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This paper proposes a Real-Time Market (RTM) platform for an aggregator and its corresponding 
prosumers to participate in the electricity wholesale market. The proposed energy market platform is 
modeled as a bilevel optimization problem where the aggregator and the prosumers are considered as 
self-interested agents. We present a convex optimization problem which can capture a subset of the set 
of global optima of the bilevel problem as its optimal solution.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Power systems are experiencing a fundamental transition. Pre-
viously, the energy was generated in the bulk power plants and it 
was flowing through transmission and distribution networks to the 
consumers. The massive installation of Renewable Energy Sources 
(RESs) at the household level has challenged this structure. There-
fore, new schemes and models are needed to efficiently cope with 
this transition [3].

The emergence of the energy producing consumers, i.e., pro-
sumers and recent Information and Communications Technology 
(ICT) developments in the paradigm of smart grid [11] have 
opened up new horizons for less grid-dependent households. Since 
output generation of RESs are volatile due to their intrinsic en-
vironmental dependency, researchers have proposed different ap-
proaches to address demand and supply matching for a group 
of prosumers. Utilization of storage devices [18], bilateral energy 
transactions between prosumers [1], and bilateral energy transac-
tion between prosumers and the wholesale market [26] are among 
the most prominent of those approaches.

In this paper we focus on a real-time grid-prosumers energy 
transaction through an aggregator as the mechanism to address 
demand and supply matching. The aggregator’s role is to gather 
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and manage a group of prosumers in order to participate in the 
real-time wholesale market.

Many types of aggregator with dissimilar goals have been stud-
ied in different financial and market structures in the area of elec-
tricity markets [17]. In this work, the aggregator is a self-interested 
market participant who has the goal of participating in the real-
time wholesale market in order to maximize its revenue. To do 
so, the aggregator considers each individual prosumer demand and 
supply situation and proposes a personalized price to buy its ex-
cess supply or provide the prosumer its energy deficiency at each 
time-step in a Real-Time Market (RTM).

On the other hand, each prosumer receives a price from the 
aggregator and responds optimally by considering its demand pref-
erences and supply situations over a horizon. We assume that the 
aggregator can anticipate the reaction of the prosumers. This price 
oriented setup falls into the category of bilevel optimization prob-
lems [5] and Stackelberg games [23], where the lower level prob-
lem and the upper level problem are the problems related to the 
prosumers and the aggregator, respectively.

Bilevel optimization approach has been used in various applica-
tions with hierarchical nature [8,13,14]. Particularly, it has exten-
sively used to model and solve energy systems problems [7]. The 
initial work [12] models strategic offering of a dominant gener-
ating firm as a bilevel optimization problem, where at the upper 
level a generator firm maximizes its profit and at the lower level 
a system operator maximizes social welfare or minimizes total 
system cost. This problem is rewritten as a Mathematical Program-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ming with Equilibrium Constraints (MPEC) and solved by a penalty 
interior point algorithm. More recent works (e.g., [26]) focus on the 
aggregator and prosumers problem. The state-of-the-art approach 
to solve these types of problems is to reformulate the bilevel opti-
mization problem as a Mixed-Integer Programming (MIP).

Both the MPEC and MIP based methods are computationally 
expensive. One of the main challenges to implement an RTM is 
the computational efficiency. For an RTM the time intervals are 
in the order of a few minutes [22]. Therefore, new computa-
tional tools are needed for the aggregator’s real-time control over 
the prosumers and its participation in the RTM. The paper [10]
has addressed the computational efficiency of the dominant firm’s 
strategic offering by introducing a convex relaxation for the bilevel 
optimization problem and has found a close to optimal solution. 
However, to the best of our knowledge, no study has been done 
on finding the global optimum of a bilevel optimization problem 
by solving a convex one in the field of prosumers integration in 
the wholesale energy markets.

In this paper, we define the problem of economic optimization 
of an aggregator and its corresponding prosumers for participation 
in an RTM over a time horizon as a bilevel optimization prob-
lem. The aggregator represents the prosumers to participate in the 
wholesale market in a real-time scenario. This problem, in general, 
is nonconvex [16]. We show that a subset of the set of global min-
imizers for the nonconvex problem can be obtained as the solution 
of a certain convex optimization problem. The convex problem has 
two main advantages. On the one hand, a convex formulation is 
attractive in real-time applications since the computation time is 
linear in the number of variables. On the other hand, off-the-shelf 
software packages can be used to solve the problem. In addition, 
replacing a bilevel optimization problem by a convex one is a key 
step towards devising decentralized or distributed algorithms [2]. 
This work is a continuation of the preliminary study by the authors 
[20] which dealt with a simple static model for balancing markets.

The paper is organized as follows. In Section 2, we define the 
aggregator and prosumers problems as a bilevel optimization prob-
lem. Section 3 presents a convex optimization problem that can 
capture a subset of the set of global minimizers for the bilevel 
one. Finally, the paper closes with the conclusions in Section 4.

Notation. We denote the set of real numbers by R, n-vectors by 
Rn and m × n matrices by Rm×n . Throughout the paper, the in-
equalities for vectors are meant entrywise. The n-vectors of ones 
is denoted by 1n . The m × m identity matrix is denoted by Im . 
For a matrix M ∈ Rm×n and index sets α ⊆ {1, 2, . . . , m}, β ⊆
{1, 2, . . . , n}, the notation Mαβ denotes the matrix 

(
Mij

)
i∈α, j∈β

. 

If α = {1, 2, . . . , m}, then we write M•β and if β = {1, 2, . . . , n}, 
then we write Mα• . For any vector x ∈ Rn if Mx = 0, we write 
x ∈ ker M . A symmetric matrix M = MT ∈Rm×m is said to be posi-
tive semidefinite if xT Mx ≥ 0 for all x ∈Rm and positive definite if 
xT Mx > 0 for all 0 �= x ∈Rm . The symmetric square root of a pos-

itive definite matrix M is denoted by M
1
2 . For a vector v ∈ Rn , 

we write diag(v) for the diagonal matrix with diagonal entries 
v1, v2, . . . , vn . Let f :Rn →R and S ⊆Rn . Consider the optimiza-
tion problem

OP : min
x

f (x)

subject to x ∈ S.

We say that x̄ is feasible for OP if x̄ ∈ S . Also, we define the set of 
global optima for OP as

MIN(OP) = {x∗ ∈ S | f (x∗) ≤ f (x) ∀x ∈ S}.
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2. Problem formulation

In this section, we define a market model for an aggregator and 
the prosumers under its contract to participate in an RTM with 
the grid, i.e., the wholesale market. Here, the role of the aggre-
gator is to act as an intermediary agent between the prosumers 
and the grid to facilitate the energy transactions. We consider the 
case where each prosumer can generate energy through some RESs 
with zero cost. Example of such energy sources are solar panels 
and wind turbines. Moreover, each prosumer’s demand is elastic at 
each time-step. The aggregator goal is to propose the prosumers 
with a personalized price to deal their surplus or shortage energy 
with the grid in an optimal way. The advantages of a personalized 
price over a unique price have been addressed in many recent re-
search (see e.g., [21,24]). Next, we explain the problem setting and 
market structure in detail.

2.1. Prosumer’s problem

The main source of energy supply for a prosumer is its renew-
able energy units. Due to uncertain and uncontrollable nature of 
RESs, there might be a mismatch between supply and demand 
at each time-step. Each prosumer has two options to cancel this 
mismatch. One is to trade with the wholesale market through the 
aggregator. The other option is to use its demand elasticity. There-
fore, each prosumer needs to find a trade-off between these two 
possible options for its optimal strategy. Before providing a math-
ematical formulation for the prosumer, we elaborate on demand 
elasticity.

We say that the demand of each prosumer is elastic if:

1. Each prosumer has a preference for its demand at each time-
step.

2. Altering the demand from its preferred value causes dissatis-
faction for the prosumer. Here, we model this dissatisfaction 
using a quadratic function.

3. Each prosumer has a lower bound and an upper bound for its 
demand at each time-step.

4. Total demand of each prosumer in a specific time period is 
constant.

These assumptions on the prosumer’s demand are used exten-
sively for the goal of load shifting in the literature under the name 
demand-side management [4,15,19].

As explained before, the prosumer’s goal is to find a trade-off 
between two possible options to minimize its cost and maximize 
its comfort. We model this problem as an optimization problem. 
We define the set of prosumers by {1, 2, . . . , n} and the set of time-
steps by {1, 2, . . . , K }. Then, prosumer i ∈ {1, 2, . . . , n} at time-step 
k ∈ {1, 2, . . . , K } has three decision variables: its demand hi(k), the 
energy it sells to (buy form) the grid y+

i (k) (y−
i (k)). For the ith 

prosumer, we consider the optimization problem (1) as

PPi : min
hi (k),y+

i (k),y−
i (k)

∀ k∈{1,2,...,K }

K∑
k=1

1

2
qi(k)(hi(k)−h0

i (k))2 + x−
i (k)y−

i (k)−x+
i (k)y+

i (k)

(1a)

subject to y+
i (k) − y−

i (k) + hi(k) = si(k) ∀ k ∈ {1, . . . , K } (1b)

y+
i (k), y−

i (k) ≥ 0 ∀ k ∈ {1, . . . , K } (1c)

¯hi(k) ≤ hi(k) ≤ h̄i(k) ∀ k ∈ {1, . . . , K } (1d)

K∑
k=1

hi(k) = htot
i (1e)

where x+
i (k) (x−

i (k)) is the proposed price by the aggregator to buy 
energy from (sell energy to) the prosumer at time-step k, si(k) ≥ 0
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is the generated energy by the prosumer at time-step k, which as-
sumed to be known, and qi(k) > 0 is the dissatisfaction parameter 
for the prosumer. Moreover, h0

i (k) ≥ 0, ¯hi(k) ≥ 0 and h̄i(k) ≥ 0 are 
the preferred value, lower bound and upper bound for the demand 
hi(k), respectively. The parameter htot

i is the total demand for the 
prosumer over the period k ∈ [1, K ].

In (1a), the first term models the dissatisfaction the prosumer 
experiences by changing its demand from the preferred value. The 
second term is the cost of buying energy from the grid through the 
aggregator and the third term is the revenue the prosumer can ob-
tain by selling energy through the aggregator. The constraint (1b)
indicates that the total demand should be equal to the total supply 
for each prosumer at each time-step. The constraints (1c) and (1d)
specify the lower bound and upper bound for the decision vari-
ables. Finally, (1e) captures the assumption that the total demand 
over a period is constant.

Assumption 1. The sum of preferred values h0
i (k)s over the period 

from k = 1 to k = K is equal to htot
i , i.e., 

∑K
k=1 h0

i (k) = htot
i .

From (1b), we can write hi(k) as hi(k) = si(k) − (y+
i (k) − y−

i (k)). 
Thus, the variable hi(k) can be eliminated from the problem PPi
and we can rewrite it as the optimization problem (2) where 
ci(k) = qi(k)(h0

i (k) − si(k)).

PP′
i : min

y+
i (k),y−

i (k)

∀ k∈{1,2,...,K }

K∑
k=1

1

2
qi(k)(y+

i (k) − y−
i (k))2 + ci(k)(y+

i (k) − y−
i (k))

+ x−
i (k)y−

i (k) − x+
i (k)y+

i (k) + 1

2
qi(k)(h0

i (k))2 (2a)

subject to y+
i (k), y−

i (k) ≥ 0 ∀ k ∈ {1, . . . , K } (2b)

si(k) − h̄i(k) ≤ y+
i (k) − y−

i (k) ≤ si(k) − ¯hi(k)

∀ k ∈ {1, . . . , K } (2c)

−
K∑

k=1

(y+
i (k) − y−

i (k)) = htot
i −

K∑
k=1

si(k) (2d)

Moreover, since these optimization problems are independent, we 
can add them and rewrite them in a vector form. To do so, for ξi(k)

with i ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . , K }, we define the vector ξ ∈
RnK as

ξ = [ ξ1(1) · · · ξ1(K ) ξ2(1) · · · ξ2(K ) · · · ξn(1) · · · ξn(K ) ]T . (3)

Also, we drop the constant terms 1
2 qi(k)(h0

i (k))2 for all k ∈
{1, 2, . . . , K } from (2a). Accordingly, the vector form of (2) is given 
by

PP : min
y+,y−

1

2
(y+ − y−)T Q (y+ − y−) + cT (y+ − y−)

+ (x−)T y− − (x+)T y+ (4a)

subject to y+, y− ≥ 0 (4b)

� ≤ y+ − y− ≤ u (4c)

E(y+ − y−) = d (4d)

where

Q = diag(q), c = Q (h0 − s), � = s − h̄,

u = s − ¯h, E = −In ⊗1T
K , d = E(s − h0).

(5)

Here, ⊗ denotes the Kronecker product.
The prices x+

i (k) and x−
i (k) are proposed by the aggregator. In 

this work, the aggregator acts as a self-interested agent which has 
the ability to anticipate the reaction of the prosumers. Therefore, 
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knowing the reaction of the prosumers, the aggregator sets the 
prices to maximize its revenue as an intermediary player between 
the grid and the prosumers. In the next subsection, we elaborate 
on the aggregator’s problem as a bilevel optimization problem.

2.2. Aggregator’s problem

The aggregator receives two prices from the grid for each time-
step. The price p+(k) is the price for selling energy to grid and 
the price p−(k) is the price for buying energy from the grid at kth 
time-step. Having these prices and the ability of the aggregator to 
anticipate the reaction of the prosumers allow the aggregator to 
propose prices x+

i (k) and x−
i (k) to the prosumers in an optimal 

way. The bilevel optimization below models this problem for the 
aggregator:

AP : max
x+,x−,y+,y− (p+ − x+)T y+ − (p− − x−)T y− (6a)

subject to x+, x− ≥
¯
ρ1m (6b)

x+, x− ≤ ρ̄1m (6c)

(y+, y−) ∈ MIN(PP) (6d)

where p+ is defined as in (3) by taking p+
i (k) = p+(k) for all 

i ∈ {1, . . . , n} and p− is defined in the same way. The first term in 
(6a) corresponds to the aggregator’s revenue from selling energy 
to the grid whereas the second term models the aggregator’s cost 
for buying energy from the grid. A lower bound and upper bound 
for the prices x+ and x− are considered in (6b) and (6c) to guar-
antee a minimum revenue for each prosumer and also to prevent a 
high aggregator profit. Note that this lower and upper bounds are 
determined by a regulatory agency. We assume that ρ̄ ≥

¯
ρ ≥ 0.

In this paper, we consider a scenario where p+ = p− = p and 
the aggregator proposes prices x+ and x− such that x+ = x− = x. 
Therefore, we can rewrite the optimization problems AP and PP 
based on the new decision variables x and y = y+ − y− as the 
minimization problems BLP and LLP, respectively.

BLP : min
x,y

φ(x, y) = (x − p)T y (7a)

subject to
¯
ρ1m ≤ x ≤ ρ̄1m (7b)

y = MIN(LLP) (7c)

Here the decision vector x ∈ Rm is the proposed prices of the ag-
gregator and the parameter vector p ∈ Rm is the prices of selling 
to and buying from the grid. The prosumers’ reactions y to the 
proposed prices are the solution of the optimization problem LLP.

LLP : min
y

1

2
yT Q y + (c − x)T y (8a)

subject to � ≤ y ≤ u (8b)

E y = d (8c)

The vector y ∈Rm is the decision variable for LLP. The vectors and 
matrices c, �, u ∈ Rm , d ∈ Rn , Q ∈ Rm×m , E ∈ Rn×m are param-
eters for LLP as defined in (5). Moreover, x ∈ Rm is the decision 
variable for the aggregator and the prosumers has no control over 
it. It should be noted that m = nK and rank E = n ≤ m. We assume 
that there exists ȳ which satisfies (8b)-(8c). Since Q = diag(q) is 
positive definite, LLP is a strictly convex quadratic optimization 
problem and hence has always a unique optimal solution, i.e., the 
set MIN(LLP) is a singleton.

Bilevel optimization problems are in general nonconvex and 
have combinatorial nature. Many algorithms and approaches have 
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been developed to solve different classes of bilevel problems. Re-
cent surveys on bilevel optimization can be found in [6] and [16]. 
In contrast to existing methods that deal with rather more gen-
eral bilevel optimization problems, our focus here is to exploit the 
particular structure of (7) in order to introduce a convex optimiza-
tion problem which has the same global optimum as the bilevel 
one. The next section investigates the conditions under which the 
global optimal solution of the optimization (7) can be found by 
solving a convex problem.

3. Main results

In this section, we will show that the set of global optima for 
a specific convex optimization problem is a subset of the set of 
global optima for the optimization BLP, under some assumptions 
on the parameters of the problem. First, we rewrite the optimiza-
tion problem BLP as a Mathematical Program with Complementar-
ity Constraints (MPCC). We elaborate on the special structure and 
properties of this MPCC. Then, we introduce a convex optimization 
problem which can be used to find a subset of MIN(BLP). Finally, 
we comment on the restrictions of the proposed convex optimiza-
tion for the RTM platform.

3.1. From bilevel optimization to MPCC

Consider the optimization problem (7). Since the lower level 
optimization problem (8) is convex, we can replace it by the nec-
essary and sufficient KKT conditions

Q y + c − x + E T λ − μ + ν = 0, (9)

E y = d, (10)

0 ≤ μ⊥y − � ≥ 0 (11)

0 ≤ ν⊥u − y ≥ 0 (12)

where μ ∈Rm , ν ∈Rm are dual variables for the lower bound and 
upper bound constraints in (8b), respectively. Also, λ ∈ Rn is the 
dual variable for the constraint (8c). The dual variable λ can be 
eliminated from KKT conditions (9)-(12). First, we solve y from (9)
as

y = Q −1(x + μ − ν − c − E T λ), (13)

and then substitute y in (10):

E Q −1(x + μ − ν − c − E T λ) = d. (14)

Since E has full row rank and Q is positive definite, E Q −1 E T is 
nonsingular. Therefore, we obtain

λ = (E Q −1 E T )−1(E Q −1(x + μ − ν − c) − d). (15)

By substituting λ in (13), we can write (9)-(12) as

y = M(x + μ − ν) + r,

0 ≤ μ⊥y − � ≥ 0,

0 ≤ ν⊥u − y ≥ 0

where

M = Q −1 − Q −1 E T (E Q −1 E T )−1 E Q −1, (16)

r = Q −1 E T (E Q −1 E T )−1d − Mc = s − h0. (17)

Consequently, we can rewrite the bilevel optimization problem BLP 
as the following single-level optimization problem.
571
SLP : min
x,y

φ(x, y) (18a)

subject to (x, y) ∈ S (18b)

where

S = {(x, y) |
¯
ρ1m ≤ x ≤ ρ̄1m, y = M(x + μ − ν) + r, � ≤ y ≤ u,

μT (y − �) = 0, νT (u − y) = 0 for some μ ≥ 0 and ν ≥ 0}.
The problem SLP is an instance of an MPCC where the set S and 
the matrix M characterize the linear complementarity constraints. 
In what follows, we will explore the properties of the matrix M .

Lemma 2. The matrix M is a positive semidefinite matrix.

Proof. Clearly M is the Schur complement of

X =
[

Q −1 Q −1 E T

E Q −1 E Q −1 E T

]
(19)

with respect to E Q −1 E T . Since X =
[

Q − 1
2

E Q − 1
2

][
Q − 1

2 Q − 1
2 E T

]
, 

X is positive semidefinite. It follows from [25, Theorem 1.12] that 
M is also positive semidefinite. �
Remark 3. The vector 1m can be written as 1m = −E T 1n . It is 
clear form (16) that M E T = 0. Then, it follows immediately that 
1m ∈ ker M .

Also, it turns out that M has a special structure. The following 
definitions elaborate on this specific structure.

Definition 4. A matrix N ∈Rk×k is called

• a Z-matrix if its off-diagonal entries are nonpositive.
• an M-matrix if it is a Z-matrix and the real parts of its eigen-

values are nonnegative.

Remark 5. In particular, a positive semidefinite matrix is an M-
matrix if its off-diagonal entries are nonpositive.

Lemma 6. The matrix M is an M-matrix.

Proof. The matrix M is the Schur complement of matrix X given 
by (19). Since E is a matrix with orthogonal rows and Q is positive 
definite and diagonal, E Q −1 E T and hence (E Q −1 E T )−1 are also 
positive definite diagonal matrices. Moreover, E Q −1 is nonposi-
tive which makes X an M-matrix. Consequently, it follows from 
[9, Theorem 5.13] that M is also an M-matrix. �

In the next subsection, we show that M being positive semidef-
inite and M-matrix let us to find a subset of the global optima set 
of the MPCC (18) by solving a convex optimization problem.

3.2. From MPCC to convex optimization

The theorem below asserts that there exists a convex optimiza-
tion problem which can capture a subset of the set of global op-
tima for SLP.

Theorem 7. Consider the optimization problem

CVX : min
x,y

φ(x, y)

subject to (x, y) ∈ C
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where

C = {(x, y) |
¯
ρ1m ≤ x ≤ ρ̄1m, y = Mx + r, � ≤ y ≤ u}.

Suppose that � ≤ 0, u ≥ 0 and � < r < u. Then, MIN(CVX) ⊆ MIN(SLP). 
Furthermore, the optimization problem CVX is convex.

To prove this theorem, we need the following auxiliary results.

Lemma 8. Consider the optimization problem

SLP′ : min
x,y

φ(x, y)

subject to (x, y) ∈ S ′

where

S ′={(x, y) |
¯
ρ1m ≤ x ≤ ρ̄1m, y = M(x + μ − ν) + r, � ≤ y ≤ u,

μT (y − �) = 0, νT (y − u) = 0, μT (x − ρ̄1m) = 0,

νT (x −
¯
ρ1m) = 0, for some μ,ν ≥ 0}.

Suppose that � ≤ 0 and u ≥ 0. Then, for any (x̄, ȳ) ∈ S there exists 
(x̂, ȳ) ∈ S ′ such that φ(x̂, ȳ) ≤ φ(x̄, ȳ).

Proof. Let (x̄, ȳ) ∈ S . Therefore, there exist μ̄ ≥ 0 and ν̄ ≥ 0 such 
that

¯
ρ1m ≤ x̄ ≤ ρ̄1m, ȳ = M(x̄ + μ̄ − ν̄) + r, � ≤ ȳ ≤ u,

μ̄T ( ȳ − �) = 0, ν̄T (u − ȳ) = 0.
(20)

We define three disjoint index sets α1 ⊆ {1, 2, . . . , m}, α2 ⊆
{1, 2, . . . , m} and α3 ⊆ {1, 2, . . . , m} such that α1 ∪ α2 ∪ α3 =
{1, 2, . . . , m} and

μ̄α1 = 0, μ̄α2 > 0, μ̄α3 = 0,

ν̄α1 = 0, ν̄α2 = 0, ν̄α3 > 0.
(21)

Then, (20) can be written as

¯
ρ1α1 ≤ x̄α1 ≤ ρ̄1α1 , ¯

ρ1α2 ≤ x̄α2 ≤ ρ̄1α2 , ¯
ρ1α3 ≤ x̄α3 ≤ ρ̄1α3 ,

�α1 ≤ ȳα1 =Mα1α1 x̄α1 +Mα1α2 (x̄α2 +μ̄α2 )+Mα1α3 (x̄α3 − ν̄α3 )+rα1 ≤ uα1 ,

�α2 = ȳα2 =Mα2α1 x̄α1 +Mα2α2 (x̄α2 +μ̄α2 )+Mα2α3 (x̄α3 − ν̄α3 )+rα2 ≤ uα2 ,

�α3 ≤ ȳα3 =Mα3α1 x̄α1 +Mα3α2 (x̄α2 +μ̄α2 )+Mα3α3 (x̄α3 − ν̄α3 )+rα3 =uα3 ,

μ̄α1 =ν̄α1 =0, μ̄α2 > 0, ν̄α2 =0, μ̄α3 =0, ν̄α3 > 0

We choose x̂, μ̂ and ν̂ based on x̄, μ̄ and ν̄ as

x̂α1 = x̄α1 , μ̂α1 = μ̄α1 = 0, ν̂α1 = ν̄α1 = 0,

⎡
⎣ x̂α2

μ̂α2

ν̂α2

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣ x̄α2 + μ̄α2

0

0

⎤
⎥⎦ if x̄α2 + μ̄α2 ≤ ρ̄1α2 ,

⎡
⎢⎣ ρ̄1α2

x̄α2 + μ̄α2 − ρ̄1α2

0

⎤
⎥⎦ if x̄α2 + μ̄α2 > ρ̄1α2 ,

⎡
⎣ x̂α3

μ̂α3

ν̂α3

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣ x̄α3 − ν̄α3

0

0

⎤
⎥⎦ if x̄α3 − ν̄α3 ≥

¯
ρ1α3 ,

⎡
⎢⎣ ¯

ρ1α3

0

ν̄ − x̄ + ρ1

⎤
⎥⎦ if x̄α3 − ν̄α3 <

¯
ρ1α3 .
α3 α3 ¯ α3
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Note that with these choices M(x̂ + μ̂ − ν̂) + r = ȳ and (x̂, ȳ) ∈ S ′ . 
Moreover, these choices imply x̂α1 = x̄α1 , x̂α2 > x̄α2 and x̂α3 < x̄α3 . 
Since � ≤ 0 and u ≥ 0, we have the following implications:

x̂α1 = x̄α1 =⇒ (x̂α1 − pα1 )
T ȳα1 = (x̄α1 − pα1 )

T ȳα1 ,

x̂α2 > x̄α2 , ȳα2 = �α2 ≤ 0 =⇒ (x̂α2 − pα2 )
T ȳα2 ≤ (x̄α2 − pα2 )

T ȳα2 ,

x̂α3 < x̄α3 , ȳα3 = uα3 ≥ 0 =⇒ (x̂α3 − pα3 )
T ȳα3 ≤ (x̄α3 − pα3 )

T ȳα3

which conclude that φ(x̂, ȳ) ≤ φ(x̄, ȳ). �
In general, the set S ′ is a nonconvex set due to complementar-

ity relations. However, it can be shown that it coincides with the 
set C in CVX under certain conditions on �, u and r.

Lemma 9. Suppose that � < r < u. Then, ∅ �= C = S ′ .

Proof. Let (x̄, ȳ) ∈ S ′ . Therefore, there exist nonnegative μ̄ and ν̄
such that

¯
ρ1m ≤ x̄ ≤ ρ̄1m, ȳ = M(x̄ + μ̄ − ν̄) + r,

� ≤ ȳ ≤ u, μ̄T ( ȳ − �) = 0, ν̄T ( ȳ − u) = 0,

μ̄T (x̄ − ρ̄1m) = 0, ν̄T (x̄ −
¯
ρ1m) = 0.

(22)

We define three disjoint index sets α1 ⊆ {1, 2, . . . , m}, α2 ⊆
{1, 2, . . . , m} and α3 ⊆ {1, 2, . . . , m} such that α1 ∪ α2 ∪ α3 =
{1, 2, . . . , m} and (21) holds. Suppose that α2 ∪ α3 �= ∅. Then, (23)
follows from (22).

¯
ρ1α1 ≤ x̄α1 ≤ ρ̄1α1 , x̄α2 = ρ̄1α2 , x̄α3 =

¯
ρ1α3 , μ̄α2 > 0, ν̄α3 > 0,

�α2 = Mα2α1 x̄α1 + Mα2α2 (ρ̄1α2 + μ̄α2 ) + Mα2α3 ( ¯
ρ1α3 − ν̄α3 ) + rα2 ,

Mα3α1 x̄α1 + Mα3α2 (ρ̄1α2 + μ̄α2 ) + Mα3α3 ( ¯
ρ1α3 − ν̄α3 ) + rα3 = uα3

(23)

Since Mα2α1 , Mα2α3 and Mα3α1 are nonpositive matrices (Lemma 6) 
and ρ̄ ≥

¯
ρ ≥ 0, (23) implies (24).

μ̄α2 > 0, ν̄α3 > 0,

�α2 ≥ Mα2α1 ρ̄1α1 + Mα2α2 (ρ̄1α2 + μ̄α2 ) + Mα2α3 (ρ̄1α3 − ν̄α3 ) + rα2 ,

Mα3α1 ¯
ρ1α1 + Mα3α2 ( ¯

ρ1α2 + μ̄α2 ) + Mα3α3 ( ¯
ρ1α3 − ν̄α3 ) + rα3 ≥ uα3

(24)

As 1m ∈ ker M , (� − r) < 0 and (r − u) < 0, (24) implies[
Mα2α2 −Mα2α3−Mα3α2 Mα3α3

][
μ̄α2

ν̄α3

]
< 0,

[
μ̄α2

ν̄α3

]
> 0

which is infeasible due to positive semidefiniteness of M . There-
fore, we reach a contradiction. This means that α2 = α3 = ∅, 
μ̄ = ν̄ = 0 and S ′ = C . Moreover, since � < r < u and 1m ∈ ker M

(Remark 3), we see that (θ1m, r) ∈ C for all θ ∈
[
¯
ρ, ρ̄

]
. As such, 

C �= ∅. �
After these preparations, we are in a position to prove Theo-

rem 7.

Proof of Theorem 7. It follows from Lemma 9 that S ′ = C and 
hence the optimization problems SLP′ and CVX are the same. 
Therefore, MIN(CVX) = MIN(SLP′). Thus, it suffices to prove
MIN(SLP′) ⊆ MIN(SLP).

Let (x∗, y∗) ∈ MIN(SLP′). Then,

φ(x∗, y∗) ≤ φ(x, y) ∀ (x, y) ∈ S ′.
Let (x̄, ȳ) ∈ S . Then, it follows from Lemma 8 that there exists 
(x̂, ȳ) ∈ S ′ such that φ(x̂, ȳ) ≤ φ(x̄, ȳ). Consequently, we obtain 
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φ(x∗, y∗) ≤ φ(x̂, ȳ) ≤ φ(x̄, ȳ). This means that φ(x∗, y∗) ≤ φ(x̄, ȳ)

for all (x̄, ȳ) ∈ S . It is clear that S ′ ⊆ S . Therefore, (x∗, y∗) ∈ S
and hence (x∗, y∗) ∈ MIN(SLP). Thus, we can conclude MIN(CVX) =
MIN(SLP′) ⊆ MIN(SLP). Furthermore, C is a polyhedron and hence 
convex. Also, φ is convex on C since M is positive semidefinite due 
to Lemma 2. Therefore, CVX is a convex optimization problem. �
3.3. Interpretation of Theorem 7 for RTM

Theorem 7 has certain hypotheses on the parameters �, u, and 
r. Here, we discuss the implications of these hypotheses for the 
proposed RTM platform. It follows from Theorem 7 that the vec-
tors � = s − h̄ and u = s − ¯h should be nonpositive and nonnegative, 
respectively. The vector s is the generated energy by RESs of the 
prosumers, the vector ¯h is the lower bound of the prosumers’ de-
mand and the vector h̄ is the upper bound for their demand. To 
have � ≤ 0 and u ≥ 0, the aggregator should ask the prosumers to 
set the upper bound of their demands h̄ greater than or equal to 
their RESs’ capacity and also the lower bound for their demands ¯hless than or equal to s. Moreover, Theorem 7 states that r should 
be strictly between � and u. Considering Assumption 1, we can 
show that

¯h < h0 < h̄ =⇒ � < r < u.

4. Conclusions

The problem of participation of the prosumers in the whole-
sale market through the aggregator has been widely studied in 
the literature. To represent the intrinsic hierarchy of this problem, 
we developed a market platform based on a bilevel optimization 
problem. Bilevel optimization are generally highly nonconvex and 
current approaches to deal with these problems are computation-
ally expensive. To implement this market platform in real-time, we 
proposed a specific convex optimization problem and showed that 
each global minimizer of this convex problem are also a global 
minimizer for the original bilevel problem under some assump-
tions on the parameters.

While the proposed convex approach can reduce the computa-
tional time significantly in contrast to the state-of-the-art methods 
(e.g., MIP), the assumption that the aggregator has a centralized 
control over the prosumers may limit the applicability of the pro-
posed method to large scale networks. An interesting important 
area of future research could be design of a decentralized or dis-
tributed control mechanism using the convex problem to tackle 
this issue.
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