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Abstract—Engineers consider the presence of dead code as
an undesirable attribute of the code base. The industry lacks
methods to quantify the benefits of deleting dead code efficiently.
The current approach utilizes a simplistic metric that uses the
lines of code (LOC) deleted as a proxy to estimate the benefit
gained. However, not all LOC are equal. The research community
can support the industry and propose methods and metrics that
can help to (a) determine the priority order for dead code
removal, and (b) quantify the benefits of dead code removal.
Improved metrics can result in a more objective ranking of dead
code deletion efforts when compared to other competing tasks.

Introduction. Dead code is code that is either needlessly
executed or code that a system contains but never runs.
Unnecessary code is a subcategory of technical debt and a
“bad code smell” [1]. It is also a cause for maintenance-
related issues [2]. The presence of dead code is one of the
categories in the Common Weakness Enumeration system [3].
In programmer folklore, dead code is an undesirable trait [4].

The first automated attempt to remove dead code happens
during the compilation. Compilers use techniques such as
interprocedural optimization [5] to remove dead code. Ap-
proaches like static analysis can supplement compiler opti-
mizations [6]. Tools can efficiently determine if code is not
called and optimize it away. However, automation cannot
identify code that becomes unnecessary because of either
changing requirements or obsolete features. These decisions
require human intervention.

Organizations use various human-centric approaches to re-
move dead code systemically. For example, they establish
virtual teams consisting of “janitors” [7] or designate a set
of engineers as the “Code Cleanup Crew.” Organizations may
also implement dedicated global engineering efforts that are
either scheduled or continuous. Online services companies
A and B resort to a mix of material and social rewards. In
our experience at company A, engineers who delete at least
N LOC acquire a dedicated badge on an internal employee
profile page, get a limited-edition t-shirt, and become members
of the selective “Dead Code Society.”

Problem. Each organization or project has several com-
peting priorities. Organizations can invest engineering effort
into activities such as developing new features, fixing existing
defects, or improving a product’s performance. Intuitively
engineers know the tax dead code imposes on the development
process. In commercial software development, organizations
decide where to invest engineering resources by calculating the
estimated return on the investment. There are no straightfor-
ward approaches to estimating the value gained from deleting
dead code. Compared to other engineering activities, the ben-

efits of which are well-known, calculating the estimated return
on investment for dead code deletion presents a challenge.

The existing framework of “the bigger the number of deleted
LOC, the better” is overly simplistic. This valuation scheme
does not correctly quantify the benefits gained from deleting
dead code. Not all lines of code are equal. The benefit from
dead code deletion depends on a variety of contextual factors
such as (a) abstraction level (e.g., kernel mode versus user
mode), (b) performance cost (e.g., variable initialization versus
creating a thread), and (c) exposure and intended usage (e.g.,
primary attack surface versus a rarely used feature).

Challenges to the research community. The research
community can help practitioners by (a) conducting studies
on systems that use a systematic approach to delete dead code
(e.g., an effort to “prune” code in OpenBSD [8]) to investigate
if other system characteristics such as performance, quality,
or the perceived cleanliness of code base change as a result,
(b) providing means to compose guidance about the order in
which to focus on different system components (e.g., based
on abstraction level, code coverage, or attack surface), and
(c) defining methods to quantify the benefits of deleting dead
code that are more precise than the number of LOC deleted.
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