

 University of Groningen

Managing technical debt: prioritising and quantifying architectural smells
Sas, Darius

DOI:
10.33612/diss.249298785

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Sas, D. (2022). Managing technical debt: prioritising and quantifying architectural smells. University of
Groningen. https://doi.org/10.33612/diss.249298785

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-11-2022

https://doi.org/10.33612/diss.249298785
https://research.rug.nl/en/publications/1823a036-1207-4495-8803-a35a7e057c7a
https://doi.org/10.33612/diss.249298785

Chapter 1

Introduction

A program that is used and that, as an implementation of its
specification, reflects some other reality, undergoes continuous
change or becomes progressively less useful. The change or decay
process continues until it is judged more cost effective to replace the
program with a recreated version.

— Meir Lehman

The opening quote of this chapter is the first of the five laws of software evolution
formulated by Lehman in the late 1970’s [Lehman, 1979]. The law refers to the

fact that all software is designed to operate in a specific environment and to satisfy
a specific set of requirements. However, every environment, and every require-
ment, is bound to change eventually, rendering the software obsolete. Therefore, a
constant need of adapting the software and keeping it relevant for its stakeholders
arises. This continuous adaptation is a relentless endeavor that requires an ever-
increasing amount of resources and, over time, destabilises the sustainability of a
software project.

A software project is sustainable if the project owner is capable of applying what-
ever valuable change they ought to make, in a timely fashion [Winters et al., 2020].
However, design decisions and implementation choices made early on in the
project’s lifetime inevitably affect the decisions we have to make in the present,
often making them harder. Over time, as the system grows old, our capability of
adapting the software to new requirements and changes in the environment grows
narrower, and making changes becomes more expensive. Eventually, the system
becomes unsustainable: it is poorly maintainable – i.e. it is hard to fix bugs – and
with limited capabilities to evolve – i.e. it is difficult to implement new functionality.
In other words, the second sentence of Lehman’s first law of software evolution
comes into play.

In 1992, Ward Cunningham cleverly adapted and reframed both of these
concepts (sustainability and Lehman’s first law) under the term technical debt
[Cunningham, 1992]. Since then, technical debt has gained a lot of traction among

2 1. Introduction

both practitioners and researchers alike, as it concerns a problem that (almost)
every non-trivial software system suffers from. Over the years, several stud-
ies have made great progress in identifying the causes and effects of technical
debt [Brown et al., 2010, Kruchten et al., 2012]. A comparable amount of effort was
also spent in designing and developing strategies and techniques to manage TD
[Li et al., 2015] in order to aid decision-makers. Similarly, several tools were devel-
oped to automatically measure TD using source code as input [Avgeriou et al., 2021],
or track it manually [Martini and Bosch, 2016].

Technical debt can materialise into various forms, ranging from source code vio-
lations [Letouzey, 2012, Curtis et al., 2012] and design-level flaws [Marinescu, 2012]
to sub-optimal decisions made at the architectural level [Ernst et al., 2015,
Yli-Huumo et al., 2014]. One form of such architectural decisions are architec-
tural smells (AS); they are defined as “commonly (although not always intentionally)
used architectural decisions that negatively impact system quality [Garcia et al., 2009]
and have gained a lot of attention from researchers over the past years
[Verdecchia et al., 2018]. AS are a particularly risky type of technical debt: they
involve architecture-level artefacts, so their impact is much larger and affects soft-
ware development in the long run.

The fundamental proposition of this thesis is that a better understanding of
AS will allow software practitioners to better manage technical debt, thus making
software maintainability and evolvability more cost-effective; this can, in turn, slow
down the decaying process mentioned by Lehman’s first law of software evolution
and defer the replacement of the software.

In the upcoming sections, we will introduce the concepts of technical debt and
architectural smells in further detail, as these are the leitmotif of this dissertation.
I will also decompose the research problem addressed in this thesis into multiple
research questions and explain the methodology used to answer them.

1.1 Technical Debt

1.1.1 History, definitions, and types

In 1992, Cunningham first introduced the concept of technical debt (TD)
[Cunningham, 1992]. The term was coined to indicate the necessity of releasing
software that, may work perfectly, but does not meet the criteria of software that is
sustainable in the long-term. Cunningham himself calls this an “unmasterable pro-
gram” that is “dangerous” unless the debt is repaid. Unfortunately, TD repayment is
not always feasible, as software practitioners have to work with limited time and

1.1. Technical Debt 3

budget, resulting in most of TD not being repaid [Digkas et al., 2018]. The time
spent on not-quite-right code counts as interest on that debt [Cunningham, 1992],
making software projects more expensive to maintain, whereas the not-quite-right
code itself is referred to as principal. Technical debt is a powerful metaphor that,
essentially, conveys the importance of sustainable software – and of Lehman’s first
law of software evolution – in terms that are easy to understand and communicate
to others.

A well-accepted definition of TD is the following: “in software-intensive systems,
technical debt is a collection of design or implementation constructs that are expedient
in the short term, but set up a technical context that can make future changes more
costly or impossible. Technical debt presents an actual or contingent liability whose im-
pact is limited to internal system qualities, primarily maintainability and evolvability”
[Avgeriou et al., 2016]. Hence, an organization can get into debt and use it as lever-
age to temporarily increase productivity, as long as it is aware of the debt and is
planning to repay it in due time. However, if the organization is not aware that it
is accruing TD, or does not repay it on time, the amount of interest may become
too high, causing the failure of the project due to the huge cost of implementing
changes.

Since the original conception of the metaphor by Cunningham, it has been
extended, engulfing several aspects of the software development process like ar-
chitecture, design, requirements, testing and documentation [Brown et al., 2010].
The current research literature has explored the concept in breadth and depth and
has proposed and analyzed multiple taxonomies and types of TD. A common way
of categorising TD is by the type of artefacts it affects. Using this approach, Li
et al. [Li et al., 2015] identified several different types of TD, namely Requirements
TD, Architectural TD, Design TD, Code TD, Test TD, Build TD, Documentation TD,
Infrastructure TD, and Versioning TD.

In this thesis, we will mostly focus on Architectural TD (ATD), the type of TD
that affects the architecture of a software. Examples of ATD are architectural viola-
tions (e.g. the implemented architecture is not compliant with a set of predefined
architectural rules), poor application of well-known architectural patterns, early
architectural decisions that had unexpected trade-offs, or architectural smells. As
aforementioned, this dissertation is centered around this last form of ATD, that is
architectural smells.

4 1. Introduction

1.1.2 Metaphor’s weaknesses and limitations

The use of the TD metaphor to describe software issues has received some criticism
from the research community too. One of the major shortcomings of the metaphor,
according to Schmid [Schmid, 2013], is the lack of a standard unit of measurement
and the difficulty to measure it because of the fuzzy boundaries of the different
TD components. Moreover, still according to Schmid [Schmid, 2013], not all TD is
effective TD, but it can also be potential TD, since it is not sure if there will be any
interest to be paid on that debt. This may be the case when some specific code will
never have to be modified again, hence no interest will ever be paid on such code;
as if it had no debt. Schmid also argues that the more detailed the effect of TD taken
into account, the higher its estimation gets: adding up individual contributions to
TD will result in counting the same underlying cost multiple times, leading to an
exaggerated value of TD [Schmid, 2013].

Other studies point out that the metaphor may encourage the detrimental be-
haviour of introducing debt thinking that a faster delivery can be achieved, without
any drawbacks. This is favoured by the fact that, in some cases, the people who
take the debt are not necessarily the same who pay it back [Allman, 2012].

1.2 Architectural smells

The term architectural smell (AS) was initially introduced by Lippert and Roock in
2006 [Lippert and Roock, 2006] to refer to violations of recognised design principles
(such as the ones defined by Martin [Martin et al., 2018]) that result in undesired
dependencies, overblown size, and excessive coupling [Garcia et al., 2009]. Al-
ternatively, architectural smells can be seen as error-prone or change-prone design
spots that hinder software maintainability at an architectural level [Mo et al., 2015].
It is important to note, however, that architectural smells are an indication that some-
thing may be problematic, but they do not necessarily result in problems.

This definition of architectural smells may sound very similar to the definition
of code smells provided by Kent Beck1. However, there is a clear distinction between
the two: architectural smells involve multiple classes, packages, architectural lay-
ers, or even sub-systems2 [Lippert and Roock, 2006], whereas code smells (CS) arise
at line of code, method, or class level [Fowler and Beck, 2002]. This means that ar-
chitectural smells, contrary to code smells, require large refactorings in order to be
removed from a system [Lippert and Roock, 2006]. Therefore, given the different

1Read https://wiki.c2.com/?CodeSmell for more info.
2From hereafter collectively referred to as elements.

https://wiki.c2.com/?CodeSmell

1.3. The project SDK4ED and the Arcan tool 5

scope and granularity, architectural smells and code smells are considered two dif-
ferent categories [Sharma et al., 2020]. This difference between the two categories
of smells is also supported by empirical evidence [Arcelli Fontana et al., 2019b].

Architectural smells can be of different types, with each type having its own
definition and implications for the maintainability and evolvability of the affected
elements [Azadi et al., 2019]. An architectural smell type can have multiple in-
stances affecting a system, with each instance having a different severity (more on
this in Section 2.3). An example of an architectural smell type is Cyclic Dependency,
which arises when a set of elements (e.g. classes, or packages) depend on each
other in a cycle.

The architectural smell types that are of interest to this PhD project are Cyclic
Dependency (CD), Hublike Dependency (HL), God Component (GC), and Unstable De-
pendency (UD). In Section 1.4.1 we elaborate on the reasons why we opted to focus
on these four types of AS. The definitions of each AS type will be given in Section
2.3.

1.3 The project SDK4ED and the Arcan tool

This PhD project was conducted in the context of the SDK4ED project, a project
funded by the European Union under the Horizon 2020 programme.

The vision of SDK4ED was to minimize the cost, the development time and the
complexity of low-energy software development projects, by providing tools for
automatic optimisation of multiple quality requirements, such as Technical debt,
Energy efficiency, Dependability (i.e. Reliability, Availability, and Security) and
Performance. One of the topics on which the project has innovated is researching
and developing tools to identify the trade-offs between runtime and design-time
software quality attributes at multiple levels of abstractions (code, design, and
architecture). In this regard, our study investigates specifically the interaction
between Technical debt (i.e. Maintainability and Evolvability) and Reliability,
which map to design-time and runtime quality attributes, respectively. Further
details on the project are available on its website3.

As part of the SDK4ED project, I also contributed to the open-source version of
Arcan, a tool to automatically detect AS in a system, by adding support for Java
source code, support for Git to do evolution analyses, and the detection of the God
Component smell. Arcanwill be fully introduced in Section 2.3.2.

3Browse https://sdk4ed.eu/.

https://sdk4ed.eu/

6 1. Introduction

1.4 Research design

1.4.1 Problem statement

In this dissertation, we address the problems that practitioners face when attempt-
ing to make changes to their systems in the presence of AS. We also argue that
by providing better support to target AS as part of TD management, we can help
practitioners to make changes more effectively and efficiently. To better explain the
problem, let us quickly look at the key activities of TD management [Li et al., 2015].
Note that we only mention the five most important and most studied activities
[Li et al., 2015], and focus specifically on AS (out of all TD types). These five activ-
ities are: (1) identify what elements in the system are affected by AS and the type
of the smells; (2) quantify the impact of each smell on the development activities
(both maintenance and evolution); (3) prioritise the smells in order to determine
the urgency to refactor; (4) repay the debt by refactoring smells according to the
prioritisation strategy adopted; and finally (5) regularly monitor the evolution of
TD and smells over time.

The current research landscape contains plenty of studies that focus on the first
activity of TD management for architectural smells – i.e. identification – whereas the
work done on the other activities is not as mature. Consequently, practitioners have
the means to identify the AS affecting a system, but there is limited understanding,
and most importantly very little tool support, for the remaining activities.

This situation stems from the fact that early research work on architec-
tural smells (rightfully) focused on identifying new types of smells, the-
oretically defining them, proposing detection rules, and finally describing
their impact on software maintenance from a theoretical, and then empiri-
cal, point of view [Lippert and Roock, 2006, Garcia et al., 2009, Mo et al., 2015,
Le et al., 2016, Arcelli Fontana et al., 2016]. Subsequently, tools for automatic de-
tection of AS were proposed, by both academia and industry [Avgeriou et al., 2021,
Khomyakov et al., 2020], and AS detection became a more feasible option for many
practitioners that could not afford to do a manual assessment. However, the rest
of the activities, from quantification through monitoring, are not really supported
in practice due to: a) the scarcity of research on these activities; b) the limited
availability of the few research tools that focus on those specific activities; and c)
the difficulty to use such tools [Khomyakov et al., 2020]. In the best case scenario,
this leaves practitioners to rely on intuition and assumptions instead of data and
well-established practices; in the worst case scenario, they do not consider AS man-
agement at all. In the long run, both are likely to cause exceedingly high costs in
order to apply any changes, thus diminishing the long-term sustainability of the

1.4. Research design 7

system [Winters et al., 2020]. Eventually, it becomes more convenient to rewrite
the whole project [Lehman, 1979], or rely on a third party solution; but in some
cases, neither of these options may be feasible, leading to software ‘bankruptcy’
[Ampatzoglou et al., 2015].

This problem is summarised by the following statement:

The detection of architectural smells alone is not sufficient for practitioners
to take informed TD management decisions. Practitioners need to know the
amount of TD each instance amounts to, what the available prioritisation
strategies are, and the trend of the TD incurred over time. This information
can help them better implement TD repayment.

To further scope down the problem, we considered the fact that dozens of
architectural smells have been reported in books and scientific literature, and
it would be infeasible to address all of them. Thus, we decided to focus our
attention only on the four architectural smells (CD, HL, GC, UD – see Section
2.3) that are the most prominent in the literature [Azadi et al., 2019]; two of them
are also well known in the industry [Lippert and Roock, 2006, Martin et al., 2018].
Moreover, the literature also provides manually-validated, open-source tools
that we can use to detect these smells. In particular, we relied on Arcan
[Arcelli Fontana et al., 2016, Arcelli Fontana et al., 2017, Martini et al., 2018a], and
through the work in this dissertation, we actively contributed to improving the
tool.

1.4.2 Design science as research methodology

The research project that this dissertation is based on, adopts the design science
framework, as developed by Wieringa [Wieringa, 2014] and depicted in Figure 1.1.
Design science concerns the design and investigation of artefacts (e.g. a software
component, a method, a service, an organisation, etc.) in context [Wieringa, 2014].
Design refers to allowing the design of an artefact that improves a problem context,
namely, that solves a design problem. Investigation refers to allowing to answer
knowledge questions about the artefact in context.

Design problems call for a change in the real world; in contrast, knowledge
questions ask for knowledge about the real world. The distinction between design
problems and knowledge questions is often confusing, as design problems can be
formulated to look like knowledge questions. Figure 1.1 can help us distinguish
these: if the question asks about a solution to a problem, then it is a design problem;
if it seeks knowledge about the world, then it is a knowledge question.

8 1. Introduction

Designs

Social Context
(stakeholders)

Goals, Budgets

Design Science

Artefacts & contexts

Knowledge & new design problems

New problems,
designs, and

problem-solving

Existing problems,
designs, and

problem-solving

Design Investigation

New answers
 to knowledge

questions

Existing answers
to knowledge

questions

Knowledge Context
(Mathematics, social science, natural science, design science, etc.)

Figure 1.1: The framework for design science proposed by Wieringa
[Wieringa, 2014].

A concrete example of design science is Software Engineering itself
[Wieringa, 2014]. Software Engineering is a design science that seeks to under-
stand and solve the problems of creating and maintaining software to achieve the
stakeholders’ goals.

A concrete example of a design problem is: design an approach to measure technical
debt principal based on architectural smells. A concrete example of a knowledge
question is: how accurate is such an approach?

Design science is an iterative process where a researcher analyses a design
problem, identifies a solution, evaluates the solution, and, if the solution is not
satisfactory, they start over. The analysis of the design problem and its evaluation
are referred to as design cycle. Iterations through the design cycle may uncover
aspects of the original design problem that were initially unknown. The evaluation
process also allows for additional design problems or knowledge questions to
emerge.

These characteristics make the design science framework suitable for describing
long-term research such as PhD projects. Indeed, a PhD project starts with an initial
design problem, which can be decomposed into new, smaller design problems and
knowledge questions. By answering the knowledge questions, the researcher can
identify, with the new knowledge acquired, a solution to the design problems

1.4. Research design 9

previously identified, which in turn might uncover new design problems and
knowledge questions. The cycle repeats until a design solution is found for the
original problem.

1.4.3 Problem decomposition

This section elaborates on how the research project presented in this thesis is
framed according to the design science framework. Figure 1.2 decomposes the
problem statement introduced in Section 1.4.1 into design problems and knowledge
questions. The different colors and arrows are to be read as follows: light grey
boxes refer to design problems; yellow boxes refer to knowledge questions; thin
arrows represent decomposition; whereas thick arrows represent sequence. In the
remainder of this section, we will use the term research question (RQ) to refer to both
design problems and knowledge questions. Research questions are numbered to
easily refer to them, and, with the exception of RQ1, are decomposed into multiple
sub-RQs that are labelled with letters.

The problem statement (see Figure 1.2) argues that practitioners cannot take
informed decisions by relying on the detection of AS instances alone. The smells
detected also need to be quantified in terms of TD, prioritised, monitored and paid
back in order for AS management to be effective. Without support for these activ-
ities, the practitioners’ ability to manage architectural TD is significantly limited,
ultimately affecting the sustainability of the system.

As a first step towards addressing the stated problem, we decided to investigate
how AS evolve in long-lived software systems, starting with open-source systems.
Thus we formulated RQ1: “How do AS evolve in open-source systems?” Answering
RQ1 would allow to address the stated problem in two ways. First, obtaining an
understanding of AS evolution can help researchers formulate general rules for
prioritising AS based on their historical evolution. Second, a better understanding
of the evolution of a smell can help design a better approach to quantify the amount
of TD incurred. Studying the evolution of AS entails studying two aspects: the
evolution of the individual AS instances (RQ1b) and the persistence of AS instances
within the system (RQ1c). This study required analysing 524 releases belonging to
15 open-source projects. The tool Arcanwas used to detect the architectural smells
and a custom tool was designed and developed to track them from one release to
the next (RQ1a).

One of the findings of RQ1 is that some smells may be the result of intentional
design. The investigation of RQ1, being a purely quantitative analysis based on
the mining of software repositories, cannot provide any further insight on why

10 1. Introduction

<<Problem Statement>>
The detection of architectural smells alone is not sufficient for practitioners to

take informed TD management decisions.
 Practitioners need to know the amount of TD each instance amounts to,

what the available prioritisation strategies are, and the trend of the TD incurred
over time. This information can help them better implement TD repayment.

<<Knowledge Question>>
How do different types of smells evolve?

Legend

Sequence

Decomposition

<<Design Problem>>
Design and implement a tool to track AS from

one version to the next.

a

<<Knowledge Question>>
How do AS evolve in open source

systems?

RQ1

<<Design Problem>>
Design an approach to estimate the

technical debt principal generated by AS.

RQ5

b

<<Knowledge Question>>
How do AS evolve in industrial embedded

systems?

RQ3

<<Knowledge Question>>
How do different types of smells persist within

the system?

c
<<Knowledge Question>>

What AS types are more likely to generate
other AS?

a

<<Knowledge Question>>
What AS types typically co-occurr?

b

<<Knowledge Question>>
Is the principal estimated by the approach

relevant to software developers?

d

<<Design Problem>>
Quantify the effort to remove the AS

c

<<Design Problem>>
Calculate the severity of a smell

a

<<Knowledge Question>>
How do AS correlate to changes in the

source code of the system?

RQ4

<<Knowledge Question>>
How are trade-offs between quality

attributes currently managed in industry?

RQ6

<<Knowledge Question>>
Do classes and packages with smells change
more frequently than classes and packages

without smells?

a

<<Knowledge Question>>
What is the difference in the change frequency

of an artefact before and after a smell is
introduced?

b

<<Knowledge Question>>
What type of trade-offs do they do?

b

<<Knowledge Question>>
What is the interest of software practitioners in

design-time and run-time qualities?

a

<<Knowledge Question>>
How does understanding AS evolution help

software practitioners?

c

<<Knowledge Question>>
What are the ideal features of a tool to support

trade-offs between QA and TD repayment?

c

<<Knowledge Question>>
How are AS perceived by industrial

practitioners?

RQ2

<<Knowledge Question>>
What are the maintainability and evolvability

issues experienced that relate to the presence
of AS?

a

<<Knowledge Question>>
How do practitioners introduce and deal with

AS?

b

<<Knowledge Question>>
Is the size of the changes in source code
artefacts affected by smells, larger than in

non-affected artefacts?

c

<<Knowledge Question>>
How accurate and transparent is the ranking

of severity?

b

Figure 1.2: The decomposition of the design problem tackled in this dissertation.

1.4. Research design 11

practitioners intentionally introduce smells or whether they consider the conse-
quences of doing so on software maintenance and evolution. Moreover, since RQ1
focuses on open-source projects only, it is hard to extend the findings to an indus-
trial context. Therefore, we formulated RQ2: “How are AS perceived by industrial
practitioners?” The goal of RQ2 is two-fold: (1) understand the issues stemming
from the presence of AS and that affect maintenance and evolution (RQ2a); and (2)
explore how and why practitioners introduce and deal with AS (RQ2b). To answer
RQ2, we designed a case study and interviewed 21 practitioners from 3 companies
in Europe that work with both Java and C/C++. The findings of RQ2 are particu-
larly interesting for researchers as they can better understand the problems faced
by practitioners and design solutions accordingly.

The investigation of RQ2 has shown that practitioners are aware of the prob-
lems stemming from the presence of architectural smells but struggle to keep track
of their evolution and the dependencies between smells. To better understand
this aspect, we had to study the evolution of and dependencies between AS while
also collecting feedback from the architects and engineers that developed the com-
ponents affected by the smells. Thus, we formulated RQ3 “How do AS evolve in
industrial embedded systems?” This RQ focuses on the evolution of AS, similarly
with RQ1, but has a completely different focus: the introduction order (RQ3a)
and the co-occurrence (RQ3b) of smells, taking into account also the experiences
of practitioners (RQ3c). The context of the study also changes, as RQ3 focuses
on industrial systems written in C/C++ (rather than open-source Java systems)
belonging to a large multinational company. Answering RQ3 allows us to under-
stand if there exists any pattern that can predict the introduction of a smell given the
presence of another and what practitioners think about specific AS instances (and
their evolution). This kind of information can be used to improve prioritisation
decisions (e.g. address the component that is most likely to be affected next).

One of the main findings of RQ2 (that was also confirmed in RQ3) was that most
of the interviewed practitioners were concerned about the frequency of change in
affected components and the propagation of changes to other components due
to the presence of smells. Practitioners reported that several components that
were affected by smells necessitated frequent maintenance. To further study this
aspect, and ensure that their feedback was not just the result of confirmation
bias4, we formulated RQ4: “How do AS correlate to changes in the source code of the
system?” Answering this question can help in understanding if elements affected
by architectural smells have a higher chance of changing than elements that are

4Confirmation bias is the tendency to interpret, favor, or recall information in a way that supports
one’s prior beliefs or values.

12 1. Introduction

not affected by smells (RQ4a), as well as if there is a difference before and after
the introduction of the smell (RQ4b). Moreover, this question investigates if code
churn in affected components is bigger than in non-affected ones (RQ4c). These
three aspects can shed some light into the relation between AS and the amount
of interest paid by practitioners that decide to not repay the debt represented
by smells. Answering this RQ required investigating 27 open-source projects,
involving 360 years of total development and over 305 millions of lines of code.

Research questions from 1 through 4 focus on investigating the problem: they
are knowledge questions and answering them can support researchers in understand-
ing how smells evolve, how they are perceived by practitioners, how they relate
with changes in the source code of the system; ultimately, they allow us to un-
derstand how to prioritise, quantify, and monitor smells. In contrast, RQ5 is a
design problem focusing on the solution: “Design an approach to estimate the technical
debt principal generated by AS”. The output obtained from the previous RQs is used
in RQ5 to design a solution to quantify the amount of technical debt principal
generated by architectural smells. In particular, we ranked a set of architectural
smells instances based on the findings from previous RQs (and from the literature)
on the prioritisation and severity of architectural smells, and then trained a ma-
chine learning model that is able to rank (from most to least severe) individual
architectural smell instances based on their severity (RQ5a,b). Next, we designed
an approach based on the machine learning model that estimates the amount of
technical debt principal of each instance (RQ5c). Finally, we set up a case study to
validate our approach by interviewing 16 practitioners (from both the open-source
and industrial worlds) and gauge how far the output provided is a relevant and
meaningful estimate of the TD principal incurred by a smell (RQ5d).

During the validation of the solution in RQ5, we discovered an interesting phe-
nomenon: while practitioners understand and relate to the amount of TD principal,
they often have to tolerate the existence of TD, hence sacrificing maintainability, in
favor of other qualities. This means that TD management decisions are affected by
other qualities as well, and to better understand the implications of these trade-offs
we formulated RQ6: “How are trade-offs between quality attributes currently managed
in industry?” The focus of this question was to understand the view of practitioners
concerning design-time vs. run-time qualities (RQ6a), collect example of trade-offs
between qualities (RQ6b), and understand how practitioners envision a tool to
help them manage these trade-offs (RQ6c). The output of this research question
can help practitioners make better trade-off decisions regarding the repayment
of technical debt. We investigated this RQ by setting up a case study where we
performed both interviews and a focus group. In particular, we interviewed 14

1.4. Research design 13

Table 1.1: Empirical methods used to answer the knowledge questions.

Code Knowledge Question
Empirical
Method

Data
Type

Described in

RQ1
How do AS evolve in open-source
systems?

Case study Quantitative Section 2.4

RQ2
How are AS perceived by indus-
trial practitioners?

Case study,
Grounded Theory

Qualitative Section 3.2

RQ3
How do AS evolve in industrial
embedded systems?

Case study,
Grounded Theory

Quantitative &
Qualitative

Section 4.4

RQ4
How do AS correlate to changes
in the source code of the system?

Case study Quantitative Section 5.3

RQ5b
How accurate and transparent is
the ranking of severity?

Experiment Quantitative Section 6.4

RQ5d
Is the principal estimated by the
approach relevant to software de-
velopers?

Case study,
Grounded Theory

Qualitative Section 6.4

RQ6
How are trade-offs between qual-
ity attributes currently managed
in industry?

Case study,
Grounded Theory

Qualitative Section 7.3

different practitioners and held a focus group with 7 participants.

1.4.4 Mapping empirical methods to the RQs

The previous section decomposed the problem statement into knowledge questions
and design problems. To answer each knowledge question we adopted a number
of different empirical methods. Table 1.1 lists the empirical methods that were used
to answer each knowledge question, as well as the corresponding sections in this
thesis elaborating on the respective study design.

Specifically, the empirical methods adopted in this PhD project are the follow-
ing:

Case study in software engineering is an empirical enquiry that investigates a
contemporary phenomenon within its real-life context [Yin, 2003]. In other
words, it is used to increase the knowledge and bring about change in the phe-
nomenon being studied [Runeson et al., 2012]. Case studies were originally
used primarily for exploratory purposes, but they can also be explanatory,
descriptive, and improving. The exploratory case study is the main research
method used in this dissertation.

Grounded theory is an exploratory research method used to generate theories,

14 1. Introduction

mainly from qualitative data. It is one of the most important methods in
the field of qualitative data analysis and it is used to increase the theoreti-
cal sensitivity of the researcher as the data analysis progresses. Grounded
theory was particularly useful in this PhD project as it allowed us to formu-
late new hypotheses and theories starting from the qualitative data collected
[Glaser et al., 1968]. It is important to mention that Grounded Theory is a
full research method describing several steps, including how data can be
collected; however, in this thesis, only the qualitative data analysis part of
Grounded Theory was used, namely the Constant Comparative Method ac-
cording to [Glaser and Strauss, 2017]).

Experiments allow to measure the effects of manipulating one variable on another
variable [Runeson et al., 2012]. For this reason, experiments are particularly
suitable for establishing cause-effect relationships. In this PhD project, the
experiment was used to determine the effects of architectural smell-related
variables on the accuracy of a severity prediction model.

1.4.5 Overview of this dissertation

The main body of this dissertation consists of six chapters (Chapters 2 - 7). All
chapters are based on papers published in peer-reviewed conferences and journals,
except for Chapter 6, which, at the moment of writing, is still under review in a
peer-reviewed journal.

The PhD student was the first author and main contributor in all studies. The
other authors were: (a) the supervisors; (b) a fellow PhD student from a different
research group (Ilaria Pigazzini), who contributed to two studies by helping with
data collection in one study, and both data collection and analysis in the other; (c) a
software architect (Umut Uyumaz) from one of the companies that we collaborated
with, who helped with the data collection.

Each chapter aims at answering one research question as presented in Section
1.4.3 and briefly summarised in the following paragraphs. Table 1.2 depicts where
each chapter was published and the chapter number. Finally, Chapter 8 concludes
the dissertation by outlining the main results obtained from each empirical study
and discusses future work opportunities.

Chapter 2 is based on a paper published in the 2019 International Confer-
ence of Software Maintenance and Evolution (ICSME)(Sas, Avgeriou, Arcelli)
[Sas et al., 2019]. In the paper, we investigate the evolution of architectural smells
in 14 open-source Java systems. In particular, we look at how their characteristics
(or properties) evolve over time, and how long smells persist within the system.

1.4. Research design 15

Table 1.2: Outline of the studies of this dissertation.

Code Research Question Chapter
Published
to

RQ1 How do AS evolve in open-source systems? Chapter 2 ICSME’19

RQ2
How are AS perceived by industrial practition-
ers?

Chapter 3
IEEE Soft-
ware

RQ3
How do AS evolve in industrial embedded sys-
tems?

Chapter 4 EMSE

RQ4
How do AS correlate to changes in the source
code of the system?

Chapter 5 JSEP

RQ5
Design an approach to estimate the technical
debt principal generated by AS

Chapter 6
Journal (un-
der review)

RQ6
How are trade-offs between quality attributes
currently managed in industry?

Chapter 7 SQJ

Chapter 3 is based on a study published in the IEEE Software magazine (Sas,
Pigazzini, Avgeriou, and Arcelli 2020) [Sas et al., 2021]. This paper aims at un-
derstanding how practitioners perceive the impact of architectural smells on their
systems. The specific goal is to allow researchers to better understand the practical
maintenance issues faced by engineers when a system is affected by an architec-
tural smell. To do so, we interviewed 21 software practitioners from three different
European companies and summarised their opinions on the matter.

Chapter 4 is an article published in the Empirical Software Engineering journal
(EMSE) (Sas, Avgeriou, Uyumaz, 2022) [Sas et al., 2022]. This paper features an
empirical study where we analyse 9 C/C++ industrial projects, amounting to a
total of 20 millions lines of code, and 38 releases for each project. The goal of
the study is two-fold: (1) investigate the evolution of architectural smells in C/C++

industrial projects; and (2) understand the opinions of the engineers on the findings
of the first part.

Chapter 5 is based on an article published in the Journal of Software Evolution
and Process (JSEP) (Sas, Avgeriou, Pigazzini, Arcelli, 2022). This article investigates
the relation between architectural smells and source code changes. In particular,
we analysed 31 Java systems and over 3,900 commits in order to determine the
existence of a correlation between the presence of an architectural smell and a
higher change frequency than a non-affected component. We studied two different
aspects of source code change: frequency and size.

Chapter 6 is based on a paper that is currently under review in a peer-reviewed

16 1. Introduction

journal. In this paper, we aim at providing an approach to estimate the amount
of technical debt principal generated by an architectural smell. To do so, we
developed a sophisticated approach to train a machine learning model that predicts
the severity of an architectural smell, which is then used to estimate the principal.
To validate the approach, we interviewed 16 practitioners to understand whether
the estimations provided by our approach are reasonable estimations of the amount
of principal.

Chapter 7 is based on an article published in the Software Quality Journal
(SQJ) (Sas, Avgeriou, 2020). The paper investigates the quality attribute trade-offs
performed by practitioners in the embedded systems industry. Specifically, we
looked at the trade-offs between run-time qualities (e.g. Availability) and design-
time qualities (e.g. Maintainability). To carry out the study, we performed two
rounds of interviews and a focus group, with a total of 21 practitioners involved in
the study.

	Chapter 1

