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1 | Introduction

The modeling of dynamical processes plays an increasingly important role in science and

engineering. Some processes change continuously over time and exhibit only continuous

dynamics and are called continuous-time systems. Think for example of the water

level in a leaking vessel, where the water level continuously decreases as the water is

leaking out of the vessel. Other processes evolve only discretely in time, such as the

average amount of cars parked in a parking garage each day. Such processes are called

discrete-time systems. In the case a dynamical process exhibits both continuous- and

discrete-time dynamics, it is called a hybrid system. In particular, such a system involves

a class of linear or nonlinear systems and results from the interaction of continuous-time

subsystems with discrete events. More precisely, the internal variable of each system

is regulated by a set of differential equations and each of the separate subsystems is

labeled as a discrete mode. As a consequence of the transitions between discrete states,

the continuous variable may contain jumps.

Switched systems constitute a particular subclass of hybrid systems. Specifically, a

switched system is a dynamical system that consists of a finite number of subsystems,

referred to as modes and a logical rule that orchestrates the switching between these

subsystems. The main property of switched systems is that these systems switch among

a finite number of subsystems and the discrete events interacting with the subsystems

are governed by a piecewise continuous function called the switching signal. However,

one can classify switched systems based on the dynamics of their subsystems, for

example continuous-time, discrete-time, linear or nonlinear and so on. In the case that a

dynamical system is formed by a collection of linear continuous state space models and

the switching among them is according to a discrete signal, the system is called a linear

switched system. Due to the large number of applications of switched systems, they have

been studied extensively during the past decades. Examples of applications can be found

in aeronautical and mechanical systems, automotive industry, modeling of electronic

circuits with physical switches and power converters, as discussed in e.g., [25, 133].
The class of switched systems with a time depending switching signal constitutes a

subclass of the general class of time-varying systems. In the case that each mode consists

of a linear system, the overall switched system remains linear; the switched system

can be regarded as a particular linear time-varying system. However, in the case of a

state-dependent switching signal linearity is lost and a particular nonlinear system is

obtained. In this thesis switched linear systems with a time depending switching signal

are studied. Therefore, the standard qualitative and quantitative properties for standard

systems cannot be applied, but it is necessary to develop specific tools for them. For a

11



12 CHAPTER 1. INTRODUCTION

detailed discussion on switched systems, cf. [40, 75, 113].

In the case of switched linear systems, the mathematical model for each mode is

typically given by an ordinary differential equation (ODE).However, inmany applications

the dynamics are restricted by some algebraic equations and hence both algebraic and

differential equations are needed to model the dynamical system. Equations of this kind

are called differential algebraic equations (DAEs), descriptor systems, singular systems

or sometimes implicit systems and have been studied extensively, see e.g., [32, 33, 64, 132]
for early works and [14, 16, 17, 24, 66, 101, 107] and the references therein. A DAE

model is naturally obtained when modeling linear electrical circuits, mechanical systems

or linear systems with additional linear algebraic constraints. For examples of DAE

models used for the modeling of network structures such as electrical circuits and gas

networks see [1,24,94,102,105,122] and [42], respectively, where the algebraic constraints

are induced by the network topology. However, there are also applications in the

treatment of semidiscretized partial differential equations such as the Navier-Stokes

equation and fluid dynamics in general [2, 41, 82, 131], chemical engineering [26, 97],

holonomically constrained mechanical systems [29, 90, 106], and in a vast variety of

economical problems [85,86].

In the case a system undergoes abrupt structural changes due to physical switches in

the system or component failure, one generally needs multiple DAE models to describe

each mode of the system. In the case each subsystem of a linear system is governed by a

DAE, the switched system is called a switched DAE. Whereas for each mode it could be

possible to obtain an ODE model by solving for the algebriac constraints, there generally

does not exists an ODE model for each mode with a common state variable. Therefore

switched DAEs have been studied directly cf. [79, 80, 111, 118, 120,121,125].

1.1 Qualitative properties of switched systems

Given a mathematical model for a dynamical system, properties of the system can be

derived from the mathematical model. Many dynamical systems can be influenced by

applying an external input such as a force or a voltage. Alternatively, we can perform

measurements on certain components of a system to obtain information on the state

without influencing the system. One can for example measure the current running

through a resistor or measure the velocity of a vehicle driving. These measurements and

external inputs give rise to the question towhat extent the behavior of a dynamical system

can be shaped by means of applying a suitable input. With the introduction of the state

space by Kalman [58] the research on control theory for linear ODE systems accelerated

rapidly. Fundamental properties such as controllability and observability ofODE systems

and their duality have been studied extensively, cf. [45, 46, 59, 60, 83, 84, 99, 135, 136] and
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similar concepts were studied for DAE systems [15–17, 20, 22, 73]. For many control

purposes it is not necessary to be able to have full control over the system as long as

the system can be stabilized around some operating point. In the case a system can be

stabilized around the origin it is called stabilizable. As this property is of interest for

many applications, it has been the topic of research for a long time and in particular the

concept of stabilizability in terms of Lyapunov functions has been studied extensively,

see e.g., [5, 96]. Similar to the geometric control theory for linear systems as provided

in [3, 139] and later in [127], a coordinate independent approach to DAEs has been given

in [7, 74].

Control theoretical properties of switched linear ODEs such as controllability, stabi-

lizability and observability have been studied during the past few decades as well, see

e.g., [18, 81, 98, 115, 116] and the references therein. Non-switched ODEs can be regarded

as particular switched systems, namely those with a constant switching signal. Hence

one would expect that the results for the non-switched case can easily be generalized to

the switched case. This is true up to a certain extent, but there are some subtleties that

have to be taken into account when considering switched systems. The results in the

field of switched systems namely depend in general on the switching signal and hence

one of the first questions to ask when considering control of switched systems is whether

to regard the switching signal as a control input. In the case that the switching signal is

not controllable, the question remains whether it is known a priori. The relevance of how

to regard the switching signal is evidenced by the results on stabilizability, where it is

shown that even though every subsystem of the switched ODE is stabilizable, the overall

system does not need to be stabilizable for certain switching signals [13,77,78]. Moreover,

there exist systems of which the state will grow unbounded for some switching signals,

but could be stabilized given some other switching signals. Similarly, if none of the

subsystems is observable, the overall system might be observable. [115]. Consequently,

a system that is stabilizable or observable if the switching signal is a control input, is

not necessarily stabilizable or observable for all switching signals. Another interesting

aspect which has been studied is the case where the switching signal is assumed to be

unknown. One generally assumes in such cases that each mode is active for a minimum

amount of time, the so called dwell time. Various results for switched systems with a

dwell time have been presented, cf. [30, 47, 53, 55].

Whereas the literature on fundamental properties of switchedODEs andnon-switched

linear systems is rich, the literature on properties of switched DAEs has not matured

yet. Stabilizability of switched DAEs has been studied in [79,80,91,92] and also some

results on controllability have been presented [68]. This gap in the literature can be

explained by the fact that a firm solution framework for switched DAE has recently

been developed [123]. In contrast to solutions of switched ODEs, solutions of switched
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DAEs typically contain Dirac impulses and jumps,which prevent classical solutions

from existence. These discontinuities in the state are however not only a mathematical

artifact. Dirac impulses can for example be observed in applications in the form of

sparks induced at a switch when an inductor is disconnected or as hydraulic shocks

in a water distribution network. In order to be able to incorporate these phenomena

in a mathematical model, the distributional solutional framework has to be adopted.

The jumps and Dirac impulses in the state can be beneficial for characterizing various

observability properties. They can e.g., be used in determining the state of a switched

DAE [118–121], but also to detect which mode is active [67, 70, 71]. However, Dirac

impulses are usually undesired in applications as they are prone to cause damage to

components of the system or cause a hazardous situation for the environment of the

system. Particularly in micro chips and water networks with fragile pipelines it is of utter

importance to avoid Dirac impulses. However, to the best of the authors knowledge only

properties for switched DAEs are studied where Dirac impulses in the state are allowed.

Hence it is unclear on how to stabilize or control a switched DAE while avoiding Dirac

impulses. For non-switched DAEs the property to avoid Dirac impulses is referred to as

controllability at infinity or impulse-controllability and it has been studied in e.g., [20].
Hence so far it has been an open research question on how to control a switched DAE

while avoiding Dirac impulses.

1.2 Optimal control of switched systems

Alongside qualitative properties such as controllability and observability, quantitative

properties of dynamical systems have been studied as well. By introducing a certain

cost functional, the performance of the system can be measured and one can make

quantitative statements about control inputs. For many applications it is of interest to

design a controller which performs optimal such that a minimum cost can be guaranteed.

From an economical perspective this might not need motivation, but even in a physical

setup it might be of interest to control a vehicle such that as little fuel is consumed while

driving.

In the context of linear systems the linear quadratic regulator (LQR) problem on

both the finite and infinite horizon has been studied extensively, see [56, 61, 62, 134, 138]

for results on ODEs and [6, 8, 21, 37, 38, 48, 65, 87–89] for DAEs. In the LQR problem

a cost function that is quadratic in the state and input is considered and in the linear

case it admits a surprisingly elegant solution. The optimal input turns out to be a

feedback which can be computed bymeans of solving a Riccati equation or certain matrix

inequalities.

Most recent studies regarding the optimal control problem for DAEs focus on finding
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solutions based on the Lure inequality or an extension of the Kalman-Yakubovich-Popov

lemma [103,104,130]. More recently the concept of model predictive control has been

studied. In model predictive control the future behavior of a system is predicted over a

finite time horizon. Based on these predictions and the current measured or estimated

state of the system, the optimal control inputs with respect to a defined cost functional

are computed and applied. After a certain time interval, the measurement or estimation

and computation processes are repeated with a shifted horizon. This subject has been

investigated in [34, 49, 50, 93] and the references therein. Besides optimal control various

other optimization problems such as the H2 and H∞ problem have been studied for

ODEs, see [27,28, 57, 108] and DAEs, cf. [23, 52, 95, 114]. TheH2 andH∞ problem deal

with finding an optimal feedback that minimizes the influence of process disturbances

or measurement noise on an output of the system.

Optimal control of switched systems has also been studied. Given the results on

the LQR problem for non-switched ODEs it is rather straightforward to solve the LQR

problem for a switched ODE with a fixed and known switching signal using a dynamic

programming approach [4, 11, 76]. Hence the goal in optimal control of switched

systems is often to find an optimal switching signal. The cost may change for example

if the switching times are changed, but also when the sequence in which the modes

appear varies. The problem of finding an optimal switching signal has been studied

in e.g., [39,140,141,143]. Also model predictive control for switched systems has been

studied cf. [44,129,142]. However, so far optimal control of switched differential algebraic

equations has not been studied yet. Hence there are no techniques available to measure

the performance of a controller for switched DAEs.

Motivated by the gaps in the literature on fundamental qualitative and quantitative

properties of switched DAEs, this thesis aims to contribute to the development of control

theoretical tools for switched DAEs. First, impulse-free solutions of switched DAEs will

be investigated. Then the problem of stabilizing a switched DAE while avoiding Dirac

impulses in the state is considered. Finally, the linear quadratic regulator problem for

switched DAEs will be considered.

1.3 Thesis outline and contributions

So far it can be concluded from the overview in the previous section that impulse-free

solutions and optimal control of switched DAEs have not been studied yet in the existing

literature. Hence this thesis aims to contribute with respect to these topics. More

precisely, this thesis is concerned with control theoretical properties of switched DAEs.

We confine our attention to switched DAEs for which the switching signal is fixed and

known and adopt the piecewise-smooth distributional solution framework. To that
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extent, a brief introduction to mathematical distributions is given in Chapter 2, together

with a brief overview of some crucial control theoretical concepts for non-switched

DAEs.

The existence of impulse-free solutions of switched DAEs is studied in Chapter 3.

First impulse-controllability of switched DAEs with a switching signal that induces

finitely many switches is investigated. Necessary and sufficient conditions for such

switchedDAEs to be impulse-controllable are given in terms of an algorithm that involves

subspaces and runs backward in time. Then sufficient conditions for switched DAEswith

infinitelymany switches to be impulse-controllable are given in terms of an algorithm that

runs forward in time. Chapter 3 is concluded with a section on impulse-controllability

of system classes of switched DAEs. A switched DAE can in principle be thought of

as a system generated by some subsystems defined by triplets of system matrices and

a switching signal. Hence systems generated by some matrix triplets and a class of

switching signals define a system class. The concept of impulse-controllability of system

classes is introduced and impulse-controllable system classes generated by some matrix

triplets and the class arbitrary switching signals are characterized. For the classes of

systems with the same mode sequence it is shown that either all or almost all systems or

none or almost none of the systems in the class are impulse-controllable. Furthermore, it

is shown that although every system in the system class is impulse-controllable, inputs

that achieve impulse-free solutions are generally not independent of the switching signal.

Stabilizability and controllability of switched DAEs is studied in Chapter 4. First it

is shown by means of an example that if a switched DAE is impulse-controllable and

stabilizable it is not necessarily impulse-free stabilizable. However, it is shown that

the concepts of null-controllability, reachability and controllability in the behavioral

sense are equivalent for switched DAEs, but the same does not hold for the impulse-free

versions of these concepts. In order to deal with switched DAEs with a large number

of switches, a definition of stabilizability on a bounded interval is given, so called

interval-stabilizability. Under certain assumptions global stabilizability can be concluded

from interval-stabilizability. A similar counterpart for impulse-free interval-stabilizabilty

is also given. Necessary and sufficient conditions for impulse-free interval-stabilizability

are given in terms of an algorithm involving subspaces that runs forward in time. Based

on this approach a novel characterization of impulse-free controllability is given. The

chapter is concluded with the extension of the results to the case where Dirac impulses

in the state and input are allowed.

In Chapter 5 the linear quadratic regulator (LQR) problem for switched DAEs is

considered. It is shown that if there exists an input that solves the problem, the optimal

input is linear in the state and the optimal cost is a quadratic function of the initial value.

Given this result, it is shown how the finite horizon LQR problem can bemotivated by the
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infinite horizon problem. In the case of a single switched DAE, the LQR problem on the

infinite horizon can be reduced to a finite horizon LQR problem for non-switched DAEs

with terminal constraints. As a consequence of the cost resulting from the second interval,

a general positive semi-definite cost matrix that is not necessarily structurally related to

the first mode has to be considered. Furthermore, the state at the end of the interval

needs to be contained in a subspace. Necessary and sufficient conditions for solvability

of this LQR problemwith endpoint constraints are given and it is shown how to compute

the optimal feedback matrix. Intuitively these results can be interpreted as follows. The

optimal control problem for non-switched DAEs with endpoint constraints is solvable

if and only if it is solved by the input that solves the unconstrained LQR problem for

non-switched DAEs. Finally, necessary and sufficient conditions on solvability of the

LQR problem for switched DAEs with an arbitrary number of switches are stated.
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1.5 Notation
We close the introduction with the nomenclature used throughout the thesis:

Basic sets
N, N0, Z set of natural numbers, N0 = N∪ {0}, set of all integers

R,R+,R−
set of real numbers, set of positive real numbers, set of

negative real numbers

C,C+,C−
set of comlex numbers, set of complex numberwith pos-

itive real part, set of complect numbers with negative

real part

ei
The standard base vector of Rn

, the jth
entry eij = 1 if

i = j and eij = 0 if i 6= j.

|α| Absolute value of α ∈ R

Matrices and subspaces
A> the transpose of the matrix A ∈ Rm×n

In the n× n identity matrix

rank A the rank of the matrix A ∈ Rm×n

imA
the range of the linear map A : X → Y , i.e., imA =

{Ax | x ∈ X}

kerA
the kernel of the linear map A, i.e., kerA = {x ∈ X |
Ax = 0}

A−1V
the inverse image of a subspace V ⊂ Y given the linear

map A, i.e., A−1V = {x ∈ X | Ax ∈ V}

V⊥
the orthogonal complement of V ⊆ X in the inner

product space X , i.e., V⊥ = {x ∈ X | x>y = 0, ∀v ∈ V}

V +W
the sum of subspaces V ,W ⊆ X , i.e., V +W = {x ∈ X |
x = v + w, v ∈ V , w ∈ W}

〈A | V〉
the smallest A invariant subspace generated by V , i.e.,
〈A | V〉 = V + AV + · · ·+ An−1V

〈V | A〉
the largest A invariant subspace contained in V , i.e.,
〈V | A〉 = {x ∈ V | Ax ∈ V}
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Dynamical systems

(E,A,B)
shorthand notation for a differential algebraic system

of the form Eẋ = Ax+Bu.

(Eσ, Aσ, Bσ)
shorthand notation for a switched differential algebraic

system of the for Eσẋ = Aσx+Bσu.

Σn

the system class of switched differential algebraic sys-

tems generated by the matrix triplets (E,A,B), i.e.,
Σσ = {(Eσ, Aσ, Bσ) | σ ∈ Sn}

Functions and function spaces
Lloc

1 the space of locally integrable functions f : R→ R

L2 the space of square integrable functions f : R→ R

C∞ the space of infinitely differentiable functions f : R→ R

C∞0
the space of test functions, i.e., the space of smooth

functions f : R → R with support on a compact set

K ⊆ R

C∞pw the space of piecewise-smooth functions f : R→ R

D the space of distributions D : C∞0 → R

D
pwC∞ the space of piecewise-smooth distributions

Norms
‖ · ‖ The Euclidean norm

‖ · ‖Lp :=
(∫∞

0
| · |p dt

) 1
p
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The purpose of this chapter is to lay a theoretical foundation for the subsequent chapters.

Before studying switched differential algebraic equations, the precise type of systems

considered throughout the thesis will be described. Then the solutional framework

adopted will be discussed. To do so, some theory on mathematical distributions is

recalled and the space of piecewise-smooth distributions is introduced. Furthermore,

some properties of regular matrix pencils in relation to differential algebraic equations

are presented. Finally some control theoretical results for non-switched DAEs are

considered.

2.1 Switched DAEs
Throughout this thesis we will study switched differential algebraic equations of the

form

Eσ(t)ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), (2.1)

where x ∈ Rn
denotes the state, u ∈ Rn

is the control input and σ : R→ N is the switching

signal indicating which mode is active at which particular time instance. Unless stated

differently, we will assume throughout this thesis that the switching signal is fixed and

known a priori. Hence it is not regarded as a control input. Furthermore, to avoid

chattering behavior, we assume the switching signal is right-continuous and induces

locally finitely many switches. Specifically, we assume that the switching signal σ ∈ Sn
where Sn is defined as follows.

Definition 2.1. The class of switching signals Sn is defined as the set of all σ : R →
{0, 1, ..., n} of the form

σ(t) = p t ∈ [tp, tp+1), (2.2)

where p ∈ {0, 1, ..., n} and t1 < t2 < ... < tn are the n ∈ N switching times in (0,∞) with

t0 := 0 and tn+1 :=∞ for notational convenience. Furthermore, for a given sequence of

switching times, let τi := ti+1 − ti, i = 0, 1, . . . , n− 1 and τ := (τ0, τ1, . . . , τn−1) ∈ Rn
>0,

As a consequence of σ ∈ Sn, we assume that on the interval [t0,∞) at most n + 1

modes are induced and each mode is described by a non-switched DAE with matrices

Ep, Ap ∈ Rn×n
and Bp ∈ Rn×m

for p ∈ {0, 1, ..., n}.
Solutions to (2.1) typically exhibit Dirac impulses which exclude classical solutions

from existence. Hence we need to consider a distributional solution framework. To do so,
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we will first give a brief review of distributions and we will show that the general space

of distributions is not suited as a solutional framework. Most of this section is based

on [123] and [125] to which is referred to for a more extensive treatment of distributions.

On occasion we include a proof for illustration or whenever the exact formulation is not

found in the literature.

2.2 Classical distribution theory
In this section classical distributions as formalized by Schwartz [112], i.e., linear func-
tionals on the space of test functions, are considered and important properties are

highlighted.

Definition 2.2. The space of test function is

C∞0 := {ϕ ∈ C∞(R→ R) | supp ϕ compact },

where

supp ϕ := cl {t ∈ R | ϕ(t) 6= 0}

is the support of ϕ and cl M denotes the closure of a setM ⊆ R.

Although the space of test function is equippedwith a suitable locally convex topology,

the definition of continuity in terms of this topology is rarely used. Instead, one often

works with the following characterization of continuity.

Lemma 2.3 ( [54], Thrm 12.7 and 14.2). A linear map D : C∞0 → R is continuous if and only
if limn→∞D(ϕn) = 0 for all sequences (ϕn) ∈ (C∞0 )N with the following properties

i) ∃ compact K ⊆ R ∀n ∈ N : supp ϕn ⊆ K, and

ii) ∀m ∈ N : limn→∞ ‖ϕ(m)
n ‖∞ = 0

where ‖ · ‖∞ denotes the supremum norm of a bounded function.

Definition 2.4. The space of distributions is

D := {D : C∞0 → R | D is linear and continuous}.

Definition 2.5. The space of locally integrable functions, i.e., the space of all measurable

functions f : R→ R for which the integral

∫
K
|f | is finite for all compact setsK ⊆ R is

given by

Lloc
1 := Lloc

1 (R→ R) := {f : R→ R | f is locally integrable}.
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Distributions are sometimes referred to as generalized functions because of the

following result.

Theorem 2.6 ( [123], Proposition 2.1.5). Each f ∈ Lloc
1 induces a distribution fD ∈ D given by

fD : C∞0 → R, ϕ 7→
∫
R
ϕ(t)f(t) dt

and for any f, g ∈ Lloc
1 , there is the one-to-one correspondence in the following sense

fD = gD ⇐⇒ f = g almost everywhere.

Definition 2.7. The space of regular distribution is given by

Dreg := {fD | f ∈ Lloc
1 }.

A very important and useful property of distributions is that all distributions have a

distributional derivative within D.

Lemma 2.8 ( [123] Definition 2.1.6 and Lemma 2.1.7). The distributional derivative ofD ∈ D
is given by

D′(ϕ) := −D(ϕ′), D ∈ D, ϕ ∈ C∞0

and is again a distribution. Furthermore, for differentiable f : R→ R it holds that (f ′)D = (fD)′.

Perhaps the most famous distribution which is not induced by a function is the Dirac

impulse.

Definition 2.9. Let 1[t,∞) : R→ R be theHeaviside step function at t ∈ R, i.e., 1[t,∞)(τ) = 1

for τ > t and zero otherwise. Then the distributional derivative of the Heaviside step

function is called Dirac impulse at t, denoted by δt, i.e.,

δt := (1[t,∞))
′.

In the case t = 0 the index is omitted, i.e., δ = δ0.

The Dirac impulse can equivalently be defined in an alternative way. Namely as the

distribution satisfying

δt(ϕ) = ϕ(t), ϕ ∈ C∞0 ,∀t ∈ R,

which concludes the revision of classical distributions. The product of smooth functions

and distributions is well-defined. This multiplication allows us to interpret linear

differential equations as distributional differential equations. However, to do so, we will

first need the following result.
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Lemma 2.10 ( [123] Proposition 2.1.10). Let D ∈ D be a distribution and let α ∈ C∞ be a
smooth function. Then the product αD is given by

αD(ϕ) := D(αϕ), D ∈ D, α ∈ C∞, ϕ ∈ C∞0

and is again a distribution. In particular

αfD = (αf)D,

αδ(d) =
d∑
i=0

(
d

i

)
(−1)d−iα(d−i)(t)δ

(i)
t , for d ∈ R

and

(αD)′ = α′D + αD′.

By interpreting constant matrices and scalars as smooth constant functions, we can

interpret a linear differential equation as a distributional differential equation. This

observation leads to the following definition.

Definition 2.11. A distribution (x, u) ∈ (D)n+m
is said to solve

Eẋ = Ax+Bu (2.3)

for some smooth constant functions E,A and B if for all ϕ ∈ C∞0

Eẋ(ϕ) = Ax(ϕ) +Bu(ϕ).

In the case that α is not smooth, then the product αϕ is not smooth in general and

the evaluation D(αϕ) is not well-defined. Hence it is not clear whether the space of

distributions can be used as a solution space for switched DAEs. In the case that the

entries of the matrices Eσ, Aσ, Bσ are regarded as piecewise-constant functions, it is

tempting to think the distribution space can be used as solution space by restricting

distributions to a time interval and regard the concatenation of each restricted distribution

as a solution. However, the restriction of a distribution to an interval is not well-defined

as the following example shows.

Example 2.12 (cf. [123], Lemma 2.2.3). Consider the following distribution, which is

well-defined:

D =
∑
i∈N

diδdi , di =
(−1)i

i+ 1
, i ∈ N.

The restriction to the interval (0,∞) should have the form

D(0,∞) =
∑
k∈N

1

2k + 1
δ 1

2k+1
.

However, for any test function ϕ ∈ C∞0 , the series does not converge and hence the

restricted distribution is not well-defined. �
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From Example 2.12 we can conclude that the restriction of a distribution to an interval

is generally not well-defined and consequently the whole space of distributions is too

large to be a solution space for switched differential algebraic equation of the form (2.1).

This means that we need to find a suitable subspace of D. To that extent we introduce

the following space.

Definition 2.13. The space of piecewise-smooth functions is

C∞pw :=

{
α =

∑
i∈Z

1[ti,ti+1)αi

∣∣∣∣∣ {ti ∈ R | i ∈ Z} locally finite,

ti < ti+1, (αi)i∈Z ∈ (C∞)Z

}
.

Given the space of piecewise-smooth function, we can define the space of piecewise-

smooth distributions.

Definition 2.14. The space of piecewise-smooth distributions is

D
pwC∞ :=

{
D = fD +

∑
t∈T

Dt

∣∣∣∣∣ f ∈ C∞pw, T ⊂ R locally finite,

∀t ∈ T : Dt ∈ span{δt, δ′t, δ′′t , ..., }

}
.

Clearly the first requirement is satisfied for this subspace of distributions. The second

and third requirement also hold as follows from the next results.

Lemma 2.15 ( [123] Proposition 2.3.4). For all D ∈ DpwC∞ the derivative D′ ∈ DpwC∞ .

Lemma 2.16 ( [123] Theorem 2.4.1). There exists a unique multiplication ? : DpwC∞×DpwC∞ →
DpwC∞ which is distributive, compatible with scalar multiplication and satisfies

i) fD ? gD = (fg)D for all f, g ∈ C∞pw,

ii) (F ? G)′ = F ′ ? G+ F ? G′ for all F,G ∈ DpwC∞ ,

iii) F ? (G ? H) = (F ? G) ? H for all F,G,H ∈ DpwC∞ .

Hence D
pwC∞ is a suitable solution space for switched differential algebraic equations

of the form (2.1). However, in order to use the piecewise-smooth distributions in a

meaningful way in the context of control theory, we need to define how to evaluate a

distribution at a specific time instance. Before doing so, we state the following result,

from which an intuitive definition will follow.

Lemma 2.17. The distributions X ∈ {fD | f ∈ C∞}n and U ∈ {fD | f ∈ C∞}m, i.e., X and U
are induced by x ∈ (C∞)n and u ∈ (C∞)m, solve (2.3) in the distributional sense if, and only if

Eẋ(t) = Ax(t) +Bu(t) (2.4)

for all t > 0.
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Proof. After denoting g(t) =: Eẋ(t)− (Ax(t) +Bu(t)), we can write

EX ′(ϕ)− (AX(ϕ) +BU(ϕ)) =

∫ ∞
0

Eẋ(t)ϕ(t)− (Ax(t)ϕ(t) +Bu(t)ϕ(t)) dt

=

∫ ∞
0

(
Eẋ(t)− (Ax(t) +Bu(t))

)
ϕ(t) dt

=

∫ ∞
0

g(t)ϕ(t) dt. (2.5)

If x ∈ (C∞)n and u ∈ (C∞)m solve (2.4) for all t > 0, it follows that g(t) = 0 for all t > 0.

Consequently, (2.5) is zero for all ϕ ∈ C∞0 , which implies that (X,U) solves (2.3).

Let (X,U) solve (2.4) in the distributional sense. Then (2.5) equals zero for all ϕ ∈ C∞.
Furthermore, observe that as x, u ∈ C∞ it follows that g ∈ C∞. Suppose that g(t) 6= 0 for

some t > 0. Let tp be such that g(tp) 6= 0. Without loss of generality we can assume that

g(tp) > 0. By continuity there exists a ε > 0 such that g(t) > 1
2
g(tp) for all t ∈ (t− ε, t+ ε).

Consequently, there exists a ϕ ∈ C∞ such that (2.5) is unequal to zero, which contradicts

the assumption that (X,U) solves (2.3). Hence g(t) = 0 for all t > 0, which implies that

(x, u) solves (2.4).

The result of Lemma 2.17 shows that smooth distributions do not behave much

differently than classical solutions. However, a distribution X ∈ Dn
generated by

x ∈ (C∞)n, can equivalently be regarded as generated by x̄ ∈ (Lloc
1 )1

if x = x̄ almost

everywhere. Therefore, x̄ could also be thought as a solution in the distributional sense,

although ˙̄xmight not be well-defined everywhere. Consequently, more functions can be

regarded as solutions by considering their induced distributions as solutions. On the

other hand, information on the initial value is lost. To overcome this problem, there is a

need to evaluate distributions with respect to the function that induces them.

Definition 2.18. Let t ∈ R and D = fD +
∑

τ∈T Dτ , then the left/right evaluation of D at

t is given by

D(t−) := f(t−) = lim
ε↘0

f(t− ε), D(t+) := f(t+) = f(t)

and the impulsive part of D at t is

D[t] =

Dt t ∈ T,

0 t 6∈ T.

2.3 Existence and uniqueness of solutions
With the introduction of piecewise-smooth distributions for which a multiplication with

piecewise constant coefficient matrices is well-defined, it is now possible to interpret
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(2.1) as an equation within the space of piecewise-smooth distributions. The next step

is to study existence and uniqueness of solutions within this distributional solution

framework.

2.3.1 Regular matrix pairs

Regularity of the matrix pairs (E,A) will play a crucial roll in this investigation, which is

defined as follows.

Definition 2.19. The matrix pair (E,A) ∈ Rn×n×Rn×n
is called regular if det(sE −A) is

not the zero polynomial.

In the case that the matrix pair (E,A) is regular, there exists a coordinate transforma-

tion that allows for a convenient expression with respect to a DAE. This transformation

transforms the system in to the so called quasi-Weierstrass form [125].

Proposition 2.20 ( [9] Theorem 2.6). The matrix pair (E,A) is regular if and only if there
exist invertible matrices T, S ∈ Rn×n such that (E,A) is transformed into the quasi-Weierstrass
form (QWF):

(SET, SAT ) =

([
I 0

0 N

]
,

[
J 0

0 I

])
, (2.6)

where J ∈ Rn1×n1 , 0 6 n1 6 n is some matrix and N ∈ Rn2×n2 , n2 := n − n1, is a nilpotent
matrix.

The matrices S and T that transform (E,A) into the quasi-Weierstrass form can be

calculated by using the so-calledWong sequences [9, 137]:

V0 := Rn, Vi+1 := A−1(EVi), i = 0, 1, ...

W0 := {0}, Wi+1 := E−1(AWi), i = 0, 1, ...
(2.7)

The limiting subspaces are defined as follows:

V∗ :=
⋂
i∈N

Vi, W∗ :=
⋃
i∈N

Wi. (2.8)

For any full rankmatrices V,W with imV = V∗ and imW =W∗, the matrices T := [V,W ]

and S := [EV,AW ]−1
are invertible and (2.6) holds.

With a simple inductive argument it can be shown that the Wong sequences are

nested and terminate, i.e., there exist i∗, j∗ 6 n such that

V0 ⊇ V1 ⊇ · · · ⊇ V i
∗

= V i∗+1 = · · ·
W0 ⊆ W1 ⊆ · · · ⊆ Wj∗ =Wj∗+1 = · · ·



28 CHAPTER 2. MATHEMATICAL PRELIMINARIES

and in particular

V∗ = V i∗ = A−1(EV i∗) and W∗ =Wj∗ = E−1(AWj∗).

Finally, it follows that

kerA ⊆ V∗ and kerE ⊆ W∗.

Proposition 2.21 ( [124] Proposition 17). Let (E,A) be a regular matrix pair. Then for any
invertible matrices T, S the matrix pair (SET, SAT ) is regular.

2.3.2 Non-switched differential algebraic equations

A regular matrix pair (E,A) ∈ Rn×n × Rn×n
, an input matrix B ∈ Rm×n

and an input u

can be associated with the differential algebraic equation

Eẋ = Ax+Bu. (2.9)

The index of (2.9) is defined as follows.

Definition 2.22. Let (S, T ) transform (E,A) into the quasi-Weierstrass form. The index

of (2.9) is defined as the smallest integer ν ∈ N for which N ν−1 = 0.

To derive an explicit solution formula for (2.9) we define the following projectors and

selectors based on the Wong sequences (2.7).

Definition 2.23. Consider the regular matrix pair (E,A) with corresponding quasi-

Weierstrass form (2.6). The consistency projector of (E,A) is given by

Π := T

[
I 0

0 0

]
T−1.

Furthermore, the differential selector and impulse selector are respectively given by

Πdiff := T

[
I 0

0 0

]
S, Πimp := T

[
0 0

0 I

]
S.

In all three cases the block structure corresponds to the block structure of the

quasi-Weierstrass form. Next, we define

Adiff := ΠdiffA, Bdiff := ΠdiffB, Eimp := ΠimpE, Bimp := ΠimpB.

Note that all the above defined matrices do not depend on the specifically chosen

transformation matrices S and T ; they are uniquely determined by the original regular

matrix pair (E,A).
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Lemma 2.24. A classical solution x solves (2.9) if and only if x satisfies x = xdiff + ximp where
the differential component xdiff := Πx solves

ẋdiff = Adiffxdiff +Bdiffu

and an algebraic component ximp := (I − Π)x satisfies

ximp = −
ν∑
i−1

(Eimp)iBimpu(i).

Proof. Using the projectors and selectors resulting from the Wong sequences we can

write x = Πx+ (I − Π)x. The component xdiff := Πx solves

ẋdiff(t) = Πẋ

= T [ I 0
0 0 ]T−1ẋ

= T [ I 0
0 0 ]SS−1 [ I 0

0 N ]T−1ẋ

= ΠdiffEẋ

= Adiffx(t) +Bdiffu(t).

(2.10)

To find a similar expression for ximp
it is observed that

Eimp = ΠimpE = T [ 0 0
0 I ]SS−1 [ I 0

0 N ]T−1 = T [ 0 0
0 N ]T−1

= T [ 0 0
0 N ]T−1T [ 0 0

0 I ]T−1 = Eimp(I − Π)

and

(I − Π) = T [ 0 0
0 I ]T−1 = T [ 0 0

0 I ]SS−1 [ J 0
0 I ]T−1 = ΠimpA.

Consequently, we can write for ximp
the following

Eimpẋimp = Eimp(I − Π)ẋ

= Eimpẋ

= ΠimpEẋ

= ΠimpAx+Bimpu

= (I − Π)x+Bimpu

= ximp +Bimpu.

(2.11)

The componentximp
canbe expressed as an explicit functionof the input and its derivatives

as the operator

(
Eimp d

dt
− I
)
is invertible. Its inverse is given by

(
Eimp d

dt
− I
)−1

=

−
∑ν−1

i=0 (Eimp)i
(

d
dt

)
, where ν ∈ N is the nilpotency index of N , i.e., the smallest integer

value for which (Eimp)ν = 0. Consequently

ximp(t) = −
ν−1∑
i=0

(Eimp)iBimpu(i)(t),

which concludes the proof.



30 CHAPTER 2. MATHEMATICAL PRELIMINARIES

Corollary 2.25. A classical solution to (2.9) is given by

x(t) = eA
diff tΠc+

∫ t

0

eA
diff(t−τ)Bdiffu(τ) dτ −

ν−1∑
i=0

(Eimp)iBimpu(i)(t), (2.12)

for some value c ∈ Rn.

Altogether this leads to the following result.

Corollary 2.26. For every smooth input u there exists a smooth solution x to (2.9) which is
uniquely determined by the value x(t−0 ) for any fixed t0 ∈ R if and only if the matrix pair (E,A)

is regular.

It follows as a direct consequence of the solution formula (2.12) that if x is smooth

and solves (2.9), it satisfies

x(t0) = Πc−
ν−1∑
i=0

(Eimp)iBimpu(i)(t0).

In particular, we can conclude that the initial value problem (2.9) with x(t0) = x0 has a

smooth solution if and only if

x0 +
ν−1∑
i=0

(Eimp)iBimpu(i)(t0) ∈ im Π = V∗,

which characterizes consistency of the initial value.

Definition 2.27. Consider the DAE (2.9), then the consistency space is defined as

V(E,A) := {x0 ∈ Rn |∃ smooth solution x of Eẋ = Ax, with x(0) = x0}

and the augmented consistency space is defined as

V(E,A,B) :=
{
x0 ∈ Rn |∃ smooth solutions (x, u) of Eẋ = Ax+Bu and x(0) = x0

}
.

Proposition 2.28 ( [10] Theorem 4.4). Consider the DAE (2.9), then the consistency space
V(E,A) = V∗ and the augmented consistency space V(E,A,B) = V(E,A) ⊕ 〈Eimp | imBimp〉, where
〈Eimp | imBimp〉 is the largest Eimp invariant subspace generated by imBimp.

2.3.3 Inconsistent initial values

In the presence of switches, a consistent initial value cannot be assumed and a classical

solution fails to exist. Implicitly it is thus assumed that the DAE (2.9) was not active
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before the initial time in the case of an inconsistent initial value. This gives rise to the

following initial trajectory problem where x0 : (−∞, t0)→ Rn
is some initial trajectory:

x(−∞,t0) = x0
(−∞,t0),

(Eẋ)[t0,∞) = (Ax+Bu)[t0,∞).
(2.13)

If x0(t0) is not consistent, a classical solution does not exist, however, it will be shown in

the following that there exists a distributional solution. Therefore (2.13) is considered as

an equation of piecewise-smooth distributions, in particular, the input u and the initial

trajectory are also pieceswise smooth distributions.

Theorem 2.29 ( [125] Theorem 5.1). Let (E,A) be a regular matrix pair. Then for any initial
trajectory x0 ∈ (DpwC∞)n and any input u ∈ (DpwC∞)m the ITP (2.13) has a unique solution
x ∈ (DpwC∞)n. In particular the jump from x0(t−0 ) to x(t+0 ) and the impulsive part x[t0] is
uniquely determined.In the case that the input u is impulse-free, it follows that

x(t+0 ) = Πx0(t−0 )−
ν−1∑
i=0

(Eimp)iBimpu(i)(t+0 ),

x[t0] = −
ν−1∑
i=0

(Eimp)i+1

(
x0(t−0 )δ(i) +

i∑
j=0

Bimpu(i−j)(t+0 )δ(j)

)

= −
ν−1∑
i=0

(
Eimp

)i+1 (
x0(t−0 )− x(t+0 )

)
δ(i)

(2.14)

and for t ∈ (t0,∞)

x(t−) =eA
diff tΠx0(t−0 ) +

∫ t

t0

eA
diff(t−τ)Bdiffu(τ) dτ −

ν−1∑
i=0

(Eimp)iBimpu(i)(t−), (2.15)

where Π is the consistency projector and Eimp = ΠimpE with the impulse selector Πimp as in
Definition 2.23

Remark 2.30. As follows from the result in Theorem 2.29, the solution to the ITP (2.13) is

uniquely determined by the input and the initial value x0(t−0 ). Consequently, the initial

value problem

Eẋ = Ax+Bu, x(t−0 ) = x0,

can be equivalently be considered, with the implicit assumption that the DAE is active

only on [t0,∞) and uniqueness of x is only considered on that interval.

As follows from the formula (2.14), the solution of an ITP (2.13) generally contains

jumps and Dirac impulses, even in the case u = 0. For many applications, it is of interest

to avoid Dirac impulses. For some initial trajectories, Dirac impulses can be avoided by

means of a suitable input, but in general this is not possible for all initial trajectories.
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Lemma 2.31. There exists a solution of (2.9) that is impulse-free at t0, if and only if the initial
trajectory satisfies

(I − Π)x0(t−0 ) ∈ 〈Eimp | imBimp〉+ kerE.

Proof. Assume that x is impulse-free at t0 and solves (2.9). Then it follows from (2.14)

that

(I − Π)
(
x0(t−0 )− x(t+0 )

)
∈ ker(Eimp)i,

for i ∈ N. Observe that

kerEimp = kerT [ 0 0
0 N ]T−1 = kerT [ I 0

0 N ]T−1 + kerT [ 0 0
0 I ]T−1

= kerTSE + im Π = kerE + im Π.

Consequently, since im Π ∩ im(I − Π) = 0, we can conclude that

(I − Π)x0(t−0 ) ∈ kerE + (I − Π)x(t+0 )

∈ 〈Eimp | imBimp〉+ kerE.

Conversely, assume that (I − Π)x0(t−0 ) ∈ 〈Eimp | imBimp〉+ kerE. Then (I − Π)x0(t−0 ) =

v + w for some w ∈ 〈Eimp | imBimp〉 and w ∈ kerE. Observe that v ∈ kerE ⊆ kerEimp
.

Hence for any u satisfying

ν−1∑
i=0

(Eimp)iBimpu(i)(t+0 ) = w,

it follows that (I − Π)x(t+0 ) = −w and hence x[t0] = 0.

The result of Lemma 2.31 gives rise to the so called impulse-controllable space.

Definition 2.32. Consider the DAE (2.9), then the impulse-controllable space is defined as

Cimp :=

{
x0 ∈ Rn

∣∣∣∣∣ ∃ solution (x, u) ∈ DpwC∞ of (2.13)

s.t. x(0−) = x0 and (x, u)[0] = 0.

}
.

Proposition 2.33 ( [100] Proposition 1). Consider the DAE (2.9), then the impulse-controllable
space satisfies

Cimp = V(E,A,B) + kerE.

Viewing (2.1) as a repeated ITP (where the switching times are the initial times), one

obtains the following result regarding the existence and uniqueness of solutions of (2.1).

Theorem 2.34 ( [125] Corollary 5.2). Consider the switched DAE (2.1) with a switching signal
σ ∈ Sn and regular matrix pairs (Ep, Ap) ∈ Rn×n. Then there exists a globally defined solution
x ∈ (DpwC∞)n to

Eσẋ = Aσx+Bσu, x(t−0 ) = x0,

which is uniquely determined by the value x(t−0 ) and the input u ∈ (DpwC∞)m.
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2.4 Control theoretical concepts for DAEs
As each mode of (2.1) can be interpreted as a non-switched DAE which is active for some

time, we review some important controllability properties of non-switched DAEs. To

that extent consider the DAE

Eẋ = Ax+Bu (2.16)

and assume that the matrix pair (E,A) is regular. Concentrating on the relation between

x and u, the amount to which the solution x can be influenced by means of a suitable

choice of input u gives rise to the reachable space defined as follows.

Definition 2.35. The reachable space of the regular DAE (2.16) is defined as

R :=

{
xT ∈ Rn

∣∣∣∣∣ ∃T > 0 ∃ smooth solution (x, u) of (2.16)

with x(0) = 0 and x(T ) = xT

}
.

It is easily seen that the reachable space for (2.16) coincides with the controllable

space, i.e. the space of initial values which can be controlled to zero in a smooth manner.

R =

{
x0 ∈ Rn

∣∣∣∣∣ ∃T > 0 ∃ smooth solution (x, u) of (2.16)

with x(0) = x0 and x(T ) = 0

}
.

Given the reachable space, we can decompose a solution into a part resulting from the

initial value and a part resulting from the input.

Lemma 2.36. Consider the DAE (2.16). Any solution (x, u) with x(t−0 ) = x0 satisfies for each
t ∈ (t0,∞)

x(t−) = eA
diff tΠx0 + η,

for some η ∈ R.

Proof. Considering the solution formula (2.15) in relation to the reachable space, we can

conclude that for all t∫ t

t0

eA
diff(t−τ)Bdiffu(τ) dτ −

ν−1∑
i=0

(Eimp)iBimpu(i)(t−) := η ∈ R.

Hence the result follows.

The reachable space of (2.16) can be characterized as follows.

Lemma 2.37 ( [10] Corollary 4.5). Consider the regular DAE (2.16). Then the reachable space
is given by

R = 〈Adiff | imBdiff〉 ⊕ 〈Eimp | imBimp〉.



34 CHAPTER 2. MATHEMATICAL PRELIMINARIES

Given the result of Lemma 2.37, we can express the augmented consistency space

and the impulse-controllable space in terms of the reachable space.

Corollary 2.38. The augmented consistency space of (2.9) satisfies

V(E,A,B) = V(E,A) ⊕ 〈Eimp | imBimp〉 = V(E,A) +R.

Proof. Since imAdiff ⊆ V(E,A) and imBdiff ∈ V(E,A) it follows that 〈Adiff | imBdiff〉 ⊆ V(E,A).

Consequently

V(E,A,B) = V(E,A) ⊕ 〈Eimp | imBimp〉
= V(E,A) ⊕ 〈Eimp | imBimp〉 + 〈Adiff | imBdiff〉 = V(E,A) +R.

where the first equality follows from Proposition 2.28.

Corollary 2.39. The impulse-controllable space of (2.9) satisfies

Cimp = V(E,A,B) + kerE

= V(E,A) + 〈Eimp | imBimp〉+ kerE

= V(E,A) +R+ kerE.

As the solutions of (2.16) are generally confined to a subspace, we can distinct the

following definitions of controllability.

Definition 2.40. The DAE (2.16) is called

i) completely controllable ifR = Rn
,

ii) behaviorally controllable ifR = V(E,A,B).

The following definition deals with the avoidance of Dirac impulses in the state

trajectory.

Lemma 2.41 ( [22] Proposition 3). The regular DAE (2.9) is impulse controllable if and only if

i) Cimp = Rn,

ii) imE + A kerE + imB = Rn,

iii) there exists a matrix K such that imE + (A+BK) kerE = Rn.

Besides the coordinate transformation that puts a regular matrix pair (E,A) in the

quasi-Weiserstrass form, there exists for every matrix triplet (E,A,B) a coordinate trans-

formation that puts the matrices in the Quasi-Weierstrass Form-Kalman decomposition

for differential algebraic equations.
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Proposition 2.42 ( [10] Proposition 4.2). For a regular matrix pair (E,A) there exist invertible
matrices T, S ∈ Rn×n such that (E,A) is transformed into

(SET, SAT, SB) =



I 0 0 0

0 I 0 0

0 0 N11 N12

0 0 0 N22

 ,

J11 J12 0 0

0 J22 0 0

0 0 I 0

0 0 0 I

 ,

B11

0

B12

0


 , (2.17)

where
([

I 0
0 N11

]
,
[
J11 0
0 I

]
,
[
B11
B12

])
is completely controllable and N11 and N22 are nilpotent.

Corollary 2.43. Consider the matrices (E,A,B) in the form (2.17). Then

Cimp = im

[
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 V

]
,

where V is any matrix with imV = kerN12 ∩N22.

Proof. Since
([

I 0
0 N11

]
,
[
J11 0
0 I

]
,
[
B11
B12

])
is completely controllable, it follows that R =

im

[
I 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0

]
. Furthermore, V(E,A) = im

[
I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

]
. Then by Corollary 2.39 we obtain

Cimp = V(E,A) +R+ kerE = im

[
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0

]
+ kerE = im

[
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 V

]
,

which proves the result.

By transforming thematrices (E,A,B) into the form (2.17) we can prove the following

results regarding solutions of a DAE satisfying x(t−0 ) = x0 ∈ Cimp
.

Lemma 2.44. Consider the matrix pair (E,A,B) and let T, S matrices that transform (E,A,B)

into the form (2.17). Then the matrix pair (EW,A) where

W = T

[
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0

]
T−1, (2.18)

is regular.

Proof. By Proposition 2.21 the matrix pair (E,A) is regular, then (SET, SAT ) is regular.

Consequently det(λSET − SAT ) 6= 0 and hence we have

det(λSET − SAT ) = det
(
λI −

[
J11 J12
0 J22

])
det
(
λ
[
N11 N12

0 N22

]
− I
)

= det
(
λI −

[
J11 J12
0 J22

])
det(λN11 − I) det(λN22 − I)

6= 0
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and hence det
(
λI −

[
J11 J12
0 J22

])
det(λN11 − I) 6= 0. As T, S are invertible, it follows that

(EW,A) is regluar if and only if (SEWT, SAT ) = SETT−1WT,SAT ) is regular and thus

we compute

det(λSETT−1WT − SAT ) = det

(
λ

[
I 0 0 0
0 I 0 0
0 0 N11 0
0 0 0 0

]
−
[
J11 J12 0 0
0 J22 0 0
0 0 I 0
0 0 0 I

])
= det

(
λI −

[
J11 J12
0 J22

])
det
(
λ
[
N11 0

0 0

]
− I
)

= −det
(
λI −

[
J11 J12
0 J22

])
det(λN11 − I)

6= 0.

This proves regularity of (EW,A).

Lemma 2.45. Consider (2.16) and assume it is regular. The pair (x, u) with x(t−0 ) = x0 ∈ Cimp

solves (2.16) if and only if it solves

EWẋ = Ax+Bu, (2.19)

whereW is given by (2.18). Furthermore, (2.19) is impulse controllable.

Proof. Without loss of generality we can assume that the matrices (E,A,B) are already in

the form (2.17). Then we can decompose x = [ x>1 x>2 x>3 x>4 ]>. By Theorem 2.29 it follows

that

x4 = −
ν−1∑
i=0

N i+1
22 x4(t−0 )δ(i).

Since x0 ∈ Cimp
it follows from Corollary 2.43 that x4(t−0 ) ∈ imV = kerN12 ∩ kerN22

and hence x4 = 0 on [t0,∞). Consequently ẋ4 = 0 on (t0,∞) and hence Eẋ = EWẋ on

(t0,∞). However, x4(t−0 ) ∈ kerN12 ∩N22 it follows that at t0

Eẋ[t0] =

[
I 0 0 0
0 I 0 0
0 0 N11 N12
0 0 0 N22

][ ẋ1[t0]
ẋ2[t0]
ẋ3[t0]
ẋ4[t0]

]
=

[
I 0 0 0
0 I 0 0
0 0 N11 0
0 0 0 0

][ ẋ1[t0]
ẋ2[t0]
ẋ3[t0]
ẋ4[t0]

]
= EWẋ[t0],

from which we can conclude that Eẋ = EWẋ on [t0,∞).

(⇐) Conversely, assume that x solves EWẋ = Ax+Bu. Then x solves[
I 0 0 0
0 I 0 0
0 0 N11 N12
0 0 0 N22

] [
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0

]
ẋ =

[
I 0 0 0
0 I 0 0
0 0 N11 0
0 0 0 0

]
ẋ =

[
J11 J12 0 0
0 J22 0 0
0 0 I 0
0 0 0 I

]
x+

[
B11

0
B12

0

]
u

and we can conclude that x4 = 0 on [t0,∞) and thus ẋ4 = 0 on (t0,∞). Therefore x solves[
I 0 0 0
0 I 0 0
0 0 N11 N12
0 0 0 N22

]
ẋ =

[
J11 J12 0 0
0 J22 0 0
0 0 I 0
0 0 0 I

]
x+

[
B11

0
B12

0

]
u,
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on (t0,∞). Furthermore, at t0 we can conclude that x4(t−0 ) ∈ kerN12∩kerN22 as x0 ∈ Cimp
.

Consequently, we obtain

EWẋ[t0] =

[
I 0 0 0
0 I 0 0
0 0 N11 0
0 0 0 0

][ ẋ1[t0]
ẋ2[t0]
ẋ3[t0]
ẋ4[t0]

]
=

[
I 0 0 0
0 I 0 0
0 0 N11 N12
0 0 0 N22

][ ẋ1[t0]
ẋ2[t0]
ẋ3[t0]
ẋ4[t0]

]
= Eẋ[t0],

from which we can conclude that EWẋ = Eẋ on [t0,∞).

It remains to show that (2.19) is impulse-controllable. Let n1, n2, n3 and n4 correspond

to the sizes of the blocks in (2.17). Thenn1+n2+n3+n4 = n. Since
([

I 0
0 N11

]
,
[
J11 0
0 I

]
,
[
B11
B12

])
is completely controllable, we can conclude that

im
[
I 0
0 N11

]
+
[
J11 0
0 I

]
ker
[
I 0
0 N11

]
+ im

[
B11
B12

]
= Rn1+n3 .

Hence we can conclude that

dim(imEW + A kerEW + imB) = dim

(
im

[
I 0 0 0
0 I 0 0
0 0 N11 0
0 0 0 0

]
+

[
J11 J12 0 0
0 J22 0 0
0 0 I 0
0 0 0 I

]
ker

[
I 0 0 0
0 I 0 0
0 0 N11 0
0 0 0 0

]
+ im

[
B11

0
B12

0

])
= dim

(
im
[
I 0
0 N11

]
+
[
J11 0
0 I

]
ker
[
I 0
0 N11

]
+ im

[
B11
B12

])
+ dim

(
im
[
In2 0
0 In4

])
= n1 + n2 + n3 + n4

= n

and hence we can conclude

imEW + A kerEW + imB = Rn.

Therefore (2.19) is impulse-controllable.

We conclude this chapter with a geometric control concept for DAEs, namely con-

trolled invariant subspaces.

Definition 2.46. Consider the DAE (2.9). A subspace V is called (E,A,B) invariant, or

controlled invariant if for all x0 ∈ V there exists an input u such that the solution (x, u)

with x(t−0 ) = x0 satisfies x(t−) ∈ V for all t > t0.

Lemma 2.47 ( [74] Theorem 10). LetW ⊆ Rn be a subspace. There exists a largest (E,A,B)

invariant subspace contained inW , denoted by 〈W | E,A,B〉, in the sense that if V is some
(E,A,B) invariant and contained inW , then V ⊆ 〈W | E,A,B〉. Furthermore, 〈W | E,A,B〉
equals the limit of the sequence

V0 = Rn, (2.20)

Vi+1 =W ∩ A−1(EVi + imB). (2.21)
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Lemma 2.48. Let V be an (E,A,B) controlled invariant subspace. Then

AdiffV ⊆ V +R.

Proof. Since V is controlled invariant, there exists for every x0 ∈ V an input u such that

the solution (x, u) with x(t−0 ) = x0 ∈ V satisfies x(t−) ∈ V for all t > t0. Consequently, it

follows from Lemma 2.36 that for each t there exists a η ∈ R such that

x(t−) = eA
diff tΠx0 + η ∈ V +R,

for all t > t0. Hence eA
diff tΠx0 ∈ V +R for all t > t0 and thus it follows from Lemma A.1

that

Πx0 ∈ 〈V +R | Adiff〉 ⊆ V +R.

Since Adiff = AdiffΠ, we can write

Adiffx0 = AdiffΠx0 ⊆ Adiff〈V +R | Adiff〉 ⊆ 〈V +R | Adiff〉 ⊆ V +R.

Since x0 ∈ V was arbitrary, the result follows.

Corollary 2.49. Let V be an (E,A,B) invariant subspace. Then ΠV ⊆ 〈V +R | Adiff〉.



3 | Switched DAEs and impulses

In this chapter we investigate the existence of impulse-free solutions of switched

differential algebraic equations, i.e., existence of solutions without the occurrence of

Dirac impulses. In many engineering applications it is of utter importance that Dirac

impulses in the state are avoided as they can damage components in the system or

cause hazardous situations. First we will investigate impulse-controllability for switched

differential algebraic equations with a known switching signal. Then we will investigate

the dependence of impulse-controllability on the switching times, by considering

impulse-controllability of system classes.

3.1 Impulse-controllability of DAEs

In this section we will introduce the concept of impulse-controllability of switched

differential algebraic equations. Again consider the switched differential algebraic

equation

Eσx = Aσx+Bσu, (3.1)

with a switching signal σ ∈ Sn that induces finitely many mode changes. Hence we

assume that the switching times t1 < t2 < ... < tn are known and that mode n is active

on [tn,∞). We will consider (3.1) on the interval [t0,∞) for some t0 ∈ (−∞, t1), but

assume that mode 0 was already active on (−∞, t0). Consequently, any initial trajectory

will satisfy x(t−0 ) = x0 ∈ V(E0,A0,B0). In order to define impulse-controllability we will

consider the behavior of (3.1) defined as follows.

Definition 3.1. Consider the system (3.1) for some switching signal σ ∈ Sn. The behavior
Bσ is the set of all distribution pairs (x, u) that solve (4.3), i.e.,

Bσ := {(x, u) ∈ (D
pwC∞)n+m | Eσẋ = Aσx+Bσu}.

The system (3.1) will roughly speaking be called impulse-controllable if it has the

following property: for all initial trajectories there exists an impulse-free input u ∈ D
pwC∞

such that the resulting state trajectory is impulse-free for all time. Since we assume that

the initial trajectory is a solution of (3.1) we will speak of behavioral impulse-controllability.

Definition 3.2. The switched DAE (4.3) with a switching signal σ ∈ Sn is behaviorally

39
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impulse-controllable if the corresponding solution behavior Bσ is impulse-controllable, i.e.

∀(x, u) ∈ Bσ ∃(x∗, u∗) ∈ Bσ :

(x∗, u∗)(−∞,t0) = (x, u)(−∞,t0),

and (x∗, u∗)[t] = 0, ∀t > t0.

Remark 3.3. The solution (x∗, u∗) in Definition 3.2 is allowed to contain Dirac impulses as

long as they occur at t < t0. These Dirac impulses can be induced by e.g., discontinuities
or even Dirac impulses in the input u. However, if there exists a solution (x∗, u∗) which

is impulse-free on [t0,∞) there also exists a solution (x̄, ū) which is impulse-free on the

entire interval (−∞,∞) and satisfies (x̄, ū)[t0,∞) = (x∗, u∗)[t0,∞).

As already mentioned, any initial trajectory satisfies x(t−0 ) ∈ V(E0,A0,B0). In fact, any

initial trajectory satisfies x(t−) ∈ V(E0,A0,B0) for t ∈ (−∞, t0). This allows for defining

impulse-controllability of (3.1) equivalently in terms of the initial values as follows.

Definition 3.4. The switched DAE (3.1) with a switching signal σ ∈ Sn is called impulse-
controllable on [t0,∞), if for all x0 ∈ V(E0,A0,B0) there exists an impulse-free solution

(x, u) ∈ Dn+m
pwC∞ of (3.1) with x(t−0 ) = x0.

As an alternative for Definition 3.2 and 3.4, impulse-controllability could also be

defined in terms of arbitrary initial trajectories or initial values x0 ∈ Rn
. This would

result in the immediate necessary condition that the first mode of a switched differential

algebraic equation is impulse-controllable. However, the only interesting initial values

with respect to the avoidance of Dirac impulses are those contained in V(E0,A0,B0). Indeed,

for initial values x0 ∈ kerE, the trajectory will jump to the augmented consistency space

and for initial values x0 6∈ V(E0,A0,B0) + kerE0 a Dirac impulse occurs inevitably.

As a consequence of defining impulse-controllability in the behavioral sense or

in terms of x0 ∈ V(E0,A0,B0), all switched differential algebraic equations with a con-

stant switching signal, i.e., non-switched differential algebraic equations, are impulse-

controllable according toDefinition 3.4, due to thedefinitionof the augmented consistency

space in terms of smooth (in particular, impulse-free) solutions. This seems counter

intuitive, because the active mode on that interval is not necessarily impulse-controllable;

however, recall that impulse-controllability for a single mode governed by matrices

E,A,B is formulated in terms of an initial trajectory problem (ITP), which can be

interpreted as a switched system with one switch at t1 = 0. In fact, letting t0 = −ε,
tf = ε, (E0, A0, B0) = (I, 0, 0) and (E1, A1, B1) = (E,A,B), the DAE Eẋ = Ax + Bu is

impulse-controllable if, and only if, the corresponding ITP (reinterpreted as a switched

DAE) is impulse-controllable on (−ε, ε).
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3.1.1 A backward approach

In this section we will investigate impulse-controllability of a switched DAE (3.1) with

a switching signal σ ∈ Sn, which is assumed to be known a priori. Hence we assume

that (3.1) has n ∈ N modes and both the switching times and the switching sequence

are known. Clearly, impulse-controllability of each mode is a sufficient condition for

impulse-controllability of the overall switched DAE, however, the following example

shows that this is in fact not necessary.

Example 3.5. Consider the switched DAE

Σσ :


[

1 0 0
0 0 1
0 0 0

]
ẋ(t) = x(t) +

[
0
0
1

]
u(t), 0 6 t < t1,[

0 1 0
0 0 0
0 0 1

]
ẋ(t) = x(t) +

[
0
0
1

]
u(t), t1 6 t.

The first mode in the example is impulse-controllable, whereas the second mode is not.

Observe that as

Cimp
1 = span

{[
1
0
0

]
,
[

0
0
1

]}
,

an impulse-free solution x has to satisfy x2(t−1 ) = 0. However, as

R0 = span
{[

1
0
0

]
,
[

0
1
0

]}
,

the state component x2 can be controlled to zero in arbitrary time. Hence for any

initial value x0 ∈ V(E0,A0,B0) there exists an input such that the resulting trajectory is

impulse-free and thus the system is impulse-controllable. �

The reason that the system in Example 3.13 is impulse-controllable although not

every mode is impulse-controllable, is that every state that possibly results in a Dirac

impulse at the switch, can be controlled to zero before the switch occurs. Alternatively

formulated, the impulse-controllable space of the final mode can be reached from every

initial value in the augmented consistency space before the switch. Motivated by this

observation, wewill investigate the largest subspace fromwhich the impulse-controllable

space of the final mode can be reached without the occurrence of Dirac impulses. To

that extent, we define the following sequence of subspaces which can be associated with

the switched differential algebraic equation (3.1) for which the switching signal σ ∈ Sn:

Kτ
n = Cimp

n ,

Kτ
i−1 = im Πi−1 ∩

(
e−A

diff
i−1τi−1Kτ

i +Ri−1

)
+ 〈Eimp

i−1 | imBimp
i−1 〉+ kerEi−1

i = n, n− 1, . . . , 1.

(3.2)
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Remark 3.6. Recall that im Πi = V(Ei,Ai) and that Cimp
i = V(Ei,Ai)+〈Eimp

i | imBimp
i 〉+kerEi.

Therefore we have that Kτ
i ⊆ C

imp
i .

Each space Kτ
i−1 is the largest space containing the initial values from which Kτ

i can

be reached given the dynamics of (3.1) restricted to the interval [ti−1, ti). In particular,

we can prove the following result.

Lemma 3.7. Consider the DAE (3.1) restricted to the interval [ti−1, ti). Then there exists a local
solution (x, u) that is impulse-free on [ti−1, ti) and solves

(Eσẋ)[ti−1,ti) = (Aσx+Bσu)[ti−1,ti), x(t−i−1) = x0

and satisfies x(t−i ) ∈ Kτ
i if and only if x0 ∈ Kτ

i−1.

Proof. (⇒) Assume there exists an impulse-free solution x that satisfies x(t−i ) ∈ Kτ
i . The

dynamics of (3.1) restricted to the interval [ti−1, ti) are governed by

Ei−1ẋ = Ai−1x+Bi−1u.

Consequently, for some ηi−1 ∈ Ri−1 and some ki ∈ Kτ
i we can write

x(t−i ) = eA
diff
i−1τi−1Πi−1x0 + ηi−1 = ki ∈ Kτ

i , (3.3)

which after rearranging terms yields

Πi−1x0 ∈ e−A
diff
i−1τi−1Kτ

i +Ri−1. (3.4)

As x is impulse-free, in particular at t0, the result of Lemma 2.31 and (3.4) lead to

x0 = Πi−1x0 + (I − Πi−1)x0

∈ im Πi−1 ∩ (e−A
diff
i−1iτi−1Kτ

i +Ri−1) + 〈Eimp
i−1 | imBimp

i−1 〉+ kerEi−1

= Kτ
i−1.

Conversely, let x0 ∈ Kτ
i−1. We will construct an input u that is impulse-free on [ti−1, ti)

that results in a trajectory xwhich is impulse-free on [ti−1, ti) too and satisfies x(t−i−1) = x0

and x(t−i ) ∈ Kτ
i . To that extent, we regard a solution x to (3.3) as the sum of two solutions,

i.e, x = x1 + x2 where x1(t−i−1) = Πi−1x0 and x2(t−i−1) = (I − Πi−1)x0. Observe that

x0 ∈ Kτ
i−1 implies

x1(t−i−1) = Πi−1x0 ∈ Πi−1Kτ
i−1 = im Πi−1 ∩

(
e−A

diff
i−1τi−1Kτ

i +Ri−1

)
and

x2(t−i−1) = (I − Πi−1)x0 ∈ (I − Πi−1)Kτ
i−1 = 〈Eimp

i−1 | imBimp
i−1 〉+ kerEi−1.
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In particular, it follows that

eA
diff
i−1τi−1Πi−1x0 = ki + ηi−1

and

x2(t−i−1) = η̄i−1 + ei−1,

for some ηi−1 ∈ Ri−1, ki ∈ Kτ
i , η̄i−1 ∈ 〈Eimp

i−1 | imBimp
i−1 〉 and ei−1 ∈ kerEi−1.

As x1(t−i−1) ∈ im Πi−1 the solution is impulse-free for any smooth input. Let u1 be

a smooth input that steers the origin to the vector −ηi−1. The resulting trajectory x1 is

impulse-free on [ti−1, ti)then satisfies x1(t−i ) = ki. Next, let u2 be smooth solution such

that

x2(t+i−1) =

νi−1∑
j=0

(
Eimp
i−1

)j
Bimp
i−1u

(j)
2 (t+i−1) = η̄i−1

and u
(j)
2 (t−i ) = 0 for j = 0, 1, ..., νi − 1. Then it follows that x2 is impulse-free on [ti−1, ti)

and satisfies x2(t−i ) = 0. Consequently the input u := u1 + u2 results in an impulse-free

trajectory satisfying

x(t−i ) = x1(t−i ) + x2(t−i ) = ki ∈ Kτ
i ,

which concludes the proof.

The result of Lemma 3.7 can be used inductively to show that each Kτ
i−1 space is

in fact the largest set containing initial values from for which there exist impulse-free

solutions to (3.1) restricted to [ti−1,∞). Although this is conceptually rather intuitive,

we provide a proof for the sake of completeness.

Corollary 3.8. Consider the switched differential algebraic equation (3.1) restricted to the interval
[tn−i,∞) for some i ∈ {0, 1, ..., n}. There exists a solution (x, u) that is impulse-free on [tn−i,∞)

and solves

(Eσẋ)[tn−i,∞) = (Aσx+Bσu)[tn−i,∞), x(t−n−i) = x0, (3.5)

if and only if x0 ∈ Kτ
n−i.

Proof. (⇒) For i = 0 it follows that x0 ∈ Cimp
n and hence there exists an impulse-free

trajectory on [tn,∞) as no more switches occur. Hence we can assume that the statement

holds for i. Together with Corollary 3.8 this means that we need to show that there exists

an impulse-free solution x satisfying x(t−i−1) = x0 and x(t−i ) ∈ Kτ
i . By Lemma 3.7 this is

the cases if and only if x(t−i−1) ∈ Kτ
i−1.
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Given these preliminary results we can present the following theorem, which

characterizes impulse-controllability of (3.1).

Theorem 3.9. Consider the switched system (3.1) with switching signal σ ∈ Sn. The system is
impulse-controllable if and only if

V(E0,A0,B0) ⊆ Kτ
0 . (3.6)

Proof. (⇐) Assume that V(E0,A0,B0) ⊆ Kτ
0 . This means that for all initial values x0 ∈

V(E0,A0,B0) there exists an input u such that the resulting trajectory x is impulse-free.

Hence the system is impulse-controllable.

(⇒) Assume that the system is impulse-controllable. Then for all x0 ∈ V(E0,A0,B0)

there exists an input u such that the resulting trajectory is impulse-free. By Corollary 3.8

it follows that x0 ∈ Kτ
0 . As this hold for all x0 ∈ V(E0,A0,B0) it follows that

V(E0,A0,B0) ⊆ Kτ
0 ,

which proves the desired result.

To illustrate the result from Theorem 3.9 we show the following example where we

verify impulse-controllability.

Example 3.10. Consider the switched DAE with a switching signal σ with σ(t+0 ) = 0,

σ(t+1 ) = 1 and σ(t+2 ) = 2 and the switching times are given by t0 = 0, t1 = ln(4) and

t2 = t1 + 1
2
π. Furthermore, let the modes be given by

(E0, A0, B0) =
([

0 0 0
0 1 0
−1 0 1

]
,
[

0 1 −1
0 1 0
−1 0 1

]
,
[

1
0
0

])
,

(E1, A1, B1) =
([

1 0 0
0 1 0
0 0 1

]
,
[

0 0 0
0 0 −1
0 1 0

]
,
[

0
0
0

])
,

(E2, A2, B2) =
([

1 0 0
0 0 1
0 0 0

]
,
[

1 0 0
0 1 0
−1 0 1

]
,
[

0
0
0

])
.

Since the second mode rotates the state, it is easy to calculate that:

Cimp
2 = span

{[
1
0
1

]
,
[

0
1
0

]}
, Kτ

1 = span
{[

1
1
0

]
,
[

0
0
−1

]}
.

Then calculating the involved subspaces yields

Π0 = im
[

0 1
1 0
1 0

]
, e−A

diff
0 ln(4)Kτ

1 = im
[ −2 −3

1 0
−3 −4

]
,

R0 = span
{[

1
0
−1

]}
, kerE0 = span

{[
1
0
1

]}
.

From this it can be calculated that Kτ
0 = Rn

and hence it follows that the system is

impulse-controllable. �
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In the case that the switching signal only induces a single switch, the conditions for

impulse-controllability simplify considerably due to the Adiff
0 invariance of the reachable

spaceR0 and the augmented consistency space V(E0,A0,B0).

Lemma 3.11. Consider the single switched DAE (3.1) with switching signal σ ∈ S1. Then the
system is impulse-controllable if and only if

im Π0 ⊆ Cimp
1 +R0.

Proof. (⇒) Since for all initial values there exists an input u such that the resulting

trajectory is impulse-free, it follows that for all x0 there exists an η0 ∈ R0 such that

x(t−1 ) = eA
diff
0 τ0Π0x0 + η0 ∈ Cimp

1 ,

which implies

eA
diff
0 τ0Π0x0 ∈ Cimp

1 +R0.

Since this holds for all x0 ∈ V(E0,A0,B0) and e
Adiff

0 is invertible and leaves im Π0 invariant

we obtain

im Π0 ⊆ Cimp
1 +R0.

(⇐) As im Π0 ⊆ Cimp
1 +R0 and im Π0 +R0 = V(E0,A0,B0) it follows that

V(E0,A0,B0) ⊆ Cimp
1 +R0.

The augmented consistency space V(E0,A0,B0) is A
diff
0 invariant and thus

V(E0,A0,B0) = e−A
diff
0 τ0V(E0,A0,B0) ⊆ e−A

diff
0 τ0(Cimp

1 +R0)

and consequently

im Π0 ∩ V(E0,A0,B0) ⊆ im Π0 ∩ e−A
diff
0 τ0(Cimp

1 +R0).

Recall that V(E0,A0,B0) = im Π0 + 〈Eimp
0 | imBimp

0 〉 and observe that im Π0 ∩ V(E0,A0,B0) =

im Π0 from which it follows that

V(E0,A0,B0) = im Π0 ∩ V(E0,A0,B0) + 〈Eimp
0 | imBimp

0 〉
⊆ im Π0 ∩ e−A

diff
0 τ0(Cimp

1 +R0) + 〈Eimp
0 | imBimp

0 〉+ kerE0

= Kτ
0 .

and thus by Theorem 3.9 the system is impulse-controllable.
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3.1.2 A forward approach

The sequences (3.2) that led to the characterization of impulse-controllability of (3.1)

run backward in time. Consequently, if a switching signal is to be designed and it is to

be determined which modes should be induced next such that impulse-controllability

is guaranteed, the computations of the subspaces in (3.2) would have to be done for

each possible future mode. If the number of modes induced by the switching signal

and the order of the system are small, these computations can be done relatively easily.

However, if many modes are induced and the order of the system is large, doing these

computations can become computationally expensive. Furthermore, the subspaces in

(3.2) only contain the states from which Cimp
n can be reached impulse-freely and hence

they are not necessarily very informative regarding states other than contained in Cimp
n ,

that can be reached in an impulse-free way. Therefore, we aim to find conditions, which

can be verified forward in time. To that extent, consider the following sequence of

subspaces.

Wτ
0 = V(E0,A0) +R0,

Wτ
i = eA

diff
i τiΠi

(
Wτ

i−1 ∩ C
imp
i

)
+Ri,

i = 0, 1, ..., n. (3.7)

Note that these sequences are defined forward in time, in contrast to the sequence

(3.2) which are defined backward in time.

Lemma 3.12. Consider the switched system (3.1) with switching signal σ ∈ Sn. Then for any
i ∈ {0, 1, 2, . . .} and all w ∈ Wτ

i there exists a solution (x, u) satisfying x(t−i+1) = w which is
impulse-free on [t0, ti+1).

Proof. The proof is by induction. By definition of the augmented consistency space (and

taking into account the time-invariance of the definition), there exists a smooth solution

(x, u) that is impulse-free on [t0, t1) and satisfies x(t−1 ) = w ∈ Wτ
0 = V(E0,A0) + R0 =

V(E0,A0,B0). This proves the case for i = 0.

Assuming now that the statement holds for i− 1, we now consider the case for i. Let

w ∈ Wτ
i , then by definition here exist elements w̄ ∈ Wτ

i−1 ∩ C
imp
i and ηi ∈ Ri such that

w = eA
diff
i τiΠiw̄ + ηi.

As w̄ ∈ Wτ
i−1, it follows from the induction assumption that there exists a solution (x̄, ū)

of (3.1) with x̄(t−i ) = w̄ which is impulse-free on (t0, ti). Since x̄(t−i ) ∈ Cimp
i , this solution

can be assumed to be impulse-free also on [ti, ti+1). We will now alter this solution

on [ti, ti+1) such that at t−i+1 the desired value w is reached and no additional impulses

occur. From the solution formula it follows that η̄i := x̄(t−i+1) − eA
diff
i τiΠiw̄ ∈ Ri and
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hence ηi − η̄i ∈ Ri. By definition of the reachable space of mode i there exists a (smooth)

solution (x̃, ũ) of Eiẋ = Aix+Biu such that x̃(t−i ) = 0 and x̃(t−i+1) = ηi− η̄i. In fact, it can

be assumed that (x̃, ũ) is identically zero on (t0, ti), hence (x̃, ũ) is then also a solution of

the switched DAE (3.1). By linearity, (x, u) = (x̄+ x̃, ū+ ũ) is a solution of (3.1) that is

impulse-free on (t0, ti+1) with x(t−i+1) = x̄(t−i+1)+ x̃(t−i+1) = (eA
diff
i τiΠiw̄+ η̄i)+(ηi− η̄i) = w,

which concludes the proof.

The result of Lemma 3.12 yields that for all w ∈ Wτ
i there exists an initial value

x0 ∈ V(E0,A0,B0) and an impulse-free input u such that the resulting trajectory xwill satisfy

x(t−i+1) = w. Hence the spacesWτ
i can be used in the case that a switching signal is to be

designed and a particular state is necessarily reached at time ti+1. However, although

Lemma 3.12 shows that theWτ
i spaces contain all the states that can be reached from

some initial condition with a trajectory that is impulse-free on [t0, ti+1), not all those

trajectories can be continued impulse-freely on [ti,∞).

Example 3.13. Consider the following switched DAE restricted to the interval [t0, t3),

where (A,B) is controllable.

Σσ :


ẋ(t) = Ax(t) +Bu(t) 0 6 t < t1,

ẋ(t) = 0 t1 6 t < t2,[
1 0 0
0 0 1
0 0 0

]
ẋ(t) = x(t) t2 6 t < t3.

In order to have impulse-free solutions, the state of the system needs to be in span{e1, e2}
at t = t2. However, Wτ

0 = Wτ
1 = Rn

and therefore we can reach e3 impulse-freely on

(0, t1], but this would lead to an impulse at t = t2. �

The example shows that the sequence (3.7) will not lead to a characterization of

impulse-controllability. However, these spaces can be used to find a sufficient condition.

The next result is concerned with the subspace ofWτ
i containing the points which can

be reached impulse-freely and which can be continued impulse-freely on the interval

[ti+1, ti+2).

Lemma 3.14. Consider the switched system (3.1) with the switching signal σ ∈ Sn. If (x, u) is
impulse-free on [t0,∞) then

x(t−i+1) ∈ Wτ
i ∩ C

imp
i+1 ,

for all i ∈ {0, ..., n− 1}.

Proof. We will prove the statement by induction. For i = 0 it follows directly that

x(t−1 ) = x1 ∈ V(E0,A0,B0) = Wτ
0 . As the solution x is impulse-free, it follows that at the

switch x(t−1 ) ∈ Cimp
1 . Consequently, x(t−1 ) ∈ Wτ

0 ∩ C
imp
1 .
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This shows the claim for i = 0 and we conclude the proof inductively by assuming

that the statement holds for i and proving that it holds for i+ 1. Since u is impulse-free

on [ti, ti+1) we have for some ηi ∈ Ri

x(t−i+1) = eA
diff
i τiΠix(t−i ) + ηi.

By assumption x(t−i ) ∈ Wτ
i−1 ∩ C

imp
i and thus x(t−i+1) ∈ Wτ

i . Furthermore the solution

x does not exhibit impulses, therefore we have x(t−i+1) ∈ Cimp
i+1 . Combining these

observations leads to x(t−i+1) ∈ Wτ
i ∩ C

imp
i+1 which completes the proof.

Corollary 3.15. Consider the switchedDAE (3.1)with switching signal σ ∈ Sn. ThenWτ
i−1∩Kτ

i

is the smallest set containing states that can be reached in an impulse-free way on (t0, ti) and that
can be extended in an impulse-free way on [ti, tn+1).

Proof. By Lemma 3.12 we have for all xi ∈ Wτ
i−1 ∩ Kτ

i ⊆ Wτ
i−1 ∩ C

imp
i that there exists an

impulse-free solution satisfying x(t−i ) = xi and x(t−0 ) = x0 for some x0 ∈ V(E0,A0,B0). And

by Corollary 3.8 there exists an input such that Cimp
n is reached impulse-freely from xi.

Let (x, u) be an impulse-free solution. Then by Lemma 3.14 we have that at ti

xi ∈ Wτ
i−1 ∩ C

imp
i and therefore xi ∈ Wτ

i−1. Since we can reach Cimp
n impulse-freely from

xi it must hold that xi ∈ Kτ
i . Therefore xi ∈ Wτ

i−1 ∩ Kτ
i , which proves the result.

Given these intermediate result, we can now state the following sufficient condition

for impulse-controllability of switched DAEs in termes of theWτ
i spaces.

Theorem 3.16. Consider the switched system (3.1) with switching signal σ ∈ Sn. If for all
i ∈ {1, ..., n}

Wτ
i−1 ⊆ C

imp
i +Ri−1, (3.8)

then the system is impulse-controllable.

Proof. We prove the statement inductively. For i = 1 there exists for any x0 ∈ V(E0,A0,B0)

by definition a solution (x̂, û) with x̂(t−0 ) = x0 which is smooth (and in particular impulse-

free) on [t0, t1). Furthermore, x̂(t−1 ) ∈ Wτ
0 ⊆ C

imp
1 + R0, i.e. there exists ξ ∈ Cimp

1 and

η ∈ R0 such that x̂(t−1 ) = ξ + η. Since η is reachable in mode 0 there exists a solution

(x̃, ũ) of (3.1) satisfying x̃(t+0 ) = 0 and x̃(t−1 ) = −η. Now (x, u) := (x̂ + x̃, û + ũ) solves

(3.1), is impulse-free on [t0, t1) and satisfies x(t+0 ) = x0 and x(t−1 ) = ξ + η − η ∈ Cimp
1 .

Now assume that any initial condition can be steered to Cimp
i impulse-freely on

[t0, ti). This solution can now be extended to an impulse-free solution (x̂, û) onto

[t0, ti+1). Similar as in Lemma 4.11 we can conclude that x̂(t−i ) ∈ Wτ
i−1 ∩ C

imp
i , and hence

x̂(t−i+1) ∈ Wτ
i ⊆ C

imp
i+1 +Ri. Hence x̂(t−i+1) = ξ + η for ξ ∈ Cimp

i+1 and η ∈ Ri. Similar as

above we find a solution (x̃, ũ) which is smooth on [t0, ti+1), identically zero on (t0, ti)
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and satisfies x̃(t−i+1) = −η. Then (x, u) = (x̂+ x̃, û+ ũ) is a solution which is impulse-free

on [t0, tf ), has the same initial value as x̂ satisfies x(t−i+1) ∈ Cimp
i+1 .

Finally, from the fact that for any initial value there is a solution (x, u)with x(t−n ) ∈ Cimp
n

it can be concluded that this solution can be extended to [t0,∞) in an impulse-free way,

i.e. the switched system is impulse-controllable.

Remark 3.17. Besides giving a sufficient condition for impulse-controllability of a system

for a given switching signal, the result of Theorem 3.16 can also be used to design a

specific switching signal for which the switched system becomes impulse-controllable.

To illustrate the result of Theorem 3.16 we will give an example where the subspaces

involved become apparent.

Example 3.18. Consider the following switched DAEwith a switching signal σ satisfying

σ(t+0 ) = 0 and σ(t+1 ) = 1. Let the modes be given by:

(E0, A0, B0) =
([

0 0 0
0 1 0
−1 0 1

]
,
[

0 1 −1
0 1 0
−1 0 1

]
,
[

1
0
0

])
,

(E1, A1, B1) =
([

1 0 0
0 0 1
0 0 0

]
,
[

1 0 0
0 1 0
−1 0 1

]
,
[

0
0
0

])
.

It follows from the computation of the consistency projector and the reachable space that

V(E0,A0) = span
{[

1
0
0

]
,
[

0
1
1

]}
, R0 = span

{[
1
0
−1

]}
,

such that we obtainWτ
0 = Rn

. The impulse-controllable space is given by

Cimp
1 = im

[
1 0
0 1
1 0

]
.

This means that Cimp
1 + R0 = Rn

and hence the condition that Wτ
0 ⊆ C

imp
1 + R0 of

Theorem 3.16 is satisfied and we can conclude that the system is impulse-controllable.

Indeed we see that for all elements of the consistency space there exists a reachable point

such that the sum of the two are in the impulse-controllable space. �

3.2 Impulse-controllability of system classes
Given the results on impulse-controllability of switched DAEs with a switching signal

σ ∈ Sn, we will now investigate to what extent impulse-controllability is dependent

on the switching signal. To do so we will regard a switched DAE (3.1) as generated

by a set of n ∈ N matrix triplets {Ep, Ap, Bp}np=0 and a switching signal, for example

σ ∈ Sn. Note that for each σ ∈ Sn the mode sequence is fixed. To fully investigate

impulse-controllability in relation to the switching signal, the sequence in which the

modes are induced should also be considered. Therefore we also define the class of

arbitrary switching signals.



50 CHAPTER 3. SWITCHED DAES AND IMPULSES

Definition 3.19 (Arbitrary switching signals). The class of (arbitrary) switching signals

Sn is defined as the set of all σ : R→ {0, 1, ..., n} of the form

σ(t) = qp t ∈ [tp, tp+1), (3.9)

where q := (q0, q1, . . . , qn) ∈ {0, 1, . . . , n}n+1
is the mode sequence of σ and t1 < t2 < ... < tn

are the n ∈ N switching times in (0,∞) with t0 := 0 and tn+1 := ∞ for notational

convenience. Furthermore, for a given sequence of switching times, let τi := ti+1 − ti,
i = 0, 1, . . . , n− 1 and

τ := (τ0, τ1, . . . , τn−1) ∈ Rn
>0, (3.10)

the sequence of (finite) mode durations.

Note that in the above definition, a switching signal for which qp = qp+1 for some

p is not excluded, effectively leading to a switching signal with less then n switches.

Consequently, for such a switching signal the mode duration τ is not uniquely defined,

as the switching time tp+1 can be altered without changing the actual switching signal.

Nevertheless, this does not lead to any technical problems in the following and we will

use σ ∈ Sn and the pair (q, τ ) ∈ Nn+1 × Rn
>0 interchangeably.

By regarding the switched DAE (3.1) to be generated by {Ep, Ap, Bp}np=0 and a

switching signal σ ∈ Sn, we can define a system class of switched DAEs as follows.

Definition 3.20 (System classes). For a family of matrix triplets {(Ep, Ap, Bp)}np=0 with

regular pairs (Ep, Ap), the system class Σn of associated switched (regular) DAEs (3.1)

under arbitrary switching is given by

Σn :=
{

(Eσ, Aσ, Bσ)
∣∣σ ∈ Sn} ,

where (Eσ, Aσ, Bσ) is understood as a triple of (piecewise-constant) time-varyingmatrices

for each specific switching signal σ : (t0,∞)→ {0, 1, . . . , n}.
The corresponding system class Σn of switched DAEs with fixed mode sequence

q = (0, 1, . . . , n) is given by

Σn := {(Eσ, Aσ, Bσ) |σ ∈ Sn} .

3.2.1 Strong impulse-controllability of Σn

For a particular switched DAE (Eσ, Aσ, Bσ) ∈ Σn, impulse-controllability has been

studied in the previous sections. However, impulse-controllability of (Eσ, Aσ, Bσ) might

be dependent on the switching signal in the sense that some (Eσ, Aσ, Bσ) ∈ Σn are

impulse-controllable, whereas some are not. In the case every system in the system class
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Σn is impulse-controllable, the property can be said to be independent of the switching

signal. To that extent we define strong impulse-controllability of system classes as

follows.

Definition 3.21. The whole system class Σn associated to the family {(Ep, Ap, Bp)}np=0

and Sn is called strongly impulse-controllable, if (Eσ, Aσ, Bσ) is impulse-controllable for

all σ ∈ Sn.

Some system classes are trivially strongly impulse-controllable (e.g., when each

individual mode is impulse-controllable or the switched DAEs is in fact non-switching

because (Ep, Ap, Bp) = (Eq, Aq, Bq) for all p, q). However, the following example shows

that there exists non-trivial example of strongly impulse-controllable system classes.

Example 3.22. Consider a switched DAE (Eσ, Aσ, Bσ) generated by the mode triplets

(E0, A0, B0) =

([
1 0

0 1

]
,

[
0 0

0 0

]
,

[
0

1

])
,

(E1, A1, B1) =

([
0 1

0 0

]
,

[
1 0

0 1

]
,

[
0

0

])
.

(3.11)

It is easily seen that the corresponding augemented consistency and impulse-controllable

spaces satisfy V0 = Cimp
0 = R2

and V1 = Cimp
1 = im [ 1

0 ].

The corresponding system class Σ1 is strongly impulse-controllable, which can be

seen by considering all possible cases for the switching signals: switching signals with

q = (0, 0) or q = (1, 1) are trivially impulse-controllable as a non-switched DAE (with

consistent initial values); for mode sequence q = (0, 1) it is possible to choose a smooth

input on (t0, t1) such that x2(t−1 ) = 0 and hence no impulse occurs at the switching time

t1; for the mode sequence (1, 0) the input u(t) = 0 will result in an impulse-free solution

for all initial values in V1 = im [ 1
0 ] �

In the case of switched DAEs with a single switch, recall the characterization of

impulse-controllability for single switched DAEs in Lemma 3.11.The single-switch result

can directly be used to arrive at a characterization of strong impulse-controllability as

follows.

Theorem 3.23. Consider the system class Σn associated to Sn and {Ep, Ap, Bp}np=0 with corre-
sponding (individual) consistency projectors Πp, impulse-controllable spaces Cimp

p and reachability
spacesRp. Then Σn is strongly impulse-controllable if, and only if,

im Πi ⊆ Cimp
j +Ri (3.12)

for all i, j ∈ {0, 1, ..., n}.
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Proof. Necessity of (3.12) is clear by considering switching signals with mode sequences

of the form q = (i, j, q2, . . . , qn) together with Lemma 3.11 and the obvious fact that an

impulse-free solution needs to be impulse-free on the initial interval [t0, t2) as well.

Sufficiency of (3.12) is also clear by considering each switched system (Eσ, Aσ, Bσ)

as a concatenation of single switch switched DAEs and the ability to choose the input

independently around the switching times to ensure impulse-freeness at each individual

switch (as a consequence of Lemma 3.11).

Remark 3.24. The characterization of strong impulse-controllability of Σn via (3.12)

is much simpler than the characterization of impulse-controllability of an individual

switched system, which is based on a rather complicated recursive subspace sequence

(discussed in detail in the next subsection, see (3.14)) and depends on the specific mode

durations τ . The underlying reason is that strong impulse-controllability is by definition

independent from the mode durations and, furthermore, can be reduced to the single

switch case (as utilized in the proof of Theorem 3.23).

3.2.2 Impulse-controllability of Σn

As can be seen fromTheorem3.23, verifyingwhether a system classΣn is strongly impulse-

controllable can be done by verifying impulse-controllability of all possible single switch

switched DAEs. However, if a mode sequence is fixed, these conditions are only sufficient

and not necessary in general. In fact, defining strong impulse-controllability for Σn

analogously as in Definition 3.21 (see also the forthcoming Defintion 3.27), we have the

following consequence from Lemma 3.11.

Corollary 3.25. The system class Σn of switched systems with fixed mode sequence q =

(0, 1, 2, . . . , n) is strongly impulse-controllable if

im Πk ⊆ Cimp
k+1 +Rk ∀k ∈ {0, 1, . . . , n− 1}. (3.13)

The following example shows that (3.13) is indeed only sufficient and not necessary

in general.

Example 3.26. Consider the system class Σn with n = 2 and modes (E0, A0, B0) =

(I, 0, [ 1
0 ]) (E1, A1, B1) = (I, 0, 0) (E2, A2, B2) = ([ 0 0

1 0 ] , I, 0). It is easily seen that Σn is

strongly impulse-controllable; in fact, for any switching time t1 and any initial value it is

possible to choose the input u on [0, t1) such x1(t−1 ) = 0, in the second mode the state

then remains constant and hence x1(t−2 ) = x1(t−1 ) = 0 which then implies that at the last

switch x1 does not jump and hence no Dirac impulse is induced. However, condition

(3.13) is not satisfied for the mode pair (1, 2); indeed im Π1 = R2
is not contained in

Cimp
2 +R1 = im [ 0

1 ] + {0}.
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The above example shows that characterization of impulse-controllability ofΣn cannot

simply be reduced to the single switch case anymore. In particular, it will turn out that it

is possible that a switched system with fixed mode sequence has some isolated mode

duration for which impulse-controllability is lost, but for all remaining mode duration it

is impulse-controllable. Furthermore, for arbitrary switching signals it is not possible that

none of the systems in Σn are impulse-uncontrollable, however, for a fixed mode sequence

it is indeed possible, that all of the systems in Σn are not impulse-controllable. Finally, it is

also possible that for some specific mode durations a system in Σn is impulse-controllable,

while for all remaining mode durations the systems are not impulse-controllable. This

motivates us to introduce the following different notions of impulse-controllability for

the system class Σn.

Definition 3.27 (Strong and essential impulse-(un-)controllability for Σn). Consider the
class Σn of switched systems (3.1) with fixed mode sequence q = (0, 1, 2, . . . , n) and

arbitrary mode durations τ = (τ0, τ1, . . . , τn−1) ∈ Rn
>0.

• Σn is called strongly impulse-controllable if all (Eσ, Aσ, Bσ) ∈ Σn are impulse-

controllable.

• Σn is called essentially impulse-controllable if the set of all mode durations τ ∈ Rn
>0 of

(Eσ, Aσ, Bσ) ∈ Σn which are not impulse-controllable has measure zero in Rn
>0.

• Σn is called strongly impulse-uncontrollable if all (Eσ, Aσ, Bσ) ∈ Σn are not impulse-

controllable.

• Σn is called essentially impulse-uncontrollable if the set of all mode durations τ ∈ Rn
>0

of (Eσ, Aσ, Bσ) ∈ Σn which are impulse-controllable has measure zero in Rn
>0.

First note that clearly every strongly impulse-(un-)controllable system class is also

essentially impulse-(un-)controllable.

Example 3.26 alreadyprovides anontrivial example for a strongly impulse-controllable

Σn, and every Σn with two modes which do not satisfy the single-switch impulse-

controllability condition (3.11) is an example for a strongly impulse-uncontrollable Σn. In

order to justify the introduction of the notion of essential impulse-(un-)controllability we

will provide in the following examples which are essentially impulse-(un-)controllable

but not strongly impulse-(un-)controllable.

Example 3.28 (Essentially, but not strongly, impulse-controllable class). Consider the
switched system class Σ2 with modes

(E0, A0, B0) = (I, 0, [ 1
0 ]),

(E1, A1, B1) = (I, [ 0 1
−1 0 ] , 0),

(E2, A2, B2) = ([ 0 1
0 0 ] , I, 0).
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For anymode duration τ = (τ0, τ1)we see that the solution of the corresponding switched

DAE with initial value x(0−) = ( x01
x02 ) is given by

x(t) =

(
x01 +

∫ t
0
u

x02

)
, t ∈ (0, t1),

x[t1] = 0,

x(t) =
[

cos(t−t1) sin(t−t1)
− sin(t−t1) cos(t−t1)

]
x(t−1 ), t ∈ (t1, t2),

x[t2] = − [ 0 1
0 0 ]x(t−2 )δt2 ,

x(t) = 0, t > t2.

For the specific mode duration τ2 = 2π we see that x(t−2 ) = x(t−1 ), hence the second

component of x(t−2 ) is x02, independently of the choice of the input u. However, for

x02 6= 0 this leads to an unavoidable Dirac impulse at t = t2, i.e.,Σn is not strongly impulse-

controllable. On the other hand, for all τ2 6= kπ, it is easily seen that there exists an input

u on (0, t1) resulting in a suitable first entry of x(t−1 ) such that the rotation in mode 1

leads to x2(t−2 ) having a zero second component and hence resulting in an impulse-free

switch at t = t2. This shows that Σn is indeed essentially impulse-controllable. �

Example 3.29 (Essentially, but not strongly, impulse-uncontrollable class). Consider the
switched system class Σ2 with modes

(E0, A0, B0) = ([ 1 0
0 0 ] , [ 0 0

0 1 ] , 0),

(E1, A1, B1) = (I, [ 0 1
−1 0 ] , 0),

(E2, A2, B2) = ([ 0 1
0 0 ] , I, 0).

Note that for this example the input is not effecting the dynamics at all, so impulse-

controllability reduces to impulse-freeness. Clearly, the solution in the initial mode is

given by x(t) = [ x01
0 ] and afterwards the solutions are given as in Example 3.28 (because

modes 1 and 2 are identical to the ones there). Consequently, for τ1 = 2π we have

x(t−2 ) = x(t−1 ) = [ x01
0 ], which results in an impulse-free solution of the switched DAE, i.e.,

Σ2 is not strongly impulse-uncontrollable. Nevertheless, for any τ1 6= kπ we see that the

second component of x(t−2 ) is non-zero (if x01 6= 0) and hence a Dirac impulse occurs at

t = t2. This means that Σ2 is essentially impulse-uncontrollable. �

In order to make statements regarding essential impulse-controllability, we will make

use of analytical matrix valued maps, so called analytic matrices. Loosely speaking

a matrix valued map M : Rp → Rn×m
is called an analytic matrix if each entry of the

map is an analytic function, i.e., a function which if it is zero for some value, it is either

identically zero, or it is nonzero almost everywhere. Such a matrixM(τ) has generically

full rank if it has full rank for almost all values τ ∈ Rp
. For precise definitions of matrix
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valued analytical maps which are generically full rank we refer to Appendix B. For the

spaces Kτ
i we are able to construct an analytical matrix which has generically full rank as

the following result shows.

Lemma 3.30. Consider the sequence (3.2). Then for all i ∈ {0, 1, ..., n} there exists an analytic
matrixNi : Rn−i → Rn×ki with generically full rank such that imNi(τ ) = Kτ

i for a.a. τ ∈ Rn−i.

Proof. For i = n we use the convention that a constant full rank matrix is interpreted

as an analytic matrix depending on an empty tuple τ = () ∈ R0
, then the claim is

correct by simply choosing the columns of Nn(τ ) as a (constant) basis of Cimp
n . We now

proceed inductively and assume the claim is correct for some i ∈ {1, 2, . . . , n}. Let

Nτi−1,τ := e−A
diff
i−1τi−1 imNi(τ ) +Ri−1 andRimp

i−1 := 〈Eimp
i−1 | imBimp

i−1 〉+ kerEi−1, then

K(τi−1,τ )
i−1 =

(
im Πi−1 ∩Nτi−1,τ

)
+Rimp

i−1,

for a.a. τ ∈ Rn−i
and all τi−1 ∈ R. Utilizing Lemmas B.5 and B.8 we find analytic

and generically full rank matrices Ñi−1 : Rn−(i−1) → Rn×k̃i
, N i−1 : Rn−i+1 → Rn×ki

,

Ni−1 : Rn−(i−1) → Rn×ki
such that a.a. (τi−1, τ ) ∈ Rn−(i−1)

im Ñi−1(τi−1, τ ) = Nτi−1,τ ,

imN i−1(τi−1, τ ) = im Πi−1 ∩ im Ñi−1(τi−1, τ ),

imNi−1(τi−1, τ ) = imN i−1(τi−1, τ ) +Rimp
i−1,

i.e., K(τi−1,τ )
i−1 = imNi−1(τi−1, τ ) as desired.

We are now ready to formulate our firstmain result concerning impulse-controllability

of the class of switched DAEs with fixed mode sequence.

Theorem 3.31. Consider a class Σn of switched systems (3.1) with fixed mode sequence
q = (0, 1, 2, . . . , n). Then Σn is either essentially impulse-controllable or essentially impulse-
uncontrollable.

The proof utilizes properties of analytic matrices which are provided in Appendix B.

Proof. Case 1: All systems in Σn are impulse-controllable.

By definition Σn is then strongly impulse-controllable and in particular essentially

impulse-controllable.

Case 2: There exists at least one impulse-uncontrollable system in Σn.

In view of Lemma 3.30we can choose an analytic matrixN0 : Rn → Rn×k0
with generically

full rank such that imN0(τ ) = Kτ
0 for a.a. τ ∈ Rn

.

Case 2a: For all impulse-uncontrollable mode durations τ ∈ Rn
>0 we have that

imN0(τ ) 6= Kτ
0 or N0(τ ) does not have full rank.
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In this case the set of impulse-uncontrollable mode durations is contained in a set of

measure zero, hence Σn is essentially impulse-controllable.

Case 2b: There exists an impulse-uncontrollable mode duration τ ∈ Rn
>0 such that

imN0(τ ) = Kτ
0 and N0(τ ) has full rank.

Since impulse-controllability for a specific switching signal is equivalent to (3.6) we have

V(E0,A0,B0) 6⊆ Kτ
0 = imN0(τ ).

Hence there exists a vector v ∈ V(E0,A0,B0) such that M(τ ) := [N(τ ), v] has full rank

for τ = τ . In particular, M is an analytic matrix for which τ 7→ detM(τ )>M(τ ) is

not identically zero, i.e.,M is generically full rank. Consequently, v 6∈ imN(τ ) for a.a.

τ ∈ Rn
>0 and hence

V(E0,A0,B0) 6⊆ imN0(τ ) = Kτ
0 , for a.a. τ ∈ Rn

>0.

This implies that almost all systems in Σn are impulse-uncontrollable, i.e., Σn is essentially

impulse-uncontrollable. This concludes the proof as no other cases are possible.

Remark 3.32. Theorem 3.31 states that the classes of switched DAEs with fixed mode

sequences fall into four disjoint categories: 1) strongly impulse-controllable, 2) essen-

tially (but not strongly) impulse-controllable, 3) essentially (but not strongly) impulse-

uncontrollable, 4) strongly impulse-uncontrollable. Interestingly, there are only three
categories for the notions of observability and controllability for switched systems with a

fixed mode sequences (cf. [117] for observability, which by the duality arguments of [69]

also carry over to controllability). The underlying reason is that the characterization

of impulse-controllability is expressed in terms of sums and intersections of certain

subspaces (see the forthcoming discussion) which can result in a singular dimension

drop as well as a singular dimension increase in the involved duration-dependent

subspaces; this in contrast to the observability (reachability) subspaces, which only

involve intersections (sums).

In order to further investigate the different notions of impulse-controllability for the

system class Σn, we again consider the sequences defined in (3.2). For each switched

DAE (Eσ, Aσ, Bσ) ∈ Σn with corresponding mode durations τ = (τ0, τ1, . . . , τn−1) ∈ Rn
>0

and mode sequence q = [ 0 1 ... n ] we can write

Kτ
n := Cimp

n ,

Kτ
i−1:=

(
im Πi−1∩(e−A

diff
i−1τi−1Kτ

i +Ri−1)
)
⊕Dimp

i−1 ,

i = n, n− 1, . . . , 1.

(3.14)

where

Dimp
i−1 = 〈Eimp

i−1 | imBimp
i−1 〉+ kerEi−1.
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In view of invertibility of each exponential term e−A
diff
i−1τi−1

in (3.14) and Adiff
i−1-invariance

of the subspaces im Πi−1 and Ri−1, it follows that the recursive definition (3.14) can

equivalently be written as

Kτ
i−1 = e−A

diff
i−1τi−1 (im Πi−1 ∩ (Kτ

i +Ri−1))⊕Dimp
i−1 .

An obvious characterization of strong impulse-(un)controllability of the system class

Σn is therefore the condition that (3.9) does (not) hold for all τ ∈ Rn
>0. However, this

characterization is not very insightful and impracticable because uncountably many

subspaces need to be calculated. We can obtain more practible (sufficient) conditions for

strong impulse-(un-)controllability by using the fact that for any subspace S , any matrix

A and any t ∈ R we have

〈S | A〉 ⊆ eAtS ⊆ 〈A | S〉, (3.15)

where 〈S | A〉 denotes the largest A-invariant subspace contained in S and 〈A | S〉
denotes the smallest A-invariant subspace containing S. In fact, we can construct an

over- and underestimation of Kτ
i as follows:

Ki−1 :=
〈
Adiff
i−1 | im Πi−1 ∩ (Ki +Ri−1)

〉
⊕Dimp

i−1 , (3.16)

Ki−1 :=
〈
im Πi−1 ∩ (Ki +Ri−1) | Adiff

i−1

〉
⊕Dimp

i−1 , (3.17)

each for i = n, n − 1, . . . , 1 and with Kn = Kn = Cimp
n . By construction we have

Ki ⊆ Kτ
i ⊆ Ki, which immediately leads to the following sufficient condition for strong

impulse-(un-)controllability.

Corollary 3.33. The system class Σn is strongly impulse-controllable if

V(E0,A0,B0) ⊆ K0

and it is strongly impulse-uncontrollable if

V(E0,A0,B0) 6⊆ K0.

Remark 3.34. It is also possible to obtain under- and overestimation ofKτ
i by using (3.15)

directly in (3.14), however it turns out that this leads to smaller underestimations and

bigger overestimations and hence leads to more conservative sufficient conditions.
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3.2.3 (Quasi)-causal impulse-controllability of Σn

So far we have presented several sufficient conditions for strong impulse-controllability,

which is concerned with the existence of an input (depending on the initial value) which

results in an impulse-free solution. Clearly, this “impulse-avoiding” input in general

depends on the switching signal and in particular for the system class Σn with known

mode sequence it is not clear whether an impulse-avoiding input can be constructed

independently of the (unknown) mode durations. The following example shows, that

indeed the impulse-avoiding input may depend on future mode durations.

Example 3.35 (Non-causal impulse-controllability). Consider the class Σ2 of switched

systems with fixed mode sequence q = (0, 1, 2) and with modes given by

(E0, A0, B0) = (I, 0, [ 0
1 ]),

(E1, A1, B1) = (I, [ 0 0
0 1 ] , 0),

(E2, A2, B2) = ([ 0 0
1 1 ] , [ 1 1

0 1 ] , 0).

For a given switching signal with mode durations τ = (τ0, τ1) ∈ R2
>0 the sequence (3.14)

is given by

Kτ
2 = Cimp

2 = im [ 1
−1 ] ,

Kτ
1 = span

{
eA1τ1 [ 1

−1 ]
}

= span
{[

1
e−τ1

]}
,

Kτ
0 = Kτ

1 +R0 = span
{[

1
e−τ1

]
, [ 0

1 ]
}

= R2.

Hence the system class is strongly impulse-controllable. However, for two mode

durations τ = (τ0, τ1) and τ = (τ 0, τ 1) with τ1 6= τ 1 we have that

Kτ
1 ∩ Kτ

1 = {0}.

Since the first mode is not null-controllable, this means that the value of the state x(t−1 )

explicitly depends on the future mode duration in order to guarantee impulse-freeness.

For example, for the (consistent) initial condition x(0+) = [ 1
0 ], it follows for the first state

component that x1(t−2 ) = 1 as ẋ1 = 0 in the zeroth and first mode. Hence in order to

ensure an impulse-free solution it is required that the second state component satisfies

x2(t−2 ) = −1. This is achieved if and only if x2(t−1 ) = e−τ1 . Consequently, the control on

the interval (0, t1) needs to ensure that x2(t−1 ) = e−τ1 and therefore necessarily depends

on the future mode duration τ1. �

quasi-causality

In some applications it may be the case that the current mode duration is known once

the mode is activated, but the mode durations of the future modes are not known yet;
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for example, if a switch is induced by shutting down or decoupling components for

scheduled maintenance whose duration is known upfront. In this case causality of the

input means that it should be independent from the future mode durations, but it can

utilize the knowledge when the next switch happens. This somewhat weaker notion of

causal impulse-controllability is called quasi-causal impulse-controllability and is defined

in terms of the existence of a family of input-defining maps

Ut : (σ(t0,t), x0) 7→ u(t0,t),

such that for all σ ∈ Sn and all initial values x0 ∈ V(Eσ(t0),Aσ(t0),Bσ(t0)) the corresponding

solution (x, u)(t0,t) of (Eσ, Aσ, Bσ) on (t0, t) satisfying x(t+0 ) = x0 is impulse-free. Addi-

tionally, we have to require that the map Ut is itself quasi-causal, i.e., for all switching

times ti and s > ti the following holds

Uti(σ(t0,ti), x0) = Us(σ(t0,s), x0)(t0,ti). (3.18)

Observe that for two switching signals σ, σ̄ ∈ Sn satisfying σ(t0,s) = σ̄(t0,s) for some

s ∈ (ti, ti+1) it may occur that Us(σ(t0,s), x0) 6= Us(σ̄(t0,s), x0).

Before presenting conditions for quasi-causal impulse-controllability we will present

the following lemma, which is required in the proofs to come.

Lemma 3.36. For all p ∈ {0, 1, ..., , n− 1} and Kp as in (3.17) we have

Kp =

xp ∈ Rn

∣∣∣∣∣∣∣
∀τ > 0 ∃ impulse-free solution (x, u)

on [tp, tp + τ) of Epẋ = Apx+Bpu,

with x(t−p ) = xp and x((tp + τ)−) ∈ Kp+1

,
i.e., the subspace Kp consists of all initial states for mode p which can be controlled impulse-freely
into the subspace Kp+1 within a given time duration τ > 0.

Before providing the proof we want to highlight that in the statement above the

impulse avoiding input in general depends on τ , i.e., on the mode duration of the current

mode, whereas the subspaces given by (3.17) are independent from the mode duration

(but depend on the mode sequence).

Proof. Let xp ∈ Kp. Then xp = w + v for some w ∈ 〈im Πp ∩
(
Kp+1 + Rp

)
| Adiff

p 〉 and
v ∈ Dimp

p . Recall that any v ∈ Dimp
p can be impulse-freely controlled to zero with a smooth

input for any given time duration τ > 0. Hence, in view of linearity, it suffices to consider

the case xp ∈ 〈im Πp ∩
(
Kp+1 +Rp

)
| Adiff

p 〉. It follows then from Adiff
p -invariance that for

τ ∈ R

eA
diff
p τΠpxp = kτp+1 + ητ ,
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for some kτp+1 ∈ Kp+1 and η
τ ∈ Rp. In particular, there exists a smooth input u defined

on [tp, tp + τ) which stears the state x from zero to −ητ . Applying the same input for the

initial value x(t−p ) = xp results in

xu((tp + τ)−, xp) = eA
diff
p τΠpxp − ητ

= kτp+1 + ητ − ητ

= kτp+1,

as desired.

Conversely, let xp be such that for all τ there exists an impulse-free solution (x, u) of

Epẋ = Apx + Bpu with x(t−p ) = xp and x((tp + τ)−) ∈ Kp+1. Using the same inductive

arguments as in Lemma 3.7 and utilizing Adiff
p invariance of im Πp, Rp, Dimp

p , it then

follows for all τ ∈ R that

xp ∈ im Πp ∩
(
e−A

diff
p τKp+1 +Rp

)
⊕Dimp

p = e−A
diff
p τ
(
im Πp ∩

(
Kp+1 +Rp

)
⊕Dimp

p

)
.

As this holds for all τ > 0 it follows from Lemma A.1 that

xp ∈ 〈im Πp ∩ (Kp+1 +Rp)⊕Dimp
p | Adiff

p 〉 = Kp.

This concludes the proof.

Given this result, we can present the following simple characterization of quasi-

causally impulse-controllable system classes.

Theorem 3.37. The system class Σn is quasi-causally impulse-controllable if and only if

V(E0,A0,B0) ⊆ K0.

Proof. (⇒) Suppose the system class is quasi-causally impulse-controllable. Consider

the solution (x, u) of (3.1) with x(t+0 ) = x0 and u(t0,tf ) given by Utf (σ(t0,tf ), x0). Then by

definition, the solution (x, u) is impulse-free on (t0, tf ), in particular, x(t−n ) ∈ Cimp
n = Kn

for all possible switching signals.

In the following, we want to show by induction that x(t−i ) ∈ Ki for i ∈ {n−1, . . . , 1, 0}.
Hence, inductively, we may assume that if (x, u) satisfies x(t+0 ) = x0 and u is defined by

Uti(σ(t0,ti), x0), then x(t−i ) ∈ Ki for all switching signals. We want to show that x(t−i−1) ∈
Ki−1 for any solution (x, u) of (3.1) with x(t+0 ) = x0 and u given by Uti−1

(σ(t0,ti−1), x0). For

any τ > 0, consider the switching signal σ̄ with σ̄(t0,ti−1) = σ(t0,ti−1) and t̄i = t̄i−1 + τ =

ti−1 + τ . Let ū be given by Ut̄i(σ̄(t0,t̄i), x0), then the corresponding solution (x̄, ū) is

impulse-free and by induction assumption satisfies x̄(t̄i) ∈ Ki. Since τ > 0 was arbitary,

Lemma 3.36 yields that x̄(t−i−1) ∈ Ki−1 By causality, u(t0,ti−1) = ū(t0,ti−1) and hence

x(t−i−1) = x̄(t−i−1) which concludes the inductive proof. Since for all x0 ∈ V(E0,A0,B0) there
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exists an impulse-free solution (x, u) satisfying x(t+0 ) = x(t−0 ) = x0 we can conclude that

x0 ∈ K0 and hence

V(E0,A0,B0) ⊆ K0.

(⇐)Letσ ∈ Sn. Recall that bydefinition for allσ ∈ Sn, for eachmode p ∈ {0, 1, ..., n−1}
and each xp ∈ Kp there exists an input up(·, xp) on [tp, tp+1) such that the solution x of

mode p satisfies x(t−p ) = xp and x(t−p+1) ∈ Kp+1. Now, concatenate these inputs inductively

as follows: u(t) := u0(t, x0) for t ∈ [t0, t1) and u(t) := up(t, x(t−p )) for t ∈ [tp, tp+1) where

x(t−p ) is the value of the solution x corresponding to the already defined input u on

[t0, tp). Finally, by assumption x(t−n ) ∈ Cimp
n , hence the input u can be extended on

[tn,∞) in such a way that the solution remains impulse-free. Altogether we can define

Uti(σ(t0,ti), x0) := u(t0,ti) which satisfies the quasi-causality properties for all switching

signals and all x0. Hence the system class is quasi-causally impulse-controllable.

Causal impulse-controllability with dwell time

Knowledge of the current mode duration cannot always be assumed, hence we want to

provide in this subsection a characterization of a more strict causality notion. To that

extent we will study the notion of causal impulse-controllability. Here causality can be

considered with respect to the whole switching signal (i.e., the impulse-avoiding input

should not depend on the future mode sequence as well as on the future mode durations)

or only with respect to the future mode duration (i.e., the future mode sequence is

assumed to be known and can be used in the construction of the impulse-avoiding input).

In both cases causality can be defined in terms of the existence of a family of

input-defining maps

Ut : (σ[t0,t), x0) 7→ u[t0,t),

such that for all σ ∈ Sn (or Sn) and all x0 ∈ V(Eσ(t0),Aσ(t0),Bσ(t0))
the corresponding

solution x[t0,t) of (Eσ, Aσ, Bσ) on [t0, t) for the input u[t0,t) = Ut(σ[t0,t), x0) is impulse-free;

additionally, we have to require that this map Ut is itself causal, i.e., for all s1 < s2 it holds

that

Us1(σ[t0,s1), x0) = Us2(σ[t0,s2), x0)[t0,s1). (3.19)

Furthermore, we need to restrict the class of switching signals by requiring a dwell time

condition, i.e., we have to assume a lower bound for the mode duration. Without such a

bound the control input needs to steer the state into a “safe” subspace within any given

time-interval, but then the causality property of Ut cannot hold: Consider the situation
that for some switching times ti < ti+1 we have ti < s1 < s2 := ti+1, the input produced
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by Us1 must result in a state value x(s−1 ) in a suitable subspace (to allow for a possible

switch at s1) while Us2 has more time to achieve that x(s−2 ) is in a suitable subspace,

consequently, without the dwell time condition, if s1 is approaching the switching time

ti the input needs to be more and more aggressive and hence Us1 cannot remain equal to

the initial part of Us2 .
In order toderive anecessary and sufficient condition for causal impulse-controllability

for the system class Σn with a dwell time, we consider the following sequence:

Ci−1 := 〈Ci | Ei−1, Ai−1, Bi−1〉+Ri−1 + kerEi−1, (3.20)

for i = {n, n− 1, ..., 1} and with Cn = Cimp
n .

We can now provide a simple necessary and sufficient condition for causal impulse-

controllability in terms of the sequence Ci given by (3.17).

Theorem 3.38. The system class Σn with some dwell time d > 0 is causally impulse-controllable
if and only if V(E0,A0,A0) ⊆ Cimp

0 .

Proof. (⇒) Suppose the system is causal with a dwell time d > 0. Then given a switching

signal σ ∈ Sn there exists an impulse-free solution (x, u) where u[t0,t) = Ut(σ[t0,t), x0).

We will proof by induction that x(t−i ) ∈ Ci for all i ∈ {n, n− 1, ..., 1}. Since (x, u) is

impulse-free, it follows that x(t−n ) ∈ Cimp
n = Cn. Hence we assume that the statement

holds for i and continue to proof the statement for i− 1.

Consider now another switching signal σ̃ ∈ Sn (with dwell time d > 0) such that

σ(t0,ti) = σ̃(t0,ti) (in particular, t̃i > ti) and with corresponding impulse-free solution

(x̃, ũ), where ũ[t0,t) = Ut(σ̃[t0,t), x0) By the inductive assumption we have x̃(t̃−i ) ∈ Ci.
Consequently, we can always find an input ũ on [ti, t̃i) which ensures that the trajectory

x̃ which starts at x(t−i ) ∈ Ci stays in the same subspace for arbitrary t̃i > ti under the

dynamics ofEi−1ẋ = Ai−1x+Bi−1u. Consequently, x(t−i ) must be contained in the largest

controlled invariant subspace within Ci, i.e., x(t−i ) ∈ 〈Ci | Ei−1, Ai−1, Bi−1〉.
Consequently, it follows from the solution formula for differential algebraic equations

that

eA
diff
i−1τi−1Πi−1x(t−i−1) ∈ 〈Ci | Ei−1, Ai−1, Bi−1〉+Ri−1.

By Lemma 2.48 we have

Adiff
i−1〈Ci | Ei−1, Ai−1, Bi−1〉 ⊆ 〈Ci | Ei−1, Ai−1, Bi−1〉+Ri−1 (3.21)

and hence

Πi−1x(t−i−1)

∈ e−Adiff
i−1τi−1 (〈Ci | Ei−1, Ai−1, Bi−1〉+Ri−1)

⊆ 〈Ci | Ei−1, Ai−1, Bi−1〉+Ri−1.
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Since (x, u) is impulse-free it follows that x(t−i−1) ∈ Cimp
i−1 and hence (I −Πi−1)x(t−i−1) ∈

Ri−1 + kerEi−1. Altogether, we conclude the inductive proof by observing that

x(t−i−1) = Πi−1x(t−i−1) + (I − Πi−1)x(t−i−1)

∈ 〈Ci | Ei−1, Ai−1, Bi−1〉+Ri−1 + kerEi−1

= Ci−1.

Now we can conclude that x0 ∈ C0 and since this holds for all x0 ∈ V(E0,A0,B0) we have

shown the necessity part of the statement.

(⇐) Let xi ∈ Ci. Then then xi = ci+1 + ηi + zi with ci+1 ∈ 〈Ci+1 | Ei, Ai, Bi〉, ηi ∈ Ri

and zi ∈ kerEi. Consequently, by Lemma 2.48 it follows that

Adiff
i 〈Ci+1 | Ei, Ai, Bi〉 ⊆ 〈Ci+1 | Ei, Ai, Bi〉+Ri

and hence we have

eA
diff
i dxi = eA

diff
i d(ci+1 + ηi + zi)

∈ eAdiff
i d
(
〈Ci+1 | Ei, Ai, Bi〉+Ri + kerEi

)
⊆ 〈Ci+1 | Ei, Ai, Bi〉+Ri + kerEi.

Hence multiplying by Πi and using the result of Lemma 2.49 we obtain

Πie
Adiff
i dxi = eA

diff
i dΠixi

∈ Πi

(
〈Ci+1 | Ei, Ai, Bi〉+Ri + kerEi

)
⊆ 〈Ci+1 | Ei, Ai, Bi〉+Ri.

Consequently, eA
diff
i dΠixi = ci+1 + ηi for some ci+1 ∈ Ci+1 and ηi ∈ Ri. Let u

i
d be a smooth

input such that x[ti] = 0 and xu(d, 0) = −ηi. Then the solution (x, u) on [ti, ti+1) with

x(t−i ) = xi is impulse-free and satisfies x(t−i+1) = ci+1 ∈ Ci+1; furthermore, due to the

controlled invariance of Ci+1 it is possible to extend uid(·, xi) onto [ti, ti+1) such that the

corresponding solution satisfies x(t−) ∈ Cimp

i+1 for all t ∈ [ti + d, ti+1). Now, concatenate

these inputs inductively as follows: u(t) := u0
d(t, x0) for t ∈ [t0, t1) and u(t) := uid(t, x(t−i ))

for t ∈ [ti, ti+1) where x(t−i ) is the value of the solution x corresponding to the already

defined input u on [t0, ti). Finally, by assumption x(t−n ) ∈ Cimp
n , hence the input u can by

extended also on [tn,∞) in such a way that the solution remains impulse-free. Altogether,

we can define U(σ[t0,t), x0) := u[t0,t) which satisfies the causality properties with a dwell

time for all switching signals and all x0.

3.3 Concluding remarks
In this chapter we have studied impulse-free solutions of switched differential algebraic

equations with a fixed and known switching signal. In particular, a characterization of
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impulse-controllable switched DAEs with finitely many switches has been given based

on an algorithm that runs backward in time. In the case of infinitely many switches

sufficient conditions for impulse-controllability are given in terms of an algorithm that

runs forward in time.

Next, impulse-controllability of systemclasses of switchedDAEshas been investigated.

System classes generated by arbitrary switching signals that are strongly impulse-

controllable are characterized. For system classes generated by switching signals

inducing the same mode sequence it was shown that there are several notions of

impulse-controllabilty. Finally, necessary and sufficient conditions for quasi-causal

impulse-controllability and causal impulse-controllability given a dwell time of Σn have

been given.

If a switched system generated by some matrix triplets is impulse-controllable

for some arbitrary switching signal, with a probability one the system class is es-

sentially impulse-controllable, it remains to give necessary conditions for essential

impulse-controllability of the system class Σn. The same holds for essential impulse-

uncontrollability. Furthermore, a natural direction of research is to consider quasi causal

and causal impulse-controllability given some dwell time of general system classes Σn.

Finally, it remains an open question under what conditions system classes are causally

impulse-controllable without a dwell time.



4 | Stabilizability

In this chapter we are interested in the concept of stabilizability for switched differential

algebraic equations. In particular, we investigate to what extent the solutions can be

influenced by means of applying an input such that the system is stabilized while

guaranteeing the absence of Dirac impulses. In the previous chapter we showed that a

switched DAE is impulse-controllable if Dirac impulses in the state can be avoided for

any initial trajectory. We call a system stabilizable if any initial trajectory can be steered

asymptotically to the origin as time tends to infinity. However, for a switched DAE that

is both stabilizable and impulse-controllable not necessarily every initial trajectory can

be stabilized in an impulse-free manner. An example of such a system is given by the

electrical circuit given below.

−

+

R

R

V0 u

−u

LVL

IL

C

VC

IC

Figure 4.1: An example of an electrical circuit that is stabilizable and impulse-controllable, but

not stabilizable without Dirac impulses.

Consider the circuit in Figure 4.1. Assume that for maintenance reasons the capacitor

and the component consisting of the operational amplifier combined with an inductor

are disconnected at t = t1. In order to keep the network to which this circuit is connected

operational, the voltage source V0 needs to remain constant. However, there is another

controllable voltage source u available. Since the system is operational at t = t0 it is

assumed that the state at t0 is consistent. The equations describing the dynamics of the

inductor and the capacitor are given by

LİL = VL, and CV̇C = IC ,

respectively. Note that the voltage over the capacitor is given by VC = u− V0. Assuming

that R1 = R2 and that the operational amplifier is ideal, we have V −OA = V +
OA = 0 and

no current flows in or out of the operational amplifier. Consequently, IL = IR1 = IR2 .

65



66 CHAPTER 4. STABILIZABILITY

Since the current through the resistors is given by IR1 = IR2 = − u
R
and it follows that

RIL = −u.
Defining the state as x = [ VL IL VC ,IC ,V0 ], we obtain that for t ∈ [t0, t1) the system is

described by equation (4.1).
0 L 0 0 0

0 0 0 0 0

0 0 C 0 0

0 0 0 0 0

0 0 0 0 1

 ẋ =


1 0 0 0 0

0 R 0 0 0

0 0 0 1 0

0 0 1 0 −1

0 0 0 0 0

x+


0

−1

0

1

0

u, (4.1)


0 L 0 0 0

0 0 0 0 0

0 0 C 0 0

0 0 0 0 0

0 0 0 0 0

 ẋ =


1 0 0 0 0

0 R 0 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

x. (4.2)

After opening the switch, the voltage over the resistor is zero and thus IR1 = IR2 = IL = 0.

Furthermore, since we are only interested in stabilizing the states of the components and

V0 will not affect the charge on the voltage once the switch is opened, we will assume

V0 = 0 for t ∈ [t1,∞). Consequently, the system can be described on this interval by

equation (4.2). Hence for a non-zero input u at t−1 , we obtain that IL jumps to zero at t+1
and consequently a Dirac impulse occurs in VL = LİL. However, if the input is brought

to zero smoothly, no Dirac impulses occur and hence the system is impulse-controllable.

Since the amount of charge stored on the capacitor is given by q = C(V0 − u), we

have for every input u with u(t−1 ) 6= V0, that the capacitor is charged and is unable to

discharge, since the current IC = 0. The capacitor can be discharged before t1, but that

requires a nonzero u at t−1 , which produces a Dirac impulse yet stabilizes the state of the

components. Hence we have an example of a system which is impulse-controlollable

and stabilizable, but not stabilizable with an impulse-free trajectory.

Motivated by this example, this chapter considers stabilization of switched DAEs

where Dirac impulses are to be avoided, so called impulse-free stabilization.

4.1 Stabilizability concepts
In this section we will introduce the concept of stabilizability for switched differential

algebraic equations. To that extent, consider the system

Eσẋ = Aσx+Bσu, (4.3)

with a switching signal σ ∈ Sn. Since the switching signal is assumed to be fixed a priori,

we assume that the switching times t1 < ... < tn are known. The index n ∈ N is arbitrary
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and hence the switching signal possibly induces infinitely many switches. We will

consider (4.3) on the interval [t0,∞) for some t0 ∈ (−∞, t1) and hence we assume that

the system was already active for t ∈ (−∞, t0). Any initial trajectory is thus implicitly

assumed to be a solution of (3.1), which implies that x(t−0 ) = x0 ∈ V(E0,A0,B0).

Roughly speaking, in classical literature on non-switched systems, a linear system

is called stabilizable if every trajectory can be steered to zero as time tends to infinity.

This concept can elegantly be defined formally for non-switched systems in terms of

its behavior. Given the behavior of a switched differential algebraic equations, we can

extend this definition of behavioral stabilizability for non-switched systems readily to

switched DAEs. To do so, recall the definition of the behavior of (4.3):

Definition 4.1. Consider the system (4.3) for some switching signal σ ∈ Sn. The behavior
Bσ is the set of all distribution pairs (x, u) that solve (4.3), i.e.,

Bσ := {(x, u) ∈ (D
pwC∞)n+m | Eσẋ = Aσx+Bσu}.

Given the behavior of (4.3) we are able to define behavioral stabilizability for switched

DAEs. As we will mainly focus on finding conditions such that a system can be stabilized

in an impulse-free way, the definitions that follow define the impulse-free variant if the

term (impulse-free) is read without parentheses.

Definition 4.2 ((Impulse-free) Stabilizability). The switched DAE (4.3) with a switching

signal σ ∈ Sn is (impulse-free) stabilizable if for every solution (x, u) ∈ Bσ there exists a

solution (x∗, u∗) ∈ Bσ, (which is impulse-free on [t0,∞)), satisfying

(x∗, u∗)(−∞,t0) = (x, u)(−∞,t0) and lim
t→∞

(
x∗(t+), u∗(t+)

)
= 0.

For many applications it is not sufficient to asymptotically steer the state of the system

to the origin, but it is necessary to control the state to zero in finite time. Once the state of

the system is zero, the system will remain at the origin if the input is switched off. Hence

this phenomenon can be regarded as a special form of (impulse-free) stabilizability. If

the system can be steered to zero on some bounded interval (t0, tf ) we will call it time-tf

(impulse-free) null-controllable. For non-switched systems there exist various other

definitions of controllability, which can be proven to be equivalent to null-controllability.

These definitions define controllability e.g., as the possibility to connect solutions or

as the possibility to reach states from the origin. The latter definition is often referred

to as reachability. These concepts can readily be extended to switched systems and

impulse-free solutions. A formal definition of these concepts in terms of the systems

behavior is given as follows.

Definition 4.3. Given some tf ∈ R, the switched DAE (4.3) with a switching signal

σ ∈ Sn is called
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i) time-tf (impulse-free) behaviorally controllable if for all solutions (x1, u1), (x2, u2) ∈ Bσ

there exists a solution (x, u), (which is impulse-free on [t0, tf )) satisfying

(x, u) =

{
(x1, u1) −∞ < t < t0,

(x2, u2) tf < t <∞,
(4.4)

ii) time-tf (impulse-free) behaviorally null-controllable if i) holds for (x2, u2) = (0, 0),

iii) time-tf (impulse-free) behaviorally reachable if i) holds for (x1, u1) = (0, 0).

Since we consider linear switched DAEs, the sum of solutions is again a solution.

Consequently, we can proof the following equivalence between the controllability notions

if Dirac impulses in the state are allowed.

Lemma 4.4. Consider the system (4.3). The following statements are equivalent:

i) The system is behaviorally null-controllable,

ii) The system is behaviorally reachable,

iii) The system is behaviorally controllable.

Proof. i)⇒ ii) As the system is time-tf null-controllable, there existss for every solution

(x, u) ∈ Bσ an solution (x∗, u∗), satisfying (x, u)(−∞,t0) = (x∗, u∗)(−∞,t0) and x∗(t−f ) = 0.

Let (x̃, ũ) be an solution satisfying x̃(t−0 ) = x(t−0 ) = x0 ∈ V(E0,A0,B0). Then we obtain by

linearity of solutions that (x̄, ū) defined as x̄ = x∗ − x̃ and ū = u∗ − ũ satisfies x̄(t−0 ) = 0

and x̄(t−f ) = x̃(t−f ). Hence we can conclude that the system is time-tf reachable.

ii)⇒ iii) Let (x1, u1), (x2, u2) ∈ Bσ be solutions. As the system is reachable there exist

solutions (x3, u3), (x4, u4) satisfying x3(t−0 ) = x4(t−0 ) = 0 and (x3, u3)(tf ,∞) = (x1, u1)(tf ,∞),

(x4, u4)(tf ,∞) = (x2, u2)(tf ,∞). Then by linearity of solutions we obtain that (x̄, ū) defined

by x̄ = x1 − x3 + x4 and ū = u1 − u3 + u4 satisfy

(x̄, ū) =

(x1, u1) −∞ < t 6 t0,

(x2, u2) tf < t <∞.

Since (x1, u1), (x2, u2) ∈ Bσ were arbitrary solutions, it holds for all (x1, u1), (x2, u2) ∈ Bσ.

Hence the system is controllable.

iii)⇒ i) Since the zero distribution is contained inBσ, it follows that if the system

is controllable, there exists for every solution (x, u) ∈ Bσ an solution (x∗, u∗) satisfying

(x, u)(−∞,t0) = (x∗, u∗)(−∞,t0) and x
∗(t−f ) = 0. Hence the system is null-controllable.
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Since the various controllability concepts of (null-)controllabillity and reachability

are equivalent, we will simply refer to these concepts as controllability (at tf ). A similar

statement in terms of the impulse-free versions of the controllabillity concepts does

not hold as the following example shows. Hence we need to make a clear distinction

between the concepts when impulse-freeness has to be guaranteed.

Example 4.5. Consider the switched DAE given by

Σ :=


ẋ = 0 t0 6 t < t1,

[ 0 1
0 0 ] ẋ = x t1 6 t < t2,

ẋ = u t2 6 t <∞.

As the mode on the interval [t2,∞) is controllable, the system is clearly time-tf impulse-

free reachable for all tf > t2. Futhermore, the system is time-tf null-controllable for

any tf > t1 as every state will jump to zero at t1. However, in the case x2(t−0 ) 6= 0 a

Dirac impulse will occur inevitably at t1 and consequently the system is not time-tf

impulse-free null-controllable. �

Finding conditions on the existence of a tf such that the system is (impulse-free)

controllable in a finite amount of steps might become cumbersome as a switching signal

possibly induces an large number of switches. The same problem arises when it comes

to finding conditions for (impulse-free) stabilizability. However, for some cases, e.g.,
for switched DAEs with a periodic switching signal, it is still possible to conclude

controllability and stabilizability based on some finite interval. If all initial values can

be contracted sufficiently over a period of the switching signal by means of applying a

suitable input on that time interval, any initial value can be steered asymptotically to

zero by applying a concatenation of such inputs. Hence we would be able to conclude

existence of an input that stabilizes the system. To formalize this notion of contraction

on a bounded interval to systems with a general switching signal we introduce the

following definition.

Definition 4.6 ((Impulse-free) interval-stabilizability). The switched DAE (4.3) is called

(t0, tf )-(impulse-free) stabilizable for a given switching signal σ, if for every solution

(x, u) ∈ Bσ there exists a class KL function1 β : R>0 × R>0 → R>0 with

β(r, tf − t0) < r, ∀r > 0 (4.5)

and an (impulse-free) solution (x∗, u∗) ∈ Bσ satisfying (x, u)(−∞,t0) = (x∗, u∗)(−∞,t0) and

|x∗(t+)| 6 β(|x0|, t− t0), ∀t ∈ (t0, tf ). (4.6)

1A function β : R>0 ×R>0 → R>0 is called a class KL function if 1) for each t > 0, β(·, t) is continuous,
strictly increasing, with β(0, t) = 0; 2) for each r > 0, β(r, ·) is decreasing and converging to zero as t→∞.
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One should note that a local solution on some interval is not necessarily a part of a

global solution on a larger interval. Consequently, stabilizability does not always imply

that all local solutions are interval-stabilizable. The switched system 0 = x on [0, t1)

and ẋ = 0 on [t1,∞) is obviously stabilizable, since the only global solution is the zero

solution. However, on the interval [t1, s) there are nonzero local solutions which do not

converge towards zero.

Furthermore according to Definition 4.6 it is required that the norm of the state is

smaller at the end of an interval. This means that (impulse-free) interval-stability could

depend on the length of the considered interval instead of the asymptotic behavior of

the system. If for example some states converge to zero, whereas some grow unbounded

regardless of the choice of input, it may occur that on some interval the system is

(impulse-free) interval-stable as the norm of the state initially decreases. However, as

time tends to infinity the norm of the state grows unbounded. Spefcifically, the state does

not converge to zero and hence the system is not (impulse-free) stabilizable. However,

under the following uniformity assumption on the switched DAEwe can conclude global

stabilizability.

Assumption 4.7 (Uniform interval-stabilizability). Consider the switched system (4.3)

with switching signal σ. Let τ0 := t0 and assume that there exists an unbounded, strictly

increasing sequence τi ∈ (t0,∞), i ∈ N \ {0}, of non-switching times such that the system

is (impulse-free) (τi−1, τi) -stabilizable withKL function βi for which additionally it holds

that

βi(r, τi − τi−1) 6 αr, ∀r > 0,∀i ∈ N>0, (4.7)

βi(r, 0) 6Mr, ∀r > 0,∀i ∈ N>0, (4.8)

for some α ∈ (0, 1) andM > 1.

Proposition 4.8. For systems of the form (4.3) satisfying Assumption 4.7, (impulse-free)
interval-stabilizability implies (impulse-free) stabilizability.

Proof. For uniformly interval-stabilizable systems (4.3), there exists an input u for every

x0 ∈ V(E0,A0,B0) such that the solution (x, u) with x(t−0 ) = x0 satisfies

x(t+) 6 βi(|x(t−pi)|, t− tpi), (4.9)

for t ∈ [tpi , tqi) and i ∈ N. Let

β̂i(r, t− tpi) = Mr − (t− tpi)
Mr(1− α)

tqi − tpi
,

that is, for each r > 0 the function β̂i(r, ·) is linear on [tpi , tqi) and decreasing fromMr

towards αMr. Let

β(r, t) := max{βi(αir, t− tpi), β̂i(αir, t− tpi)},
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where i ∈ N is such that t ∈ [tpi , tqi). For fixed t the function β(·, t) is continuous and
strictly increasing. From (4.7) andM > 1 it follows that

β(r, t−qi) = max{βi(αir, tqi − tpi),Mαir} = Mαir

and invoking (4.8),

β(r, t−pi) = max{βi(αir, 0),Mαir} = Mαir.

Because qi = pi+1, continuity of β(r, ·) with fixed r > 0 follows. Furthermore, on each

interval [tpi , tqi) the function β(r, ·) is strictly decreasing as a maximum of two strictly

decreasing functions. Furthermore, β(r, tpi) = Mαir with α ∈ (0, 1) implies that β(r, t)

converges to zero as t→∞. Hence β is a KL-function and it remains to be shown that

|x(t+)| 6 β(|x(t−0 )|, t).
First observe that by (4.7) and continuity of βi it follows that

|x(t−p+1| = |x(t−qi | 6 βi(|x(t−pi)|, tqi − tpi) 6 α|x(t−pi |,

and thus |x(t−pi | 6 αi|x(t−0 )|. Therefore,

|x(t+)| 6 βi(|x(tpi |, t0 − tpi) 6 βi(α
i|x(t−0 )|, t− tpi) 6 β(|x(t−0 )|, t).

Hencewe can conclude that limt→∞ x(t) = 0. Consequently, the system is stabilizable.

Assumption 4.7 is readily satisfied for certain classes of systems, such as the class of

systems with a periodic switching signal and the class of systems with a finite amount of

modes. Therefore we turn our attention to finding necessary and sufficient conditions for

interval-stabilizability. The methods used to analyze impulse-free interval-stabilizabilty

of the system (4.3) will also lead to a characterization of impulse-free controllability. The

conditions that need to be verified are based on sequences that run forward in time and

hence are suitable to verify for systems with a large amount of modes.

4.2 Impulse-free interval-stabilizability
As shown in the previous section, a switched DAE which is impulse-controllable and

stabilizable is not necessarily impulse-free stabilizable. However, if there does not exist

an impulse-free solution (x, u) satisfying x(t−0 ) ∈ V(E0,A0,B0), there is no hope of finding an

impulse-free solution (x∗, u∗) satisfying x∗(t−0 ) = x0 and (4.6) for some class KL function

β satisfying (4.5). Obviously, in order to stabilize a state on a bounded interval in an

impulse-free way, there needs to exist an impulse-free solution in the first place. To

that extent, we will make the following standing assumption throughout the rest of this

section:
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Assumption 4.9. Consider the system (4.3) and assume it is impulse-controllable. Fur-

thermore, any initial trajectory x0
is assumed to satisfy x0(t−0 ) = x0 ∈ V(E0,A0,B0).

Under this assumption, wewill derive necessary and sufficient conditions for impulse-

free stabilizability. The approach taken is as follows. First we consider the space of

points that can be reached in an impulse-free way from an initial value x0. It will then be

shown that this space is an affine subspace. We then consider an element of this affine

subspace with minimal norm; if this norm is smaller than the norm of the corresponding

initial value, we can conclude interval-stabilizability.

4.2.1 Impulse-free stabilizability

We will start our investigation by considering the space of points that can be reached

from an initial condition x0 ∈ V(E0,A0,B0). The reason that we do not consider the spaces

(3.7) in our analysis, is because although for each ξ ∈ Wτ
i there exists an initial value x0

and an impulse-free solution (x, u) satisfying x(t−0 ) = x0, the converse of this statement is

not necessarily true. That is, not for all x0 ∈ V(E0,A0,B0) there exist an element ξ ∈ Wτ
i and

a solution (x, u) satisfying x(t−0 ) = x0 and x(ti) = ξ. Hence we consider the following

sequence of (affine) subspaces (defined forward in time), given some x0 ∈ V(E0,A0,B0):

Wτ
0 (x0) = eA

diff
0 (t1−t0)Π0x0 +R0,

Wτ
i (x0) = eA

diff
i (ti+1−ti)Πi(Wτ

i−1(x0) ∩ Cimp
i ) +Ri, i > 0.

(4.10)

For x0 = 0 we drop the dependency on x0 and adopt the following notation:

Wτ

i :=Wτ
i (0),

for notational convenience.

Remark 4.10. The space Wτ

i defined above is different from Wτ
i in (3.7); the latter is

defined as the space of all points that can be reached in an impulse-free way.

The intuition behind the sequence is as follows: Wτ
0 (x0) contains all values xt1 for

which there exists an impulse-free solution (x, u) satisfying x(t−0 ) = x0 and x(t−1 ) = xt1 .

Now, inductively, we calculate the setWτ
i (x0) of points which can be reached just before

the switching time ti+1 by first considering the pointsWτ
i−1(x0) which can be reached in

an impulse-free way just before ti. Then we pick those which can be continued in mode i

impulse-freely by intersecting them with Cimp
i and propagate this set forward according

to the evolution operator. Finally the reachable space of mode i is added. This intuition

is verified by the following lemma.
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Lemma 4.11. Consider the switched system (4.3) on some bounded interval (t0, tf ) with the
switching signal σ ∈ Sn. Then for all i = 0, 1, . . . , n and x0 ∈ V(E0,A0,B0)

Wτ
i (x0) =

ξ ∈ Rn

∣∣∣∣∣∣∣
∃ an impulse-free solution (x, u)

of (4.3) on (t0, ti+1) s.t.
x(t+0 ) = x0 ∧ x(t−i+1) = ξ

.
Proof. First we will show that x(t−i+1) is contained inWτ

i (x0) if (x, u) is an impulse-free

solution on (t0, tf ). To that extent, consider an impulse-free solution (x, u) of (4.3) on

(t0, t1), which by definition satisfies the solution formula (2.15), i.e.,

x(t−1 ) = eA
diff
0 (t1−t0)Π0x0 +

∫ t

t0

eA
diff
0 (t−τ)Bdiff

0 u(τ) dτ −
ν−1∑
i=0

(Eimp
0 )iBimp

0 u(i)(t−)

= eA
diff
0 (t1−t0)Π0x0 + η0,

for some η0 ∈ R0 and x0 ∈ V(E0,A0,B0). This shows that x(t−1 ) ∈ Wτ
0 (x0). We proceed

inductively by assuming that the statement holds for i > 0 and prove the statement for

i+ 1.

Let (x, u) be an impulse-free solution on (t0, ti+1). Then we have that x(t−i+1) is of the

form

x(t−i+1) = eA
diff
i (ti+1−ti)Πiξi−1 + ηi,

for some ηi ∈ Ri and ξi−1 ∈ Cimp
i . Furthermore, since (x, u) is impulse-free on (t0, ti+1), it

follows that ξi can be reached impulse-freely from x0 and hence ξi−1 ∈ Wτ
i−1(x0). This

proves that x(t−i+1) ∈ Wτ
i (x0).

In the following we will prove that for all elements ofWτ
i (x0) there exists an impulse-

free solution (x, u) with initial condition x(t+0 ) = x0. We will again prove this inductively.

Therefore, consider ξ0 ∈ Wτ
0 (x0). Then for some η0 ∈ R0 we have

ξ0 = eA
diff
0 (t1−t0)Π0x0 + η0.

Since x0 ∈ V(E0,A0,B0) ⊂ Cimp
, we have that there exists a ũ such that the solution (x̃, ũ)

satisfying x̃(t−0 ) = x0 is impulse-free on [t0, t1). Then it follows from the solution formula

(2.15) that

x̃(t−1 ) = eA
diff t1Πx0 + η̃0,

for some η̃0 ∈ R0. Since η0 ∈ R0, there exists a smooth input û such that the solution

(x̂, û) with x̂(t−0 ) = 0 satisfies x̂(t−1 ) = η0 − η̃0 and is impulse-free on [t0, t1).

If we define u = û + ũ it then follows from linearity of solutions that (x, u) with

x(t−0 ) = x0 satisfies x(t−1 ) = ξ0 and is impulse-free on (t0, t1). Assuming that the statement

holds for i > 0 we continue by proving the statement for i+ 1.
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Let ξi ∈ Kτ
i+1(x0), then we have for some ξi−1 ∈ Wτ

i (x0) ∩ Cimp
i−1 that

ξi = eA
diff
i (ti+1−ti)Πiξi−1 + ηi.

It follows from the induction assumption that there exists an impulse-free solution (x, u)

on (t0, ti) with x(t−i ) = ξi−1, because ξi−1 ∈ Wτ
i (x0). Furthermore, ξi−1 ∈ Cimp

i−1 and ηi ∈ Ri

implies that the impulse-free input u can be altered on the interval [ti, ti+1) such that

x(t−i+1) = ξi and x(·) is impulse-free.

Remark 4.12. If the system is not impulse-controlollable, then there exist x0 for which

Wτ
i (x0) = ∅ as follows from the definition. This also follows from the subspace algorithm

becauseWτ
i−1(x0) ∩ Cimp

i would be empty for some mode i and the sum of an empty set

and a subspace is empty.

Lemma 4.11 gives rise to another characterization of impulse-controlollability, which

follows as a corollary.

Corollary 4.13. Consider the switched system (4.3) on some interval (t0, tf ) with the switching
signal σ ∈ Sn and the sequence of affine subspaces Wτ

i (x0) given by (4.10). Then (4.3) is
impulse-controlollable on (t0, tf ) if and only if

∀x0 ∈ V(E0,A0,B0) : Wτ
n (x0) 6= ∅.

Proof. If the system is impulse-controlollable, then for every initial condition x0 there

exists an impulse-free solution (x, u) on (t0, tf ). Therefore x(t−f ) ∈ Wτ
n+1(x0) (recall the

convention that tn+1 := tf ) and henceWτ
n+1(x0) 6= ∅. Conversely, ifWτ

n+1(x0) 6= ∅, then

let ξ ∈ Wτ
n+1(x0). By definition there exists an impulse-free solution (x, u) on (t0, tf )

with x(t−0 ) = x0 and x(t−f ) = ξ. This holds for every x0 ∈ V(E0,A0,B0) and hence (4.3) is

impulse-controlollable.

In the following we will show thatWτ
i (x0) is an affine shift ofWτ

i and henceWτ
i (x0)

is an affine subspace. In proving this statement, we will use some general results which

can be found in Appendix C.

Lemma 4.14. Consider the switched system (4.3) with switching signal σ ∈ Sn and assume it is
impulse-controllable. The impulse-free-reachable space from x0 at ti is an affine shift from the
impulse-free reachable space, in particular, there exists a matrixMi, such that

Wτ
i (x0) = {Mix0}+Wτ

i . (4.11)

Proof. First we simplify the notation by introducing the following shorthand notation

Yi := eA
diff
i (ti+1−ti)Πi. Then we prove the statement inductively. The statement holds

trivially for n = 0, forWτ
0 (x0) = {Y0x0}+R0 andR0 =Wτ

0 . Hence we assume that the
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statement holds for n. Since we assumed that the system is impulse-controlollable, we

have thatWτ
i (x0) ∩ Cimp

i+1 6= ∅ for all x0. Then for n+ 1 we obtain that

Wτ
i+1(x0) = Yi+1(Wτ

i (x0) ∩ Cimp
i+1 ) +Ri+1

∗
= Yi+1(({Mix0}+Wτ

i ) ∩ Cimp
i+1 ) +Ri+1

∗∗
= Yi+1({NiMix0}+ (Wτ

i ∩ C
imp
i+1 )) +Ri+1

= {Yi+1NiMix0}+Wτ

i+1,

for some matrix Ni, i ∈ {0, 1, ..., n}, where (∗) follows from the induction step and (∗∗)
follows from Proposition C.1 in Appendix C. Defining Mi+1 = Yi+1NiMi yields the

result.

Note that the matrixMi in (4.11) exists only in the case of an impulse-controllable

system, otherwiseMi would also need to map to the empty set. In the caseMi does exist,

this matrix can be chosen independently of x0. It is however not necessarily unique,

becauseMi+1 is dependent on Ni obtained from Proposition C.1 in a nonunique way. It

follows from Lemma C.2 from Appendix C that Ni can be any matrix for which

1. im(Ni − I)Mi ⊆ Ri,

2. imNiMi ⊆ Cimp
i+1 .

(4.12)

Thus, from the proof of Lemma 4.14 together with Lemma C.2 from the Appendix the

following constructive result can be obtained.

Corollary 4.15. Consider the switched system (4.3) with switching signal σ ∈ Sn and assume it
is impulse-controllable. LetM0 = eA

diff
0 (t1−t0)Π0. Then for any choice of Ni satisfying (4.12), a

matrixMi+1 satisfying (4.11) can be calculated sequentially as follows:

Mi+1 = eA
diff
i+1(ti+2−ti+1)Πi+1NiMi.

Remark 4.16. In order to compute an Ni that satisfies (4.12) we can invoke Lemma C.3

from the Appendix. This means that given projectors onto Ri and Cimp
i+1 , an Ni that

satisfies the conditions (4.12) can be constructed by solving

(I − ΠRi)ΠCimp
i+1
QiMi = (I − ΠRi)Mi, (4.13)

forQi and definingNi := ΠCimp
i+1
Qi. Since the existence of a solution of (4.13) is guaranteed

by the assumption of impulse-controllability, cf. Lemma 4.14, such a matrix equation

can be solved using a linear programming solver.

SinceWτ
i (x0) contains all the states that can be reached from x0 in an impulse-free

way, it follows that the norm of the state with minimal norm is given by the distance
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dist(Wτ
i (x0), 0). The computation of this distance is straightforward, becauseWτ

i (x0) is

an affine subspace. It follows from elementary linear algebra that the distance between

an affine subspace and the origin, is equal to the norm of any element projected to the

orthogonal complement of the vector space associated with the affine subspace. In the

case ofWτ
i (x0) wewould need to project onto (Wτ

i )⊥. To find such a projector, let ΠWτ
i
be

an orthogonal projector ontoWτ

i , then (I −ΠWτ
i
) is projector onto (Wτ

i )⊥. An important

property of these projectors is that their restriction to the corresponding augmented

consistency space is well-defined.

Lemma 4.17. Consider the DAE (4.3) with switching signal σ ∈ Sn. For any i ∈ {0, 1, . . . , n}
let ξ ∈ V(Ei,Ai,Bi), then

(I − ΠWτ
i
)ξ ∈ V(Ei,Ai,Bi).

Proof. From ξ ∈ V(Ei,Ai,Bi) and (I − ΠWτ
i
) + ΠWτ

i
= I , it follows that

(I − ΠWτ
i
)ξ + ΠWτ

i
ξ ∈ V(Ei,Ai,Bi).

Since im ΠWτ
i

=Wτ

i andWτ

i ⊆ V(Ei,Ai,Bi) we obtain

(I − ΠWτ
i
)ξ ∈ V(Ei,Ai,Bi) − ΠWτ

i
ξ ⊆ V(Ei,Ai,Bi).

as was to be shown.

Consequently, the following result follows.

Lemma 4.18. Consider the DAE (4.3) with switching signal σ ∈ Sn and assume it is impulse-
controllable. For anyMi satisfying (4.11) we have that

min
x∈Wτ

i (x0)
|x| = |(I − ΠWτ

i
)Mix0|.

It follows that we can consider (I −ΠWτ
i
)Mi as a linear map from the initial condition

x0 to the state with minimal norm inWτ
i (x0). This allows us to formulate the following

characterization of impulse-free stabilizability, which is independent of the initial

condition x0 and independent of any coordinate system.

Theorem 4.19. Consider the switched DAE (4.3) with switching signal σ ∈ Sn and assume it
is impulse-controlollable. Then the system is impulse-free interval-stabilizable on (t0, tf ) if and
only if

‖(I − ΠWτ
n
)Mn‖2 = sup

x 6=0

|(I − ΠWτ
n
)Mnx|2

|x|2
< 1.
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Proof. It follows from Lemma 4.18 that (I−ΠWτ
n
)Mn is the linear operator that maps x0 to

the element inWτ
n (x0) with minimal norm. Therefore we see that if ‖(I −ΠWτ

i
)Mi‖2 < 1

that for all x0 there exists an input u such that

|xu(tf , x0)| = |(I − ΠWτ
i
)Mix0| < |x0|.

From this we can conclude that there exists a class KL function β(|x0|, tf − t0) such that

the system is impulse-free interval-stabilizable in the sense of Definition 8.

Conversely, if the system is impulse-free interval-stabilizable, then there exists a

trajectory for each initial condition x0 ∈ V(E0,A0,B0) such that |xu(t−f , x0)| 6 βi(|x0|, tf −
t0) < |x0|. This means that for the operator Π(Kτ

n )⊥Mn that maps |x0| to the element with

minimal norm that can be reached in an impulse-free way it must hold that

‖(I − ΠWτ
i
)Mn‖2 = sup

x 6=0

|(I − ΠWτ
i
)Mnx|2

|x|2
< 1,

which proves the result.

4.2.2 Impulse-free controllability

Thus far we have only focused on impulse-free interval-stabilizability. However, the

methods used in the above are well suited to characterize impulse-free controllability.

We start by proving the following.

Theorem 4.20. Consider the system (4.3) with switching signal σ ∈ Sn. There exists an
impulse-free solution (x, u) ∈ Bσ satisfying x(t−0 ) = x0 and x(t−f ) = 0 if and only if for some
i > 0

Wτ
i (x0) ⊆ Wτ

i .

Proof. If an initial condition x0 is impulse-free null-controllable, there exists an input

u such that (x, u) with x(t−0 ) = x0 and x(t−f ) = 0 is impulse-free. This means that

0 ∈ Wτ
n+1(x0). Consequently

{0} ⊂ {Mn+1x0}+Wτ

n+1,

from which it follows thatMn+1x0 ∈ W
τ

n+1 and thereforeWτ
n+1(x0) ⊆ Wτ

n+1.

Conversely, assume that for some i > 0 we haveWτ
i (x0) ⊆ Wτ

i . Then it follows that

Mix0 ∈ W
τ

i and thus {0} ∈ {Mix0}+Wτ

i =Wτ
i (x0), which means that x0 is impulse-free

null-controllable.

As a direct consequence we can state the following result.
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Corollary 4.21. Consider the switched system (4.3) with switching signal σ ∈ Sn and assume it
is impulse-controlollable. Then the system is impulse-free null-controllable on (t0, tf ) if, and only
if, for some i ∈ {0, 1, . . . , n}

(I − ΠWτ
i
)Mi = 0.

Proof. If the system is impulse-null-controllable, we have thatWτ
i (x0) ⊂ Wτ

i for all x0.

Then it follows that

Mix0 +Wτ

i ⊂ W
τ

i ,

for all x0 and hence imMi ⊂ W
τ

i . The result then follows.

Conversely, if (I − ΠWτ
i
)Mi = 0, then (I − ΠWτ

i
)Wτ

i (x0) = 0 for all x0, which implies

thatWτ
i (x0) ⊂ Wτ

i for all x0.

Wτ

i and Mi can both be computed sequentially forward in time. This means that

it might not be necessary to have knowledge of all the modes of the switched system.

According to Corollary 4.21 we can conclude impulse-free null-controllability already if

the conditions are satisfied for some i ∈ N.

4.3 Impulsive interval-stabilizability
For some applications the occurrence of Dirac impulses is irrelevant in the stabilization

process. Example applications are those where only a part of the state is of interest or a

certain output is to be stabilized, and any possible Dirac impulses will not be visible in

the output. For such cases it suffices for a system to be stabilizable or controllable rather

than impulse-free stabilizable or impulse-free controllable. When impulse-controllable

systems are considered, stabilizability and controllability are implied by the impulse-free

versions of these properties. The converse however is not necessarily true as was shown

in the at the beginning of this chapter.

In the case that Dirac impulses are allowed in the trajectory similar results as in the

previous section can be formulated. The crucial condition for impulse-free trajectories is

that the state is in the impulse-controlollable space of the next mode at each switching

instance. If this condition is dropped, a similar lemma as Lemma 4.11 can be formulated

after considering the following sequence of sets

W̃τ
0 (x0) = eA

diff
0 (t1−t0)Π0x0 +R0,

W̃τ
i (x0) = eA

diff
i (ti+1−ti)ΠiW̃τ

i−1(x0) +Ri, i > 0,
(4.14)

For x0 = 0 we drop the dependency on x0, i.e.,

W̃τ
i := W̃τ

i (0).
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Lemma 4.22. Consider the switched system (4.3) on some bounded interval (t0, tf ) with the
switching signal given by σ ∈ Sn. Then for all i = 0, 1, . . . , n

W̃τ
i (x0) =

ξ ∈ Rn

∣∣∣∣∣∣∣
∃ a solution (x, u)

of (4.3) on (t0, ti+1) s.t.
x(t+0 ) = x0 ∧ x(t−i+1) = ξ

.
Proof. The proof is along similar lines as the proof of Lemma 4.11 when Cimp

i is replaced

by Rn
for all i ∈ {1, 2, ..., n}.

It follows directly that W̃τ
i (x0) is an affine shift from W̃τ

i , whether the system is

impulse-controlollable or not. This is formalized in the next lemma.

Lemma 4.23. Consider the switched system (4.3) with switching signal σ ∈ Sn. Then W̃τ
i (x0)

is an affine shift of W̃τ
i , i.e. for all i there exists a matrix M̃i such that

W̃τ
i (x0) = {M̃ix0}+ W̃τ

i . (4.15)

Proof. Denote Yi = eA
diff
i (ti+1−ti)Πi for shorthand notation. Then for i = 0 we have M̃0 = Y0

satisfies (4.15). Hence assume the statement holds for i. Then if we define M̃i+1 = YiM̃i

for i+ 1 we have that

W̃τ
i+1(x0) = Yi+1W̃τ

i (x0) +Ri

= Yi({M̃ix0}+ W̃τ
i ) +Ri

= {YiM̃ix0}+ W̃τ
i+1

= {M̃i+1x0}+ W̃τ
i+1,

which proves the statement.

Lemma 4.24. Consider the DAE (4.3) with switching signal σ ∈ Sn. For any M̃i satisfying
(4.15) we have that

min
x∈W̃τ

i (x0)

|x| = |(I − ΠW̃τ
i
)M̃ix0|.

Proof. The proof of Lemma 4.24 is analogous to the proof of Lemma 4.18.

Theorem 4.25. Consider the switched DAE (4.3) with switching signal σ ∈ Sn. Then the system
is stabilizable if and only if for any M̃n satisfying (4.15)

‖(I − ΠW̃τ
i
)M̃n‖2 = sup

x 6=0

|(I − ΠW̃τ
i
)M̃nx|2

|x|2
< 1.

Proof. The proof follows the proof of Theorem 4.19 analogously.
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As was already shown at the beginning of this chapter, not every stabilizable system

that is also impulse-controllable, is automatically impulse-free stabilizable. This can be

explained by viewingWτ
i (x0) and W̃τ

i (x0) as affine subspaces. Note that since every

state that can be reached impulse-free from x0 is by definition also an element of W̃τ
i (x0).

This leads to the following result.

Lemma 4.26. Consider the switched system (4.3) with switching signal σ ∈ Sn and assume the
system is impulse-controllable. Then

Wτ
i (x0) ⊆ W̃τ

i (x0).

Proof. This follows immediately from Lemma 4.11 and 4.22.

As a consequence, we can state the following corollary.

Corollary 4.27. Consider the system (4.3) with switching signal σ ∈ Sn and assume it is
impulse-controllable. Then for anyMi satisfying (4.11) we have

W̃τ
i (x0) = {Mix0}+ W̃τ

i ,

i.e. Mi satisfies (4.15).

Proof. Let y ∈ Wτ
i (x0) ⊆ W̃τ

i (x0) and consider an arbitrary element x ∈ W̃τ
i (x0). Then

we have that x − y ∈ W̃τ
i . This means that x = y + η̃ for some η̃ ∈ W̃τ

i . However,

since the system is impulse-controllable, by Lemma 4.14 there exists an Mi such that

y = Mix0 + η for some η ∈ Wτ

i . This means that for any x ∈ W̃τ
i (x0) we obtain that

x = Mix0 + η + η̃ ⊂Mix0 + W̃τ
i (x0). This proves that W̃τ

i (x0) ⊆ {Mix0}+ W̃τ
i .

Consider α = Mix0 + η̃ for some η̃ ∈ W̃τ
i . Then sinceWτ

i ⊆ W̃τ
i there exists an η̄ ∈ W̃τ

i

and an η ∈ Wτ
i such that η̃ = η̄ + η. Hence we obtain that α = Mix0 + η̄ + η = β + η

for some β ∈ Wτ
i (x0) ⊂ W̃τ

i (x0). But this means that for some M̃i satisfying (4.15) and

η̂ ∈ W̃τ
i that α = M̃ix0 + η̂ + η. Because η̂ + η ∈ W̃τ

i we have that α ∈ W̃τ
i (x0). Since α

was chosen arbitrary, it follows that {Mix0}+ W̃τ
i ⊆ W̃τ

i (x0).

Given that a system is impulse-controllable and stabilizable, we have that there exists

an Mi satisfying (4.11) and we know that ‖(I − ΠW̃τ
i
)Mn‖2 < 1. However, the system

is impulse-free stabilizable if and only if ‖(I − ΠWτ
i
)Mn‖2 < 1. This is however not

implied by the statement that ‖(I − ΠW̃τ
i
)Mn‖2 < 1. Indeed, sinceWτ

i ⊆ W̃τ
i we have

that im(I − ΠW̃τ
i
) ⊆ im(I − ΠWτ

i
), which means that it could happen that there exists an

initial condition x0 6= 0 for which

|(I − ΠWτ
i
)Mnx0|

|x0|
> 1, and

|(I − ΠW̃τ
i
)Mnx0|

|x0|
< 1.
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Example 4.28. Again consider the example given in the at the beginning of this chapter.

Consider the system on the interval (0, tf ) with a switch at t = t1. The matrices

(E0, A0, B0) correspond the systemmatrices given in (4.1) and (E1, A1, B1) are the system

matrices given in (4.2). Then it follows from the algorithm (4.14) that the reachable space

of the switched system W̃τ
1 , a suitable matrix M̃1 and I − ΠW̃τ

1
are given respectively by

W̃τ
1 = span

{[
0
0
1
0
0

]}
, M̃1 =

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

]
, (I − ΠW̃τ

i
) =

[
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

]
.

From which it follows that ‖(I − ΠW̃τ
i
)M̃1‖ = 0 < 1 and hence the system is stabilizable.

Moreover, it is controllable. However, the impulse-free reachable space Kτ
1 can be

calculated from (4.10) and is given by

W1
τ

= 0, (I − ΠWτ
i
) = I, M1 =

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

]
= (I − ΠWτ

i
)M1,

from which it follows that ‖(I − ΠWτ
i
)M̃1|| = 1 and hence the system is not impulse-free

stabilizable.

Remark 4.29. In the case V0 becomes a control input after the switch the system would

be null-controllable, but not impulse-free null-controllable. Furthermore, since the state

of the initial condition can be reduced via an impulse-free trajectory, the system would

also become impulse-free (interval) stabilizable. However, since there is no way of

discharging the capacitor, it follows that there exists no input such that limt→∞ x(t) = 0.

Remark 4.30. All the results on stabilizability in this paper can be applied to switched

ordinary differential equations (ODEs) without difficulty. In the case of a switched ODE

we have Ei = I , Πi = I , Bdiff
i = Bi and A

diff
i = Ai. Note that all solutions are trivially

impulse-free, hence, impulse-free stabilizability is equivalent to stabilizability.

4.4 Concluding remarks

In this chapter we considered stabilizability of switched differential algebraic equa-

tions. It was shown that controllability, reachability and null-controllability are equiv-

alent concepts for switched DAEs. Furthermore, we have introduced the notion of

interval-stabilizability. Necessary and sufficient conditions for a DAE to be impulse-free

interval-stabilizable have been presented. These conditions lead naturally to a novel

characterization of impulse-free controllability of switched DAEs.

A natural future direction of research would be the investigation of controllers

achieving interval-stabilizability for switched systems. The theory established in this
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thesis could be used as starting point in the search (for feedback) controllers. Furthermore,

a natural extension would be to consider stabilizability properties of switched systems

with unknown switching signals.



5 | The linear quadratic optimal control

In the previous chapters we have been concerned with control problems that require the

controlled system to satisfy specific qualitative properties, such as impulse-controllability,

(impulse-free) controllability and stabilizability. In the present chapter we will take into

account quantitative aspects. Given a control system we will express the performance of

the controlled system in terms of a cost functional. The control problem will then be to

find all optimal controllers i.e., all controllers that minimize the cost functional. Such

controllers lead to a controlled system with optimal performance.

5.1 The linear quadratic regulator problem
Consider the switched differential algebraic system

Σσ

Eσẋ = Aσx+Bσu,

y = Cσx+Dσu,
x(t−0 ) = x0 ∈ V(E0,A0,B0), (5.1)

where σ ∈ Sn is the switching signal, Ep, Ap ∈ Rn×n
, Bp ∈ Rn×m

, Cp ∈ Rq×n
and

Dp ∈ Rq×m
, n,m, p, q ∈ N. As we consider distributional solutions (x, u) ∈ (D

pwC∞)n+m
,

it follows that the output y ∈ Dq
pwC∞ . We assume that the switching signal σ ∈ Sn is fixed

and known a priori. That is, the order in which the modes appear and the switching

times are assumed to be known. Hence the switched differential algebraic system (5.1)

can be regarded as a particular time-varying system.

For many applications it is desired to keep all components of the output as "small" as

possible. In the case of an initial value x0 ∈ kerE0, applying a zero input will cause the

state of the system to jump to the zero distribution x = 0 at t = t0 and evolve around this

stationary distribution. Consequently the output y will be the zero distribution as well.

However, in the case that the initial value x0 6∈ kerE, the output y will generally be some

non-zero distribution, even if no input is applied. However, we need to be careful when

we say that a distribution is "small".

In the case that the solution space consists of locally integrable functions, the L2 norm

squared of the output can be considered as a measure of the output. The requirement of

having the output as small as possible can then be expressed by requiring the L2 norm

of the output to be as small as possible by means of applying a suitable input. In the case

of non-switched DAEs and ODEs this optimal control problem is the well known linear

quadratic regulator problem for DAEs and ODEs. Since we adopt the piecewise-smooth

distributional framework as a solution space for switched DAEs, we cannot simply take

the L2 norm of the output as a measure. However, for switched DAEs we would like to

83
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formulate a similar problem within the distributional solution framework. Specifically,

as a distribution is not a function in the classical sense but a map from a function space to

the real numbers, the spaceD
pwC∞ cannot simply be equipped with the L2 norm. Instead,

the L2 induced norm of D
pwC∞ will be considered. To do so, the space of test-functions

C∞0 needs to be equipped with the L2 norm, such that the L2 induced norm of a linear

functional D ∈ D
pwC∞ is then given by

‖D‖2 = sup
ϕ∈C∞0
‖ϕ‖2=1

|D(ϕ)|. (5.2)

As solutions (x, u) of (5.12) generally contain Dirac impulses and Dirac impulses

are not induced by locally integrable functions, we need specify how to regard the L2

induced norm of the Dirac delta distribution, i.e., ‖δ‖2. The following result shows that

the Dirac delta is an unbounded distribution.

Lemma 5.1. Consider C∞0 equipped with the L2 norm. Then a distribution D ∈ D satisfies

‖D‖2 =

‖f‖L2 , D ∈ {fD | f ∈ L2},

∞, D 6∈ {fD | f ∈ L2}.

Proof. First we will show that ‖D‖2 = ‖f‖L2 if D is induced by an square integrable

function, i.e., D = fD for some f ∈ L2. Note that it follows from the Cauchy-Schwartz

inequality that

fD(ϕ) =

∫ ∞
0

f(t)ϕ(t) dt 6

(∫ ∞
0

f(t)2 dt

) 1
2
(∫ ∞

0

ϕ(t)2 dt

) 1
2

= ‖f‖L2‖ϕ‖L2 ,

which shows that ‖fD‖∞ 6 ‖f‖L2 . It remains to show that this upperbound is the smallest

upperbound. However, as C∞0 is dense in L2 [110, Theorem 3.14] there exists a sequence

{ϕn} ∈ C∞0 that converges to f ∈ L2. By continuity of fD we have that

lim
n→∞

fD

(
ϕn
‖f‖L2

)
= lim

n→∞

∫ ∞
0

f(t)ϕn(t)

‖f‖L2

dt =

(∫ ∞
0

f(t)2 dt

) 1
2

= ‖f‖L2 ,

which proves the result.

Next assume that D is not induced by a square integrable function. Recall that as C∞0
is dense in L2, their dual spaces are equal (see Lemma D.1 in Appendix D). Hence every

bounded linear map from C∞0 can be represented as fD for some f ∈ L2. Since D is not

induced by some f ∈ L2, it follows that

‖D(ϕ)‖2 =∞,

which concludes the proof.
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Remark 5.2. According to Lemma 5.1 the Dirac delta distribution is unbounded over C∞0
with respect to the induced L2 norm. Consequently we can conclude that the Dirac delta

is not a continuous linear functional [109, Theorem 1.32]. This might seem contradictory

as δ ∈ D, i.e., the space of linear and continuous functionals on C∞0 . However, continuity

of distributions D ∈ D is not defined in terms of the induced L2 norm, but with respect

to a different topology.

According to Lemma 5.1 it thus makes sense to consider the induced L2 norm of the

output y as a measure. Keeping the output as small as possible can thus be understood

as finding an input to (5.1) such that ‖y‖2 is as small as possible. As a direct consequence

of Lemma 5.1 we can conclude that if the ‖y‖2 is bounded for a given input, the output is

impulse-free.

Corollary 5.3. If there exists a distributional solution (x, u) ∈ (DpwC∞)n+m of (5.1) such that
‖y‖2 <∞ then y is impulse-free. Moreover, y is generated by some piecewise-smooth function.

As the output is required to be impulse-free in order for an optimal control to exist

we assume that for each x0 ∈ V(E0,A0,B0) there exists a solution (x, u) satisfying x(t−0 ) = x0

such that the corresponding output is impulse-free. Abusing notation slightly, we can

write

‖y‖2 =

∫ ∞
0

‖y(t)‖2 dt, (5.3)

where ‖ · ‖ denotes the Euclidean norm.

In the case the piecewise-smooth distributions are considered as solutions of (5.1),

the solution x is uniquely determined by the input u and the initial value x(t−0 ). Hence

there is mathematically no problem considering the whole space

(
D

pwC∞
)m

as the input

space. However, from a practical point of view impulsive inputs are often undesirable as

Dirac impulses are difficult to generate. Therefore, we would like to focus on finding an

impulse-free input that minimizes (5.3). In that case the optimal control problem for

switched DAEs within the distributional framework can be formulated as follows.

Problem 5.4. Consider the system (5.1). Find an impulse-free input u ∈ (D
pwC∞)m that

solves the following problem:

min J(x0, u) =

∫ ∞
t0

‖y(t)‖2 dt,

s.t. Eσẋ = Aσx+Bσu,

y = Cσx+Dσu,

x(t−0 ) = x0 ∈ V(E0,A0,B0).

(5.4)
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Here y(t) denotes the output generated by the solution (x, u) satisfying x(t−0 ) = x0. A

solution (x, u) for which (5.2) is minimal for all u ∈ Dm
pwC∞ will be referred to as an

optimal solution and we will call x and u the optimal trajectory and optimal control

respectively.

Since the switched differential algebraic system (5.1) is linear and the integrand in

the cost functional is a quadratic function of y, the problem is called linear quadratic.
Of course ‖y‖2 = x>C>σ Cσx + 2u>D>σ Cσx + u>D>σDσu, so the integrand can also be

considered as a quadratic functional of (x, u). As an infinite time horizon is considered

in this problem, it is referred to as the infinite horizon problem.

Due to the quadratic nature of the cost functional and the linearity of the constraints

Problem 5.4 we are also able to prove the following necessary results. Namely, if there

exists an input that solves Problem 5.4, there exists a linear map between the optimal

input and the optimal trajectory. To prove this result, we first define the value function

V (x, t) as follows.

Definition 5.5. Consider Problem 5.4. The value function V (x, t) is defined as

V (x0, t) = inf
u
J(x0, u) = inf

u

∫ ∞
t

‖Cσx(t) +Dσu(t)‖2 dt, (5.5)

where (x, u) is a local solution of (5.1) on [t,∞) satisfying x(t−) = x0.

The proof of the next results is along similar lines as the proof of Clements and

Anderson in [19], but for the sake of completeness the proof is included here.

Lemma 5.6. If there exists an input u ∈ (DpwC∞)m that solves Problem 5.4 then u(t) = F (t)x(t)

for some F : R→ Rm×n.

Proof. First we will show that the map x0 7→ u is linear, where x(t−0 ) = x0 and u solves

Problem 5.4; in particular, we will show that λu is the optimal control for any initial value

λx0 and that for any optimal inputs ux, uz corresponding to any initial values x0, z0 ∈ Rn

the input ux + uz is optimal for any initial value y0 = x0 + z0.

To that extent, let V (x0, t) be the value function as defined in Definition 5.5. Applying

the input λu to an initial condition λx0 results in a trajectory λx, due to the linearity of

solutions of the switched DAE. This means that J(λx0, λu) = λ2J(x0, u) for any λ ∈ R
and we can conclude that

λ2V (x0, t0) = λ2J(x0, u) = J(λx0, λu) = V (λx0, t0). (5.6)

Hence we can conclude that if u is the optimal input for x0 that λu is the optimal input

for λx0. In the following we will prove if u and w are the optimal inputs for x0 and z0
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respectively, that u+ w is the optimal input for x0 + z0. To do so, it will be shown that

V (x0 + z0, t0) + V (x0 − z0, t0) = 2V (x0, t0) + 2V (z0, t0). Observe that

‖Cσ(x+ z) +Dσ(u+ w)‖2 + ‖Cσ(x− z) +Dσ(u− w)‖2

= (Cσ(x+ z) +Dσ(u+ w))> (Cσ(x+ z) +Dσ(u+ w))

+ (Cσ(x− z) +Dσ(u− w))> (Cσ(x− z) +Dσ(u− w))

= 2(Cσx+Dσu)>(Cσx+Dσu) + 2(Cσz +Dσw)>(Cσz +Dσw)

= 2‖Cσx+Dσu‖2 + 2‖Cσz +Dσw‖,

from which we can conclude that

J(x0 + z0, u+ w) + J(x0 − z0, v − w) = 2J(x0, u) + 2J(z0, w). (5.7)

Hence for all input u and w (and thus not necessarily the optimal ones) we obtain

V (x0 + z0, t0) + V (x0 − z0, t0) 6 J(x0 + z0, u+ w) + J(x0 − z0, u− w)

= 2J(x0, u) + 2J(z0, w),

which means that V (x0 + z0, t0) + V (x0 − z0, t0) 6 2V (x0, t0) + 2V (z0, t0). Conversely

2V (x0, t0) + 2V (z0, t0) 6 2J(x0, u) + 2J(z0, w)

= J(x0 + z0, u+ w) + J(x0 − z0, u− w),

from which we can conclude that 2V (x0, t0) + 2V (z0, t0) 6 V (x0 + z0, t0) + V (x0 − z0, t0)

and therefore the equality V (x0 + z0, t0) + V (x0 − z0, t0) = 2V (x0, t0) + 2V (z0, t0) follows.

Furthermore, if vx is the optimal input for x and wz is the optimal input for z then

V (x0 − z0, t0) + V (x0 + z0, t0) = 2V (x0, t0) + 2V (z0, t0)

= 2J(x0, ux) + 2J(z0, wz)

= J(x0 + z0, ux + wz) + J(x0 − z0, ux − wz).

Since V (x0 + z0, t0) 6 J(x0 + z0, ux+wz) and similarly V (x0− z0, t0) 6 J(x0− z0, ux−wz),
it follows that

0 6 J(x0 + z0, ux +wz)− V (x0 + z0, t0) = V (x0− z0, t0)− J(x0− z0, ux−wz) 6 0,

and thus

V (x0 + z0, t0) = J(x0 + z0, ux + wz),

which also shows that ux + wz is optimal for x0 + z0.



88 CHAPTER 5. THE LINEAR QUADRATIC OPTIMAL CONTROL

Hence there exists a linear map between the optimal trajectory and the optimal input.

In particular, the map x(t−0 ) 7→ u(t+0 ) is linear, i.e., there exists a matrix F (t0) ∈ Rm×n

such that u(t0) = F (t0)x(t−0 ).

From the dynamic programming principle [4, 12] it follows that u[τ,tf ) is the optimal

control for the cost function in Problem 5.4 considered on the interval [τ, tf ) for any

τ ∈ [t0, tf ), hence by replacing the initial time t0 in the above argumentation by τ ∈ [t0, tf )

we can conclude that for every τ ∈ [t0, tf ) a matrix F (τ) ∈ Rm×n
exists such that the

optimal control satisfies u(τ) = F (τ)x(τ−).

Given this result, it follows as a corollary that if Problem 5.4 is solvable, the optimal

cost is a quadratic function of the initial value. That is, if u is an input that solves

Problem 5.4 and J(x0, u) is the corresponding optimal cost, we obtain the following

result.

Corollary 5.7. If there exists an input that solves Problem 5.4 then the optimal cost J(x0, u) is
quadratic in x(t−0 ), i.e.,

J(x0, u) = x(t−0 )>K(t0)x(t−0 ),

for some K : R→ Rn×n.

Proof. Given the optimal feedback u = K(t)x it follows that the value function is given

by

V (x0, t0) =

∫ ∞
t0

‖y(t)‖2 dt =

∫ ∞
t0

‖(Cσ +DσF (t))x(t)‖2 dt.

Observe that the value function only depends on x0 as the trajectory x is uniquely

determined by this initial value and the optimal input. Clearly V (λx0, t0) = λ2V (x0, t0).

Now consider the function defined as follows for a fixed t0

V (x0, z0, t0) := V (x0 + z0, t0)− V (x0, t0)− V (z0, t0).

Then by noting that the optimal control is linear in the state it follows that

1

2
V (x0, z0, t0) =

1

2

(
J(x0 + z0, F (x+ z))− J(x0, Fx)− J(z0, Fz)

)
=

∫ ∞
t0

((Cσ +DσF (t))x(t))>((Cσ +DσF (t))z(t)) dt.

Therefore, V (αx0, z0, t0) = V (x0, αz0, t0) = αV (x0, z0, t0) for α ∈ R, which shows that

V (x0, z0, t0) is bilinear in x0 and z0. This proves that V (x0, t0) is quadratic in x0, which

means there exists a K(t) ∈ Rn×n
such that

V (x0, t0) = x>0 K(t0)x̄0,

which proves the desired result.
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Remark 5.8. Although we consider optimal control of switched DAEs with a fixed

switching signal, i.e., the order in which the modes appear and the switching times are

known a priori, Corollary 5.7 has several consequences for the case that the switching

signal is considered an input. If chattering behavior is excluded and thus σ ∈ Sn, it
follows that if there exists a solution (x, u, σ) for which ‖y‖2 is minimal, it follows from

Corollary 5.7 that for this particular switching signal

J(x0, u, σ) = x(t−0 )>K(t0)x(t−0 ).

Hence if there exists an optimal sequence in which the modes appear together with an

optimal set of mode durations the optimal cost will be quadratic in the initial value.

The fact that we can regard the switched system (5.1) as a piecewise continous

time-varying system allows for a dynamic programming approach to Problem 5.4. The

approach relies on the principle of optimality as formulated by Bellman [4]. For the sake

of completeness we state this principle with Problem 5.4 in mind.

Lemma 5.9. Consider Problem 5.4. For all ∆t ∈ (t0,∞) the value function satisfies

V (x0, t) = inf
u[t0,t0+∆t)

{∫ t0+∆t

t0

‖Cσx(t) +Dσu(t)‖2 dt+ V
(
t0 + ∆t, x(t0 + ∆t−)

)}
.

Proof. Let

V (x0, t) = inf
u[t0,t0+∆t)

{∫ t0+∆t

t0

‖Cσx(t) +Dσu(t)‖2 dt+ V
(
t0 + ∆t, x(t0 + ∆t−)

)}
,

where x is a local solution of (5.1) satisfying x(t−) = x0. By definition of the infimum

there exists for every ε > 0 an input uε on [t,∞) such that V (x0, t) + ε = J(x0, uε).

Consequently we have

J(x0, uε) =

∫ t0+∆t

t0

‖Cσxε(t) +Dσuε(t)‖2 dt+ J(x(t+ ∆t), uε)

>
∫ t0+∆t

t0

‖Cσxε(t) +Dσuε(t)‖2 dt+ V (x(t+ ∆t), t+ ∆t)

> V (x0, t).

Since ε can be chosen arbitrarily it follows that V (x0, t) 6 V (x0, t).
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Conversely, we have

V (x0, t) = inf
u

∫ ∞
t

‖Cσx(t) +Dσu(t)‖2dt

= inf
u

∫ t+∆t

t

‖Cσx(t) +Dσu(t)‖2dt+

∫ ∞
t+∆t

‖Cσx(t) +Dσu(t)‖2dt

6 inf
u

∫ t+∆t

t

‖Cσx(t) +Dσu(t)‖2dt+ V (x(t+ ∆t), t+ ∆t)

6 inf
u[t,t+∆t)

{∫ t+∆t

t

‖Cσx(t) +Dσu(t)‖2dt+ V (x(t+ ∆t), t+ ∆t)

}
= V (x0, t)

and hence we can conclude that V (x0, t) = V (x0, t)

It follows from Lemma 5.9 that (x, u) is optimal on [t0,∞) if and only if (x, u)[t,∞) is

optimal for all t ∈ [t0,∞). Hence if there exists optimal control on the interval [tn,∞) and

the resulting optimal cost is given by x(t−n )>Pnx(t−n ) for some Pn ∈ Rn×n
, the problem of

minimizing J(x0, u) in (5.4) on the interval [t0,∞) reduces to the optimization of

J(x0, u, tn) =

∫ tn

t0

‖y(t)‖2 dt+

∫ ∞
tn

‖y(t)‖2 dt

=

∫ tn

t0

‖y(t)‖2 dt+ x(t−n )>Pnx(t−n ). (5.8)

Regarding the cost functional (5.8) several observations can be made. First of all, as

at t = tn the nth
mode is already active, it remains to minimize (5.8) on the half open

interval [t0, tn). Due to the algebraic state variables of the mode active on [tn−1, tn) the

state x(t−n ) is not necessarily equal to x(tn). Moreover, it might not even be well-defined.

The second observation is that the terminal cost matrix Pn in (5.8) can only be assumed

to be positive semi-definite, as the nth
mode is not necessarily structurally related to

the (n − 1)st
mode. Hence even if each mode of (5.1) would be index-1 (and hence

impulse-free for all impulse-free inputs), an optimal control might fail to exist as is

illustrated in the next example.

Example 5.10. Consider the switched DAE with σ ∈ Sn generated by the matrices

E0 = [ 1 0
0 0 ] A0 = [ 0 0

0 1 ] , B0 = [ 0
−1 ] , C0 = I, D0 = 1,

E1 = [ 1 0
0 1 ] , A1 =

[ −1 0
0 −1

]
, B1 = [ 0

0 ] , C1 = 2 [ 1 1
1 1 ] , D1 = 1.

i.e., we consider the switched DAE given by

[ 1 0
0 0 ] ẋ = [ 0 0

0 1 ]x+ [ 0
−1 ]u, t0 6 t < t1, (5.9a)

ẋ =
[ −1 0

0 −1

]
x, t1 6 t <∞, (5.9b)
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with x(t−0 ) = [ x0
y0 ] for some x0, y0 ∈ R and the cost functional

J(x0, u) =

∫ ∞
t0

‖Cσx(t) +Dσu(t)‖2 dt

=

∫ t1

t0

(x1(t)2 + x2(t)2 + u(t)2) dt+

∫ ∞
t1

(x1(t) + x2(t))2 + u(t)2 dt.

Note that the input does not affect the system on [t1,∞). Since a nonzero input yields

a nonzero cost resulting from this interval, we can conclude that the optimal input

on [t1,∞) satisfies u[t0,∞) = 0 and hence the state x on the interval [t1,∞) is given by

x(t) = e−tx(t−1 ). Consequently the cost resulting from this interval is given by∫ ∞
t1

2(x1(t) + x2(t))2 + u(t)2 dt =

∫ ∞
t1

x(t)> [ 1 1
1 1 ]x(t) dt

= x(t−1 )>P1x(t−1 )

∫ ∞
t1

e−t dt

= x(t−1 )>P1x(t−1 ),

where P1 = [ 1 1
1 1 ]. Note that this result can also be computed via the standard theory on

the LQR problem with infinite horizon for ordinary differential equations, see e.g. [127].
Hence if there exists an input to (5.9) that minimizes J(x0, u) then there exists an

input to (5.9a) that minimizes

J(x0, u) =

∫ t1

t0

(x1(t)2 + x2(t)2 + u(t)2)dt+ x(t−1 )>P1x(t−1 ),

in which a finite horizon LQR problem for DAEs can be recognized.

Considering t0 = 0 and t1 = 1 and observing that (5.9a) states that x2(t) = −u(t) as

well as x1(t) = x0 on [0, 1) leads, after substitution, to

J(x0, u) = x2
0 + 2

∫ 1

0

u(τ)2dτ + (x0 + u(1−))2 > x2
0.

By choosing u(t) = 0 on [0, 1− ε) for some ε > 0 and u(t) = −x0 on [1− ε, 1), we obtain

J(x0, u) = x2
0 + 2

∫ 1

1−ε
u(t)2 = (1 + 2ε)x2

0.

This shows that infu J(x0, u) = x2
0. However for any input for which u(1−) = −x0 6= 0 we

have that infu J(x0, u) < J(x0, u), because
∫ 1

0
u(t)2 dt > 0. Hence there does not exist an

optimal control. �

Remark 5.11. In the case of a structural relationship between the mode of interest

and the corresponding terminal cost matrix, the consideration of x(t) or x(t−) in the

terminal cost might be indifferent. When for example the terminal cost matrix Pn is of
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the form Pn = E>n−1P̄nEn−1 for some positive semi-definite P̄n and En−1x is a continuous

distribution on [tn−1, tn), it follows that

x(t−n )>Pnx(t−n ) = x(tn)
>Pnx(tn).

and hence there is no difference in considering x(t−n ) or x(tn) in the terminal cost. Indeed,

if En−1x is continuous, it follows that En−1x is induced by a continuous function and

hence En−1x(t−) = En−1x(t). Hence the first and the second observation are closely

related.

Although it might seem that a terminal cost of the form E>n−1P̄nEn−1 is necessary,

this is not the case. The following example shows that this is indeed only a sufficient

condition.

Example 5.12. Consider the switched DAE generated by the matrices

E0 = [ 1 0
0 0 ] A0 = [ −1 0

0 1 ] , B0 = [ 0
−1 ] , C0 = I, D0 = 1,

E1 = [ 0 0
0 1 ] , A1 =

[ −1 0
0 −1

]
, B1 = [ 1

0 ] , C1 = I, D1 = 1.

That is, we consider the switched DAE given by

[ 1 0
0 0 ] ẋ = [ 0 0

0 1 ]x+ [ 0
−1 ]u, t0 6 t < t1, (5.10a)

[ 0 0
0 1 ] ẋ =

[ −1 0
0 −1

]
x+ [ 1

0 ]u, t1 6 t <∞, (5.10b)

with x(t−0 ) = [ x0
y0 ] for some x0, y0 ∈ R and the cost functional

J(x0, u) =

∫ ∞
t0

‖Cσx(t) +Dσu(t)‖2dt

=

∫ t1

t0

2(x1(t)2 + x2(t)2 + u(t)2) dt+

∫ ∞
t1

x1(t)2 + x2(t)2 + u(t)2dt.

For an input with u = 0 on [t1,∞) the solution on (t1,∞) is given by e−t
[

0
x2(t−1 )

]
and

thus the cost resulting form this interval is given by x2(t−1 )2
. Clearly this is minimal on

the interval [t1,∞) and thus it remains to minimize

J(x0, u) =

∫ t1

t0

2(x2
1 + x2

2 + u2) + x2(t−1 )2. (5.11)

subject to (5.10a). The input given by u(t) = 0 for all t ∈ [0, 1) results in J(x0, u) = x1(t−0 )2
,

which is clearly minimal. The terminal cost matrix in (5.11) is not of the formE>0 PE0 and

thus this example shows that a terminal cost weight matrix of this form is not necessary

for existence of an optimal control. �
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The third observation to be made regarding the cost functional (5.8), is that x(t−n ) is

necessarily such that the output is impulse-free on [tn,∞). In general, there does not exist

a solution (x, u) satisfying x(t−n ) = xn for which the output y(t) is impulse-free on [tn,∞)

for all xn ∈ Rn
. However it is not difficult to show that the values for which there exists a

solution (x, u) with x(t−n ) = xn generating an impulse-free output form a subspace Vend
.

Consequently, if we aim to solve Problem 5.4 via a dynamic programming approach,

we have to optimize over all inputs that transfer the initial value to a state x(t−f ) ∈ Vend
.

These observations together give rise to the following finite horizon problem.

Problem 5.13. Consider the system (5.1). Find an impulse-free input u ∈ (D
pwC∞)m that

solves the following problem:

min J(x0, u, tf ) =

∫ tf

t0

‖y(t)‖2 dt+ x(t−f )Px(t−f ),

s.t. Eσẋ = Aσx+Bσu,

y = Cσx+Dσu,

x(t−0 ) = x0 ∈ V(E0,A0,B0),

x(t−f ) ∈ Vend,

where Vend ⊆ Rn
is a subspace. Here y(t) denotes the output generated by the solution

(x, u) satisfying x(t−0 ) = x0. A solution (x, u) for which (5.2) is minimal for all u ∈ Dm
pwC∞

will be referred to as an optimal solution and we will call x and u the optimal trajectory

and optimal control respectively.

Lemma 5.14. If there exists an input u ∈ (DpwC∞)m that solves Problem 5.13 then u(t) =

F (t)x(t) for some F : R→ Rm×n.

Proof. Let u be an input such that the solution (x, u) with x(t−0 ) = x0 satisfies x(t−f ) ∈ Vend

and let ū be such that a solution (x̄, ū) with x̄(t−0 ) = x̄0 satisfies x̄(t−f ) ∈ Vend
. Then

by linearity of solutions, it follows that the input ũ = u + ū results in a solution (x̃, ũ)

satisfying x̃(t−f ) ∈ Vend
if x̃(t−0 ) = x̃0 = x0 + x̄0. Given, this observation, the proof is

analogous to the proof of Lemma 5.6, which is given in Appendix D.

Similar to Corollary 5.7 we can also state the following result.

Corollary 5.15. If there exists an input that solves Problem 5.13 then the optimal cost J(x0, u)

is quadratic in x(t−0 ), i.e.,

J(x0, u) = x(t−0 )>K(t0)x(t−0 ),

for some K : R→ Rn×n.
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The proof is analogous to the proof of Corollary 5.7, which is given in Appendix D. In

order to solve the problem, we can first solve the finite horizon problem given a switched

system on [t0, tf ) by solving n finite horizon problems for non switched differential

algebraic equations, each on [ti, ti+1), i ∈ [0, 1, ..., n− 1).

In the following section we will present necessary and sufficient conditions for

solvability of Problem 5.13 for some system with a constant switching signal, i.e., a non-

switched DAE. These conditions will enable us to formulate conditions for solvabvility

of the general case as we can regard the general case as a repeated non-switched DAE

optimal control problem.

5.2 Finite horizon optimal control
In this section we will consider the finite horizon optimal control problem for non-

switched differential algebraic equations on a finite horizon. Hence we consider the

following system:

Σ :=

{
Eẋ = Ax+Bu,

y = Cx+Du,
(5.12)

together with the following cost functional

J(x0, u, tf ) =

∫ tf

t0

‖y(t)‖2 dt+ x(t−f )>Px(t−f ). (5.13)

We study this problem within the framework of switched DAEs. Consequently we

have to assume that the initial trajectory is a solution of the previous mode and thus

the initial value is not necessarily consistent. As a consequence, we have to consider

arbitrary initial values x(t−0 ) = x0 ∈ Rn
.

However, in order for (5.13) to be finite, it is necessary that the output is impulse-free

on [t0, tf ) and at t0 in particular. There exists an impulse-free input u such that the

solution (x, u) satisfying x(t−0 ) = x0 results in an impulse-free output if and only if x0

contained in a particular subspace.

Lemma 5.16. There exists an impulse-free input u ∈ (DpwC∞)m such that for the solution (x, u)

satisfying x(t−0 ) = x0 of (5.12) the output is impulse-free at t0, i.e., y[t0] = Cx[t0] +Du[t0] = 0,
if and only if x0 ∈ Cimp +Oimp where

Oimp := ker

 CEimp

C(Eimp)2

...
C(Eimp)ν−1

 , (5.14)

and ν is the index of nilpotency of Eimp.
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Proof. (⇒) Suppose that there exists an impulse-free input such that y[t] = 0. Then

since the input u is impulse-free, i.e., u[t] = 0, it follows that y[t] = Cx[t] +Du[t] = Cx[t].

Consequently, the output is impulse-free for a given impulse-free input if and only if

x[t] ∈ kerC. In the case u[t] = 0 then it follows from the solution formula (2.14) that

Cx[t] = −C
ν−1∑
i=0

(Eimp)i(I − Π)(x0 − x(t+0 ))δ(i) = 0.

Consequently (I − Π)(x0 − x(t+0 )) ∈ kerC(Eimp)i, for i ∈ {1, 2, ..., ν − 1}. Hence we can

conclude that (I − Π)(x0 − x(t+0 )) ∈ Oimp
. Since (I − Π)x(t+0 ) ∈ Cimp

it follows that

(I − Π)x0 ∈ Oimp + Cimp
. Finally, by recalling that im Π ⊆ Cimp

we can conclude that

x0 = Πx0 + (I − Π)x0

∈ Cimp +Oimp,

which proves the desired result.

(⇐). Let x0 = p0 + q0 for some p0 ∈ Cimp
and q0 ∈ Oimp

. Then by definition of Cimp

there exists an impulse-free input u such that (p, u) satisfying p(t−0 ) = p0 is impulse-free,

i.e., p[t] = 0 for all t > t0. Furthermore, as Eimp(I − Π) = Eimp
the solution (q, 0) with

q(t−0 ) = q0 will satisfy

Cq[t0] = −C
ν−1∑
i=0

(
Eimp

)i+1
(I − Π) q0δ

(i)

= −C
ν−1∑
i=0

(
Eimp

)i+1
q0δ

(i)

= 0.

Hence the solution (q, 0) with q(t−0 ) = q0 will only generate a Dirac impulse at t0, which

will not appear in the output y. By linearity of solutions, (x, u) with x(t−0 ) = x0 will

satisfy x(t) = p(t) + q(t) and hence

y[t] = Cx[t] +Du[t]

= C(p[t] + q[t])

= Cq[t]

= 0.

Hence u is an impulse-free input such that (x, u) with x(t−0 ) = x0 ensures y[t] = 0.

As the condition x0 ∈ Cimp +Oimp
is necessary and sufficient for the existence of an

impulse-free output, it is a necessary condition for the existence of an impulse-free input

that minimizes (5.13), subject to (5.12). However, it suffices to consider initial values
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contained in Cimp
only. Indeed, let c1, ..., cp be a basis for Cimp

and let cp+1, ..., cj be vectors

that are orthogonal to c1, ..., cp and are such that c1, ..., cj is a basis for Cimp +Oimp
. Then

clearly, span{cp+1, ..., cj} ⊆ (Cimp)⊥, but equality does not hold in general. A solution

(x, ū) with x(t−0 ) ∈ span{cp+1, ..., cj} and ū = 0 will thus satisfy x(t−) = 0 for t ∈ (t0,∞)

and a Dirac impulse will occur at t0, although the output will remain impulse-free.

Consequently y = 0 and the input is clearly optimal. Hence it remains to find an optimal

input u for initial values x(t−0 ) ∈ Cimp
.

As the DAE (5.12) is assumed to be part of a switched DAE, we assume that the

terminal cost matrix P ∈ Rn×n
is some arbitrary positive semi-definite matrix resulting

from the cost on the interval [tf ,∞). Furthermore, we assume that in order to prevent

Dirac impulses from occuring in the output at tf , i.e., to ensure y[tf ] = 0, it is required

that x(t−f ) ∈ Vend
for some subspace Vend ⊆ Rn

. Hence we restrict our attention to those

inputs which transfer an initial condition x0 ∈ Cimp
to some state x(t−f ) ∈ Vend

.

For this particular case Problem 5.13 can be reformulated as follows.

Problem 5.17. Consider the system (5.12). Find an impulse-free input u ∈ (D
pwC∞)m that

solves the following problem:

min J(x0, u, tf ) =

∫ tf

t0

‖y(t)‖2 dt+ x(t−f )Px(t−f ),

s.t. Eẋ = Ax+Bu,

y = Cx+Du,

x(t−0 ) = x0 ∈ Cimp,

x(t−f ) ∈ Vend,

where Vend ⊂ Rn
is some subspace. Here y(t) denotes the output generated by the

solution (x, u) satisfying x(t−0 ) = x0.

5.2.1 Reformulation of the problem

In the following we will show that although (5.12) might be of higher index, solvability

of Problem 5.17 is equivalent to an optimal control problem concerning an index-1 DAE.

Because the initial values are considered to be in the impulse controllable space, i.e.,
x0 ∈ Cimp

the input output behavior of (5.12) is equivalent to an impulse-controllable

DAE. Hence we can instead of (5.12) itself, equivalently consider the impulse-controllable

representation of (5.12) as a constraint in (5.17). That is, we consider

EWẋ = Ax+Bv, (5.15)

y = Cx+Dv, (5.16)
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whereW is given as in (2.18). Recall that by Corollary 2.45 the DAE (5.15) is impulse-

controllable, and hence by Lemma 2.41 we can apply a preliminary feedback of the form

u = Lx+ v such that we obtain the system

Σaux :

{
EWẋ = (A+BL)x+Bv,

y = (C +DL)x+Dv,
(5.17)

which is of index-1. The following result shows that instead of trying to find an optimal

input u, we can try to find an optimal input v such that the input u = Lx+ v is optimal

for Problem 5.17.

Lemma 5.18. Consider Problem 5.17 and let Cimp be the impulse-controllable space corresponding
to the DAE (E,A,B). There exists an input u ∈ DpwC∞ that solves Problem 5.17 if and only if
there exists an input v ∈ (DpwC∞)m that solves

min J̄(x0, v) =
∫ tf
t0
‖(ȳ(t)‖2 dt+ x(t−f )>Px(t−f ),

s.t. EWẋ = (A+BL)x+Bv,

ȳ = (C +DL)x+Dv,

x(t−0 ) = x0 ∈ Cimp,

x(t−f ) ∈ Vend,

(5.18)

whereW is given as in (2.18). Furthermore, the optimal inputs satisfies u = Lx+ v, where (x, v)

is the optimal solution of (5.18).

Proof. As x0 ∈ Cimp
it follows form Corollary 2.45 that the solution (x, u) solves (5.12)

if and only if it solves (5.15). Hence we will consider solutions of (5.15). Applying a

feedback to (5.15) can be regarded as a change of coordinates[
x

u

]
=

[
I 0

L I

][
x̄

v

]
. (5.19)

Writing (5.15) as

[
EW 0

] [ẋ
u̇

]
=
[
A B

] [x
u

]
,

enables us to write[
EW 0

] [ ˙̄x

v̇

]
=
[
EW 0

] [ẋ
u̇

]
=
[
A B

] [I 0

L I

][
x̄

v

]
=
[
(A+BL) B

] [x̄
v

]
.

Hence (x, u) solves (5.15) if and only if, (x̄, v) satisfying (5.19) solves (5.17). Furthermore,

it follows naturally from that if u = Lx+ v that J(x,0 u) = J̄(x̄0, v).
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In the remainder of this section we assume that the index-reducing feedback has

already been applied, i.e., we assume that (EW,A) is of index-1, whereW is given as

in (2.18). Under this assumption we will show that given the index-1 system (5.12)

Problem 5.17 can be reformulated as an equivalent optimal control problem for ordinary

differential equations. This problem will not be a standard LQR problem for ODEs

as the value of the input at t−f will be penalized by the terminal cost. However, this

equivalent problem will be easier to analyze. Given that the DAE (5.12) is index-1, let

the (Π,Πdiff ,Πimp) be the matrices resulting from the Wong sequences based on (EW,A)

and define

Adiff = ΠdiffA, ,Bdiff = ΠdiffB, Bimp = ΠimpB.

Then we can decompose the state as

x = xdiff + ximp

= xdiff −Bimpu (5.20)

and substitute (5.20) in the output y of (5.12). The following ODE system, which has the

same input-output behavior is then obtained:

Σ :=

{
ẋdiff = Adiffxdiff +Bdiffu,

ȳ = C̄xdiff + D̄u,
xdiff(t−0 ) = Πx0, (5.21)

where C̄ = CΠ and D̄ = (D − CBimp).

Remark 5.19. Any solution (xdiff , u)of (5.21) satisfyingxdiff(t−0 ) ∈ im Π satisfiesΠxdiff(t) =

xdiff(t) for all t > t0. This follows from the fact that ΠAdiff = Adiff
and ΠBdiff = Bdiff

.

Consequently the solution xdiff
will satisfy Cxdiff = CΠxdiff

, which shows that there is in

fact no difference in defining C̄ = C or C̄ = CΠ. However, for computational reasons

which will become apparent later, it is of more convenience to define C̄ = CΠ.

To find necessary and sufficient conditions for solvability of Problem 5.17 we can

thus either approach it with the DAE dynamics directly or, after some rewriting, with

the ODE dynamics (5.21) and the cost functional

J̄(x0, u) =

∫ tf

t0

‖ȳ(t)‖2 dt+
(
xdiff(t−f )−Bimpu(t−f )

)>
P
(
xdiff(t−f )−Bimpu(t−f )

)
.

This leads to the following problem formulation which is equivalent to Problem 5.17:
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Problem 5.20. Consider the system (5.21). Find an impulse-free input u ∈ (D
pwC∞) that

solves the following problem:

min J̄(x0, u, tf ) =
∫ tf
t0
‖ȳ(t)‖2 dt

+((xdiff −Bimpu)(t−f ))>P ((xdiff −Bimpu)(t−f )),

s.t. ẋdiff = Adiffxdiff +Bdiffu,

ȳ = C̄xdiff + D̄u,

xdiff(t−0 ) = Πx0,

x(t−f ) = xdiff(t−f )−Bimpu(t−f ) ∈ Vend,

(5.22)

where Adiff , Bdiff
and Bimp

are the matrices resulting from the Wong-sequences based on

(EW,A). Furthermore C̄ = CΠ and D̄ = D − CBimp
.

Lemma 5.21. Consider the DAE (5.12) with the corresponding impulse-controllable space Cimp.
If the matrix pair (EW,A) whereW is given as in (2.18) is of index-1, then an input u solves
Problem 5.17 if and only if it solves Problem 5.20.

Recall that the Dirac impulse is an unbounded distribution with respect to the ‖ · ‖2

norm. Hence to ensure that the optimal control is generated by an L2 integrable function,

i.e., impulse-free, it is often assumed that any Dirac impulse in the input, results in

a Dirac impulse in the output. This is the case for the output in Problem 5.20 if the

feedforward term D̄ has full column rank.

Lemma 5.22. If D̄ has full column rank, then ȳ[t] = 0 implies u[t] = 0.

Proof. We will proof the statement by contradiction. Suppose that ȳ[t] = 0, but the input

u[t] =
∑j

i=0 ciδ
(i)
t for some real constants c0, c1, ..., cj ∈ R and some j ∈ N. We will show

that ci = 0 for all i ∈ {1, 2, ..., j}. Note that

ȳ[t] = C̄xdiff [t] + D̄u[t].

However, as xdiff
is the solution of ẋdiff = Adiffxdiff +Bdiffu, it follows that the component

xdiff [t] =
∑j−1

i=0 ξiδ
(i)
t where the coefficient vectors ξi are generated by the backward

recursion

ξj := 0, ξi−1 = Adiffξi +Bci, (i = j, ...0),

see [127, Thrm 8.5] and thus xdiff [t] is of one order less then u[t]. As the Dirac impulse and

its derivatives are linearly independent, the statement ȳ[t] = 0 thus implies D̄cjδ
(j) = 0.

This can only be the case if cj = 0. Consequently, we can write u =
∑j−1

i=0 ciδ
(i)
t and by

repeating the argument above it follows that cj−1 = 0. Repeating this argument j times,

lead to the conclusion that ci = 0 for all i ∈ {1, 2, ..., j}which implies u[t] = 0.
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In order to ensure that the columns of D̄ are linearly independent, we make the

following assumption.

Assumption 5.23. The output matrices of the system (5.12) are assumed to satisfy

rank
[
CΠkerE D

]
= m,

where ΠkerE is a projector onto kerE.

Remark 5.24. In the literature on optimal control on DAEs it is often assumed that the

matrix D has full column rank, in addition to some rank condition on the matrix C, see

e.g., [8]. However, since we only require D̄ to have full column rank, this assumption is

too strict. It was also observed in [104] invertibility of D>D is an artificial assumption in

optimal control of differential algebraic equations.

Lemma 5.25. Let Assumption 5.23 hold. Then D̄ := D − CBimp has full column rank.

Proof. Let v ∈ Rm
be some vector. Then as Bimp ⊆ kerE it follows that Bimp = ΠkerEB

imp

for any projector ΠkerE . Consequently it follows from Assumption 5.23 that

D̄v = (D − CBimp)v

=
[
C D

] [−Bimp

I

]
v

=
[
CΠkerE D

] [−Bimp

I

]
v

= 0,

if and only if v = 0. This proves that D̄ has full column rank.

Remark 5.26. For any feedback u = Lx + v that reduces the index of the impulse-

controllable representation of (5.12) the matrix D − CBimp −DLBimp
has full rank. The

proof is analoguous to the proof of Lemma 5.25 once noted that for some v ∈ Rm

(D − CBimp −DLBimp)v =
[
C D

] [I 0

L I

][
Bimp

I

]
v.

Given Assumption 5.23 it thus follows that if there exists an optimal control u that

solves Problem 5.17, it is impulse-free. However, as an additional consequence of

Assumption 5.23, the entire optimal solution (x, u) is required to be impulse-free.

Lemma 5.27. Let Assumption 5.23 hold. The output satisfies y[t] = 0 if and only if (x, u)[t] = 0.
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Proof. If (x, u) is impulse-free it follows trivially that y = Cx+Du is impulse-free.

Conversely, let y = Cx + Du be impulse-free. Then by Lemma 5.22 the input u is

impulse-free. Hence it remains to show that x is impulse-free. Assume for the sake of

contradiction that x[t] 6= 0. Since u[t] = 0 it follows that Πx[t] = xdiff [t] = 0. Consequently,

it remains to prove that ximp[t] = 0. However, observe that as u[t] = 0 and xdiff [t] = 0 we

have

y[t] = Cx[t] +Du[t]

= C(I − Π)x[t] + CΠx[t] +Du[t]

= C(I − Π)x[t] + Cxdiff [t] +Du[t]

= C(I − Π)x[t].

By assumption rank [ CΠkerE D ] = m and by definition im(I − Π) ⊆ kerE. Consequently

y[t] = C(I − Π)x[t]

= CΠkerE(I − Π)x[t]

=
[
CΠkerE D

] [(I − Π)x[t]

0

]
= 0.

implies (I − Π)x[t] = 0.

Since we assume (EW,A) is index-1, we will restrict our attention in the remainder

of this section to finding an input that solves Problem 5.20. If we find such an input, it

follows from Lemma 5.21 that the input also solves Problem 5.17 if the DAE considered

is of index-1. As non-switched ODEs are a special form of switched DAEs, it follows

that Problem 5.20 is a special type of Problem 5.13. Consequently, it follows that if there

exists an optimal control it is a feedback and that the optimal cost is a quadratic function

of x0, i.e., J̄(x0, u) = x>0 Kx0. Hence in the remainder of this chapter, we aim to find the

optimal feedback.

To illustrate the results of this section we introduce the following example, which

demonstrates how to obtain the index-1 representation from an impulse-controllable

DAE.

Example 5.28. Consider the following optimal control problem

min J(x0, u) =
∫ 1

0
‖y(t)‖2 dt+ ‖x(t−f )‖2,

s.t.

[
1 0 0
0 0 1
0 0 0

]
ẋ = −x+

[
1
0
1

]
u,

y = x+
[

1
0
0

]
u,

x(0−) = x0,

x(1−) ∈ span
{[

1
0
0

]}
.

(5.23)
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As imE + A kerE ⊂ R3
, it follows from Lemma 2.41 the system is not index-1. However,

imE +A kerE + imB = R3
and thus the system is impulse-controllable. Hence in order

to find an optimal control, we need to apply a preliminary feedback. Any index-reducing

feedback can be applied and therefore we choose u = Fx = [ 0 1 1 ]x+v. After calculating

Π,Πdiff
and Πimp

from the Wong-sequences based on (E,A+BF ) we can compute

Adiff = Πdiff(A+BF ) =
[ −1 0 1

0 0 −4
0 0 2

]
, C̄ =

[
1 0 1
0 0 −2
0 0 1

]
,

Bdiff = ΠdiffB =
[

0
2
−1

]
, D̄ = D − CBimp =

[
0
1
0

]
,

Bimp = ΠimpB =
[

0
1
0

]
.

Finallydecomposing the state asx = xdiff−Bimpu, we canwrite C̄ = C and D̄ = D−CBimp
,

which allows to rewrite the problem equivalently as follows. .

min J̄(x0, v) =
∫ 1

0
‖ȳ(t)‖2 dt+ ‖xdiff(t−f )−Bimpv(t−f )‖2,

s.t. ẋdiff =
[ −1 0 1

0 0 −4
0 0 2

]
xdiff +

[
0
2
−1

]
v,

ȳ =
[

1 0 1
0 0 −2
0 0 1

]
xdiff+,

[
0
1
0

]
v,

xdiff(0−) = Πx0,

xdiff(1−) +
[

0
1
0

]
v(t−f ) ∈ span

{[
1
0
0

]}
.

(5.24)

Note that in the reformulated problem the initial value is contained in the augmented

consistency space corresponding to the original system, i.e., Πx0 ∈ V(E,A,B). �

5.2.2 Regarding the terminal cost

Observe that the terminal cost term in Problem 5.20 penalizes the value of the input u

at t−f . Furthermore, recall that the choice of input is free in the sense that it is allowed

to be any piece-wise smooth distribution, and thus any value u(t−f ) can be ensured.

Consequently, an input uwith a value u(t−f ) that minimizes the terminal cost with respect

to the resulting xdiff(t−f ) can be chosen. However, as the terminal cost penalizes the value

of u at t−f from the left and this value needs to be well-defined, the input u needs to be

continuous on at least [tf − ε, tf ) for some ε > 0. Therefore altering a solution (xdiff , u)

such the output has a desired value at t−f will in general influence the running-cost. As

a result, we can not optimize the running-cost and the terminal cost independently of

each other. However, the following result shows that the value of the optimal input u(t−f )

minimizes the terminal cost with respect to the value xdiff(t−f ) ∈ im Π.

Lemma 5.29. Let u be an input that solves Problem 5.20 and let xdiff be the corresponding
optimal trajectory. Denote u(t−f ) = ψ ∈ Rm and xdiff(t−f ) = ζ ∈ im Π. Then ψ is a minimizer of
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the following problem.

min
ψ∈Rm

(ζ −Bimpψ)>P (ζ −Bimpψ),

s.t. ζ −Bimpψ ∈ Vend.

(5.25)

Proof. Assume that u solves Problem 5.20. Let xdiff
be the corresponding optimal

trajectory on [t0, tf ). Denote u(t−f ) = ψ ∈ Rm
and xdiff(t−f ) = ζ ∈ im Π. Suppose there

exists a value w for which ζ −Bimpw ∈ Vend
and

(ζ −Bimpw)>P (ζ −Bimpw) = (ζ −Bimpψ)>P (ζ −Bimpψ)−M,

for someM > 0. Consider the solution (xs, us) where us = u+ ūs be an input where ūs

is defined as

ūs =


0, t0 6 t < tf − s,

αe−A
diff s

2 , tf − s 6 t < tf − s
2
,

−α, tf − s
2
, 6 t < tf

and α = w − ψ ∈ Rm
is constant. Note that it follows from Lemma D.2 that this solution

(xdiff
s , us) satisfies x

diff
s (t−f ) = xdiff(t−f ). Furthermore, it follows from Lemma D.3 that for

any ε > 0 there exists a us such that the output ȳs resulting from the solution (xdiff
s , us)

satisfies∫ tf

t0

‖ȳs(t)‖2 dt =

∫ tf−s

t0

‖ȳs(t)‖2 dt+

∫ tf

tf−s
‖ȳs(t)‖2 dt

=

∫ tf−s

t0

‖ȳ(t)‖2 dt+

∫ tf

tf−s
‖ȳs(t)‖2 dt

6
∫ tf

t0

‖ȳ(t)‖2 dt+ ε,

Furthermore, us(t
−
f ) = u(t−f ) + ūs(t

−
f ) = w and thus xdiff

s (t−f )−Bimpus(t
−
f ) ∈ Vend

and

J̄(x0, us) = J̄(x0, u) + ε−M.

Hence for ε < M there exists a s such that the solution (xdiff
s , us) satisfies J̄(x0, us) <

J̄(x0, u), which contradicts the optimality of (xdiff , u). Hence the result follows.

In general, there does not exist aψ ∈ Rm
for every ζ ∈ im Π that solves the optimization

problem (5.25). Necessary and sufficient conditions for solvability are given in the

following lemma.

Lemma 5.30. Given ζ ∈ im Π, there exists a vector ψ that solves the problem

min
ψ∈Rm

(ζ −Bimpψ)>P (ζ −Bimpψ),

s.t. ζ −Bimpψ ∈ Vend,

(5.26)
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if and only if

ζ ∈ Vend + imBimp.

Proof. Assume that ψ ∈ Rm
solves (5.26). Then ζ − Bimpψ ∈ Vend

. Since ζ ∈ im Π the

equality ζ = Πζ holds and consequently Πζ ∈ Vend + imBimp
.

Conversely, assume Πζ ∈ Vend + imBimp
. Then since ζ ∈ im Π we have Πζ = ζ . Hence

there exists a ψ1 such that ζ−Bimpψ1 ∈ Vend
. If ψ1 is unique, then the problem is solvable.

If ψ1 is not unique, it follows that for any ψ2 satisfying ζ −Bimpψ2 ∈ Vend
we can write

Bimp(ψ1 − ψ2) = (xdiff −Bimpψ2)− (xdiff −Bimpψ1) ∈ Vend.

ClearlyBimp(ψ1−ψ2) ∈ imBimp
and thus we can concludeBimpψ1 = Bimpψ2 +η for some

η ∈ Vend ∩ imBimp
. Consequently, (5.26) is solvable if and only if given ζ̄ := ζ −Bimpψ1

the following problem is solvable.

min
η∈Rn

(ζ̄ + η)>P (ζ̄ + η),

s.t. η ∈ Vend ∩Bimp.

(5.27)

It follows from Lemma D.4 this problem is solvable.

Corollary 5.31. If there exists an input u ∈ (DpwC∞)m that solves Problem 5.20, then the
corresponding optimal solution (xdiff , u) satisfies xdiff(t−f ) ∈ Vend + imBimp.

Given the result of Lemma 5.30 we know that if a trajectory xdiff
satisfies xdiff(t−f ) =

ζ ∈ Vend + imBimp
, there exists a value ψ that solves (5.25). Moreover, we can determine

all the possible values ψ ∈ Rm
that solve (5.25).

Lemma 5.32. For a given ζ ∈
(
Vend + imBimp

)
∩ im Π the vector ψ ∈ Rm solves

min
ψ∈Rm

(ζ −Bimpψ)>P (ζ −Bimpψ),

s.t. ζ −Bimpψ ∈ Vend,

(5.28)

if and only if ζ ∈ [ 0 0 I ] kerH and ψ ∈ [ I 0 0 ] kerH, where

H :=

[
Bimp>PBimp Bimp>(I − ΠVend)> −Bimp>PΠ

(I − ΠVend)Bimp 0 −(I − ΠVend)Π

]
(5.29)

and ΠVend is any projector onto Vend.

Proof. Note that the terminal cost function

(ζ −Bimpψ)>P (ζ −Bimpψ), (5.30)
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for a given ζ ∈ im Π is a convex function of ψ ∈ Rm
. Furthermore ψ ∈ Rm

minimizes

(5.30) if and only if ψ minimizes

ψ>Bimp>PBimpψ − 2ζ>PBimpψ.

The constraint ζ − Bimpψ ∈ Vend
is satisfied if and only if (I − ΠVend)(ζ − Bimpψ) = 0,

where ΠVend is a projector onto Vend
. This condition can be written equivalently as

(I − ΠVend)Bimpψ = (I − ΠVend)ζ.

As this constraint is a convex function and P is positive semi-definite, it follows that

this optimization problem is a convex problem. Hence any local minimizer is a global

minimizer. The first order necessary conditions are thus also sufficient. Hence ψ is a

minimizer that satisfies the constraints if and only if there exists a Lagrange multiplier λ

such that[
Bimp>PBimp Bimp>(I − ΠVend)>

(I − ΠVend)Bimp 0

][
ψ

λ

]
=

[
Bimp>P

(I − ΠVend)

]
ζ.

This can equivalently be written asHξ = 0 where

H :=

[
Bimp>PBimp Bimp>(I − ΠVend)> −Bimp>P

(I − ΠVend)Bimp 0 −(I − ΠVend)

]
(5.31)

and ξ> = [ ψ> λ> ζ> ]>. Since ζ ∈ im Π and hence ζ = Πζ the result follows.

Given the result of Lemma 5.32, we can compute which states ζ ∈ im Π are possibly

an endpoint of an optimal trajectory. Moreover, for each endpoint ζ ∈ im Π a value of ψ

that solves (5.28) can be computed. Consequenlty, for a given optimal solution (xdiff , u)

where xdiff(t−f ) = ζ, we are able to express the terminal cost of this solution in terms of

xdiff(t−f ) only.

Corollary 5.33. If there exists an input u that solves Problem 5.20 then the optimal terminal
cost satisfies(

xdiff(t−f )−Bimpu(t−f )
)>
P
(
xdiff(t−f )−Bimpu(t−f )

)
= xdiff(t−f )>Ψ>PΨxdiff(t−f ),

where Ψ = (I −BimpN)Π, for any N satisfying [ I 0 −N ] kerH = 0.

Although the minimum of the objective function in (5.28) is uniquely given for a

particular xdiff ∈ Rn
, a minimizer u ∈ Rm

is not necessarily unique. However, the

following result can still be concluded regarding an optimal input.

Corollary 5.34. If an input u solves Problem 5.20 then u(t−f ) = Nxdiff(t−f ) for someN satisfying
[ I 0 −N ] kerH = 0.
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Given the result of Corollary 5.33, we are able to express the terminal cost in terms

of xdiff
. Consequently, Problem 5.20 is closely related to the following optimal control

problem, which only penalizes xdiff
in the terminal cost. Particularly we can show that

if an input solves the following problem and satisfies certain conditions at t−f , we can

conclude that it solves Problem 5.20 and vice-versa.

Problem 5.35. Consider the system (5.21). Find an input u ∈ (D
pwC∞) that solves the

following problem:

min J̄Ψ(x0, u, tf ) =
∫ tf
t0
‖ȳ(t)‖2 dt+ xdiff(t−f )Ψ>PΨxdiff(t−f ),

s.t. ẋdiff = Adiffxdiff +Bdiffu,

ȳ = C̄xdiff + D̄u,

xdiff(t−0 ) = Πx0 ∈ V(E0,A0,B0),

x(t−f ) = xdiff(t−f )−Bimpu(t−f ) ∈ Vend,

(5.32)

where Adiff , Bdiff
and Bimp

are the matrices resulting from the Wong-sequences based

on (EW,A). Furthermore C̄ = CΠ, D̄ = D − CBimp
and Ψ = (I −BimpN)Π for some N

satisfying [ (I 0 N) ] kerH = 0, whereH is given by (5.31).

Lemma 5.36. An input u ∈ (DpwC∞)m solves Problem 5.20 if and only if u solves Problem 5.35
and u(t−f ) = Nxdiff(t−f ) for some N satisfying [ I 0 −N ] kerH = 0.

Proof. Let U(Σ, x0) be the class of inputs for which Problem 5.20 is feasible. That is, if u ∈
U(Σ, x0) then the output ȳ corresponding to the solution (xdiff , u) satisfying xdiff(t−0 ) = x0

results in a cost J̄(x0, u, tf ) in (5.22) which is finite and xdiff(t−f ) − Bimpu(t−f ) ∈ Vend
.

Similarly, let Uψ(Σ, x0) be the class of inputs for which Problem (5.35) is feasible.

(⇐) Suppose u ∈ U(Σ, x0) solves Problem 5.20. Then it follows from Corollary 5.34

that u(t−f ) = Nxdiff(t−f ) for some N satisfying [ I 0 −N ] kerH = 0 and H is defined as in

(5.31). Furthermore, it follows from Corollary 5.33 that

(xdiff(t−f )−Bimpu(t−f ))>P (xdiff(t−f )−Bimpu(t−f )) = xdiff(t−f )>Ψ>PΨxdiff(t−f ).

Consequently J̄Ψ(x0, u) = J̄(x0, u). Hence we can conclude

inf
u∈UΨ(Σ,x0)

J̄Ψ(x0, u) 6 inf
u∈U(Σ,x0)

J̄(x0, u). (5.33)

We will show that equality holds for (5.33). To do so, assume for the sake of contradiction

that this inequality is strict. Then there exists an input ū ∈ UΨ(Σ, x0) such that

J̄Ψ(x0, ū) < J̄Ψ(x0, u) = J̄(x0, u).

Then it follows that J̄(x0, u)− JΨ(x0, ū) = M for someM > 0.
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Consider the solution (x̃s, ũs) where ũs = ū+ u∗s be an input where u∗s is defined as

u∗δ =


0, t0 6 t < tf − s,

αe−A
diff s

2 , tf − s 6 t < tf − s
2
,

−α, tf − s
2

6 t < tf

and α = Nx̄diff(t−f ) − ū(t−f ) ∈ Rm
is constant. Then it follows from Lemma D.2 that

for any s > 0 we have x̃diff
s (t−f ) = x̄diff(t−f ) ∈ Vend + imBimp

. Furthermore, the input ũs

satisfies

ũs(t
−
f ) = u(t−f ) +Nx̃diff

s (t−f )− ū(t−f )

= Nx̃diff
s

= Nx̄diff(t−f ).

and thus x̃end
s (t−f )−Bimpũs(t

−
f ) ∈ Vend

. Furthermore it follows that

(x̃diff
s (t−f )−Bimpũs(t

−
f ))>P (x̃diff

s (t−f )−Bimpũs(t
−
f ))

= x̃diff
s (t−f )>(I −BimpN)>P (I −BimpN)x̃diff

s (t−f )

= x̃diff
s (t−f )>Ψ>PΨx̃diff

s (t−f )

= x̄diff(t−f )>Ψ>PΨx̄diff(t−f ).

From Lemma D.3 we can conclude that for any ε > 0 there exists a s such that∫ tf

t0

‖ỹ(t)‖ dt =

∫ tf

t0

‖ȳ(t)‖ dt+ ε.

Combining these results yields

J̄(x0, ũ) = JΨ(x0, ū) + ε = J̄(x0, u) + ε−M

and thus by choosing s such that ε is sufficiently small, we obtain J̄(x0, ũs) < J̄(x0, u)

which contradicts the optimality of (xdiff , u). Hence equality in (5.33) holds.

(⇐) Suppose u ∈ UΨ(Σ, x0) solves Problem 5.35 and satisfies u(t−f ) = Nxdiff(t−f ). Then

for this particular input we obtain

J̄Ψ(x0, u) = J̄(x0, u).

Suppose there exists an input ū ∈ U(Σ, x0) for which J̄(x0, ū) < J̄(x0, u). Then

x̄diff(t−f )>Ψ>PΨx̄diff(t−f ) 6 (x̄diff(t−f )−Bimpū(t−f ))>P (x̄diff(t−f )−Bimpū(t−f ))

and consequently

JΨ(x0, ū) 6 J̄(x0, ū) < J̄(x0, u) = JΨ(x0, u),

which contradicts the assumption that (xdiff , u) solves Problem (5.35). Hence u solves

Problem 5.20.
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As a consequence of Lemma 5.36 we can focus on finding conditions under which an

input u ∈ (D
pwC∞)m solves Problem 5.35 and satisfies u(t−f ) = Nxdiff(t−f ). As the terminal

cost in Problem 5.35 only penalizes the state xdiff
and not the input u, this problem

is easier to analyze as standard tools for optimal control can be used. Hence in the

following, we will focus on solving Problem 5.35.

Example 5.37 (Example 5.28 Continued). Observe that for the optimal control problem

defined in (5.24) we have that

ΠVend =
[

1 0 0
0 0 0
0 0 0

]
and thus we can compute

H =
[

Bimp>PBimp Bimp>(I−ΠVend )> −Bimp>PΠ

(I−ΠVend )Bimp 0 −(I−ΠVend )Π

]
=

[
1 0 −1 0 0 0 −2
0 0 0 0 0 0 0
1 0 0 0 0 0 −2
0 0 0 0 0 0 1

]
.

Such that e.g., N = [ 0 0 0 ] satisfies [ I 0 −N ] kerH = 0. Note that this N is not uniquely

determined. Given this particular N we compute Ψ = I . Thus the solvability of (5.24) is

equivalent to

min J̄Ψ(x0, v) =
∫ 1

0
‖ȳ(t)‖2 dt+ xdiff(t−f )>xdiff(t−f ),

s.t. ẋdiff =
[ −1 0 1

0 0 −4
0 0 2

]
xdiff +

[
0
2
−1

]
v,

ȳ =
[

1 0 1
0 0 −2
0 0 1

]
xdiff +

[
0
1
0

]
v,

xdiff(t−0 ) = Πx0,

xdiff(t−f ) +
[

0
1
0

]
v(t−f ) ∈ span

{[
1
0
0

]}
.

(5.34)

Observe that the optimal control problem (5.34) does not penalize the terminal value of

the input anymore. �

Regarding the running cost

Whereas the previous section focused on the terminal cost and the value of the optimal

control at the end of the interval [t0, tf ), we will now turn our attention to the running

cost and the optimal control given in the interval of interest. To that extent we will write

‖ȳ(t)‖2 =
[
xdiff> u>

]> [C̄>
D̄>

]> [
C̄ D̄

] [xdiff

u

]
=

[
xdiff

u

]> [
Q̄ S̄>

S̄ R̄

][
xdiff

u

]
.

As mentioned previously, the optimal cost is a quadratic function of x0. In particular,

the minimum of the integral∫ tf

t0

[
xdiff

u

]> [ Q̄ S̄>

S̄ R̄

] [
xdiff

u

]
dt
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is a quadratic function x>0 K(t0)x0. We assume thatK(t) is any symmetric-matrix-valued

continuously differentiable function, defined on [t0, tf ). Considering the difference

JΨ(xdiff , u)− x>0 K(t0)x0 yields under this assumption

JΨ(xdiff , u)− x>0 K(t0)x0 =

∫ tf

t0

[
xdiff

u

]> [ Q̄ S̄>

S̄ R̄

] [
xdiff

u

]
+
d

dt
xdiff(t)>K(t)xdiff(t) dt

+ xdiff(t−f )>
(
Ψ>PΨ−K(t−f )

)
xdiff(t−f ).

Taking the two integrals together and computing the second integral using the

differential equation and the completion of the squares formula, we obtain while

omitting the dependence on t:

xdiff>Q̄xdiff+2xdiff>S̄>u+ u>R̄u+
d

dt
xdiff>Kxdiff

=xdiff>(Q̄+ Adiff>K +KAdiff + K̇)xdiff> + 2u>(BdiffK> + S̄)xdiff

+ u>R̄u

=xdiff>KBdiff>R̄−1BdiffKxdiff + 2u>(BdiffK> + S̄>)xdiff

+ u>R̄u+ xdiff>Wxdiff

=‖R̄u+ (Bdiff>K + S̄>)xdiff‖2 + xdiff>Wxdiff ,

where

W := K̇ + Adiff>K +KAdiff − (S̄ +K>Bdiff)R̄−1(Bdiff>K + S̄>) + Q̄.

Consequently, we can rewrite the cost in Problem 5.35 as

JΨ(x0, u) = x>0 K(t−0 )x0 +

∫ tf

t0

‖R̄u(t) + (Bdiff>K(t) + S̄>)xdiff(t)‖2

+ xdiff(t)>W (t)xdiff(t) dt + xdiff(t−f )>
(
Ψ>PΨ−K(t−f )

)
xdiff(t−f ).

This expression will play a crucial role in our analysis of the optimal control problem.

ChoosingK(t) such thatW = 0 andK(t−f ) = Ψ>PΨ we obtain that the cost JΨ(xdiff , u)

can be expressed as

JΨ(x0, u) = x>0 K(t−0 )x0 +

∫ tf

t0

‖R̄u(t) + (Bdiff>K(t) + S̄>)xdiff(t)‖2 dt. (5.35)

Clearly without the constraint xdiff(t−f )−Bimpu(t−f ) it follows that JΨ(x0, u) is minimized

if u = −R̄−1(Bdiff>K + S̄>)xdiff
. Using this observation, one can show that there always

exists a functionK satisfyingK(t−f ) = Ψ>PΨ such thatW = 0, asK(t) is then a solution

to the well known Riccati differential equation

K̇ = −Adiff>K −KAdiff + (S̄ +K>Bdiff)R̄−1(Bdiff>K + S̄>)− Q̄,
K(t−f ) = Ψ>PΨ. (5.36)
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However, the following result shows that if we assume there exists a solution to

Problem 5.20, the input also solves the optimal control problem without the constraint

xdiff(t−f )−Bimpu(t−f ) ∈ Vend
.

Lemma 5.38. If an input u ∈ U(Σ, x0) minimizes JΨ(xdiff , u) then

u = −R̄−1
(
Bdiff>K(t) + S̄>

)
xdiff(t). (5.37)

Proof. Let (xdiff , u) be a solution for the input defined as (5.37) satisfying xdiff(t−0 ) = x0.

Case 1: xdiff(t−f ) ∈ Vend + imBimp

Then consider the input uδ = u+ ūδ where uδ is defined as

uδ =


0, t0 6 t < tf − δ,

αe−A
diff s

2 , tf − δ 6 t < tf − δ
2
,

−α, tf − δ
2

6 t < tf ,

where α = Nxdiff(t−f ) − u(t−f ) ∈ Rm
, for some N satisfying [ I 0 −N ] kerH is constant.

Then the solution (xdiff
δ , uδ) with xdiff

δ (t−0 ) = xdiff(t−0 ) = x0 satisfies x
diff
δ (t−f ) = xdiff(t−f ) = q.

Note that

xdiff
δ (t−f )−Bimpuδ(tf ) = xdiff(t−f )−BimpNxdiff

δ (t−f )

= xdiff(t−f )−BimpNxdiff(t−f ) ∈ Vend

and thus uδ is a feasible input. It follows from (5.35) that for every ε > 0 there exists a

solution (xdiff
δ , uδ) such that

JΨ(xdiff
δ , uδ) = x>0 K(t−0 )x0 + ε

and thus we can conclude

inf
u∈U(Σ,x0)

JΨ(xdiff , u) = x>0 K(t−0 )x0.

However, the infimum is attained if and only if the input is given by (5.37). Hence if

there exists an input u ∈ (D
pwC∞)m that solves Problem 5.35 then (5.37) holds.

Case 2: xdiff(t−f ) 6∈ Vend + imBimp

We will prove that there does not exist an optimal control. For the sake of contradiction,

assume that the optimal control is given by ũ ∈ (D
pwC∞)m. Then the solution (x̃diff , ũ)

must satisfy x̃diff(t−f ) = q for some q ∈ [ 0 0 Π ] kerH, as the input at t−f needs to be such

that terminal cost must be minimal with respect to x̃diff(t−f ).

Let y0 ∈ Rn
, y0 6= x0 be an initial value such that the solution (ydiff , u)with ydiff(t−0 ) = y0

satisfies ydiff(t−f ) = q. Recall, that by Lemma 5.14, the optimal control is a feedback. As a

consequence of the linearity of the optimal control in the state, it must hold that v = u− ũ



5.2. FINITE HORIZON OPTIMAL CONTROL 111

is the optimal control for the initial value z0 = y0− x0. However, by linearity of solutions,

the solution (zdiff , v) satisfies

zdiff(t−) = eA
diff t−ttz0 +

∫ t

t0

eA
diff(t−τ)Bdiffv(τ) dτ

= eA
diff t−ttx0 +

∫ t

t0

eA
diff(t−τ)Bdiff ũ(τ) dτ

− eAdiff t−tty0 −
∫ t

t0

eA
diff(t−τ)Bdiffu(τ) dτ

= x̃diff(t−)− ydiff(t−)

and consequently zdiff(t−f ) = 0. However, this implies that z0 = 0, as a feedback can not

control an initial condition to zero, unless it is zero. Hence we can conclude that x0 = y0,

which yields a contradiction. Hence there does not exist an optimal control for x0.

Corollary 5.39. If an input u ∈ (DpwC∞)m solves Problem 5.20 then

u(t) = −R̄−1
(
Bdiff>K(t) + S̄>

)
xdiff(t), (5.38)

where K solves (5.36) with terminal condition K(t−f ) = Ψ>PΨ.

5.2.3 Combining the results

Thus far we have only been concerned with necessary conditions for solvability of

Problem 5.20. The reason that the conditions in Corollary 5.39 are not sufficient is that

a feedback of the form (5.38) does not necessarily ensure that all the constraints are

satisfied. That is, a solution (xdiff , u) with u given by (5.38) and xdiff(t−0 ) = x0 ∈ im Π does

not necessarily satisfy

xdiff(t−f )−Bimpu(t−f ) ∈ Vend,

nor

(xdiff(t−f )−Bimpu(t−f ))>P (xdiff(t−f )−Bimpu(t−f )) = xdiff(t−f )Ψ>PΨxdiff(t−f ),

for anyN forwhich [ I 0−N ] kerH = 0. Both these conditions can be rewritten equivalently

as

(I − ΠVend)(I −BimpΛ)xdiff(t−f ) = 0 (5.39)

and

(I −BimpΛ)>P ((I −BimpΛ)−Ψ>PΨ)xdiff = 0, (5.40)
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where we have written

Λ := −R̄−1
(
Bdiff>Ψ>PΨ + S̄>

)
,

for notational convenience. However, if a solution (xdiff , u) with xdiff(t−0 ) = x0 and u

satisfies (5.38) is such that (5.39) and (5.40) are satisfied the input is optimal. To proof

this, we will first introduce the backwards state-transition matrix, defined similarly

to [56] or [128] and which also appears in [8].

Definition 5.40. The backwards state transition matrix for the closed loop time-varying

differential equation

ẋdiff =
(
Adiff −BdiffR̄−1(Bdiff>K + S̄>)

)
xdiff ,

is given byΩ(t, tf ), whereK is a solution to (5.36)with terminal conditionK(t−f ) = Ψ>PΨ.

Hence xdiff(t) = Ω(t, tf )x
diff(t−f ).

Theorem 5.41. Problem 5.20 is solvable if and only if

x0 ∈ V init := Ω(t0, tf ) ker

[
(I − ΠVend)(I −BimpΛ)

(I −BimpΛ)>P (I −BimpΛ)−Ψ>PΨ

]
Π, (5.41)

where Ω(t0, tf ) is the backward state transition matrix as defined in Definition 5.40 and the
optimal control is given by

u(t) = −R̄−1(Bdiff>K(t) + S̄>)xdiff(t), (5.42)

where K is a solution to (5.36) with terminal condition K(t−f ) = Ψ>PΨ.

Proof. (⇒) It follows fromCorollary 5.39 that if an inputu ∈ (D
pwC∞)m solves Problem5.20

then u is given by (5.42). Particularly, it follows that u(t−f ) = Λxdiff(t−f ). Furthermore, it

follows from Corollary 5.33 that the terminal cost resulting from the the optimal solution

(xdiff , u) satisfies

(xdiff(t−f )−Bimpu(t−f ))>P (xdiff(t−f )−Bimpu(t−f ))

= xdiff(t−f )>(I −BimpΛ)>P (I −BimpΛ)xdiff(t−f )

= xdiff(t−f )Ψ>PΨxdiff(t−f ).

This implies

‖
(
(I −BimpΛ)>P (I −BimpΛ)−Ψ>PΨ

) 1
2 xdiff(t−f )‖2 = 0,

from which we can conclude

xdiff(t−f ) ∈ ker
(
(I −BimpΛ)>P (I −BimpΛ)−Ψ>PΨ

)
.
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As the input is assumed to be such that all constraints in Problem 5.20 are satisfied, it

follows that

xdiff(t−f )−Bimpu(t−f ) = (I −Bimp)Λxdiff(t−f ) ∈ Vend

and consequently given any projector ΠVend onto Vend
we can conclude that

(I − ΠVend)(I +BimpΛ)xdiff(t−f ) = 0.

Combining these observations leads to the conclusion that

xdiff(t−f ) ∈ ker

[
(I − ΠVend)(I −BimpΛ)

(I −BimpΛ)>P (I −BimpΛ)−Ψ>PΨ

]
.

Finally, recall that Πxdiff(t−f ) = xdiff(t−f ) and xdiff(t−0 ) = Ω(t0, tf )x
diff(t−f ) by definition.

Since xdiff(t−0 ) = Πx0 the result follows.

(⇐) Suppose Πx0 ∈ V init
. Then by definition the input (5.42) ensures that a solution

(xdiff , u) with xdiff(t−0 ) = Πx0 satisfies

xdiff(t−f ) ∈ ker

[
(I − ΠVend)(I −BimpΛ)

(I −BimpΛ)>P (I −BimpΛ)−Ψ>PΨ

]
Π.

Then since xdiff(t−0 ) = Πx0 it follows that xdiff(t) ∈ im Π for all t > t0. Consequently

(xdiff(t−f )−Bimpu(t−f ))>P (xdiff(t−f )−Bimpu(t−f ))

= xdiff(t−f )>(I −BimpN)>P (I −BimpN)xdiff(t−f )

= xdiff(t−f )>Ψ>PΨxdiff(t−f ).

Consequently for this input we have

J(x0, u) = JΨ(x0, u) = x>0 K(t−0 )x0.

Note that as (I − ΠVend)(I −BimpΛ)xdiff(t−f ) = 0 and u(t−f ) = Λxdiff(t−f ) we can conclude

xdiff(t−f )−Bimpu(t−f ) ∈ Vend

and thus all the constraints are satisfied. Hence by Lemma 5.36 the input u solves

Problem 5.20.

The equivalence between solvability of Problem 5.20 and 5.17 leads to the following

corollary.
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Corollary 5.42. Problem 5.17 is solvable if and only if

x0 ∈ V init ∩ Cimp.

The optimal control is given by

u(t) = −R̄−1(Bdiff>K(t) + S̄>)Πx(t), (5.43)

where K is a solution to (5.36) with terminal condition K(t−f ) = Ψ>PΨ.

Proof. It follows from the constraints of Problem 5.17 that x0 ∈ Cimp
and from Lemma 5.21

that the problem is solvable if and only if Problem 5.20 is solvable. The latter is the case

if and only if x0 ∈ V init
. Consequently, the result follows.

The optimal input that solves Problem 5.20 also solves Problem 5.17. Observing that

xdiff(t) = Πx(t) leads to te conclusion.

Given the result of Theorem 5.41 we can verify given an initial value x0 ∈ im Cimp

whether Problem 5.20 is solvable and compute the optimal control if it exists. Since

Problem 5.20 was the result of a reformulation of Problem 5.17, an overview of how

to verify the existence of an input that solves Problem 5.17 and how to compute it, is

presented in Algorithm 1.
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0

2

4

6

Optimal input

optimal u

0 0.2 0.4 0.6 0.8 1

−2

0

2

4

Optimal trajectory

xdiff
1

xdiff
2

xdiff
3

Figure 5.1: The optimal input u(t) that solves the optimal control problem given in Ex-

ample 5.28 and the corresponding optimal trajectory xdiff(t) (5.24) with initial value

x0 = [ 2.163 −2.906 1.453 ]>.

Example 5.43 (Example 5.28 continued). Recall that for the optimal control problem

(5.34) we computed Ψ = Π and N = 0. Consequently we obtain

Λ = −R̄−1(Bdiff>ΨPΨ + S̄>) = [ 0 −2 3 ] .
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Algorithm 1 LQR with subspace constraint

Input : E,A,B,C,D, P, t0, tf ,Vend, Cimp

Step 1: Preconditioning
ComputeW as in (2.18)

Compute L such that rank [ EW A+BL ] = n

Compute projectors Π,Πdiff ,Πimp
from the Wong sequences based on (EW,A+BL).

Define Adiff = Πdiff(A+BL), Bdiff = ΠdiffB, Bimp = ΠimpB.

Define C̄ = (C +DL)Π, D̄ = D − (C +DL)Bimp

Define Q = C̄>C̄, S = C̄>D, R = D̄>D̄.

Step 2: Terminal cost matrix
Compute orthogonal projector ΠVend onto Vend

DefineH according to (5.31) and compute kerH.
Compute N such that [ I 0 −N ] kerH = 0.

Define Ψ = (I −BimpN)Π and Xtf = Ψ>PΨ.

Solve Riccati differential equation (5.36) on [t0, tf ] with terminal conditionX(tf ) = Xtf .

Step 3: Verify solvability
Compute backward state transition matrix Ω(t0, tf ) for ẋ

diff = Adiffxdiff + Bdiffu with

u(t) = −R−1(Bdiff>X(t) + S>)xdiff(t).

Set Λ = −R−1(Bdiff>Ψ>PΨ + S̄>)

Compute ker
[

(I−ΠVend )(I−BimpΛ)

(I−BimpΛ)>P (I−BimpΛ)−ΨPΨ

]
Compute V init = Ω(t0, tf ) ker

[
(I−ΠVend )(I−BimpΛ)

(I−BimpΛ)>P (I−BimpΛ)−ΨPΨ

]
if x0 ∈ V init ∩ Cimp then

return Optimal feeback matrix K(t) = −R̄−1(Bdiff>X + S>)

else
return There does not exist an optimal control

end if

Based on this matrix, we compute

(I − ΠVend)(I −BimpΛ)Π =
[

0 0 0
0 0 5
0 0 1

]
,

(I −BimpΛ)>P (I −BimpΛ)−Ψ>PΨΠ =
[

0 0 0
0 0 0
0 0 21

]
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and hence

ker

[
(I − ΠVend)(I −BimpΛ)

(I −BimpΛ)>P (I −BimpΛ)−Ψ>PΨ

]
= span

{[
1
0
0

]
,
[

0
1
0

]}
.

Finally, computing the backwards state transition matrix Ω(t0, tf ) from Definition 5.40

given the solution of the Riccati equation (5.36) with terminal condition X(tf ) = ΨPΨ

yields

Ω(t0, tf ) :=
[

2.163 0 −6.2782
−2.906 1 −15.466
1.453 0 8.733

]
.

According to Theorem 5.41 we can conclude that

V init = span
{[

2.163
−2.906
1.453

]
,
[

0
1
0

]}
and that the optimal input is given by u = −R̄(Bdiff>X + S̄>)xdiff

. Applying this

input to the initial condition xdiff(t−0 ) = [ 2.163 −2.906 1.453 ]> yields the optimal input

u(t) and xdiff(t) as given in Figure 5.1. Observe that the solution indeed satisfies

xdiff(t−f )−Bimpu(t−f ) =
[

1
0
0

]
∈ Vend

. Furthermore, the cost corresponding to this solution

satisfies

J̄(x0, u) = 9.2352 = xdiff(t−0 )>X(t0)xdiff(t−0 )

and is indeed quadratic in the inital value. �

The result of Corollary 5.42 shows that Problem 5.17 is generally not solvable for

arbitrary initial values x0 ∈ Cimp
. Hence if the initial value of a system is unknown,

implementing an optimal control might be complicated. Secondly, if the system is

perturbed at some time t ∈ (t0, tf ), the subspace endpoint constraint will be violated in

general. Hence we can conclude that the optimal input is loosly speaking not very robust

with respect to disturbances. However, in some special cases the problem is solvable

for any x0 and the control problem will be robust with respect to disturbances. Indeed,

as the optimal control input u is a feedback, a perturbation in the state will lead to a

perturbation in the input. To that extent we present the following result.

Lemma 5.44. Problem 5.20 is solvable for all initial values x0 ∈ V(E,A,B) if and only if

V(E0,A0,B0) ⊆ ker

[
(I − ΠVend)(I −BimpΛ)

(I −BimpΛ)>P (I −BimpΛ)−Ψ>PΨ

]
Π. (5.44)

Proof. It follows from Theorem 5.41 that Problem 5.20 is solvable, if and only if

x0 ∈ Ω(t0, tf ) ker

[
(I − ΠVend)(I −BimpΛ)

(I −BimpΛ)>P (I −BimpΛ)−Ψ>PΨ

]
Π.
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Hence, this holds for any V(E,A,B) if and only if

V(E,A,B) ⊆ Ω(t0, tf ) ker

[
(I − ΠVend)(I −BimpΛ)

(I −BimpΛ)>P (I −BimpΛ)−Ψ>PΨ

]
Π

Observing that the matrix Ω(t0, tf ) is invertible and Ω(t0, tf )
−1V(E,A,B) = V(E,A,B) leads

to the conclusion that Problem 5.20 is solvable for all x0 ∈ V(E,A,B) if and only if (5.44)

holds.

In the case that the constraint xdiff(t−f ) − Bimpu(t−f ) ∈ Vend
is relaxed by assuming

Vend = Rn
the conditions of Lemma 5.44 can be simplified. Note that Vend = Rn

occur in

the case that e.g., the next mode in the switched DAE is impulse-controllable or yields an

ODE.

Lemma 5.45. Consider Problem 5.17 and assume Vend = Rn. There exists an optimal control
for any x0 ∈ V(E0,A0,B0) if and only if

Bimp>PΠ = Bimp>PBimpR−1(Bdiff>Ψ>PΨ + S>)Π. (5.45)

Proof. (⇒) If there exists an optimal control that solves Problem 5.17 with Vend = Rn
for

any x0 then it follows from Lemma 5.39 that u is given by

u(t) = −R−1(Bdiff>K(t) + S>)xdiff(t),

whereK solves (5.36) with terminal conditionK(t−f ) = Ψ>PΨ. Furthermore, it follows

from Lemma 5.32 that u(t−f ) minimizes the terminal cost with respect to xdiff(t−f ) if and

only if [ u(t−f )> 0 xdiff(t−f )> ]> ∈ kerH where now kerH is given by those [ α β γ ] for which

Bimp>PΠα = Bimp>PBimpγ.

Substituting u and noting that it needs to hold for all xdiff(t−f ) ∈ im Π yields

Bimp>PΠ = Bimp>PBimpR−1(Bdiff>Ψ>PΨ + S̄>)Π.

(⇐) If (5.45) holds then the input defined as

u(t) = −R−1(Bdiff>K(t) + S̄>)xdiff(t)

where K solves (5.36) with K(t−f ) = Ψ>PΨ ensures

(xdiff(t−f )−Bimpu(t−f ))>P (xdiff(t−f )−Bimpu(t−f ))

6 (xdiff(t−f ) − Bimpw)>P (xdiff(t−f ) − Bimpw),

for all w ∈ Rm
. Consequently

(xdiff(t−f )−Bimpu(t−f ))>P (xdiff(t−f )−Bimpu(t−f )) = xdiff(t−f )Ψ>PΨxdiff(t−f ).

Therefore, it follows that J(xdiff , v) = xdiff(t−0 )>K(t0)xdiff(t−0 ) and thus the infimum is

attained. We can thus conclude that u is an optimal control.
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Finally, we can observe from Lemma 5.45 that if the terminal cost matrix P = E>P̃E

for some P̃ ∈ Rn×n
there always exists an optimal solution under the assumption that

Vend = Rn
. In fact, the condition that PBimp = 0 is sufficient for the existence of an

optimal control. Under this assumption the standard linear quadratic optimal control

problem for differential algebraic equations is obtained. Hence the following result

should not be surprising.

Corollary 5.46. Consider Problem 5.17 and assume Vend = Rn and PBimp = 0. Then there
exists an optimal control for any x0 ∈ Cimp.

Given the results on solvability of Problem 5.17 under the assumption that x0 ∈ Cimp

we can now restrict our attention to more general initial values. Recall from Lemma 5.16

that there exists an impulse-free input that ensures an impulse-free output if and only if

x0 ∈ Cimp +Oimp
. Consider the decomposition

Cimp +Oimp = Cimp + (W − (I −W ))Oimp

= Cimp +WOimp + (I −W )Oimp

= Cimp + (I −W )Oimp.

For initial values x0 ∈ Cimp
we have already stated results. For initial values

x0 ∈ (I −W )Oimp
the optimal control is given by u = 0. Although the state trajectory

will contain a Dirac impulse at t0 and be zero elsewhere as a consequence of this input

and initial value, the corresponding output y = 0, which yields an optimum. Observe

that as x0 ∈ (I −W )Oimp
we can write

0 = u(t) = −R̄−1(Bdiff>X(t) + S̄>)Πx(t).

This leads to the following corollary

Corollary 5.47. Problem 5.17 is solvable if and only if

x0 ∈ V init ∩ (Cimp +Oimp)

and the corresponding optimal input is given by

u(t) = −R̄−1(Bdiff>X(t) + S̄>)Πx(t).

whereX(t) solves the Riccati differential equation (5.36)with terminal conditionX(t−f ) = Ψ>PΨ.

5.3 LQR for the switched case
Given the necessary and sufficient conditions for solvability of Problem 5.17 for general

initial values we can now return to Problem 5.13 regarding the linear quadratic optimal
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control problem for switched DAEs on a bounded interval. Similar to the assumption

in the previous section that the DAE (5.12) was index-1, we will assume that each

mode of the switched DAE (5.1) is index-1. We can consider the impulse-controllable

representation of each mode and assume a preliminary index-reducing feedback of the

form u = Fσx has been applied. However, in order to guarantee that if there exists an

optimal input, it is impulse-free, we make the following assumption.

Assumption 5.48. The output matrices of the system (5.1) are assumed to satisfy

rank
[
CiΠkerEi Di

]
= m, ∀i ∈ {0, 1, ..., n},

where each ΠkerEi is a projector onto kerEi.

As a consequence of this assumption, it follows that the output to (5.1) is impulse-fee

if and only if (x, u) is impulse-free.

Lemma 5.49. Consider the switched DAE (5.1) and let Assumption 5.48 hold. The output
satisfies y[t] = 0 if and only if (x, u)[t] = 0.

Proof. It follows from Lemma 5.27 that the output y is impulse-free on [ti, ti+1) for

i ∈ {0, 1, ..., n− 1} if and only if (x, u) is impulse-free on [ti, ti+1). Hence if y is impulse-

free on [t0, tn) it follows that (x, u) is impulse-free on [t0, tn). Conversely, if (x, u) is

impulse-free on [t0, tn) then y is impulse-free.

Lemma 5.50. Consider the switched DAE (5.1) and let Assumption 5.48 hold. If y[ti] = 0 for
i ∈ {0, 1, ..., n} then

x(t−i ) ∈ Cimp
i +Oimp

i .

Given these results we can construct a sequence of subspaces from which solvability

of Problem 5.13 can be concluded. Indeed consider the following sequence of subspaces

Vend
n = Vend,

Vend
i−1 = V init

i ∩ (Cimp
i +Oi),

i = n, n− 1, ..., 0, (5.46)

where V init
i is defined according to Theorem 5.41 on the interval [ti, ti+1) w.r.t. Vend

i . Then

we can state the following result regarding solvability of Problem 5.13.

Theorem 5.51. Consider the sequences (5.46). Problem 5.13 is solvable if and only if

x0 ∈ V init
0 ∩ (Cimp

0 +Oimp
0 ).

Furthermore, if the problem is solvable, the optimal input is given by

u(t) = −R̄−1
σ (Bdiff>

σ K(t) + S̄>σ )Πσx(t),
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where R̄σ = D̄>σ D̄σ, S̄σ = C̄>σ D̄σ and Πi is a projector resulting from the Wong sequence based
on (EiWi, Ai) and Wi an orthogonal projector onto Cimp

i , i ∈ {0, 1, ..., n}. Finally, K(t) is a
solution to the switched Riccati differential equation

K̇ = −Adiff>
σ K −KAdiff

σ + (S̄σ +K>Bdiff
σ )R̄−1

σ (Bdiff>
σ K + S̄>σ )− Q̄σ,

where Qσ = C̄>σ C̄σ and time conditions

K(t−i+1) = Ψ>i K(t+i+1)Ψi, i ∈ {0, 1, ..., n− 1},
K(t−f ) = Ψ>n PΨn.

The optimal cost is given by

min
u
J(x0, u) = x>0 K(t0)x0.

As a consequence of Theorem 5.51 it follows that there generally does not exist an

impulse-free input that solves Problem 5.13. However, if the problem is solvable, it

is generally solved by a distribution u which is only piecewise continuous and hence

contains jumps. The same holds for the corresponding optimal state trajectory x. The

following example illustrates this observation.

Example 5.52. Consider the switched DAE given by

ẋ =
[

1 1 0
1 0 1
1 1 2

]
+
[

1
0
0

]
u, 0 6 t < 1,[

1 0 0
0 0 1
0 0 0

]
ẋ = −x+

[
1
0
1

]
u, 1 6 t < 2,

ẋ =
[
−1 0 0
0 0 0
0 0 0

]
x+

[
1
0
0

]
u, 2 6 t < 3,

together with the output

y = x+
[

1
0
0

]
u.

If the terminal state is not penalized at t− = 3−, but it is required that x(3−) ∈
span

{[
1
0
0

]}
:= Vend

, we can compute the optimal feedback matrix on each interval

[ti, ti+1), i ∈ {0, 1, 2} by solving

K̇i = −Adiff>
i Ki −KiA

diff
i + (S̄ +K>i B

diff
i )R̄−1(Bdiff>

i K + S̄>)− Q̄,
Ki(t

−
i ) = Ψ>i Ki+1(t+i )Ψi,

whereΨi = (I−Bimp
i Ni)Πi for someNiwhich satisfies [ I 0 −N ] kerHi = 0. andK(t−3 ) = 0.

We obtain from the calculations that

V init
2 = span

{[
1
0
0

]}
, K(2−) =

[
0 0 0
0 1 0
0 0 1

]
,

V init
1 = span

{[
1
0

0.54

]
,
[

0
1
0

]}
, K(1−) =

[
0.39 0 0.38

0 0 0
0.38 0 2.40

]
,

V init
0 = span

{[
1
0

0.49

]
,
[

0
1

0.06

]}
, K(0−) =

[
0.21 −0.03 0.07
−0.03 0.03 −0.19
0.07 −0.19 1.59

]
.

Given the solutionK we can compute the optimal input and optimal state trajectory,

which are shown in Figure 5.2. As can be seen, both the optimal input and the optimal

trajectory are piecewise continuous and contain jumps. �
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Figure 5.2: The optimal input u(t) that solves Problem 5.20 and the corresponding optimal

trajectory x(t) (5.24) with initial value x0 = [ 32.98 52.30 19.46 ]>.

5.4 Concluding remarks

In this chapter we have considered the linear quadratic regulator problem for switched

differential algebraic equations. We showed that if there exists an input that minimizes

the cost functional subject to switched DAE constraints, the input is linear in the state.

Furthermore, if there exists an optimal input, the optimal cost is quadratic in the initial

value. Consequently, by taking a dynamic programming approach, the infinite horizon

case can be reduced to a repeated finite horizon optimal control problem for non-switched

DAEs with subspace endpoint constraints and a general quadratic terminal cost. It

was shown that generally there does not exist an input that solves the problem and

necessary and sufficient conditions for the existence of an optimal solution were given.

Furthermore, it was shown how to compute the optimal control if it exists.

Given the conditions for solvability of the constraint optimal control problem for

non-switched DAEs on a finite horizon, it was shown how to use these results to obtain

conditions for solvability of the optimal control problem for switched DAEs.

Although the linear quadratic regulator problem for non-switched ODEs where the

integrand of the cost functional is a possibly indefinite quadratic function of the state and

input variable has been studied by e.g., by Willems [134], it remains a future direction of

research in the field of switched DAEs. Moreover, as the distributional framework is

considered, a natural future direction of research is singular optimal control. That is, the

case where impulsive inputs are allowed and the state can contain Dirac impulses. If the

cost matrix is still quadratic in the state and the input, allowing Dirac impulses lead to

singular linear quadratic optimal control and cheap control problems. For ODEs such
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problems have been studied by [19,31, 35, 36, 72, 126].

In the current chapter the results are stated in terms of a Riccati differential equation

in terms of the matricesAdiff
andBdiff

, which in turn are computed based on the matrices

E,A and B. An interesting question would be whether the results could be formulated

in terms of a Riccati differential equation given in terms of the matrices E,A and B

only. Such generalized Riccati equations have been studied for the non-switched case by

e.g., [51,63]. Furthermore, the techniques developed so far do not take any constraints

on the state or input into account, besides the subspace endpoint constraint. In practical

applications often only bounded inputs can be applied and it is desired to keep the state

within certain bounds. Hence it remains to investigate the optimal control problem given

such additional constraints.

Whereas we have studied the optimal control problem for switched DAEs only for

switched systems with a fixed switching signal, it also remains to investigate the problem

for systems where the switching signal is not fixed, but is considered to be an input. Since

impulse-controllability of a switched systems generally depends on the switching times,

it is likely that there will not exists an optimal control for all switched DAEs generated

by the system matrices (Ep, Ap, Bp). Alternatively, the optimal control problem could

also be considered in the context of switched systems where the switching depends on

the state of the systems instead of time.



6 | Conclusions

In this thesis fundamental control theoretical properties of switched differential algebraic

equations such as impulse-controllability and stabilizability have been considered.

Furthermore, the linear quadratic optimal control problem has been investigated. The

switched DAEs were assumed to have a known and a priori fixed switching signal. The

precise type of systems have been introduced in Chapter 2 alongside the necessary

mathematical preliminaries to analyze such systems.

In Chapter 3 we have studied impulse-free solutions of switched DAEs. Moreover,

for systems with a fixed switching signal that induces finitely many mode changes

a characterization of impulse-controllability was presented. The characterization is

based on an algorithm that runs backward in time. A sufficient conditions for impulse-

controllability of systems for which the switching signal induces infinitely many switches

has been presented as well. This condition was based on an algorithm that runs forward

in time and hence can be applied in real time.

Next, the notionof systemclasses of switchedDAEsgeneratedby a set ofmatrix triplets

and a class of switching signals has been introduced. Strong impulse-controllability of

such system classes has been defined. For the system class generated by some matrix

triplets and the calss of arbitrary switching signals a characterization has been presented.

In the case the order in which the modes are induced is fixed it turns out to be much

more difficult to characterize strong impulse-controllability. Furthermore, it was shown

that either all, or almost all systems in such system classes are impulse-controllable or

uncontrollable. A sufficient condition for strong impulse-(un)controllability was given.

Even in the case all systems in the system class are impulse-controllable and the property

is thus independent of the switching signal, the controller that achieves impulse-freeness

of the system might still depend on the switching signal. To that extent the concepts of

quasi-causal impulse-controllability and causal impulse-controllability given a dwell

time were introduced an characterized.

In Chapter 4 stabilizability of switched DAEs was studied. It was shown that con-

trollability, reachability and null-controllability are equivalent concepts for switched

DAEs in the behavioral sense. Furthermore, we have introduced the notion of interval-

stabilizability. Necessary and sufficient conditions for a DAE to be impulse-free interval-

stabilizable have been presented. These conditions lead naturally to a novel characteriza-

tion of impulse-free controllability of switched DAEs.

Finally, in Chapter 5 the linear quadratic regulator problem for switched DAEs has

been studied. We showed that if there exists an input that minimizes the cost functional

subject to switched DAE constraints, the input is linear in the state. Furthermore, if there
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exists an optimal input, the optimal cost is quadratic in the initial value. Consequently,

by taking a dynamic programming approach, the infinite horizon case can be reduced to

a repeated finite horizon optimal control problem for non switched DAEs with subspace

endpoint constraints and a general quadratic terminal cost. It was shown that generally

there does not exist an input that solves the problem and necessary and sufficient

conditions for the existence of an optimal solution were given. Furthermore, it was

shown how to compute the optimal control if it exists.

Given the conditions for solvability of the constraint optimal control problem for

non-switched DAEs on a finite horizon, it was shown how to use these results to obtain

conditions for solvability of the optimal control problem for switched DAEs.

Future direction of research

Although the properties such as impulse-controllabilty and stabilizability have been

discussed and characterizations have been presented, it remains a future direction of

research to design algorithms to compute controllers that achieve stability and guarantee

impulse-free solutions. It seems likely that impulse-freeness is generally not achievable

by means of feedback control and hence other control tools need to be developed.

Furthermore, it remains tofindnecessary conditions for essential impulse-controllability

and impulse-uncontrollability. So far only sufficient conditions for the strong variants

have been given and hence a systematic way to determine whether all or almost all

systems in a system class are impulse-controllable. Similarly, it remains an open question

for future research how to characterize causal impulse-controllability of system classes

without a dwell time. If a dwell time is not considered then an interesting problem

is how to deal with the limiting case where all the switching times accumulate and

how we should interpret such results. The concepts of quasi-causal and causal impulse-

controllability have thus far only been considered for the special system class where the

mode sequence is the same for all systems. Hence it also remains to investigate these

properties for general system classes.

As for the optimal control problem, we have investigated the LQR problem in

terms of the Riccati differential equation. The matrices involved in this differential

equation depend on the transformationmatrices computed based on theWong-sequences

of the matrix pair (EpWp, Ap). Hence it remains a future direction of research to

investigate whether an equivalent result in terms of the original matrices can be obtained.

Alternatively, it might be possible to obtain results in terms of a generalized Kalman-

Yakubovich-Popov lemma. Furthermore, the techniques developed so far do not take any

constraints on the state or input into account, besides the subspace endpoint constraint.

In practical applications often only bounded inputs can be applied and it is desired to

keep the state within certain bounds. Hence it remains to investigate the optimal control
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problem given such additional constraints.

Whereas we have studied the optimal control problem for switched DAEs with a

fixed switching signal, it also remains to investigate the problem for systems where

the switching signal is not fixed, but is considered to be an input. Since impulse-

controllability of a switched systems generally depends on the switching times, it is

likely that there will not exists an optimal control for all switched DAEs generated by the

system matrices (Ep, Ap, Bp). Alternatively, the optimal control problem could also be

considered in the context of switched systems where the switching depends on the state

of the systems instead of time.





A | Appendix to Chapter 2

Lemma A.1. Let V ⊆ Rn be a subspace and let A ∈ Rn×n. Then eAtx0 ∈ V for all t > 0 if and
only if x0 ∈ 〈V | A〉.

Proof. Let x0 ∈ 〈V | A〉. Then Ax0 ∈ V and consequently eAtx0 ∈ V for all t > 0.

Conversely, let eAtx0 ∈ V for all t > 0. Then for any t1 > t0 we have

1

t1 − t0
(eAt0 − eAt1)x0 ∈ V .

Being a subspace of Rn
, V is closed in the Euclidean topology. Hence taking the limit of

t1 → t0 gives

AeAt0x0 ∈ V .

Consequently, since eAt0x0 ∈ V and AeAt0x0 ∈ V , it follows that eAt0x0 ∈ 〈V | A〉. Hence

we obtain

x0 ∈ e−At0〈V | A〉 ⊆ 〈V | A〉,

which proves the desired result.
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B | Appendix to Chapter 3

The proof of Theorem 3.31 relies on utilizing properties of analytic functions, which are

recalled first.

Definition B.1. A function f : Rp → R is called analytic if for each x ∈ Rp
the function f

may be represented by a convergent power series in some neighborhood of x.

A useful property of analytic functions is the following well known result.

Lemma B.2 (Cf. [43, Cor I.A.10]). The zero-set of a non-trivial analytic function f : Rp → R
has (Lebesgue) measure zero.

The notion of analycity can be extended to matrix-valued function as follows.

Definition B.3. The matrix valued functionM : Rp → Rm×n
is called an analytic matrix if

each entrymij : Rp → R ofM is an analytic function.

Definition B.4. A analytic matrixM : Rp → Rm×n
is called generically full rank if either

det
(
M(τ )>M(τ )

)
6= 0 for almost all1 τ ∈ Rp

or det
(
M(τ )M(τ )>

)
6= 0 for a.a. τ ∈ Rp

.

Lemma B.5. Let A ∈ Rn×n, W : Rp → Rn×k a generically full rank analytic matrix and
R ⊆ Rn some subspace. Then N : Rp+1 → Rn×q given by

imN(τ0, τ ) = eAτ0 imW (τ ) +R (B.1)

is a generically full rank analytic matrix.

Proof. We use Nτ0,τ ⊆ Rn
as short hand notation for the right-hand side of (B.1) in the

following. Pick any (τ 0, τ ) ∈ Rp+1
such that dimNτ0,τ = max(τ0,τ ) dimNτ0,τ =: q and let

r1, ..., rl ∈ Rn
be a basis ofR. Choose BW ∈ Rk×(q−l)

such that [w1, . . . , wq−l] = W (τ )BW

yields a basis

r1, . . . , rl, e
Aτ0w1, . . . , e

Aτ0wq−l

of Nτ0,τ . Consider now the matrix valued function N : Rp+1 → Rn×q
defined by

N(τ0, τ ) :=
[
r1, . . . , rl, e

Aτ0W (τ )BW

]
.

This matrix is analytic because the matrix exponential is analytic and the product of two

analytic matrices is again analytic. By construction

det
(
N(τ 0, τ)>N(τ 0, τ)

)
6= 0,

1A property P (τ ) is said to hold for almost all (a.a.) τ ∈ Rp
, if there exists S ⊆ Rp

of Lebesgue measure

zero, such that P (τ ) holds for all τ ∈ Rp \ S.
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and hence the analytic function (τ0, τ ) 7→ det
(
N(τ0, τ )>N(τ0, τ )

)
is not identically zero.

In view of Lemma B.2 it therefore follows that N is generically full rank.

It remains to be shown that (B.1) holds. By construction, imN(τ0, τ ) ⊆ Nτ0,τ for

all (τ0, τ ) ∈ Rp+1
. Furthermore, since dimNτ0,τ 6 q and dim imN(τ0, τ ) = q for a.a.

(τ0, τ ) ∈ Rp+1
the claim follows.

RemarkB.6. It is indeedpossible that for some specific (τ0, τ )wehave imN(τ0, τ ) ( Nτ0,τ .

As an example consider for α > 0

W (τ1) = span {[ eτ1
eτ1−eα ] , [ 0

eτ1 ]} := span{w1(τ1), w2(τ2)},
R = span {[ 1

0 ]} := span{r1}, A = 0.

Then clearly, eAτ0W (τ1) + R = R2
for all (τ0, τ1) ∈ R2

. However, while the choice

N(τ0, τ1) := [r1, w1(τ1)] satisfies

imN(τ0, τ1) = eAτ0W (τ1) +R = R2
for a.a. (τ0, τ1),

for τ1 = α we have

imN(τ0, α) = span{r1} 6= R2.

Lemma B.7. Let W : Rp → Rq×n, n > q, be an analytic matrix with generically full rank.
Then there exists an analytic matrix N : Rp → Rn×(n−q) with generically full rank such that
imN(τ ) = kerW (τ ) for a.a. τ ∈ Rp.

Proof. By considering the field of meromorphic functions (i.e. fractions of scalar-valued

analytic functions), we can apply Gauss-Jordan eliminations onW (τ ) to obtain a reduced

row echolon form (RREF), which contains meromorphic entries and whose kernel for

a.a. τ ∈ Rp
equals kerW (τ ). Identically as for constant matrices, a full rank matrix

N(τ ) ∈ Rn×(n−q)
, can be easily constructed from the (meromorphic) entries of the

obtained RREF such that W (τ )N(τ ) = 0 for all τ for which N(τ ) is well-defined.

As a final step, let N(τ ) = N(τ )

[
α1(τ )

.
.
.

αn−q(τ )

]
, where αi(τ ) is the product of all

denominators of the entries in the i-th column of N(τ ). Then M(τ )N(τ ) = 0 for a.a.

τ ∈ Rp
and τ 7→ N(τ ) is an analytic matrix and has generically the same rank as N , i.e.

N is generically full rank.

Lemma B.8. LetW : Rp → Rn×k, k 6 n, be an analytic matrix with generically full rank. Then
for any Π ∈ Rn×n there exists an analytic matrix N : Rp → Rn×m with generically full rank
such that imN(τ ) = im Π ∩ imW (τ ) for a.a. τ ∈ Rp.
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Proof. By Lemma B.7 there exists an analytic matrix N : Rp → Rn×q
with generically full

rank and imN(τ ) = kerW (τ )> for a.a. τ ∈ Rp
. Consequently,

(im Π ∩ imW (τ ))⊥ = ker Π> + kerW (τ )>,

= ker Π> + imN(τ ).

ApplyingLemmaB.5 forR = ker Π> andA = 0, we find an analyticmatrix Ñ : Rp → Rn×q̃

with generically full rank such that im Ñ(τ ) = ker Π>+ imM(τ ) for a.a. τ . Finally, using

LemmaB.7 againwe can find an analyticmatrixN : Rp → Rn×q
, q = n− q̃with generically

full rank such that imN(τ ) = ker Ñ(τ )> for a.a. τ . Altogether, we have for a.a. τ

im Π ∩ imW (τ ) =
(

im Ñ(τ )
)⊥

= ker Ñ(τ )> = imN(τ ).





C | Appendix to Chapter 4

Proposition C.1. Let V and S be subspaces of Rn and letM ∈ Rn×n. If ({Mx0}+S)∩V 6= ∅
for all x0 ∈ Rn, then there exists a matrix N ∈ Rn×n such that for all x0

({Mx0}+ S) ∩ V = {NMx0}+ S ∩ V . (C.1)

Proof. Letm1,m2, ...,mp be a basis for the image ofM . Then the statement is proven if

we can prove that

({mi}+ S) ∩ V = {Nmi}+ (S ∩ V), ∀i ∈ {1, 2, ..., p},

for some matrix N . Since we have that ({mi}+ S) ∩ V 6= ∅ it follows that for all i there

exists an ηi ∈ S such thatmi + ηi ∈ V . Let N̂ be a linear map such that

N̂mi = ηi.

Then if we define N = I + N̂ we have that

Nmi = mi + N̂mi,

= mi + ηi,

∈ V ∩ ({mi}+ S).

Since subspaces are closed under addition, it follows that for all η̄ ∈ S ∩ V ⊆ V we have

that

Nmi + η̄ = mi + ηi + η̄ ∈ V .

and

mi + ηi + η̄ = mi + η̂ ∈ {mi}+ S,

for some ηi + η̄ = η̂ ∈ S , which proves thatN is such that {Nmi}+S ∩V ⊆ (mi +S)∩V .
Conversely, we have for ξ ∈ ({mi}+ S) ∩ V and for some β ∈ S that ξ = mi + β ∈ V .

Let β = N̂mi + γ, for some γ ∈ S. Then we obtain

ξ = mi + β

= mi + N̂mi + γ

= Nmi + γ

∈ ({mi}+ S) ∩ V .

It remains to prove that γ ∈ S ∩ V . Since Nmi ∈ ({mi} + S) ∩ V ⊆ V by definition,

we have that ξ − Nmi = γ ∈ V . Furthermore, by definition, we had γ ∈ S and hence

γ ∈ S ∩V . Hence we have proven that (mi +S)∩V ⊆ {Nmi}+S ∩V . With the inclusion

in both direction proven, the equality follows.
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It follows from Proposition C.1 that if the intersection (Mx0 + S) ∩ V 6= ∅ for all x0,

that this matrix N is not unique. In fact, this observation results in the next lemma.

Lemma C.2. With the same notation as in Proposition C.1 we have that N ∈ Rn×n satisfies
(C.1) if and only if

1. im(N − I)M ⊆ S,

2. imNM ⊆ V .

Proof. Assume that N satisfies im(N − I) ⊆ S and imNM ⊆ V . This means that

im(N − I)M ⊆ S. Hence NMx0 ∈ S + Mx0 for arbitrary x0 ∈ Rn
. Furthermore, by

assumption we had that NMx0 ∈ imN ⊆ V and hence NMx0 ∈ (Mx0 + S) ∩ V . Hence

it follows that NMx0 + S ∩ V ⊆ (Mx0 + S) ∩ V .
On the otherhand, let ξ ∈ (Mx0 + S) ∩ V . Then ξ = Mx0 + η for some η ∈ S and

ξ ∈ V . Since NMx0 ∈ V we have that NMx0 − ξ ∈ V . From which it follows that

(N − I)Mx0 ∈ V and also (N − I)Mx0 ∈ S . Thus we have thatNMx0− ξ ∈ S ∩V . From
this it follows that ξ ∈ NMx0 + S ∩ V and thus it is proven that under the assumptions

(4.11) holds.

Next assume that (4.11) holds. Then it follows that

NMx0 ∈ (Mx0 + S) ∩ V + S ∩ V
= (Mx0 + S) ∩ V .

Since this holds for all x0 it follows that imNM ⊆ V . Furthermore, it follows that

NMx0 ∈ Mx0 + S, from which it follows that (N − I)Mx0 ∈ S for all x0, and thus

im(N − I)M ⊂ S. Which proves the result.

Given the subspaces V , S and the matrixM , a matrix N satisfying the conditions of

Lemma C.2 can constructively be computed.

Lemma C.3. Let ΠV and ΠS be projectors onto V and S respectively. For any Q that solves

(I − ΠS)ΠVQM = (I − ΠS)M,

the matrix N = ΠVQ satisfies (C.1).

Proof. Since imN ⊂ im ΠV = V the condition imNM ⊂ V is satisfied. Furthermore, we

have that

im(N − I)M = im(ΠVQ− I)M

= im(ΠS + (I − ΠS))(ΠVQ− I)M

⊆ S + im(I − ΠS)(ΠVQ− I)M

= S + im ((I − ΠS)M − (I − ΠS)M) = S.

Hence N satisfies the conditions of Lemma C.2, which proves the result.



D | Appendix to Chapter 5

Lemma D.1. Let Y be a Banach space and let X ⊆ Y be a dense subspace. Then the dual space
X∗ of X is isometrically isomorphic to the dual space Y ∗ of Y .

Proof. By theHahn Banach theorem there exists for any bounded linear functional f ∈ X∗

a bounded linear functional f̄ ∈ Y ∗ satisfying f̄ |X = f and ‖f̄‖Y ∗ = ‖f‖X∗ . [109, Theorem
3.2].

Suppose there exist linear functionals f̄1, f̄2 on Y such that f̄1|X = f̄2|X = f1 for some

f1 ∈ X∗. Let f̄3 = f̄1 − f̄2. Then f̄3|X = 0. Let {xn} be a sequence in X converging to

x ∈ Y . Then since f̄3|X is continuous, it follows that f̄3(x) = 0. Consequently f̄3 = 0. As

x ∈ Y was arbitrary, we can conclude that it holds for all x ∈ Y . Hence f̄3 is bounded

and thus for every bounded linear functional f ∈ X∗ there exists a unique bounded

linear functional f̄ ∈ Y ∗ satisfying f̄ |X = f . Hence there exists an isomorphism between

X∗ and Y ∗.

Observe that as ‖f̄‖Y ∗ = ‖f‖X∗ and as both f̄ and f are linear functionals, it follows

that for any f̄3 ∈ Y ∗ satisfying f̄3 = f̄2 − f̄1 for some f̄1, f̄2 ∈ Y ∗

‖f̄3‖Y ∗ = ‖f3‖X∗ = ‖f̄2 − f̄1‖Y ∗ = ‖f2 − f1‖X∗ ,

which proves that the isomorphism is in fact isometric.

Lemma D.2. Consider the system ẋ = Ax+Bu on the interval [t0, tf ) and a solution (x1, u1)

satisfying x1(t−0 ) = x0. The solution (x2, u2) with x2(t−0 ) = x0 and u2 = u1 + u3 where

u3 =


0, t0 6 t < tf − ts,

αe−A
diff ts

2 , tf − ts 6 t < tf − ts
2
,

−α, tf − ts
2
6 t < tf ,

for some ts ∈ R, t0 < ts < tf satisfies x2(t−f ) = x1(t−f ).

Proof. The general solution formula that given an initial value x0 the solution to ẋ =

Ax+Bu is given by

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ) dτ.

Observe that with the change of variables τ̄ = τ + ts
2
we have dτ̄ = dτ and∫ tf− ts2

tf−ts
eA(tf− ts2 −τ)Bα dτ =

∫ tf

tf− ts2

eA(tf−τ̄)Bα dτ̄ .
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Consequently, it follows that

x1(t−f ) = eA(tf−t0)x0 +

∫ tf

t0

eA(tf−τ)Bu1(τ) dτ

= eA(tf−t0)x0 +

∫ tf

t0

eA(tf−τ)Bu1(τ) dτ +

∫ tf− ts2

tf−ts
eA(tf−τ)Bαe−A

diff ts
2 dτ

−
∫ tf

tf− ts2

eA(tf−τ)Bα dτ

= eA(tf−t0)x0 +

∫ tf

t0

eA(tf−τ)Bu1(τ) dτ +

∫ tf

t0

eA(tf−τ)Bu3(τ) dτ

= eA(tf−t0)x0 +

∫ tf

t0

eA(tf−τ)B(u1(τ) + u3(τ)) dτ

= eA(tf−t0)x0 +

∫ tf

t0

eA(tf−τ)Bu2(τ) dτ

= x2(t−f ).

This proves the result.

Lemma D.3. Consider the system ẋ = Ax+Bu together with the output y = Cx+Bu and let
a cost functional be given by

J(x0, u) =

∫ tf

t0

‖y(t)‖ dt. (D.1)

Let (x1, u1) satisfying x1(t−0 ) = x0 be a solution for which (D.1) is finite, i.e. J(x0, u1) = M1 for
someM1 > 0. Let uε be an input depending on ε ∈ (t0, tf ) defined by uε = u1 + ūε where

ūε =


0, t0 6 t < tf − ε,

αe−A
ε
2 , tf − ε 6 t < tf − ε

2
,

−α, tf − ε
2
6 t < tf .

Let (xε, uε) be a solution satisfying xε(t−0 ) = x0. Then there exists an M such that for any
ε ∈ (t0, tf )

J(x0, uε) 6 J(x0, u1) + εM.

Proof. By linearity of solutions we have xε = x1 + x̄ε. Consequently

yε = Cxε +Duε

= C(x̄ε + x1) +D(ūε + u1)

= Cx1 +Du1 + Cx̄ε+Dūε

= y1 + ȳε
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and hence the Minkowski inequality we have(∫ tf

t0

‖yε(t)‖2 dt

) 1
2

=

(∫ tf

t0

‖y1(t) + ȳε(t)‖2 dt

) 1
2

6

(∫ tf

t0

‖y1(t)‖2 dt

) 1
2

+

(∫ tf

t0

‖ȳε(t)‖2 dt

) 1
2

=

(∫ tf

t0

‖y1(t)‖2 dt

) 1
2

+

(∫ tf

tf−ts
‖ȳε(t)‖2 dt

) 1
2

.

Next observe that

x̄ε(t) =

∫ tf

t0

eA(tf−τ)Būε(τ) dτ

and hence x̄ε is a continuous function of ūε. Consquently, supt∈[t0,tf ) ‖x̄ε(t)‖ is bounded
on the bounded interval [t0, tf ) as supt∈[t0,tf ) ‖uε(t)‖ 6 α. As ȳε is linear in x̄ε and ūε, the

output is also a conitnuous function thus it follows that ȳε is bounded as well on [t0, tf ).

Moreover, there exists an M̄ > 0 such for any ε ∈ [t0, tf ) we have sup[t0,tf ) ‖ȳε(t)‖ 6 M̄

for all t ∈ [t0, tf ). Hence we can conclude that

(∫ tf

t0

‖yε(t)‖2 dt

) 1
2

6

(∫ tf

t0

‖y1(t)‖2 dt

) 1
2

+

(∫ tf

tf−ts
‖ȳε(t)‖2 dt

) 1
2

6

(∫ tf

t0

‖y1(t)‖2 dt

) 1
2

+ εM.

Since we assume that

∫ tf
t0
‖y1(t)‖2 dt = M1 and ε 6 tf it follows that∫ tf

t0

‖yε(t)‖2 dt 6
∫ tf

t0

‖y1(t)‖2 dt+ 2εM̄

(∫ tf

t0

‖y1(t)‖2 dt

)
+ (εM̄)2

=

∫ tf

t0

‖y1(t)‖2 dt+ 2εMM̄1 + (εM̄)2

=

∫ tf

t0

‖y1(t)‖2 dt+ εM,

whereM = 2M1M̄ + tfM̄
2
.

Lemma D.4. Let P = P> be a positive semi-definite matrix. For all x ∈ Vend there exists an
u ∈ Rn that solves

min (x−Bimpu)>P (x−Bimpu),

s.t. Bimpu ∈ Vend.

(D.2)
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Proof. Since x is fixed and

(x−Bimpu)>P (x−Bimpu) = x>Px− 2x>PBimpu+ u>Bimp>PBimpu,

it follows after denotingBimpu = y for some y ∈ imBimp
, solvability of (D.2) is equivalent

to solvability of

min y>Py + c>y,

s.t. y ∈ Vend ∩ imBimp,

(D.3)

where c := −2Px. Suppose that Vend ∩ imBimp = Vend ∩ imBimp ∩ kerP . Then any

y ∈ Vend ∩ imBimp
solves the problem and the minimum is given by 0.

Next, suppose that Vend ∩ imBimp ∩ kerP ⊂ Vend ∩ imBimp
. Let y1, ..., yk be a basis for

Vend ∩ imBimp ∩ kerP , and let yk+1, ..., yp be such that y1, ..., yp is a basis for Vend ∩Bimp
.

Let Y be a matrix defined as

Y =
[
yk+1 · · · yp

]
.

Observe that for any y ∈ Vend ∩ imBimp ∩ kerP the objective function equals zero. Hence

we will focus on y ∈ imY . Hence we rewrite the optimization problem as follows

min x>Y >PY x+ c̄>x,

s.t. x ∈ Rk−p+1,

(D.4)

where c̄ = Y c. Note that imY ∩ kerP = 0 and hence x>Y >PY x > 0 for all x ∈ Rk−p+1

and hence Y >PY is positive definite. Hence we can write

x>Y >PY x+ c̄>x = x>Y >PY x+ c̄>x+
1

4
c̄>c− 1

4
c̄>c̄

= ‖Y >PY x+
1

2
c̄‖2 − 1

4
c̄>c̄.

Consequently, the minimum is given by

x = −1

2
(Y >PY )−1c̄.

Hence (D.3) is solvable and the optimal value is given by min{0,−1
4
c̄>(Y >PY )−1c̄}. Note

that the minimizer is not unique in general.



Bibliography

[1] U. M. Ascher and L. R. Petzold, ComputerMethods for Ordinary Differential Equations
and Differential-Algebraic Equations, SIAM Publications, Philadelphia, 1998.

[2] E. Bänsch, P. Benner, J. Saak, and H. K. Weichelt, Riccati-based boundary feedback
stabilization of incompressible navier-stokes flow, SIAMJournal onScientificComputing,

37 (2015), pp. A832–A858.

[3] G. Basile and G. Marro, Controlled and conditioned invariant subspaces in linear
system theory, J. Optim. Th. & Appl., 3 (1969), pp. 306–315.

[4] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.

[5] D. Bender, Lyapunov-like equations and reachability/observabiliy gramians for descriptor
systems, IEEE Transactions on Automatic Control, 32 (1987), pp. 343–348.

[6] D. Bender and A. Laub, The linear quadratic optimal regulator problem for descriptor
systems, IEEE Trans. Autom. Control, 32 (1987), pp. 672–688.

[7] D. J. Bender, Descriptor Systems and Geometric Control Theory, PhD thesis, Univ. of

California, Santa Barbara, ECE Dept., Santa Barbara, CA, September 1985.

[8] D. J. Bender and A. J. Laub, The linear-quadratic optimal regulator for descriptor systems,
in Proc. 24th IEEE Conf. Decis. Control, Ft. Lauderdale, FL, 1985, pp. 957–962.

[9] T. Berger, A. Ilchmann, and S. Trenn, The quasi-Weierstraß form for regular matrix
pencils, Linear Algebra Appl., 436 (2012), pp. 4052–4069.

[10] T. Berger and S. Trenn, Kalman controllability decompositions for differential-algebraic
systems, Syst. Control Lett., 71 (2014), pp. 54–61.

[11] D. Bertsekas, Dynamic Programming Deterministic and Stochastic Models, Prentice-
Hall, Englewood Cliffs, NJ, 1987.

[12] D. P. Bertsekas, Dynamic programming and optimal control, vol. 1, Athena scientific
Belmont, MA, 1995.

[13] F. Blanchini and C. Savorgnan, Stabilizability of switched linear systems does not
imply the existence of convex lyapunov functions, in Proceedings of the 45th IEEE

Conference on Decision and Control, IEEE, 2006, pp. 119–124.

139



140 BIBLIOGRAPHY

[14] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, North-Holland, Amsterdam, 1989.

[15] S. L. Campbell, Linear systems of differential equations with singular coefficients, SIAM

J. Math. Anal., 8 (1977), pp. 1057–1066.

[16] , Singular Systems of Differential Equations I, Pitman, New York, 1980.

[17] , Singular Systems of Differential Equations II, Pitman, New York, 1982.

[18] D. Cheng, L. Guo, Y. Lin, and Y. Wang, Stabilization of switched linear systems, IEEE
transactions on automatic control, 50 (2005), pp. 661–666.

[19] D. Clements and B. Anderson, Singular Optimal Control - The Linear-Quadratic
Problem, no. 5 in LectureNotes inControl and Information Sciences, Springer-Verlag,

Berlin, 1978.

[20] J. D. Cobb, Feedback and pole placement in descriptor variable systems, Int. J. Control, 33
(1981), pp. 1135–1146.

[21] , Descriptor variable systems and optimal state regulation, IEEE Trans. Autom.

Control, 28 (1983), pp. 601–611.

[22] , Controllability, observability and duality in singular systems, IEEE Trans. Autom.

Control, 29 (1984), pp. 1076–1082.

[23] L. Dai, Filtering and lqg problems for discrete-time stochastic singular systems, IEEE
Transactions on Automatic Control, 34 (1989), pp. 1105–1108.

[24] , Singular Control Systems, no. 118 in Lecture Notes in Control and Information

Sciences, Springer-Verlag, Berlin, 1989.

[25] W. P. Dayawansa and C. F. Martin,A converse lyapunov theorem for a class of dynamical
systems which undergo switching, IEEE Transactions on Automatic control, 44 (1999),

pp. 751–760.

[26] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer,

Real-time optimization and nonlinear model predictive control of processes governed by
differential-algebraic equations, Journal of Process Control, 12 (2002), pp. 577–585.

[27] J. C. Doyle, Synthesis of robust controllers and filters, in IEEE Conf. Decis. Control,

San Antonio, TX, 1983, pp. 109–114.



BIBLIOGRAPHY 141

[28] J. C. Doyle, B. A. Francis, K. Glover, and P. P. Khargonekar, State space solutions
to the standard H2 and H∞ control problems, in Proc. American Control Conference,

Atlanta, U. S. A., 1988.

[29] E. Eich-Soellner and C. Führer,NumericalMethods inMultibody Dynamics, Teubner,
Stuttgart, 1998.

[30] Z. Fei, S. Shi, Z. Wang, and L. Wu, Quasi-time-dependent output control for discrete-
time switched system with mode-dependent average dwell time, IEEE Transactions on

Automatic Control, 63 (2017), pp. 2647–2653.

[31] B. A. Francis, The optimal linear-quadratic time-invariant regulator with cheap control,
IEEE Trans. Autom. Control, 24 (1979), pp. 616–621.

[32] F. R. Gantmacher, The Theory of Matrices (Vol. I), Chelsea, New York, 1959.

[33] , The Theory of Matrices (Vol. II), Chelsea, New York, 1959.

[34] C. E. Garcia, D. M. Prett, and M. Morari, Model predictive control: Theory and
practice - a survey, Automatica, 25 (1989), pp. 335–348.

[35] A. H. W. T. Geerts, The algebraic Riccati equation and singular optimal control, in
Lecture Notes of the Workshop on “The Riccati Equation in Control, Systems and

Signals”, S. Bittanti, ed., Bologna, Italy, 1989, Pitagora Editrice, pp. 415–420.

[36] , All optimal controls for the singular linear–quadratic problem without stability; a
new interpretation of the optimal cost, Linear Algebra Appl., 116 (1989), pp. 135–181.

[37] M. Gerdts, Optimal control of ODEs and DAEs, Walter de Gruyter, 2012.

[38] , A survey on optimal control problems with differential-algebraic equations, in
Surveys in Differential-Algebraic Equations II, Springer, 2015, pp. 103–161.

[39] A. Giua, C. Seatzu, and C. Van Der Mee, Optimal control of switched autonomous
linear systems, in Proceedings of the 40th IEEE Conference on Decision and Control

(Cat. No. 01CH37228), vol. 3, IEEE, 2001, pp. 2472–2477.

[40] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid dynamical systems, Princeton
University Press, Princeton, NJ, 2012. Modeling, stability, and robustness.

[41] P. M. Gresho, Incompressible fluid dynamics: Some fundamental formulation issues,
Annu. Rev. Fluid Mech., 23 (1991), pp. 413–453.



142 BIBLIOGRAPHY

[42] S. Grundel, L. Jansen, N. Hornung, T. Clees, C. Tischendorf, and P. Benner,

Model order reduction of differential algebraic equations arising from the simulation of gas
transport networks, in Progress in differential-algebraic equations, Springer, 2014,

pp. 183–205.

[43] R. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Ams

Chelsea Publishing, Prentice-Hall, 1965.

[44] K. Hariprasad and S. Bhartiya, A computationally efficient robust tube based mpc for
linear switched systems, Nonlinear Analysis: Hybrid Systems, 19 (2016), pp. 60–76.

[45] M. L. J. Hautus,Controllability and observability condition for linear autonomous systems,
Ned. Akademie. Wetenschappen, Proc. Ser. A, 72 (1969), pp. 443–448.

[46] M. L. J. Hautus and E. D. Sontag, An approach to detectability and observers, Lectures
in Applied Mathematics, 18 (1980), pp. 99–135.

[47] J. P. Hespanha and A. S. Morse, Stability of switched systems with average dwell-time,
in Proceedings of the 38th IEEE conference on decision and control (Cat. No.

99CH36304), vol. 3, IEEE, 1999, pp. 2655–2660.

[48] A. Ilchmann, L. Leben, J. Witschel, and K. Worthmann,Optimal control of differential-
algebraic equations from an ordinary differential equation perspective, Optimal Control

Applications and Methods, 40 (2019), pp. 351–366.

[49] A. Ilchmann, J. Witschel, and K. Worthmann, Model predictive control for linear
differential-algebraic equations, IFAC-PapersOnLine, 51 (2018), pp. 98–103.

[50] , Model predictive control for singular differential-algebraic equations, International
Journal of Control, (2021), pp. 1–10.

[51] V. Ionescu and C. Oară, Generalized continuous-time Riccati theory, Linear Algebra

Appl., 232 (1996), pp. 111–130.

[52] J. Y. Ishihara, M. H. Terra, and J. C. Campos, Robust kalman filter for descriptor
systems, IEEE Transactions on Automatic Control, 51 (2006), pp. 1354–1354.

[53] H. Ishii and B. A. Francis, Stabilizing a linear system by switching control with
dwell time, in Proceedings of the 2001 American Control Conference.(Cat. No.

01CH37148), vol. 3, IEEE, 2001, pp. 1876–1881.

[54] L. Jantscher, Distributionen, De Gruyter Lehrbuch, Walter de Gruyter, Berlin, New

York, 1971.



BIBLIOGRAPHY 143

[55] R. M. Jungers and P. Mason, On feedback stabilization of linear switched systems via
switching signal control, SIAM Journal on Control and Optimization, 55 (2017),

pp. 1179–1198.

[56] R. E. Kalman, Contributions to the theory of optimal control, Bol. Soc. Matem. Mexico,

II. Ser. 5 (1960), pp. 102–119.

[57] , A new approach to linear filtering and prediction problems, Transactions of the
ASME–Journal of Basic Engineering, 82 (1960), pp. 35–45.

[58] ,On the general theory of control systems, in Proceedings of the First International

Congress on Automatic Control, Moscow 1960, London, 1961, Butterworth’s,

pp. 481–493.

[59] , Canonical structure of linear dynamical systems, Proc. Nat. Acad. Sci. (USA), 48

(1962), pp. 596–600.

[60] , Mathematical description of linear dynamical systems, SIAM J. Control Optim., 1

(1963), pp. 152–192.

[61] , When is a linear control system optimal?, Trans. ASME J. Basic Eng., 86D (1964),

pp. 51–60.

[62] R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory,
ASME Trans., Part D, 80 (1961), pp. 95–108.

[63] A. Kawamoto, K. Takaba, and T. Katayama, Riccati equation for continuous-time
descriptor systems, Linear Algebra Appl., 296 (1999), pp. 1–14.

[64] L. Kronecker, Algebraische Reduction der Schaaren bilinearer Formen, Sitzungs-
berichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin,

(1890), pp. 1225–1237.

[65] P. Kunkel and V. Mehrmann, The linear quadratic control problem for linear descriptor
systems with variable coefficients, Math. Control Signals Syst., 10 (1997), pp. 247–264.

[66] P. Kunkel, V. Mehrmann, and W. Rath, Analysis and numerical solution of control
problems in descriptor form, Math. Control Signals Syst., 14 (2001), pp. 29–61.

[67] F. Küsters, Switch observability for differential-algebraic systems, PhD thesis, Depart-

ment of Mathematics, University of Kaiserslautern, 2018.

[68] F. Küsters, M. G.-M. Ruppert, and S. Trenn, Controllability of switched differential-
algebraic equations, Syst. Control Lett., 78 (2015), pp. 32 – 39.



144 BIBLIOGRAPHY

[69] F. Küsters and S. Trenn, Duality of switched ODEs with jumps, in Proc. 54th IEEE

Conf. Decis. Control, Osaka, Japan, 2015. to appear.

[70] F. Küsters and S. Trenn, Switch observability for switched linear systems, Automatica,

87 (2018), pp. 121–127.

[71] F. Küsters, S. Trenn, and A. Wirsen, Switch-observer for switched linear systems, in
Proc. 56th IEEE Conf. Decis. Control, Melbourne, Australia, 2017. to appear.

[72] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, John Wiley and Sons

Inc., New York, 1972.

[73] F. L. Lewis, A survey of linear singular systems, IEEE Proc. Circuits, Systems and

Signal Processing, 5 (1986), pp. 3–36.

[74] , A tutorial on the geometric analysis of linear time-invariant implicit systems,
Automatica, 28 (1992), pp. 119–137.

[75] D. Liberzon, Switching in Systems and Control, Systems and Control: Foundations

and Applications, Birkhäuser, Boston, 2003.

[76] , Calculus of variations and optimal control theory: a concise introduction, Princeton
university press, 2011.

[77] D. Liberzon, J. P. Hespanha, and A. S. Morse, Stability of switched systems: a
lie-algebraic condition, Systems & Control Letters, 37 (1999), pp. 117–122.

[78] D. Liberzon and A. S. Morse, Basic problems in stability and design of switched systems,
IEEE control systems magazine, 19 (1999), pp. 59–70.

[79] D. Liberzon and S. Trenn,On stability of linear switched differential algebraic equations,
in Proc. IEEE 48th Conf. on Decision and Control, December 2009, pp. 2156–2161.

[80] , Switched nonlinear differential algebraic equations: Solution theory, Lyapunov
functions, and stability, Automatica, 48 (2012), pp. 954–963.

[81] H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: a survey
of recent results, IEEE Transactions on Automatic control, 54 (2009), pp. 308–322.

[82] P. Lötstedt and L. R. Petzold, Numerical solution of nonlinear differential equations
with algebraic constraints I: Convergence results for backward differentiation formulas,
Math. Comp., 46 (1986), pp. 491–516.

[83] D. G. Luenberger, Observing the state of a linear system, IEEE Trans. Mil. Electron.,

MIL-8 (1964), pp. 74–80.



BIBLIOGRAPHY 145

[84] , Observers for multivariable systems, IEEE Trans. Autom. Control, 11 (1966),

pp. 190–197.

[85] , Dynamic equations in descriptor form, IEEE Trans. Autom. Control, 22 (1977),

pp. 312–321.

[86] D. G. Luenberger and A. Arbel, Singular dynamic Leontief systems, Econometrica,

45 (1977), pp. 991–995.

[87] V. Mehrmann, The LinearQuadratic Control Problem: Theory andNumerical Algorithms,
habilitationsschrift, Universität Bielefeld, Bielefeld, FRG, 1987.

[88] , Existence, uniqueness and stability of solutions to singular, linear-quadratic control
problems, Linear Algebra Appl., (1989), pp. 291–331.

[89] , TheAutonomous LinearQuadratic Control Problem, Theory andNumerical Solution,
no. 163 in Lecture Notes in Control and Information Sciences, Springer-Verlag,

Heidelberg, 1991.

[90] V. Mehrmann and T. Stykel, Balanced truncation model reduction for large-scale systems
in descriptor form, in Dimension Reduction of Large-Scale Systems, Springer, 2005,

pp. 83–115.

[91] A. Mironchenko, F. Wirth, and K. Wulff, Stabilization of switched linear differential
algebraic equations and periodic switching, IEEE Transactions on Automatic Control,

60 (2015), pp. 2102–2113.

[92] A. Mironchenko, F. R. Wirth, and K. Wulff, Stabilization of switched linear differential-
algebraic equations via time-dependent switching signals, in Proc. 52nd IEEE Conf.

Decis. Control, Florence, Italy, 2013, pp. 5975–5980.

[93] M. Morari and J. H. Lee,Model predictive control: past, present and future, Computers

and Chemical Engineering, 23 (1999), pp. 667–682.

[94] R. W. Newcomb, The semistate description of nonlinear time-variable circuits, IEEE
Trans. Circuits Syst., CAS-28 (1981), pp. 62–71.

[95] R. Nikoukhah, A. S. Willsky, and B. Lévy, Kalman filtering and Riccati equations
for descriptor systems, Rapports de Recherche N0.1186, INRIA, Le Chesnay, France,

1990.

[96] D. H. Owens and D. L. Debeljkovic, Consistency and Liapunov stability of linear
descriptor systems: A geometric analysis, IMA J. Math. Control & Information, 2

(1985), pp. 139–151.



146 BIBLIOGRAPHY

[97] C. C. Pantelides, The consistent initialization of differential-algebraic systems, SIAM J.

Sci. Stat. Comput., 9 (1988), pp. 213–231.

[98] M. Petreczky, A. Tanwani, and S. Trenn, Observability of switched linear systems, in
Hybrid Dynamical Systems, M. Djemai and M. Defoort, eds., vol. 457 of Lecture

Notes in Control and Information Sciences, Springer-Verlag, 2015, pp. 205–240.

[99] V. M. Popov, Invariant description of linear time-invariant controllable systems, SIAM J.

Control Optim., 10 (1972), pp. 252–264.

[100] K. M. Przyłuski and A. M. Sosnowski, Remarks on the theory of implicit linear
continuous-time systems, Kybernetika, 30 (1994), pp. 507–515.

[101] P. J. Rabier and W. C. Rheinboldt, Theoretical and numerical analysis of differential-
algebraic equations, in Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions,

eds., vol. VIII, Elsevier Science, Amsterdam, The Netherlands, 2002, pp. 183–537.

[102] T. Reis, Circuit synthesis of passive descriptor systems - a modified nodal approach, Int. J.
Circ. Theor. Appl., 38 (2010), pp. 44–68.

[103] T. Reis, O. Rendel, and M. Voigt, The Kalman-Yakubovich-Popov inequality for
differential-algebraic systems, Hamburger Beiträge zur Angewandten Mathematik

2014-27, Fachbereich Mathematik, Universität Hamburg, 2014. submitted for

publication.

[104] T. Reis and M. Voigt, Linear-quadratic infinite time horizon optimal control for differential-
algebraic equations - a new algebraic criterion, in Proceedings of MTNS-2012, 2012.

[105] R. Riaza, Differential-Algebraic Systems. Analytical Aspects and Circuit Applications,
World Scientific Publishing, Basel, 2008.

[106] R. E. Roberson and R. Schwertassek, Dynamics of Multibody Systems, Springer-
Verlag, Berlin, 1988.

[107] H. H. Rosenbrock, State Space and Multivariable Theory, John Wiley and Sons Inc.,

New York, NY, 1970.

[108] M. A. Rotea and P. P. Khargonekar, H2-optimal control with an hinfty-constraint the
state feedback case, Automatica, 27 (1991), pp. 307–316.

[109] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.

[110] , Real and Complex Analysis, McGraw-Hill, New York, 1974.



BIBLIOGRAPHY 147

[111] M. G.-M. Ruppert and S. Trenn, Controllability of switched DAEs: The single switch
case, in PAMM - Proc. Appl. Math. Mech., vol. 14, Wiley-VCH Verlag GmbH, 2014,

pp. 15–18.

[112] L. Schwartz, Théorie des Distributions I,II, no. IX,X in Publications de l’institut de

mathématique de l’Universite de Strasbourg, Hermann, Paris, 1950, 1951.

[113] Z. Sun and S. S. Ge, Switched linear systems, Communications and Control Engi-

neering, Springer-Verlag, London, 2005.

[114] K. Takaba and T. Katayama, H2 output feedback control for descriptor systems,
Automatica, 34 (1998), pp. 841–850.

[115] A. Tanwani, H. Shim, and D. Liberzon, Observability implies observer design for
switched linear systems, in Proc. ACM Conf. Hybrid Systems: Computation and

Control, 2011, pp. 3 – 12.

[116] A. Tanwani, H. Shim, and D. Liberzon, Observability for switched linear systems:
characterization and observer design, IEEE Transactions on Automatic Control, 58

(2012), pp. 891–904.

[117] A. Tanwani, H. Shim, and D. Liberzon, Observability for switched linear systems:
Characterization and observer design, IEEE Trans. Autom. Control, 58 (2013), pp. 891–

904.

[118] A. Tanwani and S. Trenn, On observability of switched differential-algebraic equations,
in Proc. 49th IEEE Conf. Decis. Control, Atlanta, USA, 2010, pp. 5656–5661.

[119] , Observability of switched differential-algebraic equations for general switching
signals, in Proc. 51st IEEE Conf. Decis. Control, Maui, USA, 2012, pp. 2648–2653.

[120] A. Tanwani and S. Trenn, Determinability and state estimation for switched differential-
algebraic equations, Automatica, 76 (2017), pp. 17–31.

[121] , Detectability and observer design for switched differential algebraic equations,
Automatica, 99 (2019), pp. 289–300.

[122] J. Tolsa and M. Salichs, Analysis of linear networks with inconsistent initial conditions,
IEEE Trans. Circuits Syst., 40 (1993), pp. 885 – 894.

[123] S. Trenn, Distributional differential algebraic equations, PhD thesis, Institut für Math-

ematik, Technische Universität Ilmenau, Universitätsverlag Ilmenau, Germany,

2009.



148 BIBLIOGRAPHY

[124] , Regularity of distributional differential algebraic equations, Math. Control Signals

Syst., 21 (2009), pp. 229–264.

[125] , Switched differential algebraic equations, in Dynamics and Control of Switched

Electronic Systems - Advanced Perspectives for Modeling, Simulation and Control

of Power Converters, F. Vasca and L. Iannelli, eds., Springer-Verlag, London, 2012,

ch. 6, pp. 189–216.

[126] H. L. Trentelman, The totally singular linear quadratic problem with indefinite cost, in
Lecture Notes of the Workshop on “The Riccati Equation in Control, Systems and

Signal”, S. Bittanti, ed., Bologna, Italy, 1989, Pitagora Editrice, pp. 120–128.

[127] H. L. Trentelman, A. A. Stoorvogel, and M. L. J. Hautus, Control Theory for Linear
Systems, Communications and Control Engineering, Springer-Verlag, London,

2001.

[128] D. R. Vaughan, A negative exponential solution for the matrix Riccati equation, IEEE
Trans. Autom. Control, 14 (1969), pp. 72–75.

[129] V. Vesely and D. Rosinová, Robust mpc controller design for switched systems using
multi-parameter dependent lyapunov function, International Journal of Innovative
Computing, Information and Control, 10 (2014), pp. 269–280.

[130] M. Voigt,On Linear-Quadratic Optimal Control and Robustness of Differential-Algebraic
Systems, PhD thesis, Otto-von-Guericke-Universität Magdeburg, publ. by Logos

Verlag Berlin, Germany, 2015.

[131] J. Weickert and J. Weickert, Navier-stokes equations as a differential-algebraic system,

(1996).

[132] K. Weierstraß, Zur Theorie der bilinearen und quadratischen Formen, Berl. Monatsb.,

(1868), pp. 310–338.

[133] M. Wicks, P. Peleties, and R. DeCarlo, Switched controller synthesis for the quadratic
stabilisation of a pair of unstable linear systems, European journal of control, 4 (1998),

pp. 140–147.

[134] J. C. Willems, Least squares optimal control and the algebraic Riccati equation, IEEE
Trans. Autom. Control, 16 (1971), pp. 621–634.

[135] , System theoretic models for the analysis of physical systems, Ricerche diAutomatica,

10 (1979), pp. 71–106.

[136] , Almost A(modB)-invariant subspaces, Astérisque, 75–76 (1980), pp. 239–248.



BIBLIOGRAPHY 149

[137] K.-T. Wong, The eigenvalue problem λTx+ Sx, J. Diff. Eqns., 16 (1974), pp. 270–280.

[138] W. M. Wonham, Optimal stationary control of a linear system with state-dependent noise,
SIAM J. Cont., 5 (1967), pp. 486–500.

[139] , Linear Multivariable Control: A Geometric Approach, Springer-Verlag, Heidel-

berg, 2nd ed., 1979.

[140] G. Wu, J. Sun, and J. Chen, Optimal linear quadratic regulator of switched systems,
IEEE transactions on automatic control, 64 (2018), pp. 2898–2904.

[141] X. Xu and P. J. Antsaklis,Optimal control of switched systems based on parameterization
of the switching instants, IEEE transactions on automatic control, 49 (2004), pp. 2–16.

[142] L. Zhang, S. Zhuang, and R. D. Braatz, Switched model predictive control of switched
linear systems: Feasibility, stability and robustness, Automatica, 67 (2016), pp. 8–21.

[143] F. Zhu and P. J. Antsaklis, Optimal control of hybrid switched systems: A brief survey,
Discrete Event Dynamic Systems, 25 (2015), pp. 345–364.





Summary

This thesis is concerned with the study of a particular subclass of hybrid systems, namely

switched systems. A switched system is a dynamical system that consists of a finite

number of subsystems, referred to as modes and a logical rule that orchestrates the

switching between these subsystems. The main property of switched systems is that

these systems switch among a finite number of subsystems and the discrete events

interacting with the subsystems are governed by a piecewise continuous function called

the switching signal. In the case where each subsystem is given by a linear differential

algebraic equation (DAE) a switched DAE is obtained.

In contrast to (switched) ordinary differential equations and non-switched DAEs,

switched DAEs have gained little attention in the literature, despite their many applica-

tions. In the case of e.g., modeling dynamical systems that undergo abrupt structural

changes or component failure, switched DAEmodels are naturally obtained. Solutions of

switched DAEs generally contain jumps and Dirac impulses, which may exclude classical

solutions from existence. These phenomena are not only mathematical artifacts, but can

be observed in practice as well. Thus far the literature has mainly focused on the study

of qualitative properties of switched DAEs without taking Dirac impulses into account

or Dirac impulses are exploited to obtain additional information about the state of a

system. However, Dirac impulses are undesired in general as they can cause damage to

the system or cause hazardous situations. Furthermore, no quantitative properties have

been studied yet. Quantitative properties such as optimal control aim to quantify the

performance of a system, which is necessary in many applications. Therefore, this thesis

is concerned with impulse-free properties and optimal control of switched DAEs

Regarding the qualitative properties, impulse-free solutions of switched DAEs are

investigated in particular. Systems for which impulse-free solutions can be ensured

via a suitable choice of control input are characterized. Regarding a switched DAE as

generated by a set of matrix triplets and a class of switching signals gives rise to the

concept of system classes of switched DAEs. Several impulse-controllability concepts

regarding system classes are presented and characterized. Interestingly, the conditions

simplify significantly in the case the system class is generated by arbitrary switching

signals instead of switching signals that induce the samemode sequence. It is shown that

although all systems in a system class are impulse-controllable and hence the property

can be regarded as independent of the switching signal, the control required to ensure

impulse-free solutions is in general not independent of the switching signal.

Besides impulse-free solutions, the concept of impulse-free stabilizability is also

studied, where a system is said to be impulse-free stabilizable if any initial trajectory can be
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steered asymptotically to the origin bymeans of a suitable choice of control input. In order

to deal with systems with an infinite number of switches, the concept op impulse-free

interval stabilizability is introduced. Under some mild assumption global stabilizability

can be concluded from interval-stabilizability. Necessary an sufficient conditions for

impulse-free interval-stabilizability are given, followed by a novel characterization of

impulse-free controllability.

The final chapter deals with a quantitative property, namely optimal control of

switched DAEs. It is shown that if a quadratic cost functional is considered, the optimal

control is a feedback and the optimal cost is a function that is quadratic in the initial

value. It is shown that these results give rise to a dynamic programming approach and

it is shown that the optimal control problem for switched DAEs can be regarded as a

repeated optimal control problem for non-switchedDAEs. However, for each problem for

non-switched DAEs additional subspace endpoint constraints need to be imposed and a

general terminal cost matrix needs to be considered. Necessary and sufficient conditions

for solvability of the constraint optimal control problem for DAEs are presented and it is

shown how these results lead to results for the switched case.



Samenvatting

In dit proefschrift staat een bepaalde klasse van hybride system centraal, namelĳk

schakelsystemen. Een schakelsysteem is een dynamisch systeem dat bestaat uit een

aantal deelsystemen, ook wel modes genoemd, en een logische regel die het schakelen

tussen de deelsystemen orchestreert. De voornaamste eigenschap van schakelsystemen

is dat deze systemen schakelen tussen een eindig aantal deelsystemen en de discrete

interactie tussen de systemen wordt geregeld door een stuksgewĳs continue functie, ook

wel schakelsignaal genoemd. Indien ieder deelsysteem gegeven wordt door een liniaire

differentiaal algebraische vergelĳking (DAE), heeft men te maken met een schakel-DAE.

In tegenstelling tot (schakel) differentiaal vergelĳkingen en niet geschakelde DAEs,

hebben schakel-DAEs ondanks hun vele toepassingen weinig aandacht gekregen in

de literatuur. Bĳ het modelleren van dynamische systemen die abrupte structurele

veranderingen ondergaan, of systemen waarbĳ onderdelen kapot gaan, krĳgt men te

maken met schakel-DAEs. Oplossingen van schakel-DAEs zĳn in de regel genomen

discontinue en bevatten Dirac impulsen, waardoor klassieke oplossingen vaak niet

bestaan. Deze phenomenen zĳn niet alleen een wiskundig artifact, maar komen in de

praktĳk ook voor. Tot nu toe heeft de literatuur haar aandacht vooral gefocuset op

kwalitatieve eigenschappen van schakel-DAEswaarbĳDirac impulsen niet in achtworden

genomen, dan wel gebruikt worden om de toestand van het systeem te acherhalen. Dirac

impulsen zĳn echter dikwĳls ongewenst, aangezien ze het systeem kunnen beschadigen

of een gevaarlĳk situatie kunnen veroorzaken. Ook kwantitatieve eigenschappen zĳn nog

niet bestudeerd. Kwantitatieve eigenschapenp zoals optimale regeling hebben als doel

om de prestatie van een systeem te kwantificeren, wat nodig is voor menig applicatie.

Daarom staan impulse-vrĳe eigenschappen en optimale regeling van schakel-DAEs

centraal in dit proefschrift.

Wat beteft de kwalitatieve eigenschappen, worden imulse-vrĳe oplossingen van

schakel-DAEs in thet bĳzonder onderzocht. Systemen waarvoor een impulse-vrĳe

oplossing kan worden gegarandeerd door een juist regel signaal toe te passen ongeacht

de beginconditie worden gekarakterizeerd. Door schakel-DAEs te beschouwen als

gegenereerd door een set van matrix triplets en een klasse van schakelsignalen, kan

een systeemklasse van schakel-DAEs worden gedefinieerd. Diverse concepten van

impulse-regelbaarheid worden geïntroduceerd en gekarakterizeerd. Interessant genoeg

versimpelende voorwaarden in het geval de systeemklasse gegenereerddoorwillekeurige

schakelsignalen beschouwt worden in plaats van schakelsignalen die dezelfde volgorde

van modes induceren. Het wordt aangetoond dat hoewel ieder systeem in de sys-

teemklasse impulse-regelbaar kan zĳn en dat de eigenschap dus onafhankelĳk van het
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schakelsignaal genoemd kan worden, dit niet impliceert dat het regelsignaal dat een

impulse-vrĳe oplossing garandeert onafhankelĳk is van het schakelsignaal.

Naast impulse-vrĳe oplossing, wordt het concept van impulse-vrĳe stabilizering ook

bestudeerd, waar een systeem impulse-vrĳ stabilizeerbaar wordt genoemd indien iedere

beginoplossing asymptotisch naar de oorsprong gestuurd kan worden door het juiste

regelsignaal te kiezen. Om iets te kunnen zeggen over systemen met een oneindig aantal

schakelingen, wordt het idee van impulse-vrĳe stabilizatie op een interval geintroduceerd.

Onder een milde aanname kan globale stabilizeerbaarheid aangetoond worden op basis

van stabilizeerbaarheid op een interval. Nodige en voldoende voorwaarde voor impulse-

vrĳ interva-stabilizeerbaarheid worden gepresenteerd en een nieuwe karakterizatie van

impulse-vrĳe regelbaarheid volgt als een gevolg.

Het laatste hoofdstuk heeft te maken met een kwantitatieve eigenschap, namelĳk

die van optimale regeling van schakel-DAEs. Er wordt aangetoond dat indien de

kostenfunctionaal kwadratisch is, het optimale regelsignaal een terugkoppeling is en

de optimale kost een kwadratische functie is van de beginwaarde. Deze observatie

geeft aanleiding om een dynamische programmeringsaanpak te nemen waardoor het

optimale regelprobleem voor schakel-DAEs herschreven kan worden als een repeterend

optimaal regelprobleem voor niet geschakeldeDAEs. Voor het niet geschakelde probleem

moeten echter wel extra voorwaarde op de terminale toestand worden gesteld en een

algemene terminale kostmoet in acht genomenworden. Nodige en voldoende voorwarde

voor het bestaan van een oplossing voor het probleem met extra voorwaarden worden

gepresenteerd en het wordt aangetoond hoe deze resultaten leiden tot het resultaat voor

het geschakelde geval.
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