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ABSTRACT OF DISSERTATION 

The microbiome of the equine roundworm, Parascaris spp. 

 

Parasitic nematodes, including the large roundworms colloquially known as 
ascarids, affect the health and well-being of livestock animals worldwide. The equine 
ascarid, Parascaris spp., was the first ascarid parasite to develop wide-spread 
anthelmintic drug resistance, with other species slowly following suit. There are no new 
classes of anthelmintics currently in development, and a solution to the ever-increasing 
prevalence of resistance is desperately needed. The microbiome has been shown to be 
an important factor in the fitness and health of many organisms and changes to 
microbiome composition have been associated with a plethora of diseases. The 
microbiome is also important to the health of parasitic nematodes, and the endosymbiotic 
bacterium Wolbachia, whose presence is essential for the viability of filarial nematodes, 
has been exploited for treatment of filariasis in humans by using both broad-range and, 
more recently, specific anti-Wolbachial antimicrobial treatments. Despite this success, 
parasite microbiomes are understudied. The overarching goal of this dissertation was to 
characterize the microbiome of Parascaris spp. by identifying a common core microbiota, 
by comparing microbiota diversity metrics for the whole worm at different life stages and 
in individual organs in male and female parasites, and by assessing the female gonad 
microbiota in greater detail.  

Worms, along with jejunal content samples, were collected from foals at necropsy 
and used for both the whole worm study, which utilized a total of 27 parasites (9 male, 9 
female, 9 immature), and in the organ study, which utilized a total of 46 adult parasites (24 
male, 22 female). DNA extracted from these samples was used to produce a library using 
a 16S rRNA metagenomic sequencing protocol, and this library was sequenced using the 
Illumina MiSeq platform. A bioinformatics pipeline was developed to identify taxa and their 
relative abundance in the samples, and subsequent data analysis was carried out using 
R packages including Vegan, DESeq2, corncob, metagenomeSeq, and ANCOM.BC. The 
22 female gonad samples were further analyzed using next generation metagenomic 
sequencing following the same protocol as the other two studies, and then using a kit that 
targeted to multiple regions and that allowing consensus sequences to be assembled. 
Additionally, another female worm was also collected, immediately fixed, dissected, and 
submitted for sectioning and examination by transmission electron microscopy. 

A common core microbiota consisting of eleven genera was established for 
Parascaris spp. and consisted of: Acinetobacter, Allorhizobium-Neorhizobium-
Pararhizobium-Rhizobium (ANPR), Clostridium senso stricto 1, Gemella, 
Janthinobacterium, Lactobacillus, Reyranella, Sarcina, Sphingomonas, Streptococcus, 
and Veillonella. When comparing organs, Veillonella was differentially abundant when 
using DESeq2 and ANCOM-BC (p < 0.0001), corncob (p = 0.0008), and metagenomeSeq 
(p = 0.0118) and Sarcina was differentially abundant across all four analytical methods (p 
< 0.0001). 

Alpha and beta diversity for the whole worm microbiota was similar across groups 
for all three taxonomic levels. Alpha diversity for the organ microbiota was significantly 
different based upon both sex and location at all three taxonomic levels. Simpson alpha 
diversity was significantly different between the female intestine (FI) and male gonad (MG) 
at the phylum (p < 0.0001), family (p = 0.0058) and genus (p = 0.0018) levels, and 
between both the female gonad (FG) and FI (p < 0.0001) and the FI and male intestine 
(MI; p = 0.0072) at the phylum level. Shannon alpha diversity was significantly different 



     

 

between the FI and the FG (p < 0.0001), the horse jejunum (HJ; p = 0.0483), the MG (p 
< 0.0001) and the MI (p = 0.0007) at the phylum level, between the FI and MG (p = 0.0003) 
at the family level and between the FG and MG (p = 0.0130), the FI and HJ (p = 0.0383) 
and the FI and MG (p = 0.0001) at the genus level. Beta diversity was significantly different 
between FI and FG (p = 0.0377) at the phylum level, MG and FG (p = 0.0010), FI (p = 
0.0174), and HJ (p = 0430), and FG and MI (p = 0.0061) at the family level, and MG and 
FG (p = 0.0006), MI and FG (p = 0.0093), and MG and FI (p = 0.0041) at the genus level. 

Twelve species were identified in the female gonad, and phylogenetic trees were 
created for the genera Aminobacter, Reyranella, Limosilactobacillus and Ligilactobacillus. 
Cladograms indicated that consensus sequences from members of these genera were 
related to species found in soil and water, and to those that had previously been found in 
horses, and thus the presence of related bacteria in parasites makes biological sense. 
Finally, morphological structures identified as candidate bacteria were found in the cells 
of Parascaris spp. female gonad sections, indicating that there are also possibly 
endosymbionts associated with these parasites.  

In summary, the overarching goal of this research was met. A common core 
microbiota was established for Parascaris spp., diversity metrics were compared for 
different life stages and organs, and the female gonad was explored in more detail. This 
research lays the groundwork for future studies involving the Parascaris spp. microbiome 
and provides more data to the effort to understand parasite microbiomes.  
 
 

KEYWORDS: Microbiome, Parascaris, equine parasite control, transmission electron 
microscopy, nematode 
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CHAPTER 1.  INTRODUCTION 

Equids have been an important partner to humans for over 32,000 years (Valladas et 

al., 2001) as food sources, a means of transportation, agricultural tools, weapons of 

warfare and, more recently, as sporting partners and companions. There is an estimated 

horse population of 58 million globally (Gilbert et al., 2018), with over 7.2 million of those 

residing in the United States, where they have an economic impact of $122 billion 

(American Horse Council Foundation, 2018). The health and welfare of such impactful 

animals is paramount and involves many facets, one of which is parasite control. There 

are four major groups of parasitic nematodes affecting horses globally: cyathostomins, 

large strongyles, ascarids, and anoplocephalids. These parasites can cause a range of 

clinical symptoms including diarrhea, weight loss, various types of colic, and in rare cases, 

death (Love, 1992; Cribb et al., 2006; Getachew et al., 2008; Trotz-Williams et al., 2008; 

Getachew et al., 2010; Ghelen et al., 2020).  

Anthelmintic treatments were first developed at the turn of the 20th century to treat 

human hookworms and involved a variety of options ranging from Epsom salts to dyes 

and other synthetic compounds, many of which caused devastating side effects such as 

blindness, diarrhea, organ damage, and even death (Faust, 1937; Horton, 2003). The 

major nematocidal anthelmintic classes currently used in horses are benzimidazoles, 

introduced in 1961 (Brown et al., 1961), tetrahydropyrimidines, introduced in 1966 (Austin 

et al., 1966), and macrocyclic lactones, introduced in 1980 (Campbell et al., 1983). 

Anthelmintic resistance quickly developed in parasites affecting agricultural animals; 

in some cases, within only three years of a drug first entering the market (Drudge et al., 

1964; Kotze & Prichard, 2016). Equine cyathostomins and ascarids both exhibit 

widespread resistance to at least one available drug class, and resistance is emerging to 

all three. Cyathostomin resistance to phenothiazine was first reported in 1960 (Gibson, 

1960), benzimidazoles in 1965 (Drudge & Lyons, 1965), tetrahydropyrimidines in 1996 

(Chapman et al., 1996), and macrocyclic lactones in 2008 (Molento et al., 2008). Equine 

ascarid resistance to macrocyclic lactones was first reported in 2002 (Boersema et al., 

2002), tetrahydropyrimidines in 2007 (Craig et al., 2007), and benzimidazoles in 2014 

(Armstrong et al., 2014). Clearly, anthelmintic resistance in equine parasites is a serious 

issue, but despite its ever-increasing prevalence, no new anthelmintic drugs have been 

introduced since 1992 and no new drug classes since 1981. There are no drugs currently 

being developed for commercial use.  
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Drug development can take decades, and it is therefore imperative to search for new 

treatment options now, when at least some of the currently available options still have 

some efficacy. The microbiome has become a focus within human medicine over the past 

decade and has now been characterized for various body sites within humans, as well as 

in some animals, plants, and the environment. The microbiome is associated with various 

health outcomes in humans (Zheng et al., 2016; Ni et al., 2017; Helmink et al., 2019) and 

animals (Kennedy et al., 2016; Lima et al., 2016). As a result, there has been a push 

towards investigating microbiome manipulation for environmental, health, and agricultural 

purposes (Correa-García et al., 2018; Clemmons et al., 2019; Rosado et al., 2019; Song 

et al., 2019; Deng et al., 2021; Peixoto et al., 2021; Santoro et al., 2021). The 

endosymbiont Wolbachia, found in filarial nematodes, is perhaps the most relevant with 

respect to the potential of the microbiome as an anthelmintic drug target in parasites. 

These bacteria play an important role in parasite survival and reproduction (Hoerauf et al., 

2000; Casiraghi et al., 2002; Hoerauf et al., 2003; Arumugam et al., 2008; Mand et al., 

2009; Landmann et al., 2011 Foray et al., 2018), an observation that led to the 

development of anti-Wolbachia drugs that target the bacteria and thereby kill their parasitic 

host. This important case highlights the potential importance of the parasite microbiome 

and the role that it might play for the development of future anthelmintic treatments. 

 This dissertation focuses on the equine ascarid, Parascaris spp., and on 

characterizing its microbiome. This type of foundational research could, by seeking to 

understand the basic biology of the organism, provide the necessary background 

information for the development of parasite control options in the future. First, background 

literature on Parascaris spp. will be reviewed in order to highlight the lack of 

understanding, not only of basic biology of this parasite, but also its anthelmintic 

resistance. Next, helminth microbiomes and the generation and analysis of microbiome 

data will be discussed in order to set the scene for the research projects presented herein. 

Finally, research projects characterizing the Parascaris spp. microbiome, and the 

implications of their results, will be described.  

 

1.1 Aims and Hypotheses 

The objective of this research was to characterize the microbiome of Parascaris 

spp. in order to increase the knowledge base of parasite microbiomes. Such knowledge 

could provide a first step towards understanding the microbial community that may play 

an important role in parasite health and so could be a potential target for the development 
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of novel anthelmintic treatments. In order to achieve this objective, the following specific 

aims (SA) and hypotheses (H) were addressed: 

 

SA 1: Determine the common core microbiome associated with Parascaris spp. at 

different life stages and between sexes. 

H 1.1: There are bacteria taxa within the Parascaris spp. microbiome that are 

present in all groups within the study population. 

 

SA 2: Compare microbiome diversity metrics for the whole worm at different life stages 

and between adult individual organs and sexes. 

H 2.2: Alpha diversity is higher in the equine jejunum contents than within the 

parasites. 

H 2.2: Beta diversity dissimilarity is high between Parascaris spp. life stages. 

H 2.3: Alpha diversity is higher in the intestine than the gonad in both male and 

female parasites. 

H 2.4: Beta diversity dissimilarity is high between Parascaris spp. gonads and 

intestines. 

 

SA 3: Determine differentially abundant bacterial genera between groups for the whole 

worm at different life stages and between individual organs in members of both sexes. 

H 3.1: There are bacterial genera that are differentially abundant in the whole worm 

microbiomes between groups. 

H 3.2: There are bacterial genera that are differentially abundant in the organ 

microbiomes between groups. 

 

SA 4: Assess the female Parascaris spp. gonad microbiome with higher resolution by 

identifying bacterial species present with this organ and determining whether their 

presence makes biological sense. 

H 4.1: Bacterial species found in the Parascaris spp. female gonad will make 

biological sense based upon parasite and host life cycles and feeding habits and 

upon previous microbiome studies.  

 

SA 5: Visualize bacteria within cells of the Parascaris spp. female gonad using 

transmission electron microscopy (TEM). 
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H 5.1: Endosymbiotic bacteria are located within the cells of the Parascaris spp. 

female gonad. 

 

 



 
 

CHAPTER 2. THE EQUINE ASCARID: PARASCARIS SPP. 

2.1 Ascarid Parasites 

2.1.1 A brief history 

Helminth parasites have been known to humans for millennia. The Egyptian Ebers 

Papyrus, circa 1550 BCE, refers to intestinal worms; the Greeks wrote about helminths 

infecting other species; and the Romans clearly described Ascaris parasites, including 

symptoms of clinical disease (Cox, 2002). Carl Linnaeus described and named six 

helminths in 1758, including A. lumbricoides, which ultimately led to an increasing number 

of helminths being described and formally named (Cox, 2002). 

Equine ascarids in particular have an important place in the history of scientific 

discovery. German zoologist Johann August Ephraim Goeze was the first to name Ascaris 

equorum in 1782. Several decades later in 1824, Hippolyte Cloquet coined the name 

Ascaris megalocephala, which was commonly used for the equine ascarid throughout the 

late 1800s and early 1900s. The genus name Parascaris was introduced in 1926, leading 

to the modern name Parascaris equorum (Yorke & Maplestone, 1926). Belgian 

embryologist Édouard van Beneden used Ascaris megalocephala as a model species and 

showed that fertilization consisted of the union of haploid gametes to form a diploid zygote 

with a full set of chromosomes, and that chromosome number is consistent for every cell 

within a species (van Beneden, 1883; Hamoir, 1992). Over the course of the following five 

years, at least twenty-seven papers – four by van Beneden – were published featuring 

the use of A. megalocephala for studying phenomena such as cell division, chromosome 

organization, and chromatin diminution (Boveri, 1887; Boveri, 1888).  

 

2.1.2 Notable species 

Ascarid parasites belong to the order Ascaridida and infect a wide range of hosts, 

causing clinical disease. Many species are also zoonotic, infection with which has serious 

consequences to human health. Important members of this order include: ascarids of 

poultry, Ascaridia galli and Heterakis gallinarum; fish, Anisakis sp.; canids, Toxocara 

canis; felids, Toxocara cati; felids and canids, Toxascaris leonina; cattle, Toxocara 

vitulorum; mustelids and bears, Baylisascaris spp.; pigs, Ascaris suum; and humans, 

Ascaris lumbricoides. Many of these parasites can cause severe clinical disease including 

high mortality in cattle (Borgsteede et al., 1992; Gundran & More, 1999; Chelladurai et 
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al., 2015), loss of appetite and weight, anorexia, depression, and increased mortality in 

chickens (Kaufmann et al., 2011; Thapa et al., 2015; Sharma et al., 2019), and 

pneumonitis, dyspnea, and coughing in pigs (Yoshihara et al., 1983; Curtis et al., 1987; 

Stewart & Hale, 1988; Holland, 2013; Mateus et al., 2015). All of these pathologies can 

lead to millions of dollars in agricultural economic losses. An estimated 807 million to 1.2 

billion humans globally are infected with A. lumbricoides, many of them children in 

impoverished countries, causing retardation of physical and mental growth, pneumonia, 

asthma, abdominal distension, intestinal obstruction, pancreatitis, and death (Bethony et 

al., 2006). Zoonotic infections can also lead to a condition known as visceral larva 

migrans, where the parasite larvae migrate through the intestinal wall but are unable to 

complete their life cycle. Cases have been reported in Toxocara cati (Eberhard & Alfano, 

1998; Zibaei et al., 2014), Toxocara canis (Hill et al., 1985; Xinou et al., 2003; Gakosso 

et al., 2020), Ascaris suum (Volk & Tormey, 2017; Avery et al., 2018), Baylisascaris 

(Saffra et al., 2010; Kelly et al., 2012), and Anisakis (Kojima et al., 2013; Sohn et al., 

2015), resulting in various clinical manifestations including coughing, rash, myalgia, liver 

lesions, myocarditis, visual impairment, neurological symptoms, and, in rare cases, death. 

 

2.1.3 Introduction to Parascaris 

The equine ascarids, Parascaris spp., are considered the most pathogenic 

parasites infecting juvenile horses globally and can cause coughing, nasal discharge, 

lethargy, poor appetite, diarrhea and colic (Reinemeyer, 2009; Nielsen, 2016). Fibrotic 

liver lesions (Brown & Clayton, 1979), lung lesions, hyperpnea, bronchiolitis, and lobular 

pneumonia (Clayton & Duncan, 1978; Nicholls et al., 1978) have been reported in 

experimentally infected foals. Poor body condition has been associated with Parascaris 

spp. infection in working equids (Getachew et al., 2008; Getachew et al., 2010), however 

infected foals raised under parasite management programs have not exhibited these 

signs in recent studies (Bellaw et al., 2016; Nielsen et al., 2021). Small intestine impaction 

is one of the largest concerns with this parasite, which often requires hospitalization and 

surgery, and can ultimately lead to death (Southwood et al., 1996; Cribb et al., 2006; Tatz 

et al., 2012; Nielsen, 2016). In 37 published cases where surgical intervention was 

necessary for impaction colic due to Parascaris spp., 31 horses survived until discharge, 

but only 11 survived more than one year (Nielsen, 2016). While the cause of death was 

not confirmed in these cases, long-term complications resulting from surgery may have 

contributed to mortality (Santschi et al., 2000; van Loon et al., 2020). Losing young horses 
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results in a direct financial loss from veterinary care and breeding fees, future losses in 

sales prices, which can be tens of thousands to millions of dollars, competitive winnings, 

and stud fees, as well as an emotional loss for the owners and caretakers associated with 

that horse. 

 

2.2 Basic Biology 

Two variants of Parascaris were described in the late 1800s and distinguished from 

one another by counting the number of metaphase chromosomes present in eggs prior to 

the first cellular division, a process known as karyotyping (van Beneden, 1883; Carnoy, 

1886; Boveri, 1887; Carnoy, 1887). The karyotype of Ascaris megalocephala univalens 

was initially described in cytogenetic studies by van Beneden (van Beneden, 1883), and 

of A. meg. bivalens by Jean Baptiste Carnoy (Carnoy, 1886; Carnoy, 1887), but it was not 

until a few years later that Oskar Hertwig recognized them as different species (Hertwig, 

1890). These species received their current names in 1978: Parascaris univalens, which 

has one chromosome pair, and P. equorum, which has two pairs of chromosomes (Bullini 

et al., 1978; Goday & Pimpinelli, 1986). Hybrids between these two species have been 

described (Bullini et al., 1978; Goday & Pimpinelli, 1986), although they are sterile (Goday 

& Pimpinelli, 1986). Another species with three pairs of chromosomes, P. trivalens, was 

described in the 1930s (Li, 1937; Tchou, 1937), but has not been described in the 

literature since. 

The Parascaris species can be distinguished morphologically only by a slight 

difference in their spiculae, with P. univalens having a distally truncated spicula and P. 

equorum having a distally rounded spicula (Biocca et al., 1978). There are two additional 

methods that have been used in the past to distinguish the two species of Parascaris from 

one another. The first is via karyotyping primordial germ cells prior to the first cell division, 

which is an arduous process that requires collecting either parasites with germ cells in the 

proper stage (Goday & Pimpinelli, 1986) or eggs from feces at the first mitotic division 

(Nielsen et al., 2014; Martin et al., 2018), and the second utilizes electrophoresis of 

twenty-seven enzyme loci, although this method has only been employed for a single 

study (Bullini et al., 1978). Karyotyping is a challenging process because it requires either 

live parasites or viable eggs that have yet to start developing, and due to this it is rarely 

performed for parasitological studies utilizing equine ascarids. 

In the nearly 100 years between Hertwig first naming the two species and their 

modern name assignment in 1978, P. univalens and P. equorum were not recognized as 
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separate species and were instead regarded as different variants of P. equorum (Lin, 

1954), which may explain why P. equorum was thought to be the only Parascaris species. 

This ultimately led to P. equorum being the only species mentioned in veterinary textbooks 

and research for decades, with the only recognition of the existence of two species 

occurring in texts on cell biology and cytogenetics, highlighting a lack of communication 

between disciplines. The last positive identification of P. equorum via karyotyping was in 

1986 (Pimpinelli & Goday, 1986), despite contemporary recognition of two species and 

an increased effort to karyotype specimens. 

 

2.2.1 Phylogenetics 

The phylum Nematoda consists of over 22,000 named species separated into five 

distinct clades (Blaxter et al., 1998; Blaxter & Koutsovoulos, 2015). The ascarid parasites 

fall under Clade III, which also includes pinworms, filarial nematodes, and parasites of 

millipedes (Blaxter et al., 1998). Within the Ascaridoidea superfamily, Parascaris spp. 

belongs to the monophyletic clade of Ascarididae along with Baylisascaris spp., 

Toxoascaris leonina, and Ascaris spp. (Nadler, 1987; Nadler & Hudspeth, 2000; Liu et al., 

2016; Li et al., 2018). Parasitism in the Ascaridoidea include prehistoric host-type 

switches correlated with global changes in sea level (Li et al., 2018), and tissue parasitism 

within Clade III evolved separately at least three different times (Nadler et al., 2007). 

Understanding these evolutionary relationships within Clade III and the Ascarididae 

superfamily provides important context when comparing these parasites to other groups 

within the Nematoda. 

Some other well-known and heavily studied species such as the model organism 

Caenorhabditis elegans, a free-living nematode, and Haemonchus contortus, the most 

pathogenic and economically significant nematode parasite of small ruminants and model 

organism for parasitic nematodes, fall under Clade V (Blaxter et al., 1998). Anthelmintic 

resistance is rampant in H. contortus and it has therefore been heavily studied (Kotze et 

al., 2014; Kotze & Prichard, 2016), along with substantial research on the same topic in 

C. elegans (Geary & Thompson, 2001; Kotze et al., 2014). This means that much of the 

research conducted regarding anthelmintic resistance that will be described in 

subsequent sections has been broadly applied to ascarids despite the work having been 

conducted in organisms belonging to a completely different clade. The evolutionary 

distance between Parascaris spp., C. elegans, and H. contortus, combined with distinct 
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differences in life cycle and parasitism, suggest that making direct comparisons and 

broadly applying information from one clade to another should be done with caution. 

 

2.2.2 Life cycle 

Parascaris spp. are robust, cream-colored nematode parasites with a direct life 

cycle whose adult stages occur primarily within the small intestine of equids. Females are 

typically 10 – 20 cm in length with a diameter of 5 mm, whereas their smaller male 

counterparts are 10 – 15 cm in length with a 3 mm diameter (Wells, 1924; Clayton & 

Duncan, 1979a). Males can be distinguished from females of a similar size by a curl at 

the posterior end and a lack of visible ovaries through the cuticle (Wells, 1924).  

Adult Parascaris spp. reproduce sexually in the small intestine via genital pores, 

and females lay their 90 – 100 μm eggs in small intestinal content, from whence they are 

excreted into the environment (Wells, 1924). On pasture, the fertilized parasite eggs 

embryonate and larvae develop within the egg; it is this egg containing a second/third 

stage larva that is infective (Wells, 1924; Clayton & Duncan, 1979a). Once ingested by a 

foal, the eggs hatch in the small intestine and the larvae penetrate the intestinal wall, 

where they subsequently migrate to the liver within a week of initial infection (Clayton & 

Duncan, 1979a). Within two weeks after initial infection, the larvae enter the lungs via the 

pulmonary circulation, where they emerge from arterioles and capillaries. The larvae are 

coughed up and then swallowed by the foal, making their way back to the small intestine 

two to three weeks after initial infection (Clayton & Duncan, 1979a). At this stage, 

Parascaris spp. larvae are approximately 2 – 4 mm in length and over the next 4.5 months 

will grow 70 – 80x in size as they feed on intestinal content and mature to adults (Clayton 

& Duncan, 1979a). While the general life cycle of Parascaris spp. has been described, 

the biological reason for larval migration is poorly understood. It has been suggested that 

tissue migration may be linked to increased body size and faster growth (Read & 

Skorping, 1995) and may also play a role in immune system evasion (Mulcahy et al., 

2005; Deslyper et al., 2016; Deslyper et al., 2019). This, however, has not been directly 

studied in Parascaris spp., and no biological signals that may be required for parasite 

maturation have been identified. Identifying such signals would provide valuable insight 

into parasite biology, possible control mechanisms, and conditions necessary to enable 

in vitro culture from egg to adult. 
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2.2.3 In vitro culturing 

Helminth parasites can be difficult to maintain and grow in vitro because of their 

sometimes-complicated life cycle that is reliant on the correct host. This makes research 

problematic, particularly in the case of species whose hosts are either considered 

unethical to use as research subjects, such as humans, or too difficult to maintain as a 

research population, whether because of size, expense, or husbandry requirements. In 

the case of Parascaris spp., equine research herds are expensive to maintain and require 

a large amount of land. Furthermore, obtaining adult parasites necessitates euthanasia 

of healthy foals that require eleven months gestation and another approximate five 

months before adult parasites can be harvested. There is only one research herd known 

globally that is regularly used for this purpose (Lyons et al., 1990), and so many 

specimens are obtained elsewhere from sources such as abattoirs (Janssen et al., 2013; 

Martin et al., 2020b; Martin et al., 2021a; Trailovic et al., 2021) or collected 

opportunistically at diagnostic necropsies (Burk et al., 2014; Burk et al., 2016; 

Rakhshandehroo et al., 2016; Malekpour et al., 2019). Adult Parascaris spp. can be 

maintained in vitro for up to a week (Janssen et al., 2013; Scare et al., 2019; Martin et al., 

2021a) but exhibit transcriptional stress responses to culture conditions within the first 24 

hours compared to non-cultured worms, which has been demonstrated by alterations in 

gene expression patterns (Martin et al., 2020b). Adult Parascaris in general do not 

maintain their fitness well in culture, as evidenced by their short survival time and stress 

responses, compared to their Ascaris suum counterparts, which can be kept alive in vitro 

for at least two weeks (Islam et al., 2004). Despite these challenges, a Parascaris spp. 

fitness scoring system has been developed (Scare et al., 2019), and meaningful gene 

expression data have been obtained from current in vitro systems (Janssen et al., 2013; 

Scare et al., 2020; Martin et al., 2021a).  

L2/L3 larvae can be hatched from eggs (Burk et al., 2014; Rakhshandehroo et al., 

2017; Martin et al., 2021a), which does not require sacrificing a horse, although they 

cannot be grown into L4 and L5 larvae or adults. The longevity of these larvae in culture 

has not been reported, but they have been kept alive for at least 48 hours (Martin et al., 

2021a) and have been used in drug exposure (Rakhshandehroo et al., 2017; Martin et 

al., 2021a) and immunology (Burk et al., 2014; Burk et al., 2016) studies. Differences in 

gene expression of transport proteins between adults and larvae hatched from eggs in 

vitro (Martin et al., 2021a) must be considered when interpreting data and comparing 

results between life stages, but the larval culturing system is a promising path forward in 
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Parascaris spp. research because it allows research to take place without sacrificing 

young horses.  

 

2.2.4 Genetics 

Genetic studies opened the door to the contemporary recognition of two distinct 

Parascaris species, although their earlier classification as variants named Parascaris 

equorum and Parascaris equorum univalens led to the majority of specimens in veterinary 

parasitology research being referred to as Parascaris equorum. In fact, one study utilizing 

electrophoresis of enzyme loci demonstrated that the opposite may be true, with 93.5% 

of 2238 specimens collected in an abattoir being identified as P. univalens (Bullini et al., 

1978). This study, however, was published in Italian, and appears to have gone unnoticed 

for several decades. A more recent population genetics study compared equine ascarid 

specimens from Sweden, Norway, Germany, Iceland, Brazil, and the United States and 

found that all of the parasites were genetically homogenous (Tydén et al., 2013b). One of 

the study populations was later karyotyped and found to consist only of P. univalens 

(Nielsen et al., 2014). Additional populations in the United States (Nielsen et al., 2014), 

Sweden (Martin et al., 2018), Iceland (Martin et al., 2021c), and China (Han et al., 2022)  

were karyotyped and identified as P. univalens. Taken together, these studies suggest 

that the main species present in domestic horses globally is P. univalens and not P. 

equorum. 

A phylogenetic analysis of Parascaris spp. parasites from the mountain zebra 

(Equus zebra), domestic horse, and wild ass (Equus asinus) using the mitochondrial 

genes cox1 and nadh1, demonstrated that the worms from E. asinus formed a distinct 

clade compared to specimens collected from the other two Equus species (Peng et al., 

2019). A recent whole-genome study of specimens from horses, donkeys (Equus 

africanus asinus), and zebras also indicated distinct clades for P. univalens specimens 

found within horses and those found in zebras and donkeys (Han et al. 2022). Another 

recent study completed a phylogenetic analysis for a select group of nuclear and 

mitochondrial genes across almost all Parascaris spp. deoxyribonucleic acid (DNA) 

sequences from GenBank along with data from karyotyped specimens confirmed to be P. 

univalens, and found a small group of sequences, all from parasites collected from 

donkeys on a single farm in China, that formed a cluster (von Samson-Himmelstjerna et 

al., 2021a). Due to the genetic distance between P. univalens specimens from North 

America and Europe, the specimens in this cluster may represent another genotype or 
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species of Parascaris (von Samson-Himmelstjerna et al., 2021a). This cluster could 

represent P. equorum, or even another species such as P. trivalens, which has only been 

described in a couple of studies of parasites from Chinese horses (Li, 1937; Tchou, 1937). 

The first Parascaris spp. draft genome was published in 2017 for P. univalens 

followed by a draft genome for P. equorum in 2019, and both indicated the presence of 

over 14,000 coding genes in the parasites (Wang et al. 2017; International Helminth 

Genomes Consortium, 2019). When considering these genomes, however, the 

Parascaris species conundrum must be taken into consideration. The specimen reported 

to be P. equorum and included in the 50 Helminth Genomes Project was collected at 

necropsy from an abattoir and there is no indication that karyotyping was performed to 

positively identify the species (International Helminth Genomes Consortium, 2019). The 

previously described phylogenetic study using Parascaris sequences from GenBank 

along with karyotyped specimens indicated that nearly every sequence for the internal 

transcribed spacer (ITS) -1 and -2 and for cytochrome oxidase I labeled as P. equorum 

clustered with confirmed P. univalens specimens, indicating that they are likely all from P. 

univalens (von Samson-Himmelstjerna et al., 2021a). This information combined with the 

lack of karyotyping, previous research suggesting that P. univalens is the predominant 

species in domestic horses, and the fact that P. equorum has not been identified via 

karyotyping since 1986 (Pimpinelli & Goday, 1986), suggest that the specimen in 

WormBase ParaSite, along with many other data deposits in GenBank labelled as P. 

equorum, may well be P. univalens (Nielsen et al., 2014; International Helminth Genomes 

Consortium, 2019; von Samson-Himmelstjerna et al., 2021a). Currently, there are no 

GenBank deposits verified as P. equorum via karyotyping. 

Incorrectly identified information in public repositories is detrimental to the field and 

can lead to misinterpretation of results. For example, one study comparing Parascaris 

mitochondrial genomes utilized fresh specimens that were not karyotyped but assumed 

to be P. equorum (Gao et al., 2019). These specimens were then compared to GenBank 

deposits of mitochondrial genomes from two karyotyped P. univalens isolates, and one 

non-karyotyped isolate assumed to be P. equorum. The subsequent phylogenetic 

analysis clustered these four specimens into a single clade, and the authors concluded 

that P. equorum and P. univalens may represent the same species (Gao et al. 2019). 

This, however, is inaccurate given that no attempt was made to identify the collected 

specimen to species. Instead, the clustering with the two identified specimens strongly 

suggests that the collected specimen was P. univalens. Correctly identifying species is 
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important not only for ensuring accurate results when performing future genome-wide 

research studies in a variety of disciplines, including the study of anthelmintic resistance, 

but also when developing molecular techniques, such as PCR, to identify Parascaris 

specimens to species (Doyle & Cotton, 2019; von Samson-Himmelstjerna et al., 2021a).  

 

2.2.5 Chromatin diminution 

After the first cell division, Parascaris spp. presomatic cells go through a process 

called chromatin diminution where chromosomes are fragmented and approximately 85% 

of the germline genome is eliminated, resulting in the creation of about 35 smaller 

chromosomes (Boveri, 1887; Goday & Pimpinelli, 1986; Muller & Tobler 2000; 

Niedermaier & Moritz 2000). The initial discovery of chromatin diminution was made with 

Parascaris spp. in 1887 and was later found to occur in other nematodes including Ascaris 

suum, A. lumbricoides, and Toxocara spp., as well as in copepods, ciliates, hagfish, 

lamprey, and rat fish (Boveri, 1887; Wang & Davis, 2014). The P. univalens germline 

genome has an estimated 2500 megabases (Mb), whereas the somatic genome has an 

estimated 250 Mb, indicating a large loss of genetic information in an organism with only 

a single chromosome (Wang et al., 2017). Comparisons between Parascaris spp. and 

Ascaris spp. indicate that the mechanism for chromatin diminution is evolutionarily 

conserved between the two species and so was likely present in a common ancestor 

(Bachmann-Waldmann et al., 2004). Comparative analysis of Parascaris, Ascaris, and 

Toxocara genomes has shown that somewhere between 1000 and 2000 genes are 

eliminated in chromatin diminution, with 35% of those being expressed during 

spermatogenesis; it has therefore been hypothesized that diminution facilitates rapid 

adaptation and evolutionary change in the testes without causing deleterious effects in 

adult worms because those genes are silenced and eliminated (Bachmann-Waldmann et 

al., 2004; Wang et al., 2017; Wang, 2021). 

Ultimately, the process of chromatic diminution, despite its resultant large loss of 

genetic information, must be evolutionarily advantageous for Parascaris spp. It is possible 

that chromatin diminution helps prevent events such as population bottlenecking due to 

the ability of the parasites to undergo rapid evolutionary changes in the germ line and 

may even have played a role in the evolution of parasitism (Bachmann-Waldmann et al., 

2004). Evidence from cytogenetic studies suggests that there are differences in 

chromosome and heterochromatin organization between the two Parascaris species 

(Goday & Pimpinelli, 1984; Goday et al., 1985; Goday & Pimpinelli, 1986). It remains to 
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be seen how this process differs molecularly and on a whole-genome level between the 

two species, particularly since the last karyotyped P. equorum specimen was identified in 

1986, two years before the method for PCR identification was first published and six years 

before the first ever whole genome sequence was completed (Pimpinelli & Goday, 1986; 

Mullis & Faloona, 1987; Fleischmann et al., 1995). If P. equorum was out-competed by 

P. univalens due to a fitness disadvantage as anthelmintic use became more prevalent, 

understanding chromatin diminution and comparing the two species in this respect could 

be an important key to understanding anthelmintic resistance development in ascarid 

parasites (von Samson-Himmelstjerna et al., 2021a). 

 

2.2.6 Immunology 

With a few exceptions, such as adult horses in tropical regions and donkeys 

(Vercruysse et al., 1986; Getachew et al. 2008; Getachew et al. 2010; Lem et al. 2012), 

Parascaris spp. are generally found in juvenile horses up until the age of six to eight 

months when an age-dependent immunity develops (Clayton & Duncan, 1979b; Fabiani 

et al., 2016). Fecal egg shedding and worm counts in juvenile horses occur in an age-

dependent manner, and in older foals, fewer larvae reach the small intestine, and so 

patent infections are less likely to develop, and fecal egg counts are lower (Clayton & 

Duncan, 1979b; Donoghue et al., 2015; Fabiani et al., 2016). In a study where eight worm-

free foals and two yearlings were experimentally infected with Parascaris spp., yearlings 

had a more severe respiratory response but maintained their body condition, whereas 

foals had a mild respiratory response and lost body condition, suggesting an age-

dependent immune response despite the small sample size (Clayton & Duncan, 1978). 

Increased titers of antibodies to whole-worm antigens have been shown to correlate with 

foal age and subsequent reduction in parasite prevalence (Bello, 1985), and immune 

responses to migrating larvae in the lungs (Nicholls et al., 1978) and liver (Brown & 

Clayton, 1979) have also been described. There are no studies showing direct parasite 

death or fitness loss as a result of equine immune responses, and molecular evidence of 

an immune response has yet to be demonstrated in horses despite evidence of an age-

dependent response. Understanding the equine immune response to Parascaris spp. at 

an in-depth molecular level would provide invaluable information regarding host-parasite 

dynamics and open the door for possible vaccine development. 

Helminth excretory-secretory products, including microRNAs (Sotillo et al., 2020) 

and extracellular vesicles (Zakeri et al., 2021) are thought to play a role in immune evasion 
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by eliciting host immune responses, and consequently may allow for development of 

vaccines and/or diagnostic tests (Lightowlers & Rickard, 1988). In Ascaris suum, 

extracellular vesicles contain immunomodulatory proteins (Hansen et al., 2019) and 

microRNAs may be important for parasite development (Xu et al., 2013). A recent in vitro 

analysis of larval Parascaris spp. excretory-secretory products identified 19 kDa, 22 kDa, 

26 kDa, and 34 kDa products that were recognized by antibodies from sera of previously 

infected foals (Burk et al., 2014). Mares were also shown to have antibodies against these 

products and passed them to foals via colostrum during the first suckling (Burk et al., 

2016). These antibodies are not useful for diagnosis because the foals acquire them 

shortly after birth, and their targets are likely are not useful for vaccination because, 

despite their presence, foals still become infected with Parascaris spp. There have been 

no studies to date examining Parascaris spp. extracellular vesicles or microRNAs, and 

ultimately, more research is necessary to determine the nature of equine immunity against 

Parascaris spp. 

 

2.3 Anthelmintic Resistance 

In the early 20th Century, John D. Rockefeller committed over US $1 million to 

hookworm control and research, and Epsom salts, thymol, carbon tetrachloride, oil of 

chenopodium, tetrachlorethylene, and hexylresorcinol were all either used or investigated 

for use as anthelmintics (Horton, 2003). Continuing into the 20th Century, various dyes and 

synthetic compounds were used to treat helminth infections, but many were ineffective, 

difficult to use, and/or toxic, causing a plethora of issues such as deafness, blindness, skin 

irritation, diarrhea, vomiting, organ damage, and death (Faust, 1937; Horton, 2003).  

Presently, anthelmintic resistance is rampant in veterinary parasitology (Rose et 

al., 2005; Fleming et al., 2006; Sutherland & Leathwick, 2011; Kaplan & Vidyashankar, 

2012), and understanding how it developed is important in order to slow down its 

progression and preserve the efficacy of current, and any future, anthelmintics for as long 

as possible. 

 

2.3.1 Anthelmintic treatments 

There are three available anthelmintic drug classes for the treatment of Parascaris 

spp. infection in horses: macrocyclic lactones, benzimidazoles, and tetrahydropyrimidines. 

Traditionally, foals were treated within their first thirty days of life, and then at either 
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monthly or bimonthly intervals until their first birthday (Drudge & Lyons, 1966; Ellingson & 

Coates-Markle, 1996; Robert et al., 2015; Nielsen et al., 2018). Early reports questioning 

the efficacy of ivermectin against Parascaris spp. (Anderson, 1984; Jones, 1985) emerged 

in the mid-1980s shortly after its introduction to the market, leading to a defense of the 

drug with claims that the parasite life cycle was misunderstood, and that errors were made 

during diagnostic fecal egg counts (Boraski, 1987). Formal reports of ivermectin resistance 

started in the Netherlands in 2002, quickly followed by Canada in 2003 (Boersema et al., 

2002; Hearn & Peregrine, 2003). This was followed by reports of macrocyclic lactone 

resistance encompassing the global equine population and, more recently, reports of 

tetrahydropyrimidine and benzimidazole resistance (Table 2.1). Current recommendations 

reduce the overall number of anthelmintic treatments for Parascaris spp. in foals in an 

attempt to slow down the development of resistance (ESCCAP 2019; Nielsen et al., 2019; 

Rendle et al., 2019). 

 

Table 2.1: Publications reporting anthelmintic resistant populations of Parascaris spp., the anthelmintic class investigated, 
and location by continent and country. 

      Anthelmintic Class 

Continent Country Publication 
Macrocyclic 

Lactones Tetrahydropyrimidines Benzimidazoles 

Asia Saudi Arabia Alanzi et al. (2017) X X X 

 Turkey Cirak et al. (2010) X   

Europe Denmark 
Schougaard & Nielsen 
(2007) X   

 Estonia Lassen & Peltola (2014) X   

 Finland Näreaho et al. (2011) X   

  Hautala et al. (2019)  X  
 France Laugier et al. (2012) X   

  Geurden et al. (2013) X   

 Germany 
von Samson-Himmelstjerna 
et al. (2007) X   

 Iceland Martin et al. (2021b) X   

 Italy Veronesi et al. (2009) X   

  Veronesi et al. (2010) X   

 Poland Studzińska et al. (2020) X   

 Sweden Lindgren et al. (2008) X   

  Lind & Christensson (2009) X   

  Martin et al. (2018)  X  
  Martin et al. (2021a)   X 

 The Netherlands Boersema et al. (2002) X   

 United Kingdom Stoneham & Coles (2006) X   

  Relf et al. (2014) X   
North 
America Canada Hearn & Peregrine (2003) X   

  Slocombe et al. (2007) X   

 United States Craig et al. (2007) X X  
  Lyons et al. (2008) X X  
  Lyons et al. (2011)  X  
Oceania Australia Armstrong et al. (2014) X X X 

  Beasley et al. (2015) X   
  Wilkes et al. (2017) X   

 New Zealand Bishop et al. (2014) X   
South 
America Argentina Cooper et al. (2020) X   

 Brazil Molento et al. (2008) X   
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Reports of anthelmintic resistance in other ascarid species of veterinary and 

medical importance are few and far between. Only case reports of resistance are available 

for a few species, including Ascaris lumbricoides (Krücken et al., 2017), Ascaridia 

dissimilis (Yazwinski et al., 2013; Collins et al., 2019), and Heterakis gallinarum (Yazwinski 

et al., 2013; Collins et al., 2021). Yet it is clear from widespread anthelmintic resistance of 

many important parasitic nematodes infecting livestock (Rose et al., 2005; Fleming et al., 

2006; Sutherland & Leathwick, 2011; Kaplan & Vidyashankar, 2012; von Samson-

Himmelstjerna, 2012; von Samson-Himmelstjerna et al., 2021b), including Parascaris 

spp., that evolution of resistance is a concern. Anthelmintic resistance is also an emerging 

concern in parasites of companion animals (Jiminez Castro et al., 2019; Jiminez Castro 

et al., 2021), and while there have been no reports of resistance in any companion animal 

ascarid species, frequent monthly treatment intervals necessitate robust anthelmintic 

resistance monitoring programs (von Samson-Himmelstjerna et al., 2021b). Previous 

reviews have discussed the need for medical parasitology to learn from veterinary 

parasitology and identify causes of anthelmintic resistance, modify anthelmintic treatment 

regimens, and monitor for resistance, in order to at minimum slow down the development 

of resistance (Beech et al., 2010; Vercruysse et al., 2011; Tinkler, 2020; von Samson-

Himmelstjerna et al., 2021b). This One Health approach and warning to reduce treatment 

frequency has been mentioned for nearly two decades (Geerts et al., 1997; Geerts & 

Gryseels, 2000; Thompson & Roberts, 2001; Geerts & Gryseels, 2002), yet little has 

changed, particularly in human public health (Tinkler, 2020).  

Husbandry practices and anthelmintic treatment strategies as methods to slow 

down the development of resistance have been discussed in detail elsewhere 

(Reinemeyer, 2009; von Samson-Himmelstjerna, 2012; Matthews, 2014; Nielsen, 2016; 

Reinemeyer & Nielsen, 2017; von Samson-Himmelstjerna et al., 2021b). Anthelmintic 

mechanisms of action as well as mechanisms of resistance in parasitic nematodes have 

also been thoroughly reviewed in the past (Prichard, 1994; Kotze et al., 2014; Whittaker 

et al., 2017; Kaplan, 2020). This section will briefly describe drug mechanisms of action 

and resistance in general, with a focus on relevant research conducted using Parascaris 

spp.  
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2.3.2 Benzimidazoles 

Benzimidazoles are heterocyclic aromatic organic compounds, and various 

modifications to this structure resulted in the development of anthelmintic drugs 

(Townsend & Wise, 1990). The first was introduced in 1961, follow by numerous 

formulations in the 1960s and 1970s (Brown et al., 1961; Harder, 2002). Benzimidazoles 

interact with the colchicine-binding domain of β-tubulin and inhibit microtubule 

polymerization, disrupting vital cellular processes and causing parasite death (Friedman 

& Platzer, 1978; Lacey, 1988; Lacey, 1990). Microtubules are polymers made of tubulin 

dimers consisting of α- and β-tubulin and are essential for cellular structure and processes 

such as intracellular transport and cell division (Lacey, 1988; Lacey, 1990). 

Benzimidazoles developed as anthelmintics have a higher binding affinity for nematode 

β-tubulin than mammalian β-tubulin, making them safe for use in horses and other 

mammalian species (Lacey, 1988). 

Benzimidazole resistance mechanisms are the most well-studied among the 

anthelmintic classes because of its rapid development in Clade V nematodes, in particular 

H. contortus, just three years after its introduction to the market (Drudge et al., 1964; Kotze 

& Prichard, 2016). Benzimidazole resistance is associated with mutations in isotype-1 and 

-2 β-tubulin genes that decrease binding affinity of the drug for its target (Lubega & 

Prichard, 1990; Lacey & Gill, 1994; von Samson-Himmelstjerna et al., 2007a). There are 

a few single nucleotide polymorphisms (SNPs) that are associated with benzimidazole 

resistance in H. contortus, with a phenylalanine-to-tyrosine substitution at codon 200 

(F200Y) in the isotype-1 β-tubulin gene being the most common in wild type parasite 

populations (Kotze & Prichard, 2016). Other mutations in isotype-1 β-tubulin linked to 

benzimidazole resistance include F167Y and E198A, with the former being quite rare and 

the latter conferring the highest level of drug resistance of the three (Ghisi et al., 2007; 

Kotze et al., 2012). Limited research regarding isotype-2 β-tubulin genes has been 

performed, but some resistant populations of H. contortus show loss or decreased levels 

of the gene (Beech et al., 1994; Lubega et al., 1994).   

 Benzimidazoles are still effective anthelmintics for the treatment of Parascaris spp. 

infections, and resistance has only been reported in three studies beginning in 2014. Due 

to this limited emerging anthelmintic resistance, only a few studies have examined the 

resistance-related SNPs or transcriptional responses to benzimidazoles in Parascaris spp. 

Five studies have sequenced Parascaris spp. β-tubulin genes, including one using a 

known benzimidazole-resistant isolate, and none found any known resistance-related 
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SNPs, suggesting a potentially different mechanism of resistance in ascarid parasites to 

this anthelmintic class (Tydén et al., 2013a; Tydén et al., 2014; Malekpour et al., 2019; 

Martin et al., 2021b; Özben et al. 2022). Interestingly, it has been shown that isotype-1 

and -2 β-tubulin genes are expressed at higher levels in Parascaris spp. eggs, and that, 

while isotype-1 remains at similar levels of expression in larvae and adults, isotype-2 gene 

expression is very low in adults, suggesting differing functions throughout the life cycle 

(Tydén et al., 2016). Additionally, in vitro exposure to benzimidazoles significantly 

increased gene expression of isotype-1 β-tubulin genes in one study using eggs (Tydén 

et al., 2016), whereas in vitro studies using adult parasites showed either down regulation 

of isotype-2 β-tubulin (Martin et al., 2020b) or no differential expression of β-tubulin genes 

(Scare et al., 2020). Previously discussed enzymes that aid in removal of xenobiotic 

compounds, as well as genes related to detoxification, microtubule polymerization, 

regulation of membrane potential, and muscle contraction were also differentially 

expressed following in vitro exposure to benzimidazoles (Martin et al., 2020b; Scare et al., 

2020). 

The β-tubulin genes targeted by benzimidazoles are different even within Clade V 

nematodes (Saunders et al., 2013), and resistance-related β-tubulin SNPs have a low 

frequency in benzimidazole-resistant equine cyathostomins, another Clade V parasite 

group, suggesting that they may not fully explain benzimidazole resistance even within the 

clade (Pape et al., 2003; von Samson-Himmelstjerna et al., 2003; von Samson-

Himmelstjerna et al., 2007a; James et al., 2009). Considering these dissimilarities within 

Clade V and lack of identification of known resistance-related SNPs in benzimidazole-

resistant Parascaris spp., it is possible that the mechanism of resistance in Clade III 

ascarid-type nematodes is different, and thus using these SNPs for anthelmintic 

resistance surveillance is inadvisable (Diawara et al., 2009; Diawara et al., 2013; Rashwan 

et al., 2017; Zuccherato et al., 2018; Palma et al., 2020). 

 

2.3.3 Tetrahydropyrimidines 

The tetrahydropyrimidines include two formulations of pyrantel using different 

salts: pyrantel pamoate and pyrantel tartrate. Drugs in this class act as agonists of 

acetylcholine receptors (AChRs) and cause them to stay open, leading to prolonged 

muscle contraction and paralysis in the parasites (Harrow & Gration, 1985; Robertson et 

al., 1994). Nicotinic AChRs are ligand-gated ion channels activated by the 

neurotransmitter acetylcholine made up of five subunits surrounding a central pore 
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(Beech & Neveu, 2015). The AChR repertoire of parasitic nematodes is not widely 

studied, with only a few subtypes having been described in nematodes in general, and 

even fewer when the scope is narrowed to Parascaris. Recently, a Parascaris ACR-16 

receptor subunit was described, and it was found that parasitic nematodes have two 

AChR subunits, ACR-26 and ACR-27, that are not found in free-living nematodes (Courtot 

et al., 2015; Charvet et al., 2018). In Parascaris spp., these two subunits have a higher 

affinity for pyrantel than acetylcholine (Courtot et al., 2015). 

Parascaris spp. resistance to pyrantel has only been reported in seven studies 

globally starting in 2007, and thus its mechanism has been the subject of limited research 

due to the lack of resistant parasite populations. There has, however, been one in vitro 

study investigating transcriptional responses in Parascaris spp. when exposed to 

pyrantel, ivermectin, and thiabendazole (Martin et al., 2020b). Eight transcript orthologs 

of AChR were differentially expressed, but with no clear pattern between drug classes 

(Martin et al., 2020b). Differential expression was also found in genes coding for enzymes 

that aid in the removal of xenobiotic compounds including short-chain 

dehydrogenases/reductases and flavin-containing monooxygenases, but these enzymes 

have not been characterized in parasitic nematodes and thus more research must be 

completed to understand their possible involvement in anthelmintic resistance (Martin et 

al., 2020b). 

 

2.3.4 Macrocyclic lactones 

Macrocyclic lactones are a group of drugs derived from avermectin, which are 

produced by Streptomyces avermitilis (Campbell et al., 1983; Kim & Goodfellow, 2002) or 

milbemycins produced by S. hygroscopicus (Takiguchi et al., 1980) or S. cyaneogriseus 

(Carter et al., 1988) and consist of some of the most well-known and widely used 

anthelmintics in the world. The avermectin derivatives – particularly ivermectin – have had 

a large impact in both veterinary and human medicine and the 2015 Nobel Prize in 

Physiology or Medicine was awarded to William C. Campbell and Satoshi Ōmura for its 

discovery (Nobel Prize, 2015). Ivermectin was first introduced in 1981, and by the end of 

the decade it was the best-selling animal health product in the world (Laing et al., 2017). 

Moxidectin, a milbemycin derivative, was introduced in the mid-1990s and has a longer 

half-life and higher potency than ivermectin (Lyons et al., 1992; Afzal et al., 1997). 

Macrocyclic lactones irreversibly activate glutamate-gated chloride channels (GluCls) that 

are present in nematode neuron and muscle cells, inhibiting neuronal and muscle activity 
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and ultimately causing paralysis and death (Wolstenholme, 2012; Laing et al., 2017). 

Within nematodes, even those that are within the same clade such as Caenorhabditis 

elegans and Haemonchus contortus, GluCls are highly divergent, making comparisons 

between species, let alone clades, difficult when studying both the mechanism of action 

and development of resistance (Laing et al., 2017).  

Macrocyclic lactone resistance was first reported in H. contortus in 1987 – just six 

years after ivermectin hit the market – and continued to spread globally (Carmichael et 

al., 1987; Van Wyk et al., 1987; Prichard, 1994). Despite widespread anthelmintic 

resistance to ivermectin in some species of nematode parasites, the mechanism for 

resistance remains poorly understood. Similar to benzimidazole resistance, ivermectin 

resistance has been studied in H. contortus, as well as in C. elegans (Lespine et al., 2011; 

Doyle & Cotton, 2019), but little research has been conducted in ascarid parasites. P-

glycoproteins (Pgp) are cell membrane efflux proteins that pump foreign substances out 

of cells and were first associated with ivermectin resistance in parasitic nematodes in the 

late 1990s (Xu et al., 1998). Subsequently, they are one of the most widely studied 

putative mechanisms for macrocyclic lactone resistance and the only one that has been 

studied in Parascaris spp. Similar to benzimidazole resistance, the bigger picture is 

complex. Macrocyclic lactone resistance is likely multigenic (Choi et al., 2017; Khan et al., 

2020) and the molecular mechanism is not fully understood (Laing et al., 2016.; Rezansoff 

et al., 2016). 

Ten Parascaris spp. Pgps have been identified to date, along with their tissue-

specific expression levels and some evidence for interaction with ivermectin: Pun-Pgp-2, 

-3, -9, -10, -11.1, -11.2, -12, -16.1, -16.2, and -18 (Janssen et al., 2013; Chelladurai & 

Brewer, 2019; Gerhard et al., 2020; Martin et al., 2021a). Their role in anthelmintic 

resistance, however, is unclear. Transgenic expression of P. univalens Pun-Pgp-9 and -

11 in C. elegans decrease susceptibility to ivermectin (Janssen et al., 2015), and Pun-

Pgp-9 does so in a tissue-specific manner, with intestinal expression conferring a 

protective effect, and depends on active ingestion via pharyngeal pumping (Gerhard et 

al., 2021). Comparisons between ivermectin resistant and susceptible Parascaris spp. 

populations revealed overexpression of SNPs in Pun-Pgp-11 correlating to decreased 

macrocyclic lactone susceptibility (Janssen et al., 2013), but drug exposure assays 

showed no change in Pgp expression in response to ivermectin exposure (Gerhard et al., 

2020; Scare et al., 2020; Martin et al., 2021a). Differentially expressed genes for enzymes 

aiding in removal of xenobiotic compounds and other cellular processes were similar to 
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those previously described for other drugs after ivermectin exposure, with the only 

exception being the upregulation of a gamma-aminobutyric acid receptor subunit (Martin 

et al., 2020b; Scare et al., 2020). 

 

2.3.5 Novel Anthelmintics 

Several novel anthelmintic candidates have been tested against Parascaris spp., 

many of them involving plant extracts. Wild tarragon (Artemisia dracunculus), pennyrile 

(Mentha pulegium), Zataria multiflora, cinnamon (Cinnamomum zeylanicum), 

pomegranate flower (Punica granatum), and pepper (Capsicum annuum) extracts were 

all lethal to L2/L3 larval Parascaris spp. in vitro (Rakhshandehroo et al., 2016; 

Rakhshandehroo et al., 2017). Zinc oxide nanoparticles showed in vitro anthelmintic 

efficacy against Parascaris spp., including changes to morphological appearance (Morsy 

et al., 2019). The monoterpenic phenol isomer carvacrol, isolated from herbs, also 

showed in vitro anthelmintic activity against Parascaris spp. by inhibiting acetylcholine-

induced currents and stopping muscle contractions, suggesting that it is an antagonist of 

AChRs similar to pyrantel (Trailovic et al., 2021). The Bacillus thuringiensis crystal protein 

Cry5B has shown efficacy against Parascaris spp. when administered to foals via 

nasogastric tube, dropping fecal egg counts to zero, and is the only published in vivo 

experimental efficacy study of a novel drug that has been completed recently (Urban et 

al., 2021). While these treatments have shown some efficacy, there is little information 

regarding the mechanisms of action, which will be an essential piece of information if they 

make it to the commercial market in order to help prevent the development of resistance. 

 



 
 

CHAPTER 3. THE MICROBIOME OF HELMINTH PARASITES 

3.1 Microbiome 

3.1.1 What is the microbiome? 

The microbiome is the entire biome of microscopic organisms and their “theater of 

activity,” including genetic information, environmental conditions, metabolic activity, and 

ecological functions (Whipps et al., 1988). The microbiota, or microbial community, is the 

community of microorganisms living in a specific, well-defined habitat (Whipps et al., 

1988). These widely accepted definitions of “microbiome” and “microbiota” were first 

coined in 1988 and were recently amended slightly to include mention of the dynamic 

nature of the microbiome (Berg et al., 2020). Bacteria, fungi, archaea, algae, and small 

protists are widely accepted as members of the microbiome; however, inclusion of 

phages, viruses, plasmids, and mobile genetic elements is more contentious with no clear 

consensus of inclusion in the microbiome research community (Berg et al. 2020).  

 

3.1.2 History of microbiome research 

The history of microbiome research is also a history of scientific innovation over 

the past 350 years, with methodological inventions leading to a better understanding of 

the microbiome. Microorganisms were first discovered in the 1670s by Dutch 

businessman and scientist Antonie van Leewenhoeck, using a high magnification 

microscope that he created himself (Leewenhoeck, 1677; Lane, 2015). It was not until the 

mid-1800s, however, that German biologist Ferdinand Cohn laid the foundation for 

modern bacterial taxonomy after the advent of culture-based techniques (Drews, 2000). 

He also studied bacterial physiology and was an advocate for applied microbiology 

(Drews, 2000). Russian microbiologist Sergei Winogradsky pioneered the field of 

microbial ecology at the end of the 19th century, particularly the nitrogen cycle and 

chemosynthesis (Winogradsky, 1890; Dworkin & Gutnick, 2012).  

After the central dogma of molecular biology was published in 1970 by Francis 

Crick, stating that sequential information is transferred residue-by-residue and cannot be 

transferred back from protein to either protein or nucleic acid (Crick, 1970), molecular 

techniques quickly gained traction from Sanger sequencing in 1977 (Sanger et al., 1977) 

to polymerase chain reaction (PCR) in 1986 (Mullins et al., 1986) and quantitative real-

time PCR (qPCR) in 1993 (Higuchi et al., 1993), culminating with next generation 
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sequencing (NGS) in 2002 (Reinartz et al., 2002). The Human Microbiome Project began 

in 2008 and over the course of five years has characterized the microbial communities of 

242 healthy individuals across multiple body sites (The Human Microbiome Project 

Consortium, 2012a). Currently, two more large-scale microbiome projects are in progress: 

The Earth Microbiome Project (Thompson et al., 2017) and the TerraGenome Project 

(Vogel et al., 2009). 

 

3.1.3 The microbiome and health 

Large-scale microbiome projects aimed at characterizing healthy individuals 

provide databases that can, and have been, used for numerous different research 

applications, particularly those investigating how the microbiome affects health. 

Microbiome research has exploded over the past few decades as its important role in 

health has become more and more apparent. In humans, other animals, and plants, 

changes in the microbiome are associated with a plethora of health outcomes including, 

but not limited to, Crohn’s disease (Ni et al., 2017), cancer (Helmink et al., 2019), 

depression (Zheng et al., 2016), equine oral health (Kennedy et al., 2016), bovine 

respiratory disease (Lima et al., 2016), and plant growth (Bloemberg & Lugtenberg 2001). 

The ultimate goal of understanding host-microbiome interactions, particularly in disease, 

is to manipulate the microbiome in order to achieve better health outcomes and create 

personalized approaches for individualized medicine. This concept is currently being 

explored in a variety of organisms and applications, including veterinary science 

(Clemmons et al., 2019; Song et al., 2019; Peixoto et al., 2021), coral reefs (Rosado et 

al., 2019; Santoro et al., 2021), bioremediation (Correa-García et al., 2018), and 

agriculture (Deng et al., 2021).  

 

3.2 Host–Microbiome Interactions 

3.2.1 A brief overview 

The host-microbiome relationship is bi-directional, with the microbiome playing an 

important role in maintaining homeostasis within the host and factors such as host 

environment, antibiotic use, genetics, and diet affecting the microbiome. The gut 

microbiome metabolizes nutrients (Russell et al., 2013), synthesizes vitamins (LeBlanc et 

al., 2013), and likely plays a role in mucosal permeability (Moreira et al., 2012). Host diet, 

including protein source, fiber, dietary fat, and carbohydrate consumption, has been 
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shown to affect microbiome composition (David et al., 2014), and therefore metabolite 

production, which has been linked to disease (Wang et al., 2011; Tang et al., 2013). 

Metabolites produced by microbiota also influence the immune system (Donohoe et al., 

2011; Hashimoto et al., 2012; Park et al., 2015; Blacher et al., 2017) and there is also 

evidence that the microbiome plays a role in neurotransmitter modulation (Fung et al., 

2019; Strandwitz et al., 2019; Jameson et al., 2020). 

Host-microbiome interactions have also been studied in systems other than 

humans, albeit much less to date; a few examples of research that has been conducted 

follow. Microbes provide nutrients to plants both under stressful and normal growth 

conditions (Carbonnel & Gutjahr, 2014; Nishida & Suzaki, 2018; Rodriguez et al., 2019) 

and can provide protection against pathogens (Berendsen et al., 2018), while plants 

provide microbes with lipids and fixed carbon (Keymer & Gutjahr, 2018). The gutless 

oligochaete marine worms in the genus Olavius have an endosymbiotic relationship with 

sulfate-reducing and sulfite-oxidizing bacteria that provide their host with nutrients and 

may increase protein yields, while the worms provide the bacteria with an energy source 

(Dubilier et al., 2001; Blazejak et al., 2005). In cattle and other ruminants, the microbiome 

facilitates the digestion of plant fibers, provides volatile fatty acids, and metabolizes 

nitrogen to produce proteins essential for milk and muscle synthesis (Bergman, 1990; 

Bach et al., 2005; Malmuthuge & Guan, 2017; O’Hara et al., 2020). The mechanisms of 

these microbiome functions in cattle are less studied, however after a near-total ruminal 

content exchange, cattle rumen microbiomes revert back to their original composition 

rather than maintain that of the donor, suggesting host specificity (Weimer et al., 2010; 

Malmuthuge & Guan, 2017). 

 

3.2.2 Genetics and the microbiome 

Host genetics play an important role in microbiome composition, accounting for 

approximately 10% of microbiome variation in one study (Wang et al., 2016), and 

influence the abundance of various taxa that are essential for maintaining health 

(Khachatryan et al., 2008). The influence of genetics and microbiome heritability is further 

illustrated by twin studies showing that monozygotic twins have more similar gut 

(Goodrich et al., 2014b; Goodrich et al., 2016; Xie et al., 2016) and urinary (Adebayo et 

al., 2020) microbiomes than dizygotic twins. The host gene Vdr, which encodes a Vitamin 

D receptor (VDR), is a locus that accounted for a significant amount of microbiome 

variation in a cohort of over 1800 people (Wang et al., 2016). The VDR forms a 
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heterodimer with retinoid X receptor (RXR), and the ligands of this receptor include 

microbial metabolites such as secondary bile acids (Haussler et al., 2008). In a mouse 

model, Vdr knockouts had significantly different microbiome beta diversities than wild type 

mice (Jin et al., 2015). Genome-wide association studies have also shown associations 

between the gut microbiome and loci involved in conditions such as inflammatory bowel 

disease (Cohen et al., 2019), allergies (Bonder et al., 2016), autoinflammatory disorders 

(Khachatryan et al., 2008), autoimmune disorders (Montgomery et al., 2020), and atrial 

fibrillation (Xu et al., 2020). Using a mouse model, it has recently been shown that host 

genetics and the microbiome can regulate behaviors. Knockout Cntnap2 mice exhibit 

social deficits and hyperactivity, but therapy with Lactobacillus reuteri rescues social 

deficits via upregulation of metabolites in the tetrahydrobiopterin pathway that improve 

synaptic transmission, suggesting a role for the microbiome in neurological disorders 

(Buffington et al., 2021). 

Similar to many other aspects of microbiome research, the influence of host 

genetics on the microbiome have been studied more in humans and mouse models than 

other hosts. The microbiome of many types of plants has been shown to be heritable and 

affected by host genetics, including maize (Peiffer et al., 2013; Wallace et al., 2018), the 

plant model organism Arabidopsis thaliana (Horton et al., 2014), wild mustard (Wagner et 

al., 2016), and trees from both temperate and tropical climates (Redford et al., 2010; 

Kembel et al., 2014; Laforest-Lapointe et al., 2016). Pig genomes affect gut microbiome 

composition (Bergamaschi et al., 2020), which can in turn affect fat deposition (Tiezzi et 

al., 2021). The bovine rumen microbiome is heritable and associated with host genetics 

as well, although mechanisms remain to be studied (Sasson et al., 2017). This is generally 

true for microbiome research outside of humans – the mechanisms and extent of the 

influence of host genetics on microbiome composition have yet to be elucidated.  

 

3.2.3 Parasites and the host microbiome 

Parasites can affect the microbiome of their host, and the host microbiome can, in 

turn, affect the ability of a parasite to successfully infect the host (Zaiss & Harris, 2016; 

Fredensborg et al., 2020). In humans, infection with soil transmitted helminths 

(hookworms, roundworms, and whipworms) increases microbial diversity (Lee et al., 

2014), and individuals able to self-clear infections had more similar microbiomes to each 

other than those unable to self-clear (Rosa et al., 2018). Chagas disease affects millions 

of humans globally and is caused by the protozoan parasite Trypanosoma cruzi. Infection 
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of mice and humans with T. cruzi is associated with changes in microbiome beta diversity 

and in relative abundance of bacteria in the family Lachnospiraceae (Robello et al., 2019; 

Hossain et al., 2020), and infection of its insect vector Triatoma dimidiata is associated 

with higher species richness (Orantes et al., 2018). Honeybee microbiome composition 

affects susceptibility to the protozoan parasite Lotmaria passim (Scwarz et al., 2016) and 

high gut microbiome diversity in bumble bees is associated with increased susceptibility 

to the trypanosome parasite Crithidia bombi (Mockler et al., 2018; Näpflin & Schmid-

Hempel, 2018). Salmon infected with the myxozoan parasite Tetracapsuloides 

bryosalmonae (Vasemägi et al., 2017) exhibit a positive relationship between gut 

microbiome species richness and parasite burden and zebrafish infected with the 

nematode Pseudocapillaria tomentosa (Gaulke et al., 2019) exhibit a positive relationship 

between gut microbiome diversity and parasite burden.  

Parasites can also cause various clinical signs in other large mammalian hosts 

and, in turn, affect their microbiomes. Infection with the amoebic parasite Entamoeba, 

some species of which cause dysentery, is associated with significant differences in the 

relative abundance of bacterial taxa in lowland gorillas (Vlčková et al., 2018). The ascarid 

parasite A. suum has been shown to reduce microbial diversity 54-days post infection in 

one study (Wang et al., 2019), whereas microbial diversity increased 14-days post 

infection in another study (Williams et al., 2017), differences which could be explained 

due to the differing infection period. A. suum infection also correlated to an increase in 

short chain fatty acids produced by bacteria, a phenomenon replicated in both mice and 

humans infected with intestinal helminths and resulted in attenuation of airway 

inflammation responses (Zaiss et al., 2015). Anthelmintic treatment against 

cyathostomins in domestic horses (Walshe et al., 2019) and mixed equine parasite 

infections in Przewalski’s horses (Hu et al., 2021) resulted in a decrease in bacterial 

diversity, and upon natural reinfection after treatment, an increase in species richness has 

been observed (Clark et al., 2018), and it has also been shown that anthelmintic treatment 

in parasite-free animals has minimal effect on the microbiome (Kunz et al., 2019), thus 

the observed differences in diversity and richness are likely due to parasite infection. 

 

3.3 The Microbiome of Caenorhabditis elegans  

The small, free-living nematode C. elegans is an important model organism not 

only for nematode research, but also for biological research as a whole, and was the first 

multicellular organism to have its whole genome sequenced in 1998 (The C. elegans 
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Sequencing Consortium, 1998). This nematode has been widely used for various 

research applications because it is an inexpensive model, can be frozen for long-term 

storage, and is relatively easy to maintain in vitro. Due to this, the microbiome of C. 

elegans has been studied extensively, and is by far the most well-studied nematode 

microbiome, with the first studies being published in 2016 (Zhang et al., 2017).  

 

3.3.1 Composition of the C. elegans microbiome 

While microbiome composition is highly variable between individuals within a 

species, members of a species tend to have groups of microbes that are similar across 

the population, known as the core microbiome (Risely, 2020). In multiple C. elegans 

microbiome studies using worms grown in varying soil types, the gut microbiome was 

distinct from the soil microbiome and less diverse. Prominent microbiome members 

included the families Enterobacteriaceae, Pseudomonadaceae, Xanthomonadaceae, and 

Sphingobacteriaceae, suggesting that these are part of the C. elegans core microbiome 

across strains and environments (Berg et al., 2016a; Berg et al., 2016b; Dirksen et al., 

2016). The host genotype explained 12.7% of microbiome variation in one of these initial 

C. elegans microbiome studies, and Enterobacter cloacae and Pseudomonas mendocina 

isolated from C. elegans conferred host-specific protection against pathogenic 

Enterococcus faecalis and P. aeruginosa infection, respectively (Berg et al., 2016b). 

Many microbiome studies, particularly those characterizing the microbiome of a 

given organism for the first time, give only a snapshot of a dynamic relationship. Another 

recent study characterized the microbiome of C. elegans and their substrates for two 

consecutive years and found that while microbiome composition was conserved at the 

genus level over time, it was not conserved for amplicon sequencing variants (Johnke et 

al., 2020). Only three strains were present consistently over the study period 

(Comamonas ASV10859, Pseudomonas ASV7162 and Cellvibrio ASV9073), and 

diversity was influenced by substrate (Johnke et al., 2020). Overall, characterizing a core 

microbiome can be an arduous task and requires multiple studies using multiple 

populations to determine similarities across an entire species, even those maintained 

within a laboratory setting. 
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3.3.2 Host-microbiome interactions 

As a model organism, numerous host-microbiome interactions have been 

described in C. elegans that are associated only with its standard food source, 

Escherichia coli OP50 (Stiernagle, 2006; Gerbaba et al., 2017) and bacterial signals 

influence various biological processes in their host. One study showed that C. elegans 

fed with a soil microbe community had higher reproduction rates, lived longer, were more 

tolerant to cadmium exposure, had more robust stress and immune responses, and their 

microbiomes were less affected by cadmium exposure than those fed only E. coli OP50 

(Lee et al., 2020). Genetic mutants in the C. elegans DAF-2/insulin growth factor pathway, 

which is involved in innate immunity and stress responses, had a distinct microbiome from 

wild type specimens (Taylor & Vega, 2021). Lifespan and stress response is influenced 

via E. coli folate synthesis (Virk et al., 2016), the rapamycin complex 2 (mTORC2) and 

the serum- and glucocorticoid-regulated kinase 1 pathways (Mizunuma et al., 2014), and 

the production of nitric oxide by Bacillus subtilis (Donato et al., 2017). Bacterial folate 

synthesis also plays an important role in reproduction because folate receptor-1 is 

required for germ cell proliferation (Chaudhari et al., 2016). A more recent study showed 

that variations in signaling pathways due to natural genetic variation affects microbiome 

composition (Zhang et al., 2021a). Genotypes with upregulated insulin signaling activate 

an immune response that results in microbiomes enriched for Ochrobactrum, which is 

correlated with faster growth rates and larger adult body size (Zhang et al., 2021a).  

In natural habitats, the majority of bacteria fed on by C. elegans promoted growth 

and, in general, microbiomes enriched with Alphaproteobacteria increased population 

proliferation, whereas those enriched with Bacteroidetes correlated with C. elegans that 

did not proliferate (Samuel et al., 2016). Recent studies have shown that the native 

microbiome is important for overall worm health and fitness, and that the C. elegans 

bacterial community is capable of synthesizing all essential nutrients for the worms 

(Zimmermann et al., 2020). Natural strains of microbiome members such as 

Chryseobacterium and Comamonas increase resistance to oxidative stress, increase 

lifespan, and upregulate cellular detoxification and signaling pathways (Haçariz et al., 

2021). Pseudomonas isolates provide protection from pathogens by inhibiting pathogen 

growth, either directly via the lipopeptide massetolide E, or possibly via indirect 

mechanisms that have yet to be elucidated (Kissoyan et al., 2019). 
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3.3.3 Bacteria-bacteria interactions 

Not only can the host affect its microbiome and vice versa, but the bacteria within 

the microbiome can also affect one another. Thus far, this effect has mainly been 

examined in regard to community composition. Variation in community composition may 

be influenced by randomness and has also been predicted by models to be influenced by 

early successful colonizers, whose exponential growth prevents others from forming large 

populations (Vega & Gore, 2017). High abundance of an Erwinia strain has been 

correlated with low alpha diversity and bacteria such as Bdellovibrio have been correlated 

with high alpha diversity (Johnke et al., 2020). Bacteria that colonize C. elegans well in 

monoculture do not all do the same in co-cultures, possibly due to bacteria-bacteria 

interactions (Ortiz et al., 2021). 

 

3.4 The Notable Case of Wolbachia  

Perhaps the most well-known example of how impactful helminth microbiomes can 

be is a genus of endosymbiotic bacteria called Wolbachia and their filarial nematode 

hosts. This endosymbiotic relationship and the subsequent development of anti-

Wolbachia drugs as a treatment option for infection highlight how important characterizing 

and understanding helminth microbiomes is, not only for general biological knowledge, 

but also for identification of potential new drug targets.  

 

3.4.1 Filarial nematodes  

Filarial nematodes are a group of parasites with an intermediate arthropod host 

and a vertebrate definitive host that cause various important neglected tropical diseases 

and companion animal infections. Lymphatic filariasis, also known as elephantiasis, is 

caused by Wuchereria bancrofti, Brugia malayi, and, to a lesser extent B. timori, and is 

spread to humans via Aedes, Anopheles, Culex, or Mansonia mosquitoes (Taylor et al., 

2010; Chandy et al., 2011). The worms accumulate in lymphatic vessels and can cause 

tissue swelling or thickening of the skin and tissues. Globally, over 800 million people live 

in areas requiring preventive chemotherapy, and an estimated 36 million people have 

chronic disease (World Health Organization, 2021). Onchocerciasis, also known as river 

blindness, affects over 20 million people globally and is caused by Onchocerca volvulus 

transmitted via black flies, resulting in severe itching, eye lesions, and sometimes 

blindness (Taylor et al., 2010; World Health Organization, 2019). Dirofilaria immitis, also 
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known as canine heartworm, is prevalent in the Americas and can also infect humans, 

albeit rarely causing symptoms (Dantas-Torres & Otranto, 2020). 

 

3.4.2 Initial discovery and research 

In the 1970s, transmission electron microscope (TEM) ultrastructure studies of B. 

malayi, B. pahangi, O. volvulus, and D. immitis revealed the presence of intracellular 

bacteria within the oocytes (Harada et al., 1970; Lee, 1975; McLaren et al., 1975; Kozek, 

1977; Kozek & Marroquin, 1977); microfilariae (McLaren et al., 1975; Kozek, 1977); and 

lateral chords (Vincent et al., 1975; Kozek, 1977; Kozek & Marroquin, 1977). Phylogenetic 

studies later indicated that these bacteria were closely related to Wolbachia pipientis, an 

endosymbiotic rickettsia of arthropods (Sironi et al., 1995), and that arthropod and filarial 

Wolbachia formed distinct supergroups from one another, suggesting that they are not 

passed from vector to parasite (Bandi et al., 1998; Lo et al., 2007).  

 

3.4.3 Wolbachia as a symbiont 

In filarial nematodes, Wolbachia are vertically transmitted from female to offspring 

via egg cytoplasm (Kozek, 1977; Fenn & Blaxter, 2004) and are an important symbiont 

for the parasites in which they are found. They have been shown to cause inflammatory 

responses in the vertebrate hosts via activation of neutrophils (Brattig et al., 2001; Nfon 

et al., 2006; Gillette-Ferguson et al., 2007) by surface proteins (Bazzocchi et al., 2003; 

Brattig et al., 2004), and desensitize macrophages via toll-like receptors and adapter 

proteins such as MyD88 (Gillette-Ferguson et al., 2006; Turner et al., 2006). Wolbachia 

are also important for female worm development (Hoerauf et al., 2000), larval and 

microfilarial development, molting, survival (Casiraghi et al., 2002; Arumugam et al., 2008; 

Mand et al., 2009), and embryogenesis (Hoerauf et al., 2003; Foray et al., 2018). When 

abundance of Wolbachia decreases, extensive apoptosis occurs in the adult germline, 

embryo somatic cells, microfilariae, and larvae, highlighting their importance for parasite 

reproduction and survival (Landmann et al., 2011). 

 

3.4.4 Ongoing development of anti-Wolbachia drugs 

Due to the importance of Wolbachia to the survival and reproduction of filarial 

nematodes, antibiotics in combination with anthelmintics (Bazzocchi et al. 2008; Luck et 

al. 2014) have been important components of chemoprophylaxis and treatment programs 
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in areas affected by filarial diseases. Doxycycline induces a slow kill of adult parasites 

due to its indirect mechanism, which means that treatment takes multiple weeks (Hoerauf, 

2008). Prophylaxis programs also tend to mass-administer drugs, thus both exposing 

parasites and bacteria to anthelmintics and antibiotics that they are known to develop 

resistance to, potentially exacerbating this issue (Taylor et al., 2014). In order to discover 

and develop drugs that could specifically target Wolbachia, are safe for children and 

pregnant women, and reduce treatment time, the Bill and Melinda Gates Foundation 

funded the formation of the Anti-Wolbachia Consortium in 2007 (Taylor et al., 2014).  

A 10,000-compound library was subsequently screened against Wolbachia, with a 

hit rate of 0.5%, to aid in the identification of potential drug candidates (Johnston et al., 

2017). As a result of this work, there are presently two candidate drugs going through 

clinical trials for the treatment and prevention of filariasis. The first is ABBV-4083, an 

antibiotic that has a spectrum of activity similar to tylosin A, but with increased potency 

that appears to be specific to Wolbachia (Taylor et al., 2019). This drug was shown to 

reduce Wolbachia load within 1 to 2 weeks in mouse and gerbil models (Taylor et al., 

2019). Currently, it is undergoing Phase II clinical trials under the name TylAMac 

(ClinicalTrials.gov, 2021). The second drug, AWZ1066S was shown to be highly specific 

to Wolbachia and reduced parasite load within seven days using a twice per day treatment 

in gerbils (Hong et al., 2019). These drugs are promising, and it is important to note that 

it has taken nearly 50 years from the discovery of bacterial symbionts in filarial nematodes 

to the development of drugs specifically targeting those bacteria, which highlights the 

importance of starting microbiome studies in other parasitic nematodes now, while current 

drugs are still affective.  

 

3.5 The Haemonchus contortus Microbiome 

3.5.1 The barber pole worm 

The trichostrongylid H. contortus, also known as the barber pole worm, is the most 

pathogenic nematode parasite affecting ruminants globally, and is responsible for millions 

of dollars in economic losses (Qamar et al., 2011; Lane et al., 2015). The parasite causes 

anemia due to blood feeding, lethargy, poor fiber quality and nutrient uptake, ill thrift, and 

death (Emery et al., 2016). Most importantly, H. contortus exhibits anthelmintic resistance 

to all major anthelmintic classes, having on many occasions developed widespread 

resistance within 10 years of a new drug being released (Kotze & Prichard, 2016).  



33 
 

 

3.5.2 Microbiome research 

Four H. contortus microbiome studies have been completed to date. The first 

study, completed in 2017, investigated the microbiome of three different life stages of H. 

contortus: adult male and females, L3 larvae, and eggs using both V3-V4 and V5-V7 

primer sets (El-Ashram & Suo, 2017). This study indicated that while H. contortus has a 

distinct microbiome at each of three life stages, all are dominated by Pseudomonas, 

Ochrobactrum, and Eschericia-Shigella (El-Ashram & Suo, 2017). In a subsequent study 

using the same three life stages, denaturing gradient gel electrophoresis, and clone 

libraries found that Proteobacteria, Firmicutes, and Bacteroidetes were associated with 

all three stages, suggesting that vertical transmission occurs (Sinnathamby et al., 2018). 

Additionally, Weissella spp. were found in all three life stages, and fluorescent in situ 

hybridization (FISH) using a probe for Weissella spp. indicated their presence in eggs, 

leading to the conclusion that they may be vertically transmitted endosymbionts 

(Sinnathamby et al., 2018). Another more recent study using adult H. contortus specimens 

and the V3-V4 primer set found that although male and female microbiomes were both 

dominated by Escherichia, Shigella, Vibrio, and Halomonas, differences in alpha and beta 

diversity as well as unique genera were observed between the two sexes (Mafuna et al., 

2021). Finally, another study examined only female H. contortus specimens and found 

that most sequences were also found in the rumen, and an additional in vitro antibiotic 

exposure study indicated that antibiotics could kill the parasites (Bouchet et al., 2022). 

While there are some distinct differences in results between all three studies that may 

result from PCR primers, DNA extraction methods, or host geography, it is clear that there 

are distinct microbiomes between adult male and females of these parasitic nematodes, 

as well as throughout their life cycles that could possibly suggest some sort of role for the 

microbiome in development. 

 

3.6 Other Parasitic Nematode Microbiomes 

3.6.1 Plant parasitic nematodes 

Parasitic nematodes of plants are important agricultural parasites that can cause 

a variety of plant diseases and result in heavy economic losses (Mota & Vieira, 2008; 

EFSA Panel on Plant Health et al., 2018). Due to this, their microbiomes have been 

studied more than many other parasitic nematodes. The pine wood nematode, 
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Bursaphelenchus sp., causes pine wilt disease and its microbiome has been associated 

with virulence (Xiang et al., 2015), life stages (Wu et al., 2016), and development (Tian et 

al., 2015). Its microbiome also plays an important role in α-pinene degradation where the 

bacteria use the chemical as a carbon source, protecting their host from the anthelmintic 

effects of α-pinene (Cheng et al., 2013; Wang et al., 2019). Endosymbiotic bacteria have 

also been identified in Xiphinema americanum-group species (Vandekerckhove et al., 

2000), Radopholus similis (Haegeman et al., 2009), and Heterodera glycines (Noel & 

Atibalentja, 2006). The root knot nematodes, Meloidogyne spp., is thought to have 

obtained some of its parasitism-related genes from rhizobacteria via horizontal gene 

transfer (Bird et al., 2003; Scholl et al., 2003), again highlighting the importance and 

potential role for the microbiome in parasitic nematodes. 

 

3.6.2 Vertebrate parasitic nematodes 

There are very few studies relating to the microbiome of parasitic nematodes 

infecting vertebrates, although efforts in this area have increased over the past few years 

(Dheilly et al., 2017; Dheilly et al., 2019). In the whipworm Trichuris muris, which infects 

mice, egg hatching has been shown to be induced in vitro by Escherichia coli, 

Staphylococcus aureus, Salmonella typhimurium, and P. aeruginosa (Hayes et al., 2010; 

Wimmersberger et al., 2013), although this was not replicated in the closely related 

whipworm of pigs, T. suis (Vejzagić et al., 2015). It is, however, unclear whether this 

interaction is necessary in vivo from the only study reported (Koyama, 2013). Two more 

studies have been completed using Trichuris spp., the first of which showed that parasite 

infection was dependent upon host microbiota and that the parasites acquired a distinct 

microbiota from their host (White et al., 2018). The second more recent studied only used 

seven specimens and suggested that parasites could be a source of pathogenic bacteria 

(García-Sánchez et al., 2022). 

Four microbiome studies using parasitic trematodes of fish and birds have been 

completed over the past four years. Schistocephalus solidus was shown to harbor six 

novel ribonucleic acid (RNA) viruses, one of which was excreted and passed to the host 

(Hahn et al., 2020). Additionally, it was shown that S. solidus had a distinct microbiome 

from its host, that parasite phenotype affected the host microbiome, and that the 

prevalence of Chloroflexi in the parasite microbiome correlated to the expression of host 

immune genes (Hahn et al., 2021). The microbiome of Coitocaecum parvum was 

analyzed throughout its life cycle and it was shown that not only did the parasite have a 
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microbiome distinct from that of its host and environment at every life stage, but also that 

a core microbiome was maintained throughout the life cycle (Jorge et al., 2020). Finally, 

Philophthalmus attenuatus was also shown to have a distinct microbiome at different life 

stages, but that each life stage had very few shared taxa, suggesting a high turnover in 

composition (Jorge et al., 2022b). Microbiome composition across geographic space was 

more similar than between life cycle stages, indicating that the high turnover may be due 

to nonrandom, stage-specific acquisition of bacteria (Jorge et al., 2022b). An additional 

study with P. attenuates demonstrated that the parasite microbiome could be altered after 

exposure to antibiotics while within its snail host, and that the new bacterial community 

post-exposure was different than that pre-exposure (Jorge et al., 2022a). Taken together, 

these studies suggest that parasites have varying microbiome compositions dependent 

upon life stage and that some of the bacteria within the microbiome may be important for 

development or parasite health due to similarities across geographic space, although a 

significant amount of research is needed in this area of study. 

 

3.6.3 Insect parasitic nematodes 

Heterorhabditis and Steinernema are two genera of parasitic nematodes affecting 

insects and are used as biological insecticides (Lacey & Georgis, 2012); they have a 

mutualistic relationship with Photorhabdus (Boemare et al., 1993) and Xenorhabdus 

(Thomas & Poinar, 1979) bacteria, respectively. Upon invasion of the insect host, the 

parasites release their bacteria symbionts inside the insect via regurgitation (Ciche & 

Ensign, 2003) or via defecation (Sicard et al., 2004). The bacteria then release natural 

products that allow for the parasite to infect the insect, preserve the insect cadaver, and 

inhibit competing bacteria, thus ensuring completion of the parasite life cycle (Shi & Bode, 

2018; Heryanto & Eleftherianos, 2020). While this relationship between Heterorhabditis 

and Steinernema and their endosymbionts has been widely studied, the general 

microbiome composition of these parasites has yet to be studied in detail. 
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CHAPTER 4. METHODS FOR OBTAINING AND ANALYZING MICROBIOME DATA 

The large number of microbiome studies being completed over the past decade, 

increasing from 1,822 PubMed search results in 2011 to 22,127 in 2021, means that there 

are also a large number of different methods used for collection, preparation, and analysis 

of microbiome data. There are many variations within microbiome data collection and 

analysis that can have downstream effects, such as differences in relative abundances 

and even taxa present. Ultimately, this can affect the ability to directly compare results 

between studies and researchers have suggested a need for standardization within the 

field (Sinha et al., 2015; Vandeputte et al., 2017; Dheilly et al., 2019). The following 

chapter outlines these various methods for collecting, preparing, and analyzing 

microbiome data. 

 

4.1 Collection and Storage Methods 

4.1.1 Fecal samples 

Many microbiome studies focus on the gut microbiome and as such, fecal samples 

are the main source of data. It is generally accepted that immediate fresh collection is 

essential to maintain the microbiome community of the host without the introduction of 

contamination (Cardona et al., 2012; Vandeputte et al., 2017), but in many cases samples 

must be stable in field conditions and so preservation methods have been studied. Ideally, 

samples should be stored at room temperature and analyzed within 24 hours or 

immediately frozen at a minimum of -20˚C and not allowed to defrost until DNA extraction 

is performed (Cardona et al., 2012; Tedjoe et al., 2015). Since this is not always possible, 

preservation buffers have been assessed relative to freezing and significant differences 

in microbiome composition were observed between buffer preserved samples and frozen 

samples (Choo et al., 2015). Storage solutions such as RNAlaterTM (Invitrogen, Waltham, 

Massachusetts) and 95% ethanol are viable options, although both have advantages and 

disadvantages such as no need for equipment, lower DNA yield, cost, and limited storage 

time (Vandeputte et al., 2017). Ultimately, it is important to consider the type of 

downstream analysis that is necessary, as not all collection methods are suitable for 

metabolomics, metatranscriptomics, metagenomics, culturing, etc. (Reck et al., 2015; 

Vandeputte et al., 2017), and to keep in mind that the largest source of variation in fecal 

microbiome samples is interindividual (Wu et al., 2010; Debelius et al., 2016). 
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4.1.2 Tissue samples 

Tissue samples are also used for microbiome analysis, including but not limited to 

lung (Sze et al., 2012), vagina (Bai et al., 2012), colon (Gao et al., 2015), skin (Bjerre et 

al., 2019), breast (Hieken et al., 2016), sinuses (Bassiouni et al., 2015), and ocular surface 

(Ozkan et al., 2018). These types of samples are generally acquired via surgery, biopsy, 

or swabs during medical procedures, from healthy volunteers, or hospital collections. 

Similar to fecal samples, best practice for tissue samples is considered either immediate 

analysis or frozen storage and the majority of variation is interindividual (Bai et al., 2012; 

Kim et al., 2017). Collection methods have also been analyzed for tissue samples, such 

as scaler versus CytoSoftTM (Medical Packaging Inc., LLC, Flemington, New Jersey) 

brush for dental plaque collection (Luo et al., 2016), eSwabsTM (COPAN Diagnostics, 

Murrieta, California) versus scrapes for skin sample collection (Bjerre et al., 2019), and 

mucosal biopsy versus swab for sinonasal mucosa samples (Bassiouni et al., 2015).  

 

4.1.3 Surface Sterilization 

When collecting microbiome samples, it is important to minimize contamination, 

and thus surface sterilization methods are used to remove potential environmental and 

surface contaminants, allowing for analysis of internal microbiota within the target 

organism. Methods vary between studies but generally involve washes with sodium 

hypochlorite and/or ethanol solutions (Binetruy et al., 2019; Hoffmann et al., 2020). 

Variations include washing with 70% ethanol followed by sterile water (Abraham et al., 

2017); 10% sodium hypochlorite, 70% ethanol, and then DNA-free phosphate buffered 

saline (PBS) (Gofton et al., 2015); soapy water and then 70% ethanol (Lalzar et al., 2012); 

betadine and 80% ethanol (Hahn et al., 2021); serial washes in 70% and 99% ethanol 

followed by PBS (Jorge et al., 2020); and 70% ethanol followed by PBS (Jorge et al., 

2021). Some studies comparing sodium hypochlorite and ethanol for surface sterilization 

have been conducted. It was found that when 70% ethanol was used, bacterial diversity 

was higher (Binetruy et al., 2019), and that washing with sodium hypochlorite may be a 

better method for removing surface contamination when compared to 70% ethanol 

(Binetruy et al., 2019; Hoffmann et al., 2020). 
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4.1.4 DNA extraction 

DNA extraction method can affect microbiome data in both amount of DNA 

successfully extracted from a sample and microbial diversity found in a given sample. 

While variation due to DNA extraction method is generally lower than interindividual 

variation within a given sample (Mackenzie et al., 2015; Lim et al., 2017), one major factor 

in improving DNA recovery and microbial diversity is a bead beating step that effectively 

lyses the thick cell walls of Gram-positive bacteria (de Boer et al., 2010; Salonen et al., 

2010; Yuan et al., 2012; Bag et al., 2016). A variety of commercial kits are available 

specifically for DNA extraction of microbiome samples, and many have been analyzed 

and compared in different studies (Lim et al., 2018). Ultimately, it is important to use 

consistent methods within a study and use caution when comparing results between 

studies using different extraction methods because it can affect microbial diversity findings 

(Kennedy et al., 2014; Lim et al., 2018; Bjerre et al., 2019; Fiedorová et al., 2019; 

Greathouse et al., 2019; Douglas et al., 2020; Tourlousse et al., 2021). 

 

4.2 Microbiome Analysis 

The most commonly used method for analyzing microbiome data is amplicon 

sequencing, typically targeting the 16S rRNA gene for prokaryotes and either the 18S 

rRNA or ITS genes for eukaryotes (Liu et al., 2021). PCR using primers targeting one of 

these genes is used to amplify the fragment of interest, and then a second PCR step is 

used to add index barcodes and adapters for NGS (Liu et al., 2021). There are, however, 

a few other methods for analyzing the microbiome that will be described in the following 

sections, and later sections address PCR primer choice and bioinformatic analysis for 

amplicon sequencing because it is so commonly used, and was the method utilized for 

this dissertation.  

 

4.2.1 Microscopy 

For over a century, microscopy has been used to describe bacteria living within 

organisms. Light microscopy in the 1920s using Giemsa staining was used to describe 

intracellular rickettsia-like bacteria that would later be named Wolbachia in insects (Hertig 

& Wolbach, 1924). Contemporary studies use methods such as TEM and FISH to identify 

bacteria and where they localize within an organism. TEM uses a high voltage electron 

beam within a vacuum system to produce images up to 1,000,000x. Ultrastructure studies 
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using TEM have shown the presence of bacteria within various organisms including 

insects (Kellen et al., 1981; Binnington & Hoffmann, 1989), blood (Panaiotov et al., 2018), 

feces (Yimagou et al., 2020), arachnids (Burgdorfer et al., 1973), and nematodes 

(Sinnathamby et al., 2018). While TEM can be useful for visualizing some bacteria within 

an organism, some disadvantages include cost of the microscope itself and time on the 

microscope, proper fixation of samples to obtain high enough quality for TEM and 

obtaining sections with bacteria positioned properly for identification. FISH utilizes a 

fluorescently labeled DNA probe that hybridizes to a target sequence, allowing for 

visualization of specific DNA or RNA sequences via fluorescent microscopy (O’Connor, 

2008). In microbiome research, probes often target 16S rRNA and can either be broad 

spectrum at group levels such as domain, phylum, class, or order, or more specific at 

genus and species level (Amann & Fuchs, 2008). FISH has been used to visualize 

Wolbachia in organisms such as filarial nematodes (Bakowski et al., 2019) and Drosphila 

melanogaster (Simhadri et al., 2017), as well as various other bacterial groups in D. 

melanogaster (Akhtar et al., 2021), vaginal biofilms (Hardy et al., 2015), gastrointestinal 

tract (Hasegawa et al., 2017), and nematodes (Sinnathamby et al., 2018). In some cases, 

however, FISH has been unsuccessful when used in microbiome studies due to cross-

reactivity (Huys et al., 2008; Swidsinski et al., 2017) and requires confirmation of probe 

specificity prior to use but can be useful for visualizing localization of bacteria within an 

organism when successfully applied.  

 

4.2.2 Culturomics 

Bacterial culture methods were first developed in the late 19th Century with the 

advent of agar plates (Koch, 1881), but largely fell to the wayside for microbiome research 

once modern molecular techniques entered the scene (Greub et al., 2012; Bonnet et al., 

2020). Over the past decade, culturomics methods have made a resurgence as a 

complimentary method to metagenomic sequencing of microbiome components (Bilen, 

2020) and have resulted in the discovery of taxa never previously described in human gut 

microbiome studies (Lagier et al., 2012; Dubourg et al., 2014; Gouba et al., 2014). High-

throughput culturing techniques require a large number of cultures maintained for at least 

a month in many cases (Lagier et al., 2012), and also require the use of matrix-assisted 

laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry or a DNA 

sequencing method to specifically identify species present (Lagier et al., 2012; Diakite et 

al., 2020). Studies have used up to 212 different culture conditions in order to complete 
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culturomics studies (Lagier et al., 2012), although a more recent study has examined 

optimization strategies and suggests 25 culture conditions that can successfully isolate 

the majority of bacteria found in previous work (Diakite et al., 2020). Culturomics studies 

of the human microbiome have led to the discovery of over 100 new bacterial species and 

added an additional 500 species known to be associated with humans (Lagier et al., 

2018).  Outside of human research culturomics lags behind as a research method, 

although it has been used occasionally to study the microbiome of other organisms and 

effort is being made to develop the method for other systems and increase the number of 

species in international collections (Armanhi et al., 2018; Zehavi et al., 2018; Sarhan et 

al., 2019; Fenske et al., 2020; Pereira et al., 2020). 

 

4.2.3 Microarray assays 

Although they are not commonly used for microbiome applications, microarray 

assays have been developed for use in high resolution microbiome surveys. The Human 

Oral Microbe Identification Microarray is capable of detecting microbiome profiles at the 

phylum level as well as common genera found in human oral wash samples (Ahn et al., 

2011). Various microarrays have been developed for the human gut microbiome, 

including an array targeting 1,629 bacterial and archaeal species (Palmer et al., 2007), 

another targeting 775 bacterial species (Paliy et al., 2009), the Human Intestinal Tract 

Chip targeting 1,140 bacterial species (Rajilić-Stojanović et al., 2009), and the Human 

Gut Chip targeting 66 bacterial families (Tottey et al., 2013). Another microarray targeting 

bacterial genes that encode glycoside hydrolases and lyases was able to detect low-

abundance human gut bacteria that can be missed in metagenomic studies (El Kaoutari 

et al., 2013). Most recently, the Axiom Microbiome Array was developed to detect over 

12,000 species of viruses, bacteria, fungi, protozoa, and archaea (Thissen et al., 2019). 

These types of microarrays are rapid, cost-effective ways to analyze large numbers of 

microbiome samples and may become more commonplace in microbiome research as 

commercial options become available.  

 

4.2.4 Shotgun metagenomics 

Shotgun metagenomic sequencing shears all DNA in a sample into small 

fragments and sequences all of them, providing functional gene profiles as well as a high 

resolution of taxonomy for organisms present in the microbiome (Sharpton, 2014; Liu et 
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al., 2021). This method resolves some of the drawbacks of amplicon sequencing, such 

as PCR biases and variance in diversity due to primer choice, but is more expensive, has 

a large and complex dataset, and it can be difficult to determine which genome a given 

read came from (Sharpton, 2014; Ranjan et al., 2016; Laudadio et al., 2018).  

Nevertheless, shotgun metagenomics studies allow for the identification of archaea, 

viruses, virophages, and eukaryotes within the same sample and provides a greater 

chance of identifying bacteria to the strain level (Norman et al., 2014; Jovel et al., 2016). 

Studies using shotgun metagenomics have shown associations between air pollution and 

microbial diversity (Fouladi et al., 2020), subclinical mastitis in cattle and differentially 

abundant bacteria (Bhatt et al., 2012), gastric adenocarcinoma, reduced species 

richness, and enrichment of pathways associated with biosynthesis of 

lipopolysaccharides and L-arginine (Hu et al., 2018), to name a few. Additionally, shotgun 

metagenomics can be used for more specific purposes, such as foodborne pathogen 

(Yang et al., 2016) and human papillomavirus (Ma et al., 2014) surveillance. 

 

4.2.5 Metatranscriptomics 

In metatranscriptomics, total RNA is extracted from an area of interest and then a 

cDNA library is formed with ligated adapters to form a final library that can then be 

amplified, sequenced, and mapped to reference genomes to determine gene expression 

levels (Bashiardes et al., 2016). As a relatively new field in microbiome research, the 

number of studies using metatranscriptomics has increased, however there is a lack of 

reference genomes that can make these studies challenging, and data in public 

repositories sometimes lack metadata that limits the conclusions that can be drawn 

(Shakya et al., 2019). Nevertheless, metatranscriptomics studies have provided insight 

into the microbiome of many different systems. In humans, disease-associated oral 

microbiomes have been shown to have distinct, conserved differences in metabolism 

compared to healthy oral microbiomes (Jorth et al., 2014), inflammatory bowel disease-

associated microbiomes had differentially expressed genes that may influence clinical 

symptoms such as inflammation (Schirmer et al., 2018), among other findings (Bikel et 

al., 2015; Zhang et al., 2021b). Studies have also been completed in other systems such 

as the rumen microbiome (Jiang et al., 2016; Söllinger et al., 2018; He et al., 2019), foods 

(de Filippis et al., 2016; Jiang et al., 2016), and plants (Turner et al., 2013; Gonzalez et 

al., 2018).  
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4.2.6 Metabolomics 

Metabolomics is the comprehensive analysis of metabolites within a given 

biological specimen (Clish, 2015) and is another relatively new method used in 

microbiome research to provide functional data of microbe activity (Peisl et al., 2018; 

Zierer et al., 2018; Lee-Sarwar et al., 2020). This approach allows for a greater 

understanding of host-parasite interactions and dynamics such as transformation of 

nutrients and pollutants and can also provide biomarkers that predict or help diagnose 

disease and environmental stress (Aguiar-Pulido et al., 2016). Variances in differential 

abundances within the metabolome have been shown to correlate with visceral fat mass 

in humans (Zierer et al., 2018), inflammatory bowel disease status (Franzosa et al., 2019), 

and arsenic exposure (Lu et al., 2014). Changes in metabolite levels can also increase 

host susceptibility to pathogens (Theriot et al., 2014), and recently it was shown that the 

microbiome has the ability to affect the chemistry of all organs in mice (Quinn et al., 2020). 

Combining metabolomics analysis with the other described methods for assessing the 

microbiome will be an important path forward in order to gain an understanding of both 

microbiome form and function within the host organism.  

 

4.2.7 Metaproteomics 

Another method for studying the functional aspects of the microbiome is 

metaproteomics, which investigates the entire protein repertoire of a microbial community 

(Kolmeder & de Vos, 2014). After protein extraction and fractionation, mass spectrometry 

is used to analyze the masses of peptides and their fragments (Kolmeder & de Vos, 2014; 

Salvato et al., 2021). Protein identification can be challenging, however, due to incomplete 

databases for the millions of proteins that are identified in metaproteomic studies (Qin et 

al., 2010; Kolmeder & de Vos, 2014; Salvato et al., 2021). Nevertheless, as an emerging 

field in microbiome research, databases are only growing larger and the number of studies 

is steadily increasing (Maron et al., 2007; Salvato et al., 2021). Upregulation of microbial 

proteins related to oxidative antimicrobial activities has been shown to correlate with 

changes to microbial functions that are associated with inflammatory bowel disease 

(Zhang et al., 2008). In colorectal cancer patients, altered abundance of microbial proteins 

related to oxidative stress, iron intake and transport, and DNA replication, repair, and 

recombination have been shown to have differential abundances compared to healthy 

patients (Long et al., 2020). Mycotoxin ingestion in piglets has also been shown to alter 
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the metaproteome, altering the abundance of different proteins such as those related to 

oxidative stress and metabolism (Saenz et al., 2021). Along with the other methods, 

combining metaproteomics with metagenomics and other microbiome research methods 

can provide a deeper insight into the composition and function of the microbiome.  

  

4.3 PCR Primers 

There is currently an array of different PCR primers available for microbiome 

analysis, particularly for the 16S rRNA gene in bacteria (Liu et al., 2021), and there is not 

a consensus on which primers are the best to use. Generally, referring to studies that one 

would like to compare results to and using the same PCR primers is a good method in 

order to avoid differences in results that can arise from using different primer sets 

(Wasimuddin et al., 2020; Liu et al., 2021). The following section discusses the various 

primer sets that are available and used for microbiome studies. 

 

4.3.1 Bacteria 

The bacterial 16S rRNA gene has nine hypervariable regions, V1-V9, that alternate 

with highly conserved regions, thus allowing for the development of universal PCR 

primers for these regions (Gray et al., 1984; Soergel et al., 2012). Nearly fifty different 

primers have been used for bacterial 16S rRNA gene studies (Soergel et al., 2012), 

making comparisons across studies difficult because different primers have different 

biases. For example, the 27F/338R primer set covers the V1-V2 region and is biased 

against bifidobacterial genes, whereas the 515F/806R primer set targets the V4 region 

and amplifies sequences for both bacteria and archaea (Goodrich et al., 2014a). The 

341F/785R primer set, targeting the V3-V4 region, is one of the most commonly used 

primer sets for investigating microbial diversity due to its reproducible results and no 

obvious bias towards a specific species (Klindworth et al., 2013; Thijs et al., 2017; Fadeev 

et al., 2021). Studies have compared many of the primer sets and found that V4-V5 primer 

sets have more comparable results across sequencing platforms versus V1-V2 primers 

(Fouhy et al., 2016), and similar results compared to V3-V4 primers (Fadeev et al., 2021). 

Primer sets may also be combined for a single sample and aligned to make consensus 

sequenced contigs, allowing for higher resolution when analyzing microbiome data.  

 



44 
 

4.3.2 Archaea  

The domain Archaea consists of 2,392 genomes (Rinke et al., 2021) and is unique 

in that as a domain, its taxonomy is based primarily on small subunit rRNA genes. Like 

bacteria, the 16S rRNA gene is used for archaeal identification in microbiome studies 

(Bahram et al., 2019). Universal primers that were supposed to be Archaea-specific were 

shown to have mismatches as well as bias towards taxonomic groups within the domain 

(Baker et al., 2003; Bahram et al., 2019). The primer pair 340F/1000R was shown to have 

higher specificity and coverage for Archaea than other commonly used primer sets 

(Gantner et al., 2011). More recently for short amplicon sequencing, the primer pairs 

SSU1ArF/SSU520R and 340F/806rB, covering the V1-V2 and V4-V5 regions, have been 

recommended for good Archaeal coverage in amplicon sequencing metagenomic studies 

(Bahram et al., 2019). Like bacteria, multiple regions may be sequenced from a single 

sample and then aligned to form consensus sequences, allowing for more in-depth 

analysis of microbiome data. 

 

4.3.3 Fungi 

Fungal ITS genes are used for amplicon analysis because they are able to amplify 

a large range of targets within the diverse kingdom Eumycota (Martin & Rygiewicz, 2005). 

Specifically, the highly variable ITS1 and ITS2 sequences found between the small and 

large subunit coding sequences of the ribosomal operon are used for identification of fungi 

within microbiome samples (Martin & Rygiewicz, 2005; Liu et al., 2021). Ideally, the entire 

ITS would be sequenced in order to provide higher resolution date, but generally only the 

variable regions are analyzed. It has been found that using ITS1 alone may overestimate 

diversity and richness and when compared, ITS1 and ITS2 showed differences in taxa 

identified (Yang et al., 2018). Novel primers to increase taxonomic coverage for ITS1 have 

been developed (Usyk et al., 2017), but the ITS2 sequence may be a more suitable 

marker for richness and taxonomic identification (Yang et al., 2018). Overall, primer 

selection for identifying fungi in microbiome samples determines overall composition and 

diversity, which makes primer choice – particularly when comparing to other studies or 

combining data sets – essential (Li et al., 2020b). 
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4.4 Sequencing and Bioinformatics 

4.4.1 Sequencing Platforms 

The next steps in amplicon metataxonomic analysis are sequencing and 

bioinformatic analysis, both of which have various available platforms and databases. 

Sequencing platforms include the Roche 454 Genome Sequencer FLX+, Illumina 

MiSeqTM, Illumina HiSeq, PacBio® RS, and Life Technologies Ion Torrent PGMTM. 

Sequencing platforms have intrinsic biases, such as AT-rich sequence bias (Quail et al., 

2012), errors such as poly-base and substitution (Shendure & Ji, 2008; Liu et al., 2012; 

Ferrarini et al., 2013), quality scores, and read lengths (Allali et al., 2017). The most 

commonly used platforms for short read amplicon metataxonomic analysis in microbiome 

studies include Illumina MiSeqTM, Roche 454 Genome Sequencer FLX+, and Life 

Technologies Ion Torrent PGMTM (Lear et al., 2018). When compared, microbiome 

composition was consistent between all three platforms, although relative abundances 

varied (Allali et al., 2017). Again, as is a common theme with microbiome research, it is 

important to use consistent methods for combined datasets and take methods into 

consideration when comparing results between studies because many factors, including 

sequencing platform, can have an effect on the results.  

 

4.4.2 Sequencing Depth 

It is also important when choosing a sequencing method to ensure that enough 

sequencing depth will be achieved. Both the Illumina MiSeqTM and Life Technologies Ion 

Torrent PGMTM are capable of producing over 5 million reads in a single sequencing run 

(Di Bella et al., 2013). More reads are generally better, and thus studies should be set up 

to achieve the maximum number of reads that fit within a budget. Read number ranging 

from 25,000 to 75,000 reads per sample has been shown to effect composition and 

predictions of factors affecting the microbiome (Ramakodi et al., 2021) and it has also 

been shown that as read number increases, so does species richness (Dickie, 2010; 

Gihring et al., 2012). The Earth Microbiome Project only used samples with at least 50,000 

reads (Thompson et al., 2017) and the initial Human Microbiome Project had a mean of 

6,212 sequences per sample (The Human Microbiome Project Consortium, 2012b). On 

the Illumina MiSeqTM platform, a sequencing depth of 50,000 to 100,000 reads per sample 

is generally obtained, which is considered acceptable for most microbiome studies (Liu et 

al., 2021).  
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4.4.3 Bioinformatics 

A bioinformatics analysis pipeline combines numerous different software programs 

to complete analyses of complex datasets (Liu et al., 2021). In microbiome research this 

includes demultiplexing, quality control, clustering to operational taxonomic units (OTUs) 

or denoising to amplicon sequence variants (ASVs), and quantification (Liu et al., 2021). 

Several studies have compared the various software programs available for microbiome 

analysis. QIIME (Caporoso et al., 2010), UPARSE (Edgar, 2013), and DADA2 (Callahan 

et al., 2016) were compared for their ability to complete taxonomy assignments on the 

same dataset and it was found that UPARSE and DADA2 both yielded lower phylogenetic 

diversity than QIIME (Allali et al., 2017). QIIME and mothur (Schloss et al., 2009), both of 

which are all-in-one programs that trim, screen, align, and assign sequences to OTUs, 

have also been compared and it was found that both perform similarly for the most 

abundant taxa, but mothur produced higher richness for taxa with < 10% relative 

abundance (López-Garciá et al., 2018).  

The database that is used for taxonomic classification can also affect clustering 

and diversity analysis results. There are five taxonomies available for clustering: 

Greengenes (McDonald et al., 2012), SILVA (Yilmaz et al., 2014), Ribosomal Database 

Project (RDP) (Wang et al., 2007), National Center for Biotechnology Information (NCBI) 

(Federhen, 2011), and Open Tree of Life Taxonomy (OTT) (Hinchcliff et al., 2015). Each 

of the NCBI, SILVA, RDP, and Greengenes taxonomies have many taxa that are not 

shared with the others – at least 63% for all classification levels from phylum to genus 

(Balvočiūtė & Huson, 2017). NCBI shares more taxa with SILVA than the others, and also 

contains most of the SILVA, RDP, and Greengenes taxonomies (Balvočiūtė & Huson, 

2017). Another study using human oral microbiome data found that Greengenes, NCBI, 

RDP, and SILVA produced different taxa as high in ranking as phylum (Sierra et al., 2020). 

Greengenes retrieved the fewest unclassified OTUs and also identified uncommon 

genera, although misannotations can be an issue for this taxonomy as well as the others 

due to unverified specimen annotations (Sierra et al., 2020).  

 

4.5 Diversity Analysis 

Diversity analyses are used to compare microbiomes in order to determine 

differences in composition. The most commonly used are alpha and beta diversity, 
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although gamma and zeta diversity can also be used, albeit infrequently. There are 

numerous methods for determining these diversity measures, and the following section 

will define the diversity measures and methods of calculation. 

 

4.5.1 Alpha 

Alpha diversity, also known as within-sample diversity, is a measure of diversity 

within individual samples (Knight et al., 2018) and mean species diversity can be 

compared between groups to determine differences. There are many ways to calculate 

alpha diversity. The most basic alpha diversity measure is species richness, which is a 

strict count of the number of taxa within a given sample and does not take any other 

factors into consideration (Thukral, 2017). Richness indexes accounts for other factors, 

such as number of individuals in the sample and species abundance, and the most 

commonly used are Shannon’s and Simpson’s indexes (Thukral, 2017; Knight et al., 2018; 

Galloway-Peña & Hanson, 2020). Shannon’s index measures evenness of abundance 

and a higher value equates to higher diversity (Shannon, 1948). Simpson’s index 

measures the probability that two randomly selected individuals belong to the same group 

and a higher value indicates lower diversity (Simpson, 1949).  Some other methods 

include the Chao1 index, which measures richness accounting for the number of species 

and the number of individuals represented by each species (Chao, 1984; Chao et al, 

1993), and Faith’s phylogenetic diversity, which measures phylogenetic richness (Faith, 

1992).   

 

4.5.2 Beta 

Beta diversity, also known as between-sample diversity, is a measure of diversity 

between individuals and is used to measure differences in microbiome composition when 

comparing groups. Beta diversity is calculated by comparing feature dissimilarity and 

generating a distance matrix between all pairs of samples (Knight et al., 2018; Galloway-

Peña & Hanson, 2020). The Bray-Curtis dissimilarity is a quantitative measure that takes 

into account taxa abundance (Bray & Curtis, 1957), and unweighted Unifrac is a 

qualitative measure that only accounts for presence and absence of taxa (Lozupone & 

Knight, 2005; Lozupone et al., 2007). Weighted unifrac takes into account phylogenetic 

relatedness (Lozupone & Knight, 2005) and provide biological patterns, but cannot be 

compared to data that does not use a phylogenetic tree (Knight et al., 2018). Beta diversity 
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data is visualized using principal coordinate or component analysis that reduces distance 

matrix to two- or three-dimensional plots (Knight et al., 2018).  

 

4.5.3 Gamma 

Gamma diversity measures species diversity on a geographic scale and measures 

overall diversity for different ecosystems within a region, or in the case of the microbiome, 

measures the diversity for large-scale samples such as ecosystems and community 

treatment measures (Jr. Hunter, 2002). This measure has been used for different studies 

such as determining diversity between habitats for samples collected via the Earth 

Microbiome Project (Walters & Martiny, 2020), comparison of pooled and individual 

samples (Ray et al., 2019), and comparison between animal populations (Couch et al., 

2021). 

 

4.5.4 Zeta 

Zeta diversity is a relatively new concept and quantifies variation in taxa 

composition over space or time in order to show patterns in biodiversity, what causes 

them, and how they respond to environmental change (Hui & McGeoch, 2014; McGeoch 

et al., 2019). In a study of soil bacterial communities, zeta diversity was shown to decline 

between sample plots, indicating a low number of taxa shared between them and a high 

rate of turnover (Bay et al., 2020). This measure will be important for future studies 

regarding changes in microbiome communities over time and incorporating rare, 

intermediate, and common taxa into the model (Bay et al., 2020). 

 

4.6 Differential Abundance Analysis 

Differential abundance analysis aims to identify microbial taxa that explain 

differences between communities (Knight et al., 2018). Differences in library size after the 

sequencing process can cause a few problems in microbiome data analysis, particularly 

differential abundance analysis. More bacterial species tend to be observed with higher 

sequencing depth, and thus samples with smaller libraries will have inflated beta diversity 

measures (Weiss et al., 2017). Rarefaction is a process that is supposed to help deal with 

these differences by removing all samples below a minimum library size threshold and 

then taking a subsample of the remaining libraries so that they are equal in size (Lin & 

Peddada, 2020a). This method, however, has been criticized because it removes valid 
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data, which can include entirely removing rare taxa from the analysis (McMurdie & 

Holmes, 2014; Gloor et al., 2017). Zero inflation is also an issue when analyzing 

microbiome data. Microbiomes are unique to the individual and only a small number of 

taxa are shared between all members of the group while others are rare either due to truly 

being absent or not observed due to sequencing bias, leading to a large number of zero 

counts within the dataset (Xu et al., 2015). The following section describes some of the 

more common methods for dealing with these inherent issues in microbiome datasets. 

 

4.6.1 Distribution based tests 

A common approach for identifying differentially abundant taxa between groups is 

using nonparametric tests such as the Mann-Whitney U test or Kruskal-Wallis test, 

because microbiome data are not normally distributed (Weiss et al., 2017). These tests, 

however, are not appropriate for compositional data such as relative abundances, and so 

parametric models have been proposed using a generalized linear model (Paulson et al., 

2013b; McMurdie & Holmes, 2014; Weiss et al., 2017). The metagenomeSeq model uses 

a zero-inflated Log-Gaussian mixture model to help account for zero counts in microbiome 

data (Paulson et al., 2013b). DESeq2 (Love et al., 2014) and edgeR (Robinson et al., 

2010) are both methods that assume a negative binomial distribution, and corncob (Martin 

et al., 2020a) uses a beta-binomial distribution (Nearing et al., 2021).  

 

4.6.2 Compositional data analysis 

Microbiome data are inherently compositional because they are naturally 

described using probabilities or proportions such as relative abundance (Gloor et al., 

2017). Log-ratio transformations are used to make the data symmetrical and linear, thus 

providing information regarding abundances of features relative to each other (Gloor et 

al., 2017). Isometric log ratio transformation controls for false positives by testing for 

changes in log ratios between abundances (Egozcue et al., 2003; Knight et al., 2018). 

Some other examples of methods using log-ratio transformations include ANCOM 

(Mandal et al., 2015), and ALDEx2 (Fernandes et al., 2014), both of which are relatively 

conservative at identifying significantly differential abundant taxa (Weiss et al., 2017; 

Nearing et al., 2021), and ANCOM-BC (Lin & Peddada, 2020b), which corrects for bias 

due to differences in sampling across samples.  
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4.6.3 Linear discriminant analysis effect size 

Linear discriminant analysis effect size (LEfSe) is used to detect changes in 

relative abundances between two or more groups in order to discover biomarkers in 

metagenomic data (Segata et al., 2011). Statistically significant features are determined 

and then whether a feature is more abundant in all groups or just one is deciphered 

(Segata et al., 2011). A linear discriminant analysis is then used to estimate effect size. 

 

4.6.4 Which differential abundance analysis is best? 

With so many different methods for differential abundance analysis of microbiome 

data available, determining which to use can be challenging. A few papers have compared 

various methods using simulated and previously published data (Weiss et al., 2017; 

Calgaro et al., 2020; Nearing et al., 2021; Wallen, 2021), although there is no clear answer 

as to which is “best.” False discovery rates have been shown to be higher for edgeR, 

metagenomeSeq, and LEfSe and lower for corncob, ALDEx2, and ANCOM (Calgaro et 

al., 2020; Nearing et al., 2021). DESeq2 was shown to increase sensitivity for smaller 

datasets but had a high false discovery rate for larger sample sizes and uneven library 

size (Weiss et al., 2017). ANCOM was shown to work well for studies with more than 

twenty samples per group with a low false discovery rate (Weiss et al., 2017). Another 

study investigated agreement between methods, and it was found that ANCOM-BC and 

LEfSe had good agreement with other methods, whereas edgeR and metagenomeSeq 

did not, leading to the suggestion that using multiple methods and comparing results may 

be useful (Wallen, 2021). 

 

4.7 Microbiome Genome Wide Association Studies 

Genome wide association studies (GWAS) are used to compare genetic variants 

across genomes and determine which are associated with a specific trait or disease, such 

as obesity and autoimmune disease (Uffelmann et al., 2021). A microbiome GWAS 

(mGWAS) uses microbiome diversity metrics such as alpha and beta diversity or relative 

abundance as the response variable and genotype as the explanatory variable to identify 

genetic factors that may modulate the microbiome (Awany et al., 2019). The results of 

some of these types of studies were previously discussed in section 3.2.2. 

Two microbiome-specific methods have been developed for completing mGWAS 

analysis. MicrobiomeGWAS (Hua et al., 2016) uses linear regression and beta diversity 
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to identify host genetic variants associated with the microbiome and environment and the 

microbiome-association index (Rothschild et al., 2018) quantifies the overall association 

of the microbiome with host phenotype. There are many challenges involved in mGWAS 

analysis due to the complex nature of microbiome data and the numerous factors that can 

affect microbiome composition. Additionally, because microbiome data consists of 

hundreds of bacterial taxa, a reduction in statistical power may occur due to corrections 

for multiple tests such as permutation tests or a Bonferroni correction (Awany et al., 2019). 

When conducting mGWAS studies, it may be necessary to focus on only a subset of taxa 

or genetic variants, and it is crucial to have sufficient sample sizes to ensure appropriate 

statistical power (Awany et al., 2019).  
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CHAPTER 5. MATERIALS AND METHODS 

5.1 Parasites 

All parasites for this study were collected between August 2019 and November 

2021 from foals humanely euthanized as part of a regular research program under the 

University of Kentucky IACUC protocol 2012-1046. Intestinal content samples from the 

jejunum were also collected at necropsy. Parasites were placed into PBS immediately 

after removal from the small intestine, rinsed with water, and then placed into sterile PBS 

for further processing. Jejunal samples were snap frozen in liquid nitrogen and stored in 

an -80˚C freezer. 

 

5.1.1 Whole worm microbiota 

Three adult male, three adult female, three immature, eggs isolated from feces, 

and eggs isolated from female ovaries were collected from each of three foals. Parasites 

were serially washed in 70% ethanol and sterile water three times before being snap 

frozen in liquid nitrogen and stored in an -80˚C freezer until DNA extraction. Once thawed, 

a section from the center of adult parasites, determined by folding the worm in half and 

taking an approximately 2.5 cm section, was used for DNA extraction. Whole immature 

parasites were used for DNA extraction due to their small size. 

 

5.1.2 Gonad and intestinal microbiota 

A total of 46 adult Parascaris sp. (24 male and 22 female) were collected from 

three foals. The parasite surface was washed with 70% ethanol and then the worm was 

dissected using fresh, sterile scalpels. All other tools were sterilized with 70% ethanol. 

Gonads and intestines were dissected from each individual parasite and placed into sterile 

15mL tubes, snap frozen in liquid nitrogen, and stored in an -80˚C freezer. 

 

5.1.3 Egg isolation 

Parascaris eggs were isolated from fecal samples and ovaries of freshly collected 

female parasites using the following protocol. In order from top to bottom, sieves with 

mesh sizes of 841 μm, 425 μm, 150 μm, and 75 μm were stacked, and feces placed in 

the 841 μm sieve. The feces were washed until the water run off ran clear, and the final 

content of the 75 μm sieve were collected in 50 mL falcon tubes to the 7.5 mL mark for 
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as many tubes as necessary to collect all content in the sieve. The tubes were 

subsequently filled to the 50 mL mark with sugar salt solution (specific gravity 1.25), 

vortexed to mix, and then centrifuged at 300 x g for ten minutes. The top 20 mL of the 

samples were then filtered through 200 μm and 100 μm pluriStrainer© cell strainers 

(pluriSelect Life Sciences, Liepzig, Germany) to collect the eggs, rinsed with distilled 

water, and stored in 5 mL tubes in an -20˚C freezer for further analysis. 

Eggs were isolated from an additional six fecal samples using the previously 

described protocol, and then isolated further using the following protocol adapted from 

Norris et al., 2019. Samples were thawed overnight in the refrigerator at 4˚C, transferred 

to 15 mL conical tubes, and centrifuged at 300 x g for five minutes to form a pellet. Water 

was removed from the tubes down to the pellet, taking care not to disturb it. A total of 7.0 

mL of sugar salt solution at specific gravity 1.12 was added to each tube, and then 

pipetting down the side of the tube to minimize mixing, 7.0 mL of blue-dyed sugar salt 

solution (specific gravity 1.07) was also added to each tube. All tubes were then 

centrifuged at 800 x g for twenty minutes. The top 9 mL of fluid, down to the 6 mL line, 

was carefully removed and discarded. From the top down to the pellet, all remaining fluid 

was removed using a disposable pipette and strained through a 100 μm pluriStrainer© 

cell strainer (pluriSelect Life Sciences, Liepzig, Germany) to remove the sugar salt 

solution. Eggs were then removed from the strainer and placed into a 2 mL tube with a 

10% hypochlorite solution for two minutes to sterilize and decorticate the eggs. The eggs 

in bleach were again strained through the 100 μm cell strainer, rinsed twice with deionized 

water, and then placed into 2 mL tubes with deionized water. The tubes were centrifuged 

at 300 x g for five minutes, the top 500 μL of water removed to allow for expansion in the 

freezer, and then stored an -20˚C freezer for further analysis.  

 

5.2 Next Generation Sequencing 

5.2.1 DNA extraction 

DNA extraction was completed using the Zymo Quick-DNA Fecal/Soil Microbe Kit 

(Irvine, California) with the following modifications. First, samples were placed in a 2 mL 

MP Biomedicals (Santa Ana, California) Lysing Matrix A tube with 750 µL of 

BashingBeadTM Buffer and then placed in a Bead Ruptor 12 (Omni International, INC., 

Kennesaw, Georgia) for two 90-second rounds on high. Final elution was performed using 
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75 µL of 10 mM, pH 8.5, Tris-HCl Buffer (bioWORLD, Dublin, Ohio). DNA quantification 

was performed using the Qubit 2.0 (Thermo Fisher Scientific, Waltham, Massachusetts). 

 

5.2.2 Next generation sequencing library preparation and sequencing 

Library preparation for gonad, intestine, and whole worm samples was completed 

using the Illumina 16S metagenomic sequencing protocol (Illumina, 2013). Female gonad 

samples were additionally prepared using the Swift AmpliconTM 16S+ ITS Panel 

(Integrated DNA Technologies, Coralville, Iowa) following manufacturer’s instructions. 

Quantification was performed on an Agilent Technologies Stratagene Mx3000P (Santa 

Clara, California) using the CollibriTM Library Quantification Kit (Invitrogen, Waltham, 

Massachusetts) following manufacturer’s instructions and quality analysis was performed 

using the Bioanalyzer 2100 (Agilent Technologies, Santa Clara, California). Library 

pooling was completed following the respective protocols, and sequencing was performed 

with the Illumina MiSeqTM (San Diego, California) using the MiSeqTM reagent kit V3 2x300 

(Illumina, San Diego, California) at the University of Kentucky Genomics Core Laboratory. 

 

5.3 Transmission Electron Microscopy 

5.3.1 Sample preparation 

One adult female Parascaris spp. specimen was collected at necropsy, rinsed with 

PBS, and immediately placed into a solution of 3.5% glutaraldehyde and 4% 

paraformaldehyde in 0.1M Sorenson’s buffer for 48 hours. The parasite was then 

dissected to remove cuticle, intestine, and gonad and these tissues were processed as 

follows at the University of Kentucky College of Arts and Sciences Imaging Center. First, 

tissues were washed in a 0.1M Sorenson’s buffer and then dehydrated in graded ethanol 

solutions, from 50% to 100%, for ten minutes each, and finally dehydrated twice in 

absolute ethanol for fifteen minutes each. Samples were then placed twice in propylene 

oxide for fifteen minutes and infiltrated with 50% Epon-Araldite (Ted Pella Inc., Redding, 

California) resin and 50% propylene oxide under a 60-watt lamp overnight. The propylene 

oxide and resin mixture was poured off and tissues placed in fresh 100% Epon-Araldite 

resin in rubber molds for one hour, and finally embedded in molds for 48 hours at 60˚C. 
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5.3.2 Sectioning and staining 

Thick sections were cut on a Leica-Reichert Ultracut E (Leica Biosystems, Wetzlar, 

Germany) ultramicrotome with a glass knife at approximately 1-1.5 μm thickness, floated 

on a drop of distilled water on a class slide, and placed on a hot plate at a medium setting 

until dry. Toluidine blue was added to cover the sections for 10-15 seconds and then the 

sections were again rinsed with distilled water and dried on the hot plate.  

Thin sections were cut on the Leica-Reichert Ultracut E ultramicrotome using an 

ultra 45 DiATOME® diamond knife (Hatfield, Pennsylvania) at 80-90 nm thickness and 

placed on Ted Pella 300 mesh thin bar copper grids (Redding, California). The grids were 

then dried overnight in a 50˚C oven. The sample was then stained with a drop of uranyl 

acetate for five minutes, rinsed with distilled water, and then stained with a drop of lead 

citrate for two minutes followed by a final rise with distilled water. The grids were then 

dried and placed into a grid box for storage.  

   

5.3.3 Imaging 

All imaging took place at the University of Kentucky College of Engineering 

Electron Microscopy Center using the TalosTM F200X TEM (Thermo Fisher Scientific, 

Waltham, Massachusetts).  

 

5.4 Bacterial Cultures 

5.4.1 Sample collection 

Three adult female Parascaris spp. were collected from each of two foals at 

necropsy and immediately washed in PBS and then placed into 70% ethanol. Each 

parasite was dissected using tools washed in 70% ethanol and a fresh sterile scalpel. The 

gonad was carefully removed so as not to perforate the intestine, placed into an 

autoclave-sterilized petri dish, rinsed with PCR-grade water, and placed into a sterile 15 

mL conical tube. PCR-grade water was placed into a sterile 15 mL conical tube and all 

tools used for dissection were dipped into the water to act as a negative control. Samples 

were then submitted to the bacteriology section of the University of Kentucky Veterinary 

Diagnostic Laboratory for culturing.  
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5.4.2 Culturing 

Gonads were macerated using an autoclave-sterilized mortar and pestle with 6 mL 

of sterile tryptic soy broth (TSB) enrichment. Approximately 10 µL of sample emulsion 

was inoculated onto each solid agar media plate for culture under different environmental 

conditions. Aerobic cultures were conducted using RemelTM blood agar, 5% SB, TSA 

(BAP; Thermo Fischer, Waltham, Massachusetts), RemelTM EMB agar, Levine (EMB), 

Eugon chocolate agar (ECA; Biomed Diagnostics, Inc., White City, Oregon) and RemelTM 

Columbia CNA agar (CNA) plates incubated at 28˚ +/- 2˚C; microaerophilic cultures using 

BAP, EMB, ECA, and CNA plates incubated at 28˚ +/- 2˚C in a humidified environment 

with 8% +/- 2% CO2; anaerobic cultures using BAP, Brucella blood agar (BRU; Anaerobe 

Systems, Morgan Hill, California), and ECA plates in an AnaeroPouch® System 

anaerobic pouch jar (Mitsubishi Gas Chemical Company, Inc., Tokyo, Japan); and fungal 

cultures using BAP, BD BBLTM Sabouraud dextrose agar (SAB; Becton, Dickinson, and 

Company, Franklin Lakes, New Jersey) and MycoselTM mycrobiotic agar (MYCO; Becton, 

Dickinson, and Company, Franklin Lakes, New Jersey) plates incubated at 28˚ +/- 2˚C.  

Aerobic and microaerophilic plates were examined for growth daily for fourteen 

days followed by another examination at day 30, anaerobic were examined after five days 

and at day 30, and fungal cultures were examined daily for 30 days. Isolated bacteria 

were identified using a Bruker Matrix-Assisted Laser Desorption/Ionization Time-of-Flight 

(MALDI-TOF) mass spectrometer (Billerica, Massachusetts) and fungi were identified via 

direct examination using a lactophenol aniline blue wet mount. 

 

5.5 Data Analysis 

5.5.1 Sequence processing 

Raw paired 16S amplicon sequence data was converted into and retrieved as fastq 

files from the Illumina BaseSpace (https://basespace.illumina.com) interface using an 

Apple Mac Pro (Cupertino, California) running macOS High Sierra 10.13.6. Unless 

otherwise noted, default settings were used. Fastq quality was assessed, and adapter 

sequences and low-quality reads were removed using dada2 (1.22.0; Callahan et al., 

2016). A conservative minimum read length of 250 nucleotides was imposed for all reads. 

R (4.1.2; R Core Team, 2021), BiocManager (1.30.16; Morgan, 2019) and Bioconductor 

libraries BiocStyle (2.22.0; Oleś, 2021a), phyloseq (1.38.0; McMurdie & Holmes, 2013), 

DECIPHER (2.22.0; Wright, 2016), phangorn (2.8.1; Schliep et al., 2017), decontam 

https://basespace.illumina.com/
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(1.140; Davis et al., 2018) as well as standard R libraries ggplot2 (3.3.5; Wickham, 2016), 

gridExtra (2.3; Baptiste, 2015), and knitr (1.37; Xie, 2020) were used in amplicon 

sequence analysis. The decontam package removed common contaminants in the data 

using control sample and DNA quantification data. The plotQualityProfile function 

provided by the dada2 R package was used to visualize a summary of the distribution of 

quality scores for a selection of forward and reverse reads and assess quality thresholds. 

The function filterAndTrim was used to filter paired reads. In order to reduce computation 

time by reducing redundant comparisons, the derepFastq function was used to 

dereplicate amplicon sequences contained within the filtered data, producing a series of 

“unique sequences” with corresponding “abundance” estimates. Error rates were 

estimated using the learnErrors function and plotted using the plotErrors function to 

assess if error rates were reasonably well-estimated. Samples were clustered and 

denoised using the dada function, reducing sample error, and inferring membership 

composition of the samples. Paired reads were merged, tabularized, and chimeric 

sequences were removed using the mergePairs, makeSequenceTable, and 

removeBimeraDenovo functions. Phyloseq and the SILVA Non-redundant rRNA 

Sequence Library (v132; Quast et al., 2013; Yilmaz et al., 2014) were used to analyze 

microbiome data and assign taxonomic rankings. All ASVs found in control samples, 

identified as Eukaryota, or without a named phylum were removed from downstream 

analysis.  

 

5.5.2 Diversity analysis 

Prior to conducing diversity analyses, all abundance counts were converted to 

relative abundance by aggregating ASV data to genus and then dividing genus 

abundance counts by total reads for a particular sample. Diversity analysis was conducted 

on relative abundance data using the vegan (2.5-7; Oksanen et al., 2020) package for R. 

Alpha diversity was calculated using both the Shannon and Simpson diversity indexes. 

Beta diversity was calculated using the Bray-Curtis dissimilarity and was visualized using 

principal coordinate analysis (PCoA). Statistical significance was tested for beta diversity 

using a beta-diversion calculation which was then tested for significance using an ANOVA 

with Tukey correction. Core microbiomes were determined using a > 0.5% relative 

abundance in > 20% of the samples for whole and organ microbiome samples, and a > 

0.5% relative abundance in > 90% of samples for the female gonad only study, using the 

phyloseq, knitr, and microbiome (1.16.0; Lahti & Shetti, 2019) packages in R. 
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5.5.3 Statistical analysis 

Alpha diversities were tested at the taxon level for normality using the Shapiro-Wilk 

test. All normal distributions were then tested for statistical significance using an ANOVA 

with Tukey adjustment, and all nonparametric distributions were tested using the Kruskal-

Wallis and Dunn’s tests with Bonferroni correction. Statistical analysis was completed in 

R with the dplyr (1.0.8; Wickham et al., 2022), lsmeans (2.30-0; Length, 2016), and FSA 

(Ogle et al., 2022) packages with α = 0.05. 

 

5.5.4 Differential abundance analysis 

Differential abundance analysis was completed using four different methods that 

were then compared to determine commonalities in differentially abundant taxa. This 

analysis was completed in R using the tidyverse (1.3.1; Wickham et al., 2019), phyloseq, 

edgeR (3.36.0; Robinson et al., 2010), DEFormats (1.22.0; Oleś, 2021b), DESeq2 

(1.34.0; Love et al., 2014), apeglm (1.16.0; Zhu et al., 2018), corncob (0.2.0; Martin et al., 

2020a), ANCOMBC(1.4.0; Lin & Peddada, 2020b), eulerr (6.1.1; Micallef & Rodgers, 

2014), and metagenomeSeq (1.36.0; Paulson et al., 2013a), libraries. The four differential 

abundance analysis methods used were ANCOM-BC, DESeq2, corncob, and 

metagenomeSeq, and results were compared using a Venn diagram using eulerr.  

 

5.5.5 Consensus sequences 

For the dataset produced using the Swift Panel, an in-house pipeline closely based 

on the Swift 16S SNAPP analysis workflow (https://github.com/swiftbiosciences/16S-

SNAPP-py3) was run using the RDP Taxonomy (v18; Wang et al., 2007) database after 

sequence processing. The outputted consensus sequences were then searched against 

the curated NCBI Non-redundant 16S rRNA Database using blastn v2.9.0+ 

(https://blast.ncbi.nlm.nih.gov/). An in-house R script utilizing the NCBI efetch tool (16.6; 

Sayers, 2009) was used to convert accession numbers to genus and species 

classifications.  

Consensus sequences were filtered to keep only those at least 500 bp in length. 

The BLAST E-score and percent identity were used in conjunction to determine taxonomic 

assignment. The E-score is the number of hits with a similar quality score that can be 

found by chance (Scholz, 2022), and a lower score means that there are a small number 

https://github.com/swiftbiosciences/16S-SNAPP-py3
https://github.com/swiftbiosciences/16S-SNAPP-py3
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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of high-quality hits for a given sequence within the database. A genus level cut off of ≥ 

95% and a conservative species-level cut off of ≥ 99% were used for percent identity 

(Stackebrandt & Goebel, 1994; Rossi-Tamisier et al., 2015). 

 

5.5.6 Phylogenetics 

An NCBI GenBank (https://www.ncbi.nlm.nih.gov/nuccore/) search was conducted 

for genera used in phylogenetic analysis using the search term “genus name 16S 

ribosomal RNA,” and submissions within the 1200 – 1600 bp liner DNA range, along with 

an E. coli strain for use as an outgroup, were selected for use in phylogenetic 

comparisons. Sequences were aligned using Clustal Omega (McWilliam et al., 2013) and 

then trimmed and redundant sequences removed using Jalview (2.11.2.1; Waterhouse et 

al., 2009). Phylogenetic trees were created in FastME 2.0 (Lefort et al., 2015) using 

neighbor joining (Saitou & Nei, 1987) and Kimura two parameter model (Kimura, 1980) 

as previously described (Artuso et al., 2021a) with a 1,000-replicate bootstrap, and finally 

visualized in iTOL (6.5.2; Letunic & Bork, 2021). 

 

5.5.7 TEM image analysis 

TEM image analysis was completed in collaboration with Dr. John Shields, an 

expert in ultrastructure from the University of Georgia. Images from previously conducted 

nematode ultrastructure studies that included mitochondria were collected and can be 

seen in Figure 5.1 and permission for reuse information can be found in Table S8.1. These 

images were then used to compare to Parascaris spp. TEM images and to set criteria for 

determining whether structures were mitochondria or candidate bacteria. Criteria for 

identifying mitochondria included an oblong (ex. Figure 5.1K) or round (ex. Figure 5.1O) 

shape, and the presence of irregularly spaced tubular cristae. Candidate bacteria were 

objects that did not meet criteria for mitochondria and were similar in size to Wolbachia 

(~ 600 nm x 890 nm; Manoj et al., 2021) and Weissella (~ 710 nm x 1.4 μm; Sinnathamby 

et al., 2018), both of which have previously been described as intracellular symbionts of 

parasitic nematodes. 

 

https://www.ncbi.nlm.nih.gov/nuccore/
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Figure 5.1: Examples of mitochondria shape and cristae structure, mitochondria from Caenorhabditis elegans, and 
mitochondria found in various other nematodes. A (Zick et al., 2009) and B (Pánek et al., 2020) provide examples of different 
mitochondrial cristae structures in eukaryotes. C – J depict transmission electron microscopy (TEM) images of mitochondria 
from different species of nematode and K – S show TEM images of mitochondria in C. elegans. M also shows bacteria within 
C. elegans. C (Foor, 1972) scale bar = 1 μm, mitochondria = M; D (Mehlhorn & Harder, 1997) 18,000 x, MI; E (Mehlhorn & 
Harder, 1997) 25,000 x, MI; F (Bruňanská, 1994) 0.35 μm, m; G, H, J (Fellowes et al., 1999) 1 μm, Mi; I (Yushin & Coomans, 
2005) 1 μm, mc; K, P (Hall et al., 1999) 5 μm, m; L (Sant’anna et al., 2013) 20 μm, mt; M (Hedgecock & Thomson, 1982) 2 
μm; N (Tan et al., 2008) m, 500 nm; O (Byrne et al., 2019) 200 nm, m; Q (Morsci et al., 2016) 0.2 μm, arrows; R (Clayes et 
al., 2004) 1 μm, MIT.  
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CHAPTER 6. RESULTS 

6.1 Sequencing Results 

In total, three sequencing runs were completed on the Illumina MiSeqTM. The first 

run included all whole worm, gonad, and intestinal specimens for a total of 129 samples 

and yielded 11.24 gigabases (Gb) with 87.57% passing filter. After processing through 

the decontam run, 7,785,001 reads remained with a mean of 60,349 reads per sample 

(range: 45 – 308,386).  

The second run included female gonad samples run in duplicate for a total of 44 

samples and yielded 12.23 Gb with 94.89% passing filter. Post-decontam, 9,060,450 

reads remained with a mean of 192,776 reads per sample (range: 987 – 310,195). 

 The final run included the female gonad samples used with the Swift kit for a total 

of 26 samples and yielded 9.44 Gb with 96.33% passing filter. After running decontam, 

1,548,294 reads remained with a mean of 59,550 reads per sample (range: 377 – 

114,453). 

 

6.2 Whole Worm Microbiota 

After final sequencing processing, a total of 132,375 reads remained for 31 whole  

 

Table 6.1: Most prevalent taxa for whole worm microbiota samples. 

Classification Count 
(n = 26) 

Prevalence 
(%) 

Genus Lactobacillus 26 100.00 

 Sarcina 25 96.15 

 Streptococcus 23 88.46 

 Clostridium sensu stricto 1 21 80.77 

 Veillonella 20 76.92 

 Mycoplasma 15 57.69 

 Hydrotalea 13 50.00 

Family Lactobacillaceae 26 100.00 

 Clostridiaceae 1 25 96.15 

 Burkholderiaceae 23 88.46 

 Streptococcaceae 23 88.46 

 Veillonellaceae 23 88.46 

 Rhizobiaceae 20 76.92 

 Chitinophagaceae 18 69.23 

 Moraxellaceae 15 57.69 

 Mycoplasmataceae 15 57.69 

 Sphingomonadaceae 14 53.85 

 Enterobacteriaceae 13 50.00 

 Family XI 13 50.00 

Phylum Firmicutes 26 100.00 

 Proteobacteria 26 100.00 

 Bacteroidetes 22 84.62 

 Actinobacteria 18 69.23 

  Tenericutes 15 57.69 
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worm microbiota samples with a mean of 4,270 reads per sample (range: 225 – 22,940). 

Prior to downstream analysis, all samples with less than 1,000 reads per sample were 

removed, along with the single sample of isolated eggs, leaving 26 samples (3 horse, 7 

male, 8 female, 8 immature) for diversity and differential abundance analysis. Overall, a 

total of 22 phyla, 118 families, and 232 genera were identified in the whole worm 

microbiota samples. The most prevalent members of each of these taxonomic levels are 

presented in Table 6.1. 

 

6.2.1 Diversity analysis 

Overall, there were no significant differences between life stages and the horse 

jejunum for either alpha or beta diversity (Figure 6.1). When comparing samples for 

shared genera, only 28 were common between the four groups, and each group had at 

least twenty unique genera (Figure 6.2). A list of taxa found only within worms or found 

within worms with a higher relative abundance compared to the horse are presented in 

Table 6.2. Only one, Pelomonas, had significantly different relative abundance based 

upon sex, with males having a significantly higher relative abundance than immatures (p 

= 0.0449), where the genus was not detected. 

 

Table 6.2: Taxa found within more than one worm specimen, or within worms with a higher 
relative abundance in comparison to horse jejunum. RA = relative abundance, CI = 
confidence interval 

Classification Sex Count 
Prevalence Mean RA 95% CI 

(%) (%) (%) 
Bacillus I 3 37.50 0.82 (-0.62 - 2.25) 

p = 0.4351 M 2 28.57 0.17 (-0.13 - 0.48) 

 F 1 12.50 0.04 (-0.05 - 0.14) 
F: Mycoplasmataceae F 4 50.00 0.09 (0.01 - 0.18) 

p = 0.6185 M 2 28.57 0.21 (-0.19 - 0.61) 

 I 2 25.00 0.07 (-0.03 - 0.18) 
F: Veillonellaceae F 2 25.00 0.16 (-0.13 - 0.45) 

p = 0.7741 M 1 14.29 0.02 (-0.02 - 0.05) 

 I 1 12.50 0.31 (-0.38 - 1.00) 
Fusobacterium F 3 37.50 0.19 (-0.06 - 0.44) 

p = 0.5902 M 2 28.57 0.15 (-0.08 - 0.39) 

 I 1 12.50 0.11 (-0.13 - 0.35) 
Janthinobacterium I 5 62.50 3.52 (-0.63 - 7.66) 

p = 0.1552 M 3 42.86 0.55 (-0.41 - 1.50) 

 F 3 37.50 0.63 (-0.13 - 1.39) 
Nocardioides I 4 50.00 0.75 (-0.07 - 1.57) 
p = 0.2517 M 2 28.57 0.21 (-0.10 - 0.52) 

 F 1 12.50 0.13 (-0.16 - 0.41) 
Pelomonas M 4 57.14 0.44 (0.04 - 0.84) 
p = 0.0379 F 1 12.50 0.12 (-0.14 - 0.38) 

Sarcina M 7 100.00 22.13 (4.91 - 39.36) 
p = 0.3540 H 3 100.00 9.29 (-3.35 - 21.94) 

 F 8 100.00 27.94 (14.28 - 41.60) 
  I 7 87.50 25.37 (6.60 - 44.14) 

I = Immature (n = 8), M = Male (n = 7), F = Female (n = 8), H = Horse (n = 3) 
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Figure 6.1: Alpha and beta diversity for whole worm microbiota. A – C are alpha diversity box plots showing both Shannon 
and Simpson alpha diversity, where • denotes outliers. D – F are beta diversity principal coordinate analysis plots with 95% 
confidence ellipses. Data is grouped by taxonomic level. A, D = Phylum, B, E = Family, and C, F = Genus. 
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Figure 6.2: Venn diagram showing number of shared genera between all four 
study groups for whole worm samples. 

 

6.2.2 Core microbiota 

Heat plots generated to visualize the core microbiota for each group are shown in 

Figure 6.2 Comparison of these core microbiota (Figure 6.3) showed that at least two core 

taxa were unique to each group. 
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Figure 6.3: Core microbiota heat plots showing genera with a 
prevalence of at least 50% for A female parasites, B immature parasites, 
and C male parasites. 
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Figure 6.4: Venn diagram showing number of shared core taxa 
across all groups in whole worm microbiota samples. 

 

6.2.3 Differential abundance analysis 

Only ANCOM-BC and DESeq2 returned any differentially abundant taxa for the 

whole worm samples, and none of them were shared. The DESeq2 results indicated that 

Enterococcus was differentially abundant across samples (p = 0.0058) and ANCOMBC 

indicated that P: Proteobacteria (p = 0.0003) and Sphingomonas (p = 0.0003) were 

differentially abundant between female parasite and horse jejunum samples. 

 

6.3 Gonad and Intestinal Microbiota 

After final sequence processing, a total of 292,667 reads remained for 95 intestinal 

and gonad samples with a mean of 3,080 reads per sample (range: 0 – 11,148). Prior to 

downstream analysis, all samples with less than 200 reads were removed, leaving 83 

samples (3 horse jejunum (HJ), 20 male gonad (MG), 23 male intestine (MI), 15 female  
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Table 6.3: Table of most prevalent taxa in organ microbiota study. 

  
Classification 

Count         
(n = 83) 

Prevalence 
(%) 

Genus Lactobacillus 77 92.77 

 Mycoplasma 61 73.49 

 Pseudomonas 59 71.08 

 Sarcina 57 68.67 

 Clostridium_sensu_stricto_1 53 63.86 

 Sphingomonas 53 63.86 

 Streptococcus 52 62.65 

 Reyranella 51 61.45 

 F: Mycoplasmataceae 50 60.24 

 Veillonella 49 59.04 

 Candidatus_Paracaedibacter 44 53.01 

Family Lactobacillaceae 77 92.77 

 Clostridiaceae_1 66 79.52 

 Burkholderiaceae 64 77.11 

 Mycoplasmataceae 64 77.11 

 Pseudomonadaceae 59 71.08 

 Streptococcaceae 55 66.27 

 Sphingomonadaceae 53 63.86 

 Reyranellaceae 51 61.45 

 Rhizobiaceae 51 61.45 

 Veillonellaceae 51 61.45 

 Enterobacteriaceae 47 56.63 

 Chitinophagaceae 46 55.42 

 Paracaedibacteraceae 44 53.01 

Phylum Proteobacteria 81 97.59 

 Firmicutes 80 96.39 

 Tenericutes 64 77.11 

 Bacteroidetes 62 74.70 

  Actinobacteria 45 54.22 

 

gonad (FG), 22 female intestine (FI)) for diversity and differential abundance analysis. 

Overall, a total of 22 phyla, 145 families, and 294 genera were identified in the parasite 

gonad and intestinal microbiota samples. The most prevalent members of each of these 

taxonomic levels are presented in Table 6.3. 

 

6.3.1 Diversity analysis 

Alpha diversity was significantly different based upon both sex and location at all 

three taxonomic rankings (Figure 6.5 A-C). Simpson alpha diversity was significantly 

different between FI and MG at phylum (p < 0.0001), family (p = 0.0058), and genus (p = 

0.0018) levels and FG and FI (p < 0.0001) and FI and MI (p = 0.0072) at the phylum level. 

Shannon alpha diversity was significantly different between FI and FG (p < 0.0001), HJ (p 

= 0.0483), MG (p < 0.0001), and MI (p = 0.0007) at the phylum level, FI and MG (p = 

0.0003) at the family level, and FG and MG (p = 0.0130), FI and HJ (p = 0.0383), and FI 

and MG (p = 0.0001) at the genus level.  

 Beta diversity was significantly different between FI and FG (p = 0.0377) at the 

phylum level, MG and FG (p = 0.0010), FI (p = 0.0174), and HJ (p = 0.0430), and FG and 
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MI (p = 0.0061) at the family level, and MG and FG (p = 0.0006), MI and FG (p = 0.0093), 

and MG and FI (p = 0.0041) at the genus level. While not statistically significant based 

upon the alpha value set for this study, beta diversity tended to differ between MI and FI 

(p = 0.0560) and MG and HJ (p = 0.0578). 

 

 

Figure 6.5: Alpha and beta diversity for worm organ microbiota. A – C are alpha diversity box plots showing both Shannon 
and Simpson alpha diversity, where • denotes outliers and same letters indicate significant differences. D – F are beta 
diversity principal coordinate analysis plots with 95% confidence ellipses. Data is grouped by taxonomic level. A, D = 
Phylum, B, E = Family, and C, F = Genus. 

 

Comparison of all genera within groups indicated 23 shared genera across all 

groups and at least 8 unique genera for each group (Figure 6.6). A summary of taxa found 
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only within worms or found within worms with a higher relative abundance compared to 

the horse are presented in Table 6.4. All genera had significant differences when tested 

with Kruskal-Wallis. A full table of p-values resulting from Dunn’s testing can be found in 

Table S8.2. 

 

Figure 6.6: Venn diagram showing number of shared genera for each study 
group in the organ microbiota samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 
 

 

Table 6.4: Taxa found at a prevalence of ≥ 50% within worms only, or with a higher relative 
abundance compared to the horse. RA = relative abundance and CI = confidence interval. 

Classification Location Count 
Prevalence Mean RA 95% CI 

(%) (%) (%) 

Aminobacter HJ 2 66.67 3.61 (3.50 - 3.71) 

p = 0.0086 MI 13 56.52 1.47 (1.42 - 1.52) 
 

FG 8 53.33 5.86 (5.41 - 6.30) 
 

FI 9 40.91 0.40 (0.32 - 0.49) 
 

MG 2 10.00 1.07 (-0.34 - 2.47) 

Bacillus MG 13 65.00 1.01 (0.95 - 1.06) 

p < 0.0001 MI 7 30.43 0.15 (0.11 - 0.18) 
 

FI 4 18.18 0.10 (0.03 - 0.16) 

F: Mycoplasmataceae FG 13 86.67 1.23 (0.88 - 1.59) 

p < 0.0001 MI 18 78.26 0.67 (-0.15 - 1.49) 
 

FI 16 72.73 0.16 (-4.87 - 5.20) 
 

MG 3 15.00 0.09 (-2.07 - 2.25) 

Gemella MI 14 60.87 0.59 (0.42 - 0.75) 

p = 0.002 FI 13 59.09 0.51 (0.37 - 0.66) 
 

MG 5 25.00 0.24 (0.02 - 0.47) 
 

FG 1 6.67 0.05 (-0.08 - 0.18) 

Janthinobacterium MG 17 85.00 5.02 (4.98 - 5.07) 

p < 0.0001 HJ 2 66.67 0.92 (0.75 - 1.09) 
 

MI 9 39.13 0.72 (0.66 - 0.77) 
 

FG 5 33.33 4.32 (4.24 - 4.40) 
 

FI 4 18.18 0.24 (0.16 - 0.32) 

Ralstonia MI 16 69.57 1.06 (1.05 - 1.07) 

p = 0.0041 FG 9 60.00 2.28 (2.27 - 2.30) 
 

MG 10 50.00 1.61 (1.60 - 1.63) 
 

HJ 1 33.33 0.11 (0.09 - 0.13) 
 

FI 5 22.73 0.14 (0.11 - 0.17) 

Reyranella HJ 3 100.00 3.01 (2.97 - 3.05) 

p < 0.0001 FG 14 93.33 12.16 (12.13 - 12.19) 
 

MI 18 78.26 5.23 (5.20 - 5.27) 
 

FI 13 59.09 0.90 (0.89 - 0.90) 
 

MG 3 15.00 1.21 (1.21 - 1.22) 

Sphingomonas MG 17 85.00 4.91 (4.84 - 4.98) 

p < 0.0001 MI 17 73.91 2.70 (2.65 - 2.75) 
 

HJ 2 66.67 1.93 (1.88 - 1.98) 

 FG 9 60.00 8.67 (8.59 - 8.75) 

  FI 8 36.36 0.37 (0.32 - 0.43) 
FG = female gonad (n = 15), FI = female intestine (n = 22), HJ = horse jejunum (n = 3), MG = male gonad (n = 20), MI = male 
intestine (n = 23) 

 

 

6.3.2 Core microbiota 

Heat plots generated to visualize the core microbiota for each group are shown in 

Figure 6.7. Comparison of these core microbiota (Figure 6.8) indicate unique core taxa 

for MG and MI, and a total of four shared core taxa across all groups.  
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6.3.3 Differential abundance analysis 

All four differential abundance analysis methods returned results for the organ 

data. ANCOM-BC and metagenomeSeq returned unique results, and there were two taxa 

shared across all four methods (Figure 6.9). Sarcina was differentially abundant across 

all four methods with p < 0.0001 and Veillonella was differentially abundant for DESeq2 

and ANCOM-BC with p < 0.0001, corncob with p = 0.0008, and metagenomeSeq with p 

= 0.0118. 

 

 

Figure 6.7: Core microbiota heat plots showing genera with at least 50% prevalence for A female gonad, B female 
intestine, C male gonad, and D male intestine 
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Figure 6.8: Venn diagram showing number of shared core taxa for 
each group in organ microbiota samples. 

 

 

Figure 6.9: Venn diagram showing number of shared results 
between four different differential abundance analyses for 
organ microbiota samples. 

 

 

6.4 Female Gonad 

After final sequence processing, a total of 731,970 reads remained for 44 female 

gonad samples with a mean of 16,636 reads per sample (range: 0 – 26,364). Prior to 

downstream analysis, all samples with less than 10,000 reads per sample were removed, 
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leaving a total of 40 samples. Female gonad samples were run in duplicate for this 

particular run, and each sample was represented at least once in the sample set. Overall, 

a total of 15 phyla, 70 families, and 113 genera were identified in the female gonad 

samples.  

A total of 579 consensus sequences were identified using the Swift 16S SNAPP 

analysis workflow, and after removing sequences shorter than 500 bp, a total of 221 

(parasite = 133; horse = 88) consensus sequences remained with an average length of 

609 bp (range: 522 – 944).  

 

6.4.1 Diversity analysis and core microbiota 

Alpha diversity was significantly different between samples from horse 260 and 

horse 66 (Figure 6.10) for both Shannon (p = 0.0073) and Simpson (p = 0.0098) diversity 

indices at the genus level. A heat plot was generated to visualize the core microbiota for 

the female gonad samples and is shown in Figure 6.11. 

 

 

 

 

Figure 6.10: Box plot showing alpha diversity of female gonad samples 
grouped by horse. Same letters indicate significant differences and • 
indicate outliers. 
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Figure 6.11: Heat map showing core genera for female gonad samples. 

 

 

Table 6.5: Genus and species level identifications from female 
gonad consensus sequences. 

Classification 
Mean 

Length (bp) 

Genus Aminobacter 532 

 Aquabacterium 546 

 Brachybacterium 532 

 Clostridium 582 

 Kocuria 525 

 Lactobacillus 748 

 Ligilactobacillus  638 

 Limosilactobacillus 604 

 Mesorhizobium 576 

 Mycobacterium 525 

 Pantoea 685 

 Pseudomonas 757 

 Ralstonia 576 

 Reyranella 547 

 Sarcina 659 

 Staphylococcus 525 

 Streptococcus 524 

Species Acinetobacter schindleri 525 

 Aquabacterium parvum 525 

 Clostridium butyricum 525 

 Clostridium paraputrificum 525 

 Hydrotalea flava 525 

 Labrys wisconsinensis 525 

 Ligilactobacillus equi 525 

 Ligilactobacillus hayakitensis 525 

 Limosilactobacillus equigenerosi 525 

 Ralstonia pickettii 532 

 Reyranella aquatilis 529 

  Sarcina maxima 532 
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6.4.2 Consensus sequences 

After processing parasite consensus sequences based on E-score and percent 

identity, 31 sequences were identified to species level, 75 to genus level, 22 with a percent 

identity < 95%, and five that were unable to be identified due to an abundance of identical 

hits. Genus and species level identifications are summarized in Table 6.5 and full data 

can be found in Table S8.3. 

 

6.4.3 Phylogenetic comparisons 

Phylogenetic trees were constructed for consensus sequences identified as 

belonging to the genera Limosilactobacillus, Ligilactobacillus, Aminobacter, and 

Reyranella (Table 6.6). After trimming and removing redundant sequences, 27 specimens 

remained for Limosilactobacillus, 32 for Ligilactobacillus, 27 for Aminobacter, and 22 for 

Reyranella. The final sequences encompass the V3, V4, and V6-V9 hypervariable regions  

 

Table 6.6: Summary of consensus sequences used for phylogenetic 
analysis. 

ASV ID Length 
(bp) 

S001567179 Aminobacter sp. ParFG 511 

S003063129 Reyranella sp. ParFG 506 

S000901488 Ligilactobacillus sp. ParFG01488 469 

S001792808 Ligilactobacillus sp. ParFG92808.11 469 

S001792808 Ligilactobacillus sp. ParFG92808.8 469 

S003560971 Ligilactobacillus sp. ParFG60971.5 469 

S003560971 Ligilactobacillus sp. ParFG60971.4 469 

S003560971 Ligilactobacillus sp. ParFG60971.6 469 

S003560971 Ligilactobacillus sp. ParFG60971.1 469 

S003560971 Ligilactobacillus sp. ParFG60971.61 469 

S003560971 Ligilactobacillus sp. ParFG60971.11 469 

S003561013 Ligilactobacillus sp. ParFG61013 469 

S000964154 Limosilactobacillus sp. ParFG64154 510 

S001060020 Limosilactobacillus sp. ParFG60020 510 

S003560979 Limosilactobacillus sp. ParFG60979 510 

 

of the bacterial 16S rRNA gene, and a summary of sequences pulled from GenBank for 

the final phylogenetic analysis can be found in Table S8.4. 
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Figure 6.12: Phylogenetic trees for A Aminobacter, B Reyranella, C Ligilactobacillus, and D Limosilactobacillus 
specimens obtained from consensus sequences of bacteria from the Parascaris spp. female gonad. The • represents 
branches with > 70% bootstrapping values. Colored groups represent the clade formed with Parascaris spp. consensus 
sequences. The darker green or purple highlight the consensus sequences and the lighter green or purple highlight 
the rest of the members of the clade. 

 

Phylogenetic trees were compared to those previously published using whole 

genome and 16S rRNA approaches in order to assess quality of tree construction using 

partial 16S rRNA sequences (Zheng et al., 2020; Artuso et al., 2021b). The Aminobacter 

tree did not closely resemble a tree recently made using whole genome sequences 

(Artuso et al., 2021a), although it contained more and different specimens. Aminobacter 

sp. ParFG formed a clade with five other unnamed species (Figure 6.12A) that have 

previously been isolated from soil and sediment. There are not any large-scale 

phylogenies that have been completed for Reyranella, however there is some agreement 
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in terms of clade formation for the named species (Ciu et al., 2017; Lee et al., 2017). 

Reyranella sp. ParFG formed a clade with six other Reyranella strains, including R. 

aquatilius FW305-C-30-S9 (Figure 6.12B). 

Limosilactobacillus and Ligilactobacillus trees were compared to those recently 

published (Zheng et al., 2020) using long-read 16S rRNA sequences and both showed 

good agreement with the short read phylogenies. Ligilactobacillus sp. ParFG01488 

formed a clade with Lac. hyakitensis JCM14209 and Lac. salivarius salicinius and nine 

additional Ligilactobacillus sp. ParFG specimens (Table 6.6) formed a clade with Lig. equi 

YIT0455 (Figure 6.12C). Limosilactobacillus sp. ParFG60979, ParFG60020, and 

ParFG64154 formed a clade with Lim. equigenerosi NRIC0697 and Lim. gastricus 

Kx156A7 (Figure 6.12D). 

 

6.5 Transmission Electron Microscopy 

A total of 270 images were taken of female Parascaris spp. gonad using the TEM. 

Representative images of toluidine blue stained thick sections and their corresponding 

thin sections can be seen in Figure 6.13. Using the criteria outlined in section 5.5.7., 

candidate bacteria were observed in two images (Figure 6.14). 

 

6.6 Bacterial Culture 

Three bacterial species were isolated from all cultures: E. coli and Enterococcus 

faecalis from one aerobic culture and Fusobacterium varium from one anaerobic culture. 
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Figure 6.13: Representative transmission electron microscopy (TEM) images of Parascaris spp. female gonad. A, C are 
toluidine blue-stained thick sections and B, D are TEM images. A, B and C, D are the same specimens.  
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Figure 6.14: Transmission electron microscopy (TEM) images of Parascaris spp. female gonad. A and B present the two 
examples of possible bacteria, while C and D illustrate more examples of mitochondria. M = mitochondria  MTOC = 
microtubule organizing centers  sb = suspected bacteria  er = endoplasmic reticulum  pc = possible cristae  mf = muscle 
fibers  c = cuticle 
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CHAPTER 7. DISCUSSION AND FUTURE DIRECTIONS 

Despite the importance of parasitic nematodes in global health – both in veterinary 

and human medicine – their microbiomes, and that of ascarids in particular, have been 

largely unstudied. The few exceptions include studies that: examined colonization of 

Ascaris lumbricoides by Vibrio cholerae (Nalin & McLaughlin, 1976); cultured nineteen 

facultative anaerobes from the intestine of A. suum (Hsu et al., 1986); and examined 

bacterial flora as a source of serotonin in A. suum (Shahkolahi & Donahue, 1993). Outside 

of these types of studies and the previously described research, however, the microbiome 

of parasitic nematodes remains a mystery. In 2019, a paper was published highlighting 

one hundred questions that need addressed in livestock helminthology research. These 

were chosen by vote from 385 questions submitted by veterinary parasitology researchers 

in an effort to help close knowledge gaps and direct research efforts in the field; the 

nematode microbiome was number 73 on that list (Morgan et al., 2019). Subsequently, a 

few papers have been published calling for more research and highlighting potential 

challenges, reinforcing the notion that helminth microbiome research is not only important, 

but possibly an up-and-coming area of study (Dheilly et al., 2017; Dheilly et al., 2019; 

Jenkins et al., 2019; Formenti et al., 2020). 

The purpose of the work reported in this dissertation was to establish a core 

microbiota for Parascaris spp. and compare the microbiota at different life stages and 

between the sexes and organs of the worms. Overall, a few broad goals were 

accomplished with this work in addition to the original aims. First, a methodology for 

collection and analysis of microbiota data for parasitic helminths collected from horses 

was established. This sets the framework for future studies not only in horse parasites, 

but in parasites affecting other large animals hosts as well. Second, gaps in the 

knowledge gained from this study highlight the necessity for more studies using various 

methods to firmly establish a microbiota for these parasites. Finally, this research further 

highlights the necessity for microbiota research in a broader range of helminth parasites 

and the possibility that their microbiota could be utilized as a control mechanism in the 

future.  

 

7.1 Parascaris spp. Common Core Microbiota 

The common core microbiota consists of taxa that are shared by all, or most, 

members of a given group (Hamady & Knight, 2009; Shade & Handelsman, 2011). 
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Prevalence and abundance of a given microbiota member are not necessarily tied to 

function, and rare taxa can be essential for host survival (Jousset et al., 2017; Hammer 

et al., 2019). Identification of the common core, however, does facilitate an understanding 

of host-microbiome, phylogenetic, and population level microbiome compositions (Risely 

et al., 2020).  

The combination of core microbiota results from both whole worm and organ 

microbiota studies utilized a total of 68 worms and indicated that there are eleven shared 

genera between the combined male, female, and immature whole worm core 

microbiomes and the combined male and female organ core microbiomes. The eleven 

genera are: Acinetobacter, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium 

(ANPR), Clostridium senso stricto 1, Gemella, Janthinobacterium, Lactobacillus, 

Reyranella, Sarcina, Sphingomonas, Streptococcus, and Veillonella. Among these, 

differential abundance of Sarcina and Veillonella was observed in the organ microbiota 

study. All of these genera were also identified in the horse jejunal microbiome in this study, 

and all except Reyranella have previously been identified in equine gastrointestinal 

microbiomes (Costa et al., 2012; O’Donnell et al., 2013; Paßlack et al., 2020; Ang et al., 

2022; Gilroy et al., 2022; Mach et al., 2022; Voss et al., 2022). Reyranella, however, has 

previously been identified in other microbiomes such as in human neonates and vaginas 

(Li et al., 2020a), fish (Zhang et al., 2016; Méndez-Pérez et al., 2020; Mondal et al., 2022), 

and shrimp (Zhang et al., 2016), as well as in the Trichuris spp. microbiome (García-

Sánchez et al., 2022). 

While is it not possible to discern any functional implications of this core microbiota 

from the present research, some of the members may be worth investigating further in 

future studies. Reyranella, for example, has been previously identified in the human 

vaginal microbiome and was also identified in this study at a higher prevalence and 

relative abundance in the female gonad compared to the other investigated sites, 

suggesting a possible function in the female reproductive tract. Additionally, the two 

differentially abundant genera, Sarcina and Veillonella, are also worth deeper 

investigation since they represent a differentiating factor between different organ 

compartments of Parascaris spp. Overall, this information provides a jumping-off point for 

future studies aimed at comparing various populations, identifying common members, 

and selecting microbiota members for studies seeking to identify functional aspects of the 

microbiome. 
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7.1.1 Whole worm, intestine, and gonad results 

Comparisons between whole worm and organ results suggest that whole organism 

analysis of microbiota for helminths may mask nuances in microbiota structure within an 

organism. The organ study identified 27 more families and 62 more genera than were 

found in the whole worm study, including many that were shown to be unique to different 

sexes and organs (Figure 6.6). It also highlighted differences in relative abundance, such 

as the higher relative abundance of Aminobacter, F: Mycoplasmataceae, Ralstonia, and 

Reyranella in the female gonad and of Sphingomonas and Janthinobacterium in both 

male and female gonads (Table 6.4). Such nuances were not evident in the whole worm 

study and are significant because the microbiome can play an important role in parasite 

reproduction, as was discussed previously in sections 3.4.3 and 3.6.2. Future studies 

establishing relative abundance trends in the global Parascaris spp. population as well as 

metabolomic, metaproteomic, and in vitro studies will be essential for determining the 

roles that these genera play in the overall reproductive success of the parasite.  

Additionally, these comparative results highlight both the need for larger sample 

sizes and for dissection as a method of studying parasite microbiomes. It is possible that 

more differences between groups would have been evident in the whole worm study had 

larger sample sizes been available. Nuances found in the organ study could also be 

unique to the parasites within the single horse population studied, and a larger sample 

size could either have uncovered different variances between groups, or that there are no 

discernible differences between them. Regardless, larger sample sizes, including more 

populations of Parascaris spp. from other horses, would provide a deeper insight into the 

parasite’s microbiome. Dissection is also important to incorporate into parasite 

microbiome studies where possible. The microbiota varies between different organs, and 

thus it is important to consider the microbiome of different parasite organs when 

conducting a microbiome study. While the organ study herein only included the intestine 

and gonad, future studies could also include the cuticle and further subdivision of different 

parts of the male and female gonad to further characterize the parasite microbiome.  

One aspect of the whole microbiota study that was unsuccessful was the analysis 

of more life stages than just those found in the small intestine. Immature parasites in the 

small intestine range in size and, in some cases, were difficult to extract DNA from. The 

same issue occurred with eggs from both the female gonad and extracted from feces; 

there was not enough DNA extracted to obtain any useable results. Future studies into 

finding the best ways to break up the cuticle for whole worm microbiota studies and to 
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break through the coat of the eggs in order to successfully extract DNA will be necessary 

before more life stages can be studied. Dissecting immature intestinal stages and 

analyzing the gonad, intestine, and cuticle separately are a good option moving forward 

and will provide more detailed information than simply extracting DNA from the whole 

worm for microbiome analysis. Another avenue is to explore the Parascaris spp. 

microbiome at different life stages by using an egg hatch protocol, as previously discussed 

in section 2.2.3; in this way, the microbiome of freshly hatched larvae could be assessed.  

 

7.1.2 Comparison to previous Haemonchus contortus studies 

Out of the few helminth parasite microbiome studies completed to date, H. 

contortus is the only parasite of veterinary importance to have had its microbiota analyzed 

in multiple studies. As discussed previously, there have been four studies completed and 

two of those used a 16S rRNA hypervariable region and Illumina NGS to analyze the 

microbiome of different life states as well as male and female H. contortus (El-Ashram & 

Suo, 2017; Mafuna et al., 2021). Comparing microbiome studies with different methods is 

not always ideal as many different factors can have an effect on results as previously 

discussed, and these two studies differed from one another in DNA extraction, library 

preparation, and taxnonomic database. The more recent Mafuna et al. (2021) study used 

a different DNA extraction method from the one described herein but used the same 

database for taxonomic assignment and the same library preparation protocol, and thus 

results can be compared with a good level of confidence. 

In the first study, two different primer sets targeting the V3-V4 and V5-V7 regions 

were used to examine adult, L3, and egg microbiota of H. contortus (El-Ashram & Suo, 

2017). Alpha diversity was found to be higher for L3, which is similar to the finding in this 

study that immature Parascaris spp. tended to have a higher alpha diversity than adult 

males or females. There were only three genera – Escherichia/Shigella, Bacillus, and 

Pseudomonas – that were highly prevalent in H. contortus and also found in individual 

Parascaris spp. core microbiota. None of these, however, were shared with the Parascaris 

spp. common core. While there are few similarities between the H. contortus microbiota 

and that of Parascaris spp., the methods for these two studies highly differed and thus 

comparisons must be interpreted with caution. 

In the more recent study (Mafuna et al., 2021), male specimens had a higher alpha 

diversity than females, but both sexes clustered together for beta diversity. This is similar 

to results found in the present study, where there were no discernible clusters specifically 
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for male or female worms for beta diversity. Alpha diversity was similar for the whole worm 

study, however male Parascaris spp. gonad and intestine both had higher alpha diversity 

than female organs when parsed out. Out of the most prevalent genera in the H. contortus 

study, only Acinetobacter was shared with the Parascaris spp. common core microbiota, 

and out of the unique genera found in either male or female H. contortus, only 

Corynebacterium 1 and Prevotella were shared between the two parasite species. They 

were found in the male gonad and female and male intestine, and the male gonad, 

respectively, both with prevalences ≤ 25.0%.  

The other two studies used either PCR denaturing gradient gel electrophoresis 

(Sinnathamby et al., 2018) or PCR (Bouchet et al., 2022) and clone libraries to identify 

members of the H. contortus microbiome. Neither of these methods allows for diversity or 

abundance analyses, and so the only way to compare results is to assess which genera 

may be shared between H. contortus and Parascaris spp. Between the two studies, a 

total of 15 genera were found in H. contortus that were also identified in individual 

Parascaris spp. core microbiomes: Achromobacter, Acinetobacter, ANPR, 

Bradyrhizobium, Enterococcus, Escherichia/Shigella, Lactobacillus, Lactococcus, 

Methylobacterium, Mycoplasma, Pelomonas, Pseudomonas, Ralstonia, Streptococcus, 

and Veillonella. Five of those were also found within the Parascaris spp. common core 

microbiome: Streptococcus, Lactobacillus, Veillonella, Acinetobacter, and ANPR.  

Overall, there were some similarities between the Parascaris spp. and H. contortus 

microbiota despite the wide range of methods used for assessing the H. contortus 

microbiota. Future studies assessing microbiome function and localization will be 

necessary to determine whether some of these bacterial genera are important for parasite 

fitness, what role they play in parasite biology, and whether they are passed down via 

vertical transmission or acquired from the environment.  

 

7.2 Parascaris spp. Female Gonad 

Female Parascaris spp. gonads were chosen for more in-depth analysis for a 

couple of reasons. As previously discussed in section 3.4.3, the bacterial symbiont 

Wolbachia in filarial nematodes has been shown to play an important role in reproduction, 

including embryogenesis, indicating the important role of the microbial composition of the 

female parasite gonad. The organ portion of the study discussed herein identified a larger 

number of unique bacteria within the male gonad, however many of those were only found 

in a single organism. There were, however, some unique bacteria found within the female 
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gonad that not only had a prevalence greater than 50%, but also had significantly higher 

relative abundance than other organs within the worms (Table S8.2). Due to these 

findings, the female gonad was chosen for more in-depth analysis including TEM imaging, 

16S rRNA consensus sequence construction, and phylogenetic analysis of a few bacteria 

genera of interest. 

 

7.2.1 Comparison with previous studies 

The female gonad specific analysis returned 15 phyla, 70 families, and 113 genera 

compared to 12, 42, and 53, respectively, for the female gonad samples in the organ 

dataset. This difference is likely due to a few different factors. First, more samples were 

analyzed, with only 15 individual female gonad samples in the organ dataset versus 22 

samples for the female gonad only analysis. Another important consideration is the 

number of reads per sample. The read cutoff for female only samples was 10,000 reads 

(range 12,170 – 26,364) versus a cutoff in the organ dataset of 200 reads (female gonad 

range 237 – 2,061). A lower cutoff was used for the organ dataset in order to prevent 

removal of a large number of samples from individual categories. This issue could be 

rectified in the future by increasing overall sample size to maintain group integrity when 

samples must be removed, and also by decreasing the number of samples sequenced 

per NGS run in order to increase the number of reads obtained for each sample. 

A total of ten genera were identified as belonging to the female gonad core 

microbiome, and all ten were also found in the organ dataset female gonad core: 

Aminobacter, Candidatus Paracaedibacter, Hydrotalea, Lactobacillus, Mycoplasma, O: 

OPB56, Pseudomonas, Ralstonia, Reyranella, and Sphingomonas. Three of these 

(Lactobacillus, Reyranella, Sphingomonas) were also part of the common core. One 

previous study using H. contortus investigated the whole worm microbiota and also 

identified Ralstonia, Pseudomonas, Mycoplasma (Bouchet et al., 2022) within female 

specimens. Another identified Lactobacillus within females, but as a unique genus, which 

was not the case in this study (Mafuna et al., 2021). 

Alpha diversity differed significantly between horse 260 and horse 66 (Figure 6.11) 

for both Shannon (p = 0.0073) and Simpson (p = 0.0098), suggesting a role for both 

sample size and environment in affecting alpha diversity. In this case, sample size is an 

important consideration because there were twelve samples from horse 260 and only 

three from horse 66. Ideally, an equal number of parasites would be obtained from each 

horse, however that is not always possible due to the variability in number of adult female 



87 
 

parasites found within an individual horse jejunum (Fabiani et al., 2016). Limiting the 

number of parasites taken from each horse (e.g., three adult females from each horse) 

would greatly limit the number of overall worms collected because there is not always a 

large number of horses with an infection of adult horses at necropsy. This was the case 

for the samples collected for samples collected for the organ study, where only three 

horses had a Parascaris spp. infection with adult parasites of both sexes. 

As discussed in section 3.2, various factors including host genetics, environment, 

and diet can affect microbiome composition, with variation between individuals accounting 

for a large amount of variation between microbiomes. Parasite microbiomes are not only 

affected by the microbiome composition of their equine host – a.k.a. their environment – 

but also may be affected by their own genetics, dietary preferences, and in the case of 

Parascaris spp., location within the small intestine. Due to all of these factors, it is 

unsurprising that alpha diversity would vary based upon environment. A larger Parascaris 

spp. microbiome study using multiple worms, from multiple horses in a variety of locations 

would allow for a more in-depth analysis of microbiome composition based upon 

environment for both global location and individual horse.  

 

7.2.2 Intracellular bacteria 

In the first half of the 20th Century, Wolbachia was first described (Hertig, 1936) 

and due to the advent of TEM, more species were discovered as endosymbionts of 

mosquitos, other insects, and filarial nematodes during the latter half of the century 

(Wright & Wang, 1972; Mclaren et al., 1975). TEM has also been used to show the 

presence of bacteria in the intestine of C. elegans (Hedgecock & Thomson, 1982) as well 

as the intracellular presence of bacteria in H. contortus (Sinnathamby et al., 2018). The 

small TEM study conducted for this study consisted of the gonad of a single female 

specimen and 270 images. Despite the low number of samples, candidate bacteria were 

found in two of the TEM images (Figure 6.14). The candidate bacteria were not shaped 

like the mitochondria identified in other TEM images from Parascaris spp. (Figure 6.14C 

& D), nor did they contain cristae. They were also within the size range for bacteria, where 

one candidate bacterium was ~ 700 nm x 180 nm Figure 6.14A) and the other two were 

~ 700 nm x 250 nm (Figure 6.14B) 

This TEM finding suggests that there may be endosymbiotic bacteria within 

Parascaris spp., however the objects found in TEM images are described as “candidate 

bacteria” because bacteria can be difficult to distinguish from mitochondria. More 
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research, including a larger volume of TEM images from multiple individuals, as well as 

confirmation using FISH staining specifically for bacteria in Parascaris spp. histology 

sections, would be necessary to add confidence to identifying candidate bacteria. 

Previous research in H. contortus used FISH to identify bacteria within the gut, eggs, and 

uterus of female parasites (Sinnathamby et al., 2018). Using a universal bacterial probe 

such as Eub338 could help determine whether there are intracellular bacteria, and then 

more specific probes could be used to narrow down which bacterial groups localized 

where within Parascaris spp. Additionally, including multiple specimens, including males, 

as well as including the intestine would broaden knowledge and allow for more stringent 

visualization of bacteria within the parasites.  

 

7.3 Notable Bacterial Taxa 

A few bacterial taxa were unique in Parascaris spp. in that they were in a higher 

prevalence in the female gonad compared to other compartments and/or they had not 

previously been found in parasites or horses. Additionally, short-read 16S rRNA 

metagenomic sequencing does not allow for identification to the species level, and so an 

additional study was conducted to create longer 16S rRNA reads in order to specifically 

identify bacteria within the Parascaris spp. female gonad. Using longer reads also allowed 

for phylogenetic analysis of some bacteria to determine their relationship to other 

identified members within the genus.  

Overall, this study allowed for the identification of 17 bacterial genera and 12 

bacterial species (Table 6.5). A total of 133 consensus sequences were constructed from 

sequences within the Parascaris spp. samples, and ultimately four genera, Aminobacter, 

Reyranella, Limosilactobacillus, and Ligilactobacillus were used for phylogenetic analysis. 

Aminobacter was chosen due to either some of the consensus sequences having low 

identity and thus potentially representing a new species, and Reyranella was chosen 

because there were sequences identified to both genus and species level and this 

particular genus has not been identified in parasites or horses previously. The latter two 

were chosen because they were not identified in earlier studies, likely due to the recent 

changes to Lactobacillaceae phylogeny (Zheng et al., 2020), and as a method to confirm 

that the consensus sequences were adequate for phylogenetic analysis. Neither 

Reyranella nor Aminobacter have as in-depth phylogenetic analyses as the 

Lactobacillaceae, although some of the limited analyses were also used for comparison. 
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The following sections describe these three groups and the findings of phylogenetic 

analyses.  

 

7.3.1 Aminobacter 

Aminobacter are aerobic, rod-shaped, gram-negative bacteria with rounded ends 

that use subpolar flagella for locomotion and produce ammonia (Urakami, 2015). The type 

species, originally called Pseudomonas aminovorans, was first described in 1926 (den 

Dooren de Jong) and the genus Aminobacter was described in 1992 (Urakami et al.). 

These bacteria are capable using trimethylamine (Rappert & Müller, 2005), a chemical 

responsible for many unpleasant industrial odors, as a carbon and energy source and 

they can also break down the industrial pollutant herbicide 2,6-dichlorobenzamide 

(T’Syen et al., 2015). Due to this, Aminobacter has mainly been investigated for use in 

bioremediation at industrial sites and in biofilters (Schultz-Jensen et al., 2014; Aguirre et 

al., 2018). 

Although they are generally known as a soil-swelling bacteria (Table S8.4), 

Aminobacter has been identified in both plant and animal microbiomes including cattle 

(Scarsella et al., 2021), medicinal leeches (Grafskaia et al., 2020), zebrafish (Almeida et 

al., 2019), mites (Zheng et al., 2022), ants (Green & Klassen, 2021), planaria (Arnold et 

al., 2016), truffles (Liu et al., 2021), and the plant rhizosphere (Gnangui et al., 2021). 

Aminobacter has also been identified as a reagent contaminant (Salter et al., 2014); 

however, that is unlikely to be the case in this study because a negative reagent control 

was used, all sequences found in the control were removed from analysis, and the 

decontam (Davis et al., 2018) pipeline was also used which takes into account sample 

concentration to remove contaminant sequences. 

While not identified as a member of the common core, Aminobacter was identified 

in the core microbiota of whole worm male and female samples (Figure 6.3), female gonad 

and intestine, and male intestine (Figure 6.7). In the organs, the female gonad had a 

significantly higher relative abundance of Aminobacter than the male gonad (p = 0.0239). 

In the female gonad specific study, Aminobacter was identified in 100% of samples with 

a mean relative abundance of 1.1%. The phylogenetic analysis including the Aminobacter 

sp. ParFG consensus sequence (Figure 6.12A) placed it in a clade with species that have 

previously been identified in soil and sediment samples (Table S8.4). This is unsurprising 

given that Aminobacter was also identified in jejunal samples, since horses feed on grass 

and frequently ingest soil when grazing, and the horses used in this study were on 24/7 
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turnout. Much of the Parascaris spp. microbiota is likely acquired from the host gut content 

considering that is the main food source for the parasites, which means that it makes 

biological sense for this bacterium to be present in both the horses and parasites. 

Parascaris spp. also spends a portion of its lifecycle, albeit still within the egg, in the 

environment, providing another possible route of microbiome acquisition.  

Previous studies, however, have indicated that 16S rRNA is not high enough 

resolution to decipher phylogenetic details for Aminobacter outside of the genus grouping 

together, and few conclusions can be drawn from this tree (Artuso et al., 2021b). More 

research and analysis, preferably using shotgun sequencing and/or culturomic methods, 

is necessary to identify the Aminobacter species present in the Parascaris spp. 

microbiome and its relationship to other members of the genus. 

 

7.3.2 Reyranella 

Reyranella are gram-negative, non-motile, microaerophilic rod-shaped bacteria 

that have weak urase activity, oxidize CO to CO2, and are generally found in water and 

soil samples (Table S8.4; Pagnier et al., 2011). Reyranella is a relatively new genus, with 

the type species R. massiliensis first being described in 2011 (Pagnier et al.), and there 

are presently five named species within the genus. As previously discussed, Reyranella 

has been previously described in some microbiome studies, however it has not previously 

been described in horses or parasites. 

Reyranella was identified as a member of the common core microbiota and had 

an overall prevalence of 46.2% for the whole worm study, 61.5% for the organ study, and 

100% for the female gonad study. While relative abundances were similar between 

groups in the whole worm study, the female gonad had significantly higher Reyranella 

relative abundance than the female intestine (p < 0.0001), male gonad (p < 0.0001), and 

the male intestine had a higher relative abundance than the male gonad (p = 0.0011). In 

the female gonad study, Reyranella had a mean relative abundance of 3.0%, making it 

one of the most prevalent genera in the female gonad. The species R. aquatilis was 

identified and the phylogenetic analysis placed the consensus sequence Reyranella sp. 

ParFG with a R. aquatilis strain (Figure 6.12B) along with specimens found in the soil, 

rhizosphere, and freshwater (Table S8.4). Similarly to Aminobacter, this is unsurprising 

and makes biological sense due to the feeding habits and life cycle of the host and 

parasite.  
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There is limited phylogenetic data for Reyranella, particularly any that includes 

unnamed species found in public repositories. When comparing phylogenetic results from 

this study to those using 16S rRNA sequences from named species in previous studies, 

there is similar clade formation (Cui et al., 2017; Lee et al., 2017). This shows that 

conclusions drawn from the phylogenetic tree created for Reyranella in this study are 

supported by the current best-available data. 

 

7.3.3 Limosilactobacillus and Ligilactobacillus 

Limosilactobacillus and Ligilactobacillus are both lactic acid bacteria that were 

recently split from the genus Lactobacillus after a whole genomic phylogenetic analysis 

(Zheng et al., 2020). In general, the lactobacilli are gram-positive fermenters, facultative 

anaerobes, acid tolerant, and either rod or sphere shaped. Limosilactobacillus is a genus 

of heterofermentative bacteria that often form biofilms in the upper respiratory tract, and 

Ligilactobacillus is a genus of homofermentative bacteria, some of which are motile, that 

express urease and are common in fermented foods, starter cultures, and probiotics 

(Zheng et al., 2020). Neither of these genera were identified in the earlier microbiome 

studies, likely because they have yet to be added to the SILVA database, and so the 

general Lactobacillus results will be discussed whole worm, organ, and female gonad V3-

V4 16S rRNA results.  

Members of the genus Lactobacillus are commonly found in microbiomes, and 

changes in relative abundance of Lactobacillus in the microbiome have been associated 

with various diseases (Heeney et al., 2018). In horses, Lactobacillus has been considered 

as a beneficial probiotic and is commonly found in equine microbiomes (O’Donnell et al., 

2013; Costa et al., 2015; Kauter et al., 2019). This genus has been identified in parasite 

microbiomes (El-Ashram & Suo, 2016; Sinnathamby et al., 2018; Jorge et al., 2020; Hahn 

et al., 2021; Mafuna et al., 2021). In this study, Lactobacillis was one of the most prevalent 

(range 92.77 – 100%) and abundant (range 3.47 – 41.34%) genera, as well as a member 

of the Parascaris spp. common core. The species Lig. equi, Lig. hyakitensis, and Lim. 

equigenerosi were identified from female gonad consensus sequences. Subsequent 

phylogenetic analysis correlated this identification, with consensus sequences forming 

clades with these three species (Figure 6.12C & D). The phylogenetic tree for 

Ligilactobacillus has good agreement with the whole genome tree and the tree for 

Limosilactobacillus has some differences in clade formation from the whole genome tree 

(Zheng et al., 2020). All three species, some still bearing the Lactobacillus genus name 
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in GenBank, have previously been found in horses (Table S8.4) and thus it, again, makes 

biological sense for them to be present in the parasites.  

 

7.4 Future Directions 

Understanding parasite microbiomes and parasite-host-microbiome interactions 

opens up many doors for improving health outcomes for animals and development of 

parasite control options. Little research has been done thus far on parasite microbiomes, 

but there are numerous paths forward from initial characterization of the microbiome. 

While some future directions have been mentioned in brief already, the following section 

discusses future research directions for the Parascaris spp. microbiome in more detail. 

 

7.4.1 Increased sample size and population inclusion 

As was mentioned multiple times in previous sections, an increased population 

size and including a broader range of equine populations will be essential for determining 

a common core microbiome for all Parascaris spp., rather than those from just one 

population of horses. Ideally, this would include parasite collected from horses globally. A 

group of scientists from fifteen countries has previously expressed interest in submitting 

Parascaris spp. specimens for research. This included diagnostic laboratories in North 

America (Canada, United States of America), South America (Argentina, Brazil), Europe 

(Denmark, Finland, France, Germany, Iceland, Ireland, Italy, Netherlands, Sweden, 

Switzerland), and Australia. Collecting a minimum of ten parasites from each of those 

locations, as well as additional specimens from the two research herds at the University 

of Kentucky, would greatly increase the sample size and allow for a comparison between 

individual parasites, horses, and global populations. Dissecting these parasites to 

individually assess and compare intestine and gonad based upon sex would also provide 

further insight into the shared core microbiomes between sexes and organs within the 

parasites. Ultimately, finding commonalities between global Parascaris spp. microbiomes 

provides better insight into which bacterial taxa may be important for parasite health and 

may also be appropriate targets for new anthelmintics. 

 

7.4.2 In vitro and in vivo studies 

Another important factor when determining whether the Parascaris spp. 

microbiome can be exploited for anthelmintic control is determining whether current 
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antibiotics have any effect on parasite health. The first step of this would be an in vitro 

study where Parascaris spp. maintained in culture flasks were exposed to different 

antibiotics and changes to fitness based upon a scoring system were observed (Scare et 

al., 2019). The microbiome of the parasites would be analyzed at each fitness score to 

determine whether there was a correlation between fitness decline and a decrease in 

relative abundance of bacterial taxa. A similar study was conducted in vitro with H. 

contortus (Bouchet et al., 2022), although this study did not include any negative controls, 

nor was the microbiome analyzed, it was simply observed that the parasites died after 

exposure to antibiotics.   

Affecting the microbiome in vitro is one thing, but affecting the microbiome in vivo 

is another. Jorge et al. (2022) examined indirect exposure of the parasite Philophthalmus 

attenuates to antibiotics by treating its snail host and found that not only were parasite 

bacterial communities altered, but they also stabilized with a different structure over three 

months post-treatment compared to the pre-treatment community structure. The same 

type of treatment could be conducted with Parascaris spp., where foals are split into three 

groups for necropsy at five months of age: no antibiotic exposure, antibiotic treatment 

when eggs first appear in feces, and antibiotic treatment one week prior to necropsy. All 

parasites from those foals would be collected, and the microbiome assessed via 16S 

rRNA to determine changes in community structure. Together, these two studies would 

shed light on whether broad-spectrum antibiotics have an effect on parasite fitness and 

whether indirect exposure via the host affects the Parscaris spp. microbiome, both of 

which are important if a novel anthelmintic treatment is to be developed. 

 

7.4.3 Diversification of methods 

Finally, another important factor for future Parascaris spp. microbiome research is 

diversification of methods. Using 16S rRNA short reads can give insight into community 

structure but does not indicate which species are present and whether there are novel 

species, gives no data on localization, and does not provide functional insight. Combining 

various methods such as culturomics, shotgun sequencing, and metabolomics for 

studying a single dataset would provide more detail and information regarding microbiome 

composition and function. Additional microscopy techniques, such as FISH, could also be 

used to determine where different bacterial taxa localize within the parasite. Using a 

variety of methods helps address some of the shortfalls of only a single method, such as 

low resolution and biases in 16S rRNA studies and provides a sturdy foundation on which 
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to build future studies examining the function of the microbiome and how it might be 

exploited for parasite treatment options. 

 

7.5 Specific Aims and Hypotheses 

All specific aims were addressed within this dissertation, and hypotheses were 

either rejected or accepted based upon the presented data as follows: 

 

SA 1: Determine the common core microbiome associated with Parascaris spp. at 

different life stages and between sexes. 

H 1.1: There are bacteria taxa within the Parascaris spp. microbiome that are 

present in all groups within the study population. ACCEPTED  

 

SA 2: Compare diversity metrics for the whole worm at different life stages and between 

individual organs and adult male and female specimens. 

H 2.2: Alpha diversity is significantly higher in the equine jejunum than within the 

parasites. REJECTED 

H 2.2: Beta diversity dissimilarity is high between Parascaris spp. life stages. 

REJECTED 

H 2.3: Alpha diversity is significantly higher in the intestine than gonad in both male 

and female parasites. REJECTED 

H 2.4: Beta diversity dissimilarity is high between Parascaris spp. gonad and 

intestine. ACCEPTED 

 

SA 3: Determine differentially abundant bacterial genera between groups for the whole 

worm at different life stages and between individual organs and adult male and female 

specimens. 

H 3.1: There are bacterial genera that are differentially abundant between groups 

for the whole worm microbiome. REJECTED 

H 3.2: There are bacterial genera that are differentially abundant between groups 

for the Parascaris spp. organ microbiome. ACCEPTED 

 

SA 4: Assess the female Parascaris spp. gonad microbiome with higher resolution by 

determining bacterial species present with the organ and whether their presence makes 

biological sense. 
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H 4.1: Bacterial species found in the Parascaris spp. female gonad will make 

biological sense based upon parasite and host life cycles and feeding habits, and 

previous microbiome studies. ACCEPTED 

 

SA 5: Visualize bacteria within cells of the Parascaris spp. female gonad using TEM. 

H 5.1: Endosymbiotic bacteria are located within the cells of the Parascaris spp. 

female gonad. ACCEPTED 

 

7.6 Conclusions 

Overall, the research studies described herein met the goals of determining a 

common core microbiota for Parascaris spp. and exploring the community structures of 

the parasite microbiota between whole worm life stages, adult organs, and delving into 

the female gonad microbiota in some detail. The Parascaris spp. common microbiota core 

consists of eleven members, one of which, Reyranella, has not previously been described 

in the equine host microbiota, and two of which, Sarcina and Veillonella, were differentially 

abundant. While the different life stages did not have any significant differences in 

community composition at the whole worm level, adult organs showed differences in alpha 

diversity, a slight deviance of the female gonad microbiome in beta diversity, and 

significant differences in relative abundance for some bacterial genera. The female gonad 

study identified twelve bacteria to species and candidate bacteria in TEM images, 

providing foundation to further explore the importance of the microbiome in parasite 

gonads. Finally, this research provides a backbone for future studies, highlighting areas 

that need more research and also providing a methodology that can be used in future 

studies for exploring not only the microbiome of Parascaris spp., but also other parasitic 

nematodes. 
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Table S7.2: Results of Dunn’s tests with Bonferroni correction for bacterial taxa found in Parascaris spp. organs, 
presented as p-values. 

 

 

 

 

  Aminobacter Bacillus 
F: 

Mycoplasmataceae Gemella Janthinobacterium Ralstonia Reyranella Sphingomonas 

FG - FI 0.3892 1.0000 0.0074 0.0155 0.5203 0.0084 < 0.0001 0.0017 

FG - MG 0.0239 < 0.0001 < 0.0001 1.0000 0.0382 1.0000 < 0.0001 1.0000 

FI - MG 1.0000 0.0010 0.2123 0.2486 < 0.0001 0.2722 1.0000 0.0002 

FG - MI 1.0000 0.5265 0.3178 0.0069 1.0000 1.0000 0.1564 1.0000 

FI - MI 0.6156 1.0000 0.8418 1.0000 1.0000 0.0153 0.0528 0.0251 

MG - MI 0.0320 0.0163 0.0022 0.1315 0.0010 1.0000 0.0011 0.9760 

 FG = Female Gonad  FI = Female Intestine  MG = Male Gonad  MI = Male Intestine 
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Table S7.3: Summary of GenBank hit data for consensus sequences. 

 

 
 

 

 

ASV Sample Length 
Reference 
Genome %Identical Overlap Mismatch Gaps 

Start 
Q 

End 
Q 

Start 
S 

End 
S E Value Bit Score Species 

S001567179 260fg11 532 NR_028876.1 100 239 0 0 1 239 465 703 1.02E-123 442 Aminobacter aganoensis 
S001567179 260fg4 532 NR_028876.1 100 239 0 0 1 239 465 703 1.02E-123 442 Aminobacter aganoensis 
S001567179 260fg5 532 NR_028876.1 100 239 0 0 1 239 465 703 1.02E-123 442 Aminobacter aganoensis 
S001567179 260fg6 532 NR_028876.1 100 239 0 0 1 239 465 703 1.02E-123 442 Aminobacter aganoensis 
S001567179 261fg6 532 NR_028876.1 100 239 0 0 1 239 465 703 1.02E-123 442 Aminobacter aganoensis 
S001567179 261fg7 532 NR_028876.1 100 239 0 0 1 239 465 703 1.02E-123 442 Aminobacter aganoensis 
S001567179 260fg5 532 NR_025302.1 100 239 0 0 1 239 464 702 1.02E-123 442 Aminobacter niigataensis 
S004415243 260fg5 546 NR_024874.1 96.65 269 7 1 280 546 1079 1347 1.04E-128 459 Aquabacterium parvum 
S004415243 260fg9 546 NR_024874.1 96.65 269 7 1 280 546 1079 1347 1.04E-128 459 Aquabacterium parvum 
S004415243 261fg6 546 NR_024874.1 96.65 269 7 1 280 546 1079 1347 1.04E-128 459 Aquabacterium parvum 
S001914556 261fg5 532 NR_113401.1 100 251 0 0 1 251 496 746 2.18E-130 464 Brachybacterium paraconglomeratum 
S004117832 260fg11 532 NR_112170.1 97.29 258 0 1 1 258 493 743 2.22E-120 431 Clostridium butyricum 
S004117832 260fg5 532 NR_112170.1 97.29 258 0 1 1 258 493 743 2.22E-120 431 Clostridium butyricum 
S004117832 260fg8 532 NR_112170.1 97.29 258 0 1 1 258 493 743 2.22E-120 431 Clostridium butyricum 
S004117832 66fg1 532 NR_112170.1 97.29 258 0 1 1 258 493 743 2.22E-120 431 Clostridium butyricum 
S001070107 66fg2 784 NR_042144.1 95.8 524 8 1 1 510 338 861 0 846 Clostridium butyricum 
S000964173 260fg5 525 NR_148610.1 100 251 0 0 1 251 471 721 2.15E-130 464 Kocuria arsenatis 
S001684812 260fg1 576 NR_119274.1 95.6 318 7 1 266 576 1087 1404 6.46E-146 516 Lactobacillus crispatus 
S001684812 260fg11 938 NR_119274.1 96.67 420 7 1 526 938 1087 1506 0 704 Lactobacillus crispatus 
S001684812 260fg12 576 NR_119274.1 95.6 318 7 1 266 576 1087 1404 6.46E-146 516 Lactobacillus crispatus 
S001684812 260fg4 699 NR_119274.1 98.16 381 0 1 1 381 549 922 0 658 Lactobacillus crispatus 
S001400072 260fg5 836 NR_119274.1 100 374 0 0 145 518 549 922 0 691 Lactobacillus crispatus 
S001684812 260fg6 801 NR_119274.1 96.67 420 7 1 389 801 1087 1506 0 704 Lactobacillus crispatus 
S001684812 260fg7 576 NR_119274.1 95.6 318 7 1 266 576 1087 1404 6.46E-146 516 Lactobacillus crispatus 
S001684812 260fg8 938 NR_119274.1 96.67 420 7 1 526 938 1087 1506 0 704 Lactobacillus crispatus 
S001684812 260fg9 836 NR_119274.1 98.16 381 0 1 138 518 549 922 0 658 Lactobacillus crispatus 
S001684812 66fg3 699 NR_119274.1 98.16 381 0 1 1 381 549 922 0 658 Lactobacillus crispatus 
S001792808 260fg8 672 NR_113259.1 95.72 421 11 2 259 672 1065 1485 0 686 Ligilactobacillus agilis 
S001792808 260fg9 672 NR_113259.1 95.72 421 11 2 259 672 1065 1485 0 686 Ligilactobacillus agilis 
S001792808 260fg11 569 NR_028623.1 95.28 318 8 1 259 569 1009 1326 2.97E-144 510 Ligilactobacillus equi 
S003560971 260fg11 706 NR_028623.1 95.28 318 8 1 396 706 1009 1326 3.71E-144 510 Ligilactobacillus equi 
S001792808 260fg5 569 NR_028623.1 95.28 318 8 1 259 569 1009 1326 2.97E-144 510 Ligilactobacillus equi 
S003560971 260fg5 569 NR_028623.1 95.28 318 8 1 259 569 1009 1326 2.97E-144 510 Ligilactobacillus equi 
S000901488 260fg1 569 NR_041498.1 95.6 318 7 1 259 569 1064 1381 6.38E-146 516 Ligilactobacillus hayakitensis 
S000901488 260fg10 569 NR_041498.1 95.6 318 7 1 259 569 1064 1381 6.38E-146 516 Ligilactobacillus hayakitensis 
S000901488 260fg11 706 NR_041498.1 95.6 318 7 1 396 706 1064 1381 7.98E-146 516 Ligilactobacillus hayakitensis 
S000901488 260fg4 569 NR_041498.1 95.6 318 7 1 259 569 1064 1381 6.38E-146 516 Ligilactobacillus hayakitensis 
S000901488 260fg5 569 NR_041498.1 95.6 318 7 1 259 569 1064 1381 6.38E-146 516 Ligilactobacillus hayakitensis 
S000901488 260fg6 569 NR_041498.1 95.6 318 7 1 259 569 1064 1381 6.38E-146 516 Ligilactobacillus hayakitensis 
S000901488 260fg8 809 NR_041498.1 96.68 421 7 1 396 809 1064 1484 0 706 Ligilactobacillus hayakitensis 
S000901488 260fg9 809 NR_041498.1 96.68 421 7 1 396 809 1064 1484 0 706 Ligilactobacillus hayakitensis 
S000964154 260fg1 627 NR_041566.1 96.01 376 8 1 259 627 1103 1478 5.23E-177 619 Limosilactobacillus equigenerosi 
S000964154 260fg11 671 NR_041566.1 96.43 420 8 1 259 671 1059 1478 0 701 Limosilactobacillus equigenerosi 
S000964154 260fg8 627 NR_041566.1 96.01 376 8 1 259 627 1103 1478 5.23E-177 619 Limosilactobacillus equigenerosi 
S001060020 260fg9 525 NR_041566.1 100 251 0 0 1 251 521 771 2.15E-130 464 Limosilactobacillus equigenerosi 
S001059989 260fg4 569 NR_029084.1 95.6 318 7 1 259 569 1078 1395 6.38E-146 516 Limosilactobacillus gastricus 
S001567179 260fg1 576 NR_114124.1 95.6 318 7 1 266 576 988 1305 6.46E-146 516 Mesorhizobium plurifarium 
S001567179 261fg5 576 NR_114124.1 95.6 318 7 1 266 576 988 1305 6.46E-146 516 Mesorhizobium plurifarium 
S001866572 260fg1 525 NR_044791.1 100 251 0 0 1 251 479 729 2.15E-130 464 Mycobacterium triplex 
S001866572 260fg11 525 NR_044791.1 100 251 0 0 1 251 479 729 2.15E-130 464 Mycobacterium triplex 
S004593428 261fg3 685 NR_114735.1 95.3 319 7 1 1 311 1041 1359 4.36E-145 512 Pantoea agglomerans 
S004484017 260fg1 583 NR_044974.1 95 320 7 1 273 583 1038 1357 3.94E-143 507 Pseudomonas chlororaphis 
S004484017 260fg10 822 NR_044974.1 96.21 422 7 1 410 822 1038 1459 0 695 Pseudomonas chlororaphis 
S004484017 260fg12 583 NR_044974.1 95 320 7 1 273 583 1038 1357 3.94E-143 507 Pseudomonas chlororaphis 
S004484017 260fg5 822 NR_044974.1 96.21 422 7 1 410 822 1038 1459 0 695 Pseudomonas chlororaphis 
S004484017 260fg6 944 NR_044974.1 96.21 422 7 1 532 944 1038 1459 0 695 Pseudomonas chlororaphis 
S004484017 260fg7 583 NR_044974.1 95 320 7 1 273 583 1038 1357 3.94E-143 507 Pseudomonas chlororaphis 
S004484017 260fg8 807 NR_044974.1 96.21 422 7 1 395 807 1038 1459 0 695 Pseudomonas chlororaphis 
S004484017 260fg9 944 NR_044974.1 96.21 422 7 1 532 944 1038 1459 0 695 Pseudomonas chlororaphis 
S004484017 261fg6 685 NR_044974.1 96.21 422 7 1 273 685 1038 1459 0 695 Pseudomonas chlororaphis 
S004484017 261fg7 685 NR_044974.1 96.21 422 7 1 273 685 1038 1459 0 695 Pseudomonas chlororaphis 
S004484017 260fg11 705 NR_115642.1 96.38 387 0 2 1 387 492 864 1.27E-178 625 Pseudomonas fluorescens 
S004484017 260fg3 842 NR_115642.1 96.38 387 0 2 138 524 492 864 1.52E-178 625 Pseudomonas fluorescens 
S004484017 260fg4 842 NR_115642.1 96.38 387 0 2 138 524 492 864 1.52E-178 625 Pseudomonas fluorescens 
S001132542 260fg5 576 NR_118984.1 95 320 7 2 259 576 1035 1347 3.89E-143 507 Ralstonia solanacearum ASV Sample Length 

Reference 
Genome %Identical Overlap Mismatch Gaps 

Start 
Q 

End 
Q 

Start 
S 

End 
S E Value Bit Score Species 

S001132542 260fg6 576 NR_118984.1 95 320 7 2 259 576 1035 1347 3.89E-143 507 Ralstonia solanacearum 
S003992595 260fg9 525 NR_158037.1 99.6 251 1 0 1 251 423 673 1.00E-128 459 Reyranella aquatilis 
S003063129 260fg1 569 NR_116005.1 95.3 319 7 1 259 569 1003 1321 8.25E-145 512 Reyranella massiliensis 521 
S001070446 260fg4 659 NR_026147.1 96.36 385 0 2 1 385 481 851 1.53E-177 621 Sarcina maxima 
S001070446 260fg5 659 NR_026147.1 96.1 385 1 2 1 385 481 851 7.12E-176 616 Sarcina maxima 
S004172337 260fg11 525 NR_118450.1 100 251 0 0 1 251 515 765 2.15E-130 464 Staphylococcus petrasii 
S003370226 260fg11 524 NR_152063.1 98.8 250 3 0 1 250 544 793 7.79E-125 446 Streptococcus halotolerans 
S003560976 260fg5 524 NR_152063.1 98.8 250 3 0 1 250 544 793 7.79E-125 446 Streptococcus halotolerans 
S003560976 260fg8 524 NR_152063.1 98.8 250 3 0 1 250 544 793 7.79E-125 446 Streptococcus halotolerans 
S000979950 260fg9 524 NR_152063.1 98.8 250 3 0 1 250 544 793 7.79E-125 446 Streptococcus halotolerans 
S002113818 261fg5 525 NR_025412.1 100 251 0 0 1 251 492 742 2.15E-130 464 Acinetobacter schindleri 
S003051855 260fg5 525 NR_024874.1 100 251 0 0 1 251 497 747 2.15E-130 464 Aquabacterium parvum 
S001070107 260fg1 525 NR_112170.1 100 251 0 0 1 251 493 743 2.15E-130 464 Clostridium butyricum 
S001070107 260fg4 525 NR_112170.1 100 251 0 0 1 251 493 743 2.15E-130 464 Clostridium butyricum 
S001070107 260fg6 525 NR_112170.1 100 251 0 0 1 251 493 743 2.15E-130 464 Clostridium butyricum 
S001070107 261fg7 525 NR_112170.1 100 251 0 0 1 251 493 743 2.15E-130 464 Clostridium butyricum 
S001060396 66fg2 525 NR_113021.1 99.2 251 2 0 1 251 499 749 4.66E-127 453 Clostridium paraputrificum 
S002033100 260fg6 525 NR_117026.1 100 251 0 0 1 251 472 722 2.15E-130 464 Hydrotalea flava 
S002033100 261fg5 525 NR_117026.1 100 251 0 0 1 251 472 722 2.15E-130 464 Hydrotalea flava 
S000806423 260fg6 525 NR_116004.1 100 251 0 0 1 251 472 722 2.15E-130 464 Labrys wisconsinensis 
S001792808 260fg1 525 NR_028623.1 100 251 0 0 1 251 471 721 2.15E-130 464 Ligilactobacillus equi 
S003560971 260fg1 525 NR_041498.1 99.2 251 2 0 1 251 526 776 4.66E-127 453 Ligilactobacillus hayakitensis 
S003560971 260fg10 525 NR_041498.1 99.2 251 2 0 1 251 526 776 4.66E-127 453 Ligilactobacillus hayakitensis 
S003560971 260fg4 525 NR_041498.1 100 251 0 0 1 251 526 776 2.15E-130 464 Ligilactobacillus hayakitensis 
S003560971 260fg6 525 NR_041498.1 99.2 251 2 0 1 251 526 776 4.66E-127 453 Ligilactobacillus hayakitensis 
S000901488 66fg1 525 NR_041498.1 99.2 251 2 0 1 251 526 776 4.66E-127 453 Ligilactobacillus hayakitensis 
S003560971 66fg1 525 NR_041498.1 99.2 251 2 0 1 251 526 776 4.66E-127 453 Ligilactobacillus hayakitensis 
S000901488 66fg2 525 NR_041498.1 100 251 0 0 1 251 526 776 2.15E-130 464 Ligilactobacillus hayakitensis 
S003561013 66fg2 525 NR_041498.1 100 251 0 0 1 251 526 776 2.15E-130 464 Ligilactobacillus hayakitensis 
S003560979 260fg10 525 NR_041566.1 100 251 0 0 1 251 521 771 2.15E-130 464 Limosilactobacillus equigenerosi 
S001060020 260fg5 525 NR_041566.1 100 251 0 0 1 251 521 771 2.15E-130 464 Limosilactobacillus equigenerosi 
S001059968 260fg6 525 NR_041566.1 100 251 0 0 1 251 521 771 2.15E-130 464 Limosilactobacillus equigenerosi 
S001060020 260fg7 525 NR_041566.1 100 251 0 0 1 251 521 771 2.15E-130 464 Limosilactobacillus equigenerosi 
S000964154 261fg5 525 NR_041566.1 100 251 0 0 1 251 521 771 2.15E-130 464 Limosilactobacillus equigenerosi 
S000964154 261fg6 525 NR_041566.1 100 251 0 0 1 251 521 771 2.15E-130 464 Limosilactobacillus equigenerosi 
S003560979 66fg1 525 NR_041566.1 100 251 0 0 1 251 521 771 2.15E-130 464 Limosilactobacillus equigenerosi 
S003560979 66fg3 525 NR_041566.1 100 251 0 0 1 251 521 771 2.15E-130 464 Limosilactobacillus equigenerosi 
S001132542 261fg5 532 NR_114126.1 100 251 0 0 1 251 507 757 2.18E-130 464 Ralstonia pickettii 
S003063129 260fg8 525 NR_158037.1 99.6 251 1 0 1 251 423 673 1.00E-128 459 Reyranella aquatilis 
S002336367 261fg7 532 NR_158037.1 99.6 251 1 0 1 251 423 673 1.02E-128 459 Reyranella aquatilis 
S003674095 260fg6 532 NR_026147.1 100 251 0 0 1 251 481 731 2.18E-130 464 Sarcina maxima 
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Table S7.4: Summary of samples from GenBank used for phylogenetic analysis. 

GenBank 
Accession 

Identification 
Length 

(bp) 
Environment Country 

KP165414.1 
Aminobacter aminovorans IPN-
TC  1402 

soil/gas 
contaminated Colombia 

KC767641.1 Aminobacter aminovorans Sal1  1443 soil/agricultural France 

KC767642.1 Aminobacter aminovorans Sal1-3  1443 soil/agricultural France 

EU876581.1 Aminobacter ciceronei B05  1383 
soil/oil 

contaminated China 

AF246220.1 Aminobacter ciceronei C147  1453 soil/agricultural Canada 

L20802.1 Aminobacter ciceronei ER2  1410 soil/agricultural Canada 

AF034798.1 Aminobacter ciceronei IMB-1  1407 soil/agricultural United States 

AF107722.1 Aminobacter lissarensis CC495  1435 soil/agricultural United States 

MN715368.1 Aminobacter niigataensis AJK-12  1238 - - 

KF424786.1 
Aminobacter niigataensis XH038-
2  1408 

sediment/deep 
sea China 

EU304289.1 Aminobacter sp. 86  1376 mining site Switzerland 

DQ401866.1 Aminobacter sp. ASI1  1485 soil Denmark 

EU748914.1 Aminobacter sp. BA135 1433 root nodule Argentina 

HQ113207.1  Aminobacter sp. CL-9.08 1406 agricultural waste - 

*AY307924.1 Aminobacter sp. COX  1450 soil United States 

HQ183833.1 Aminobacter sp. De3156  1447 sediment/leachate China 

*MK511828.1 Aminobacter sp. DSM24754  1452 - - 

MK382451.1 Aminobacter sp. ICMP6023  1375 soil New Zealand 

*MH900189.1 Aminobacter sp. IK-R2  1433 - Japan 

MN372076.1 Aminobacter sp. JW2 1353 soil China 

KX387895.1 Aminobacter sp. MDW-2  1407 soil China 

DQ196478.1 Aminobacter sp. MI-p2a  1317 cave United States 

FJ907162.1 Aminobacter sp. Sokolova  1366 soil Russia 

*MT568546.1 Aminobacter sp. T6647  1386 sediment China 

*AY934494.1 Aminobacter sp. TW23  1367 soil United Kingdom 

MT259661.1 Aminobacter sp. YUM09  1330 cave 
Papua New 

Guinea 

JQ951604.1 Escherichia coli 2012K10  1462 human China 

AF049743.1 
Lactobacillus acidipiscis 
LMG17676  1473 food/chili bo Malaysia 

M58807.1 Lactobacillus animalis  1507 
baboon dental 

plaque Unknown 

AY253659.1 Lactobacillus antri  1520 human stomach Sweden 

AB001836.2 Lactobacillus aviarius  1510 - - 

AB911495.1 
Lactobacillus coleohominis 
JCM7763 1517 chicken - 

U62624.1 Lactobacillus fermentum 1496 sediment/leachate United States 

JX272061.1 Lactobacillus frumenti 2.1  1370 food/sourdough Denmark 

AB904716.1 Lactobacillus gorillae KZ01 1525 gorilla feces Japan 

*LC480804.1 
Lactobacillus hayakitensis 
JCM14209  1500 horse feces - 

M58826.1 Lactobacillus murinus  1514 rat intestine - 

EF445114.1 Lactobacillus murinus LbP6  1446 dog feces - 

KC561105.1 Lactobacillus oris sOR3  1528 chicken Iran 

AB326359.1 
Lactobacillus pobuzihii 
NBRC103220  1489 food/pobuzihi Taiwan 

HM218071.1 Lactobacillus pontis NM14-2  1487 food/fermented China 

L23507.1 Lactobacillus reuteri  1535 human intestine - 

AY735406.1 Lactobacillus reuteri LU3  1531 food/fermented South Korea 

M58828.1 Lactobacillus ruminus  1567 bovine rumen - 
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LC127508.1 Lactobacillus salitolerans  1488 mushroom bed Japan 

*M59054.1 Lactobacillus salivarius salicinius  1512 saliva - 

AF243177.1 
Lactobacillus vaginalis 
ATCC49540  1541 human vagina United States 

NR_024718.1 
Ligilactobacillus acidipiscis FS60-
1  1406 food/fermented Thailand 

NR_044700.2 Ligilactobacillus agilis DSM20509 1511 sewage - 

NR_113259.1 Ligilactobacillus agilis JCM1187 1485 sewage - 

NR_041610.1 
Ligilactobacillus animalis 
KCTC3501  1489 

baboon dental 
plaque - 

NR_042367.1 Ligilactobacillus apodemi ASB1  1532 mouse feces Japan 

NR_104979.1 
Ligilactobacillus araffinosus 
LMG23560  1515 chicken - 

AB326355.1 
Ligilactobacillus aviarius 
NBRC102162  1488 - - 

*NR_028623.1 Ligilactobacillus equi YIT0455  1413 horse feces Japan 

NR_114391.1 Ligilactobacillus faecis AFL13-2  1545 jackal feces South Africa 

KX826967.1 Ligilactobacillus ruminis M1/34  1514 biogas reactor Germany 

NR_029085.1 
Ligilactobacillus saerimneri 
GDA154  1568 pig feces Sweden 

LC655142.1 Ligilactobacillus sp. AF129  1486 alfalfa silage Japan 

MT823154.1 Limosilactobacillus agrestis  1569 vole - 

KT343143.1 
Limosilactobacillus caviae 
MOZM2  1487 guinea pig mouth Czech Republic 

*NR_041566.1 
Limosilactobacillus equigenerosi 
NRIC 0697  1519 horse feces Japan 

*NR_029084.1 
Limosilactobacillus gastricus 
Kx156A7 1550 human stomach Sweden 

MZ889575.1 Limosilactobacillus ingluviei G54d  1496 goose feces Poland 

MZ889573.1 Limosilactobacillus ingluviei P10c  1496 pigeon feces Poland 

MF425027.1 
Limosilactobacillus mucosae 
CAU8012  1419 food/pickle China 

MH819644.1 
Limosilactobacillus oris 
HBUAS54411  1496 human intestine China 

MG462197.1 
Limosilactobacillus panis 
NWAFU1288  1434 food/fermented China 

MZ749587.1 
Limosilactobacillus pontis 
HBUAS53515 1497 acidic gruel China 

MW567700.1 
Limosilactobacillus sp. 
c11Ua_25_AN  1437 human urine Portugal 

MZ787740.1 
Limosilactobacillus sp. 
HBUAS53669  1498 acidic gruel China 

OM841498.1 Limosilactobacillus sp. L.P14(2)  1400 poultry Iran 

MW016377.1 Limosilactobacillus urinaemulieris  1563 human urine Portugal 

*MT538333.1 
Reyranella aquatilis FW305-C-
30-S9  1313 - - 

AB839882.1 Reyranella graminifolii  1453 bamboo litter South Korea 

JX260424.1 Reyranella soli KIS14-15  1429 soil/forest South Korea 

MG818310.1 Reyranella sp. 5SWB3-2  1411 freshwater South Korea 

MH686075.1 Reyranella sp. Alpha-23  1530 soil South Korea 

MH686078.1 Reyranella sp. Alpha-26  1470 soil South Korea 

MK875880.1 Reyranella sp. AZCC 0224 1358 soil/forest United States 

JX458408.1 Reyranella sp. B6.10-109  1395 bottled water Portugal 

*KY319057.1 Reyranella sp. BK16-10  1418 freshwater South Korea 

MT756085.1 Reyranella sp. C99  1439 soil Vietnam 

*OM867428.1 
Reyranella sp. GW460-11-11-14-
TSB3  1311 - United States 

KY445620.1 Reyranella sp. MA98  1447 soil - 

*MW197410.1 Reyranella sp. MMS21-HV4-11  1436 soil - 

*MW197420.1 Reyranella sp. MMS21-HV4-7  1425 soil - 
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KY176929.1 Reyranella sp. S49  1453 soil - 

MH688823.1 Reyranella sp. S826  1424 - South Korea 

*LC218367.1 Reyranella sp. SM-2017 SM5  1361 rice rhizosphere Japan 

LC218395.1 Reyranella sp. SM-2017 SM92  1421 rice rhizosphere Japan 

KU713087.1 Reyranella sp. T2-6AA  1317 
water treatment 

plant United States 

KF003176.1 Reyranella sp. X48  1447 grass carp gut China 

KP185143.1 Reyranella terrae 11G32  1420 soil/agricultural South Korea 

* denotes shared clade with Parascaris spp. female gonad specimens 
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