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Chapter 3

ASAP - A Sub-sampling Approach for
Preserving Topological Structures Modeled
with Geodesic Topographic Mapping

Abstract

Topological data analysis tools enjoy increasing popularity in a wide range of applica-
tions, such as Computer graphics, Image analysis, Machine learning, and Astronomy
for extracting information. However, due to computational complexity, processing large
numbers of samples of higher dimensionality quickly becomes infeasible. This contri-
bution is two-fold: We present an efficient novel sub-sampling strategy inspired by
Coulomb’s law to decrease the number of data points in d-dimensional point clouds
while preserving its homology. The method is not only capable of reducing the mem-
ory and computation time needed for the construction of different types of simplicial
complexes but also preserves the size of the voids in d-dimensions, which is crucial e.g.
for astronomical applications. Furthermore, we propose a technique to construct a prob-
abilistic description of the border of significant cycles and cavities inside the point cloud.
We demonstrate and empirically compare the strategy in several synthetic scenarios and
an astronomical particle simulation of a dwarf galaxy for the detection of superbubbles
(supernova signatures).

3.1 Introduction

T
opological data analysis (TDA) provides exploration tools for increasingly di-
verse applications in various domains, ranging from Biology and medical im-

ages (Dey, Hou and Mandal 2019), mapping disease spaces (Torres et al. 2016), and
Astronomy (Xu et al. 2019). Persistent homology (PH) is a TDA technique for com-
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puting the properties of shapes of a finite metric space (also called point cloud
dataset) and can capture these features in an extended range of scales. Nonetheless,
as the number of points or the dimensions of a dataset increases, the computation
of the PH soon becomes impractical.

Numerous methods and toolboxes provide novel approaches to tackle the prob-
lem of computational costs. Sparse Rips filtration (Sheehy 2013) builds an ε-net
on top of the point set followed by an association of weights to each node, which
results in a provably good approximation of the full data Rips filtration. In (Dey
et al. 2014) two new atomic operations for efficient computation of PH are sug-
gested, and SimBa (Dey, Shi and Wang 2019) combines these two strategies to reach
a higher sparsity in the number of simplices, which increases the efficiency for com-
putation of Rips filtration. The toolbox Ripser (Bauer 2019) decreases the compu-
tational costs by avoiding to build the complete coboundary matrix building and
storing only the parts needed. This improves the memory consumption and reduces
the computational time. These methods are limited to Rips and are not extendible
to other types of filtration.

A general concept for scaling down the computation independent of the filtra-
tion was reported in (Chazal et al. 2015) proposing to sub-sample the data randomly
repeatedly and construct an average landscape for the point cloud. Although their
approach can be applied for constructing all types of filtration, it is sensitive to the
distribution of the data on the structures as a consequence of random sampling.
MaxMin (De Silva and Carlsson 2004) was introduced as another intuitive sub-
sampling approach. By selecting a random data point as the first sample, it con-
tinuously picks the next sample point that has the longest distance to the previous
samples until the desired number of samples is achieved. Although sampling using
this method usually achieves more uniformly spaced distribution of points than ran-
dom sub-sampling (Chazal et al. 2015), it does not provide any information about
the range or distance between samples, and final results may vary a lot dependent
on the starting point.

When applying a filtration to a point set, topological features appear and dis-
appear (referred to as birth and death) by increasing the filtration parameter value.
Topological features exhibiting a short lifetime are considered as topological noise
in some applications, as explained in (Fasy et al. 2014). They introduced the con-
fidence band inspired by the p-value definition from statistics. Using this defini-
tion, one can distinguish between properties which belong to the point cloud and
do not emerge as artifacts due to the sub-sampling of the data. Furthermore, the
persistence diagram does not provide any information about the location of these
features inside the point cloud. This location information is essential in several
applications, such as medical image segmentation (Dey, Hou and Mandal 2019),
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detecting voids in the cosmic web (Xu et al. 2019) and supernovae in galaxies. In
(Dey, Hou and Mandal 2019) a technique for positioning persistent 1-cycles was
introduced, which is not easily extendable for locating cavities and higher dimen-
sional properties. Moreover, Dionysus (Dionysus, a C++ library for computing persis-
tent homology n.d.) can also record the boundaries of a topological feature during
the computation of PH. In (Xu et al. 2019), the authors use this toolbox to locate the
voids and filaments in the Cosmic web. The recovered boundary, however, is often
not fully located on the border of a hole or cavity and varies with repeated sampling
over the point cloud. They furthermore construct the filtration on top of a 3D grid
and then compute the distance-to-measure function (Chazal et al. 2018) for every
point on the grid. As a consequence the boundary points also fluctuate by changing
the grid size. We will discuss the above mentioned problems in detail in section
3.2.3.

While simplicial complexes and filtrations are useful for producing clean repre-
sentations of noise-free data sets, they are not as effective when applied to intrinsi-
cally noisy structures. In these cases, a probabilistic description of the low dimen-
sional structures is desirable, as a way to capture the underlying nature of the ob-
served data. Existing techniques are for example non-parametric density estimators,
such as Parzen windows (Parzen 1962), its extensions Manifold Parzen Windows
(Vincent and Bengio 2003) and Fast-Parzen Windows (Wang et al. 2009) or semi-
parametric generative models like the Infinite Gaussian Mixture Model (Rasmussen
1999). However, despite fitting observed points with high accuracy those techniques
are blind toward the low-dimensional nature of the structures and often the compu-
tational costs for training and evaluation is prohibitive. As an alternative, Gener-
ative Topographic Mapping (GTM) (Bishop et al. 1998b) models a noisy manifold
as a low dimensional, linear, latent space embedded in the ambient space through
a non-linear mapping function. The corresponding noise is defined as a Multivari-
ate Gaussian Mixture Model (GMM) (Bishop 2006), with centers constrained to lie
on the embedded latent space. However, despite the non-linearity of the mapping
function, classical GTM is insufficiently flexible to model cavities and holes, which
are non homeomorphic to a linear subpsace.

Physical particle simulations are one way of investigating astronomical phenom-
ena such as galaxies and supernovae. Radiation and winds from massive stars at
the end of their life can greatly affect the dynamics of gas in the interstellar medium
(ISM) and in turn, change the structure of the galaxy and its ability to create new
stars. Dwarf galaxies are very sensitive to the physical processes determining their
evolution due to their low mass and are therefore used as probes to characterize,
study and isolate them in simulations. Similar to real dwarfs simulated irregular
galaxies have a very clumpy ISM and holes due to supernovae visible in the gas
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density distribution (Zhang et al. 2012, Verbeke et al. 2017). The characterization of
the distribution of supernova shells in the ISM (so-called superbubbles), and the en-
ergies of the expanding shells (Oey and Clarke 1997a, Stanimirovic 2006), can shed
light on the feedback physical processes. Superbubbles are of great astronomical
interest but typically measured by eye in available catalogues and automatic tools
are highly desirable.

The main contribution of this chapter is A Sub-sampling Approach for Preserv-
ing topological structures ASAP1 (Taghribi et al. 2020), that reduces the computa-
tional cost suitable for different types of PH filtration on a general d-dimensional
point clouds, for a large number of samples. In this chapter the structures found by
subsequently performed PH are statistically analyzed to determine their robustness.
Additionally, we propose a strategy to provide a probabilistic description of the
shell of these bubbles, which, in our astronomical application, provides additional
information about the supernovae borders and the stars that shape these borders.
In order to fully capture the properties of such cavities, taking advantage of their
low dimensional nature, we propose a modified version of the GTM: geodesic GTM
(gGTM). Through this formulation, the topological features of the modelled struc-
tures are accounted for by embedding a closed low dimensional latent space onto
the ambient space of the point cloud. Through the new latent space formulation
we are finally able to interpret the topological structure of manifolds, embedded in
higher dimensional spaces, while still capturing their natural stochasticity.

In the following, the novel sub-sampling strategy, statistical analysis, and proba-
bilistic description is explained in detail. We then compare to state-of-the-art meth-
ods in several controlled experiments and finally investigate a snapshot of an as-
tronomical particle simulation by computing the number and size of superbubbles
within a jelly-fish like dwarf galaxy.

3.2 Methods

This section consists of three main parts. First, we describe the sub-sampling pro-
cedure followed by the calculation of the confidence band on the PH plot and its
interpretation. Every time the point cloud is sampled, we extract the boundaries of
significant features in the PH plot. Finally, as the boundary points fluctuate between
samples, we suggest a probabilistic description of the border of cycles and cavities
in the PH plot.

1The source code and synthetic datasets are publicly available at https://github.com/abst0603/ASAP
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3.2.1 The sub-sampling approach ASAP

Computing the PH for the analysis of the evolution of shapes across different res-
olutions is often prohibitive due to the combinatorial nature of existing algorithms
complexity, in both time and space. Therefore, we propose a two-stage strategy
based on sub-sampling and Coulomb’s law (Halliday et al. 2013). As described be-
fore, we first sub-sample points from the point cloud data set N (finite metric space)
to reduce the amount of computation time and memory. The subset Nr Ă N aims to
contain fewer points s P Nr for which the persistence diagram DpNrq approximates
the persistence diagram DpNq of the full data. Therefore the set Nr has to satisfy the
following two conditions (Sheehy 2013) checked in every step:

(1) covering Nr “ t@p P N, Ds P Nr| dpp, sq ď ru and

(2) packing dpsi, sjq ą r @si, sj P Nr with i ‰ j .

We satisfy (1) by selecting a random point si, insert it to Nr and remove all points
tpju from N belonging to an open ball centered around si with radius r:

Bpsi, rq “ tp P N : dpsi,pq ď ru
ñ N Ð NzpBpsi, rq Y tsiuq and Nr Ð Nr Y tsiu. (3.1)

The process is repeated until the point set N is depleted, implicating that all points
are covered by at least one open ball of a sample point in Nr. Due to the removal of
points in every step, the packing condition is also fulfilled for all remaining points
with distance larger than r from si in N .

The sub-sampling strategy fulfils both necessary conditions, but the result is not
completely uniform, and the pairwise distance of any sample point pair is between
r and 2r. However, it is more desirable to have sample points equidistant from each
other forming a uniform grid. As a result, we expect when all points on its bound-
ary connect to each other it coincides with the birth time of the void. Moreover,
in astronomical applications it is crucial to measure the size of the cycles, cavities
and streams as accurately as possible, for which Nr needs to contain the borders
of the data. Therefore we propose an extension to the sampling inspired by the
movement of identical electrical particles, such as electrons, on the surface of a con-
ductive sphere (Halliday et al. 2013). The electrons will repel each other based on
Coulomb’s law and approximate a uniform distribution. To take advantage of this
physical repulsion force each sample is repelled by neighbouring samples by

mi “ disppsiq “
ÿ

sjPNi

sj ´ si
‖sj ´ si‖

¨ γ

‖sj ´ si‖2
, (3.2)
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Figure 3.1: (a) points N distributed on a line and holed square, (b) ball cover after
random sub-sampling and (c) after repulsive selection.

where the set Ni consists of sample points in 2r radius of si and γ denotes the learn-
ing rate. If neighbouring points are far from si the force will be low, and the learning
rate controls the strength of the movement. The appropriate range for the displace-
ment is between p0.1r, rq, since the effect of smaller movements is negligible and
larger movements result in si intruding positions already covered by other samples.
The learning rate is gradually reduced in every step t following

γ “ r3 expp´t{τq , (3.3)

such that the samples converge to the new positions. τ is a constant which deter-
mines the decay rate of the learning rate. Instead of moving the samples itself we
take the closest point in the original set ŝi P N to the displacement position as sub-
stitute for si

ŝi “ argminpj
pdppj , si ` miqq @pj P N (3.4)

if it is not contained in an open ball of any other sample point. Algorithm 3 details
the complete procedure of the extended sampling strategy and Figure 3.1 shows the
result on a simple two-dimensional example. Panel (a) depicts the point cloud N

consisting of a line and a square with a circular hole in the centre and (b) shows the
open ball cover after random sampling. The balls of Nr after the update using the
repulsion force are illustrated in (c) achieving a more uniform grid that covers all
boundaries as desired.

The computational complexity of Algorithm 3 depends on the number of times
that repulsion forces are iterated, which depends on the data and the learning rate.
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Algorithm 3: ASAP a sub-sampling approach preserving topological structures

Input : data N , radius r, learning rate constant τ
Output: Nr

initialise: Ntmp “ N , Nr “ H, γ “ 1, and t “ 1

while (Ntmp ‰ H)
Select a random point si from Ntmp

Nr Ð Nr Y tsiu and remove points from Ntmp following Eq. (3.1)

while (γ ą 0.1r3) /* repulsion forces */
Calculate γ based on Eq. (3.3)
forall (si P Nr)

Compute mi Eq. (3.2) and ŝi using Eq. (3.4)
if (dpŝi, sjq ą r @sj P Nr AND sj ‰ si)

si “ ŝi

Ntmp “ N

forall (si P Nr) /* fulfil covering condition */
Remove all points belonging to Bpsi, rq from Ntmp

while (Ntmp ‰ H)
Select a random point si from Ntmp

Nr Ð Nr Y tsiu and remove points from Ntmp following Eq. (3.1)
t ` `

With our choice of learning rate we typically observe about 10 iterations in our ex-
periments. Formally, assuming the while loop on repulsion forces iterates k times
in the d-dimensional data set that contains |N | points over the maximum number of
samples denoted by ∆s, the worst case complexity can be written as Opkd|N |∆sq.
Here we discuss the general case, however, in our implementation we employ k-d
trees (Blanco and Rai 2014) for the neighborhood search in Eq. (3.1), (3.2) and (3.4),
which reduces the computational complexity for pairwise distances from squared
to log linear.

3.2.2 Confidence bands of significant features

The persistence diagram illustrates the birth and death time of topological features
for a unique point cloud. These features in every dimension represent a specific
property of the dataset, such as connected components (H0), holes (H1), cavities
(H2), etc. As a result, the derived persistence diagram of sampled data DpNrq does
not entirely resemble the persistence plot of the point cloud DpNq. The Bottleneck
distance is a metric of comparing two persistence diagrams (Boissonnat et al. 2018),
and it is defined as follows

dBpDpNq, DpNrqq “ inf
µ:DpNqÑDpNrq

sup
p̃PDpNq

‖p̃ ´ µpp̃q‖8 . (3.5)
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Here µ is a bijection that maps every feature point p̃ of DpNq to a point on DpNrq.
The diagonal line where the birth and death time of features are identical is assumed
to include an infinite number of points such that if the number of feature points in
the persistence diagram of N and Nr is not the same, the extra points are paired
with the points on the diagonal line.

Since the persistence diagram varies for distinguished sets of samples, a confi-
dence band was introduced to separate significant topological features from noise
(Fasy et al. 2014). To this aim, we follow the bootstrap procedure as described by
(Fasy et al. 2014). However, we either sample the data based on Random Sub-
sampling Method (Chazal et al. 2015) (abbreviated by RSM in the following), MaxMin
(De Silva and Carlsson 2004), or our novel method ASAP. Next, for a given signifi-
cance level α P r0, 1s, we determine cn such that

lim
nÑ8

supP pdBpDpNq, DpNrqq ą cnq ď α . (3.6)

As a result Cn “ r0, cns is an asymptotic p1 ´ αq confidence set for the bottleneck
distance dBpDpNq, DpNrqq. A p1 ´ αq confidence set determines the region on a
persistence diagram where we detect topological signal in the dataset with 1 ´ α

confidence. According to (Fasy et al. 2014), a confidence band could be included
in persistence diagram with a band width of

?
2cn, which specifies if a point in

diagram should be considered as signal or noise.

3.2.3 Locating cavities and cycles

Following distinguishing significant topological signals and measuring their radius
size, the other on-demand information is to identify and describe the point set that
builds the observed feature. For instance, as explained in the introduction, a deci-
sive step in observing a supernova in a simulated galaxy is to describe its shell or
boundary. To this aim, we took advantage of the Dionysus toolbox (Dionysus, a C++
library for computing persistent homology n.d.), which also records the location of the
topological feature generator during the computation of the persistence diagram.
However, this method returns the boundaries of cycles or cavities that even may
contain points outside the border of the structure. Figure 3.2(a) exemplifies one cycle
boundary detected by (Dionysus, a C++ library for computing persistent homology n.d.),
and indeed the boundary of the cycle misses some border points of the hole and
invades the structure, even in this ideal situation.

One way of overcoming this problem is to locate the boundary of the same cycle
in every taken sub-samples during the bootstrap procedure. Consequently, all parts
of the border of a hole are recorded through sampling and locating the same hole

3.2. Methods 49

0 1 2 3

(a)

-1

0

1

2

3

0 1 2 3

(b)

-1

0

1

2

3

50

60

70

80

90

100

110

Figure 3.2: (a) Sample points extracted by ASAP (black) and the boundary of the
cycle found by (Dionysus, a C++ library for computing persistent homology n.d.) (red).
Panel (b) corresponds to the border recovered by the voting system (100 runs) with
the colorbar depicting the number of votes.

several times. We collect the boundary points retained through such repeated sam-
pling in a multiset Γ. The set of distinct points from Γ form the set Γ̄. Multiplicity
mpbq of each boundary point b P Γ̄ expresses how many times b was selected in a
bootstrap procedure during the repeated sampling by ASAP.

To stabilize the selection of boundary points, we created the following voting
scheme: First a tolerance ball Bpb, rq of radius r is created around every b P Γ̄. Next,
a collection of counter variables ni

j for bi, bi P Γ̄ is constructed, such that nj
i “ mpbiq

if bi P Bpbj , rq, otherwise nj
i “ 0. Therefore the vote for a potential boundary point

bi P Γ̄ is computed as

vpbiq “
ÿ

bjPΓ̄

nj
i .

Finally, we sort the points by their vote value and save the ones with the upper
quartile v3 of the votes. Figure 3.2(b) shows the result of the voting operation (100
times) on the single cycle inside the data that recovers the border very satisfactory.

3.2.4 Building probabilistic models of cavities

Having identified the cavities, we would now like to capture their shape and lo-
cation in the form of a probability density model aligned with the individual cav-
ities sampled by points bi. Given the low dimensional nature of such topological
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features, we will model the probability distribution as the Generative Topographic
Mapping (GTM) (Bishop et al. 1998b). The main idea behind GTM is to represent
inherently low-dimensional structures (manifolds) embedded in a higher dimen-
sional space by constructing a mapping via Radial Basis Functions (RBF) from a
linear latent space in R� (� ą 0 being the intrinsic dimension of the manifold) to
the embedding space RD. With classical GTM, the resulting embedded manifold
is always a “stretched” and “bent” version of the linear latent space. While such a
model has been shown to be very useful in capturing densities aligned along non-
linear embeddings of linear spaces (e.g. deformed “sheets of paper” embedded in
RD with D ě 3) (Tino and Nabney 2002), it cannot naturally capture closed mani-
folds such as cycles and spheres. To make GTM applicable to our case we need to
modify the latent space definition. The resulting density modelling algorithm is in
the following referred to as “geodesic GTM (gGTM)”.

Let us concentrate on the case of holes with their corresponding spherical latent
space. Consider the sphere centered at O “ p0, 0, 0q P R3, having radius r “ 1

(unit sphere). Every point x on the surface of the sphere is uniquely determined
by a pair of angular coordinates: θ and λ where, by definition of spherical coordi-
nates, we have: pθ, λq P I�= “ r´π;πs ˆ r´π{2;π{2s. The notation I�= indicates the
�-dimensional, angular interval, in this case � “ 2. The geodesic distance between
any pair of points xi,xk P I�= is given by (e.g. (Bomford 1980))

dΩpxi,xkq “ r∆Ω (3.7)

where r is the radius of the unit sphere: r “ 1 and ∆Ω is the central angle under the
segment of great circle connecting xi and xk:

∆Ω “ 2 arcsin

d

sin2
ˆ

∆λ

2

˙

` cosλi cosλk sin
2

ˆ

∆θ

2

˙

, (3.8)

where ∆λ “ λi ´ λk and ∆θ “ θi ´ θk. In the spirit of the original GTM (Bishop
et al. 1998b) we can now define a regular grid of size M on the angular interval I�=,
placing an RBF on each node cm, m “ 1, . . . ,M of the grid. The radial basis function
centered on cm is:

φpx, cmq “ exp

„

´dΩpx, cmq2

2σ2



, (3.9)

where σ ą 0 is a scale parameter. The only difference with (Bishop et al. 1998b)
is the replacement of the Euclidean distance with the geodesic distance defined in
Eq. (3.7) (hence, the name geodesic GTM). Every point on the unit sphere is then
mapped to the ambient space by the function:

ypx;Wq “ Wφpxq, (3.10)
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where the elements of φpxq are the M RBFs as defined in Eq. (3.9) and W is the
weight matrix of dimension D ˆ M .

The gGTM model will be trained on the “robust” set of boundary points, i.e.
those that accumulated enough votes in the resampling voting scheme described
in the previous section. We collect such points (exemplified in Figure 3.2b) in the
set Q “ tt1, . . . , tlu, where vptiq ě v3 for all i “ 1, 2, . . . , l. To initialise the weight
matrix W we first take advantage of a physics-inspired diffusion algorithm (SAF,
(Wu et al. 2018b)) that collapses points ti P Q toward high density regions in their
proximity, thus sampling closer to the “mean” of the noisy manifold. The resulting
data set Q̃ “ tt̃1, . . . , t̃Nu is the diffused version of the data Q.

We then estimate the mean radius and the boundary centre as:

rM “ 1

2N

N
ÿ

i“1

„

max
k

p}t̃i ´ t̃k}q


; (3.11)

µ “ pµ1, µ2, µ3qJ “
řN

i“1 t̃i
N

. (3.12)

The weights in matrix W can be initialised by building a refined grid tpθi, λiquKi“1

over I�= and defining latent points xi “ pθi, λiq. The latent points are then mapped to
the embedding space by applying the transformation between spherical and Carte-
sian coordinates:

ξi “

¨

˝

ξ1i
ξ2i
ξ3i

˛

‚“

¨

˝

µ1 ` rM sin θi cosλi

µ2 ` rM sin θi sinλi

µ3 ` rM cos θi

˛

‚ . (3.13)

The weights in matrix W are set through linear regression so that ypxi;Wq « ξi for
all corresponding points xi P I�= and ξi. For every point xi in the latent space, the or-
thogonal vector to the spherical surface computed at the embedded point ypxi;Wq
is:

n̂i “ pn̂1
i , n̂

2
i , n̂

3
i qJ “ ypxi;Wq ´ µ

rM
. (3.14)

A pair of tangent vectors to M orthogonal to n̂ and spanning the tangent space
TMpξiq to M at the point ypxi;Wq can be recovered by differentiating ξi (Eq. (3.13))
w.r.t. θ and λ. After normalization to unit length, we obtain

ui “ Bξi
Bθ “ pcos θi cosλi, cos θi sinλi,´ sin θiqJ;

vi “ Bξi
Bλ “ p´ sinλi, cosλi, 0qJ .
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We can now define the noise model for our gGTM by constructing covariance matri-
ces Ci of multivariate Gaussians centered at images ypxi;Wq of the latent centers.
In particular, we construct Ci proportional to the matrices having as Eigenvectors
ui and vi:

Ci “ 1

β
I ` ηpuiu

J
i ` viv

J
i q . (3.15)

Here, 0 ă β ă 1 is a regularization term, I the identity matrix and η a scaling factor
proportional to the distance between neighbouring nodes of the embedded grid.
The manifold aligned probabilistic model takes the form of a constrained mixture
model:

ppt;W, βq “ 1

K

K
ÿ

i“1

ppt|xi,W, β, ηq, (3.16)

where each component ppt|xi,W, β, ηq is defined by:

ppt|xi,W, β, ηq “ 1

rp2πqD|Ci|s1{2 exp

ˆ

´1

2
∆tJC´1

i ∆t

˙

and ∆t “ ypxi;Wq ´ t P R3. The parameters can be trained via the Estimation
Maximization (EM) algorithm (Dempster et al. 1977), as described in (Bishop et al.
1998a) for a manifold-aligned noise model. In the case of circles, the gGTM model
is constructed analogously. The only only difference is that the latent space has
circular structure parametrized by one-dimensional angular interval I�= “ r´π;πs
with � “ 1.

3.3 Experiments

In this section, we address the comparison between ASAP as a preprocessing step
for building a simplicial complex and other state-of-the-art methods that were pro-
posed to decrease the resources needed for computing the TDA. To compute the
PH of point sets we mainly use GUDHI (The GUDHI Project 2020), which is faster
and more memory efficient due to the structure of the simplex tree than many other
toolboxes (Otter et al. 2017). In order to obtain the Rips filtration on datasets with
larger number of points, we build the simplicial complex using Ripser (Bauer 2019).
We first discuss controlled experiments with known ground truth, followed by the
results of ASAP on real-world data from an astronomical galaxy particle simulation.
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Figure 3.3: 2circles dataset: The original 2D data (black) and subsampled data (red)
as acquired by (a) ASAP (25 points), (b) RSM (Chazal et al. 2015) (175 points) and
MaxMin (De Silva and Carlsson 2004) (30 points) that result in identical persistence
diagrams as depicted in panel (d).

3.3.1 Synthetic data with ground truth

2circles dataset We first experiment on a simple two-dimensional dataset which
was introduced in (Chazal et al. 2015) to demonstrate several sub-sampling methods
for PH. 500 points are distributed uniformly on two circles with radius 1 and 4. For
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comparison we subsample 100 times with each method, saving the minimal point
set required that recover the known features outside the 95% confidence band in the
PH. We record the performance in form of several different evaluation measures,
namely the average number of constructed simplices, as well as Median Relative
Dominance (MRD) and Median Absolute Dominance (MAD), as summarized in ta-
ble 3.1 and 3.2. Figure 3.3(d) shows the persistence plot for Alpha filtration of the
samples selected based on ASAP, RSM (Chazal et al. 2015), and MaxMin(De Silva
and Carlsson 2004). Each point illustrates the birth-death time of a topological fea-
ture of the point cloud. The points for features of homology groups H0, H1 are
presented in red and blue, respectively. The death time of the features with Betti
number 1 shows the correct value for the radii of both circles. The two red dots
outside the confidence band manifest the data consists of two separated parts. Fur-
thermore, the two blue dots outside the confidence band imply the existence of two
significant holes in the dataset. The figure was denoised by removing points with
minimum persistence (death time - birth time for every feature) smaller than thresh-
old 0.5.

Notably, the sub-sampling suggested in (Chazal et al. 2015) can only reduce the
number of samples to 175 points that preserve the persistence of all features of the
original dataset, while MaxMin and the proposed method ASAP can reduce the
original point set to only 30 and 25 points, respectively. However, comparing panel
ASAP (a) and MaxMin (c) shows that the former samples are more uniformly spaced
than MaxMin on both circles and therefore the PH over repeated runs is typically
more robust. Furthermore, due to covering and packing conditions of ASAP, the dis-
tance between every two neighboring samples is not smaller than r and bigger than
2r if enough data points lie in the space between two samples. The same conditions
does not hold for MaxMin samples.

In an additional experiment, we also compared the three sub-sampling methods
reducing the number of points consecutively while observing the resulting death
time of the small circle, with the result shown in Figure 3.4. Since we know the
data points form a circle, the death time also stands for the radius of the circle.
Note, that the circle with radius 4 contains more samples and hence is robust for
all sub-sampling methods. We repeat the MaxMin and RSM 10 times as suggested
in (Chazal et al. 2015), and the number of points in each sub-sample of ASAP cor-
responds to hyperparameter r ranging from r0.1, 1.1s. We are more lenient in this
experiment, observing the death time without considering if the feature stands out
of the 95% confidence band or not. For both Alpha and Rips filtration (Figure 3.4
(a) and (b)) ASAP and MaxMin preserve the death time of the smaller circle with
much fewer points than RSM, as indicated by the shorter blue line. Moreover, in
both plots by decreasing the number of points, the death time is mostly increasing.
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Figure 3.4: 2circles: mean and standard deviation of the death time of the smaller
circle over 10 repeated samplings of ASAP, RSM, and MaxMin when reducing the
number of samples kept with Alpha (a) and Rips filtration (b).

In panel (a) the changes are not dominant, but in panel (b) the change is more visible
with MaxMin diverging more from the baseline (depicting the true death time of the
original small circle) for equal sample size.

2Spheres To compare the methods in higher dimensions we distribute points non-
uniformly and unevenly on two hyper-spheres in R5 with radius 1 and 2, in the
following referred to as 2Spheres dataset. Even though the data consists only of
1200 points the computation of Rips filtration is very memory consuming due to
dimensionality. Note that the code for efficient Rips filtration with SimBa (Dey, Shi
and Wang 2019) only returns the Betti numbers up to 3 dimensions. We sub-sample
the point cloud based on ASAP, RSM (Chazal et al. 2015), and MaxMin (De Silva
and Carlsson 2004) and construct the Alpha complex on the resulting sub-sets. We
iterate the sampling procedure 100 times and present the persistence diagram and
barcode plot that is similar for all three methods in Figure 3.5. Since the data is
not uniform RSM (Chazal et al. 2015) cannot preserve its homology outside the 95%
confidence band if we reduce the number of samples to less than 1000 points. On
the other hand, ASAP with radius 0.58 preserves not only the homology of the data
in R5 with an average of 686 sub-sampled points, but also the death times for Betti
number 4 corresponds to the radii of the spheres. MaxMin can also recover the
same two features with a slightly lower number of samples 680. This is possible
since MaxMin takes the number of samples as a parameter, while ASAP controls the
number indirectly by the radius parameter. The persistence diagrams and barcode
plots of all three methods are mostly identical if RSM is allowed enough samples,
except for the small difference in the confidence interval, and therefore only the
result of ASAP is displayed. The persistence barcode was furthermore denoised by
removing properties with a minimum of birth-death time below 0.2 to make the plot
more readable.
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Figure 3.5: 2Spheres: Persistence diagram (a) and barcode plot (b) of Alpha filtration.
The plots are very similar for samples extracted by ASAP, RSM, and MaxMin and
hence we just show one example.

Synthetic dwarf galaxy Finally we create a synthetic data-set mimicking some
main characteristics of our astronomical application, in the following referred to
as s.dwarf. In total 9656 non-uniformly distributed points in R3 form a synthetic
dwarf galaxy containing 2 cavities with different size, 3 cycles: two with the same
radius and one with a slightly bigger radius contained within a half spherical head,
as well as a connected and a separated stream as shown in panel (a) of Figure 3.6.
As demonstrated in panel (b), the persistence diagram of Alpha filtration on 551
sub-samples (only 5.7% of the original set) with ASAP (r “ 0.15) preserves the main
features of the original data and also maintains the radii of cycles and cavities. The
RSM (Chazal et al. 2015), on the other hand, can save the same features outside the
confidence band only with more than 6200 sub-samples.The striking difference be-
tween the number of samples needed using (Chazal et al. 2015) and ASAP is caused
by the aim of the latter to distribute the points evenly and thus keeping the same
topological features with much fewer samples. MaxMin can also preserve all known
features outside the confidence band with 550 sub-samples. The difference between
the persistence diagram of the three methods is small, thus we only present the
ASAP result in panel (b).

Both GUDHI and Ripser fail to compute the Rips filtration of the entire dataset
due to high memory usage. Nevertheless, if we decrease the number of points by
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Figure 3.6: s.dwarf (a): persistence diagram of: (top) Alpha filtration based on 551
ASAP points (b), Rips filtration for ASAP points (c), (bottom) SimBa (d), and Rips
filtration for 550 MaxMin points (e).

ASAP with r “ 0.15, Ripser manages to calculate the Rips filtration and its per-
sistence diagram. All expected features are visible outside the confidence band in
panel (d). However, some new 0 homology features also appear in this plot that
emerge since the distance between every two points after sub-sampling is more
than r. SimBa is also capable of computing the Rips filtration, as depicted in Fig-
ure 3.6(d), but the death times do not conform with the exact size of the cycles and
cavities within the head. Besides, 0 homology features are represented with three
red points that do not correspond to the number of connected components. Note
that points on the persistence diagram shape a multiset, and each red dot can illus-
trate more than one feature. We can also compute the Rips filtration on the MaxMin
selected sub-samples. As presented in panel (e), all expected features stand out the
confidence band, and similar to ASAP some extra 0 homology features are also in-
cluded. Nevertheless, the birth time of features is more distorted as the features of
the same size (two out of three cycles) are presented with two distinct points. The
run time of the ASAP sampling for 2sphere dataset pr “ 0.58q is about 0.4 second
and it occupies about 1MB of memory. On the Synthetic dwarf galaxy pr “ 0.15q, it
takes about 0.7 second to select the samples and it consumes 2.2MB of memory. All
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Figure 3.7: Iso-surfaces of the likelihood computed by the probabilistic models of
the recovered cycles (top row) and holes (bottom) of the synthetic dwarf galaxy
(s.dwarf) depicted in Figure 3.6(a).

experiments were conducted on a single core of a processor with a maximum clock
rate of 4.5GHz.

To locate the position of notable features with a confidence value higher than
95%, we use Dionysus (Dionysus, a C++ library for computing persistent homology n.d.)
and then applied the voting procedure as explained in section 3.2.3. In Figure 3.6(a)
points in light and dark green are the detected points on the border of cycles, and
the points in dark and light blue build the outline of two cavities inside the head of
the synthetic galaxy. The probabilistic models visualized in Figure 3.7 built using
the detected border points from Figure 3.6a clearly depict the intrinsic nature of
the structures. The top panels (a-c) depict the likelihood of the datasets given the
models, as iso-surfaces over the space containing the respective data points: the
manifolds’ neighbourhood. Each neighbourhood is discretized in a uniform grid
and for each node in the grid we compute its likelihood given the manifold’s model.
The iso-surfaces in Figures 3.7-3.8 are obtained by locally interpolating all nodes of
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Table 3.1: Comparison of the number of simplices constructed by several methods
and filtrations with lowest numbers marked in bold.

�������
method

dataset
pn|dq

2Circles
(500|2)

2Spheres
(1 200|5)

s.dwarf
(9 659|3)

A
SA

P Alpha 81 502 002 14 193

RIPS 2 639 8 -

R
SM

Alpha 309 584 657 170 219

RIPS 37 876 8 -

M
ax

M
in Alpha 136 496 123 14 125

RIPS 5 030 8 -

Si
m

Ba RIPS 1 031 - 63 004

G
U

D
H

I

Alpha 2 345 718 531 250 991

RIPS 13 752 927 8 8

the grid having the same likelihood, equal to a specific iso-value. For all figures, the
iso-value is chosen to be 1% of the maximum likelihood computed over the whole
grid. The coherent structures emerging from these iso-surfaces explain the noisy
cycles that characterize the boundaries of the 2-dimensional holes. In the same way,
the noisy spherical iso-surfaces in panels (d and e) of Figure 3.7, cleanly separate
regions populated by the boundary points (spherical shells) from the internal holes.

Table 3.1 presents the total number of simplices arising in every filtration on all
synthetic datasets investigated. SimBa can only compute the Rips filtration and al-
though Ripser computes the Rips filtration on the synthetic dwarf dataset it does not
provide any information about the size of the simplicial complex inside the struc-
ture indicated by a “-” in the respective columns. Additionally, we denote with “8”
whenever the computation of the Rips filtration fails due to the memory complexity.
For our proposed method, MaxMin (De Silva and Carlsson 2004) and RSM (Chazal
et al. 2015), we report the results for the number of samples preserving the homol-
ogy of the data after denoising. This information reveals that ASAP decreases the
number of sample points significantly, and hence reducing the number of simplices
in different filtration while preserving the topological features.

To evaluate the robustness of detecting known toplogical features from point
clouds the Median Relative Dominance (MRD) and Median Absolute Dominance
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(MAD) were introduced in (De Silva and Carlsson 2004). Relative dominance and
absolute dominance are defined as pR1 ´ R0q{K0 and pR1 ´ R0q{K1, respectively,
where R0 and R1 stand for the birth and death time of a feature. K0 is the time when
the Betti profile changes permanently to the profile of a single point in d-dimensions,
and K1 targets the time for which a complex becomes a complete simplex between
all edges. Finally, we compute the median value over 100 iterations of sampling the
data and calculating these metrics. Note that these metrics are calculated for every
feature in a dataset separately, hence we add the suffix (s) and (b) in Table 3.2 to
denote the results for the small and big circle or sphere respectively. The higher the
value of these two metrics, the more robust the identification of similar features in
the sub-sampled dataset is. Note that these metrics are not suitable for the synthetic
dwarf galaxy dataset, since if the border points of the features are looser than the
real border, the death time and metrics value increase falsely. Besides, the value of
K1 may vary drastically for alpha filtration if the center of an enclosing ball for the
final added simplex located outside the simplex, thus we only discuss the MRD.

Table 3.2 displays the comparison based on these two metrics for ASAP and
MaxMin. We did not insert RSM results here as long as RSM needed a larger num-
ber of samples to get similar topological features, thus the comparison is biased by
the number of samples. As explained before, ASAP and MaxMin reach a similar
number of samples for 2Spheres dataset. For 2Circles dataset, we chose the radius
of sub-sampling using ASAP equal to 0.8 which results on average 28 samples that
is closer to the number of samples selected by MaxMin (30). In both cases ASAP
and MaxMin detect the expected features outside the 95% confidence band and the
sub-sampling is repeated 100 times. The results disclose that ASAP reaches higher
values for the MRD and MAD evaluation measures on both datasets. The lower
metrics values for MaxMin stem from the strategy of the method to select samples.
Figure 3.3 reveals that although MaxMin samples are more evenly spaced than RSM,
they are not as well placed to their neighbors as ASAP samples, which lead to a later
birth time and lower metrics values.

3.3.2 Particle simulation of a Jellyfish-like dwarf galaxy

Figure 3.8 panel (a) shows an N-body Smoothed Particle Hydrodynamics (Price
2012) simulation snapshot of a dwarf galaxy falling into a cluster environment with
its gas stripped by ram pressure. The point set corresponds to the position of 33
500 gas particles. The distribution of points in this point cloud varies significantly,
and points are dispersed on multiple separated parts. Hence, we expect to see sev-
eral red points linked with Betti number 0 in the persistence diagram of this dataset
as the Betti number 0 corresponds to connected components of the dataset. We
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Table 3.2: Comparison of MRD and MAD for several methods and filtrations with
best values marked in bold. Suffix (s) and (b) mark the results for the small or big
structure respectively.

��������
method

dataset

metric
filtration

MRD
Alpha

MRD
RIPS

MAD
RIPS

A
SA

P

2Circles(s) 0.040 0.094 0.055
2Circles(b) 0.973 0.813 0.474

2Spheres(s) 0.110 - -
2Spheres(b) 0.703 - -

M
ax

M
in

2Circles(s) 0.031 0.063 0.037
2Circles(b) 0.962 0.780 0.459

2Spheres(s) 0.097 - -
2Spheres(b) 0.703 - -

sub-sample the dataset using ASAP with r “ 0.4 reducing the set to « 37.6% of
the total amount of points. Then the Alpha simplicial complex was constructed on
the subset. We select a radius value for sub-sampling using ASAP to pursue two
conditions: first, the expected topological features are outside the 95% confidence
band and second, the computation of Alpha filtration on the remaining samples is
tractable.

Figure 3.8 panel (b) shows the persistence diagram for the reduced set, denoised
using a threshold of 1 for the minimum birth-death time. Based on the confidence
band of 95% the data consists of four distinguished parts (0 homology features in
red) and three cavities (blue points) with death time equal to 3.98, 1.66, and 1.48
respectively. We repeat the sub-sampling by ASAP 100 times, and each time, these
three features are located inside the sub-sample sets, then using the technique de-
fined in section 3.2.3, the points on the border of each hole are detected. Panel (a)
also illustrates the border points of the three cavities inside the head part of the
galaxy. The largest cavity has a late birth time (approximately 10) shown in panel
(b) of Figure 3.8. A gap between points on the border of this cavity (points high-
lighted in light blue) is the reason for this delayed birth time. The first two holes
were modelled via the modification to GTM described previously in sec. 3.2.4. The
resulting iso-surfaces of the likelihood of the probabilistic models w.r.t. a regular
grid for the points enclosing the two holes are shown in panel (d) and (e) of Fig-
ure 3.8. Given the spherical latent space adopted in our version of GTM, we could
not properly model the irregular hole previously mentioned. Instead, we adopted
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Figure 3.8: Jellyfish-like dwarf galaxy particles (a) and Alpha filtration of the ASAP
subset (b). Iso-surfaces of the likelihood computed by the probabilistic models of
the recovered holes (c-e).

the methodology outlined in (Wang et al. 2008), where multiple manifolds in a data
set are modelled as low-dimensional graphs and embedded through the RBF for-
mulation onto the ambient space. The results for this “hole” are shown in Figure
3.8(e).

The technique presented can be used to get insights into the physical processes
at play in galaxy evolution by post-processing N-body simulations. Firstly, in the
simulations, by computing the time evolution of the probabilistic iso-surfaces (like
those shown in Figure 3.8) it is possible to follow the expansion of the gas around
the modeled supernovae explosions, thus verifying the efficiency of the stellar feed-
back process. Also, distributions of the diameters, expansion velocities, ages of the
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bubbles can be computed. The standard model describing the evolution of super-
bubbles is an adiabatic, pressure-driven expanding process with a continuous en-
ergy injection (Oey and Clarke 1997a). Recent simulations suggest that the ambient
pressure does affect the expansion of the bubbles (Nath et al. 2020), which can now
be analyzed quantitatively.

With ASAP and subsequent probabilistic modelling identifying the expanding
superbubbles automatically, it would be possible to study the effect of the environ-
ment on the superbubbles accretion rate, and whether it depends on parameters
such as the local ambient pressure and density. Moreover, the superbubble size dis-
tribution can be measured in a dynamical scenario like the one that is recreated in
the simulations we used i.e. the fall of a galaxy in the hot and high density cluster
gas. Observations show that the slope of the distribution of the size of superbubbles
is different in galaxies with different morphologies (late-type vs. early-type) (Nath
et al. 2020, Bagetakos et al. 2011). Our simulation scenario effectively captures the
well known galactic morphological transformation due to the galaxy-cluster inter-
action, thus allowing a comparison of superbubble distribution for different galactic
evolutionary stages. Lastly, being able to isolate the particles belonging to the cavity
walls can shed light on the physical properties of the shock wave at the border of
the bubbles.

3.4 Conclusion

In this chapter we expand the novel ASAP formulation for sub-sampling a point
cloud that preserves the topological properties and reduces the memory consump-
tion and computational cost for TDA analysis. The formulation is expandable for
d-dimensions, is not limited to a specific type of filtration and its performance is
shown for a variety of data sets. The features found are analyzed for their robust-
ness using a statistical approach providing the confidence levels. We separate the
signal from noisy features through a statistical test and argue the downside of the
suggested technique for detecting the boundary of a cycle. Accordingly, we sug-
gest a voting strategy to solve this problem, and finally, the points on the outline of
the located cycles or cavities are modeled by a probabilistic model. Each model is
generated by a generalized GTM approach, which allows further investigation and
analysis of their properties. As it is disclosed through empirical results on several
datasets, the proposed approach preserves the size of topological properties. The
accuracy of such information is indispensable in some domains, such as astronomy
where it informs about physical phenomena, namely supernovae in a galaxy.
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