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Behavioral/Cognitive

Temporal Context Actively Shapes EEG Signatures of Time
Perception

Atser Damsma, Nadine Schlichting, and Hedderik van Rijn
Department of Psychology, University of Groningen, Groningen, 9712 TS, The Netherlands

Our subjective perception of time is optimized to temporal regularities in the environment. This is illustrated by the central
tendency effect: When estimating a range of intervals, short intervals are overestimated, whereas long intervals are underesti-
mated to reduce the overall estimation error. Most models of interval timing ascribe this effect to the weighting of the cur-
rent interval with previous memory traces after the interval has been perceived. Alternatively, the perception of the duration
could already be flexibly tuned to its temporal context. We investigated this hypothesis using an interval reproduction task in
which human participants (both sexes) reproduced a shorter and longer interval range. As expected, reproductions were bi-
ased toward the subjective mean of each presented range. EEG analyses showed that temporal context indeed affected neural
dynamics during the perception phase. Specifically, longer previous durations decreased contingent negative variation and P2
amplitude and increased beta power. In addition, multivariate pattern analysis showed that it is possible to decode context
from the transient EEG signal quickly after both onset and offset of the perception phase. Together, these results suggest that
temporal context creates dynamic expectations which actively affect the perception of duration.

Key words: Bayesian perception; context; EEG; time perception

Significance Statement

The subjective sense of duration does not arise in isolation, but is informed by previous experiences. This is demonstrated by
abundant evidence showing that the production of duration estimates is biased toward previously experienced time intervals.
However, it is yet unknown whether this temporal context actively affects perception or only asserts its influence in later,
postperceptual stages as proposed by most current formal models of this task. Using an interval reproduction task, we show
that EEG signatures flexibly adapt to the temporal context during perceptual encoding. Furthermore, interval history can be
decoded from the transient EEG signal even when the current duration was identical. Thus, our results demonstrate that con-
text actively influences perception.

Introduction
The way humans experience time is not only driven by the cur-
rent stimulus, but is also influenced by previous experiences.
According to Bayesian observer models, humans integrate noisy
sensory representations (the likelihood) with previously learned

stimulus statistics (the prior distribution). This is illustrated by
the temporal context or central tendency effect: When presented
with a range of intervals, short intervals are overestimated and
long intervals are underestimated (Jazayeri and Shadlen, 2010).
Furthermore, the prior distribution has been shown to be
dynamically updated, such that more recent intervals have a
greater influence on the current estimate (Taatgen and van Rijn,
2011; Dyjas et al., 2012; Wiener et al., 2014). Although there is
abundant behavioral evidence for Bayesian integration in human
time perception (Jazayeri and Shadlen, 2010; Acerbi et al., 2012;
Cicchini et al., 2012; Shi et al., 2013; Gu et al., 2015; Roach et al.,
2017; Schlichting et al., 2018; Hallez et al., 2019; Maaß et al.,
2019a), its temporal locus and neural underpinnings are not yet
understood.

Computational models of interval timing often (implicitly)
assume that, only after perception is completed, the noisy inter-
val percept is weighted with previous memory traces represent-
ing the prior (e.g., Jazayeri and Shadlen, 2010; Taatgen and van
Rijn, 2011; Di Luca and Rhodes, 2016). Alternatively, however,
prior experience might actively affect perception, as evidenced
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by recent behavioral (Cicchini et al, 2017, 2021; Zimmermann
and Cicchini, 2020), fMRI (St. John-Saaltink et al., 2016), and
single-neuron findings (Sohn et al., 2019). Specifically, Sohn et
al. (2019) showed that neurons in the PFC of monkeys exhibited
different firing rate patterns based on the prior during interval
estimation.

In humans, evidence is now emerging that EEG signatures in
timing tasks are modulated by recently perceived durations. In a
bisection task, longer prior durations led to a larger amplitude of
the contingent negative variation (CNV) and increased beta
oscillations power (Wiener and Thompson, 2015; Wiener et al.,
2018). Crucially, however, these studies required an active com-
parison to the standard interval, in which EEG signatures have
been shown to reflect an adjustment of the decision threshold
(Ng et al., 2011; see also Boehm et al., 2014). Any context-based
changes in these signatures might reflect updating of the com-
parison process. It is therefore still an open question what the
temporal locus of the context effect is: Does the prior exert its
influence in postperceptual stages or are purely perceptual proc-
esses already affected by previous experiences?

We tested the influence of temporal context in an interval
reproduction task, which allowed us to distill EEG signals during
the perception phase in which no decision or motor response
was required that could yield fallacious conclusions regarding
the effect of context effects during perception. Participants repro-
duced two different interval ranges (the short and the long con-
text). The ranges shared one interval (the overlapping interval),
providing a condition in which the physical stimulus was the
same, but the temporal context was different. We show that tem-
poral context affects three EEG signatures during the perception
phase that have previously been associated with time perception:
the CNV and beta oscillations, but also the offset P2, which has
been shown to predict subjective interval perception better than
the CNV (Kononowicz and van Rijn, 2014; Kruijne et al., 2021).
A data-driven approach reveals that temporal context can be
decoded from transient neural dynamics during the perception
phase using multivariate pattern analysis (MVPA). Together,
these results show that temporal context actively shapes the per-
ception of duration, falsifying most current formal theories of
interval timing.

Materials and Methods
Participants
Twenty-seven healthy adults (22 females; age range 18-33 years,
mean = 21.33 years, SD = 3.78 years) participated in the experiment
for course credits in the University of Groningen Psychology program
or monetary compensation (e14). Two participants were excluded
from analysis during preprocessing because of excessive artifacts in the
EEG data. The study was approved by the Psychology Ethical
Committee of the University of Groningen (17141-S-NE). Written
informed consent was obtained before the experiment. After the
experiment, the participants were debriefed about the aim of the study.

Stimuli and apparatus
Stimuli were presented using the Psychophysics Toolbox 3.0.12
(Brainard, 1997; Kleiner et al., 2007) in MATLAB 2014b. Intervals were
presented as continuous 440Hz sine wave tones. These auditory stimuli
were presented on Sennheiser HD 280 Pro stereo headphones at a com-
fortable sound level. Visual stimuli were presented in the center of the
screen in Helvetica size 25 in white on a dark gray background using a
27 inch Iiyama ProLite G27773HS monitor with a 1920� 1080 resolu-
tion at 100Hz. The index-finger trigger buttons of a gamepad
(SideWinder Plug & Play Game Pad, Microsoft) were used to record
responses.

Procedure
Participants performed an auditory interval reproduction task (see Fig.
1A). Every trial started with a central fixation cross with a uniform ran-
dom duration between 2 and 3 s. Then, an exclamation mark was pre-
sented for 0.7 s, after which the auditory interval was presented (the
perception phase) while the exclamation mark remained on the screen.
To signal the next phase, the exclamation mark was replaced by a ques-
tion mark, which was presented for 1.5 s. Next, the continuous tone was
presented again, with the question mark remaining on the screen, which
participants had to terminate by pressing a button (the reproduction
phase). Participants were instructed to match the duration of this second
tone to the duration of the first tone as accurately as possible.

The task involved two different interval ranges: the short context
(0.625, 0.75, and 0.9 s) and the long context (0.9, 1.08, and 1.296 s) (see
Fig. 1A). Crucially, there was an overlapping interval that was presented
in both contexts (0.9 s). The experiment consisted of four blocks: two of
which used intervals of the short context and two of which used intervals
of the long context. Block order was counterbalanced across participants,
with the constraint that the context would alternate every block. Within
a block, each duration of the short or the long context was presented 30
times, amounting to a total of 90 trials per block and 360 trials over the
whole experiment. The presentation order was random, with the con-
straint that every possible subsequent pair of intervals was presented
equally often (i.e., first-order counterbalancing). The hand needed for
reproduction was switched after two blocks. Before each block, partici-
pants were instructed which hand (i.e., which gamepad button) they
would use to terminate the duration and which set of intervals would be
presented (termed Set A and Set B for the short and long context, respec-
tively) (see also Maaß et al., 2019b), while they were not informed about
the relative durations or distributions associated with the sets (i.e., that
the sets were associated with a short and long interval range).
Participants could take self-timed breaks between blocks. Before the
experiment, participants performed two practice trials with durations
outside the range of both context conditions (0.4 and 2 s). Experiment
scripts are available at https://osf.io/sgbjz/.

EEG acquisition
EEG signals were recorded from 62 Ag/AgCl electrodes and placed in ac-
cordance with the international 10-20 system (WaveGuard EEG cap,
eemagine Medical Imaging Solutions). The ground electrode was placed
onto the left side of the collarbone, and the mastoids served as location
for the reference electrodes. The electrooculogram was recorded from
the outer sides of both eyes and from the top and bottom of the left eye.
Data were collected at a sampling frequency of 512Hz using a TMSi
Refa 8-64 amplifier. Before the experiment, impedances of all electrodes
were reduced to ,5 kV. Participants were instructed to blink only
between trials and not to move during the experiment.

EEG preprocessing
EEG preprocessing was performed using the FieldTrip toolbox
(Oostenveld et al., 2011). EEG data were rereferenced to the averaged
mastoids and filtered using a Butterworth IIR bandpass filter with a
high-pass frequency of 0.01Hz and a low-pass frequency of 80Hz.
Subsequently, trial epochs were created from �1 s until 6 s relative to
the onset of the perception phase. Artifacts were corrected using inde-
pendent component analysis. Epochs that exceeded an amplitude range
of 120mV were removed from the dataset. On average, 10.72%
(SD=6.10) of the 360 trials were discarded.

Data analysis
Behavioral analysis. Reproductions ,0.1 s and .2 s were excluded

from analysis (0.2% of the data). To test whether reproductions were
influenced by context, we fitted a linear mixed model (LMM) using the
lme4 package (Bates et al., 2015) in R (R Core Development Team,
2013), including interval, context, their interaction, and prior interval (i.
e., the interval in the previous trial) as fixed factors. To facilitate interpre-
tation of the results, interval and prior interval were centered at 0.9 s and
the factor context was recoded using effect coding (�0.5 for short and
0.5 for long context). In addition to the random intercept of participant,
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we sequentially added random slope terms and tested whether they
improved the model with a likelihood ratio test. We will here report the
results of the best fitting model, which included random slopes for inter-
val and prior interval.

ERP analysis. All EEG analyses reported here focused on the percep-
tion phase. The CNV, P2, and time-frequency results for the reproduc-
tion phase, and the link between these EEG signatures and behavior, are
available in Extended Data Figs. 2-1, 3-1, 5-1, and 1-1, respectively. The
CNV and beta power signatures in the reproduction phase show trends
that are qualitatively similar to the perception phase, although they
appear to be less strong.

CNV. The CNV analysis was performed on a fronto-central electrode
cluster (electrodes Cz, C1, C2, FCz, FC1, FC2) (Ng et al., 2011;
Kononowicz and van Rijn, 2014). A 10Hz Butterworth low-pass filter
was applied and the ERP was baselined to the average signal in the 0.1 s
window before interval onset. To test the effect of global context during
the perception phase, we compared the ERP for the overlapping interval
in the short and the long context using a cluster-based permutation test
(Maris and Oostenveld, 2007) in the window 0-1.2 s from interval onset.
The permutation test assessed whether the difference was different from
zero by computing 100,000 permutations using the t statistic, controlling
for multiple comparisons with a cluster significance threshold of p,
0.05. To assess the influence of the prior interval on CNV, we calculated
the average amplitude in the time window that showed CNV differences
in the previously mentioned permutation test (0.3-1.01 s), per partici-
pant, context, and prior interval for the overlapping interval. Next, we
tested an LMM predicting this amplitude, including context and prior
interval as fixed factors, and participant as a random intercept term.

Offset P2. The P2 analysis focused on the EEG signal averaged over
the same fronto-central electrode cluster as the CNV analysis, to which a
1-20Hz Butterworth bandpass filter was applied to minimize CNV-
based contamination (see Kononowicz and van Rijn, 2014). The ERP
was baselined to the average signal in the 0.1 s window around interval
offset (Kononowicz and van Rijn, 2014). Similar to the CNV analysis,

the ERPs for the overlapping interval in the short and the long context
were compared using a cluster-based permutation test in the window 0-
0.5 s after interval offset. Next, we calculated P2 amplitude as the average
amplitude between 0.14 and 0.3 s after interval offset (this window was
based on Kononowicz and van Rijn, 2014). We fitted an LMM predict-
ing P2 amplitude, with interval, prior interval, and context as fixed fac-
tors, and participant as a random intercept term. The random slope of
interval improved the fit and was added to the model. P2 latency was cal-
culated as the 50% area latency, the time point at which half of the area
under the curve is reached, within the same window (Luck, 2005;
Liesefeld, 2018). P2 latency was analyzed using an LMM with the same
fixed factors as the P2 amplitude model.

Because the 1Hz high-pass filter might induce artifactual effects of
opposite polarity before the actual peak (Tanner et al., 2015), we also
performed the P2 analysis on data without additional filtering (i.e., in
addition to the bandpass filter between 0.01 and 80Hz applied during
preprocessing). We found similar qualitative results, which are reported
in Extended Data Fig. 3-2.

MVPA. To investigate transient neural dynamics in more detail, we
tested whether it is possible to decode global and local context through
MVPA of the EEG signal. FollowingWolff et al. (2020), we used a sliding
window approach in which the EEG fluctuations were pooled over elec-
trodes and time. A window of 50 data points (98ms) was moved across
the signal in steps of 8ms, separately for each channel. Within the win-
dow, the signal was downsampled to 10 samples (by taking the average
over 5 samples) and baseline-corrected by subtracting the mean within
the window from all 10 individual samples.

To decode whether an overlapping-interval trial was presented in the
short or the long context, the 10 samples per electrode in each time win-
dow served as input for fivefold cross-validation. In each fold, we calcu-
lated the Mahalanobis distance (De Maesschalck et al., 2000; Wolff et al.,
2017, 2020) between the test trials and the averaged signal of the short
and long context, using the covariance matrix estimated from the train-
ing trials with a shrinkage estimator (Ledoit and Wolf, 2004). To make

Figure 1. Task and behavioral results. A, Behavioral procedure of the experiment. Participants performed an interval reproduction task in which they heard a tone for a certain duration (per-
ception phase). After an interstimulus interval of 1.5 s, they were asked to reproduce this duration by pressing a button to indicate the offset of the reproduction phase. In separate blocks, the
perception phase consisted of three short or three relatively long durations (the short and the long context, respectively). One interval was presented in both contexts (the overlapping interval
of 0.9 s). B, Average behavioral reproduction results. Error bars indicate SEM. C, Average reproduction of the overlapping interval (0.9 s) for the different intervals in the previous trial, relative
to average reproduction in the context condition. Overall, reproductions were longer when the prior interval was longer. D, Link between EEG signatures and reproductions. Left, Reproduction
of the overlapping interval for relatively low, medium, and high values (i.e., tertiles) of CNV amplitude, P2 amplitude, P2 latency, and beta power. Right, Correlation between participants’ be-
havioral context effect and their context effect in the different EEG signatures (all values were z-scored). Dots represent individual participants. Lines indicate linear regression. Analysis and
depiction of the link between reproductions and EEG signatures in the reproduction phase can be found in Extended Data Figure 1-1.

4516 • J. Neurosci., May 19, 2021 • 41(20):4514–4523 Damsma et al. · Context Actively Shapes Time Perception

https://doi.org/10.1523/JNEUROSCI.0628-20.2021.f2-1
https://doi.org/10.1523/JNEUROSCI.0628-20.2021.f3-1
https://doi.org/10.1523/JNEUROSCI.0628-20.2021.f5-1
https://doi.org/10.1523/JNEUROSCI.0628-20.2021.f1-1
https://doi.org/10.1523/JNEUROSCI.0628-20.2021.f3-2
https://doi.org/10.1523/JNEUROSCI.0628-20.2021.f1-1


the distance estimates more reliable, the fivefold cross-validation was
repeated 50 times and results were averaged. The eventual decoding dis-
tances were smoothed with a Gaussian smoothing kernel (SD= 16ms).
To test whether the distance between conditions was significantly differ-
ent from zero, a cluster-based permutation test was performed.

A similar analysis was performed to decode the duration of the prior
interval from the neural dynamics in the current trial. For the overlap-
ping interval, the Mahalanobis distance between every test trial and the
average of the prior interval conditions was calculated. This resulted in
six difference time series for each condition (including the 0.9 s condi-
tion for each context separately and the difference with the trial’s own
condition). In this way, we aimed to determine whether the distance was
higher when the difference between the prior interval condition of the
test trial and the other possible prior interval conditions was larger.
Next, for every time point, we performed a linear regression on the
Mahalanobis distance, using the absolute difference between prior inter-
val conditions (in seconds) and the difference between context (coded as
0 or 1) as predictors, allowing us to disentangle the effect of sequential
and global context on transient neural dynamics. A cluster-based permu-
tation test was performed on the resulting slope values for prior interval
and context, to test whether they deviated from zero (using a one-sided
t test).

To investigate which electrodes are most informative in decoding the
context of an overlapping interval trial, we performed channel-wise
decoding: The procedure to decode global context outlined above was
performed separately for every electrode. Topographies were created to
show the average decoding accuracy at the different electrodes during
time windows in which the Mahalanobis distance resulting from the
context decoding procedure outlined above (i.e., using all electrodes)
was significantly.0.

Because the context conditions were blocked in our experimental
design, the decoding accuracy might have been inflated by nonstationar-
ities in the EEG signals, which could lead to stochastic dependence
between trials (Lemm et al., 2011). Post hoc, we controlled for this notion
by calculating the Mahalanobis distance between the different blocks, for

each participant. This allowed us to differentiate between the distances
between blocks that were presented in the first and second half of the
experiment, and thereby, to test whether the original decoding results
could be because of within-block similarities beyond context. In this
way, we compared the Mahalanobis distance between the trials in a par-
ticular block and the “same context” and “different context” block in the
other half of the experiment. We found that the results were qualitatively
similar to the original analysis, with significant differences between the
short and long context immediately after interval onset and after interval
offset (for analysis details and results, see Extended Data Fig. 4-1).

Time-frequency analysis. To assess oscillatory power during the per-
ception phase, we performed a time-frequency analysis using a single
Hanning taper with an adaptive time window of 6 cycles per frequency
in steps of 15ms for frequencies from 4 to 40Hz, with the amount of
spectral smoothing set to 1. We calculated the absolute power from the
baseline window of �0.2 to 0 s relative to interval onset. The analysis
was again focused on fronto-central electrodes (Cz, C1, C2, FCz, FC1,
FC2). Similar to the CNV analysis, all time-frequency analyses were per-
formed on the overlapping interval to isolate the effect of context while
keeping the actual stimulus constant.

Per participant, for every time-frequency point, we fitted a linear
regression model including prior interval (a continuous variable ranging
from the shortest to the longest interval in seconds) and context (short
and long context coded as 0 and 1, respectively) as predictors (following
an approach similar to Wiener et al., 2018). For every time-frequency
point, this resulted in two slope values, expressing the relative influence
of the global context and the previous interval. Next, a one-sample t test
against zero was performed for the two slope values at each time-fre-
quency point, which was corrected for multiple comparisons using clus-
ter-based permutation (Maris and Oostenveld, 2007). The statistical
testing was performed on the frequency range of 8-30Hz to include
alpha power (8-14Hz) (Kononowicz and van Rijn, 2015) and beta power
(15-30Hz) (e.g., Haegens et al., 2011; Jenkinson and Brown, 2011;
Kononowicz and van Rijn, 2015) during the time window of 0-1.2 s after
interval onset.

Figure 2. Average ERPs at the fronto-central cluster (Cz, C1, C2, FCz, FC1, FC2) relative to the onset of the perception phase for the different durations in the short (A) and long (B) context.
In all panels, vertical gray dashed lines indicate interval onset and offset of the overlapping interval (0.9 s). C, Topographies for the overlapping interval (0.9 s), for the short context, long con-
text, and their difference, during the window of significant difference as indicated by the cluster-based permutation test. Electrodes of the fronto-central cluster used for analysis are highlighted
in black. D, Average ERP for the overlapping interval (0.9 s) in the short and the long context. Gray horizontal bars represent significant differences according to the cluster-based permutation
test. E, Average ERP for the overlapping interval, split up according to the interval in the previous trial. Red and blue lines indicate whether the overlapping interval appeared in the short or
the long context, respectively. F, Average CNV amplitude for the overlapping interval, in the time window of significant difference between the short and long context, for the different previous
intervals. Error bars indicate SEM. Analysis and depiction of ERPs in the reproduction phase can be found in Extended Data Figure 2-1.
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Linking EEG signatures and behavior. We tested in two ways
whether EEG signatures during the perception phase predicted behav-
ioral reproductions. First, we computed single-trial values of CNV am-
plitude, P2 amplitude, P2 latency, and beta power. Following the
methods described above, for every trial, CNV amplitude was calculated
as the average EEG signal in the window 0.3-1.01 s after interval onset,
P2 amplitude as the average between 0.14 and 0.3 s after interval offset,
P2 latency as the 50% area latency in the same window, and beta power
was calculated as the average power in the time window 0.48-0.84 s after
interval onset and the frequency range 23-30Hz, which was based on the
permutation test. CNV, P2 amplitude, P2 latency, and beta power values
that deviated .4 SDs from the average were excluded from analysis
(0.06%, 0.01%, 0.00%, and 0.46% of the trials, respectively). Similar to
the behavioral analysis described above, reproductions ,0.1 s and .2 s
were also excluded from analysis. Next, we computed four LMMs with
reproduction as the dependent factor, and CNV amplitude, P2 ampli-
tude, P2 latency, and beta power as fixed factors, respectively. Similar to
the analyses described above, the CNV and beta power analyses were
focused on the overlapping interval trials. To control for the effect of
context on both EEG signatures and behavior, context and prior interval
were also added as fixed factors to the models. The P2 analysis included
all intervals, so here, interval was entered as an additional fixed factor. In
all models, participant was included as a random intercept term, and
adding random slopes did not improve the model fit.

Second, in addition to the single-trial analysis, we looked at individ-
ual differences: Do participants who show a large context effect in the
EEG signatures also show a large behavioral context effect? To this end,
for the overlapping interval, we estimated the behavioral context effect
(i.e., the difference in reproduction between the long and short context)
for each participant, and compared it with the context effect of CNV am-
plitude, P2 amplitude and latency, and beta power, quantified as
described in the previous paragraphs. To assess whether these measures
were related for each participant, we performed a one-tailed Pearson’s

correlation test between the individual behavioral context effects and the
EEG context effects.

Results
Behavioral results
Figure 1B shows the average reproductions for the different
intervals. The results of the LMM showed that reproductions
increased with duration (b = 0.77, SE= 0.03, t=24.33,
p, 0.001). We found a significant effect of global context, show-
ing that reproductions were longer in the long compared with
the short context (b = 0.05, SE= 0.01, t=7.23, p, 0.001). In
addition, the increase with duration (i.e., the slope) was lower for
the long compared with the short context (b = �0.18, SE= 0.03,
t =�7.01, p, 0.001). Besides the global context effect, reproduc-
tions were longer when the interval in the previous trial was lon-
ger (b = 0.08, SE= 0.02, t=3.41, p= 0.002). Figure 1C shows the
reproductions for the different previous intervals, relative to the
average reproduction.

ERPs
CNV
Figure 2A, B shows the average fronto-central ERP during the
perception phase for the different intervals in the short and the
long context, respectively. In addition, Figure 2D shows a direct
comparison between the short and the long context of this ERP
for the overlapping interval (0.9 s). The cluster-based permuta-
tion test showed that the CNV was more negative in the short
than in the long context in the time windows 0.30-0.65 s
(p=0.004) and 0.71-1.01 s (p= 0.003). Thus, while the actual

Figure 3. Amplitude and latency of the P2 at the fronto-central cluster (Cz, C1, C2, FCz, FC1, FC2) after the offset of the perception phase. A, B, Grand average ERPs, relative to the offset of
the perception phase, for the different intervals in the short and the long context, respectively. C, Topographies of P2 amplitude for the overlapping interval (0.9 s), for the short context, long
context, and their difference, during the window of significant difference as indicated by the cluster-based permutation test. Electrodes of the fronto-central cluster used for analysis are high-
lighted in black. D, Average ERPs for the overlapping interval (0.9 s) in the short and the long context. Gray horizontal bar represents significant differences according to the cluster-based per-
mutation test. E, Average ERP for the overlapping interval, split up according to the interval in the previous trial. Red and blue lines indicate whether the overlapping interval appeared in the
short or the long context, respectively. F, Effect of interval and context on P2 amplitude and latency. Left, P2 amplitude, calculated as the average amplitude in the window 0.14-0.3 s after
interval offset for every participant and interval. Right, P2 latency, calculated as the 50% area latency in the same window. G, Effect of the prior interval on P2 amplitude (left) and latency
(right). In all figures, error bars indicate the SEM. Analysis and depiction of P2 ERPs in the reproduction phase can be found in Extended Data Figure 3-1. Analysis and depiction of P2 in the per-
ception phase based on data without additional bandpass filter can be found in Extended Data Figure 3-2.
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interval was the same, CNV amplitude during perception dif-
fered depending on the temporal context.

Figure 2E shows the average ERP for the overlapping interval,
split for the different previous durations, and Figure 2F shows
the average CNV in the 0.3-1.01 s window for the different prior
interval conditions. The LMM results showed that CNV ampli-
tude at the overlapping interval became less negative with longer
previous trials (b = 2.50, SE= 0.97, t=2.57, p= 0.011). There
was no evidence for an additional significant effect of context (b
= 0.43, SE= 0.42, t= 1.03, p=0.308), suggesting that the global
context effect on CNV might be largely driven by the previous
trial. Post hoc, we tested whether including the interaction
between context and prior interval improved the model fit, but a
likelihood ratio test showed that this was not the case
(x 2

(1) = 0.10, p=0.750).

Offset P2
Amplitude. Figure 3A, B shows the offset P2 for the different

intervals in the short and the long context, respectively. Figure
3D directly compares the P2 for the overlapping interval in the
short and long context. The cluster-based permutation test
showed that the amplitude was higher for the short compared
with the long context in the window 0.11-0.3 s. Figure 3F shows
the average P2 amplitude as a function of interval and context.
The LMM showed that the P2 increased with duration (b =
5.56, SE= 0.62, t= 8.97, p, 0.001), but that the intercept was sig-
nificantly lower for the long compared with the short context (b
= �0.87, SE = 0.28, t = �3.10, p= 0.002). Figure 3E, G (left)
shows the effect of the prior interval on P2 amplitude for the
overlapping interval. In line with the global context effect, the
model showed that the P2 decreased with longer previous inter-
vals (b = �1.71, SE= 0.51, t = �3.35, p = 0.001). Together, these
results show that P2 amplitude reflects the actual duration, as
well as the global and local context in which the duration
appeared.

Latency. Figure 3F (right) shows that P2 latency decreased
with the duration of the current interval, which was confirmed

by the LMM predicting latency (b =
�0.04, SE= 0.01, t = �3.66, p, 0.001).
There was no evidence that P2 latency
was affected by the context, as the fixed
factors context and prior interval did
not reach significance (p values .
0.247). In summary, whereas P2 ampli-
tude reflects the current duration and
the general and sequential temporal
context, P2 latency only decreases with
longer current durations.

MVPA
Figure 4A shows the decoding accuracy
for the overlapping interval. The permu-
tation test showed a positive cluster im-
mediately after interval onset (0-0.17 s;
p=0.009) and after interval offset (0.99-
1.37 s; p, 0.001). Figure 4C shows the
topographies of the channel-wise decod-
ing results during these two clusters,
which reflects high parietal and left-lat-
eralized decoding accuracy and high
fronto-central and right-lateralized
decoding accuracy, respectively. Figure
4B shows the slope value of prior inter-
val in the regression analysis predicting

Mahalanobis distance. The permutation test showed that there
was no evidence for significant clusters for the slope of prior
interval or context in the regression analysis (p=0.999), showing
that MVPA could not distinguish between prior interval condi-
tions based on the transient EEG signal.

Time-frequency analysis
To assess oscillatory power during the perception phase, we cal-
culated a linear regression of frequency power at fronto-central
electrodes with context (short vs long) and prior interval as pre-
dictors for every time-frequency point during the overlapping
interval. Figure 5A shows the slope values representing the effect
of context on the power of the different frequencies over time.
We found a positive cluster in the window 0.48-0.84 s after inter-
val onset in the 23–30Hz frequency range (p= 0.045), indicating
increased beta power in the long context compared with the
short context (Fig. 5A, outlined area). This beta power effect is
further illustrated in Figure 5C, which shows the average power
in the 23-30Hz over time, for the overlapping interval in the
short and long context. Figure 5B shows the slope values for
prior interval, for which the permutation test indicated no
evidence for a cluster of slopes different from zero (p values .
0.051). In summary, these results suggest that fronto-central beta
power was higher in the long compared with the short context,
while there was no evidence for a similar influence of the previ-
ous trial.

Linking EEG signatures and behavior
Figure 1D shows the effect of single-trial EEG signatures on
reproductions of the overlapping interval. For illustration pur-
poses, the single-trial EEG amplitudes and latencies were divided
into tertiles (low/short, medium, high/long) for each participant
and context, and the average reproduction was plotted for each
tertile. The LMMs showed no evidence that single-trial CNV and
beta power in the perception phase predicted reproductions in
the reproduction phase (b = 0.00, SE= 0.00, t= 0.85, p= 0.395

Figure 4. Decoding accuracy relative to the onset of the perception phase. A, Decoding accuracy of context for the overlap-
ping interval as represented by the Mahalanobis distance. Gray horizontal bars represent a significant difference from zero
according to the cluster-based permutation test. Error shading represents 95% CI of the mean. B, Decoding accuracy of prior
interval for the overlapping interval, represented by the slope value of the regression of Mahalanobis distance with prior inter-
val and context as predictors. C, Topographies of channel-wise context decoding accuracy for the overlapping interval, during
the first significant cluster in A (left) and the second cluster (right). Colors represent the decoding accuracy in Mahalanobis dis-
tance. Results and depiction of block-based decoding can be found in Extended Data Figure 4-1.
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and b = 0.00, SE= 0.00, t = �0.51,
p=0.614, respectively). This was also the
case for P2 latency, with a trend toward
shorter reproductions for later P2 peaks
(b = �0.08, SE= 0.04, t = �1.80,
p=0.072). However, P2 amplitude after
perception phase offset was predictive of
that trial’s reproduction (b = �0.0010,
SE= 0.0003, t = �3.45, p, 0.001). As
the b value indicates, higher P2 peaks
were followed by shorter reproductions.
Given that context, interval, and prior
interval were also included as fixed fac-
tors in the LMM, these results cannot be
attributed to a mediating influence of
context, and therefore suggest that trial-
by-trial variation in P2 amplitude might
be a reliable predictor of reproductions.

We additionally tested whether par-
ticipants with a large behavioral context
effect for the overlapping interval also
showed a large context effect in the EEG
signatures. This between-participant
relationship between these measures is
depicted in Figure 1D. Analysis showed
that the individual behavioral context
effect was correlated with the P2 ampli-
tude difference between contexts (r(23) =
–0.37, p=0.033). We found no evidence
for a similar relationship with P2 latency
(r(23) = –0.18, p= 0.196), CNV ampli-
tude (r(23) = 0.19, p=0.180), or beta
power (r(23) = –0.22, p= 0.861). Thus, in
line with the single-trial analysis, P2 am-
plitude differences predict reproduction
outcomes.

Discussion
As the temporal locus of Bayesian computations in human time
estimation is still unknown, we investigated whether temporal
context actively influences neural signatures during the perception
of time intervals. Behaviorally, we found that reproductions were
biased toward the global temporal context as well as the duration
in the previous trial. EEG results showed that CNV, P2, and beta
power were modulated by previously perceived intervals, and that
context could be decoded from transient brain dynamics at an
early stage during perception. These results indicate that previously
perceived durations actively affect EEG signatures during interval
estimation, showing that prior experiences act directly on percep-
tion. This observation goes against the (implicit) assumption of
time perception models that the likelihood is weighted with the
prior only after perception. It is, however, in line with recent behav-
ioral evidence showing that context asserts its influence at early
sensory stages (Zimmermann and Cicchini, 2020; Cicchini
et al., 2021). Our findings suggest that experiences with the
global and recent temporal context actively calibrate corti-
cal dynamics, in which the CNV and beta power may reflect
the anticipation of stimulus duration, and the P2 compo-
nent the active evaluation of the interval in the current con-
text. Crucially, by focusing on the perception phase in a
reproduction paradigm, this is the first work demonstrating

context effects that are not linked to explicit motor prepara-
tion or response decisions.

Our findings argue against the idea that the CNV reflects the
neural counterpart of the absolute accumulator in pacemaker-ac-
cumulator models (Macar and Vitton, 1982; Macar and Besson,
1985; Macar et al., 1999; Macar and Vidal, 2004; Pfeuty et al.,
2005; Casini and Vidal, 2011) since no differences based on prior
experience would be expected during the perception of an inter-
val. Instead, we found that the CNV during the perception of the
overlapping interval was more negative for the short compared
with the long context, and for shorter previous durations. This is
consistent with anticipation and preparation accounts of the
CNV (e.g., Elbert, 1993; Leuthold et al., 2004; Scheibe et al., 2009;
Ng et al., 2011; Mento, 2013; Boehm et al., 2014) and pace-
maker-accumulator models that propose adaptive spike rate
accumulation (Simen et al., 2011): When interval offset is
expected quickly after onset, CNV amplitude increases more rap-
idly. This adaptation is in line with studies showing a faster CNV
development for relatively short foreperiods (Miniussi et al.,
1999; Trillenberg et al., 2000; Müller-Gethmann et al., 2003; Van
der Lubbe et al., 2004), shorter standard durations in an interval
comparison task (Pfeuty et al., 2005), and after adaptation to a
shorter interval (Li et al., 2017). The contextual adjustment of
the speed with which the CNV develops suggests that neural
populations in the supplementary motor area, which is typically
associated with the CNV (e.g., Coull et al., 2016), can perform
flexible temporal scaling based on the temporal context
(Remington et al., 2018a,b; Sohn et al., 2019), even in the absence
of explicit motor preparation. The prior might calibrate the

Figure 5. Slope values of regression on frequency power at the fronto-central electrode cluster (electrodes Cz, C1, C2, FCz,
FC1, FC2), relative to the onset of the perception phase. A, Slope values of the factor context (short vs long) in the regression
analysis at every time-frequency point. The outlined area represents a significant cluster according to the cluster-based permu-
tation test performed in the time window 0-1.2 s and frequency window 8-30 Hz. Vertical dashed gray lines indicate the onset
and offset of the perception phase for the overlapping interval (0.9 s). B, Slope values of the factor prior interval in the regres-
sion analysis predicting power. There was no evidence for significant clusters. C, Average beta power in the frequency range of
the significant cluster (23-30 Hz) for the short and long context for the overlapping interval. Error shading represents the SEM.
D, Topographies of beta power for the overlapping interval, in the time and frequency range of the significant cluster, for the
short context, the long context, and their difference. Electrodes of the fronto-central cluster used for analysis are highlighted in
black. Analysis and depiction of time-frequency analysis in the reproduction phase can be found in Extended Data Figure 5-1.
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speed of neural dynamics through different initial states at the
onset of the perception phase (Remington et al., 2018a; Sohn et
al., 2019), as our MVPA showed that global context can be
decoded from EEG dynamics immediately after the onset of the
perception phase. Although the precise onset of significant
decoding should be interpreted with caution since the moving
window approach and low-pass filtering could smear out the ac-
curacy over time (Grootswagers et al., 2017), these results suggest
that temporal context affects the instantaneous neural response
to to-be-timed stimuli.

The active anticipation based on context was also indexed by
the P2 component. Specifically, P2 amplitude increased with longer
current durations, suggesting that it reflects hazard-based expect-
ancy: the probability that the interval offset will occur, given that is
has not yet occurred (Nobre et al., 2007). This in line with previous
studies showing that longer interstimulus intervals increase P2 am-
plitude (e.g., Röder et al., 2000; Pereira et al., 2014). Importantly,
however, P2 amplitude decreased with longer previous durations,
showing that the expectations are updated to the current temporal
context, even on a trial-by-trial basis. These results complement
previous studies showing that temporal expectancy modulates ERP
amplitude (e.g., Todorovic et al., 2011; Wacongne et al., 2011;
Todorovic and de Lange, 2012; Kononowicz and van Rijn, 2014; Li
et al., 2017). Interestingly, P2 amplitude at perception phase offset
predicted interval reproductions, and participants’ behavioral con-
text effect correlated with their context-based P2 effect. The lack of
an equivalent CNV effect highlights the predictive quality of the P2
(Kononowicz and van Rijn, 2014; Kruijne et al., 2021) and indi-
cates that the neural state at the end of the perception phase sets
the speed of cortical dynamics during reproduction (Sohn et al.,
2019). Global context additionally influenced beta power, such that
beta power was higher in the long compared with the short con-
text, in line with effects of beta power in single-trial analyses
(Kononowicz and van Rijn, 2015). Although beta power has been
proposed to reflect motor inhibition (Alegre et al., 2004;
Kühn et al., 2004; Hwang et al., 2014; Kononowicz and van
Rijn, 2015) and most studies on the link between beta power
and timing have a strong motor component, our results sug-
gest that synchronized beta oscillations also play a role dur-
ing interval perception after which no immediate motor
response is required. This finding complements recent stud-
ies showing that the accuracy and precision of time estimates
depend on beta power (Wiener et al., 2018) and a-b cou-
pling (Kononowicz et al., 2020). Additionally, the current
global context effect on beta power is in line with the Wiener
et al. (2018) finding that longer previous durations increased
beta power in the current trial. It has to be noted, however,
that we found no evidence for similar sequential effects on
beta power.

In addition to the auditory stimuli which participants had to
time, the current paradigm also consisted of visual stimuli that
indicated the phase of the trial (i.e., perception or reproduction).
The general overestimation we found in the behavioral results
might potentially be explained by the integration of these visual
stimuli in temporal estimation (Shi and Burr, 2016). Future stud-
ies might look further into potential modality differences in con-
textual calibration and their neural underpinnings (Roach et al.,
2017; Rhodes et al., 2018; Zimmermann and Cicchini, 2020).
Furthermore, we found no significant decoding corresponding
to the windows of CNV differences. This can be explained by the
specific decoding method we used, which focused on transient
dynamics, filtering out the stable CNV activity by baselining
within a moving window. In addition, decoding might be

especially sensitive to stimulus onset and offset, with accuracy
peaking shortly afterward and slowly dropping as the neural syn-
chronization declines (e.g., Wolff et al., 2017, 2020).

A comparison to Wiener and Thompson (2015), who found a
larger CNV amplitude for longer prior durations, suggests that
contextual ERP effects might be dependent on the specific experi-
mental paradigm. In contrast to our reproduction experiment,
their bisection task requires an active decision during perception,
and the CNV has been shown to reflect this decision process by
deflecting or plateauing after the standard interval in memory has
been reached (Pfeuty et al., 2003; Macar and Vidal, 2004; Ng et al.,
2011). A similar explanation could account for the different nature
of our offset P2 effect compared with Kononowicz and van Rijn
(2014), who found a V-shaped P2 amplitude attenuation in a tem-
poral comparison task (but see Kruijne et al., 2021). This pattern
reflects active comparison to the standard interval, which is not
applicable to the current reproduction paradigm. In addition, the
P2 measured in the current study shows similarities to the positive
offset peak named the late positive component of timing (Gontier
et al., 2009; Paul et al., 2011; Wiener and Thompson, 2015),
although it has been argued that the P2 reflects perceptual predic-
tive processes whereas the late positive component of timing
indexes decision-making (Kononowicz et al., 2016). The extent to
which these components indeed reflect similar processes is still an
open question, and their occurrence seems to depend on the spe-
cific nature of the task. Future studies might directly compare
these neural differences in paradigms involving decision, motor,
or only perceptual timing requirements.

In conclusion, our results show that previous durations
actively influence flexible neural dynamics during temporal
encoding. These findings indicate that previous experiences in
memory create expectations that in turn calibrate our perception
of the environment. The adaptive influence of prior knowledge
on perception could represent a more general Bayesian mecha-
nism of magnitude estimation (Petzschner et al., 2015), falsifying
a class of models that assume discrete, postperceptual stages in
which previous experiences exert their influence.
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