
 

 

 University of Groningen

On Quantifying the Benefits of Dead Code Removal
Kudrjavets, Gunnar; Rastogi, Ayushi; Thomas, Jeffrey; Nagappan, Nachiappan

Published in:
2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)

DOI:
10.1109/ICSME55016.2022.00076

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Early version, also known as pre-print

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Kudrjavets, G., Rastogi, A., Thomas, J., & Nagappan, N. (2022). On Quantifying the Benefits of Dead Code
Removal. Manuscript submitted for publication. In 2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME) (pp. 563-563). IEEE.
https://doi.org/10.1109/ICSME55016.2022.00076

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-11-2022

https://doi.org/10.1109/ICSME55016.2022.00076
https://research.rug.nl/en/publications/7f728359-7705-408c-b958-c6e80225bc2b
https://doi.org/10.1109/ICSME55016.2022.00076


HAL Id: hal-03704335
https://hal.archives-ouvertes.fr/hal-03704335

Submitted on 24 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Quantifying the Benefits of Dead Code Removal
Gunnar Kudrjavets, Ayushi Rastogi, Jeff Thomas, Nachiappan Nagappan

To cite this version:
Gunnar Kudrjavets, Ayushi Rastogi, Jeff Thomas, Nachiappan Nagappan. On Quantifying the Ben-
efits of Dead Code Removal. 38th IEEE International Conference on Software Maintenance and
Evolution (ICSME 2022), Oct 2022, Limassol, Cyprus. �hal-03704335�

https://hal.archives-ouvertes.fr/hal-03704335
https://hal.archives-ouvertes.fr


On Quantifying the Benefits of Dead Code Removal
Gunnar Kudrjavets, Ayushi Rastogi

University of Groningen
9712 CP Groningen, Netherlands

g.kudrjavets@rug.nl, a.rastogi@rug.nl

Jeff Thomas, Nachiappan Nagappan
Meta Platforms, Inc.

Menlo Park, CA 94025, USA
jeffdthomas@fb.com, nnachi@fb.com

Abstract—Engineers consider the presence of dead code as
an undesirable attribute of the code base. The industry lacks
methods to quantify the benefits of deleting dead code efficiently.
The current approach utilizes a simplistic metric that uses the
lines of code (LOC) deleted as a proxy to estimate the benefit
gained. However, not all LOC are equal. The research community
can support the industry and propose methods and metrics that
can help to (a) determine the priority order for dead code
removal, and (b) quantify the benefits of dead code removal.
Improved metrics can result in a more objective ranking of dead
code deletion efforts when compared to other competing tasks.

Introduction. Dead code is code that is either needlessly
executed or code that a system contains but never runs.
Unnecessary code is a subcategory of technical debt and a
“bad code smell” [1]. It is also a cause for maintenance-
related issues [2]. The presence of dead code is one of the
categories in the Common Weakness Enumeration system [3].
In programmer folklore, dead code is an undesirable trait [4].

The first automated attempt to remove dead code happens
during the compilation. Compilers use techniques such as
interprocedural optimization [5] to remove dead code. Ap-
proaches like static analysis can supplement compiler opti-
mizations [6]. Tools can efficiently determine if code is not
called and optimize it away. However, automation cannot
identify code that becomes unnecessary because of either
changing requirements or obsolete features. These decisions
require human intervention.

Organizations use various human-centric approaches to re-
move dead code systemically. For example, they establish
virtual teams consisting of “janitors” [7] or designate a set
of engineers as the “Code Cleanup Crew.” Organizations may
also implement dedicated global engineering efforts that are
either scheduled or continuous. Online services companies
A and B resort to a mix of material and social rewards. In
our experience at company A, engineers who delete at least
N LOC acquire a dedicated badge on an internal employee
profile page, get a limited-edition t-shirt, and become members
of the selective “Dead Code Society.”

Problem. Each organization or project has several com-
peting priorities. Organizations can invest engineering effort
into activities such as developing new features, fixing existing
defects, or improving a product’s performance. Intuitively
engineers know the tax dead code imposes on the development
process. In commercial software development, organizations
decide where to invest engineering resources by calculating the
estimated return on the investment. There are no straightfor-
ward approaches to estimating the value gained from deleting
dead code. Compared to other engineering activities, the ben-

efits of which are well-known, calculating the estimated return
on investment for dead code deletion presents a challenge.

The existing framework of “the bigger the number of deleted
LOC, the better” is overly simplistic. This valuation scheme
does not correctly quantify the benefits gained from deleting
dead code. Not all lines of code are equal. The benefit from
dead code deletion depends on a variety of contextual factors
such as (a) abstraction level (e.g., kernel mode versus user
mode), (b) performance cost (e.g., variable initialization versus
creating a thread), and (c) exposure and intended usage (e.g.,
primary attack surface versus a rarely used feature).

Challenges to the research community. The research
community can help practitioners by (a) conducting studies
on systems that use a systematic approach to delete dead code
(e.g., an effort to “prune” code in OpenBSD [8]) to investigate
if other system characteristics such as performance, quality,
or the perceived cleanliness of code base change as a result,
(b) providing means to compose guidance about the order in
which to focus on different system components (e.g., based
on abstraction level, code coverage, or attack surface), and
(c) defining methods to quantify the benefits of deleting dead
code that are more precise than the number of LOC deleted.

REFERENCES

[1] S. Romano, C. Vendome, G. Scanniello, and D. Poshyvanyk, “A multi-
study investigation into dead code,” IEEE Transactions on Software
Engineering, vol. 46, no. 1, pp. 71–99, 2020. [Online]. Available:
https://doi.org/10.1109/TSE.2018.2842781

[2] S. Eder, M. Junker, E. Jürgens, B. Hauptmann, R. Vaas, and K.-H.
Prommer, “How much does unused code matter for maintenance?”
in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12. IEEE Press, 2012, p. 1102–1111. [Online].
Available: https://doi.org/10.1109/ICSE.2012.6227109

[3] “CWE - CWE-561: Dead Code (4.6).” [Online]. Available: https:
//cwe.mitre.org/data/definitions/561.html

[4] G. V. Neville-Neil, “Removing Kode,” Commun. ACM, vol. 63, no. 12,
p. 29, nov 2020. [Online]. Available: https://doi.org/10.1145/3430378

[5] S. K. Debray, W. Evans, R. Muth, and B. De Sutter, “Compiler
techniques for code compaction,” ACM Trans. Program. Lang.
Syst., vol. 22, no. 2, p. 378–415, Mar 2000. [Online]. Available:
https://doi.org/10.1145/349214.349233

[6] R. Haas, R. Niedermayr, T. Roehm, and S. Apel, “Is static
analysis able to identify unnecessary source code?” ACM Trans.
Softw. Eng. Methodol., vol. 29, no. 1, jan 2020. [Online]. Available:
https://doi.org/10.1145/3368267

[7] J. D. Morgenthaler, M. Gridnev, R. Sauciuc, and S. Bhansali, “Searching
for build debt: Experiences managing technical debt at Google,” in
Proceedings of the Third International Workshop on Managing Technical
Debt, ser. MTD ’12. IEEE Press, 2012, p. 1–6.

[8] T. Unangst, “Pruning and Polishing: Keeping OpenBSD Modern,” in
Proceedings of AsiaBSDCon 2015. Tokyo, Japan: Tokyo University
of Science, Mar. 2015. [Online]. Available: https://www.openbsd.org/
papers/pruning.html


