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Abstract 

The past few years have seen a rapid growth in research on early warning signals (EWSs) 

in psychological systems. Whereas early studies showed that EWSs are associated with sudden 

changes in clinical change trajectories, later findings showed that EWSs may not be general and 

have low predictive power. In this study, we demonstrate that two common practices in 

psychological EWS studies are not warranted by theories and may lead to false-negative or false-

positive results, explaining the mixed findings in the literature. These two practices are (1) using 

loosely-defined time windows for early warning indicators and (2) using different variables for 

detecting transitions and calculating early warning indicators. We first review the theoretical 

background of EWSs and current research practices for EWS studies. Two simulation studies 

with different types of system changes are used to demonstrate the possible consequences of the 

two practices. In Study 1, we show that when the time window for early warning indicators is not 

strictly before the transition, the transition process itself and the system dynamics after the 

transition may confound the result. In Study 2, we show that when the transition and early 

warning indicators are measured from different variables in the same system, the predictive 

relationship may not exist. Based on our findings, we provide suggestions for future EWS studies 

in terms of theory construction, study design, and data analysis. 

Keywords: early warning signals, critical transitions, sudden changes, complex 

dynamical systems, clinical psychology.  
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Introduction 

Human psychology is a complex dynamical system – a proposition that has been claimed 

for a long time (Granic, 2005; Smith & Thelen, 2003; van Geert & van Dijk, 2021) but has been 

formalized for psychopathology only in the past few years (Haslbeck et al., 2021; Olthof et al., in 

press; Robinaugh et al., 2021; Schöller et al., 2018). The appeal of a complex system perspective 

lies in the fact that this framework is able to provide an explanation for the sudden and abrupt 

transitions often observed in clinical phenomena (e.g. sudden gains, relapse, see for instance 

Helmich et al., 2020; Helmich, Olthof, et al., 2021; Olthof, Hasselman, Strunk, et al., 2020; van 

de Leemput et al., 2014). Researchers in various fields have shown that these sudden transitions 

for complex systems can be predicted by a collection of indicators, commonly known as early 

warning signals (EWSs, Dakos et al., 2012; Lenton, 2011; Scheffer et al., 2009, 2012). 

Intuitively, the existence of EWSs can be understood by the following idea: when a certain phase 

is destabilized, it loses its resilience. The system state is then more likely to fluctuate, and after a 

perturbation, the system also takes longer to recover. As a result, various indicators, such as 

increasing variance and autoregressive coefficients, can be observed in the data. At a certain 

point, the phase that the system previously resides in is no longer stable, the system transitions to 

another phase abruptly, causing a sudden change in system variables. 

For psychological systems, researchers have found empirical evidence that EWSs may 

exist for clinical changes (e.g., Olthof, Hasselman, Strunk, et al., 2020; Wichers et al., 2016, 

2020), and hypothesized that EWSs can potentially be used for detecting vulnerable individuals, 

determining the suitable time for interventions, and predicting the direction of change (Helmich, 

Olthof, et al., 2021; Wichers et al., 2019). Later studies, however, found the predictive power of 

EWSs to be generally weak, EWSs only occurring in some variables different for each patient, 
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and overall not showing a clear consistent pattern (e.g., Bos et al., 2021; Curtiss et al., 2022; 

Helmich, Smit, et al., 2021; Schreuder et al., 2020). In a recent article, Dablander et al. (2022) 

showed several example systems for which EWSs may not always exist even if the system 

experiences a transition (false negative; e.g., when the transition is induced by a strong 

perturbation or when the dynamic functions or noise have certain mathematical features), and 

sometimes EWSs exist without preceding a transition (false positive; e.g., for some specific 

systems EWS can occur before a smooth change or when there is no transitions). They also 

demonstrated that the measurement noise and sampling frequency can significantly affect the 

predictive power of EWSs. Further investigations are still necessary to understand in which 

conditions and how to detect EWSs reliably. 

In this paper, we illustrate how two common practices in previous psychological EWS 

studies can lead to false positive and false negative findings. Those practices are (1) using 

loosely-defined time windows to calculate early warning indicators, and (2) using different 

variables to examine early warning indicators and sudden transitions. We will first review the 

theoretical background on EWSs and the common research methods used in recent psychological 

EWS studies; in two simulation studies we will then demonstrate how those practices can lead to 

false positive and negative findings in certain conditions; based on these findings we will discuss 

the implications and suggestions for future EWS research. We try to involve minimal yet 

sufficient mathematical details in the current article, readers seeking more rigorous proof and 

derivations will be provided references in relevant sections. 

Theories and Empirical Studies on EWSs 

Regardless of their specific nature, many complex systems undergo critical transitions in 

which the system shifts abruptly from one phase to another. The climate system of the earth, for 
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instance, can transition from a glacial period to an interglacial period (Thompson & Sieber, 

2011), the financial system can suddenly go from prosperity to a financial crisis (Gorban et al., 

2010; Guttal et al., 2016), and a multispecies ecological system can experience a population 

collapse (Lever et al., 2020). In many of those systems, EWSs are being observed before the 

critical transition: the speed with which the system recovers from small turbulence becomes slow 

(known as critical slowing down), and the variance becomes high (known as critical fluctuations, 

Kelso, 2010; Scheffer et al., 2009, 2012). 

The theoretical background of EWSs is based on the bifurcation theory (Gilmore, 1993; 

Scheffer et al., 2009; Thom, 1975; Zeeman, 1976). Here we use the cusp bifurcation, one of the 

most investigated types of bifurcations, as an example. As shown in Figure 1a, there is a ball on 

a landscape with two local basins. The position of the ball on the horizontal axis represents the 

state of the system, the basins represent the phases of the system1 and the vertical axis represents 

the stability of the system2. When the basin is deeper, the phase is more stable; when the basin is 

shallower, the phase is more unstable. The stability landscape of the system is often determined 

by one or more control parameters. By adjusting the control parameter, the landscape can be 

changed smoothly, which destabilizes the left basin and stabilizes the right basin. At a certain 

point (termed the bifurcation point), the left basin no longer exists, causing the ball to abruptly 

move to the other basin, which represents that the system experiences a transition. Before the 

 
1 To avoid confusion, the term “state” is used in this article for the specific condition defined by the values of the 

system variables, and “phase” is used for the higher-level patterns of the system, which consist of many states that are 

qualitatively similar (Cui et al., 2021). 

2 Note that the definition of “stability” in this article may not be the same as some other works in this field (e.g., the 

time that a system spend to go back to its local minimum after a small pertubation, Dablander et al., 2022). See Cui et al. (2021) 

for the relationships between different stability measures based on a stability landscape. 
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transition, although the state of the system (i.e., the position of the ball on the horizontal axis) 

does not change much, the phase’s stability (i.e., the depth of the basin) does become lower. As a 

result, when the system is influenced by a small noise, it is easier for the system to move to 

another position (i.e., the ball moves further away from the equilibrium point), and it is harder 

for the system to recover (i.e., the ball returns more slowly to the equilibrium point). For a real-

life system, it is often hard to tell how stable a phase is (i.e., the position of the ball on the 

vertical axis is not easy to measure). However, if we observe that the state of the system (i.e., the 

position of the ball on the horizontal axis) has a larger variance and higher autocorrelation, we 

can infer that the stability of the phase has decreased, and a critical transition may happen in the 

near future.  

Many real-life systems are similar to the cusp bifurcation in the sense that one basin of 

the system disappears at the bifurcation point (in mathematical language, the dominant 

eigenvalue at that equilibrium becomes zero); under a small white noise, the autocorrelation of 

the system state will approach 1, and the variance of the system state will approach infinity when 

the system approaches the bifurcation point (see Box 3 of Scheffer et al., 2009, for the 

mathematical proof). Therefore, it is reasonable to assume that many real-life systems will show 

EWSs before transitions, regardless of the specific form of interactions within those systems. 

This, of course, does not exclude psychological systems, which are well known to be complex, 

dynamic, and sometimes multistable (Cui et al., 2021; Olthof, Hasselman, & Lichtwarck-

Aschoff, 2020; Schiepek et al., 2017). If we describe a patient with depression, the state of the 

psychological system can be a precise description of the mental state. This can be operationally 

defined as, for example, how much the person feels down, rated on a continuous scale from “not 
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feeling down at all” to “feeling down very much”.3 Then the two phases of the system can be a 

depressive phase on the negative mood side (close to “feeling down very much”) and a healthy 

phase on the positive mood side (close to “not feeling down at all”). If the patient is stuck in the 

depressive phase for a clinically long time, we can say that the person is having a depressive 

episode; in contrast, if the person is almost always in the healthy phase, the person is not 

suffering from depression.  

Both clinicians’ experience and empirical research have shown that many patients do not 

recover or deteriorate in a gradual way; sometimes they have sudden gains or losses in their 

symptom levels without any recognizable external stimuli (Hayes et al., 2007; Helmich et al., 

2020; Miller, 2004; Olthof, Hasselman, & Lichtwarck-Aschoff, 2020; Tang & DeRubeis, 1999). 

If we assume the psychological system is simple and linear, this would not be possible because 

the same amount of change in the independent variable (e.g. treatment) will always lead to the 

same amount of change in the dependent variable (e.g. depressive symptoms; i.e., a linear dose-

response relationship; Stiles & Shapiro, 1994). Thus, if there are no sudden changes in the 

independent variable, there will not be a sudden change in the dependent variable. However, if 

we consider psychological systems as complex, nonlinear, and dynamic, just like other complex 

systems in nature, it is reasonable to assume that a phenomenon like a cusp bifurcation (Figure 

1a) can happen, that a gradual change in the stability landscape can lead to an abrupt change in 

system state through bifurcation, and that EWSs can be detected before the sudden changes. We 

call this type of transition bifurcation-induced transition, or B-transition. 

 
3 Here we take a simplified way to only use one item to represent the state of the psychological system. Considering the 

complexity, using a compound measure (e.g., the average activation level of the symptom network, Cramer et al., 2016; Hayes et 

al., 2007) is probably more realistic. 
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In the past decade, many researchers have followed this idea and tried to detect EWSs in 

patients with mental disorders (see Table 1). These empirical studies contain two steps: detecting 

early warning indicators (EWIs) and transitions. A significant relationship between EWIs and 

transitions is then taken as evidence of EWSs in psychopathology. Here, we distinguish EWSs 

and EWIs because EWSs specifically represent critical slowing down and fluctuations before a 

B-transition, hence making a causal claim, whereas EWIs are simply statistical measures like 

increasing autocorrelation and variance. As we will show later, sometimes EWIs can also be 

observed when the system does not have a B-transition. Observing these statistical indicators 

does not necessarily mean they stem from the same underlying mechanism as EWSs. Therefore, 

we use EWIs for the statistical indicators calculated from the data, and we only label them EWSs 

when they indicate that a B-transition will happen soon. 

We summarize frequently used methods to detect EWIs and transitions in Table 1. This 

summary demonstrates that these methods do not only differ in statistical indicators (increasing 

variance, increasing autocorrelation, increasing vector autocorrelation, or high dynamic 

complexity), but also in the selected variables and time scales. Many studies used a fixed time 

window to examine if a transition had taken place within that time window. This means that even 

if those methods can reliably detect whether a transition has taken place, there is no way to 

determine the exact moment of the transition. For example, the study by van de Leemput et al. 

(2014) used the difference in depression score before and after treatment (for depressed patients) 

or observation period (for the general population) to represent if a transition had taken place or 

not. The result of this study showed that participants with a greater change in their depression 

scores also had a larger correlation between emotion scores. However, because the depression 

score was not measured during the treatment or the observation period, it was not possible to 
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detect the exact time point of the transitions. Several other studies used statistical methods to 

detect both whether a transition has happened and when it happened (see Table 1, transition 

indicators, unfixed time). Most of those studies, however, used a variable that was sampled more 

slowly to detect the transition than the variables that were used to calculate the EWIs. This 

means that the transition point is only roughly determined. For example, in the study by Wichers 

et al. (2016), the items for EWI detection were measured several times a day, whereas the 

depression score for transition detection was measured weekly. As a result, it was only possible 

to determine in which week the transition had taken place, but there was no way to know on 

which day exactly the transition had happened. Finally, the study by Olthof, Hasselman, Strunk, 

et al. (2020) used the same sampling frequency for all measures but the variables used for EWI 

detection and transition detection were not the same. The variables used for transition detections 

were excluded from the calculation of EWIs.  

For conciseness, we will refer to those two practices, namely using loosely-defined time 

windows for EWIs and using different variables for transition detection and EWI detection, as 

the loose-window issue and the different-variable issue. We argue that those two issues may lead 

to incorrect results because in the mathematical derivation, EWSs and transitions should be 

observed from the same variable, and EWSs should occur strictly before the transition (Scheffer 

et al., 2009). This can also be intuitively understood because in the landscape illustration of the 

cusp bifurcation (Figure 1a), the fluctuation magnitude and return time of the ball only indicate 

the stability of a basin when the ball is still in this basin, and it is the same ball that shows EWSs 

and transitions to the other basin. In the following two sections, we use simulations to illustrate 

that, under certain conditions, both the loose-window issue and the different-variable issue can 

severely confound the result of EWS studies. 
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Simulation Study 1: Noise-Induced Transition and the Loose-Window Issue 

As introduced above, the theoretical basis of EWS is bifurcation theory, which was 

developed for deterministic systems. However, real-life systems are always exposed to various 

forms of noise. For psychological systems, the noise in the system can come from several 

different sources. The weather, the environment, interpersonal relationships, and randomness in 

the biological processes of a person can have an impact on his or her psychological system. 

These factors cannot be fully controlled by the psychological system.4 Therefore, researchers 

generally treat them as noises. 

For a B-transition, the stability change is the cause for the transition of the system. The 

system transitions to another phase when its current phase is not stable anymore. Because of the 

noise in real-life systems, the transitions, however, often do not occur exactly at the same time as 

the bifurcation point is reached. Even if the noise is small, at a certain point before the 

bifurcation point, the system is able to escape the shallow basin and transition to the other phase. 

Nevertheless, as long as the noise of the system is not too large, the bifurcation is still the 

dominant reason for the transition, and the transition point is close enough to the bifurcation 

point (Boettiger & Batt, 2020). This warrants the use of EWSs for real-life systems. But if the 

noise strength is larger, the system can still transition to another phase even if the stability of the 

system has not changed (Figure 1b). This is called a noise-induced transition, or N-transition. 

 
4 Some researchers in the field see psychological processes from a broader view and try to include some environmental 

factors into the psychological systems (e.g., Lunansky et al., 2021; van Geert, 2019). Taking this view, some factors here may be 

a part of the system and no longer be noises. However, note that there is almost always something out of a real-life system that 

can have random influences on it. Therefore, no matter how large the system is defined as, it does not affect our claim that noises 

should be taken into account. 
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Because the stability of the system may not change before an N-transition, we cannot expect to 

observe EWSs anymore (Ashwin et al., 2012; Boettiger & Batt, 2020; Kuehn, 2011). 

In this section, we use a simulation study to show the consequence of measuring EWIs in 

a loosely-defined time window. Both conditions of B- and N-transition were simulated to 

compare their EWIs. All simulations and parameter estimations were performed in R 4.1.2 (R 

Core Team, 2021). The replicable R scripts can be found on the OSF repository of this project 

(https://osf.io/f659u/). 

Model setup 

We use a simple gradient system with noise by Shi et al. (2016) as the model for our 

simulation. The model contains one state variable, 𝑥, and a control parameter, 𝜆. The potential 

function of the system, 𝑉, is specified as 

𝑉(𝑥, 𝜆) = 100 (
1

4
𝑥4 −

3

2
𝑥2 + 𝜆𝑥) . (1) 

The dynamic functions of the system are then specified as  

d𝑥

d𝑡
=  −

𝜕𝑉(𝑥, 𝜆)

𝜕𝑥
+ √2σ𝜉(𝑡)  (2) 

where 𝑑𝑥/𝑑𝑡 represents the change rate of 𝑥, 𝜕𝑉(𝑥, 𝜆)/𝜕𝑥 represents the gradient of the 

potential function with respect to 𝑥, 𝜎 represents the strength of the noise and was set as 10 in 

this study (as in Shi et al., 2016), and 𝜉(𝑡) represents standard white noise. The potential 

landscapes of the system with different 𝜆, as well as the equilibrium points of the system where 

𝜕𝑉(𝑥, 𝜆)/𝜕𝑥 = 0, are shown in Figure 2. For simulating the B-transition, the initial value of 𝜆 is 

set as -3, and the changing rate of 𝜆 is set as d𝜆/d𝑡 = 1. When the simulation starts, there is 

only one basin for the system. We refer to this as the positive phase because it is in the positive 

semi-axis of 𝑥. As 𝜆 increases to -2, the second basin appears, and its stability increases as 𝜆 
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further increases. We refer to this basin as the negative phase. When 𝜆 increases to 2, the system 

reaches its bifurcation point. The positive phase of the system disappears and the negative basin 

becomes the only possible basin.  

To simulate N-transitions, the parameter 𝜆 is held constant at 0, which means that the 

potential function 𝑉 does not change through the simulation. The parameter σ is set as 10, the 

same as in the B-transition condition, but there is a strong noise Δ𝑥 =  −3 at 𝑡 = 3 that pushes 

the system to the negative phase. This strong noise represents a rare event that is highly unlikely 

to happen every day but may happen several times in a person’s life. This noise is unpredictable 

and does not change the stability of the system. Therefore, what the system experiences is an N-

transition. 

All simulations were numerically performed using the Euler-Maruyama method, with 

10−4 as the step size and 6 as the total time length. The raw simulation data were subsampled by 

a factor of 10 to reduce the length of the data. Therefore, the time interval between adjunct time 

points in the output is 10−3. For each condition, the simulation was replicated 103 times and the 

results and statistical indicators were recorded for further analysis. 

Indicators for simulation outputs 

Transition point determination. For the simulated model, the transition of the system to 

another basin can be clearly identified when the system goes over the barrier (the unstable 

equilibrium in Figure 2) because we know the exact formula of the potential function. Therefore, 

instead of using the statistical ways that are used in empirical research (Table 1) where the actual 

transition point is unknown, we use the time that the system first crosses the barrier as the time 

of the transition (𝑡trans). 
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Early warning indicators. Here we test three early warning indicators that are 

commonly used in previous empirical studies (Table 1): increasing variance, increasing 

autocorrelation function (ACF), and increasing dynamic complexity (DC). Whereas variance and 

ACF are classical statistical measures, DC is a measure developed by Schiepek and Strunk 

(2010) for capturing critical instabilities in sparse time series data. It takes both the distribution 

of the data in the plausible region and the fluctuations into account. DC is higher when the 

variable fluctuates more frequently and when the variable deviates further from the ideal, 

uniform distribution. Because we used a simple univariate model, vector autocorrelation cannot 

be calculated. All three parameters were estimated with the overlapping moving window 

approach. The window size was selected as 200 time points (Δ𝑡 = 0.2), and each time the 

window moves forward for 20 time points (Δ𝑡 = 0.02). Here the number of time points in each 

window is much more than the typical value in empirical studies. We chose this large value 

because the main purpose of the current study is to qualitatively show the consequences of the 

loose-window issue, not to provide a guidance on the window size for empirical studies. A rather 

large window size can ensure the stability of the results. Within each window, the variance, lag-1 

ACF, and DC were calculated. Specifically, the data were linear-detrended within each window 

before calculating the autocorrelation coefficient, and DC was calculated using the 

implementation in the casnet package (Hasselman et al., 2022). The right-aligned windows were 

used, which means that, for example, the variance calculated within the window from 𝑡 = 0 to 

𝑡 = 0.2 is regarded as the variance at 𝑡 = 0.2. Thus, no future information is included in the 

moving windows statistics. After that, Kendall’s 𝜏 was calculated with the Kendall package 

(McLeod, 2011) to evaluate the trends of the parameters. The Kendall’s 𝜏 was calculated in 

ranges relative to the transition point. We investigated three types of ranges in the current 
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research: (1) strictly before the transition, for which 𝜏 was calculated in the range from 𝑡trans −

1.5 to 𝑡trans; (2) roughly before the transition, for which 𝜏 was calculated in the range from 

𝑡trans − 1.5 to 𝑡trans + 0.5; and (3) around the transition, for which 𝜏 was calculated in the range 

from 𝑡trans − 1.5 to 𝑡trans + 1.5. These conditions were set to mimic different empirical studies 

where EWIs are calculated strictly before the transition (when the transition indicator is 

calculated in at least the same frequency as EWIs), roughly before the transition (when the 

transition indicator is calculated through the whole time period but in a lower frequency as 

EWIs), and in a large range that may contain a transition (when the transition indicator is only 

calculated before or after the whole study period). The range sizes are set as roughly one order of 

magnitude larger than the window sizes for moving window statistics, which is often the case in 

empirical studies. 

Simulation results 

Single simulation output. We first present the simulation output (represented as time 

series of 𝑥), the value of 𝜆, and the moving-window statistics of single simulation examples for 

each condition (Figure 3). As shown in Figure 3a, the B-transition happened at 𝑡 = 4.76, 𝜆 =

1.76, which was close to the bifurcation point (𝑡 = 5, 𝜆 = 2). Before the transition, the variance, 

ACF, and DC all increased, which is in line with the theoretical prediction. However, the peaks 

of the three statistical indicators appeared after the transition. This is because the transition itself 

is a directed movement of 𝑥 from one region to another, which also increases the variance, ACF, 

and DC. For the N-transition condition (Figure 3b), the variance, ACF, and DC did not increase 

before the transition because the stability of the system did not change. Nevertheless, after the 

transition, there was a peak for all three statistical measures, which were also consequences of 

the transition itself. 
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Results from replicated simulations. The distributions of Kendall’s 𝜏 for each condition 

are shown in Figure 4, and the descriptive statistics of those distributions can be found in Table 

S1 in the Supplementary Materials. When the time range for calculating EWIs was strictly before 

the transition, only the B-transition showed EWIs, manifesting as positive 𝜏s of the variance, 

ACF, and DC. Here positive trends for the B-transition are true positives because they could 

predict a future transition, whereas the null trends for the N-transition are true negatives because 

the transition that happened later was not predictable beforehand. When the time range was 

roughly before the transition, both B- and N-transitions showed EWIs. This is because the effect 

of the transition itself also falls into the range of the EWIs calculation. Here, the positive trends 

for the N-transition are false positives because EWIs do not predict a transition but are the result 

of the transition. Finally, when the range of EWIs was just around the transition, no EWIs could 

be detected anymore, even for the B-transition. This is because the trend after the transition was 

also taken into the calculation, which averaged out the EWIs before the transition. Here the null 

trends for the B-transition are false negatives because the information that can predict the 

transition was contained in the data, but was not detected. 

To summarize, EWIs are only valid measures if they are calculated strictly before the 

transition. If EWIs are calculated roughly before the transition or just around the transition, it 

may lead to false positive or false negative conclusions about EWSs. 

Simulation Study 2: Distribution Change and the Different-Variable Issue 

For this section, we first introduce a situation in which the system noise is even larger, 

causing the system to easily switch back and forth between two possible phases (Figure 1c). In 

this case, there are very frequent transition events, hence it is better to use the state distribution, 

instead of single state values, to describe the system. Because the system has two phases, its state 
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forms a bimodal distribution, and this distribution changes if the stability landscape changes. 

This type of change is called distribution change or D-change (Shi et al., 2016)5. If the system 

experiences a D-change, it is no longer possible to pinpoint a single transition point. The same 

process that leads to the D-change may, however, cause a simultaneous B-transition in another 

variable of the same system. For example, momentary affect at a specific time point is influenced 

by multiple environmental factors, thus having stronger noise, whereas depressive symptom 

severity is more stable over time. It is possible that momentary affect assessed with EMA 

undergoes a D-change whereas symptom severity measured on a weekly basis shows a B-

transition. In this study, we simulate a system that has two associated variables, with one of them 

experiencing a D-change and the other experiencing a B-transition. We then examine the 

consequences when we use one variable to calculate EWIs and the other to detect sudden 

transitions. 

Model setup 

The model we used for Study 2 is very similar to Study 1, but there are two sets of 

equations for two variables 𝑥1 and 𝑥2: 

𝑉1(𝑥1, 𝜆1) = 100 (
1

4
𝑥1

4 −
3

2
𝑥1

2 + 𝜆1𝑥1) , (3) 

d𝑥1

d𝑡
=  −

𝜕𝑉1(𝑥1, 𝜆1)

𝜕𝑥1
+ √2σ1𝜉1(𝑡), (4) 

𝑉2(𝑥2, 𝜆2) = 100 (
1

4
𝑥2

4 −
3

2
𝑥2

2 + 𝜆2𝑥2) , (5) 

 
5 This type of change was initially proposed by Shi et al. (2016), where they used the term “distribution transition”. In 

the current article, we only use “transition” for a single event in which the system transfer from one basin to another, and we call 

this type of change “distribution change” to avoid confusions. 
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d𝑥2

d𝑡
=  −

𝜕𝑉2(𝑥2, 𝜆2)

𝜕𝑥2
+ √2σ2𝜉2(𝑡). (6) 

Those equations have different parameters for 𝑥1 and 𝑥2. We set 𝜎1 = 400 and 𝜎2 = 10 

so that 𝑥1 will experience a D-change and 𝑥2 will experience a B-transition when 𝜆2 approaches 

2 (as in Shi et al., 2016; 𝑥1 and 𝑥2 correspond to the mood measure and the depressive symptoms 

in our example). We further represent the relationship between 𝑥1 and 𝑥2 by associating 𝜆1 and 

𝜆2.6 The relationship of 𝜆1 and 𝜆2 can, in principle, take any form. We illustrate two simple 

conditions: (a) 𝜆2 = 𝜆1, (b) 𝜆2 = 𝜆1 + 2. The starting value and changing rate of 𝜆1 were set the 

same as in Study 1: the initial value of 𝜆1 is -3 and d𝜆1/d𝑡 = 1. The simulation methods (e.g., 

simulation length, step size, etc.) are the same as in Study 1. 

Indicators for simulation outputs 

Transition point determination. The time of the transition (𝑡trans) was determined 

using the same method as in Study 1, but only the value of 𝑥2 was used. 

Early warning indicators. We use the same methods for calculating EWIs as in Study 1, 

but we only use the time window that is strictly before the transition (from 𝑡trans − 1.5 to 𝑡trans) 

and only calculate EWIs for 𝑥1. 

 
6 Here the association we implemented into the system seems as if we have a causal claim that there is a common cause 

for both variables (i.e., the association of 𝜆1 and 𝜆2 leads to the change in both variables 𝑥1 and 𝑥2). This is not the case because 

what we focus on here is the transitions of the two variables in the same system are associated with each other, no matter if one 

variable is the cause of another, they have mutual influences, or they have a common cause. In multivariate systems, many causal 

mechanisms can lead to the same association in data (Pearl, 2009; Ryan et al., 2019). We chose to link 𝜆1 and 𝜆2 in this study 

mainly for simplicity in model specification and simulation, whereas for the sake of generalizability, we leave open the actual 

causal mechanism behind this association. 
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Simulation results 

Single simulation output. The single simulation examples for both conditions are shown 

in Figure 5. For both conditions, the dynamics of 𝑥2 were the same as the B-transition examples 

in Study 1 (Figure 1a), whereas 𝑥1 experienced D-changes. Because the strength of noise was 

large, the system was able to travel through the entire possible space almost from the beginning 

of the simulation. Nevertheless, the distribution only slowly changed throughout the simulation. 

In the beginning, the system was more likely to be in the positive phase, whereas at the end of 

the simulation, the system was more likely to be in the negative phase. In the first half of the 

simulation, there was an increasing trend for all statistical measures, which shows that the 

distribution of system states became more even, and the system shifted between two phases more 

often. In the middle of the simulation (𝑡 = 3, 𝜆1 = 0), the stabilities of the two phases were 

exactly the same, hence the system was the most evenly distributed in the two phases and can 

switch between the two phases most easily. After this point, all the statistical measures started to 

decrease. 

Results from replicated simulations. The distributions of Kendall’s 𝜏 for both 

conditions are shown in Figure 6, and the descriptive statistics of those distributions can be found 

in Table S2 in the Supplementary Materials. Although the EWIs were “as expected” for 

condition (b), the trends of the statistical measures for condition (a) were in the opposite 

direction: the variance, lag-1 ACF, and DC all decreased before the transition. This is because 

the trends calculated from 𝑥1 only represent the distribution of 𝑥1, but they do not bear any 

information about the stability of 𝑥2. The results calculated from two variables depend on an 

arbitrary relationship specified for 𝜆1 and 𝜆2 and could not predict a future transition. Therefore, 

those positive or negative trends should be regarded as false positives or false negatives. 
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To summarize, if the variable used for EWI calculation (𝑥1) is different from the variable 

used for transition point detection (𝑥2), there is no reason to assume that the EWIs predict a 

sudden change in the near future. The positive or negative result of EWIs can merely result from 

another mechanism in 𝑥1, for example, a D-change in this study. 

Discussion 

The current article aimed to investigate two issues in the research practice of EWS 

studies, namely the loose-window and the different-variable issue. In the theoretical review, we 

showed that early warning signals should precede the transition, and should be observed in the 

same variable as the variable that undergoes the sudden change. After that, we performed two 

simulation studies to illustrate the possible consequences of those two issues. In Study 1, we 

showed that if a system experiences a B-transition, but the EWIs are only measured around the 

transition point, then a false negative result can be obtained; if a system experiences an N-

transition, but the EWIs are measured roughly before the transition point, then a false positive 

result can be obtained. In Study 2, we showed that when the variable used for EWI calculation is 

different from the variable used for transition point detection, then both false positive and false 

negative results can be obtained merely depending on the arbitrary relationship between the two 

variables. Therefore, we conclude that those two practices should be generally avoided if not 

justified by additional theories. 

The models we used for simulations are radical simplifications of real-life psychological 

systems because they are unidimensional, gradient, not history-dependent, and not constructed 

with extensive psychological theories. Despite those limitations, simulations of those systems 

still provide important information to inform future empirical studies. If those practices already 

lead to incorrect results in these very simple systems, there is no reason to assume they will yield 
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correct results in a more complex system. Another advantage of using these simplified models is 

that they align well with the quite often used landscape metaphor. Therefore, the results we 

obtained are closer to the (implicit) theories of EWS researchers. It is important to point out that 

our choice to use simple yet unrealistic models for simulations is based on the research aim we 

had: to qualitatively establish the phenomena and call for a better research methodology. The 

specific simulation setups (e.g., the window size, the sampling frequency, and the length of 

observation) should therefore not be taken as quantitative guidelines for empirical studies. In the 

following sections, we discuss the implications of our research for future EWS studies, and 

studies on psychological change in general. 

Implications and Suggestions for Future EWS Studies 

Whereas EWSs have promising prospects in understanding psychological systems and 

predicting future changes, there may be many potential pitfalls when researchers design and 

conduct EWS studies. In a previous article, Dablander et al. (2022) provided several general 

recommendations for EWS studies, including a basic understanding of the system (e.g., using 

formal models) to warrant the assumption of EWSs, a study design evaluated in terms of 

measurement frequency and noise, adequate data preprocessing and analysis, and more 

investigations to determine how and when (psychological) interventions should be applied to 

avoid a critical transition in the near future. In the current study, we followed the first suggestion 

by Dablander et al. (2022) by introducing certain types of transitions that are relevant to 

psychological systems, and by using formal dynamic models for simulations. Moreover, we also 

connect those theoretical considerations with recent EWS studies (Table 1), yielding more 

specific perspectives about two common research practices which are highly relevant to the field, 

conceptually more important than statistical issues, but have not been systematically addressed 
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before. In this section, we discuss the implications with regard to three aspects: theory 

construction, study design, and data analysis. 

Theory construction. Given the complex and dynamical nature of human psychology, it 

is indeed reasonable to assume that psychological systems are multistable and can sometimes 

experience transitions between different phases. But researchers should be aware that stating that 

a system is complex does not necessarily mean that it will experience transitions or that it will 

experience transitions in the form of a B-transition. The latter seems to be an (implicit) 

assumption in most previous studies. We encourage researchers to explicate their theoretical 

claims about the underlying change process. In case of a B-transition there needs to be a specific 

parameter slowly changing during the study period, leading to the changes in the stability of the 

different phases in the system. For example, in the study by Wichers et al. (2016), a patient 

gradually decreased the antidepressants and a transition happened during this process. In this 

case, researchers may have hypothesized that the gradual change in neurotransmitter level led to 

the sudden change in symptom level. In general, it may be more valuable to first theorize about 

the change process (e.g., B- or N-transition or D-change) and then test for EWS when 

appropriate. A rigorous test of EWS could then also improve theory formation, as it may 

corroborate or falsify B-transition as an explanation for clinical changes in specific cases. 

Moreover, such a research program could study whether specific patterns of clinical change (e.g. 

onset of depression vs. onset of rapid cycling bipolar disorder) are related to specific forms of 

change.  

If a system undergoes another type of change instead of a B-transition, it does not mean 

that the transitions in those cases are not important, nor does it mean that the EWIs do not bear 

any information about the system. An N-transition, even without EWSs preceding it, can still be 



 

 22 

 

clinically relevant because the system does shift to another phase that is qualitatively different 

from the previous one, and in cases where the phase is healthier clinical efforts should be 

devoted to strengthening and stabilizing this new phase. In addition, the inversed-V shape of the 

variance or autocorrelation for a D-change, although unable to predict a sudden change in the 

near future, still does show the change of the distribution, and this flexibility or instability of the 

patient’s mental state may be adaptive and be encouraged, or maladaptive and be restrained. The 

important thing only is that these phenomena are not B-transitions or EWSs and this very fact 

bears several implications for how we conceptualize mental disorders, therapies, and prevention 

programs. There have been some studies that used formal models as a way to build theories for 

psychological changes. Examples include the ones of B-transition (e.g., Cramer et al., 2016; 

Dablander et al., 2022; van de Leemput et al., 2014), N-transition (e.g., Haslbeck & Ryan, 2021), 

and other more complex changes (e.g., high-dimensional stochastic models, Burger et al., 2020; 

Robinaugh et al., 2019; model with chaotic attractors, Schiepek et al., 2017; Schöller et al., 

2018). However, there is still a dearth of theories that comprehensively describe the types of 

psychological changes and their corresponding data features. We encourage future researchers to 

take this next step and improve theory construction in this field. Only if we have strong enough 

theories is it possible to design effective empirical studies and meaningfully test those theories 

(Fried, 2020). 

Study design. Based on the theory of EWS and our simulation results two suggestions 

can be provided. First, we showed that although the choice of statistical measures (variance, 

ACF, or DC) does not affect the result much, it is important that the EWI assessment period is 

strictly before the transition because the transition process itself can result in an increase of 

variance, ACF, or DC. If the transition is included in the time window for EWIs, the results are 
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not purely “early warnings” but also contain the outcome of the transition process itself. The 

outcome of the transition is theoretically different from EWSs and the EWIs that contain the 

transition outcome are not able to predict a future transition. Moreover, after the transition 

process, there will be a decrease in statistical measures, which can average out true EWSs. 

Therefore, this part of the time series should not be included in the time window for EWIs, 

either.  

Next, the same set of variables should be used to calculate EWIs and to detect the 

transition. In Study 1, 𝑥 was used both for detecting the transition and calculating the EWIs. This 

is a natural requirement if we consider the theory of bifurcation, which indicates that the 

transition and critical stability are different phenomena for the same variables in different periods 

(Figure 1; also see Ditlevsen & Johnsen, 2010; Kuehn, 2011, for mathematical proves). Although 

almost all EWS research in other fields uses the same variables for calculating EWIs and sudden 

transitions (e.g., Gorban et al., 2010; Guttal et al., 2016; Lever et al., 2020; Thompson & Sieber, 

2011), this is not the case for previous psychological studies (Table 1). We suspect this practice 

in psychological research comes from the distinction between “independent variables” and 

“dependent variables”, and we emphasize that the theories behind EWSs do not include this 

distinction. As shown in Study 2, EWIs in one variable need not to predict an upcoming 

transition in a different variable in that system. To summarize, in order to correctly examine 

EWSs in psychological systems, we suggest that future researchers pinpoint the exact moment of 

transition, calculate EWIs strictly before the transition, and use the same set of variables for 

transition detection and EWI calculations. Researchers may also re-analyze existing datasets to 

check if the EWIs can still be observed with the methods we recommend. 
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Data analysis. Here we want to highlight the value of descriptive analysis of raw data in 

EWS studies. Sometimes it is possible to tell the type of transition just by inspecting the raw time 

series, without sophisticated calculations. Take the simulation outputs in Figure 5, it is easy to 

see that 𝑥1 does not experience a B-transition because the system did go to the alternative phase 

at the beginning of the simulation, whereas in case of a bifurcation, the system cannot go to the 

alternative phase before the bifurcation point. There is a set of descriptive features for 

catastrophic bifurcations, termed catastrophe flags (Gilmore, 1993), which can be used to 

inspect the raw data and examine if a B-transition can be assumed. Those features include, for 

example, inaccessibility and bimodality. Here inaccessibility means that the system is not likely 

to be on the barrier between two phases, and bimodality means that the system variable should 

show a bimodal distribution, which corresponds to the two phases of the system. In our literature 

review, not all studies included the raw time series, and in the studies that did, these plots were 

often not examined with respect to whether they show characteristics of a B-transition. In some 

studies the raw time series did show a similar pattern as our simulation outputs of B-transitions 

(e.g., in the data presented by Wichers et al., 2020, the mood time series of the participant had 

different, although not separated, ranges before and after the hypothesized transition), whereas 

this is not the case in other studies (e.g., in the data presented by Bos et al., 2022, the mood time 

series had very similar ranges before and after the hypothesized transition). These differences 

may partly explain the mixed findings in previous studies because EWSs only exist when a B-

transition takes place. 

In our simulation studies, different statistical indicators (variance, ACF, and DC) showed 

similar patterns, but this may not always hold for empirical studies. For example, Bos et al. 

(2022) found that ACF has better predictive power than the variance for depressive transitions in 
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patients with a bipolar disorder. Several studies have investigated the predictive power of 

different EWIs (Dakos et al., 2012; Lenton et al., 2012; Weinans et al., 2021), showing that some 

EWI measures may outperform others under specific conditions. However, if only some EWIs 

but not others can be found in a data set, it may indicate that the system did not undergo a B-

transition (Ditlevsen & Johnsen, 2010). For example, if only the variance but not ACF increased 

before a transition, it might indicate that the reason for the transition is the increase of noise 

rather than the change of stability (Chen et al., 2018; Dakos et al., 2013). Therefore, we suggest 

that future researchers use different EWIs to increase the robustness of their findings. 

Conclusion 

EWSs can predict future B-transitions in complex systems, but EWIs observed in data are 

not always true EWSs. False-positive or false-negative results may be observed if researchers (1) 

use loosely-identified time windows for EWI calculations, or (2) use different variables for 

calculating EWIs and sudden changes. We therefore suggest future researchers to exactly 

pinpoint the moment of transition and test for EWSs in the same variable using a time-window 

defined strictly before the transition. Besides the B-transition, other types of changes can also be 

important for psychological systems. Future researchers may further investigate such different 

types of changes in psychological systems and their potential implications. 
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Table 1. An overview of commonly investigated early warning indicators, sudden change indicators, and assessment periods. 

Type Specific indicator Examples of empirical studies 

Early warning indicators   

Critical fluctuation Increasing variance (Bos et al., 2022; Curtiss et al., 2021; 

Helmich, Smit, et al., 2021; van de 

Leemput et al., 2014; Wichers et al., 2016, 

2020)1 

    Critical slowing down Increasing autocorrelation (Bos et al., 2022; Curtiss et al., 2019, 

2021; Helmich, Smit, et al., 2021; 

Schreuder et al., 2020; van de Leemput et 

al., 2014; Wichers et al., 2016, 2020) 

 Increasing vector autocorrelation/network 

connectivity 

(Curtiss et al., 2021; Wichers et al., 2016, 

2020)1 

    Critical fluctuation & slowing down High dynamic complexity (Schiepek & 

Strunk, 2010) 

(Olthof, Hasselman, Strunk, et al., 2020) 

Transition indicators   

    Fixed time Mean level difference (Curtiss et al., 2019, 2021; Helmich, Smit, 

et al., 2021; Schreuder et al., 2020; van de 

Leemput et al., 2014) 

    Unfixed time Change above a threshold Slowly sampled: (Bos et al., 2022)2 

 Change point analysis Slowly sampled: (Wichers et al., 2016, 

2020)2 

Same frequency, different items: (Olthof, 

Hasselman, Strunk, et al., 2020)3 

1 Curtiss et al. (2021) tested increasing variance and network connectivity as early warning indicators but did not find significant 

relationships of them with sudden change indicators. Other studies at least find statistically significant results for each indicator for 

some items or patients. 
2 Slowly sampled: the variable for detecting transitions was sampled in a slower frequency than the variables used for calculating 

EWIs. 
3Same frequency, different items: the variable for detecting transitions was sampled in the same frequency than the variables used for 

calculating EWIs, but two sets of variables were distinguished.



 

 

 

 
Figure 1. Diagrams of (a) bifurcation-induced transition (B-transition), (b) noise-induced 

transition (N-transition), and (c) distribution change (D-change). 
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Figure 2. The potential function of the model (Equation 1) for different 𝜆 values. The red dots 

represent the stable equilibrium points and the blue points represent the unstable equilibrium 

points. 
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Figure 3. Simulation examples for (a) B-transition and (b) N-transition. Variance and DC were 

log-transformed to better show the trends before the transitions. 

 



 

 39 

 

 

Figure 4. Trends of variance, ACF, and DC, represented with the distribution of Kendall’s 𝜏 from 

103 simulations, for B- and N- transitions and different periods. 
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Figure 5. Simulation examples for (a) 𝜆2 = 𝜆1 and (b) 𝜆2 = 𝜆1 + 2. Variance and DC were log-

transformed to better show the trends before the transitions. 

 

 

Figure 6. Trends of variance, ACF, and DC, represented with the distribution of Kendall’s 𝜏 from 

103 simulations, for two conditions. 


