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A B S T R A C T   

Combining gait and clinical variables could increase the accuracy of identifying cognitive impairment (CI) in 
geriatric patients. We aimed to classify geriatric patients with and without CI based on clinical variables, gait, or 
a combination of clinical and gait variables, using two machine learning methods, Random Forest (RF) and 
Artificial Neural Network (ANN). The most accurate classification model examined how interactions between 
clinical and gait variables would improve classification accuracy and determine the contributions of key vari
ables. Based on Minimal Mental State Examination (MMSE) scores, 131 geriatric patients were divided into a 
cognitive impaired and a cognitively healthy (CH) group. From 3D accelerometer data collected during 3 min of 
walking at a habitual speed, we computed 23 dynamic gait variables. In conclusion, an ANN model incorporating 
the interaction between clinical and gait variables classified geriatric patients with an accuracy of 96%, an area 
of the receiver operating characteristic curve of 0.95, and a model validation score of 0.97 (F1) based on their 
clinical status. Machine learning analyses of gait and clinical variables can inform geriatricians about the 
diagnosis of geriatric patients’ cognitive status.   

1. Introduction 

Physical and cognitive function declines with natural aging. Age- 
related brain pathologies lead to declines in memory, executive and 
visuospatial functions, and processing and the prevalence of cognitive 
impairment (CI) increases with age [1]. Mini-mental state examination 
(MMSE) [2], the 7-min screen (7MS) [3], and other tests can identify CI. 
Brain imaging (Computerized Tomography or Magnetic Resonance Im
aging scanning) and analyses of cerebrospinal fluid can increase diag
nosis accuracy but are costly and invasive. 

In addition to cognitive screens, walking ability is also an indicator of 
current and future health [4]. Indeed, gait impairments predict mor
tality [5], fall risk [6] and future cognitive decline in geriatric patients 
[7]. Gait control is mainly mediated by the frontal subcortical circuits, 
brain structures that also control executive and attentional function [8]. 
There is thus a strong inter-relationship between gait and cognition [9]. 
Although gait speed predicts age-related cognition decline [10], gait 

speed by itself is unlikely to be sensitive enough to detect subtle changes 
in cognition in the presence of comorbidities [11]. Gait variables other 
than gait speed comprise information about subtle modifications in gait 
caused by age-related structural and functional changes in central ner
vous system [12,13]. Gait is controlled by brain areas that also underlie 
specific cognitive functions. Models that classify patients with and 
without CI based on gait could therefore help in recognizing patients in 
the early stages of CI [7]. Indeed, age-related decreases in gait regularity 
and predictability were associated with cognitive decline [14]. Vari
ability of step length and stance time also correlated with executive 
function [15] and a diagnosis of mild cognitive impairment [16]. 
Therefore, features of gait other than speed, which may lack specificity, 
could identify CI in geriatric patients. 

In addition to gait, questionnaires and functional tests target yet 
other elements of geriatric disease towards the identification patients 
with CI. The Drug burden index (DBI) [17], Timed-up-and-Go (TUG) 
[18], and neuropsychological tests [19], Instrumental Activities of Daily 
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Living, and the Geriatric Depression Scale are additional instruments 
geriatricians use to identify geriatric patients with CI. The accuracy of 
such assessments is up to 81% [20]. 

Although gait function as a predictor of CI has been previously 
examined [21,22], the results are inconsistent and the relationship be
tween specific gait variables and CI is especially poorly understood [22]. 
Partial least square discriminant analysis (PLS-DA) is a classification 
method used to analyze datasets with high dimensions and a linear data 
structure. While PLS-DA classified healthy older adults versus geriatric 
patients 96% accurately based on dynamic gait variables [13], the 
classification accuracy of geriatric patients with or without CI using the 
same dynamic gait variables reached only 38% [13]. This poor classi
fication accuracy may be related to comorbidities and polypharmacy 
and that PLS-DA is not sensitive to the non-linearities underlying clinical 
and gait variables [23]. Still, the predominant approach has been the use 
of clinical and gait variables in isolation rather than in combination to 
classify geriatric patients with CI. Hence, to understand differences in 
gait performance between geriatric patients with and without CI, clin
ical variables should be integrated with data that quantifies the dy
namics of gait [24]. To analyze these non-linearly correlated and high 
dimensional clinical/gait data, an alternative method is needed. 

One approach is to use machine learning that can capture the non- 
linear relationships between clinical and gait variables and cognition. 
While machine learning classification methods such as Support Vector 
Machine and Deep Learning have been in use for some time [25], it is 
difficult to interpret the model outputs because the contribution of each 
input variable (weights) to the classification remains unknown. 
Tree-based methods such as decision trees have their own limitations. 
The reproducibility of the Decision Tree model is highly sensitive: small 
changes in the data substantially affect the tree structure. Space and 
time complexity of the decision tree model is relatively higher, leading 
to longer model training time. A single decision tree is often a weak 
learner; hence a rich decision tree (known as Random Forest) is required 
for accurate prediction. Random Forest is a more powerful model as it 
relies on a single decision tree and creates an ensemble model out of 
hundreds or thousands of trees to reduce the variance. Thus, ensemble 
tree-based methods have the advantage over single tree-based methods 
of having the ability to produce more accurate and stable results. In the 
present study, we used two relatively interpretable machine learning 

algorithms for classifying geriatric patients with and without CI, i.e., 
Random Forest (RF) and Artificial Neural Network (ANN). RF is not 
sensitive to sample size because of the bootstrap aggregating: every 
subject can be repeatedly classified in each RF decision tree [26]. 
However, RF establishes each decision tree independently and disre
gards the interrelations between decision trees, which can reduce clas
sification performance [27]. Artificial Neural Networks (ANN) do 
consider the non-linear interrelations between variables by including 
activation functions such as the hyperbolic tangent but ANN is sensitive 
to sample size [28]. Although the exact computational process remains 
hidden in the layers of the ANN, the model can output variable weight 
coefficients similar to RF. Both ANN and RF can automatically weigh 
variables and adjust the algorithm to account for their relationships 
without any prior knowledge to select clinically relevant variables. This 
automatic adjustment is crucial for clinical data sets where the 
complicated relationship between variables is unknown. 

Therefore, accurate machine learning classification models based on 
the relationship between dynamic gait variables on the one hand and 
clinical variables on the other hand, could support clinicians in the 
classification of geriatric patients with or without CI. The first aim was 
to compare the classification performance of two machine learning 
models, i.e., RF and ANN, to classify geriatric patients with and without 
CI based on: 1) clinical variables, 2) dynamic gait variables, and 3) a 
combination of clinical and gait variables, the procedures were shown 
on Fig. 1. The second aim was to identify the variables that contribute 
most to the classification of geriatric patients with and without CI. As 
geriatric patients have many comorbidities, we hypothesized that the 
combination of gait and clinical variables rather than each of these 
variable sets alone would most accurately classify these two groups of 
geriatric patients. 

2. Methods and models 

2.1. Patient characteristics 

Accelerometer data, recorded during 3 min of walking, were 
extracted from an existing database of geriatric patients who visited a 
diagnostic geriatric day clinic in a teaching hospital in Amsterdam be
tween 2009 and 2018 [13,29,30]. 131 patients’ current cognitive status 

Fig. 1. The overall procedures of data analysis.  
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was evaluated by the MMSE score; geriatric patients were assigned to a 
group with the CI (MMSE <24; mean = 19.89 ± 2.66); and a CH group 
(MMSE ≥24; mean = 26.93 ± 1.88) [31]. The CH group had a mean age 
of 79.57 ± 5.53 years old and 51/86 were female, and the CI group was 
on average 80.36 ± 6.52 years old and 28/45 were female. General 
practitioners referred patients to the day clinic for combined cogniti
ve/somatic complaints. A geriatrician conducted an extensive physical, 
psychological, and cognitive examination. Exclusion criteria for the 
study were: (1) inability to walk for 3 min without a walking aid, (2) 
neurological disorders such as Parkinson’s disease and stroke, (3) pain 
and severe mobility disability caused by orthopedic conditions, and (4) 
inability to speak and understand the Dutch language. The hospital’s 
Medical Ethics Committee approved the protocol and informed consent 
documents signed by each patient. The investigation has been carried 
out in accordance with The Code of Ethics of the World Medical Asso
ciation (Declaration of Helsinki) for experiments involving humans. 
Each patient completed a uniform walking test that included walking in 
a hallway for 3 min at a self-selected walking speed without a walking 
aid. Trunk accelerations in 3D were measured by either a stand-alone 
accelerometer unit, the DynaPort hybrid unit (McRoberts BV, The 
Hague, the Netherlands) or a built-in tri-axial acceleration sensor, iPod 
Touch G4 (iOS 6; Apple Inc.) [32]. 

2.2. Data description 

2.2.1. Clinical variables 
All patients underwent an extensive clinical assessment including 

questionnaires and functional tests. The Charlson Comorbidity Index 
(CCI) was used to measure comorbidity [33]; mood was assessed by the 
Geriatric depression scale (GDS); and frailty (Frail) was indexed by the 
Fried’s Frailty Scale, including weight loss, exhaustion, low physical 
activity, slowness and weakness [34]. Functional tests included: 
Timed-Up-and-Go test (TUG) [35] and maximal grip strength of the 
dominant hand assessed with a Jamar hand-held dynamometer (3 trials 
averaged) (HandGrip) [36]. The number of medications was determined 
from historical medical records (NumMed) and the cumulative exposure 
to anticholinergic and sedative medications was quantified with the 
Drug Burden Index (DBI) [17]. Finally, Body mass index (BMI) was 
determined based on body height and weight. The median and inter
quartile range of each clinical variable between CH and CI groups are 
shown in Appendix Fig. A. Table 1 summarizes patients’ characteristics 
and scores obtained for the eight clinical variables in the CH and CI 
group. 

2.2.2. Dynamic gait variables 
Dynamic gait variables were calculated by using custom-made soft

ware in MATLAB (version 2014b; The MathWorks Inc.) from anterior- 
posterior (AP), medio-lateral (ML) and vertical (V) trunk accelera
tions. Twenty-three dynamic gait variables represent how gait evolves 
over time; these gait variables were calculated related to pace, pre
dictability, regularity, symmetry, variability, stability, synchronization 
and smoothness (for details of the variable calculation, see Refs. [13, 
37]). Gait speed (Gaitspeed) was calculated by dividing walking dis
tance (m) by time (s). The Root Mean Square (RMS) acceleration is a 
measure for the variability of the amplitude of accelerations. Multiscale 
Entropy (MsEn) quantifies the predictability at different time scales, 
reflecting signal complexity with 0 denoting a wholly predictable and 
non-complex signal. Gait step or stride regularity (Step/StriReg) was 
calculated by the unbiased auto-correlation function of the acceleration 
signal in AP and V directions. The signal was phase shifted with a 
window approximating average step and stride time. Perfectly regular 
steps or strides are represented by a value of 1. The difference between 
step and stride regularity reflects gait symmetry (Symm), a value of 
0 representing a perfectly symmetrical gait. Frequency variability 
(FreqVar) reflects the relative fluctuations in step frequency. The 
maximal Lyapunov exponent (mLyap) was calculated by the Wolff al
gorithm to represent the local stability of trunk acceleration patterns. 
The higher values show greater sensitivity to local perturbations. The 
Cross-sample Entropy (CrEn) quantifies the degree of synchronization 
between AP and ML, AP and V, and ML and V accelerations. A value of 
0 reflects perfect synchronization between acceleration signals. The 
Index of Harmonicity (IH) represents the gait smoothness. IH values are 
ranged from 0 to 1, and a value of 1 reflects a perfectly smooth gait. The 
median and interquartile range of each gait variable between CH and CI 
groups are shown in Appendix Fig. A. 

2.3. Machine learning approaches for classification 

2.3.1. Random Forest (RF) 
The RF model builds various decision trees and merges them based 

on standardized gait variables and clinical variables, to obtain the 
optimal classification performance and provide the weight coefficient of 
each variable of the classification model. The majority of voting was 
used in RF to make a decision. From the training set {(xi, yi)}

n
i=1 (xi 

represents the training data and yi represents its label, n represents the 
number of samples in the training set), a set of m decision trees were 
built with individual weight functions Wj with the individual clinical 
parameter or gait outcome as each tree leaf j, the predicted label of CH or 
CI group is ŷ (0 or 1) of the new testing set x′ with gait and/or clinical 
variables [27]: 

ŷ =
1
m
∑m

j=1

∑n

i=1
Wj(xi, x

′

)yi

=
∑n

i=1

(
1
m
∑m

j=1
Wj(xi, x

′

)

)

yi

(1) 

Leave-one-out cross-validation (LOOCV) splits the dataset into a 
training set (n =238) and a testing set. The number of trees m = 128 are 
optimal for the RF classification. 

2.3.2. Artificial Neural Network (ANN) 
The ANN model consists of input of the standardized clinical and gait 

variables, the output of predicted CH and CI patients. The one hidden 
layer with five neurons computes each variable and their interrelations 
by the activation function “Rectified Linear Unit (ReLU). This activation 
function is proper for non-linear gait data structures [28], weight 
initialization scheme is “He Initialization” [38]. 

For the computational process in ANN, a neuron j (j runs over from 1 
to 8 in model 1, from 1 to 23 in model 2, from 1 to 31 in model 3) re

Table 1 
Patient characteristics, including the eight clinical variables.   

CH CI 

Mean ± SD Mean ± SD 

MMSE 26.93 ± 1.88 19.89 ± 2.66 
Age, y 79.57 ± 5.53 80.36 ± 6.52 
Height, m 1.66 ± 0.09 1.66 ± 0.09 
BMI, kg⋅m2 26.19 ± 4.29 25.65 ± 4.24 
HandGrip, kg 26.17 ± 7.63 25.56 ± 7.78 
TUG, s 13.37 ± 4.31 12.69 ± 7.00 
CCI 1.58 ± 1.56 1.73 ± 1.18 
GDS 4.51 ± 3.51 4.09 ± 2.43 
Frail 1.19 ± 1.12 1.11 ± 1.25 
DBI 0.58 ± 0.71 0.55 ± 0.75 
NumMed 5.69 ± 3.80 4.69 ± 3.48 

In terms of abbreviations in the table, CH, cognitive health; CI, cognitive 
impairment; SD, standard deviation; MMSE, Mini-mental state examination; 
BMI, Body mass index; HandGrip, grip strength of hand; TUG, Timed-Up-and-Go 
test; CCI, Charlson Comorbidity Index; GDS, Geriatric depression scale; Frail, 
frailty criteria; DBI, Drug Burden Index; NumMed, the number of medications 
used. 
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ceives an input of clinical variables and dynamic gait variables as pj(t).
The activation function f computes the new activation variable at the 
next iteration time unit t + 1 from an activation aj(t) that represents a 
neuron’s state. θj is a fixed parameter for a neuron in the model. The new 
activation variable is computed as: 

aj(t+ 1)= f
(
aj(t), pj(t), θj

)
(2)  

and then the function fout outputs the prediction of CH or CI group for 
each subject by the activation function: 

Oj(t)= fout
(
aj(t)

)
(3) 

The classification model is based on LOOCV, k − 1 sets of training 
data and one set of testing data. This process was repeated k times (k =
the total number of subjects in this dataset, 131). Note that the testing 
dataset was unique and different from the training dataset. 

To examine the classification based on clinical variables and/or gait 
variables, three different models were computed: Model 1 included only 
clinical variables (N =8), Model 2 included only gait dynamic variables 
(N =23), Model 3 included both clinical and gait variables (N =31). 

In general, the weight coefficient of ANN was calculated by the 
Stochastic Gradient Descent method [39], and adjusted by activation 
function ReLU, to sum the weighted inputs from each incoming synapse 
(connection) and pass the result to all neurons (variables) in the next 
layer. This process is repeated iteratively until the error derivatives drop 
below an acceptable threshold. The ANN weight coefficient in the pre
sent study was ranged from 0 to 100. 

Depending on the present study results, two conditions were used to 
determine if a variable contributed significantly to the classification. 
First, the weight of the variable had exceeded one half of the upper limit 
(100). Second, these significant variables must have much higher 
weights than the rest of the variables. 

2.4. Evaluation of classification 

The accuracy, sensitivity, and specificity were calculated based on 
the confusion matrix to evaluate the three models’ performances to 
identify CI patients. The results were averaged from LOOCV. Because the 
number of patients in CH and CI group was unbalanced, the receiver 
operating characteristic (ROC), the area under the ROC curve (AUC) and 
F1 score (see equation (6)) provides an overall validation and evaluation 
of the classification. To compute the F1 score, precision and recall 
should be calculated in advance based on a classification confusion 
matrix. In equation (4), precision is the number of correct positive re
sults divided by the number of all positive results returned by the clas
sifier. In equation (5), recall is the number of correct positive results 
divided by the number of all samples that should have been identified as 
positive. The baseline of AUC and F1 score is 0.5, and the perfect ma
chine learning classification model has the AUC/F1 score = 1. 

precision=
true positive

true positive + false positive
(4)  

recall=
true positive

true positive + false negative
(5)  

F1=
2 × precision × recall

precision + recall
(6)  

2.5. Procedures of the study 

The overall data analysis is illustrated in the flow chart in Fig. 1. 

3. Results 

3.1. Classification results of RF 

In the RF classification, model 1 based on the eight clinical variables 
(Table 1) obtained a classification accuracy of 64%, with the high 
sensitivity of 85% and the low specificity of 24%. Also, RF model 2 with 
23 dynamic gait variables and model 3 which combined clinical vari
ables and dynamic gait variables (31 variables) had insufficient classi
fication accuracy. Model 2 and 3 obtained a moderate accuracy of 60% 
and 63%, respectively, while the sensitivity was high of 90% and 92% 
but specificity was very low of 2% and 9%. 

The high sensitivity and low specificity in three RF models imply that 
over 85% of CH patients were correctly classified as CH but less than 
10% of CI patients were successfully classified as being differed from CH 
patients (Table 2). The classification performances of the three models 
were evaluated and validated by AUC (the corresponding ROC curves 
were shown in Fig. 2d) and F1 score and obtained the values near the 
baseline of 0.5. Because the classification performances in all three RF 
models were poor, we did not further consider this model. 

3.2. Classification results of ANN 

The ANN model 1 with the eight clinical variables produced classi
fication accuracy, sensitivity, and specificity of 79%, 84%, and 71%, 
respectively. This means that 72 out of 86 CH patients were classified 
correctly to the CH group, while 32 out of 45 CI patients were classified 
as being different from CH patients (Fig. 2a, Table 3). ANN model 2 
obtained an accuracy of 91%, with the sensitivity of 98%, and the 
specificity of 78%. Thus, 82 out of 84 CH patients were classified to CH 
group, while 35 out of 45 CI patients were discriminated from CH pa
tients (Fig. 2b, Table 3). Classification of CH and CI patients by ANN 
models 1 and 2 was AUC = 0.77 and AUC = 0.87, respectively. The F1 
score to measure the test’s accuracy of model 1 was 0.84 and model 2 
was 0.93. 

Model 3 is based on the integrated eight clinical variables and the 23 
dynamic gait variables; the classification accuracy was increased to 
96%, with the higher sensitivity of 99% and the higher specificity of 
91% than these values in model 1 and model 2 (Fig. 2c and Table 3). 
Model 3 obtained an AUC of 0.95 and an F1 score of 0.97 (Table 3). The 
ROC curves for models 1, 2 and 3, are shown in Fig. 2d. 

3.3. The weighted variables of clinical and gait variables in the ANN 
models 

The contributions of variables to the ANN models are quantified by 
the weight coefficients of ANN (see Fig. 3). 

For model 1 (clinical variables), the CI vs. CH group was charac
terised by a weaker handgrip, lower TUG and fewer frailty criteria 
(Fig. 3a and Appendix Fig. A, Table 1). For the CI group in model 2 with 
the dynamic gait variables, the synchronization (CrEn) in ML-V direc
tion, the smoothness of gait (IH) in AP and V directions, the pace (RMS) 
in AP, ML and V directions and the symmetry (Symm) in AP direction 

Table 2 
Results of Random Forest (RF) classification for geriatric patients with and 
without cognitive impairment (CI).   

Model 1 Model 2 Model 3 

Accuracy (%) 64 60 63 
Sensitivity (%) 85 90 92 
Specificity (%) 24 2 9 
AUC 0.56 0.50 0.45 
F1 score 0.61 0.44 0.55 

Model 1 with eight clinical variables, model 2 with 23 dynamic gait variables, 
and model 3 with the aggregated dataset of eight clinical and 23 dynamic gait 
variables. AUC, the area under the receiver operating characteristic curve. 
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obtained higher weights than other gait variables. These variables 
contributed more to the classification of CH and CI patients (Fig. 3b and 
Appendix Fig. A). 

In model 3 in Fig. 3c and Appendix Fig. A, and Table 1, the CI group 
versus CH group had a lower BMI, higher CCI, lower TUG, decreased gait 
pace, less predictability and stability in ML direction, higher frequency 

variability (FreqVar) and less step regularity in AP direction. These 
variables had the most considerable contribution to the classification 
model that discriminated CI patients from CH patients. 

4. Discussion 

The data from the present study supported the hypothesis that a 
combination of gait and clinical variables as an input to ANN machine 
learning models accurately classified geriatric patients with and without 
CI. We discuss the clinical and computational relevance of these data. 

From the three RF/ANN classification models based on clinical var
iables (model 1), dynamic gait variables (model 2), and the 31 clinical 
and gait variables combined (model 3), ANN model 3 had the most ac
curate classification performance. Compared with cognitively intact 
patients, those with CI had more comorbidities, poorer mobility, a less 
predictable and stable and more variable gait (Fig. 3, Appendix Fig. A). 
The combination of clinical dynamic gait variables in the model pro
duced high classification power (high weight in ANN model 3). The 
input variables to the machine learning models included eight clinical 

Fig. 2. Confusion matrix of ANN classification and ROC curve for ANN/RF. Panels (a), (b) and (c) show the classification confusion matrix. The x-axis represents the 
patients in the predicted groups and the y-axis shows the patients in the original groups. The dark blue means more patients were assigned to this group. The numbers 
of patients and their percentages in the original group are shown in the squares and braces. Figure (d) shows the ROC curves for ANN and RF classification, based on 
ANN model 1 (purple) with clinical variables, ANN model 2 (green) with dynamic gait variables, and ANN model 3 (yellow) with both clinical variables and dynamic 
gait variables. Pink, blue, and red lines, respectively denote the RF models 1 to 3. For abbreviations, CH, cognitive health; CI, cognitive impairment; ANN, Artificial 
Neural Network; RF, Random Forest; ROC, the receiver operating characteristic curve; AUC, area under the ROC curve. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Results of ANN classification of cognitive healthy (CH) and cognitive impaired 
(CI) patients.   

Model 1 Model 2 Model 3 

Accuracy (%) 79 91 96 
Sensitivity (%) 84 98 99 
Specificity (%) 71 78 91 
AUC 0.77 0.87 0.95 
F1 score 0.84 0.93 0.97 

Model 1 with eight clinical variables, model 2 with 23 dynamic gait variables, 
and model 3 with the aggregated dataset of eight clinical and 23 dynamic gait 
variables. AUC, the area under the receiver operating characteristic curve. 
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variables to represent patients’ comorbidities in terms of psychological 
state, physical function, frailty, and medical conditions. The 23 dynamic 
gait variables as inputs to machine learning models captured many 
features of gait over a long time period (minutes). The differences be
tween geriatric patients with and without CI in these clinical and gait 
variables are indicative of CI and therefore are clinically relevant for a 
cognition-based classification of these geriatric patients. The reason for 
including so many clinical and gait variables is to capture the diverse 
effects of comorbidities on clinical and gait dysfunctions. Such an 
approach reduces the bias of selecting variables as inputs to machine 
learning analyses, which can handle high dimensions and non-linear 
associations among input variables in a relatively small sample size. 

Using dynamic gait variables as input in a previous study, ANN 
classified young-middle age adults, healthy older adults, and geriatric 
patients with a classification accuracy of 90% and an AUC of 0.86 using 
dynamic gait variables [23]. As in that study, we also noticed that the 
classification performances of three ANN machine learning models 
(accuracy = 79%–96%) outperformed the RF classification perfor
mances (accuracy = 60%–64%). The RF model’s low classification ac
curacy might be related to the random generation of multiple decision 
trees for gait and clinical variables without considering the 

interrelationships between these variables or trees [27]. In contrast to 
RF, ANN takes into account the non-linear, high dimensional in
teractions between the clinical variables and dynamic gait variables, 
based on the weight coefficients and activation functions (e.g., ReLU) 
[28,40]. 

Concerning the three ANN models, the classification based on the 
eight clinical variables (model 1) produced moderate classification ac
curacy with low sensitivity and specificity, implying that clinical vari
ables alone are not sufficient to classify the two groups. When the 
classification was based on 23 dynamic gait variables, the classification 
performance had acceptable accuracy but with moderate specificity. In 
other words, model 2 incorrectly classified a high number of CI patients 
as CH patients so that dynamic gait variables alone did not accurately 
classify the two groups. However, model 3 was based on all 31 clinical 
and dynamic gait variables, produced an accurate classification, as 
nearly all CH patients were correctly assigned to CH group and most CI 
patients were distinguished correctly from CH. The most precise clas
sification performance of ANN model 3 confirmed the hypothesis that 
interactions between clinical variables and dynamic gait variables un
derlie the classification of geriatric patients with and without CI. 

The variables with the highest weights in ANN models 1 and 2 

Fig. 3. The contributions of each variable in ANN classification models. (a) weights of eight clinical variables in model 1, (b) weights of 23 dynamic gait variables in 
model 2, and (c) weight of 31 variables which combined eight clinical variables with the 23 gait variables in model 3. Each variable was z-score-standardized prior to 
entering the model. For abbreviations, BMI, Body mass index; HandGrip, grip strength of hand; TUG, Timed-Up-and-Go test; CCI, Charlson Comorbidity Index; GDS, 
Geriatric depression scale; Frail, frailty criteria; DBI, Drug Burden Index; NumMed, the number of medications used; RMS, root mean square; MsEn, Multiscale 
Entropy; Step/StriReg, gait step or stride regularity; Symm, gait symmetry; FreqVar, Frequency variability; mLyap, maximal Lyapunov exponent; CrEn, Cross-sample 
Entropy; IH, Index of Harmonicity; AP, anterior-posterior direction; ML, medio-lateral direction; V, vertical direction. 
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differed from those in ANN model 3, underscoring the idea that the 
interaction among input variables was key in geriatric patient classifi
cation in the present study (Fig. 3). With regard to the highly weighted 
variables in the ANN model 3, dynamic gait variables related to pace, 
predictability, stability, variability and regularity were identified to be 
sensitive indicators of CI. Although gait speed has previously emerged as 
a predictor of CI [41,42], we found that gait speed had a low weight and 
did not make a contribution to predicting CI (Fig. 3c). One reason could 
be that gait speed incorporates many features of gait; hence it is 
auto-correlated with most gait variables. For example, gait speed 
strongly correlated with gait regularity [43]. Moreover, unlike dynam
ical gait variables, gait speed is the most often used and reported 
mobility outcome, which increases the likelihood of accidental discov
ery [41,42]. The classification performance of ANN model 3 indicates 
that the inclusion of multiple gait variables as inputs underlie the high 
sensitivity and specificity of patient classification. This finding is in line 
with the successful classification of age groups based on gait dynamics, 
where stability and regularity had much higher weights than gait speed 
[23]. 

With respect to the direction of the acceleration, the gait of CI 
compared with CH patients is more unpredictable and unstable in the 
ML direction (Fig. 3c, Appendix Fig. A). Accelerations in the ML direc
tion are key determinants of dynamic balance during walking [44]. 
Reduced gait predictability and stability are associated with an increase 
in fall risk in geriatric patients [45]. Furthermore, compared with CH 
patients, CI patients’ less regular and more variable gait in AP direction 
might be related to the decline of executive function, a specific cognitive 
function that regulates planning and organisation relative to gait pro
gression. The reduction in executive function may lead to incorrect 
control of limb movement, resulting in the inability to adjust and adapt 
gait made up of irregular steps [46]. 

The accuracy and efficiency of CI diagnosis in an early phase requires 
more extensive, expensive and burdensome neuropsychological testing 
and other diagnostics such as Magnetic Resonance Imaging scanning 
and analyses of cerebrospinal fluid [47]. Moreover, an accurate diag
nosis of CI from small and perhaps inconsistent changes in cognition 
requires professional training [48]. Therefore, gait measurements 
combined with clinical parameters may be an inexpensive and acces
sible method to identify a cognitive decline in geriatric patients in an 
early stage [24]. Although many studies have measured gait or clinical 
variables alone in patients with CI and fall risk, the interactions of these 
variables cannot be identified by traditional statistical analysis. 

ANN has been applied for clinical aims using in different patient 
populations. For example, in stroke patients ANN methods have been 
use to: a) screen patients who might suffer a stroke in the future [49,50]; 
b) identify patients who are at risk for a transient ischemic attack [51]; 
c) predict motor function [52], and d) to detect gait events [53]. The 
inertial measurement unit or IMU-based screening can be accuracy up to 
99% [1,2]. Compared with RF, ANN also proved to be more accurate to 
classify age groups based on gait analysis (73% vs. 90% accuracy) [23]. 
ANN models have thus ability to accurately classify different pop
ulations based on non-linearly correlated, high dimensional human 
motion data. Unlike other machine learning methods, ANNs can be 
trained to detect the complex relationships between model inputs and 
model outputs. Such characteristics of ANN, after proper training, allow 
researchers to classify individual patients according to age, sex, and 
pathology. However, the use of ANN still requires caution and expertise, 
for instance, gender classification of Malaysian children based on gait 
analysis was only successful in a large sample size and the model had to 
be adjusted to produce an accurate classification without overfitting 
[54]. Additionally, researchers must carefully check and interpret the 
complex interaction between variables and ‘translate’ the results into a 
language clinicians can understand and use for diagnostic purpose or 
monitoring interventions. 

Hence, a limitation for the clinical application of machine learning 
algorithms, even of those that output variable weight coefficients, is that 

the relationship between input variables, whether linear or non-linear, 
remains hidden. This limits the clinical interpretability of machine 
learning-generated outputs of gait classification. The current data were 
used to classify geriatric patients’ cognitive status retrospectively and 
future studies will need to examine if the prospective classification of CI 
would be similarly accurate. Geriatric patients with CI in the present 
study had an irregular, unpredictable, and unstable gait, suggesting a 
patient-specific gait pattern but it is not clear if such gait properties 
would be the hallmarks of prospective identification of patients with CI 
[11]. Another limitation is that we classified patients based on MMSE 
without consideration of the dementia type or mild cognitive impair
ment. It remains unknown how different cognitive domains or dementia 
types are associated with gait and clinical variables. 

5. Conclusion 

In conclusion, an ANN model incorporating the interaction between 
clinical and gait variables classified geriatric patients with high accu
racy, sensitivity, and specificity. This form of machine learning analyses 
of gait and clinical variables can inform geriatricians in the diagnosis of 
geriatric patients’ cognitive status. There is also evidence suggesting 
that CI is frequently associated with falls and the prevalence of falls 
increases with the degree of CI [55]. Future studies may shed light on the 
question which patients with CI are more prone to a fall. 
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