixture was subjected to basic extraction using NaOH solution $(\mathrm{pH}=10)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Flash chromatography of the residue $(6 \% \mathrm{EtOAc}$ in PE$)$ and trituration in hexanes afforded the 1,2-diamine $\mathbf{1 0 7}$ as a white solid ($72.3 \mathrm{mg}, 0.139 \mathrm{mmol}, 58 \%$). Crystals of $\mathbf{1 0 7}$ were grown by diffusion method from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / petroleum ether for X-ray crystallographic analysis. m.p.: $149.3-151.2{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.24(\mathrm{~m}, 10 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.59-6.49(\mathrm{~m}, 4 \mathrm{H})$, $4.47(\mathrm{~s}, 4 \mathrm{H}), 4.05(\operatorname{broad} \mathrm{~s}, 2 \mathrm{NH}), 3.91(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 146.3,137.8,129.3,128.6,128.1,128.0,122.5,114.7,73.6,69.8,54.1$; IR (ATR) 3318, 3018, 2915, 2952, $2891 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. For $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 521.1757; Found: 521.1746.

1,3-bis(4-chlorophenyl)-4,5-diethyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium

To the suspension of 1,3-bis(4-chlorophenyl)triazene ($275 \mathrm{mg}, 1.03 \mathrm{mmol}$) and cis-3-hexene ($104 \mathrm{mg}, 1.24 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL}), t-\mathrm{BuOCl}(135 \mathrm{mg}, 1.24 \mathrm{mmol})$ was added dropwise at $-60^{\circ} \mathrm{C}$ with exclusion of light. $-45^{\circ} \mathrm{C}$ for 1 h and 15 min , at $0^{\circ} \mathrm{C}$ for 30 minutes, and at room temperature for 20 minutes. Then, the solvent was evaporated under reduced pressure. The resulting yellow solid was precipitated from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and ether (35 mL). The solvent was decanted and the yellow solid was washed with ether (5 mL) one more time. The yellow solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the mixture of solvents was evaporated under reduced pressure to result the orange-yellow 1,2,3triazolinium ion 109 as a chloride salt ($112 \mathrm{mg}, 0.291 \mathrm{mmol}, 28 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.69(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 4 \mathrm{H})$, $1.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 137.3,133.7,130.8,123.7,70.7$, 19.7, 10.5; IR (ATR) 3093, 2972, $2878 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. For $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{3}[\mathrm{M}]^{+}$: 348.1029; Found: 348.1037.

N^{3}, N^{4}-bis(4-chlorophenyl)hexane-3,4-diamine (Mix of erythro and threo isomers)

One small spatula of Raney Ni 2400 slurry in water $(0.3 \mathrm{~g})$ was added to the solution of 1,2,3-triazolinium ion $109(114 \mathrm{mg}, 0.297 \mathrm{mmol})$ in isopropanol (3 mL), under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred at room temperature for 4 h . (Reaction completion was accompanied by the reaction mixture color change from yellow to colorless and monitored by running TLC in $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.) After reaction completion, the mixture was filtered through a short pad of Celite, washed with methanol and concentrated under vacuum. The crude mixture was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected to basic extraction using NaOH solution $(\mathrm{pH}=10)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Flash chromatography of the residue (5\% EtOAc in PE) afforded the mixture of 1,2-diamines $\mathbf{1 1 0}$ and $\mathbf{9 9}$ as a yellow viscous liquid (33.0 $\mathrm{mg}, 0.097 \mathrm{mmol}, 33 \%$ for the mixture of isomers (110 to 99: 86% to 14% by GC-MS)). ${ }^{1} \mathrm{H}$ NMR of mixture of isomers ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13-7.09$ ($\mathrm{m}, 4 \mathrm{H}$ minor), 7.09-7.04 (m, 4H major), 6.56-6.51 (m, 4H minor), 6.47-6.40 (m, 4H major), 3.48 (s, 2NH), 3.43-3.30 (m, 2H major and minor), 1.77-1.56 (m, 2H major and minor), 1.52-1.34 (m, 2H major and minor), $1.06-0.86\left(\mathrm{~m}, 2 \mathrm{H}\right.$ major and minor); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ major: 147.2, 129.3, 121.8, 114.4, 58.3, 24.7, 11.5; minor: 147.3, 129.3, 121.8, 114.3, 58.4, 26.0, 11.2; GC-MS (EI) major: 336 (0.7%), 170 (35\%), 168(100\%), 138 (15\%), 111 (13\%) 91 (4\%); minor: 336 (0.9\%), 170 (36\%), 168(100\%), 138 (17\%), 111 (14\%) 91 (4\%).

1,3-bis(4-chlorophenyl)-5-(3-oxobutyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride

To the suspension of 1,3-bis(4-chlorophenyl)triazene ($417 \mathrm{mg}, 1.57 \mathrm{mmol}$) and 5-hexen-2-one ($185 \mathrm{mg}, 1.88 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL}), t-\mathrm{BuOCl}(204 \mathrm{mg}, 1.88 \mathrm{mmol})$ was added dropwise at $-60^{\circ} \mathrm{C}$ with exclusion of light. The resulting solution was stirred at $-45^{\circ} \mathrm{C}$ for 1 h and 15 min , at $0^{\circ} \mathrm{C}$ for 30 minutes, and at room temperature for 20 minutes. After the reaction completion the product was precipitated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then 30 mL ether was added to the mixture and the solvents were decanted. The yellow precipitate was washed with ether one more times (5 mL) and it was kept under vacuum to evaporate the residue of solvent and yield a yellow 1,2,3-triazolinium ion 111 as a chloride salt (404 mg , $1.01 \mathrm{mmol}, 65 \%)$. Crystals of $\mathbf{1 1 1}$ were grown by diffusion method from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes for X-ray crystallographic analysis. m.p.: $171.6-173.8^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{dd}, J=21.5,8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.49(\mathrm{dd}, J=19.5,8.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.45-6.30(\mathrm{~m}, 1 \mathrm{H}), 5.60$ $(\mathrm{d}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{ddd}, J=19.0,8.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83\left(\mathrm{dt}, J_{\mathrm{d}}=19.0, J_{\mathrm{t}}=6.1 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $208.0,136.6,136.5,134.6,133.2,130.8,130.6,121.7,120.6,65.9,58.8,38.1,30.2,26.0$; IR (ATR) 3004, 2927, 2846, $1713 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. For $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}]^{+}$: 362.0821; Found: 362.0754.

2,3-bis[(4-chlorophenyl)amino]-1-methylcyclopentan-1-ol

One small spatula of Raney Ni 2400 slurry in water (0.28 g) was added to the solution of 1,2,3-triazolinium ion 111 ($113 \mathrm{mg}, 0.284 \mathrm{mmol}$) in isopropanol (3 mL), under N_{2} atmosphere. Then a balloon of H_{2} was placed on top of the flask while removing N_{2}. The reaction mixture was stirred at room temperature for 4 h and 30 minutes. (Reaction completion was accompanied by the reaction mixture color change from yellow to colorless and monitored by running TLC in $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.) After reaction completion, the mixture was filtered through a short pad of Celite, washed with isopropanol and concentrated under vacuum. The crude mixture was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subjected to basic extraction using NaOH solution $(\mathrm{pH}=10)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Flash chromatography of the residue ($10 \% \mathrm{EtOAc}$ in PE) afforded the 1,2-diamine $\mathbf{1 1 2}$ as a yellow viscous liquid ($47.3 \mathrm{mg}, 0.135 \mathrm{mmol}, 47 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{~m}, 4 \mathrm{H}), 6.54(\mathrm{~m}, 4 \mathrm{H})$, $3.92\left(\mathrm{dt}, J_{\mathrm{t}}=6.8, J_{\mathrm{d}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.43(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.94$ $(\mathrm{m}, 1 \mathrm{H}), 1.91-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 146.7, 146.1, $129.3,129.2,123.4,122.9,115.8,115.0,79.5,64.7,55.3,36.6,29.5,26.2$; IR (ATR) 3523, 3343, 2958, $2926 \mathrm{~cm}^{-1}$; GC-MS (EI) 350 (16\%), 224 (100\%), 206 (95\%), 166 (25\%), 153 (16\%), 130 (27\%), 111 (17\%), 91 (6\%), 75 (10\%); HRMS (ESI) Calcd. For $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 351.1031; Found: 351.1033.

Chapter 4 Attempt towards total synthesis of loline alkaloids

4.1 Introduction

Loline alkaloids are a group of nitrogen-containing natural products with distinct chemical and biological features. They are produced by Epichloë species-groups of grass fungal endophytes- in cool-season grasses. These endophytic fungi grow in the intercellular spaces of their host while providing many survival benefits to the host plant. The relationship between these groups of fungi and their host grass is mutualistic. ${ }^{56}$ In this symbiotic relationship, the plant provides food and shelter to the fungus. These grassassociated endophytes can also provide chemoprotection to their host against certain insects and aphids such as the bird cherry-oat aphid, large milkweed bug, and American cockroach. Although most loline alkaloids are toxic to these animals, it has been reported that they are nontoxic to mammalian herbivores. Besides insecticidal properties, lolines enhance host plant resistance against numerous stress conditions such as drought, poor soil conditions and spatial competition. They can also improve the root growth, seed production and fitness of endophyte-infected plants. ${ }^{57}$ Due to loline alkaloids' remarkable biological roles, their biosynthesis has been investigated over the past decades. In collaboration with other groups, our group has been involved in some of the discoveries in this area. For instance, in collaboration with Prof. Bollinger's lab at the Pennsylvania State University, our group has shown that the mononuclear non-heme iron oxygenase enzyme encoded by lolO gene catalyzes the conversion of AcAP to NANL (Scheme 4.1). ${ }^{58}$ LolO abstracts the "endo H " atom from $\mathrm{C}(2)$ of AcAP to give a radical intermediate. Hydroxylation at this position produced 2-endo-OH-AcAP. LolO can also catalyze the next step to form an ether bridge of NANL (N -acetylnorloline) as a first loline alkaloid in the biosynthetic pathway. ${ }^{58}$

Scheme 4.1 Conversion of AcAP to NANL catalyzed by LolO
Loline alkaloids consist of a saturated pyrrolizidine ring which contains a 1-exo amino group and an ether bridge between $\mathrm{C}(2)$ and $\mathrm{C}(7)$. Various substituents on the 1 amino group define different lolines, and the oxygen bridge causes the tricyclic ring to be strained. The various naturally occurring lolines are shown in Figure 4.1.

norloline (NL)

Ioline

N -acetyInorloline (NANL)

N -methylloline (NML)

N-formylnorloline
(NFL)

N-acetylloline

Figure 4.1 Various naturally occurring loline alkaloids

Despite their small structures, the total synthesis of lolines can be challenging due to their strained structure and the presence of four contiguous stereogenic centers in their heterotricyclic skeleton. Different groups have reported racemic and asymmetric total
synthesis of loline alkaloids through various approaches. We have also been interested to pursue a total synthesis of loline as a potential application for our developed 1,2diamination methodology. In this chapter, I will describe some of the reported total synthesis of lolines and explain our retrosynthetic plan toward loline alkaloid.

4.2 Previously reported total synthesis of lolines

4.2.1 Tufariello et al. approach

In 1986, Tufariello et al. reported the racemic synthesis of loline alkaloids using nitrone cycloaddition (Scheme 4.2). In their total synthesis, 1,3-dipolar cycloaddition of nitrone 117 and methyl 4-hydroxybut-2-enoate was followed by mesylation of the hydroxyl group to form pyrrolizidine 118. After hydrogenolysis of $\mathrm{N}-\mathrm{O}$ bond, the $\mathrm{C}(1)$ epimerization was obtained using the NaOMe to achieve the desired stereochemistry required in lolines. Reduction of the $\mathrm{C}(1)$ ester group in pyrrolizidine $\mathbf{1 1 9}$ and acetylation of hydroxyl groups formed the acetal 120. Hydrolysis of the $C(7)$ acetal group with TFA afforded ketone 121. Treatment of the carbonyl group with Adam's catalyst followed by Vilsmeier reagent, installed the chloride leaving group at $\mathbf{C}(7)$ with inverted stereochemistry in pyrrolizidine 122. The next task was to construct the ether bridge, and therefore, deprotection of the hydroxyl group at $\mathrm{C}(2)$ position formed an intermediate that can undergo intramolecular ring closure to form the tricyclic 123. Further manipulation of $\mathrm{C}(1)$ hydroxymethyl functional group led to racemic loline in 83% yield. ${ }^{59}$

Scheme 4.2 Tufariello et al. total synthesis of loline

4.2.2 White et al. approach

In 2000, White et al. described the asymmetric synthesis of $(+)$-loline isolated as dihydrochloride salt (Scheme 4.3). ${ }^{60}$ Their synthesis started with the conversion of (S)-(2) malic acid to the hydroxamic acid $\mathbf{1 2 4}$ in nine steps. Oxidation of $\mathbf{1 2 4}$ with periodate salt produces an acylnitroso intermediate that can afford $\mathbf{1 2 5}$ as a mixture of cis and trans isomers via intramolecular cycloaddition. The core pyrrolizidine structure $\mathbf{1 2 6}$ constructed via reductive scission of $\mathrm{N}-\mathrm{O}$ bond in $\mathbf{1 2 5}$, mesylation of the resulting alcohol and further
nucleophilic attack of lactam nitrogen. Then asymmetric aminohydroxylation of $\mathbf{1 2 6}$ installed the desired OH group at $\mathrm{C}(2)$ position to form pyrrolizidine 127. This approach required seven more steps to install the ether bridge between the $C(2)$ and $C(7)$ position and form the tricyclic N-tosylloline 128. Further removal of tosyl group afforded (+)-loline as dihydrochloride salt.

Scheme 4.3 White et al. total synthesis of loline

4.2.3 Trauner et al. approach

In 2011, Trauner et al. reported an asymmetric total synthesis of loline, norloline, and N -formylloline (Scheme 4.4). ${ }^{61}$ Their approach started with the conversion of epoxy alcohol $\mathbf{1 2 9}$ to the diol $\mathbf{1 3 0}$ in three steps. This diol was activated by converting to the cyclic sulfite 131. Nucleophilic attack of LiN_{3} on 131 yielded azido alcohol 132. The core pyrrolizidine ring was produced after treatment of azido alcohol 132 in methanol with one equivalent of bromine. This step proceeds via transannular attack of carbamate nitrogen to the target C atom activated by the formation of bromonium ion to yield bromopyrrolizidine hydrobromide 133. Exchange of bromide with chloride via Finkelstein reaction using LiCl produced chloropyrrolizidine 134 . The ether bridge between $\mathrm{C}(2)$ and $\mathrm{C}(7)$ was constructed after treatment of $\mathbf{1 3 4}$ with potassium carbonate in a microwave. Further hydrogenation of azide $\mathbf{1 3 5}$ yielded norloline (NL). In their approach, they also synthesized loline and N formylloline by further manipulation of the 1-amino group.

Scheme 4.4 Trauner et al. total synthesis of loline

4.2.4 Huang et al. approach

In 2013, Huang et al. reported asymmetric total synthesis of N-acetylnorloline (Scheme 4.5). ${ }^{62}$ Their synthesis began by making intermediate $\mathbf{1 3 8}$ via syn-selective aldol condensation between aldehyde 136 and pyrrole 137 mediated by SnCl_{4}. Protection of hydroxyl group of $\mathbf{1 3 8}$ with TBSCl and hydrolysis of the acetonide produced diol 139. Treatment of the diol $\mathbf{1 3 9}$ with DBU afforded the bicyclic imide $\mathbf{1 4 0}$ as a single desired diastereomer. This fused tetrahydrofuran ring contains the final ether bridge in the loline structure. Reduction of the carbonyl group in imide 140, benzylation of the primary alcohol and desilylation with TBAF gave alcohol 141. Swern oxidation of the alcohol 141 was followed by reaction of the resulting ketone with NH_{3}. The produced imine was reduced to the corresponding amine 142 with NaBH_{4}. Acetylation of the amine, catalytic
hydrogenation to remove the benzyl group, and mesylation of the resulting alcohol formed intermediate 143. To form the tricyclic loline, the Boc group was cleaved with TFA, and the resulting amine was subjected to the cyclization condition to form N-acetylnorloline.

Scheme 4.5 Huang et al. total synthesis of N-acetylnorloline

4.2.5 Scheerer et al. approach

In 2015, Scheerer et al. published their asymmetric total synthesis of (+)-loline alkaloids (Scheme 4.6). ${ }^{63}$ They started the total synthesis with a chiral substrate, (S)-4-amino-2-hydroxybutanoic acid, which was converted to intermediate 144 in three steps. A
vinyl group was added to the intermediate $\mathbf{1 4 4}$ via diastereoselective Petasis boronoMannich reaction to form intermediate $\mathbf{1 4 5}$, which was converted to intermediate 146 in five steps. Conversion of hydroxyl group to a carbamate functional group and then functionalization with a N-pentafluorobenzyloxy substituent afforded intermediate 147. Tethered aminohydroxylation of $\mathbf{1 4 7}$ afforded the desired ester 148. Reduction of the ester, mesylation of produced diol and protection of amino group led to formation of imide $\mathbf{1 4 9}$. Selective cleavage of carbamate group and intramolecular etherification afforded bicyclic core 150. Further hydrogenolysis with Perlman's catalyst removed a Cbz-group. Nucleophilic attack of produced secondary amine on mesylate built the pyrrolizidine core and afforded N-Boc norloline 151, which was further manipulated to form the loline product.

Scheme 4.6 Scheerer et al. total synthesis of loline

Depicted in Figure 4.2 is a comparison of all mentioned approaches for the total synthesis of loline alkaloids, where two main retrosynthesis strategies are used. In the first strategy, the Tufariello, White, and Trauner groups initially disconnected the ether bridge to form the pyrrolizidine ring, and they developed different approaches to construct the pyrrolizidine ring in their synthesis plans. In the second strategy, the Scheerer and Huang groups initially disconnected the bond between $\mathrm{N}(3)-\mathrm{C}(4)$ to form a bicyclic pyrrolizidine. Then, they disconnected the ether bridge to construct different intermediate, which can be synthesized from pyrrole derivatives.

Tufariello,
Trauner

Figure 4.2 Comparison of previously reported total synthesis of loline alkaloids

4.3 Grossman's proposed total synthesis of loline alkaloids

Our designed asymmetric retrosynthesis is similar to Scheerer and Huang's approach in the way that we first disconnect the bond between $\mathrm{N}(3)-\mathrm{C}(4)$ to form a bicyclic substructure A (Scheme 4.7). Unlike Scheerer and Huang's approach, our retrosynthesis does not proceed with the ether bridge disconnection, instead; we disconnect the two $\mathrm{C}-\mathrm{N}$ bonds on tetrahydrofuran ring \mathbf{A}. These two $\mathrm{C}-\mathrm{N}$ bonds can be synthesized by our 1,2diamination methodology. The 2,5-dihydrofuran \mathbf{B} can be made from inexpensive and readily available 2-deoxy-D-ribose (source of the ether linkage) in a few steps.

Scheme 4.7 Grossman's proposed total synthesis of loline alkaloids

4.3.1 Synthesis of 2,5-dihydrofuran ring

The 2,5-dihydrofuran ring was prepared from commercially available 2-deoxy-Dribose in four steps (Scheme 4.8). ${ }^{64,}{ }^{65}$ Wittig reaction of 2-deoxy-D-ribose with ethyl(triphenylphosphoranylidene)acetate was followed by oxa-Michael cycloaddition to yield an inseparable C (2) epimeric mixture of $\mathbf{1 5 2}$. The selective protection of the primary alcohol by tert-butyl(chloro)diphenylsilane afforded a mixture of epimers in 153, which could now be separated by column chromatography. The endocyclic alkene 154 was obtained by forming the triflate ester using trifluoromethanesulfonic anhydride, followed by treatment with DBU in the same reaction mixture. This 2,5-dihydrofuran ring 154 will soon participate in intramolecular azide-alkene cycloaddition.

Scheme 4.8 Synthesis of 2,5-dihydrofuran ring 154

4.3.2 Synthesis of 1,2,3-triazoline

The ester group on the 2,5 -dihydrofuran ring was reduced with LiAlH_{4} to the primary alcohol (Scheme 4.9). Treatment of the alcohol with diphenylphosphoryl azide (DPPA) in the presence of diisopropyl azodicarboxylate (DIAD) and triphenylphosphine (Bose-Mitsunobu method) produced the desired cyclic azide 155. Mild thermolysis (70 ${ }^{\circ} \mathrm{C}$) of $\mathbf{1 5 5}$ triggered intramolecular azide-alkene cycloaddition to provide the tricyclic 1,2,3-triazoline 156.

154

155 TBDPSO
156

Scheme 4.9. Synthesis of 1,2,3-triazoline $\mathbf{1 5 6}$ as a first key intermediate in the total synthesis of loline alkaloids

To validate the that we had made 1,2,3-triazoline 156, it was very critical for us to establish the structure of the product before moving forward to the next step.

The HSQC spectrum (Figure 4.3) revealed the presence of four methine groups and three methylene groups (excluding the TBDPS signals). The HSQC spectrum also showed that the two upfield H atoms resonating at 1.81 ppm and 2.07 ppm were geminal and connected to $\mathrm{C}(8)$.

Figure 4.3 HSQC spectrum of 1,2,3-triazoline 156

I assigned the remaining H atoms (excluding the H atoms at TBDPS group) with the help of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations (Figure 4.5). The H atoms at $\mathrm{C}(8)$ showed a correlation in COSY spectrum with geminal H atoms resonating at 3.53 ppm and 4.29 ppm and a methine H atom resonating at 4.45 ppm . These suggested that these geminal H atoms are connected to $\mathrm{C}(9)$, and the methine H atom is connected to $\mathrm{C}(7)$.

Figure $4.4{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlation of H atoms at $\mathrm{C}(7)$ and $\mathrm{C}(8)$, and $\mathrm{C}(8)$ and $\mathrm{C}(9)$ in $1,2,3-$ triazoline 156

Figure $4.5{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 1,2,3-triazoline $\mathbf{1 5 6}$
The H atom at $\mathrm{C}(7)$ strongly correlated with the H atom resonating at 3.98 ppm which I assigned to $\mathrm{C}(10)$. The strong correlation between the H atom at $\mathrm{C}(10)$ and the downfield H atom resonating at 5.12 ppm was consistent with the H atom at $\mathrm{C}(4)$. The only unassigned methine H resonating at 4.20 ppm showed a strong correlation with the H atom at $\mathrm{C}(4)$ and the unassigned geminal H atoms resonating at 4.17 ppm and 3.86 ppm . I assigned the methine H and the germinal H atoms to $\mathrm{C}(5)$ and $\mathrm{C}(11)$, respectively.

Figure $4.6{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlation of H atoms at $\mathrm{C}(7)$ and $\mathrm{C}(10)$; at $\mathrm{C}(4)$ and $\mathrm{C}(10)$; at $\mathrm{C}(4)$ and $C(5)$; and at $C(5)$ and $C(11)$ in 1,2,3-triazoline 156

Similarly, I was able to synthesize the epi-1,2,3-triazoline 159 from the trans-2,5dihydrofurane 157 (Scheme 4.10). I was also able to grow crystals of epi-1,2,3-triazoline 159 from ether and their analysis by X-ray crystallography confirmed formation of the product (Figure 4.7).

Scheme 4.10 Synthesis of epi-1,2,3-triazoline 159

1,2,3-triazoline 159

Figure 4.7 Thermal ellipsoid plot of epi-1,2,3-triazoline 159

4.3.3 Future plan for completion of the loline total synthesis

We plan to methylate the $\mathrm{N}(3)$ of 1,2,3-triazoline $\mathbf{1 5 6}$ (to form loline) and then reduce the resulting 1,2,3-triazolinium ion over Raney Ni with H_{2} to form the 1,2-diamine 160 (Scheme 4.11). Desilylation of $\mathbf{1 6 0}$ with tetrabutylammonium fluoride (TBAF) can afford alcohol 161, which will be treated with PPh_{3} and I_{2} to cause the pyrrolidine N to undergo transannular nucleophilic substitution and make the tricyclic (+)-loline in 11 steps from 2-deoxy-D-ribose.

156

1. Methylation
 $i-\mathrm{PrOH}$

Scheme 4.11 Our plan to complete the total synthesis of loline from 1,2,3-triazoline $\mathbf{1 5 6}$

I have already tried N-methylation of 1,2,3-triazoline $\mathbf{1 5 9}$ with $\mathrm{Me}_{2} \mathrm{SO}_{4}$ and MeOTf. However, the reactions did not proceed cleanly, making the results difficult to interpret. To overcome the challenges, we could manipulate the reaction conditions (temperature, solvent, etc.) or use other strong methylating agents such as $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}^{-}$(Meerwein salt). Additionally, it is possible that the $\mathrm{N}(3)$ atom in cis-1,2,3-triazoline 156 experience some steric hindrance by the adjacent cis $\mathrm{CH}_{2} \mathrm{OTBDPS}$ group which can obstruct the N -
methylation. Therefore, removal of the bulky silyl group before alkylation could potentially solve the problem.

Although, I have not succeeded in finishing the total synthesis, the formation of a stable 1,2,3-triazoline 156-as a first synthesized example- has inspired us to make various 1,2,3-triazolines and initiate the 1,2-diamination project in which I was able to develop two related methodologies for 1,2-diamination of alkenes.

4.4 Experimental Section

Ethyl 2-[(2R,4S,5R)-5-\{[(tert-butyldiphenylsilyl)oxy]methyl\}-4-hydroxyoxolan-2yl]acetate
 and

Ethyl 2-[(2S,4S,5R)-5-\{[(tert-butyldiphenylsilyl)oxy]methyl\}-4-hydroxyoxolan-2yl]acetate

The procedure was adapted from Álvarez et al. ${ }^{65}$ To the solution of 2-deoxy-Dribose ($1.01 \mathrm{~g}, 7.50 \mathrm{mmol}$) in dry THF (20 mL), Ethyl (triphenylphosphoranylidene) acetate $(2.88 \mathrm{~g}, 8.25 \mathrm{mmol})$ was added. The mixture was stirred at the reflux temperature for 7 h . Then, the solvent was evaporated and the crude product with was purified with flash column chromatography $\left(5-10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield the triol I as a colorless oil ($885 \mathrm{mg}, 4.33 \mathrm{mmol}, 58 \%$). The experimental data was in accordance with the previously reported data. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.04-6.86(\mathrm{~m}, 1 \mathrm{H}), 5.91\left(\mathrm{dt}, J_{\mathrm{d}}=\right.$ $\left.15.8 \mathrm{~Hz}, J_{\mathrm{t}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.50-4.05(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OH}), 4.15(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.83-3.63(\mathrm{~m}$, $3 \mathrm{H}), 3.63-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.1,145.9,123.7,74.3,71.6,63.3,60.7,35.9,14.3$.

The procedure was adapted from Álvarez et al. ${ }^{65} \mathrm{NaOEt}(67.3 \mathrm{mg}, 0.989 \mathrm{mmol}$) was added to a solution of $\mathbf{I}(2.02 \mathrm{~g}, 9.89 \mathrm{mmol})$ in anhydrous EtOH. The reaction mixture was stirred at room temperature for 20 h . Then, the solvent was removed under reduced pressure. Purification with flash column chromatography ($10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the pure product II as a mixture of diastromers ($1.53 \mathrm{~g}, 7.50 \mathrm{mmol}, 76 \%$). The
experimental data was in accordance with the previously reported data. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.58-4.42\left(\mathrm{~m}, 1 \mathrm{H}_{\mathrm{A}+\mathrm{B}}\right), 4.37-4.28\left(\mathrm{~m}, 1 \mathrm{H}_{\mathrm{A}+\mathrm{B}}\right), 4.14\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{A}+\mathrm{B}}\right), 3.95-$ $3.81\left(\mathrm{~m}, 1 \mathrm{H}_{\mathrm{A}+\mathrm{B}}\right), 3.79-3.49\left(\mathrm{~m}, 2 \mathrm{H}_{\mathrm{A}+\mathrm{B}}\right), 2.65-2.54\left(\mathrm{~m}, 2 \mathrm{H}_{\mathrm{A}+\mathrm{B}}\right), 2.41$ and $2.04\left(\mathrm{dt}, J_{\mathrm{d}}=12.9\right.$ $\mathrm{Hz}, J_{\mathrm{t}}=7.0 \mathrm{~Hz}$ and ddd, $\left.J=13.1,5.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{A}+\mathrm{B}}\right), 2.12($ broad s, 2 H$), 1.88$ and 1.77 $\left(\mathrm{ddd}, J=13.2,9.4,6.4 \mathrm{~Hz}\right.$ and ddd, $\left.J=12.7,6.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{A}+\mathrm{B}}\right), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.3 \mathrm{H}_{\mathrm{A}+\mathrm{B}}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.6,171.3,87.3,85.6,74.8,74.7,73.5,73.1$, $72.9,63.1,62.6,60.9,60.8,60.8,41.0,40.4,40.0,14.3$.

The procedure was adapted from Álvarez et al. ${ }^{65}$ To the solution of II $(2.69 \mathrm{~g}, 13.2$ $\mathrm{mmol})$ in 80 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}(2.66 \mathrm{~g}, 26.34 \mathrm{mmol})$ and DMAP (161 mg , $1.31 \mathrm{mmol})$ was added. The mixture was stirred for 15 minutes and $\operatorname{TBDPSCl}(3.44 \mathrm{~g}, 12.5$ mmol) was added to the mixture. The reaction was stirred at room temperature for 48 h . Then, the reaction mixture was washed with 1 M aqueous HCl and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layer was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. Purification with flash chromatography with hexane$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(5: 3: 2)$ yielded $153(1.34 \mathrm{~g}, 3.03 \mathrm{mmol}, 23 \%)$ and $163(2.22 \mathrm{~g}, 5.02 \mathrm{mmol}$, 38%) as colorless oils. The experimental data was in accordance with the previously reported data. Data for $153:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.35$ $(\mathrm{m}, 6 \mathrm{H}), 4.55\left(\mathrm{ddt}, J_{\mathrm{d}}=9.6 \mathrm{~Hz}, J_{\mathrm{d}}=7.1 \mathrm{~Hz}, J_{\mathrm{t}}=5.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.48-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{ddd}, J=6.3,3.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=10.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (dd, $J=10.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=15.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=15.4,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.07(\mathrm{ddd}, J=13.1,5.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{ddd}, J=13.1,9.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\operatorname{broad~s}$, $1 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,135.7$, 135.7, 133.3, 133.3, 130.0, 129.9, 127.9, 127.9, 87.1, 74.8, 74.5, 64.8, 60.7, 40.8, 40.7,
27.0, 19.4, 14.3. Data for 163: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.35$ $(\mathrm{m}, 6 \mathrm{H}), 4.53-4.41(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.97\left(\mathrm{dt}, J_{\mathrm{d}}=6.2 \mathrm{~Hz}, J_{\mathrm{t}}=3.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.75(\mathrm{dd}, J=10.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=10.6$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=15.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48\left(\mathrm{dt}, J_{d}=13.2, J_{\mathrm{t}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.39(\mathrm{~d}$, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{ddd}, J=13.2,6.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,135.7,135.7,133.3,133.2,130.0,129.9,127.9$, $127.9,85.9,75.1,74.8,65.0,60.7,41.0,40.0,27.0,19.3,14.3$.

Ethyl 2-[(2S,5S)-5-\{[(tert-butyldiphenylsilyl)oxy]methyl\}-2,5-dihydrofuran-2yl]acetate

To a solution of $\mathbf{1 5 3}(851 \mathrm{mg}, 1.92 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ were added 2,6lutidine ($618 \mathrm{mg}, 5.76 \mathrm{mmol}$) and $\mathrm{Tf}_{2} \mathrm{O}(813 \mathrm{mg}, 2.88 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$, followed by the addition of $\mathrm{DBU}(2.92 \mathrm{~g}, 19.2 \mathrm{mmol})$. The resulting mixture was warmed to room temperature and stirred for 2 h . The reaction mixture was quenched by the addition of saturated NaHCO_{3} solution. After removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by evaporation, the residue was extracted with hexanes/ EtOAc $(5 / 1)(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with 1 M aqueous HCl (let it stir for 30 minutes) and brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography ($10 \% \mathrm{EtOAc}$ in hexanes) to yield the alkene 154 ($538 \mathrm{mg}, 1.27 \mathrm{mmol}, 66 \%$) as a colorless liquid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.76-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.34(\mathrm{~m}, 6 \mathrm{H}), 5.97-5.88(\mathrm{~m}, 2 \mathrm{H}), 5.27-5.19(\mathrm{~m}, 1 \mathrm{H})$,
4.93-4.87 (m, 1H), $4.15(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.76-3.61(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{dd}, J=15.6,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.52(\mathrm{dd}, J=15.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,135.8,135.7,134.9,133.6,133.5,130.3,129.8,129.7,128.8,127.8$, 87.2, 82.6, 66.9, 60.6, 42.1, 27.0, 19.4, 14.3; IR (ATR) 3070, 3048, 2930, 2856, $1731 \mathrm{~cm}^{-}$ ${ }^{1}$; GC-MS (EI) 367 (100\%), 269 (17\%), 227 (19\%), 211 (16\%), 199 (86%), 181 (42\%), 155 (20\%), 135 (53\%), 105 (20\%), 81 (32\%).

Ethyl 2-[(2R,5S)-5-\{[(tert-butyldiphenylsilyl)oxy]methyl\}-2,5-dihydrofuran-2yl]acetate

To a solution of $163(672 \mathrm{mg}, 1.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ were added 2,6lutidine ($488 \mathrm{mg}, 4.56 \mathrm{mmol}$) and $\mathrm{Tf}_{2} \mathrm{O}(643 \mathrm{mg}, 2.28 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$, followed by the addition of $\operatorname{DBU}(2.31 \mathrm{~g}, 1.52 \mathrm{mmol})$. The resulting mixture was warmed to room temperature and stirred for 2 h . The reaction mixture was quenched by the addition of saturated NaHCO_{3} solution. After removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by evaporation, the residue was extracted with hexanes/ EtOAc (5/1) $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with 1 M aqueous HCl (let it stir for 30 minutes) and brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (10% EtOAc in hexanes) to yield the alkene 157 (496 mg, $1.17 \mathrm{mmol}, 77 \%$) as a colorless liquid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CDCl} 3) \delta 7.76-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 6 \mathrm{H}), 5.97-5.90(\mathrm{~m}, 2 \mathrm{H}), 5.28-5.20(\mathrm{~m}, 1 \mathrm{H})$, $4.95\left(\mathrm{ddt}, J_{\mathrm{d}}=7.1 \mathrm{~Hz}, J_{\mathrm{d}}=5.7 \mathrm{~Hz}, J_{\mathrm{t}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{dd}, J=$
$10.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=10.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=15.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ (dd, $J=15.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDC13) $\delta 171.1,135.8,135.7,134.9,133.8,133.7,130.4,129.8,129.7,129.0,127.8,86.6$, $82.6,66.5,60.6,41.5,26.9,19.4,14.3$; IR (ATR) $3071,3050,2929,2856,1732 \mathrm{~cm}^{-1}$; GCMS (EI) 367 (100\%), 269 (15\%), 227 (17\%), 211 (14\%), 199 (71\%), 181 (35\%), 155 (16\%), 135 (40\%), 105 (15\%), 81 (22\%).

$\{[(2 S, 5 S)-5-(2$-azidoethyl)-2,5-dihydrofuran-2-yl]methoxy\}(tert-butyl)diphenylsilane

154

155

A solution of ester $\mathbf{1 5 4}(600 \mathrm{mg}, 1.40 \mathrm{mmol})$ in dry THF $(2.0 \mathrm{~mL})$ was added dropwise to the suspension of $\mathrm{LiAlH}_{4}(160 \mathrm{mg}, 4.20 \mathrm{mmol})$ in dry THF $(9.5 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$. The resulting mixture stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h and at room temperature for 30 minutes. After reaction completion, the mixture was diluted by adding ether $(10 \mathrm{~mL})$ and cooled down to $0{ }^{\circ} \mathrm{C}$. Then $160 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}, 160 \mu \mathrm{~L}$ of $15 \% \mathrm{NaOH}, 480 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$ was added, respectively. The mixture warmed up to room temperature and anhydrous MgSO_{4} was added to the mixture. After stirring for 2-3 minutes the mixture filtered and washed with ether. Organic solvents were evaporated under reduced pressure to yield the crude alcohol 154a as a colorless viscous liquid ($443 \mathrm{mg}, 1.16 \mathrm{mmol}, 83 \%$). The crude product was used in the next step without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-$ $7.64(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.32(\mathrm{~m}, 6 \mathrm{H}), 5.91-5.79(\mathrm{~m}, 2 \mathrm{H}), 5.06-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.91(\mathrm{~m}$, $1 \mathrm{H}), 3.85-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.86\left(\mathrm{ddt}, J_{\mathrm{d}}=14.0 \mathrm{~Hz}, J_{\mathrm{t}}=6.1 \mathrm{~Hz}, J_{\mathrm{d}}=\right.$
$3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.73\left(\mathrm{ddt}, J_{\mathrm{d}}=14.5 \mathrm{~Hz}, J_{\mathrm{t}}=7.6 \mathrm{~Hz}, J_{\mathrm{d}}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 135.8,135.8,133.7,133.5,131.3,129.9,129.8,128.0,128.0,127.8$, 87.2, 86.1, 67.2, 61.1, 38.7, 27.0, 19.4; IR (ATR) $3375,3070,3048,2928,2855 \mathrm{~cm}^{-1}$; GCMS (EI) 325 (37\%), 247 (10\%), 217 (13\%), 199 (100\%), 181 (32\%), 135(36\%), 105 (9\%), 95 (19\%).

To the ice cold solution of $\mathrm{PPh}_{3}(450 \mathrm{mg}, 1.71 \mathrm{mmol})$ in THF (3 mL), DIAD (354 $\mathrm{mg}, 1.75 \mathrm{mmol}$) was added dropwise and the mixture stirred for 15 minutes at the same tempreture. Then, a solution of alcohol 154a ($328 \mathrm{mg}, 0.857 \mathrm{mmol}$) in THF (1 mL) was added dropwise and the mixture stirred for 15 minutes at the same temperature. Then DPPA ($498 \mathrm{mg}, 1.81 \mathrm{mmol}$) was added dropwise and the resulting mixture stirred at room temperature for 30 h . Then water was added and the mixture was extracted with EtOAc (3 $\times 10 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (5\% EtOAc in hexanes) to yield the azide $155(221 \mathrm{mg}, 0.542 \mathrm{mmol}, 63 \%)$ as a light yellow liquid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.74-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.32(\mathrm{~m}, 6 \mathrm{H}), 5.87\left(\mathrm{ddt}, J_{\mathrm{d}}=\right.$ $\left.7.1 \mathrm{~Hz}, J_{\mathrm{d}}=0.9 \mathrm{~Hz}, J_{\mathrm{t}}=6.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.94-4.84(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{ddd}, J$ $=7.6,6.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.86\left(\mathrm{ddt}, J_{\mathrm{d}}=13.9, J_{\mathrm{d}}=3.9, J_{\mathrm{t}}=7.7,1 \mathrm{H}\right), 1.76(\mathrm{dddd}, J=13.8$, $7.7,6.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.07$ (s, 9H). IR (ATR) 3070, 3049, 2928, 2858, $2092 \mathrm{~cm}^{-1}$; GC-MS (EI) 322 (100\%), 253 (9\%), 223 (9\%), 199 (23\%), 181 (19\%), 163 (20\%), 135 (10\%), 105 (10\%), 80 (28\%).

\{[(2S,5R)-5-(2-azidoethyl)-2,5-dihydrofuran-2-yl]methoxy\}(tert-butyl)diphenylsilane

A a solution of ester $157(451 \mathrm{mg}, 1.06 \mathrm{mmol})$ in dry THF (2 mL) was added dropwise to the suspension of $\mathrm{LiAlH}_{4}(121 \mathrm{mg}, 3.19 \mathrm{mmol})$ in dry THF $(9 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The resulting mixture stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h and at room temperature for 30 minutes. After reaction completion, the mixture was diluted by adding ether (10 mL) and cooled down to $0{ }^{\circ} \mathrm{C}$. Then $120 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}, 120 \mu \mathrm{~L}$ of $15 \% \mathrm{NaOH}, 360 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$ was added, respectively. The mixture warmed up to room temperature and anhydrous MgSO_{4} was added to the mixture. After stirring for 2-3 minutes the mixture filtered and washed with ether. Organic solvents were evaporated under reduced pressure to yield the crude alcohol 157a as a colorless viscous liquid ($375 \mathrm{mg}, 0.980 \mathrm{mmol}, 92 \%$). The crude product was used in the next step without further purification. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77-7.66$ $(\mathrm{m}, 4 \mathrm{H}), 7.47-7.33(\mathrm{~m}, 6 \mathrm{H}), 5.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.07-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.91(\mathrm{~m}$, $1 \mathrm{H}), 3.85-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 1 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.79-$ $1.69(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 135.8,135.7,134.9,133.7$, $133.6,131.3,129.8,129.7,128.0,127.8,86.7,86.3,66.5,61.1,37.6,26.9,19.4$; IR (ATR) 3375, 3070, 3048, 2928, $2855 \mathrm{~cm}^{-1}$; GC-MS (EI) 325 (23\%), 247 (8\%), 217 (9\%), 199 (100\%), 181 (30\%), 135(27\%), 105 (13\%), 95 (15\%).
$\mathrm{Et}_{3} \mathrm{~N}(300 \mathrm{mg}, 2.94 \mathrm{mmol})$ and DMAP $(9.00 \mathrm{mg}, 0.073 \mathrm{mmol})$ was added to the solution of crude alcohol $157 \mathrm{a}(562 \mathrm{mg}, 1.47 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$. The mixture was stirred for 10 minutes and then cooled down to $0^{\circ} \mathrm{C}$. A solution of $\mathrm{TsCl}(344$
$\mathrm{mg}, 1.81 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to the mixture dropwise. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then warmed up to room temperature and continue stirring for 30 h . Then, the reaction mixture was washed with 1 M aqueous HCl and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layer was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. Purification with flash chromatography ($5-10 \%$ EtOAc in hexanes) yielded the pure tosylate 157 b as a colorless liquid (649 mg , $1.21 \mathrm{mmol}, 82 \%$). This tosylated product is prone to decomposition and should be used immediately in the next step. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.68-7.61 (m, 4H), 7.49-7.28 (m, 8H), 5.83-5.77 (m, 2H), 4.88 (dd, $J=7.0,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.84-4.74(m, 1H), 4.20-4.09(m, 2H), 3.68-3.55 (m, 2H), 2.42(s, 3H), 2.04-1.91(m, 1H), $1.88-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.8,135.8,135.7,133.7$, 133.6, 133.2, 130.4, 129.9, 129.8, 129.8, 128.6, 128.1, 127.8, 86.6, 82.6, 67.7, 66.5, 35.2, 26.9, 21.8, 19.4; IR (ATR) 3069, 2928, $2855 \mathrm{~cm}^{-1}$.

To the solution of $\mathbf{1 5 7 b}(496 \mathrm{mg}, 0.923 \mathrm{mmol})$ in dry DMSO $(15 \mathrm{~mL})$, it was added $\mathrm{NaN}_{3}(180 \mathrm{mg}, 2.77 \mathrm{mmol})$ in one portion. The mixture stirred at room temperature for 10 h. After reaction completion, $\mathrm{H}_{2} \mathrm{O}$ was added and the mixture was extracted with ether (3 $\times 7 \mathrm{~mL}$). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ one more time to remove the rest of DMSO. (Caution: The unreacted sodium azide in the aqueous layer was quenched according to the previously reported protocol $)^{43}$. The combined organic layer was dried over anhydrous MgSO_{4} and concentrated under vacuum to yield the azide $\mathbf{1 5 8}$ (340 mg , $0.835 \mathrm{mmol}, 90 \%$) as a colorless liquid. The crude product was carried to the next step without further purification and was kept at $-20{ }^{\circ} \mathrm{C}$ to prevent formation of the corresponding triazoline. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.35(\mathrm{~m}$,
$6 \mathrm{H}), 5.91-5.84(\mathrm{~m}, 2 \mathrm{H}), 4.99-4.88(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.90\left(\mathrm{ddt}, J_{\mathrm{d}}=14.7 \mathrm{~Hz}, J_{\mathrm{d}}=4.0 \mathrm{~Hz}, J_{\mathrm{t}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 135.8,135.8,133.8,133.7,130.6,129.8,129.8,128.6,127.8,86.7$, 83.5, 66.6, 48.0, 35.1, 26.9, 19.4; IR (ATR) 3071, 3049, 2929, 2857, $2093 \mathrm{~cm}^{-1}$; GC-MS (EI) 322 (100\%), 244 (13\%), 223 (17\%), 199 (33\%), 181 (21%), 163 (42%), 135 (12%), 105 (13\%), 80 (22\%), 77 (8\%).
(4R,5R,7S,10S)-5-[(tert-butyldiphenylsilyl)oxy]-6-oxa-1,2,3triaztricyclo[5.2.1.0 $\left.{ }^{4,10}\right]$ dec-2-ene

A solution of azide $\mathbf{1 5 5}(35.0 \mathrm{mg}, 0.086 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(0.6 \mathrm{~mL})$ was transferred to the NMR tube and heated at $70^{\circ} \mathrm{C}$ for 64 h . After completion of the cycloaddition, the solvent was evaporated to yield the 1,2,3-triazoline 156 as a light yellow solid (34.1 mg , $0.083 \mathrm{mmol}, 97 \%)$. The crude product was kept at $-20^{\circ} \mathrm{C}$ to prevent loss of $\mathrm{N}_{2} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 6 \mathrm{H}), 5.12(\mathrm{dd}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.45 (ddd, $J=6.9,5.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{ddd}, J=12.9,9.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.13(\mathrm{~m}$, $2 \mathrm{H}), 3.98(\mathrm{dd}, J=8.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=10.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53\left(\mathrm{dt}, J_{\mathrm{d}}=12.8 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{t}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.13-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 135.8,135.8,133.7,133.6,129.8,127.8,127.8,87.9,86.7,85.6,66.0,62.1,51.8$, 31.6, 27.0, 19.4; IR (ATR) 3069, 3047, 2928, $2855 \mathrm{~cm}^{-1}$; GC-MS (EI) 322 (100\%), 253 (12\%), 223 (9\%), 199 (25\%), 181 (20\%), 163 (23\%), 135 (12\%), 105 (10\%), 82 (37\%).

(4S,5R,7R,10R)-5-[(tert-butyldiphenylsilyl)oxy]-6-oxa-1,2,3-

 triaztricyclo[5.2.1.0 $\left.0^{4,10}\right]$ dec-2-ene

A solution of azide $\mathbf{1 5 8}(423 \mathrm{mg}, 1.18 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(6 \mathrm{~mL})$ was transferred to the sealed tube and heated at $75^{\circ} \mathrm{C}$ for 17 h . (Attention: a NMR sample in CDCl_{3} was also prepared and put into the same oil bath with the sealed tube. Progress of the reaction was monitored by NMR to prevent overheating of the sample and extrusion of N_{2}). After completion of the cycloaddition, the solvent was evaporated and the product was redissolved in ether and kept under medium flow of N_{2} to yield the 1,2,3-triazoline $\mathbf{1 5 9}$ (473 $\mathrm{mg}, 1.16 \mathrm{mmol}$) as a pale yellow solid The crude product was kept at $-20^{\circ} \mathrm{C}$ to prevent loss of $\mathrm{N}_{2} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.72-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.37(\mathrm{~m}, 6 \mathrm{H}), 5.16(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.89\left(\mathrm{dt}, J_{\mathrm{d}}=3.0 \mathrm{~Hz}, J_{\mathrm{t}}=4.89 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.58(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (ddd, $J=12.4,8.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=8.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=11.1,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{dd}, J=11.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{ddd}, J=12.8,9.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dddd}, J=$ $13.9,8.1,7.0,2.8, \mathrm{~Hz}, 1 \mathrm{H}), 1.62\left(\mathrm{ddt}, J_{\mathrm{d}}=13.9 \mathrm{~Hz}, J_{\mathrm{d}}=3.1 \mathrm{~Hz}, J_{\mathrm{t}}=9.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.09(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.7,135.6,132.8,132.7,130.2,130.1,128.1,128.0$, 88.6, 88.4, 87.5, 66.9, 66.4, 52.4, 32.7, 27.0, 19.2; IR (ATR) 3070, 3047, 2931, $2855 \mathrm{~cm}^{-}$ ${ }^{1}$; GC-MS (EI) 322 (100\%), 244 (13\%), 223 (15\%), 199 (41\%), 181 (26\%), 163 (40\%), 135 (12\%), 105 (13\%), 82 (19\%).

Chapter 5 Conclusions and Future Directions

1,2-Diamine moieties are ubiquitous substructures found in pharmaceutical agents and natural products. They can also serve as ligands in transition metal complexes useful in catalysis and medicine. In this report, we have developed two different methods for 1,2diamination of alkenes via reduction of 1,2,3-triazolinium ions over Raney Ni with only a balloon of H_{2}.

In the first method, azide-alkene cycloaddition formed a 1,2,3-triazoline which was then N-alkylated to form a 1,2,3-triazolinium ion. A summary of all the synthesized 1,2diamines in this method is depicted in Table 2.1. Through this approach, I have also shown that the synthesis of a stable 1,2,3-triazoline is not only possible, but they can also be isolated and manipulated without extrusion of N_{2}. This finding provides opportunities for researchers to utilize stable 1,2,3-triazolines in various reactions other than the formation of an imine or an aziridine.

In the second method, the 1,2,3-triazolinium ions were directly synthesized through the cycloaddition of an azidium ion and alkenes. I prepared 1,2-diamines from cyclic, trans acyclic, cis acyclic, and terminal alkenes (Table 3.1). The cyclic alkenes afforded cis 1,2,3triazolinium ions and their hydrogenation over Raney Ni produced 1,2-diamines with cis stereochemistry. The retention of the stereochemistry was confirmed by NMR and X-ray crystallographic analysis.

The acyclic trans alkenes gave threo 1,2-diamines and the X-ray crystallographic analysis of 1,2-diamines and confirmed preservation of the corresponding 1,2,3triazolinium ion stereochemistry during the hydrogenolysis.

Shockingly, hydrogenolysis of the 1,2,3-triazolinium ion derived from the acyclic cis alkene formed products with complete or partial inversion of stereochemistry. We hypothesized that the isomerization has possibly occurred during the hydrogenation step when the triazolinium ring was still intact. Coordination of Ni to the cis 4,5 -disubstituted ring possibly catalyzed a series of β-hydride eliminations and reinsertions to form the more stable trans 4,5-disubstituted ring leading to the threo product.

The hydrogenolysis of the 1,2,3-triazolinium ion $\mathbf{1 1 1}$ derived from 5-hexen-2-one gave more surprising results. The 1,2-diamine product formed with an additional $\mathrm{C}-\mathrm{C}$ bond. We hypothesized it is probably due to the formation of the hydrazone intermediate during the reduction. This intermediate can possibly act as a C nucleophile and form a new $\mathrm{C}-\mathrm{C}$ bond by attacking the carbonyl group.

We were also interested to apply our 1,2-diamination methodology in total synthesis of loline alkaloids. Our proposed reterosynthesis involves formation of the 1,2,3triazoline as a first key intermediate. I successfully synthesized this 1,2,3-triazoline from 2-deoxy-D-ribose in seven steps. The N-alkylation of the 1,2,3-triazoline, reduction of the produced 1,2,3-triazolinium ion, and completion of the final stages of this total synthesis are still under investigation.

The undesired isomerization outcomes and the low yields in some examples are the important limitations of this methodology. Raney Ni was among the first few catalysts that I utilized to hydrogenate the 1,2,3-triazolinium ions. In future, one could use catalysts other than Raney Ni , such as $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{PtO}_{2}$, etc. to possibly bypass these limitations or might explore the use of higher pressure of H_{2} to improve the yields and the scope of the methodology.

In our 1,2-diamination methodology, we prepared 1,2-diamines with benzyl (method A) or aryl (method B) substituents on the N atoms. One could possibly develop methods to remove these substituents and form more useful 1,2-diamines. Debenzylation of 1,2-diamines synthesized in method A, can probably be done by hydrogenolysis of the substrate over $\mathrm{Pd}(\mathrm{OH})_{2}$ with H_{2}. However, the removal of N -chlorophenyl group may imply more challenges as there are not many methods known for removing the aryl groups. One could possibly replace the Cl with methoxy group in chlorophenyl substituents using the pd-catalyst-ligand system developed by Buchwald group. ${ }^{66}$ The 4-methoxyphenyl group can oxidatively be removed by treatment with aqueous ceric ammonium nitrate (CAN). ${ }^{49}$

Appendix

Figure A. 1 GC-MS analysis of the 1,2-diamines derived from cis-3-hexene

Figure A. 2 HSQC spectrum of 2,3-bis[(4-chlorophenyl)amino]-1-methylcyclopentan-1-ol 112

Figure $\mathrm{A} . \mathrm{3}^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of spectrum of 2,3-bis[(4-chlorophenyl)amino]-1-methylcyclopentan-1-ol 112

Crystal data for N^{2}, N^{3}-dibenzylbicyclo[2.2.1]heptane-2,3-diamine as a triflate salt

CCDC reference number: 2179887

UK Chem reference number: m21092

Table A. 1 Crystal data and structure refinement for N^{2}, N^{3} -dibenzylbicyclo[2.2.1]heptane-2,3-diamine as a triflate salt.

Table A. 2 Mol Representation of N^{2}, N^{3}-dibenzylbicyclo[2.2.1]heptane-2,3diamine as a triflate salt.

$5860 \quad 0$	00		99	V200											
0.2937	3.3994	8.0773	S	0	0	1	0	0	0	0	0	0	0	0	0
0.4366	4.9759	5.9916	F	0	0	0	0	0	0	0	0	0	0	0	0
-1.5514	4.7705	6.7898	F	0	0	0	0	0	0	0	0	0	0	0	0
-0.0979	5.9747	7.8185	F	0	0	0	0	0	0	0	0	0	0	0	0
-0.6312	3.3816	9.2061	0	0	0	0	0	0	0	0	0	0	0	0	0
1.6345	3.7619	8.4465	0	0	5	0	0	0	0	0	0	0	0	0	0
0.1505	2.2924	7.1800	0	0	0	0	0	0	0	0	0	0	0	0	0
-0.2667	4.8445	7.1204	C	0	0	1	0	0	0	0	0	0	0	0	0
6.2626	5.7731	6.3537	N	0	0	1	0	0	0	0	0	0	0	0	0
6.5123	6.0758	7.1430	H	0	0	0	0	0	0	0	0	0	0	0	0
3.9978	4.5097	6.9382	N	0	3	2	0	0	0	0	0	0	0	0	0
3.2779	4.2659	7.4386	H	0	0	0	0	0	0	0	0	0	0	0	0
4.7212	4.5450	7.4893	H	0	0	0	0	0	0	0	0	0	0	0	0
5.0976	6.5350	5.8899	C	0	0	1	0	0	0	0	0	0	0	0	0
5.1108	6.5953	4.8915	H	0	0	0	0	0	0	0	0	0	0	0	0
3.7551	5.8701	6.3612	C	0	0	2	0	0	0	0	0	0	0	0	0
3.1376	5.7883	5.5786	H	0	0	0	0	0	0	0	0	0	0	0	0
3.1686	6.8787	7.3618	C	0	0	2	0	0	0	0	0	0	0	0	0
2.5759	6.4865	8.0650	H	0	0	0	0	0	0	0	0	0	0	0	0
2.5274	7.9884	6.5057	C	0	0	2	0	0	0	0	0	0	0	0	0
2.0470	8.6443	7.0708	H	0	0	0	0	0	0	0	0	0	0	0	0
1.8993	7.6107	5.8406	H	0	0	0	0	0	0	0	0	0	0	0	0
3.7585	8.6366	5.8137	C	0	0	1	0	0	0	0	0	0	0	0	0
3.7505	8.4643	4.8389	H	0	0	0	0	0	0	0	0	0	0	0	0
3.7806	9.6141	5.9690	H	0	0	0	0	0	0	0	0	0	0	0	0
4.9563	7.9405	6.4901	C	0	0	1	0	0	0	0	0	0	0	0	0
5.8001	8.4769	6.4925	H	0	0	0	0	0	0	0	0	0	0	0	0

Table A. 2 Mol Representation of N^{2}, N^{3}-dibenzylbicyclo[2.2.1]heptane-2,3diamine as a triflate salt, continued

4.4059	7.6146	7.8852	C	0	0	2	0	0	0	0	0	0	0	0	0
5.0082	7.0287	8.4078	H	0	0	0	0	0	0	0	0	0	0	0	0
4.1782	8.4250	8.4062	H	0	0	0	0	0	0	0	0	0	0	0	0
7.4260	5.8769	5.4557	C	0	0	2	0	0	0	0	0	0	0	0	0
7.8111	6.7870	5.5162	H	0	0	0	0	0	0	0	0	0	0	0	0
7.1380	5.7260	4.5209	H	0	0	0	0	0	0	0	0	0	0	0	0
8.4733	4.8598	5.8315	C	0	0	0	0	0	0	0	0	0	0	0	0
9.1498	4.9718	7.0379	C	0	0	0	0	0	0	0	0	0	0	0	0
8.9837	5.7174	7.6029	H	0	0	0	0	0	0	0	0	0	0	0	0
10.0673	4.0054	7.4279	C	0	0	0	0	0	0	0	0	0	0	0	0
10.5115	4.0846	8.2637	H	0	0	0	0	0	0	0	0	0	0	0	0
10.3359	2.9308	6.6064	C	0	0	0	0	0	0	0	0	0	0	0	0
10.9620	2.2689	6.8751	H	0	0	0	0	0	0	0	0	0	0	0	0
9.6909	2.8221	5.3927	C	0	0	0	0	0	0	0	0	0	0	0	0
9.8853	2.0936	4.8144	H	0	0	0	0	0	0	0	0	0	0	0	0
8.7570	3.7763	5.0154	C	0	0	0	0	0	0	0	0	0	0	0	0
8.3045	3.6856	4.1847	H	0	0	0	0	0	0	0	0	0	0	0	0
4.2370	3.4675	5.8790	C	0	0	1	0	0	0	0	0	0	0	0	0
3.4098	3.3437	5.3486	H	0	0	0	0	0	0	0	0	0	0	0	0
4.9484	3.7803	5.2660	H	0	0	0	0	0	0	0	0	0	0	0	0
4.6411	2.1546	6.4797	C	0	0	0	0	0	0	0	0	0	0	0	0
5.9324	1.9731	6.9604	C	0	0	0	0	0	0	0	0	0	0	0	0
6.5614	2.6829	6.9042	H	0	0	0	0	0	0	0	0	0	0	0	0
6.3062	0.7630	7.5186	C	0	0	0	0	0	0	0	0	0	0	0	0
7.1871	0.6492	7.8569	H	0	0	0	0	0	0	0	0	0	0	0	0
5.4023	-0.2788	7.5861	C	0	0	0	0	0	0	0	0	0	0	0	0
5.6605	-1.1071	7.9731	H	0	0	0	0	0	0	0	0	0	0	0	0
4.1257	-0.1196	7.0923	C	0	0	0	0	0	0	0	0	0	0	0	0
3.5104	-0.8428	7.1256		0	0	0	0	0	0	0	0	0	0	0	0

Table A. 2 Mol Representation of N^{2}, N^{3}-dibenzylbicyclo[2.2.1]heptane-2,3diamine as a triflate salt, continued

```
    3.7379 1.0989 6.5462 C 0 0 0 0 0
    2.8532 1.2103 6.2178 H 0 0 0 0 0 0 0 0 0 0 0 0 0
1 5 2 0 0 0 0
1
1 7 2 0 0 0 0
1
2
3
4
9 10 1 0 0 0 0
9 14 1 0 0 0 0
931 1 0 0 0 0
```



```
11}13131000000
```



```
1145 1 0 0 0 0
1415}10100000
14}1616100000
14 26 1 0 0 0 0
16}17170100000
16}1818100000
```



```
18 20 1 0 0 0 0
18 28 1 0 0 0 0
20}2110100000
20}22\mp@code{1}00<000
20}23\mp@code{1
23}24410000000
```

Table A. 2 Mol Representation of N^{2}, N^{3}-dibenzylbicyclo[2.2.1]heptane-2,3diamine as a triflate salt, continued

```
23 25 1 0 0 0 0
23 26 1 0 0 0 0
26 27 1 0 0 0 0
26 28 1 0 0 0 0
28 29 1 0 0 0 0
```



```
31
```



```
34}350200000
34 43 1 0 0 0 0
35}36610000000
```



```
37}338101000000
```



```
3940}
3941 1 0 0 0
4142 1 0 0 0 0
4143 2 0 0 0 0
4344 1 0 0 0 0
4546 1 0 0 0 0
45 47 1 0 0 0 0
4548 1 0 0 0 0
4849 2 0 0 0 0
48 57 1 0 0 0 0
4950 1 0 0 0 0
49 51 1 0 0 0 0
51 52 1 0 0 0 0
```

Table A. 2 Mol Representation of N^{2}, N^{3}-dibenzylbicyclo[2.2.1]heptane-2,3diamine as a triflate salt, continued

```
51 53 2 0 0 0 0 0
53 54 1 0 0 0 0
53 55 1 0 0 0 0
55 56 1 0 0 0
55 57 2 0 0 0 0
57 58 1 0 0 0 0
M CHG 2 
M END
```


Crystal data for 1,3-bis(4-chlorophenyl)-3H,3aH, $\mathbf{4 H}, 5 \mathrm{H}, \mathbf{6 H}, 6 \mathrm{aH}-$ cyclopenta[d][1,2,3]triazol-1-ylium

CCDC reference number: 2179891

UK Chem reference number: m22040

Table B.1 Crystal data and structure refinement for 1,3-bis(4chlorophenyl) $-3 \mathrm{H}, 3 \mathrm{aH}, 4 \mathrm{H}, 5 \mathrm{H}, 6 \mathrm{H}, 6 \mathrm{aH}$-cyclopenta [d] [1, 2, 3] triazol-1-ylium chloride.

Table B. 2 Mol representation of 1,3-bis(4-chlorophenyl)$3 \mathrm{H}, 3 \mathrm{aH}, 4 \mathrm{H}, 5 \mathrm{H}, 6 \mathrm{H}, 6 \mathrm{aH}-\mathrm{cyc}$ lopenta[d][1,2,3]triazol-1-ylium chloride.

Mrv2211 $05162211133 D$

44450	000			v2											
12.9065	1.0903	10.3931	Cl	0	0	0	0	0	0	0	0	0	0	0	0
3.9516	5.1320	2.0312	Cl	0	0	0	0	0	0	0	0	0	0	0	0
8.6240	0.5235	6.3803	N	0	3	0	0	0	0	0	0	0	0	0	0
8.0473	1.5636	5.8674	N	0	0	0	0	0	0	0	0	0	0	0	0
7.2272	1.1857	4.9427	N	0	0	0	0	0	0	0	0	0	0	0	0
8.1422	-0.7611	5.8339	C	0	0	2	0	0	0	0	0	0	0	0	0
8.8872	-1.2995	5.4399	H	0	0	0	0	0	0	0	0	0	0	0	0
7.1484	-0.2824	4.7546	C	0	0	1	0	0	0	0	0	0	0	0	0
7.4417	-0.5528	3.8376	H	0	0	0	0	0	0	0	0	0	0	0	0
5.7833	-0.8912	5.1151	C	0	0	1	0	0	0	0	0	0	0	0	0
5.2147	-0.2315	5.5860	H	0	0	0	0	0	0	0	0	0	0	0	0
5.3094	-1.2033	4.3038	H	0	0	0	0	0	0	0	0	0	0	0	0
6.1320	-2.0698	6.0337	C	0	0	1	0	0	0	0	0	0	0	0	0
5.3694	-2.2942	6.6241	H	0	0	0	0	0	0	0	0	0	0	0	0
6.3742	-2.8701	5.5042	H	0	0	0	0	0	0	0	0	0	0	0	0
7.3255	-1.5754	6.8507	C	0	0	1	0	0	0	0	0	0	0	0	0
7.8533	-2.3345	7.2049	H	0	0	0	0	0	0	0	0	0	0	0	0
7.0296	-1.0076	7.6058	H	0	0	0	0	0	0	0	0	0	0	0	0
9.6005	0.6734	7.4011	C	0	0	0	0	0	0	0	0	0	0	0	0
9.9235	1.9382	7.8829	C	0	0	0	0	0	0	0	0	0	0	0	0
9.4552	2.7056	7.5759	H	0	0	0	0	0	0	0	0	0	0	0	0
10.9397	2.0612	8.8185	C	0	0	0	0	0	0	0	0	0	0	0	0
11.1759	2.9160	9.1587	H	0	0	0	0	0	0	0	0	0	0	0	0
11.6088	0.9276	9.2529	C	0	0	0	0	0	0	0	0	0	0	0	0
11.2563	-0.3338	8.8088	C	0	0	0	0	0	0	0	0	0	0	0	0
11.7065	-1.1024	9.1391	H	0	0	0	0	0	0	0	0	0	0	0	0
10.2385	-0.4650	7.8740	C	0	0		0	0	0	0	0	0	0	0	0

Table B. 2 Mol representation of 1,3-bis(4-chlorophenyl)$3 \mathrm{H}, 3 \mathrm{aH}, 4 \mathrm{H}, 5 \mathrm{H}, 6 \mathrm{H}, 6 \mathrm{aH}$-cyclopenta[d][1,2,3]triazol-1-ylium chloride, continued

	9.9	813		-1.	3244		7.5616	H		0	0	0	0	0	0	0	0	0	0	0	0
	6.4	615			1540		4.2421	C	C	0	0	0	0	0	0	0	0	0	0	0	0
	6.4	824			4904		4.6356	C	C	0	0	0	0	0	0	0	0	0	0	0	0
	7.0	125			7665		5.3739	H	H	0	0	0	0	0	0	0	0	0	0	0	0
	5.7	203			4109		3.9356	C	C	0	0	0	0	0	0	0	0	0	0	0	0
	5.7	250			3277		4.1849	H	H	0	0	0	0	0	0	0	0	0	0	0	0
	4.9	486			9779		2.8648	C	C	0	0	0	0	0	0	0	0	0	0	0	0
	4.9	332			6576		2.4608	C	C	0	0	0	0	0	0	0	0	0	0	0	0
	4.4	044			3845		1.7204	H	H	0	0	0	0	0	0	0	0	0	0	0	0
	5.7	057			7351		3.1575	C	C	0	0	0	0	0	0	0	0	0	0	0	0
	5.7	157			8231		2.8920	H	H	0	0	0	0	0	0	0	0	0	0	0	0
	2.4	884			4757		5.3720		Cl	0	0	0	0	0	0	0	0	0	0	0	0
	1.1	563			5226		7.0316		Cl	0	0	0	0	0	0	0	0	0	0	0	0
	2.3	837			7132		4.5420		Cl	0	0	0	0	0	0	0	0	0	0	0	0
	2.4	954			8018		5.9164	C	C	0	0	1	0	0	0	0	0	0	0	0	0
	3.3	547			6243		6.3963	D	D	0	0	0	0	0	0	0	0	0	0	0	0
	8.5	417			7917		0.0000		Cl	0	5	0	0	0	0	0	0	0	0	0	0
	24	1	0	0	0	0															
	34	1	0			0															
	4	2	0	0	0	0															
3	6	1	0	0	0	0															
3	19	1	0	0	0	0															
4	5	1	0	0	0	0															
5	8	1	0	0	0	0															
5	29	1	0	0	0	0															
6	7	1	0	0	0	0															
6	8	1	0	0	0	0															
6	16	1	0	0	0	0															
	9	1			0																

Table B. 2 Mol representation of 1,3-bis(4-chlorophenyl)$3 \mathrm{H}, 3 \mathrm{aH}, 4 \mathrm{H}, 5 \mathrm{H}, 6 \mathrm{H}, 6 \mathrm{aH}-\mathrm{cyc}$ lopenta[d][1,2,3]triazol-1-ylium chloride, continued

8	10	1	0	0	0	0
10	11	1	0	0	0	0
10	12	1	0	0	0	0
10	13	1	0	0	0	0
13	14	1	0	0	0	0
13	15	1	0	0	0	0
13	16	1	0	0	0	0
16	17	1	0	0	0	0
16	18	1	0	0	0	0
19	20	1	0	0	0	0
19	27	2	0	0	0	0
20	21	1	0	0	0	0
22	23	1	0	0	0	0
22	24	1	0	0	0	0
24	25	2	0	0	0	0
25	26	1	0	0	0	0
35	27	1	0	0	0	0
35	38	1	0	0	0	0
32	34	2	0	0	0	0
27	28	1	0	0	0	0
29	30	2	0	0	0	0
29	37	1	0	0	0	0
30	31	1	0	0	0	0
30	32	1	0	0	0	0
32	1	0	0	0	0	
35	0	0	0			
3	0	0	0			
3	0	0	0	0		

Table B. 2 Mol representation of 1,3-bis(4-chlorophenyl)$3 \mathrm{H}, 3 \mathrm{aH}, 4 \mathrm{H}, 5 \mathrm{H}, 6 \mathrm{H}, 6 \mathrm{aH}-\mathrm{cyc}$ lopenta[d][1,2,3]triazol-1-ylium chloride, continued

```
    3942 1 0 0 0 0
    40 42 1 0 0 0 0
    4142 1 0 0 0 0
    4243 1 0 0 0 0
    20 22 2 0 0 0 0
M CHG 2 1 3 1 1 44 -1
M END
```

Crystal data for N^{1}, N^{2}-bis(4-chlorophenyl)cyclopentane-1,2-diamine as a $\mathbf{H C l}$ salt

CCDC reference number: 2179894
UK Chem reference number: m21371

Table C. 1 Crystal data and structure refinement for $\boldsymbol{N}^{1}, \boldsymbol{N}^{2}$-bis (4chlorophenyl) cyclopentane-1,2-diamine as a HCl salt.

Empirical formula	$\begin{array}{llll}\mathrm{C}_{18} & \mathrm{H}_{21} & \mathrm{C}_{13} & \mathrm{~N}_{2}\end{array}$
Formula weight	371.72
Temperature	90.0(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, Pna2(1)
Unit cell dimensions $\begin{array}{ll}\text { a } \\ & \text { b } \\ \\ \text { c }\end{array}$	$\begin{array}{llrl}\mathrm{a}=13.8660(4) \AA & \text { alpha }=90 \mathrm{deg} . \\ \mathrm{b}=21.1936(7) \AA & \text { beta }=90 \mathrm{deg} . \\ \mathrm{c}=6.0462(2) \AA & \text { gamma }=90 & \mathrm{deg} .\end{array}$
Volume	1776.8(1) A^ $^{\text {¢ }}$
Z, Calculated density	$4,1.390 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.516 \mathrm{~mm}^{\wedge}-1$
F(000)	776
Crystal size	$0.330 \times 0.020 \times 0.010 \mathrm{~mm}$
Theta range for data collection	n 1.922 to 27.542 deg.
Limiting indices	$-17<=\mathrm{h}<=18,-27<=\mathrm{k}<=27,-7<=1<=7$
Reflections collected / unique	$31407 / 4068$ [R(int) $=0.0569]$
Completeness to theta $=25.242$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.971 and 0.846
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	4068 / 1 / 221
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.055
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0343, \mathrm{wR} 2=0.0709$
R indices (all data)	$\mathrm{R} 1=0.0444, \mathrm{wR} 2=0.0757$
Absolute structure parameter	0.01 (3)
Extinction coefficient	n / a
Largest diff. peak and hole	0.389 and -0.309 e. \AA^{\wedge} - 3

Table C. 2 Mol representation of N^{1}, N^{2}-bis (4-chlorophenyl) cyclopentane-1,2-diamine as a Hcl salt.

Table C. 2 Mol representation of N^{1}, N^{2}-bis (4-chlorophenyl)cyclopentane-1,2-diamine as a Hcl salt, continued

	7.98	868		10.5949			0.7265	C		0	0	0	0	0	0	0	0	0	0	0	0
	8.4	406		9.9058			0.2555	H		0	0	0	0	0	0	0	0	0	0	0	0
	8.5	942		11.8158			0.9414	C		0	0	0	0	0	0	0	0	0	0	0	0
	7.9	477		12.8434			1.6023	C		0	0	0	0	0	0	0	0	0	0	0	0
	8.37	767		13.6834			1.7182	H		0	0	0	0	0	0	0	0	0	0	0	0
	6.6	702		12.6377			2.0932	C		0	0	0	0	0	0	0	0	0	0	0	0
	6.21	111		13.3302			2.5544	H		0	0	0	0	0	0	0	0	0	0	0	0
	1.3	750		11.0511			4.7766	C		0	0	0	0	0	0	0	0	0	0	0	0
	0.8	429		12.2271			5.3248	C		0	0	0	0	0	0	0	0	0	0	0	0
	1.4	336		12.9460			5.5450	H		0	0	0	0	0	0	0	0	0	0	0	0
	-0.51	168		12.3549			5.5498	C		0	0	0	0	0	0	0	0	0	0	0	0
	-0.8	633		13.1545			5.9282	H		0	0	0	0	0	0	0	0	0	0	0	0
	-1.36	671		11.3226			5.2224	C		0	0	0	0	0	0	0	0	0	0	0	0
	-0.881	817		10.1449			4.6920	C		0	0	0	0	0	0	0	0	0	0	0	0
	-1.4	737		9.4340			4.4761	H		0	0	0	0	0	0	0	0	0	0	0	0
	0.4	897		10.0135			4.4771	C		0	0	0	0	0	0	0	0	0	0	0	0
	0.8	88		9.2012			4.1196	H		0	0	0	0	0	0	0	0	0	0	0	0
	3.9	457		12.8470			-0.3326		1	0	5	0	0	0	0	0	0	0	0	0	0
	29	1	0	0	00																
2	39	1	0	0	00	0															
	4	1	0	0	00	0															
	5	1	0	0	00	0															
	8	1	0	0	00	0															
	24	1	0	0	00	0															
	7	1	0	0	00	0															
	10	1	0	0	00	0															
	34	1	0	0	00	0															
	9	1	0	0	00																

Table C. 2 Mol representation of N^{1}, N^{2}-bis (4-chlorophenyl)cyclopentane-1,2-diamine as a Hcl salt, continued

8	10	1	0	0	0	0
8	21	1	0	0	0	0
10	11	1	0	0	0	0
10	12	1	0	0	0	0
12	13	1	0	0	0	0
12	14	1	0	0	0	0
12	15	1	0	0	0	0
15	16	1	0	0	0	0
15	17	1	0	0	0	0
15	18	1	0	0	0	0
18	19	1	0	0	0	0
18	20	1	0	0	0	0
18	21	1	0	0	0	0
21	22	1	0	0	0	0
21	23	1	0	0	0	0
24	25	2	0	0	0	0
24	32	1	0	0	0	0
25	26	1	0	0	0	0
25	27	1	0	0	0	0
27	28	1	0	0	0	0
27	29	2	0	0	0	0
29	30	1	0	0	0	0
30	31	1	0	0	0	0
30	32	2	0	0	0	0
32	33	1	0	0	0	0
34	35	1	0	0	0	0
34	42	2	0	0	0	0
35	36	1	0	0	0	

Table C. 2 Mol representation of N^{1}, N^{2}-bis (4-chlorophenyl)cyclopentane-1,2-diamine as a Hcl salt, continued

```
    35}377<200000
    37}388101000000
    37}3031010000000
    3940 2 0 0 0 0
    40}4110100000
```



```
    4243 1 0 0 0 0
M CHG 2 
M END
```


1,3-bis(4-chlorophenyl)-3H,3aH,8H,8aH-indeno[1,2-d][1,2,3]triazol-1-ylium chloride

CCDC reference number: 2179892

UK Chem reference number: $\mathbf{m 2 1 0 8 1}$

Table D. 1 Crystal data and structure refinement for 1,3-bis(4-chlorophenyl)-3H,3aH,8H,8aH-indeno[1,2-d][1,2,3]triazol-1-ylium chloride.

Table D. 2 Mol representation of 1,3 -bis (4-chlorophenyl)-3H,3aH, $8 \mathrm{H}, 8 \mathrm{aH}-$ indeno[1,2-d][1,2,3]triazol-1-ylium chloride.

Mrv2211 05162211313 D

91960	00		999	V200											
4.8880	7.7600	11.0065	Cl	0	5	0	0	0	0	0	0	0	0	0	0
4.9207	10.5156	17.8481	Cl	0	5	0	0	0	0	0	0	0	0	0	0
1.4218	17.3669	14.2687	Cl	0	0	0	0	0	0	0	0	0	0	0	0
1.8675	14.9013	12.7932	Cl	0	0	0	0	0	0	0	0	0	0	0	0
1.1160	15.6283	14.2041	C	0	0	1	0	0	0	0	0	0	0	0	0
1.4733	15.2011	15.0229	H	0	0	0	0	0	0	0	0	0	0	0	0
0.1398	15.4670	14.1760	H	0	0	0	0	0	0	0	0	0	0	0	0
11.5158	6.1299	12.6542	Cl	0	0	0	0	0	0	0	0	0	0	0	0
0.1129	10.4731	9.3615	Cl	0	0	0	0	0	0	0	0	0	0	0	0
7.2149	10.1638	12.6923	N	0	3	0	0	0	0	0	0	0	0	0	0
6.1459	9.9098	12.0209	N	0	0	0	0	0	0	0	0	0	0	0	0
5.2981	10.8760	12.1608	N	0	0	0	0	0	0	0	0	0	0	0	0
7.1385	11.4383	13.4820	C	0	0	2	0	0	0	0	0	0	0	0	0
7.9093	12.0486	13.2976	H	0	0	0	0	0	0	0	0	0	0	0	0
6.9269	11.2024	14.9674	C	0	0	0	0	0	0	0	0	0	0	0	0
7.8205	10.6671	15.8877	C	0	0	0	0	0	0	0	0	0	0	0	0
8.6754	10.3569	15.6127	H	0	0	0	0	0	0	0	0	0	0	0	0
7.4312	10.5977	17.2220	C	0	0	0	0	0	0	0	0	0	0	0	0
8.0137	10.2074	17.8631	H	0	0	0	0	0	0	0	0	0	0	0	0
6.1943	11.0965	17.6242	C	0	0	0	0	0	0	0	0	0	0	0	0
5.9530	11.0624	18.5425	H	0	0	0	0	0	0	0	0	0	0	0	0
5.3115	11.6403	16.7066	C	0	0	0	0	0	0	0	0	0	0	0	0
4.4700	11.9815	16.9863	H	0	0	0	0	0	0	0	0	0	0	0	0
5.6849	11.6770	15.3586	C	0	0	0	0	0	0	0	0	0	0	0	0
4.9119	12.2831	14.2240	C	0	0	2	0	0	0	0	0	0	0	0	0
4.7821	13.2547	14.3633	H	0	0	0	0	0	0	0	0	0	0	0	0

Table D. 2 Mol representation of 1,3 -bis(4-chlorophenyl)-3H,3aH, $8 \mathrm{H}, 8 \mathrm{aH}-$ indeno[1,2-d][1,2,3]triazol-1-ylium chloride, continued

4.0264	11.8508	14.1282	H	0	0	0	0	0	0	0	0	0		0	0
5.7969	12.0149	12.9814	C	0	0	2	0	0	0	0	0	0	0	0	0
5.9277	12.8403	12.4321	H	0	0	0	0	0	0	0	0	0	0	0	0
8.2585	9.1980	12.6823	C	0	0	0	0	0	0	0	0	0	0	0	0
7.9930	7.9134	12.1813	C	0	0	0	0	0	0	0	0	0	0	0	0
7.1286	7.6890	11.8567	H	0	0	0	0	0	0	0	0	0	0	0	0
9.0090	6.9867	12.1712	C	0	0	0	0	0	0	0	0	0	0	0	0
8.8546	6.1126	11.8327	H	0	0	0	0	0	0	0	0	0	0	0	0
10.2620	7.3348	12.6574	C	0	0	0	0	0	0	0	0	0	0	0	0
10.5192	8.6006	13.1527	C	0	0	0	0	0	0	0	0	0	0	0	0
11.3816	8.8161	13.4879	H	0	0	0	0	0	0	0	0	0	0	0	0
9.5088	9.5539	13.1579	C	0	0	0	0	0	0	0	0	0	0	0	0
9.6724	10.4321	13.4811	H	0	0	0	0	0	0	0	0	0	0	0	0
4.0450	10.7769	11.5009	C	0	0	0	0	0	0	0	0	0	0	0	0
3.6808	9.5705	10.9171	C	0	0	0	0	0	0	0	0	0	0	0	0
4.2542	8.8146	10.9680	H	0	0	0	0	0	0	0	0	0	0	0	0
2.4719	9.4930	10.2633	C	0	0	0	0	0	0	0	0	0	0	0	0
2.2089	8.6784	9.8510	H	0	0	0	0	0	0	0	0	0	0	0	0
1.6357	10.6004	10.2040	C	0	0	0	0	0	0	0	0	0	0	0	0
1.9852	11.7861	10.8045	C	0	0	0	0	0	0	0	0	0	0	0	0
1.3979	12.5320	10.7709	H	0	0	0	0	0	0	0	0	0	0	0	0
3.1999	11.8832	11.4591	C	0	0	0	0	0	0	0	0	0	0	0	0
3.4556	12.6973	11.8768	H	0	0	0	0	0	0	0	0	0	0	0	0
10.2816	5.8357	16.0021	Cl	0	0	0	0	0	0	0	0	0	0	0	0
-0.8286	12.1619	14.0046	Cl	0	0	0	0	0	0	0	0	0	0	0	0
4.6560	6.5146	14.3332	N	0	0	0	0	0	0	0	0	0	0	0	0
4.0581	7.6538	14.4042	N	0	0	0	0	0	0	0	0	0	0	0	0
2.8253	7.5304	14.0271	N	0	3	0	0	0	0	0	0	0	0	0	0
. 7516	5.3979	3.9281	C		0										

Table D. 2 Mol representation of 1,3 -bis(4-chlorophenyl)-3H,3aH,8H,8aH-indeno[1,2-d][1,2,3]triazol-1-ylium chloride, continued

4.1275	4.8600	13.1734	H	0	0	0	0	0	0	0	0	0	0	0	0
3.3375	4.5326	15.1009	C	0	0	0	0	0	0	0	0	0	0	0	0
4.1291	3.7569	15.9371	C	0	0	0	0	0	0	0	0	0	0	0	0
5.0668	3.6939	15.7964	H	0	0	0	0	0	0	0	0	0	0	0	0
3.5230	3.0760	16.9813	C	0	0	0	0	0	0	0	0	0	0	0	0
4.0489	2.5398	17.5631	H	0	0	0	0	0	0	0	0	0	0	0	0
2.1471	3.1726	17.1846	C	0	0	0	0	0	0	0	0	0	0	0	0
1.7477	2.7044	17.9084	H	0	0	0	0	0	0	0	0	0	0	0	0
1.3527	3.9395	16.3482	C	0	0	0	0	0	0	0	0	0	0	0	0
0.4143	3.9940	16.4862	H	0	0	0	0	0	0	0	0	0	0	0	0
1.9613	4.6319	15.2967	C	0	0	0	0	0	0	0	0	0	0	0	0
1.3049	5.5240	14.2879	C	0	0	2	0	0	0	0	0	0	0	0	0
0.7559	6.2172	14.7337	H	0	0	0	0	0	0	0	0	0	0	0	0
0.7277	5.0013	13.6767	H	0	0	0	0	0	0	0	0	0	0	0	0
2.4790	6.1607	13.5241	C	0	0	1	0	0	0	0	0	0	0	0	0
2.3329	6.1501	12.5350	H	0	0	0	0	0	0	0	0	0	0	0	0
6.0202	6.3899	14.6892	C	0	0	0	0	0	0	0	0	0	0	0	0
6.6478	7.3795	15.4463	C	0	0	0	0	0	0	0	0	0	0	0	0
6.1720	8.1639	15.6930	H	0	0	0	0	0	0	0	0	0	0	0	0
7.9581	7.2162	15.8343	C	0	0	0	0	0	0	0	0	0	0	0	0
8.3906	7.8870	16.3499	H	0	0	0	0	0	0	0	0	0	0	0	0
8.6462	6.0623	15.4673	C	0	0	0	0	0	0	0	0	0	0	0	0
8.0356	5.0854	14.6991	C	0	0	0	0	0	0	0	0	0	0	0	0
8.5167	4.3062	14.4468	H	0	0	0	0	0	0	0	0	0	0	0	0
6.7199	5.2505	14.3006	C	0	0	0	0	0	0	0	0	0	0	0	0
6.2964	4.5899	13.7653	H	0	0	0	0	0	0	0	0	0	0	0	0
1.9494	8.6457	14.0361	C	0	0	0	0	0	0	0	0	0	0	0	0
2.2488	9.7632	14.8163	C	0	0	0	0	0	0	0	0	0	0	0	0

Table D. 2 Mol representation of 1,3 -bis(4-chlorophenyl)-3H,3aH, $8 \mathrm{H}, 8 \mathrm{aH}-$ indeno[1,2-d] [1,2,3]triazol-1-ylium chloride, continued

	3.0	343			7763		15.3506	H		0	0	0	0	0	0	0	0	0	0	0
	1.3	987		10.	8475		14.8073	C		0	0	0	0	0	0	0	0	0	0	0
	1.5	973		11.	6185		15.3256	H		0	0	0	0	0	0	0	0	0	0	0
	0.2	459		10.	8007		14.0282	C		0	0	0	0	0	0	0	0	0	0	0
	-0.0	634			6841		13.2645	C		0	0	0	0	0	0	0	0	0	0	0
	-0.8	614			6632		12.7492	H		0	0	0	0	0	0	0	0	0	0	0
	0.7	996			6020		13.2581	C		0	0	0	0	0	0	0	0	0	0	0
	0.60	077			8378		12.7272	H		0	0	0	0	0	0	0	0	0	0	0
3	5	1	0	0	00	0														
4	5	1	0	0	00															
5	6	1	0	0	00															
5	7	1	0	0	00	0														
8	35	1	0	0	00															
9		1	0	0	00															
10	11	2	0	0	00	0														
10	13	1	0	0	00	0														
	30	1	0	0	00	0														
	12	1	0	0	00	0														
	28	1	0	0	00	0														
12	40	1	0	0	00	0														
13	14	1	0	0	00	0														
13	15	1	0	0	00	0														
13	28	1	0	0	00	0														
15	16	1	0	0	00	0														
15	24	2	0	0	00	0														
16	17	1	0	0	00	0														
16	18	2	0	0	00	0														
	19	1		0	00															

Table D. 2 Mol representation of 1,3 -bis(4-chlorophenyl)-3H,3aH, $8 \mathrm{H}, 8 \mathrm{aH}-$ indeno[1,2-d][1,2,3]triazol-1-ylium chloride, continued

18	20	1	0	0	0	0
20	21	1	0	0	0	0
20	22	2	0	0	0	0
22	23	1	0	0	0	0
22	24	1	0	0	0	0
24	25	1	0	0	0	0
25	26	1	0	0	0	0
25	27	1	0	0	0	0
25	28	1	0	0	0	0
28	29	1	0	0	0	0
30	31	2	0	0	0	0
30	38	1	0	0	0	0
31	32	1	0	0	0	0
31	33	1	0	0	0	0
33	34	1	0	0	0	0
33	35	2	0	0	0	0
35	36	1	0	0	0	0
36	37	1	0	0	0	0
36	38	2	0	0	0	0
38	39	1	0	0	0	0
40	41	2	0	0	0	0
40	48	1	0	0	0	0
41	42	1	0	0	0	0
41	43	1	0	0	0	0
43	44	1	0	0	0	0
43	45	2	0	0	0	0
45	46	1	0	0	0	0
46	47	1	0	0	0	0

Table D. 2 Mol representation of 1,3 -bis(4-chlorophenyl)-3H,3aH, $8 \mathrm{H}, 8 \mathrm{aH}-$ indeno[1,2-d][1,2,3]triazol-1-ylium chloride, continued

46	48	2	0	0	0	0
48	49	1	0	0	0	0
50	77	1	0	0	0	0
51	87	1	0	0	0	0
52	53	1	0	0	0	0
52	55	1	0	0	0	0
52	72	1	0	0	0	0
53	54	2	0	0	0	0
54	70	1	0	0	0	0
54	82	1	0	0	0	0
55	56	1	0	0	0	0
55	57	1	0	0	0	0
55	70	1	0	0	0	0
57	58	1	0	0	0	0
57	66	2	0	0	0	0
58	59	1	0	0	0	0
58	60	2	0	0	0	0
60	61	1	0	0	0	0
60	62	1	0	0	0	0
62	63	1	0	0	0	0
62	64	2	0	0	0	0
64	65	1	0	0	0	0
64	66	1	0	0	0	0
66	67	1	0	0	0	0
67	68	1	0	0	0	0
67	69	1	0	0	0	0
67	70	1	0	0	0	0
70	71	1	0	0	0	0

Table D. 2 Mol representation of 1,3 -bis(4-chlorophenyl)-3H,3aH, $8 \mathrm{H}, 8 \mathrm{aH}-$ indeno[1,2-d][1,2,3]triazol-1-ylium chloride, continued

```
    72 73 1 0 0 0 0 0
    72 80 2 0 0 0 0
    73 74 1 0 0 0 0 0
    73 75 2 0 0 0
    75 76 1 0 0 0 0 0
    75 77 1 0 0 0 0
    77 78 2 0 0 0 0
    78 79 1 0 0 0 0
    78 80 1 0 0 0 0
```



```
    82 83 2 0 0 0 0
    82 90 1 0 0 0 0
```



```
    83 85 1 0 0 0 0
    85 86 1 0 0 0 0
    85 87 2 0 0 0 0
    87 88 1 0 0 0 0
    88 89 1 0 0 0 0
    88 90 2 0 0 0 0
    90}9110100000000
M CHG 4
M END
```


Crystal data for 1,3-bis(4-chlorophenyl)-5-(hydroxymethyl)-4-methyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride

CCDC reference number: 2179895
UK Chem reference number: $\mathbf{~} 21299$

8
Cl 3

Table E.1 Crystal data and structure refinement for 1,3-bis(4-chlorophenyl)-5-(hydroxymethyl)-4-methyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride.

Empirical formula	
Formula weight	404.71
Temperature	90.0(2) K
Wavelength	$0.71073 \AA$
Crystal system, space group	Monoclinic, P2(1)/n
$\begin{array}{ll} \text { Unit cell dimensions } & \mathrm{a}=11 . \\ & \mathrm{b}=7.99 \\ & \mathrm{c}=20 . \end{array}$	59(3) £ alpha $=90$ deg. (2) \AA beta $=103.232(1)$ deg. $34(5) \AA$ gamma $=90 \mathrm{deg}$.
Volume	1882.91(8) A $^{\wedge}$ ^3
Z, Calculated density	$4,1.428 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.503 \mathrm{~mm}{ }^{\wedge}-1$
F(000)	840
Crystal size	$0.310 \times 0.250 \times 0.090 \mathrm{~mm}$
Theta range for data collection	2.034 to 27.529 deg.
Limiting indices -1	
Reflections collected / unique	$30635 / 4339$ [R(int) $=0.0347]$
Completeness to theta $=25.242$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.971 and 0.867
Refinement method	ll-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	4339 / 0 / 235
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.040
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0266, \mathrm{wR} 2=0.0663$
R indices (all data)	$\mathrm{R} 1=0.0298, \mathrm{wR} 2=0.0688$
Extinction coefficient	0.0039 (9)
Largest diff. peak and hole	0.383 and -0.228 e. \AA^{\wedge} - 3

Table E. 2 Mol representation of (1,3-bis(4-chlorophenyl)-5-(hydroxymethyl)-4-methyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride.

Mrv2211 05162212093 D

Table E. 2 Mol representation of (1,3-bis(4-chlorophenyl)-5-(hydroxymethyl)-4-methyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

Table E. 2 Mol representation of (1,3-bis(4-chlorophenyl)-5-(hydroxymethyl)-4-methyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

```
7 29 1 0 0 0 0
    8
    8 10 1 0 0 0 0
    8 15 1 0 0 0 0
```



```
10}1212100000000
12}1313100000
12}1414100000
15}16161000000
1517 1 0 0 0 0 0
15}1818100000
1920 2 0 0 0 0
1927 1 0 0 0 0
20}21\mp@code{1
```



```
22 23 1 0 0 0 0
22 24 2 0 0 0 0
24 25 1 0 0 0 0
25 26 1 0 0 0 0
2527 2 0 0 0 0
27 28 1 0 0 0
2930 2 0 0 0 0
29}3710100000
```



```
30}32310000000
32 33 1 0 0 0 0 0
32}34420000000
34}35\mp@code{1
```

Table E. 2 Mol representation of (1,3-bis(4-chlorophenyl)-5-(hydroxymethyl)-4-methyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

```
    35}36\mp@code{1
    35}377<200000
```



```
    40}41101000000
    40 42 1 0 0 0 0
    42 43 1 0 0 0 0
    4244 1 0 0 0 0
    42 45 1 0 0 0 0
M CHG 2 % 7 1 % 39 -1
M END
```


Crystal data for 2,3-bis[(4 chlorophenyl)amino]butan-1-ol

CCDC reference number: 2179883
UK Chem reference number: m21079

Table F.1 Crystal data and structure refinement for 2,3-bis[(4 chlorophenyl) amino]butan-1-ol.

Empirical formula	
Formula weight	325.22
Temperature	90.0(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, Cmc2(1)
Unit cell dimensions $\begin{array}{ll}\text { a } \\ & \mathrm{b} \\ \mathrm{c}\end{array}$	$\begin{array}{llrl} \mathrm{a}=19.5373(7) ~ \AA & \text { alpha }=90 \mathrm{deg} . \\ \mathrm{b}=10.5565(4) \AA & \text { beta }=90 \mathrm{deg} . \\ \mathrm{c}=7.7748(3) \AA & \text { gamma }=90 \mathrm{deg} . \end{array}$
Volume	1603.52(10) A^^3
Z, Calculated density	$4,1.347 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.405 \mathrm{~mm}{ }^{\wedge}-1$
F(000)	680
Crystal size	$0.400 \times 0.160 \times 0.140 \mathrm{~mm}$
Theta range for data collection	n 2.085 to 27.507 deg .
Limiting indices	$-25<=\mathrm{h}<=25,-13<=\mathrm{k}<=13,-8<=1<=10$
Reflections collected / unique	$25035 / 1809$ [R(int) $=0.0294]$
Completeness to theta $=25.242$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.971 and 0.852
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	1809 / 2 / 124
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.093
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0314, \mathrm{wR} 2=0.0765$
R indices (all data)	$\mathrm{R} 1=0.0327, \mathrm{wR} 2=0.0778$
Absolute structure parameter	0.014 (15)
Extinction coefficient	n / a
Largest diff. peak and hole	0.298 and -0.269 e. \AA^{\wedge} - 3

Table F. 2 Mol representation for 2,3-bis[(4 chlorophenyl)amino]butan-1ol.

Table F. 2 Mol representation for 2,3-bis[(4 chlorophenyl)amino]butan-1ol, continued

Table F. 2 Mol representation for 2,3-bis[(4 chlorophenyl)amino]butan-1ol, continued

4	5	1	0	0	0	0
4	6	1	0	0	0	0
6	7	1	0	0	0	0
6	8	2	0	0	0	0
8	9	1	0	0	0	0
8	13	1	0	0	0	0
9	10	1	0	0	0	0
9	11	2	0	0	0	0
11	12	1	0	0	0	0
14	15	1	0	0	0	0
14	22	1	0	0	0	0
14	40	1	0	0	0	0
14	43	1	0	0	0	0
15	42	1	0	0	0	0
16	17	1	0	0	0	0
16	18	1	0	0	0	0
16	27	1	0	0	0	0
16	41	1	0	0	0	0
16	42	1	0	0	0	0
17	40	1	0	0	0	0
18	19	1	0	0	0	0
18	20	1	0	0	0	0
18	21	1	0	0	0	0
18	44	1	0	0	0	0
18	46	1	0	0	0	0
20	44	1	0	0	0	0
21	44	1	0	0	0	0
22	23	1	0	0	0	0

Table F. 2 Mol representation for 2,3-bis[(4 chlorophenyl)amino]butan-1ol, continued

22	24	1	0	0	0	0
22	25	1	0	0	0	0
22	47	1	0	0	0	0
22	48	1	0	0	0	0
23	47	1	0	0	0	0
25	26	1	0	0	0	0
25	47	1	0	0	0	0
27	28	1	0	0	0	0
27	29	1	0	0	0	0
27	40	1	0	0	0	0
29	30	2	0	0	0	0
29	37	1	0	0	0	0
30	31	1	0	0	0	0
30	32	1	0	0	0	0
32	33	1	0	0	0	0
32	34	2	0	0	0	0
34	35	1	0	0	0	0
34	39	1	0	0	0	0
35	36	1	0	0	0	0
35	37	2	0	0	0	0
37	38	1	0	0	0	0
40	41	1	0	0	0	0
40	47	1	0	0	0	0
42	43	1	0	0	0	0
42	44	1	0	0	0	0
44	45	1	0	0	0	0
44	46	1	0	0	0	0
47	48	1	0	0	0	0

Table F. 2 Mol representation for 2,3-bis[(4 chlorophenyl)amino]butan-1ol, continued

| 47 | 49 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

M END

Crystal data for 1,3-bis(4-chlorophenyl)-4,5-bis(hydroxymethyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride

CCDC reference number: 2179889

UK Chem reference number: m21167

$\theta \mathrm{Cl}_{3}$

Table G.1 Crystal data and structure refinement for 1,3-bis(4-chlorophenyl)-4,5-bis (hydroxymethyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride.

Empirical formula	
Formula weight	388.67
Temperature	90.0(2) K
Wavelength	$0.71073 \AA$
Crystal system, space group	Orthorhombic, P2(1)2(1)2(1)
Unit cell dimensions	a $=7.9430(2) \AA$ alpha $=90$ deg. b $=9.8809(2) \AA$ c A beta $=90 \mathrm{deg}$. c $=21.9643(5) \AA$ gamma $=90$
Volume	1723.85 (7) \AA ^^3
Z, Calculated density	4, 1.498 Mg/m^3
Absorption coefficient	$0.546 \mathrm{~mm}{ }^{\wedge}-1$
F (000)	800
Crystal size	$0.240 \times 0.070 \times 0.020 \mathrm{~mm}$
Theta range for data collection	n 2.260 to 27.485 deg.
Limiting indices -	$-10<=\mathrm{h}<=10,-12<=\mathrm{k}<=12,-28<=1<=28$
Reflections collected / unique	26690 / 3961 [R(int) $=0.0429]$
Completeness to theta $=25.242$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.959 and 0.861
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	3961 / 0 / 224
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.097
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0283, \mathrm{wR} 2=0.0679$
R indices (all data)	$\mathrm{R} 1=0.0310, \mathrm{wR} 2=0.0695$
Absolute structure parameter	0.49 (6)
Extinction coefficient	n / a
Largest diff. peak and hole	0.335 and -0.214 e. Å^ $^{\wedge}$

Table G. 2 Mol representation of (1,3-bis(4-chlorophenyl)-4,5bis (hydroxymethyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride.

Mrv2211 $05162213473 D$

Table G. 2 Mol representation of (1,3-bis(4-chlorophenyl)-4,5bis (hydroxymethyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

Table G. 2 Mol representation of (1,3-bis(4-chlorophenyl)-4,5bis (hydroxymethyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

$$
\begin{aligned}
& \begin{array}{lllllll}
12 & 13 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
12 & 14 & 2 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
14 & 15 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
14 & 16 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
16 & 17 & 2 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
17 & 18 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
17 & 19 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& 1920100000 \\
& \begin{array}{lllllll}
21 & 22 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
21 & 23 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
21 & 26 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& 2324100000 \\
& 2325100000 \\
& 2627100000 \\
& 2628100000 \\
& 2829100000 \\
& \begin{array}{lllllll}
28 & 30 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
31 & 32 & 2 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
31 & 39 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
32 & 33 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
32 & 34 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
34 & 35 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
34 & 36 & 2 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
36 & 37 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
37 & 38 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
37 & 39 & 2 & 0 & 0 & 0 & 0
\end{array} \\
& 3940 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \\
& \begin{array}{lllllll}
M & \text { CHG } & 2 & 1 & -1 & 8 & 1
\end{array} \\
& \text { M END }
\end{aligned}
$$

Crystal data for 2,3-bis[(4-chlorophenyl)amino]butane-1,4-diol as a triflouroacetate salt

CCDC reference number: 2179885

UK Chem reference number: m21241

Table H.1 Crystal data and structure refinement for 2,3-bis[(4-chlorophenyl)amino]butane-1,4-diol as a triflouroacetate salt.

Empirical formula	
Formula weight	455.25
Temperature	180 (2) K
Wavelength	0.71073 £
Crystal system, space group	Monoclinic, P2(1)/n
Unit cell dimensions $\begin{aligned} & a=12.9 \\ & b=9.48 \\ & c=17.4 \end{aligned}$	88(4) \AA alpha $=90$ deg. (3) $\AA \quad$ beta $=107.351(1)$ deg. $81(6) \AA$ gamma $=90 \mathrm{deg}$.
Volume	2045.28(12) \AA ^^3
Z, Calculated density	4, $1.478 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.371 \mathrm{~mm}^{\wedge}-1$
F(000)	936
Crystal size	$0.300 \times 0.220 \times 0.160 \mathrm{~mm}$
Theta range for data collection	2.328 to 27.528 deg.
Limiting indices -1	<h $<=16,-12<=\mathrm{k}<=12,-22<=1<=22$
Reflections collected / unique	$42546 / 4703$ [R(int) $=0.0399]$
Completeness to theta $=25.242$	99.9%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.942 and 0.871
Refinement method	ll-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	$4703 / 525 / 405$
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.041
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0454, \mathrm{wR} 2=0.1183$
R indices (all data)	$\mathrm{R} 1=0.0576, \mathrm{wR} 2=0.1283$
Extinction coefficient	n / a
Largest diff. peak and hole	0.342 and -0.587 e. $\AA^{\wedge}{ }^{\text {- }} 3$

Table H. 2 Mol representation of 2,3-bis[(4-chlorophenyl)amino]butane-1,4-diol as a triflouroacetate salt.

Mrv2211 05162214033D

48480			999												
-0.0929	1.9530	5.2424	0	0	0	0	0	0	0	0	0	0	0	0	0
0.2224	1.2146	4.9959	H	0	0	0	0	0	0	0	0	0	0	0	0
3.5632	3.1077	3.3650	0	0	0	0	0	0	0	0	0	0	0	0	0
3.7911	2.6113	2.7269	H	0	0	0	0	0	0	0	0	0	0	0	0
1.3538	3.8729	5.0708	C	0	0	1	0	0	0	0	0	0	0	0	0
1.6202	4.6102	4.4501	H	0	0	0	0	0	0	0	0	0	0	0	0
2.6151	3.1605	5.5738	C	0	0	1	0	0	0	0	0	0	0	0	0
2.3301	2.5432	6.3070	H	0	0	0	0	0	0	0	0	0	0	0	0
3.2968	2.3098	4.5162	C	0	0	2	0	0	0	0	0	0	0	0	0
4.1443	1.9449	4.8746	H	0	0	0	0	0	0	0	0	0	0	0	0
2.7121	1.5499	4.2693	H	0	0	0	0	0	0	0	0	0	0	0	0
0.3519	2.9703	4.3690	C	0	0	2	0	0	0	0	0	0	0	0	0
-0.4219	3.5077	4.0649	H	0	0	0	0	0	0	0	0	0	0	0	0
0.7749	2.5618	3.5727	H	0	0	0	0	0	0	0	0	0	0	0	0
0.6767	3.8243	6.9445	H	0	0	0	0	0	0	0	0	0	0	0	0
1.2670	5.1241	6.6195	H	0	0	0	0	0	0	0	0	0	0	0	0
-0.6294	5.0521	6.1844	C	0	0	0	0	0	0	0	0	0	0	0	0
-0.8200	6.2042	5.4571	C	0	0	0	0	0	0	0	0	0	0	0	0
-0.0948	6.6100	4.9973	H	0	0	0	0	0	0	0	0	0	0	0	0
-2.0842	6.7632	5.4072	C	0	0	0	0	0	0	0	0	0	0	0	0
-2.2414	7.5499	4.8983	H	0	0	0	0	0	0	0	0	0	0	0	0
-3.1182	6.1651	6.1045	C	0	0	0	0	0	0	0	0	0	0	0	0
-2.9208	5.0119	6.8210	C	0	0	0	0	0	0	0	0	0	0	0	0
-3.6424	4.6096	7.2897	H	0	0	0	0	0	0	0	0	0	0	0	0
-1.6665	4.4420	6.8543	C	0	0	0	0	0	0	0	0	0	0	0	0
-4.6983	6.8960	6.1209	Cl	0	0	0	0	0	0	0	0	0	0	0	0

Table H. 2 Mol representation of 2,3-bis[(4-chlorophenyl)amino]butane-1,4-diol as a triflouroacetate salt, continued

Table H. 2 Mol representation of 2,3-bis[(4-chlorophenyl)amino]butane-1,4-diol as a triflouroacetate salt, continued

5	12	1	0	0	0	0
7	8	1	0	0	0	0
7	9	1	0	0	0	0
9	10	1	0	0	0	0
9	11	1	0	0	0	0
12	13	1	0	0	0	0
12	14	1	0	0	0	0
17	18	1	0	0	0	0
17	25	2	0	0	0	0
18	19	1	0	0	0	0
18	20	2	0	0	0	0
20	21	1	0	0	0	0
20	22	1	0	0	0	0
22	23	2	0	0	0	0
22	26	1	0	0	0	0
23	24	1	0	0	0	0
23	25	1	0	0	0	0
28	29	2	0	0	0	0
28	36	1	0	0	0	0
29	30	1	0	0	0	0
29	31	1	0	0	0	0
31	32	1	0	0	0	0
31	33	2	0	0	0	0
33	34	1	0	0	0	0
33	38	1	0	0	0	0
34	35	1	0	0	0	0
34	36	2	0	0	0	0
36	37	1	0	0	0	0

Table H. 2 Mol representation of 2,3-bis[(4-chlorophenyl)amino]butane-1,4-diol as a triflouroacetate salt, continued

```
    3943 1 0 0 0 0
    40}4310100000
    4143 1 0 0 0 0
    4243 1 0 0 0 0
        5 44 1 0 0 0 0
    44 15 1 0 0 0 0
    44 16 1 0 0 0 0
    4417 1 0 0 0 0
    746}10100000
    4627 1 0 0 0 0
    46 28 1 0 0 0 0
    2545 1 0 0 0 0
    3947 1 0 0 0 0
    3948 2 0 0 0 0
M CHG 2 4 44 1 1 47 -1
M END
```

Crystal data for 4,5-bis[(benzyloxy)methyl]-1,3-bis(4-chlorophenyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride

CCDC reference number: $\mathbf{2 1 7 9 8 8 8}$
UK Chem reference number: m21256

Table I.1 Crystal data and structure refinement for 4,5bis [(benzyloxy) methyl]-1,3-bis (4-chlorophenyl)-4,5-dihydro-3H-1,2,3-triazol-1ylium chloride.

Table I. 2 Mol representation of 4,5-bis[(benzyloxy)methyl]-1,3-bis (4-chlorophenyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride.

Mrv2211 05162214093 D

69710			999												
11.0474	7.0565	10.9463	Cl	0	0	0	0	0	0	0	0	0	0	0	0
-1.0436	8.2652	6.9867	Cl	0	0	0	0	0	0	0	0	0	0	0	0
6.5210	2.8330	11.1636	0	0	0	0	0	0	0	0	0	0	0	0	0
2.3378	3.7309	10.3683	0	0	0	0	0	0	0	0	0	0	0	0	0
5.7295	5.0474	9.3606	N	0	3	0	0	0	0	0	0	0	0	0	0
4.8420	5.8985	8.9752	N	0	0	0	0	0	0	0	0	0	0	0	0
3.7857	5.2752	8.5794	N	0	0	0	0	0	0	0	0	0	0	0	0
5.2616	3.6349	9.3388	C	0	0	2	0	0	0	0	0	0	0	0	0
5.8921	3.0823	8.7935	H	0	0	0	0	0	0	0	0	0	0	0	0
3.9246	3.7898	8.5827	C	0	0	1	0	0	0	0	0	0	0	0	0
4.0549	3.4810	7.6404	H	0	0	0	0	0	0	0	0	0	0	0	0
2.7048	3.1020	9.1488	C	0	0	2	0	0	0	0	0	0	0	0	0
1.9567	3.1594	8.5028	H	0	0	0	0	0	0	0	0	0	0	0	0
2.9029	2.1456	9.3101	H	0	0	0	0	0	0	0	0	0	0	0	0
5.1864	3.0771	10.7481	C	0	0	2	0	0	0	0	0	0	0	0	0
4.7506	3.7279	11.3535	H	0	0	0	0	0	0	0	0	0	0	0	0
4.6632	2.2367	10.7587	H	0	0	0	0	0	0	0	0	0	0	0	0
6.5507	2.0190	12.3330	C	0	0	2	0	0	0	0	0	0	0	0	0
6.0858	1.1628	12.1573	H	0	0	0	0	0	0	0	0	0	0	0	0
6.0828	2.4795	13.0740	H	0	0	0	0	0	0	0	0	0	0	0	0
7.9777	1.7530	12.7196	C	0	0	0	0	0	0	0	0	0	0	0	0
8.9810	2.6774	12.4710	C	0	0	0	0	0	0	0	0	0	0	0	0
8.7806	3.4989	12.0380	H	0	0	0	0	0	0	0	0	0	0	0	0
10.2919	2.3871	12.8654	C	0	0	0	0	0	0	0	0	0	0	0	0
10.9862	3.0119	12.6930	H	0	0	0	0	0	0	0	0	0	0	0	0
10.5835	1.1957	13.5039	C	0	0	0	0	0	0	0	0	0	0	0	0

Table I. 2 Mol representation of 4,5-bis[(benzyloxy)methyl]-1,3-bis (4-chlorophenyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

11.4745	1.0077	13.7742	H	0	0	0	0	0	0	0	0	0	0		0
9.5866	0.2860	13.7475	C	0	0	0	0	0	0	0	0	0	0	0	0
9.7887	-0.5321	14.1866	H	0	0	0	0	0	0	0	0	0	0	0	0
8.2847	0.5559	13.3546	C	0	0	0	0	0	0	0	0	0	0	0	0
7.5992	-0.0805	13.5205	H	0	0	0	0	0	0	0	0	0	0	0	0
1.2560	3.0344	11.0124	C	0	0	2	0	0	0	0	0	0	0	0	0
1.0713	3.4622	11.8858	H	0	0	0	0	0	0	0	0	0	0	0	0
1.5319	2.0994	11.1856	H	0	0	0	0	0	0	0	0	0	0	0	0
-0.0112	3.0294	10.1881	C	0	0	0	0	0	0	0	0	0	0	0	0
-0.4375	4.1830	9.5380	C	0	0	0	0	0	0	0	0	0	0	0	0
0.0771	4.9785	9.6074	H	0	0	0	0	0	0	0	0	0	0	0	0
-1.6077	4.1854	8.7878	C	0	0	0	0	0	0	0	0	0	0	0	0
-1.8888	4.9770	8.3439	H	0	0	0	0	0	0	0	0	0	0	0	0
-2.3608	3.0288	8.6910	C	0	0	0	0	0	0	0	0	0	0	0	0
-3.1635	3.0257	8.1830	H	0	0	0	0	0	0	0	0	0	0	0	0
-1.9467	1.8832	9.3309	C	0	0	0	0	0	0	0	0	0	0	0	0
-2.4671	1.0910	9.2617	H	0	0	0	0	0	0	0	0	0	0	0	0
-0.7728	1.8727	10.0787	C	0	0	0	0	0	0	0	0	0	0	0	0
-0.4928	1.0760	10.5136	H	0	0	0	0	0	0	0	0	0	0	0	0
7.0180	5.5134	9.7787	C	0	0	0	0	0	0	0	0	0	0	0	0
7.1005	6.6460	10.5672	C	0	0	0	0	0	0	0	0	0	0	0	0
6.3131	7.0925	10.8554	H	0	0	0	0	0	0	0	0	0	0	0	0
8.3534	7.1200	10.9300	C	0	0	0	0	0	0	0	0	0	0	0	0
8.4341	7.8977	11.4696	H	0	0	0	0	0	0	0	0	0	0	0	0
9.4822	6.4498	10.4990	C	0	0	0	0	0	0	0	0	0	0	0	0
9.3942	5.3061	9.7211	C	0	0	0	0	0	0	0	0	0	0	0	0
10.1814	4.8533	9.4418	H	0	0	0	0	0	0	0	0	0	0	0	0
8.1441	4.8304	9.3549	C	0	0	0	0	0	0	0	0	0	0	0	0

Table I. 2 Mol representation of 4,5-bis[(benzyloxy)methyl]-1,3-bis (4-chlorophenyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

Table I. 2 Mol representation of 4,5-bis[(benzyloxy)methyl]-1,3-bis (4-chlorophenyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

```
    8 10 1 0 0 0 0
    8 15 1 0 0 0 0
10}111010000000
10}121210000000
12}13131000000
12}14141000000
```



```
15}17170100000
18}19191000000
18 20 1 0 0 0 0
18 21 1 0 0 0 0
21 22 2 0 0 0 0
21}3001000000
22 23 1 0 0 0 0
22 24 1 0 0 0 0
24 25 1 0 0 0 0
2426 2 0 0 0 0
26 27 1 0 0 0 0
26 28 1 0 0 0 0
28 29 1 0 0 0 0
28 30 2 0 0 0 0
```



```
32}344100000000
32
```



```
3544 2 0 0 0
36}37101000000
```

Table I. 2 Mol representation of 4,5-bis[(benzyloxy)methyl]-1,3-bis (4-chlorophenyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

```
36}388200000
```



```
    3840 1 0 0 0 0
    4041 1 0 0 0 0
    40 42 2 0 0 0 0
    42 43 1 0 0 0 0
    4244 1 0 0 0 0
    44 45 1 0 0 0 0
    4647 2 0 0 0 0
    46 54 1 0 0 0 0
    4748 1 0 0 0 0
    47 49 1 0 0 0 0
    49 50 1 0 0 0 0
    49 51 2 0 0 0 0
    51 52 1 0 0 0 0
    52 53 1 0 0 0 0
    52 54 2 0 0 0 0
    54}5551000000
    56 57 1 0 0 0 0 0
    56 64 2 0 0 0 0
    57 58 1 0 0 0 0
    57 59 2 0 0 0 0
    59 60 1 0 0 0 0
    5961 1 0 0 0 0
    61 62 2 0 0 0 0
    62 63 1 0 0 0 0
    62 64 1 0 0 0
    64 65 1 0}000
```

Table I. 2 Mol representation of 4,5-bis[(benzyloxy)methyl]-1,3-bis (4-chlorophenyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

```
    67 68 1 0 0 0 0
    67 69 1 0 0 0
    M CHG 2 5 5 1 % 66 -1
    M END
```


Crystal data for (1,4-bis(benzyloxy)- N^{2}, N^{3}-bis(4-chlorophenyl)butane-2,3diamine

CCDC reference number: 2179884

UK Chem reference number: m21244

Table J.1 Crystal data and structure refinement for (1,4bis (benzyloxy) - N^{2}, N^{3}-bis (4-chlorophenyl) butane-2, 3-diamine.

Table J. 2 Mol representation of (2R,3R)-1,4-bis (benzyloxy)-N2,N3-bis (4chlorophenyl) butane-2,3-diamine.

Mrv2211 05162214213 D															
66690	00		999	V20											
-3.6979	-0.8800	7.6813	Cl	0	0	0	0	0	0	0	0	0	0	0	0
8.0883	7.5223	5.6553	Cl	0	0	0	0	0	0	0	0	0	0	0	0
2.7521	2.8283	10.3338	0	0	0	0	0	0	0	0	0	0	0	0	0
1.0319	6.2132	8.9205	0	0	0	0	0	0	0	0	0	0	0	0	0
1.0125	2.6879	7.0895	N	0	0	2	0	0	0	0	0	0	0	0	0
1.5660	2.3502	6.6140	H	0	0	0	0	0	0	0	0	0	0	0	0
3.1874	4.3292	6.6600	N	0	0	2	0	0	0	0	0	0	0	0	0
2.6923	4.2697	5.9024	H	0	0	0	0	0	0	0	0	0	0	0	0
1.6168	3.3179	8.2695	C	0	0	2	0	0	0	0	0	0	0	0	0
0.8786	3.5919	8.8865	H	0	0	0	0	0	0	0	0	0	0	0	0
2.3854	4.5800	7.8583	C	0	0	2	0	0	0	0	0	0	0	0	0
3.0083	4.8197	8.6031	H	0	0	0	0	0	0	0	0	0	0	0	0
1.4436	5.7517	7.6359	C	0	0	2	0	0	0	0	0	0	0	0	0
1.9077	6.4751	7.1441	H	0	0	0	0	0	0	0	0	0	0	0	0
0.6587	5.4645	7.1063	H	0	0	0	0	0	0	0	0	0	0	0	0
2.5100	2.3289	9.0097	C	0	0	2	0	0	0	0	0	0	0	0	0
2.0676	1.4447	9.0577	H	0	0	0	0	0	0	0	0	0	0	0	0
3.3677	2.2222	8.5269	H	0	0	0	0	0	0	0	0	0	0	0	0
-0.0802	1.8239	7.2742	C	0	0	0	0	0	0	0	0	0	0	0	0
-0.1657	0.6336	6.5539	C	0	0	0	0	0	0	0	0	0	0	0	0
0.5510	0.3778	5.9849	H	0	0	0	0	0	0	0	0	0	0	0	0
-1.2831	-0.1806	6.6563	C	0	0	0	0	0	0	0	0	0	0	0	0
-1.3374	-0.9810	6.1470	H	0	0	0	0	0	0	0	0	0	0	0	0
-2.3125	0.1721	7.4993	C	0	0	0	0	0	0	0	0	0	0	0	0
-2.2552	1.3483	8.2131	C	0	0	0	0	0	0	0	0	0	0	0	0
-2.9719	1.5915	8.7874	H	0	0	0	0	0	0	0	0	0	0	0	0

Table J. 2 Mol representation of ($2 R, 3 R$)-1,4-bis (benzyloxy)-N2,N3-bis (4chlorophenyl) butane-2,3-diamine, continued

-1.1504	2.1757	8.0942	C	0	0	0	0	0	0	0	0	0		0	0
-1.1224	2.9930	8.5778	H	0	0	0	0	0	0	0	0	0	0	0	0
4.3357	5.1148	6.4443	C	0	0	0	0	0	0	0	0	0	0	0	0
5.2756	5.3179	7.4613	C	0	0	0	0	0	0	0	0	0	0	0	0
5.1209	4.9481	8.3226	H	0	0	0	0	0	0	0	0	0	0	0	0
6.4243	6.0487	7.2294	C	0	0	0	0	0	0	0	0	0	0	0	0
7.0505	6.1965	7.9275	H	0	0	0	0	0	0	0	0	0	0	0	0
6.6492	6.5654	5.9620	C	0	0	0	0	0	0	0	0	0	0	0	0
5.7545	6.3667	4.9312	C	0	0	0	0	0	0	0	0	0	0	0	0
5.9286	6.7243	4.0684	H	0	0	0	0	0	0	0	0	0	0	0	0
4.5969	5.6429	5.1669	C	0	0	0	0	0	0	0	0	0	0	0	0
3.9769	5.5005	4.4617	H	0	0	0	0	0	0	0	0	0	0	0	0
3.8189	2.1230	10.9929	C	0	0	2	0	0	0	0	0	0	0	0	0
3.7259	1.1523	10.8164	H	0	0	0	0	0	0	0	0	0	0	0	0
3.7474	2.2619	11.9705	H	0	0	0	0	0	0	0	0	0	0	0	0
5.1793	2.5872	10.5205	C	0	0	0	0	0	0	0	0	0	0	0	0
5.6769	3.7861	10.9738	C	0	0	0	0	0	0	0	0	0	0	0	0
5.1558	4.3163	11.5658	H	0	0	0	0	0	0	0	0	0	0	0	0
6.9298	4.2314	10.5772	C	0	0	0	0	0	0	0	0	0	0	0	0
7.2694	5.0572	10.9040	H	0	0	0	0	0	0	0	0	0	0	0	0
7.6786	3.4714	9.7065	C	0	0	0	0	0	0	0	0	0	0	0	0
8.5324	3.7791	9.4237	H	0	0	0	0	0	0	0	0	0	0	0	0
7.1978	2.2693	9.2457	C	0	0	0	0	0	0	0	0	0	0	0	0
7.7233	1.7412	8.6562	H	0	0	0	0	0	0	0	0	0	0	0	0
5.9357	1.8233	9.6460	C	0	0	0	0	0	0	0	0	0	0	0	0
5.5960	0.9988	9.3186	H	0	0	0	0	0	0	0	0	0	0	0	0
-0.1435	7.0325	8.8416	C	0	0	2	0	0	0	0	0	0	0	0	0
-0.0724	7.6306	8.0562	H	0	0	0	0	0	0	0	0	0	0	0	0

Table J. 2 Mol representation of ($2 R, 3 R$)-1,4-bis (benzyloxy)-N2,N3-bis (4-chlorophenyl)butane-2,3-diamine, continued

	-0.2	015			598		9.6518	H	0		0	0	0	0	0	0	0	0	0	0	0
	-1.3	981			204		8.7238	C	0		0	0	0	0	0	0	0	0	0	0	0
	-2.1	121			104		7.5301	C	0		0	0	0	0	0	0	0	0	0	0	0
	-1.8	110			573		6.7605	H	0		0	0	0	0	0	0	0	0	0	0	0
	-3.2	536			332		7.4571	C	0		0	0	0	0	0	0	0	0	0	0	0
	-3.7	335			269		6.6403	H	0		0	0	0	0	0	0	0	0	0	0	0
	-3.7	019			641		8.5843	C	0		0	0	0	0	0	0	0	0	0	0	0
	-4.4	854			106		8.5338	H	0		0	0	0	0	0	0	0	0	0	0	0
	-2.9	996			735		9.7797	C	0		0	0	0	0	0	0	0	0	0	0	0
	-3. 3	061			268		10.5483	H	0		0	0	0	0	0	0	0	0	0	0	0
	-1.8	571			508		9.8496	C	0		0	0	0	0	0	0	0	0	0	0	0
	-1.3	784			567		10.6683	H	0		0	0	0	0	0	0	0	0	0	0	0
1	24	1	0		0	0															
2		1	0	0	0	0															
	16	1	0	0	0	0															
		1	0		0	0															
	13	1	0	0	0	0															
4	53	1	0	0	0	0															
5	6	1	0	0	0	0															
	9	1	0	0	0	0															
		1	0	0	0	0															
	8	1	0	0	0	0															
7	11	1	0	0	0	0															
7	29	1	0	0	0	0															
	10	1	0	0	0	0															
	11	1	0	0	0	0															
	16	1	0	0	0	0															
	12	1	0	0	0	0															

Table J. 2 Mol representation of (2R,3R)-1,4-bis (benzyloxy)-N2,N3-bis (4-chlorophenyl)butane-2,3-diamine, continued

```
11}131310000000
    13}14141000000
    13}151510000000
    16}17170100000
    16}1818100000
    1920 2 0 0 0 0
    1927 1 0 0 0 0
    20}2110100000
    20}22\mp@code{1
    22 23 1 0 0 0 0
    22 24 2 0 0 0 0
    24 25 1 0 0 0 0
    25 26 1 0 0 0 0
    25 27 2 0 0 0 0 0
    27 28 1 0 0 0 0
    2930 2 0 0 0 0
    2937 1 0 0 0 0
```



```
    34}3501000000
```



```
    35}3702000000
    37}388101000000
    3940 1 0 0 0 0
    3941 1 0 0 0
    3942 1 0 0 0 0
```

Table J. 2 Mol representation of ($2 R, 3 R$)-1,4-bis (benzyloxy)-N2,N3-bis (4-chlorophenyl)butane-2,3-diamine, continued

```
4243 2 0 0 0 0
    42 51 1 0 0 0 0 0
    4344 1 0 0 0 0
    43 45 1 0 0 0 0
    4546 1 0 0 0 0
    4547 2 0 0 0 0
    47 48 1 0 0 0
    47 49 1 0 0 0 0
    49 50 1 0 0 0 0
    49 51 2 0 0 0 0
    51 52 1 0 0 0 0
    53 54 1 0 0 0 0
    53 55 1 0 0 0
    53 56 1 0 0 0 0
    56 57 2 0 0 0 0
    56 65 1 0 0 0
    57 58 1 0 0 0 0
    57 59 1 0 0 0 0 0
    59 60 1 0 0 0 0
    59 61 2 0 0 0
    61 62 1 0 0 0
    61 63 1 0 0 0 0
    63}64\mp@code{1
    63 65 2 0 0 0 0
    65 66 1 0 0 0 0
M END
```


Crystal data for 1,3-bis(4-chlorophenyl)-4,5-diethyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride

CCDC reference number: 2179886

UK Chem reference number: m21296

Table K.1 Crystal data and structure refinement for 1,3-bis(4-chlorophenyl)-4,5-diethyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride.

Table K. 2 Mol representation of 1,3-bis (4-chlorophenyl)-4,5-diethyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride.

Mrv2211 05162212243 D

94940	00		999												
12.7650	0.3415	14.7292	Cl	0	0	0	0	0	0	0	0	0	0	0	0
3.4316	8.9507	12.8442	Cl	0	0	0	0	0	0	0	0	0	0	0	0
7.2997	2.5136	15.1307	N	0	3	0	0	0	0	0	0	0	0	0	0
6.9777	3.5982	14.5119	N	0	0	0	0	0	0	0	0	0	0	0	0
5.7158	3.8307	14.6730	N	0	0	0	0	0	0	0	0	0	0	0	0
6.1443	1.8053	15.7555	C	0	0	1	0	0	0	0	0	0	0	0	0
6.3237	1.6488	16.7267	H	0	0	0	0	0	0	0	0	0	0	0	0
5.0394	2.8636	15.5883	C	0	0	1	0	0	0	0	0	0	0	0	0
4.2399	2.4630	15.1407	H	0	0	0	0	0	0	0	0	0	0	0	0
4.6322	3.5381	16.8957	C	0	0	1	0	0	0	0	0	0	0	0	0
5.4441	3.8041	17.3959	H	0	0	0	0	0	0	0	0	0	0	0	0
4.1131	4.3571	16.6960	H	0	0	0	0	0	0	0	0	0	0	0	0
3.7907	2.6017	17.7557	C	0	0	0	0	0	0	0	0	0	0	0	0
2.9963	2.3231	17.2539	H	0	0	0	0	0	0	0	0	0	0	0	0
3.5151	3.0672	18.5722	H	0	0	0	0	0	0	0	0	0	0	0	0
4.3206	1.8118	17.9926	H	0	0	0	0	0	0	0	0	0	0	0	0
5.8776	0.4790	15.0548	C	0	0	1	0	0	0	0	0	0	0	0	0
5.5921	0.6482	14.1220	H	0	0	0	0	0	0	0	0	0	0	0	0
6.7103	-0.0559	15.0295	H	0	0	0	0	0	0	0	0	0	0	0	0
4.7952	-0.2978	15.7856	C	0	0	0	0	0	0	0	0	0	0	0	0
5.0380	-0.3859	16.7308	H	0	0	0	0	0	0	0	0	0	0	0	0
4.7070	-1.1889	15.3867	H	0	0	0	0	0	0	0	0	0	0	0	0
3.9429	0.1795	15.7100	H	0	0	0	0	0	0	0	0	0	0	0	0
8.6391	2.0377	15.0633	C	0	0	0	0	0	0	0	0	0	0	0	0
9.0686	1.1222	16.0096	C	0	0	0	0	0	0	0	0	0	0	0	0
8.4877	0.8417	16.7069	H	0	0	0	0	0	0	0	0	0	0	0	0

Table K. 2 Mol representation of 1,3-bis (4-chlorophenyl)-4,5-diethyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

10.3581	0.6212	15.9245	C	0	0	0	0		0	0	0	0	0		0
10.6740	-0.0032	16.5671	H	0	0	0	0	0	0	0	0	0	0	0	0
11.1792	1.0392	14.8955	C	0	0	0	0	0	0	0	0	0	0	0	0
10.7657	1.9887	13.9798	C	0	0	0	0	0	0	0	0	0	0	0	0
11.3578	2.2877	13.2999	H	0	0	0	0	0	0	0	0	0	0	0	0
9.4864	2.4999	14.0612	C	0	0	0	0	0	0	0	0	0	0	0	0
9.1890	3.1568	13.4427	H	0	0	0	0	0	0	0	0	0	0	0	0
5.1648	5.0421	14.1726	C	0	0	0	0	0	0	0	0	0	0	0	0
3.7885	5.2109	14.1712	C	0	0	0	0	0	0	0	0	0	0	0	0
3.2192	4.5025	14.4476	H	0	0	0	0	0	0	0	0	0	0	0	0
3.2520	6.4163	13.7645	C	0	0	0	0	0	0	0	0	0	0	0	0
2.3116	6.5517	13.7739	H	0	0	0	0	0	0	0	0	0	0	0	0
4.1012	7.4263	13.3441	C	0	0	0	0	0	0	0	0	0	0	0	0
5.4690	7.2421	13.2966	C	0	0	0	0	0	0	0	0	0	0	0	0
6.0325	7.9376	12.9781	H	0	0	0	0	0	0	0	0	0	0	0	0
6.0144	6.0459	13.7127	C	0	0	0	0	0	0	0	0	0	0	0	0
6.9541	5.9084	13.6862	H	0	0	0	0	0	0	0	0	0	0	0	0
4.6140	-7.9362	11.7892	Cl	0	0	0	0	0	0	0	0	0	0	0	0
-6.3013	-1.1282	12.6160	Cl	0	0	0	0	0	0	0	0	0	0	0	0
0.8906	-3.5440	10.4707	N	0	0	0	0	0	0	0	0	0	0	0	0
-0.2549	-3.4656	11.0607	N	0	0	0	0	0	0	0	0	0	0	0	0
-0.8342	-2.3554	10.7456	N	0	3	0	0	0	0	0	0	0	0	0	0
1.2543	-2.3196	9.6921	C	0	0	1	0	0	0	0	0	0	0	0	0
1.4584	-2.5611	8.7435	H	0	0	0	0	0	0	0	0	0	0	0	0
-0.0651	-1.5260	9.7680	C	0	0	1	0	0	0	0	0	0	0	0	0
0.1073	-0.6205	10.1557	H	0	0	0	0	0	0	0	0	0	0	0	0
-0.8118	-1.3864	8.4417	C	0	0	1	0	0	0	0	0	0	0	0	0
-0.7571	-2.2377	7.9400	H	0	0	0	0	0	0	0	0	0	0	0	0

Table K. 2 Mol representation of 1,3-bis (4-chlorophenyl)-4,5-diethyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

-1.7671	-1.1948	8.6189	H	0	0	0	0	0	0	0	0	0		0	0
-0.2153	-0.2657	7.6071	C	0	0	0	0	0	0	0	0	0	0	0	0
-0.1701	0.5532	8.1440	H	0	0	0	0	0	0	0	0	0	0	0	0
-0.7790	-0.1090	6.8204	H	0	0	0	0	0	0	0	0	0	0	0	0
0.6861	-0.5173	7.3182	H	0	0	0	0	0	0	0	0	0	0	0	0
2.4441	-1.5966	10.3210	C	0	0	1	0	0	0	0	0	0	0	0	0
2.1952	-1.2733	11.2230	H	0	0	0	0	0	0	0	0	0	0	0	0
3.2002	-2.2281	10.4190	H	0	0	0	0	0	0	0	0	0	0	0	0
2.8750	-0.4195	9.4616	C	0	0	0	0	0	0	0	0	0	0	0	0
3.1445	-0.7425	8.5765	H	0	0	0	0	0	0	0	0	0	0	0	0
3.6311	0.0364	9.8871	H	0	0	0	0	0	0	0	0	0	0	0	0
2.1273	0.2070	9.3670	H	0	0	0	0	0	0	0	0	0	0	0	0
1.7379	-4.6616	10.7280	C	0	0	0	0	0	0	0	0	0	0	0	0
2.8842	-4.8311	9.9651	C	0	0	0	0	0	0	0	0	0	0	0	0
3.0637	-4.2501	9.2351	H	0	0	0	0	0	0	0	0	0	0	0	0
3.7656	-5.8550	10.2763	C	0	0	0	0	0	0	0	0	0	0	0	0
4.5544	-5.9818	9.7623	H	0	0	0	0	0	0	0	0	0	0	0	0
3.4847	-6.6904	11.3435	C	0	0	0	0	0	0	0	0	0	0	0	0
2.3090	-6.5577	12.0649	C	0	0	0	0	0	0	0	0	0	0	0	0
2.1135	-7.1621	12.7711	H	0	0	0	0	0	0	0	0	0	0	0	0
1.4242	-5.5476	11.7561	C	0	0	0	0	0	0	0	0	0	0	0	0
0.6106	-5.4565	12.2382	H	0	0	0	0	0	0	0	0	0	0	0	0
-2.1275	-2.0568	11.2552	C	0	0	0	0	0	0	0	0	0	0	0	0
-2.6309	-0.7725	11.1091	C	0	0	0	0	0	0	0	0	0	0	0	0
-2.0941	-0.0896	10.7243	H	0	0	0	0	0	0	0	0	0	0	0	0
-3.9179	-0.4929	11.5267	C	0	0	0	0	0	0	0	0	0	0	0	0
-4.2738	0.3823	11.4278	H	0	0	0	0	0	0	0	0	0	0	0	0
-4.6838	-1.4970	12.0898	C	0	0	0	0	0	0	0	0	0	0	0	0

Table K. 2 Mol representation of 1,3-bis (4-chlorophenyl)-4,5-diethyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

$$
\begin{aligned}
& \begin{array}{llllllllllllllll}
-4.1794 & -2.7744 & 12.2540 & \mathrm{C} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& -4.7185-3.4544 \quad 12.6409 \text { H } 0 \begin{array}{lllllllllllll}
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& -2.8880-3.0570 \quad 11.8531 \mathrm{C} \quad 0 \\
& \begin{array}{llllllllllllllll}
-2.5231 & -3.9244 & 11.9840 & \mathrm{H} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& 2.65831 .750213 .1748 \mathrm{Cl} 0 \quad 5 \quad 0 \\
& \begin{array}{rrrrllllllllllll}
-2.0734 & 3.3589 & 12.1748 & \mathrm{Cl} & 0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0.4516 & 1.5860 & 11.6035 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& -0.1115 \quad 2.1448 \quad 11.8326 \mathrm{H} \quad 0 \\
& 1.14431 .7460 \quad 12.0180 \mathrm{H} \quad 0 \\
& \begin{array}{llllllllllllllll}
0.7905 & 4.3537 & 13.1324 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& 0.0655 \quad 4.1279 \quad 12.8083 \mathrm{H} \quad 0 \\
& 1.29530 .708613 .0056 \text { H } 0 \quad 0 \\
& 12910000 \\
& 239100000 \\
& \begin{array}{lllllll}
3 & 4 & 2 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
3 & 6 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& 324100000 \\
& 4 \begin{array}{lllllll}
5 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
5 & 8 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
5 & 34 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
6 & 7 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
6 & 8 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
6 & 17 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
8 & 9 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& 81010000 \\
& \begin{array}{lllllll}
10 & 11 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
10 & 12 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
10 & 13 & 1 & 0 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

Table K. 2 Mol representation of 1,3-bis (4-chlorophenyl)-4,5-diethyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

```
13}14414000000
13}15151000000
```



```
17}1818100000
```



```
17 20 1 0 0 0 0
20}21\mp@code{1
20}22\mp@code{1
20}23\mp@code{1
24 25 2 0 0 0 0
24 32 1 0 0 0 0
25 26 1 0 0 0 0
25 27 1 0 0 0 0
27 28 1 0 0 0 0
27 29 2 0 0 0 0
2930}1000000
```



```
30}3222000000
```



```
34}35510<00000
34 42 2 0 0 0 0
35}3661000000
35}3702000000
37}3881010000000
```



```
3940 2 0 0 0 0
40}41\quad1\quad0\quad0\quad0\quad
40 42 1 0 0 0 0
```

Table K. 2 Mol representation of 1,3-bis (4-chlorophenyl)-4,5-diethyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

42	43	1	0	0	0	0
44	72	1	0	0	0	0
45	82	1	0	0	0	0
46	47	1	0	0	0	0
46	49	1	0	0	0	0
46	67	1	0	0	0	0
47	48	2	0	0	0	0
48	51	1	0	0	0	0
48	77	1	0	0	0	0
49	50	1	0	0	0	0
49	51	1	0	0	0	0
49	60	1	0	0	0	0
51	52	1	0	0	0	0
51	53	1	0	0	0	0
53	54	1	0	0	0	0
53	55	1	0	0	0	0
53	56	1	0	0	0	0
56	57	1	0	0	0	0
56	58	1	0	0	0	0
56	59	1	0	0	0	0
60	61	1	0	0	0	0
60	62	1	0	0	0	0
60	63	1	0	0	0	0
63	64	1	0	0	0	0
63	65	1	0	0	0	0
63	66	1	0	0	0	0
67	68	1	0	0	0	0
67	75	2	0	0	0	0

Table K. 2 Mol representation of 1,3-bis (4-chlorophenyl)-4,5-diethyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

```
    68 69 1 0 0 0 0
    68 70 2 0 0 0 0
```



```
    72 73 2 0 0 0 0
    73 74 1 0 0 0 0
    73 75 1 0 0 0 0
    75 76 1 0 0 0 0 0
    77 78 1 0}00<0000
    77 85 2 0 0 0 0
```



```
    78 80 2 0 0 0 0
    80}8110100000
```



```
    82 83 2 0 0 0 0
    83 84 1 0 0 0 0
    83 85 1 0 0 0 0
    85 86 1 0 0 0 0
    89 90 1 0 0 0 0
    89 91 1 0 0 0 0
    92 93 1 0 0 0 0
    92 94 1 0 0 0 0
M CHG 4
M END
```


Crystal data for N^{3}, N^{4}-bis(4-chlorophenyl)hexane-3,4-diamine as a $\mathbf{H C l}$ salt

CCDC reference number: 2179890

UK Chem reference number: m21319

Table L. 1 Crystal data and structure refinement for N^{3}, N^{4}-bis (4chlorophenyl) hexane-3,4-diamine as a HCl salt.

Table L. 2 Mol representation for N^{3}, N^{4}-bis(4-chlorophenyl)hexane-3,4diamine as a HCl salt.

Mrv2211 05162213363 D																
46460	0	00		999	V20											
13.1846		4.5095	13.4995	Cl	0	5	0	0	0	0	0	0	0	0	0	0
8.1259		7.3873	19.7414	Cl	0	0	0	0	0	0	0	0	0	0	0	0
18.8050		1.3342	12.2125	Cl	0	0	0	0	0	0	0	0	0	0	0	0
12.2999		4.4307	16.7257	N	0	3	1	0	0	0	0	0	0	0	0	0
12.9534		4.9969	16.4503	H	0	0	0	0	0	0	0	0	0	0	0	0
11.9588		4.1066	15.9236	H	0	0	0	0	0	0	0	0	0	0	0	0
14.7959		3.4443	16.0359	N	0	0	2	0	0	0	0	0	0	0	0	0
15.1587		3.9555	16.6235	H	0	0	0	0	0	0	0	0	0	0	0	0
12.8919		3.2865	17.5363	C	0	0	2	0	0	0	0	0	0	0	0	0
13.4503		3.6820	18.2660	H	0	0	0	0	0	0	0	0	0	0	0	0
13.8202		2.5071	16.6013	C	0	0	2	0	0	0	0	0	0	0	0	0
13.2660		2.1529	15.8479	H	0	0	0	0	0	0	0	0	0	0	0	0
14.4863		1.3103	17.2946	C	0	0	1	0	0	0	0	0	0	0	0	0
13.7774		0.7102	17.6369	H	0	0	0	0	0	0	0	0	0	0	0	0
15.0054		0.8047	16.6201	H	0	0	0	0	0	0	0	0	0	0	0	0
15.4070		1.6679	18.4400	C	0	0	0	0	0	0	0	0	0	0	0	0
15.8345		0.8549	18.7817	H	0	0	0	0	0	0	0	0	0	0	0	0
14.8886		2.0902	19.1564	H	0	0	0	0	0	0	0	0	0	0	0	0
16.0950		2.2904	18.1241	H	0	0	0	0	0	0	0	0	0	0	0	0
11.8090		2.4290	18.1843	C	0	0	2	0	0	0	0	0	0	0	0	0
11.1907		3.0277	18.6735	H	0	0	0	0	0	0	0	0	0	0	0	0
12.2394		1.8387	18.8526	H	0	0	0	0	0	0	0	0	0	0	0	0
10.9841		1.5588	17.2384	C	0	0	0	0	0	0	0	0	0	0	0	0
10.2383		1.1574	17.7310	H	0	0	0	0	0	0	0	0	0	0	0	0
11.5511		0.8500	16.8690	H	0	0	0	0	0	0	0	0	0	0	0	0
10.6342		2.1112	16.5085	H	0	0	0	0	0	0	0	0	0	0	0	0
11.2668		5.2055	17.4242	C	0	0	0	0	0	0	0	0	0	0	0	0

Table L. 2 Mol representation for N^{3}, N^{4}-bis (4-chlorophenyl)hexane-3,4diamine as a HCl salt, continued

Table L. 2 Mol representation for N^{3}, N^{4}-bis (4-chlorophenyl)hexane-3,4diamine as a HCl salt, continued

```
    9 11 1 0 0 0 0
    920 1 0 0 0 0
11}1212100000000
11}13131000000
13}141410000000
```



```
13 16 1 0 0 0 0
16}17170100000
16}1818100000
```



```
20}221000000
20}23\mp@code{1
23 24 1 0 0 0 0
23 25 1 0 0 0 0
23 26 1 0 0 0 0
27 28 1 0 0 0 0
27 35 2 0 0 0 0
28 29 1 0 0 0 0
28 30 2 0 0 0 0
```



```
    32}333200000
```



```
    33}35\mp@code{1}00<000
    35}36610000000
    37}338101000000
    37 45 2 0 0 0 0
    38
```

Table L. 2 Mol representation for N^{3}, N^{4}-bis(4-chlorophenyl)hexane-3, 4diamine as a HCl salt, continued

```
    38 40 2 0 0 0 0
    4041 1 0 0 0 0
    40 42 1 0 0 0 0
    4243 2 0 0 0 0
    43 44 1 0 0 0 0
    43 45 1 0 0 0 0
    45 46 1 0 0 0 0
M CHG 2 1 1 -1 llll
M END
```

Crystal data 1,3-bis(4-chlorophenyl)-4,5-diphenyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride

CCDC reference number: 2179896
UK Chem reference number: m21331s

Table M. 1 Crystal data and structure refinement for 1,3-bis(4-chlorophenyl)-4,5-diphenyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride.

Table M. 2 Mol representation for 1,3-bis(4-chlorophenyl)-4,5-diphenyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride.

Table M. 2 Mol representation for 1,3-bis(4-chlorophenyl)-4,5-diphenyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

-1.1584	8.3245	4.4517	N	0	0	0	0	0	0	0	0	0	0	0	0
-1.3243	6.8979	4.0673	C	0	0	1	0	0	0	0	0	0	0	0	0
-1.6370	6.3573	4.8354	H	0	0	0	0	0	0	0	0	0	0	0	0
-2.0975	9.1036	5.1725	C	0	0	0	0	0	0	0	0	0	0	0	0
-1.8804	10.4555	5.3733	C	0	0	0	0	0	0	0	0	0	0	0	0
-1.1114	10.8725	5.0293	H	0	0	0	0	0	0	0	0	0	0	0	0
-2.8099	11.1799	6.0855	C	0	0	0	0	0	0	0	0	0	0	0	0
-2.6820	12.1000	6.2295	H	0	0	0	0	0	0	0	0	0	0	0	0
-3.9318	10.5488	6.5886	C	0	0	0	0	0	0	0	0	0	0	0	0
-4.1393	9.2106	6.4014	C	0	0	0	0	0	0	0	0	0	0	0	0
-4.9066	8.7976	6.7547	H	0	0	0	0	0	0	0	0	0	0	0	0
-3.2143	8.4676	5.6904	C	0	0	0	0	0	0	0	0	0	0	0	0
-3.3414	7.5454	5.5607	H	0	0	0	0	0	0	0	0	0	0	0	0
-2.2796	6.7889	2.9047	C	0	0	0	0	0	0	0	0	0	0	0	0
-3.1841	5.7467	2.8737	C	0	0	0	0	0	0	0	0	0	0	0	0
-3.2359	5.1452	3.5943	H	0	0	0	0	0	0	0	0	0	0	0	0
-4.0150	5.5907	1.7769	C	0	0	0	0	0	0	0	0	0	0	0	0
-4.6288	4.8793	1.7533	H	0	0	0	0	0	0	0	0	0	0	0	0
-3.9479	6.4663	0.7261	C	0	0	0	0	0	0	0	0	0	0	0	0
-4.5055	6.3477	-0.0213	H	0	0	0	0	0	0	0	0	0	0	0	0
-3.0611	7.5227	0.7648	C	0	0	0	0	0	0	0	0	0	0	0	0
-3.0235	8.1311	0.0494	H	0	0	0	0	0	0	0	0	0	0	0	0
-2.2353	7.6853	1.8463	C	0	0	0	0	0	0	0	0	0	0	0	0
-1.6355	8.4086	1.8718	H	0	0	0	0	0	0	0	0	0	0	0	0
0.1688	9.4875	-0.3132	Cl	0	5	0	0	0	0	0	0	0	0	0	0
1111	000														
232	000														
241	000														

Table M. 2 Mol representation for 1,3-bis(4-chlorophenyl)-4,5-diphenyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

```
3 28 1 0 0 0 0
4
4 16 1 0 0 0 0
429 1 0 0 0 0
6
6}1414100000
7
7
9 10 1 0 0 0 0
9 11 2 0 0 0 0
11}121210000000
12}131310000000
12}14200000
14}1515100000
16 17 1 0 0 0 0
1625 2 0 0 0 0
17}1818100000
19 20 1 0 0 0 0
19 21 1 0 0 0 0
21 22 1 0 0 0 0
2123 2 0 0 0 0
23 24 1 0 0 0 0
23 25 1 0 0 0 0
25 26 1 0 0 0 0
27}36\mp@code{1
28 29 1 0 0 0 0
28}313100000
2930 1 0 0 0 0
2941 1 0 0 0 0
```

Table M. 2 Mol representation for 1,3-bis(4-chlorophenyl)-4,5-diphenyl-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

```
    31 32 2 0 0 0 0
```



```
    32}34410000000
```



```
    34}36020000
    36}3710100000
```



```
    3940 1 0 0 0 0
    4142 1 0 0 0 0
    41 50 2 0 0 0 0
    4243 1 0 0 0 0
    4244 2 0 0 0 0
    44 45 1 0 0 0 0
    44 46 1 0 0 0 0
    4647 1 0 0 0 0
    4648 2 0 0 0 0
    48 49 1 0 0 0 0
    48 50 1 0 0 0 0
    50}5112100000
    17 19 2 0 0 0 0
M CHG 2 2 1 1 52 -1
M END
```


Crystal data for (1,3-bis(4-chlorophenyl)-5-(3-oxobutyl)-4,5-dihydro-3H-

1,2,3-triazol-1-ylium chloride

CCDC reference number: 2179897
UK Chem reference number: $\mathbf{~} 22100$

Table N.1 Crystal data and structure refinement for (1,3-bis (4-chlorophenyl)-5-(3-oxobutyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride.

Table N. 2 Mol representation for 1,3-bis(4-chlorophenyl)-5-(3-oxobutyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride.

Table N. 2 Mol representation for 1,3-bis(4-chlorophenyl)-5-(3-oxobutyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

Table N. 2 Mol representation for 1,3-bis(4-chlorophenyl)-5-(3-oxobutyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

```
9 10 1 0 0 0 0
9 11 1 0 0 0 0
    9 12 1 0 0 0 0
12}1313100000
12}14141000000
12}1515100000
15 16 2 0 0 0 0
15}17170100000
17}1818100000
```



```
17 20 1 0 0 0
21 22 1 0 0 0 0
2129 2 0 0 0 0
22 23 1 0 0 0 0
22 24 2 0 0 0 0
24 25 1 0 0 0 0
24 26 1 0 0 0 0
26 27 2 0 0 0 0
27 28 1 0 0 0 0
27 29 1 0 0 0 0
```



```
31 39 2 0 0 0 0
```



```
32}34420000000
34}35510000000
34}3661000000
36 37 2 0 0 0 0
37}3381010000000
```

Table N. 2 Mol representation for 1,3-bis(4-chlorophenyl)-5-(3-oxobutyl)-4,5-dihydro-3H-1,2,3-triazol-1-ylium chloride, continued

```
    37}39\mp@code{1
    3940}10<00000
    42 43 1 0 0 0 0
    4244 1 0 0 0 0
    42 45 1 0 0 0 0
    42 46 1 0
    5 47 1 0 0 0 0
    647 1 0 0 0 0
    47 9}110000000
M CHG 2 
M END
```


Crystal data and structure refinement for 2,3-bis[(4-chlorophenyl)amino]-1-

 methylcyclopentan-1-ol as a HCl saltCCDC reference number: 2179893
UK Chem reference number: m22070


```
Table 0.1 Crystal data and structure refinement for 2,3-bis[(4chlorophenyl) amino]-1-methylcyclopentan-1-ol as a HCl salt.
```

Empirical formula	$\begin{array}{lllllllllll}\mathrm{C}_{18} & \mathrm{H}_{22.50} & \mathrm{C}_{13} & \mathrm{~N}_{2} & \mathrm{O}_{1.75}\end{array}$
Formula weight	401.23
Temperature	90.0(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions $\begin{aligned} & \mathrm{a}=13.8 \\ & \mathrm{~b}=7.50 \\ & \mathrm{c}=19.2 \end{aligned}$	25(8) \AA alpha $=90 \mathrm{deg}$. (4) A beta $=107.043(2) \mathrm{deg}$. $09(10) \AA$ gamma $=90 \mathrm{deg}$.
Volume	1917.74 (18) Å^3
Z, Calculated density	$4,1.390 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.490 \mathrm{~mm}^{\wedge}-1$
F(000)	838
Crystal size	$0.310 \times 0.160 \times 0.020 \mathrm{~mm}$
Theta range for data collection	2.213 to 27.516 deg .
Limiting indices	$8<=\mathrm{h}<=17,-9<=\mathrm{k}<=9,-25<=1<=25$
Reflections collected / unique	$38495 / 4407$ [R(int) $=0.0938]$
Completeness to theta $=25.242$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.971 and 0.740
Refinement method	ll-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	4407 / 3 / 243
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.063
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0452, \mathrm{wR} 2=0.1007$
R indices (all data)	$\mathrm{R} 1=0.0785, \mathrm{wR} 2=0.1155$
Extinction coefficient	n / a
Largest diff. peak and hole	0.358 and -0.343 e. \AA^{\wedge} - 3

Table 0.2 Mol representation for (2,3-bis[(4-chlorophenyl)amino]-1-methylcyclopentan-1-ol as a HCl salt.

Mrv2211 $05162214333 D$

48480	00		999												
2.4002	1.5675	9.3764	Cl	0	0	0	0	0	0	0	0	0	0	0	0
1.3701	3.7588	13.5606	Cl	0	0	0	0	0	0	0	0	0	0	0	0
8.0129	0.1192	15.9843	0	0	0	0	0	0	0	0	0	0	0	0	0
7.3721	-0.4183	16.0653	H	0	0	0	0	0	0	0	0	0	0	0	0
6.3879	0.3048	13.5675	N	0	0	0	0	0	0	0	0	0	0	0	0
6.0706	-0.1114	14.2611	H	0	0	0	0	0	0	0	0	0	0	0	0
6.9838	2.6933	15.2082	N	0	3	1	0	0	0	0	0	0	0	0	0
6.9726	2.0955	15.8688	H	0	0	0	0	0	0	0	0	0	0	0	0
7.3138	3.5271	15.5224	H	0	0	0	0	0	0	0	0	0	0	0	0
7.7321	0.7988	13.6688	C	0	0	1	0	0	0	0	0	0	0	0	0
8.1544	0.7001	12.7677	H	0	0	0	0	0	0	0	0	0	0	0	0
7.9484	2.2678	14.1231	C	0	0	2	0	0	0	0	0	0	0	0	0
7.8791	2.8843	13.3391	H	0	0	0	0	0	0	0	0	0	0	0	0
9.3880	2.2873	14.6914	C	0	0	1	0	0	0	0	0	0	0	0	0
9.9803	2.8346	14.1179	H	0	0	0	0	0	0	0	0	0	0	0	0
9.3946	2.6653	15.6066	H	0	0	0	0	0	0	0	0	0	0	0	0
9.8592	0.8234	14.7109	C	0	0	1	0	0	0	0	0	0	0	0	0
10.4310	0.6302	13.9260	H	0	0	0	0	0	0	0	0	0	0	0	0
10.3738	0.6326	15.5348	H	0	0	0	0	0	0	0	0	0	0	0	0
8.5850	-0.0101	14.6668	C	0	0	1	0	0	0	0	0	0	0	0	0
8.7608	-1.4578	14.2841	C	0	0	0	0	0	0	0	0	0	0	0	0
7.8890	-1.9054	14.2895	H	0	0	0	0	0	0	0	0	0	0	0	0
9.3568	-1.8957	14.9270	H	0	0	0	0	0	0	0	0	0	0	0	0
9.1509	-1.5136	13.3867	H	0	0	0	0	0	0	0	0	0	0	0	0
5.5011	0.6163	12.5562	C	0	0	0	0	0	0	0	0	0	0	0	0
4.1627	0.2123	12.6935	C	0	0	0	0	0	0	0	0	0	0	0	0
3.8991	-0.2702	13.4684	H	0	0	0	0	0	0	0	0	0	0	0	0

Table 0.2 Mol representation for (2,3-bis[(4-chlorophenyl)amino]-1-methylcyclopentan-1-ol as a HCl salt, continued

Table 0.2 Mol representation for (2,3-bis[(4-chlorophenyl)amino]-1-methylcyclopentan-1-ol as a HCl salt, continued

```
7
    7}12121000000
    7 35 1 0 0 0 0 0
    10}11
    10}121210000000
    10}20101000000
    12}13131000000
    12}14141000000
    14}15151000000
    14}1616100000
    14}17170100000
    17}1818100000
    17}19191000000
    17 20 1 0 0 0 0
    20}2110100000
    21 22 1 0 0 0
    21 23 1 0 0 0 0
    21 24 1 0 0 0 0
    25 26 2 0 0 0 0
    25}33310100000
    2627 1 0 0 0 0
    26 28 1 0 0 0 0
    28 29 1 0 0 0 0
    28 30 2 0 0 0 0
    30}331\mp@code{1
```



```
    31}3330200000
    33
    35}3662000000
```

Table 0.2 Mol representation for (2,3-bis[(4-chlorophenyl)amino]-1-methylcyclopentan-1-ol as a HCl salt, continued


```
    36}38810000000
```



```
    3840 2 0 0 0 0
    40}4110100000
    4142 1 0 0 0 0
    4143 2 0 0 0 0
    43 44 1 0 0 0 0
    45 46 1 0 0 0 0
    45 47 1 0 0 0 0
M CHG 2 
M END
```

Crystal data for (4S,5S,7R,10R)-5-\{[(tert-butyldiphenylsilyl)oxy]methyl\}-6-oxa-1,2,3 triazatricyclo[5.2.1.0 ${ }^{4,10}$]dec-2-ene

UK Chem reference number: m20253

Table P. 1 Crystal data and structure refinement for (4S,5S,7R,10R)-5-\{[(tert-butyldiphenylsilyl)oxy]methyl\}-6-oxa-1,2,3 triazatricyclo[5.2.1. $0^{4,10}$] dec-2-ene.

Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}$
Formula weight	407.58
Temperature	90.0(2) K
Wavelength	$0.71073 \AA$
Crystal system, space group	Orthorhombic, P2(1)2(1)2(1)
Unit cell dimensions ${ }^{\text {a }}$ b	$\begin{aligned} \mathrm{a}=7.7480(3) \AA & \text { A } & \text { alpha }=90 \mathrm{deg} . \\ \mathrm{b}=11.2484(5) \AA & \text { beta } & =90 \mathrm{deg} . \\ \mathrm{c}=25.0666(8) \AA & \text { gamma } & =90 \mathrm{deg} . \end{aligned}$
Volume	2184.62 (15) A^ $^{\text {^ }}$
Z, Calculated density	$4,1.239 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.131 \mathrm{~mm}^{\wedge}-1$
F(000)	872
Crystal size	$0.300 \times 0.260 \times 0.240 \mathrm{~mm}$
Theta range for data collection	n 1.984 to 27.526 deg.
Limiting indices -	$-10<=\mathrm{h}<=10,-14<=\mathrm{k}<=14,-32<=1<=32$
Reflections collected / unique	$29798 / 5000$ [R(int) $=0.0325]$
Completeness to theta $=25.242$	99.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.942 and 0.892
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	$5000 / 0 / 265$
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.057
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0264, \mathrm{wR} 2=0.0678$
R indices (all data)	$\mathrm{R} 1=0.0279, \mathrm{wR} 2=0.0691$
Absolute structure parameter	-0.03(3)
Extinction coefficient	n / a
Largest diff. peak and hole	0.217 and -0.210 e. \AA^{\wedge} - 3

Mrv2211 05162214533 D

7.0227	6.6560	11.1850	C	0	0	2	0	0	0	0	0	0	0	0	0
7.0831	5.7589	10.7473	H	0	0	0	0	0	0	0	0	0	0	0	0

8.2516	6.9356	12.0749	C	0	0	1	0	0	0	0	0	0	0	0	0
7.9713	7.1772	12.9933	H	0	0	0	0	0	0	0	0	0	0	0	0

8.8402	6.1407	12.1195	H	0	0	0	0	0	0	0	0	0	0	0	0
8.9763	8.1137	11.3979	C	0	0	2	0	0	0	0	0	0	0	0	0

9.3652	8.7204	12.0767	H	0	0	0	0	0	0	0	0	0	0	0	0

9.7021	7.7856	10.8104	H	0	0	0	0	0	0	0	0	0	0	0	0
6.9825	7.7924	10.1428	C	0	0	1	0	0	0	0	0	0	0	0	0

| 7.1411 | 7.4864 | 9.2043 H | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5.6487 | 8.4847 | 10.3455 C | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5.1977 | 8.7205 | 9.4847 H | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4.8304 | 7.5186 | 11.2017 C | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4.2639 | 8.0461 | 11.8346 H | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3.9363 | 6.6101 | 10.3805 C | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3.5057 | 5.9415 | 10.9703 H | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3.2245 | 7.1439 | 9.9462 H | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5.5239 | 4.4708 | 7.1579 C | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5.1085 | 3.4233 | 6.1164 C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table P. 2 Mol representation for (4S,5S,7R,10R)-5-\{[(tert-butyldiphenylsilyl)oxy]methyl\}-6-oxa-1,2,3 triazatricyclo[5.2.1.0 $0^{4,10}$] dec-2ene, continued

	-0.4	305			0890		5.7425	H	0	0	0	0	0	0	0	0	0	0	0	0
	1.5	874			2323		5.9352	C	0	0	0	0	0	0	0	0	0	0	0	0
	1.6	983			9516		5.3244	H	0	0	0	0	0	0	0	0	0	0	0	0
	2.6	937			6773		6.5640	C	0	0	0	0	0	0	0	0	0	0	0	0
	3.5	570			0238		6.3711	H	0	0	0	0	0	0	0	0	0	0	0	0
1	3	1	0	0	0	0														
1	24	1	0	0	0	0														
1	37	1	0	0	0	0														
	48	1	0	0	0	0														
2	7	1	0	0	0	0														
	19	1	0	0	0	0														
3		1	0	0	0	0														
4		1	0	0	0	0														
4		1	0	0	0	0														
		1	0	0	0	0														
5		2	0	0	0	0														
6		1	0	0	0	0														
7		1	0	0	0	0														
7	9	1	0	0	0	0														
7	15	1	0	0	0	0														
9	10	1	0	0	0	0														
9		1	0	0	0	0														
9		1	0	0	0	0														
12	13	1	0	0	0	0														
	14	1	0	0	0	0														
	16	1	0	0	0	0														
	17	1	0	0	0	0														
	18				0															

Table P. 2 Mol representation for (4S,5S,7R,10R)-5-\{[(tert-butyldiphenylsilyl)oxy]methyl\}-6-oxa-1,2,3 triazatricyclo[5.2.1.0 $0^{4,10}$] dec-2ene, continued

17	19	1	0	0	0	0
19	20	1	0	0	0	0
19	21	1	0	0	0	0
21	22	1	0	0	0	0
21	23	1	0	0	0	0
24	25	1	0	0	0	0
24	29	1	0	0	0	0
24	33	1	0	0	0	0
25	26	1	0	0	0	0
25	27	1	0	0	0	0
25	28	1	0	0	0	0
29	30	1	0	0	0	0
29	31	1	0	0	0	0
29	32	1	0	0	0	0
33	34	1	0	0	0	0
33	35	1	0	0	0	0
33	36	1	0	0	0	0
37	38	1	0	0	0	0
37	46	2	0	0	0	0
38	39	1	0	0	0	0
38	40	2	0	0	0	0
40	41	1	0	0	0	0
40	42	1	0	0	0	0
42	43	1	0	0	0	0
42	44	2	0	0	0	0
44	45	1	0	0	0	0
44	46	1	0	0	0	0
46	47	1	0	0	0	

Table P. 2 Mol representation for (4S,5S,7R,10R)-5-\{[(tert-butyldiphenylsilyl)oxy]methyl\}-6-oxa-1,2,3 triazatricyclo[5.2.1.0 ${ }^{4,10}$] dec-2ene, continued

48	49	1	0	0	0	0
48	57	2	0	0	0	0
49	50	1	0	0	0	0
49	51	2	0	0	0	0
51	52	1	0	0	0	0
51	53	1	0	0	0	0
53	54	1	0	0	0	0
53	55	2	0	0	0	0
55	56	1	0	0	0	0
55	57	1	0	0	0	0
57	58	1	0	0	0	0
M	END					

References

1. Michalson, E. T.; Szmuszkovicz, J. J. P. i. d. r., Medicinal agents incorporating the 1, 2-diamine functionality. 1989, 135-149.
2. Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. J. N., An overview of Nheterocyclic carbenes. 2014, 510 (7506), 485-496.
3. Lucet, D.; Le Gall, T.; Mioskowski, C. J. A. C. I. E., The chemistry of vicinal diamines. 1998, 37 (19), 2580-2627.
4. De Jong, S.; Nosal, D. G.; Wardrop, D. J. J. T., Methods for direct alkene diamination, new \& old. 2012, 68 (22), 4067.
5. Schardl, C. L.; Grossman, R. B.; Nagabhyru, P.; Faulkner, J. R.; Mallik, U. P., Loline alkaloids: currencies of mutualism. Phytochemistry 2007, 68 (7), 980-996.
6. McMahon, R. J. J. A. r. o. n., Biotin in metabolism and molecular biology. 2002, 22 (1), 221-239.
7. Park, Y.; Liau, B. B. J. C. C. B., Uncovering the Cellular Target of Agelastatin A. 2017, 24 (5), 542-543.
8. McClellan, K.; Perry, C. M. J. D., Oseltamivir. 2001, 61 (2), 263-283.
9. Keating, G. M.; Scott, L. J. J. D., Moxifloxacin. 2004, 64 (20), 2347-2377.
10. Pestova, E.; Millichap, J. J.; Noskin, G. A.; Peterson, L. R. J. J. o. A. C., Intracellular targets of moxifloxacin: a comparison with other fluoroquinolones. 2000, 45 (5), 583-590.
11. Reedijk, J. J. C. C., Improved understanding in platinium antitumour chemistry. 1996, (7), 801-806.
12. Rosenberg, B.; Vancamp, L.; Trosko, J. E.; Mansour, V. H. J. n., Platinum compounds: a new class of potent antitumour agents. 1969, 222 (5191), 385-386.
13. Witiak, D. T.; Rotella, D. P.; Filippi, J. A.; Gallucci, J. J. J. o. m. c., Stereocontrolled syntheses for the six diastereomeric 1, 2-dihydroxy-4, 5diaminocyclohexanes: PtII complexes and P-388 antitumor properties. 1987, 30 (8), 13271336.
14. Gukathasan, S.; Parkin, S.; Awuah, S. G. J. I. C., Cyclometalated Gold (III) complexes bearing DACH ligands. 2019, 58 (14), 9326-9340.
15. Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C. J. S., In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. 2004, 303 (5659), 844-848.
16. Duffy, R. A.; Morgan, C.; Naylor, R.; Higgins, G. A.; Varty, G. B.; Lachowicz, J. E.; Parker, E. M. J. P. B.; Behavior, Rolapitant (SCH 619734): a potent, selective and orally active neurokinin NK1 receptor antagonist with centrally-mediated antiemetic effects in ferrets. 2012, 102 (1), 95-100.
17. Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. J. o. t. A. C. S., Ruthenium (II)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid- triethylamine mixture. 1996, 118 (10), 2521-2522.
18. Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. J. o. t. A. C. S., Asymmetric transfer hydrogenation of α, β-acetylenic ketones. 1997, 119 (37), 8738-8739. 19. Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. J. o. t. A. C. S., Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. 1990, 112 (7), 2801-2803.
19. Irie, R.; Noda, K.; Ito, Y.; Matsumoto, N.; Katsuki, T. J. T. 1., Catalytic asymmetric epoxidation of unfunctionalized olefins. 1990, 31 (50), 7345-7348.
20. Nakayama, K.; Maruoka, K. J. J. o. t. A. C. S., Complete switch of product selectivity in asymmetric direct aldol reaction with two different chiral organocatalysts from a common chiral source. 2008, 130 (52), 17666-17667.
21. Hindi, K. M.; Panzner, M. J.; Tessier, C. A.; Cannon, C. L.; Youngs, W. J. J. C. r., The Medicinal applications of imidazolium carbene- metal complexes. 2009, 109 (8), 3859-3884.
22. Zhao, Q.; Meng, G.; Nolan, S. P.; Szostak, M. J. C. r., N-Heterocyclic carbene complexes in C-H activation reactions. 2020, 120 (4), 1981-2048.
23. Hickey, J. L.; Ruhayel, R. A.; Barnard, P. J.; Baker, M. V.; Berners-Price, S. J.; Filipovska, A. J. J. o. t. A. C. S., Mitochondria-targeted chemotherapeutics: the rational design of gold (I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols. 2008, 130 (38), 12570-12571.
24. Streuff, J.; Hövelmann, C. H.; Nieger, M.; Muniz, K., Palladium (II)-catalyzed intramolecular diamination of unfunctionalized alkenes. Journal of the American Chemical Society 2005, 127 (42), 14586-14587.
25. Iglesias, A.; Muniz, K., Oxidative Interception of the Hydroamination Pathway: A Gold-Catalyzed Diamination of Alkenes. Chemistry-A European Journal 2009, 15 (40), 10563-10569.
26. Wang, Y.-F.; Zhu, X.; Chiba, S. J. J. o. t. A. C. S., Copper-catalyzed aerobic [3+ 2]-annulation of N-alkenyl amidines. 2012, 134 (8), 3679-3682.
27. Muniz, K.; Hövelmann, C. H.; Campos-Gómez, E.; Barluenga, J.; Gonzalez, J. M.; Streuff, J.; Nieger, M. J. C. A. A. J., Intramolecular diamination of alkenes with palladium (II)/copper (II) bromide and IPy2BF4: The role of halogenated intermediates. 2008, 3 (4), 776-788.
28. Shen, K.; Wang, Q. J. C. s., Copper-catalyzed diamination of unactivated alkenes with hydroxylamines. 2015, 6 (7), 4279-4283.
29. Peterson, L. J.; Kirsch, J. K.; Wolfe, J. P. J. O. 1., Pd-Catalyzed alkene diamination reactions of nitrogen electrophiles: synthesis of cyclic guanidines and ureas bearing dialkylaminomethyl groups. 2018, 20 (12), 3513-3517.
30. Liu, X.; Hou, C.; Peng, Y.; Chen, P.; Liu, G. J. O. L., Ligand-Controlled Regioselective Pd-Catalyzed Diamination of Alkenes. 2020, 22 (23), 9371-9375.
31. Tao, Z.; Gilbert, B. B.; Denmark, S. E. J. J. o.t. A. C. S., Catalytic, enantioselective syn-diamination of alkenes. 2019, 141 (48), 19161-19170.
32. Minakata, S.; Miwa, H.; Yamamoto, K.; Hirayama, A.; Okumura, S. J. J. o. t. A. C. S., Diastereodivergent Intermolecular 1, 2-Diamination of Unactivated Alkenes Enabled by Iodine Catalysis. 2021, 143 (11), 4112-4118.
33. de Miguel, I.; Velado, M.; Herradón, B.; Mann, E., First Total Synthesis of the Pyrrolizidine Alkaloid Amphorogynine C through Intramolecular Azide-Olefin Cycloaddition. European Journal of Organic Chemistry 2012, 2012 (23), 4347-4353.
34. Zhou, Y.; Murphy, P. V., New Access to 1-Deoxynojirimycin Derivatives via Azide- Alkene Cycloaddition. Organic letters 2008, 10 (17), 3777-3780.
35. Markidis, T.; Mikros, E.; Kokotos, G. J. H., Stereoselective intramolecular azide 1, 3-dipolar cycloaddition. 2003, 60 (12), 2637-2644.
36. Mohr, R.; Hertel, H. J. C. B., Über eine neue Ringschlußreaktion aromatischer Diazoamino-verbindungen und zur Kenntnis von 1.2. 3-Triazolinen. 1963, 96 (1), 114-129. 38. Sebest, F.; Casarrubios, L.; Rzepa, H. S.; White, A. J.; Díez-González, S. J. G. C., Thermal azide-alkene cycloaddition reactions: straightforward multi-gram access to Δ 2-1, 2, 3-triazolines in deep eutectic solvents. 2018, 20 (17), 4023-4035.
37. Ulgar, V.; Fernández-Bolaños, J. G.; Bols, M. J. J. o. t. C. S., Perkin Transactions 1, Synthesis and evaluation of sulfonium analogues of isofucofagomine as glycosidase inhibitors. 2002, (10), 1242-1246.
38. Scott, J. D.; Williams, R. M. J. C. R., Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. 2002, 102 (5), 1669-1730.
39. Fusco, R.; Garanti, L.; Zecchi, G. J. T. J. o. O. C., Intramolecular 1, 3-dipolar cycloadditions of aryl azides bearing alkenyl, alkynyl, and nitrile groups. 1975, 40 (13), 1906-1909.
40. UCSB Environmental Health and Safety. Synthesizing, Purifying, and Handling Organic Azides. https://www.ehs.ucsb.edu/files/docs/ls/factsheets/Azides FS26.pdf.
41. National Research Council. Prudent Practices in the Laboratory: Handling and Management of Chemical Hazards, Updated Version. The National Academies Press: Washington, DC,: 2011.
42. Kuehne, M. E.; He, L.; Jokiel, P. A.; Pace, C.; Fleck, M.; Maisonneuve, I.; Glick, S. D.; Bidlack, J. M. J. J. o. m. c., Synthesis and biological evaluation of 18methoxycoronaridine congeners. Potential antiaddiction agents. 2003, 46 (13), 2716-2730. 45. Chen, D.; Berhane, I. A.; Chemler, S. R. J. O. 1., Copper-catalyzed enantioselective hydroalkoxylation of alkenols for the synthesis of cyclic ethers. 2020, 22 (19), 7409-7414. 46. Lin, S.; Song, C.-X.; Cai, G.-X.; Wang, W.-H.; Shi, Z.-J. J. J. o. t. A. C. S., Intra/intermolecular direct allylic alkylation via Pd (II)-catalyzed allylic $\mathrm{C}-\mathrm{H}$ activation. 2008, 130 (39), 12901-12903.
43. Jaabil, G.; Ranganathan, R.; Ponnuswamy, A.; Suresh, P.; Shanmugaiah, V.; Ravikumar, C.; Murugavel, S. J. C., A green and efficient synthesis of bioactive 1, 2, 3-triazolyl-pyridine/cyanopyridine hybrids via one-pot multicomponent grinding protocol. 2018, 3 (37), 10388-10393.
44. Wirschun, W.; Jochims, J. C. J. S., 1, 3-Diaza-2-azoniaallene Salts, Novel N3Building Blocks: Preparation and Cycloadditions to Olefins. 1997, 1997 (02), 233-241.
45. Wuts, P. G.; Greene, T. W., Greene's protective groups in organic synthesis. John Wiley \& Sons: 2006.
46. HINMAN, R. L. J. T. J. o. O. C., Hydrogenolysis of the Nitrogen-Nitrogen Bond of Acylhydrazines with Raney Nickel. 1957, 22 (2), 148-150.
47. Ainsworth, C. J. J. o. t. A. C. S., Hydrogenolysis of the Nitrogen-Nitrogen Bond with Raney Nickel. 1956, 78 (8), 1636-1637.
48. Bhardwaj, M., Formation of the Ether Bridge in the Loline Alkaloid Biosynthetic Pathway. 2017.
49. Kumar, R. K.; Ali, M. A.; Punniyamurthy, T. J. O. 1., Pd-Catalyzed C- H Activation/C- N Bond Formation: A New Route to 1-Aryl-1 H-benzotriazoles. 2011, 13 (8), 2102-2105.
50. VERNIN, G.; Chhan, S.; METZGER, J.; PÁRKÁNYI, C. J. S., Synthesis of 1, 3diaryltriazenes and their derivatives by aprotic decomposition of arylamines. 1977, 1977 (10), 691-693.
51. Singh, S.; Gajulapati, V.; Kim, M.; Goo, J.-I.; Lee, J. K.; Lee, K.; Lee, C.-K.; Jeong, L. S.; Choi, Y. J. S., A divergent approach for the synthesis of D-and L-4'-ethynyl dioxolane nucleosides with potent anti-HIV activity. 2016, 48 (18), 3050-3056.
52. Faulkner, J. R., Intermediate steps of loline alkaloid biosynthesis. University of Kentucky: 2011.
53. Kuldau, G.; Bacon, C., Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biological Control 2008, 46 (1), 57-71.
54. Pan, J.; Bhardwaj, M.; Zhang, B.; Chang, W.-c.; Schardl, C. L.; Krebs, C.; Grossman, R. B.; Bollinger, J., J Martin, Installation of the ether bridge of lolines by the iron-and 2-oxoglutarate-dependent oxygenase, LolO: regio-and stereochemistry of sequential hydroxylation and oxacyclization reactions. Biochemistry 2018.
55. Tufariello, J. J.; Meckler, H.; Winzenberg, K., Synthesis of the lolium alkaloids. The Journal of Organic Chemistry 1986, 51 (18), 3556-3557.
56. Blakemore, P. R.; Schulze, V. K.; White, J. D., Asymmetric synthesis of (+)-loline. Chemical Communications 2000, (14), 1263-1264.
57. Cakmak, M.; Mayer, P.; Trauner, D., An efficient synthesis of loline alkaloids. Nature Chemistry 2011, 3 (7), 543-545.
58. Ye, J.-L.; Liu, Y.; Yang, Z.-P.; Huang, P.-Q. J. C. C., The asymmetric total synthesis of (+)-N-acetyl norloline. 2016, 52 (3), 561-563.
59. Miller, K. E.; Wright, A. J.; Olesen, M. K.; Hovey, M. T.; Scheerer, J. R., Stereoselective synthesis of $(+)$-loline alkaloid skeleton. The Journal of organic chemistry 2015, 80 (3), 1569-1576.
60. Guindon, Y.; Delorme, D.; Lau, C. K.; Zamboni, R. J. T. J. o. O. C., Total synthesis of LTB4 and analogs. 1988, 53 (2), 267-275.
61. Lorente, A.; Gil, A.; Fernández, R.; Cuevas, C.; Albericio, F.; Álvarez, M., Phormidolides B and C, Cytotoxic Agents from the Sea: Enantioselective Synthesis of the Macrocyclic Core. Chemistry-A European Journal 2015, 21 (1), 150-156.
62. Cheung, C. W.; Buchwald, S. L. J. O. 1., Mild and general palladium-catalyzed synthesis of methyl aryl ethers enabled by the use of a palladacycle precatalyst. 2013, 15 (15), 3998-4001.

Vita

Setareh Saryazdi

EDUCATION

Ph.D. Candidate, Organic Chemistry
[Aug. 2015- expected July 2022]
University of Kentucky, Lexington, KY.
Advisor: Prof. Robert B. Grossman
Dissertation Title: 1,2-diamination of alkenes via reduction of 1,2,3-triazolinium ions
Master of Science, Organic Chemistry
[Sep. 2010-Sep. 2012]
Sharif University of Technology, Tehran, Iran.
Advisor: Prof. Firouz Matloubi Moghaddam
Thesis Title: Investigation of alcohols and thiols oxidation via DABCO-tribromide catalyst supported on silica and magnetic iron oxide nanoparticles.

Bachelor of Science, Chemistry
[Sep. 2004- Sep. 2008]
Islamic Azad University, Tehran, Iran.

RESEARCH EXPERIENCES

Research Assistant, Prof. Grossman's Organic Chemistry Laboratory, Department of Chemistry, University of Kentucky, Lexington, KY [May 2016-Present]

- Designed a new methodology for 1,2-diamination of alkenes via low-pressure reduction of 1,2,3-triazolinium ions. Synthesized triazolinium ions in two different ways:

1. Inter- and intramolecular 1,3-dipolar cycloaddition of alkene-azide to form 1,2,3triazolines and further N -alkylation of the triazolines.
2. Intermolecular 1,3-dipolar cycloaddition of alkenes with azidium ions (our neologism) to form triazolinium ions.

- Synthesized isotopically labeled intermediates to study oxacyclization catalyzed by LolO, the iron- and 2-oxoglutarate-dependent oxygenase, in biosynthesis of loline alkaloids.
- Purified LolO enzyme to study its mechanism in oxidative cyclization.

Research Assistant, Organic Synthesis and Natural Products Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
[Oct. 2010-Sep. 2012]

- Synthesized immobilized DABCO-tribromide on silica as a recoverable reagent in oxidation of alcohols to carbonyl compounds.
- Synthesized a magnetically recyclable manganese complex to selectively oxidize sulfurcontaining organic molecules, such as thiols and sulfides to disulfides.

PUBLICATIONS $(H-I N D E X=2)$

1. Bagherzadeh, M., Haghdoost, M. M., Matloubi Moghaddam, F., Koushki Foroushani, B., Saryazdi, S., Payab, E. Mn (III) Complex Supported on $\mathrm{Fe}_{3} \mathrm{O}_{4}$ Nanoparticles: Magnetically

Separable Nanocatalyst for Selective Oxidation of Thiols to Disulfides, Journal of Coordination Chemistry, 2013, 66, 3025-3026.
2. Matloubi Moghaddam, F., Masoud, N., Koushki Foroushani, B., Saryazdi, S., Ghonouei, N., Daemi, E. Silica Supported DABCO-tribromide: A Recoverable Reagent for Oxidation of Alcohols to Corresponding Carbonyl Compounds, Scientica Iranica, 2013, 20, 598-602.

PUBLICATIONS IN PREPARATION

1. Saryazdi, S., Parkin, S., Grossman, R. B. 1,2-Diamination of Alkenes via Reduction of 1,2,3Triazolinium Ions, Organic Letters.
2. Gukathasan, S., Saryazdi, S., Parkin, s., Grossman, R. B., Awuah, S. Gold(III) Bearing Diamine Complexes for Anticancer Activities, Inorganic Chemistry.

ORAL PRESENTATION

1. Saryazdi, S., Grossman, R. B. Use of 1D and 2D NMR to Monitor the Reaction Time and Assign the Stereochemistry, NMR Flash Talk Symposium, 2021, Lexington, KY.

POSTER PRESENTATIONS

1. Saryazdi, S., Grossman, R. B. Syn 1,2-Diamination of Alkenes via Reduction of 1,2,3Triazolinium Ions, ACS National Meeting \& Exposition, 2021, Atlanta, GA.
2. Saryazdi, S., Grossman R. B. Intramolecular Azide-Alkene Cycloaddition: A Novel Pathway towards Loline Alkaloid Synthesis, $45^{\text {th }}$ Annual Naff Symposium, 2019, University of Kentucky, Lexington, KY.
3. Pan, J., Bhardwaj, M., Saryazdi, S., Zhang, B., Chang, W.C., Schardle, C.L., Grossman, R. B., Krebs, C., JM Bollinger, J. M. Mechanistic Study of Oxacyclization Catalyzed by the $\mathrm{Fe}(\mathrm{II}) / 2-$ oxoglutarate (2OG) Dependent Oxygenase LolO in Loline Alkaloid Biosynthesis, Bioinorganic Workshop, 2018, Pennsylvania State University, State College, PA.
4. Patwardhan, M. A., French, A. N., Saryazdi, S., Riddle, A. Undergraduate Laboratory Assistants in Large Enrollment Organic Chemistry Laboratories, $25^{\text {th }}$ Biennial Conference on Chemical Education, 2018, University of Notre Dame, Notre Dame, IN.
5. Bagherzadeh, M., Haghdoost, M. M., Matloubi Moghaddam, F., Koushki Foroushani, B., Saryazdi, S. Immobilization of DABCO-tribromide on Magnetic Iron Oxide Nanoparticles, and its Application in Oxidation of Alcohols to Carbonyl Compounds, $4^{\text {th }}$ International Congress on Nanoscience and Nanotechnology, 2012, Kashan, Iran.
6. Matloubi Moghaddam, F., Koushki Foroushani, B., Saryazdi, S. Using 1-(1-buthyl sulfonic) -3-Methylimidazolium Nitrate and Phosphorouspentoxide as a Green Solvent for Oxidation of Benzylic Alcohols to the Corresponding Carbonyl Compound, $18^{\text {th }}$ Iranian Seminar of Organic Chemistry, 2012, Zahedan, Iran.

MEMBERSHIP

- American Chemical society (ACS)
- American Chemical Society Division of Organic Chemistry

TEACHING EXPERIENCES

Advanced Organic Chemistry Teaching Assistant, Department of Chemistry, University of Kentucky, Lexington, KY.
[Jan. 2022-May 2022]

- Taught a research-based capstone organic chemistry lab, for which TA's are chosen to serve essentially as research mentors.
Organic Chemistry Instructor, Organic Chemistry I, Department of Chemistry, University of Kentucky, Lexington, KY.
[May 2020-Aug. 2020]
- Independently taught an online sophomore undergrad O-Chem course
- Designed syllabus, created multimedia course materials, and administered online exams via Canvas.
Recitation Teaching Assistant, General Chemistry I, Department of Chemistry, University of Kentucky. Lexington, KY.
[Aug. 2019- Dec. 2019 \& Aug. 2021- Fall 2021]
- Taught recitation sessions for CHE 105, CHE 109, and CHE 110).
- Taught CHE110 in Fall 2019 as a required practicum course for the completion of the Graduate Certificate in College Teaching and Learning.
Organic Chemistry Super Teaching Assistant, Organic Chemistry Laboratory I and II, Department of Chemistry, University of Kentucky, Lexington, KY. [Aug. 2016-Dec. 2017]
- Helped the laboratory supervisor in CHE231 \& CHE233 to organize the course materials on Canvas, to create assignments and exams, and to assist the TAs with running the labs.
Organic Chemistry Teaching Assistant, Organic Chemistry Laboratory I and II, Department of Chemistry, University of Kentucky, Lexington, KY.
[Aug. 2015-May 2017]
- Taught CHE231 \& CHE233 laboratory courses

ChemCamp Instructor, University of Kentucky, Lexington KY. [Jul. 2019, Jul. 2021 \& June 2022]

HONORS \& AWARDS

- Research Challenge Trust Fund Fellowship, Department of Chemistry, University of Kentucky, Lexington, KY.
[May 2020-Aug. 2021 \& May 2018-Aug. 2019]
- 100% Plus Award, Department of Chemistry, University of Kentucky, Lexington, KY.
[May 2021]
- A\&S Outstanding Teaching Assistant Award, College of Art \& Sciences, University of Kentucky, Lexington, KY.
[May 2020]

LEADERSHIP

- Treasurer of Chemistry Graduate Student Association, University of Kentucky, Lexington, KY.
[Jul. 2019-Jul. 2020]

OUTREACH

- Volunteer, Kentucky Refugee Ministries, Lexington, KY.
[Nov. 2021]
- Scientific Judge, Central Kentucky Regional Science \& Engineering Fair (CKRSEF), Lexington, KY.
[Mar. 2018]
- Scientific Judge, Kentucky Junior Academy of Science (KJAS), Lexington, KY. [April 2019]

PERSONAL DEVELOPMENT

- Certificate of College Teaching and Learning, Graduate School, University of Kentucky, Lexington, KY.
[Feb. 2020]
- Certificate of Inclusive Pedagogies in Graduate Student Learning Community, University of Kentucky, Lexington, KY.
[Aug. 2018-May 2019]

SERVICES

- Technical NMR Assistant, University of Kentucky, Lexington KY. [Jan. 2021- May 2021]
- Microteaching Leader, University of Kentucky, Lexington, KY. [Aug. 2019 \& Jan. 2020 \& Aug. 2020]
- Graduate Student Recruitment Representative, University of Kentucky, Lexington, KY.
[Oct 2019]

