Some Decomposition Theorems for the Vector Space of Matrix Summability Operators

Ed Kelly, Jr. ${ }^{1}$ and Tetsundo Sekiguchi ${ }^{2}$

Consider the set $\tau=\left\{\left(a_{i j}\right) \mid a_{i j}\right.$ are real $\}$ of matrix summability operators on the set B of bounded sequences of real numbers. For $T \epsilon \tau, \xi \in B$,

$$
T(\xi)=\left(a_{i j}\right)(\xi)=\left\{\sum_{j} a_{i j} \xi_{j}\right\}=\left\{t_{i}(\xi)\right\}
$$

for $i=1,2,3, \ldots$. With the usual definitions of matrix addition and multiplication by a scalar, τ becomes a vector space. Some subsets of τ are characterized by the following table, as in Hardy [1], where $C \subset B$ and $\mathrm{Z} \subset B$ denote the sets of convergent and null sequences respectively.

$$
\begin{array}{ccccccc}
& \tau_{c} & \tau_{r} & \tau_{b} & \tau_{z} & \tau_{\theta} & \tau_{o} \\
\delta_{j}=\lim _{i} a_{i j} & \delta_{j} & \delta_{j}=0 & \delta_{j} & \delta_{j}=0 & \delta_{j}=0 & \delta_{j}=0 \\
\delta=\lim _{i} \sum_{j} a_{i j} & \delta & \delta=1 & \delta=\sum_{j} \delta_{j} & \delta & \delta=0 & \delta=0
\end{array}
$$

Mapping relations

on subspaces of B $\quad C \rightarrow C \quad C \rightarrow C \quad B \rightarrow C \quad$| $C \rightarrow C$ |
| :--- |
| $Z \rightarrow Z$ |$\quad C \rightarrow Z \quad B \rightarrow Z$

For each of the subsets characterized in the above table, $\sum_{j}\left|a_{i j}\right|<M$, for every i. For τ_{b} and τ_{o}, the uniform convergence with respect to i of $\sum_{j}\left|a_{i j}\right|$ is required. For $\tau_{r}, \lim _{i} t_{i}(\xi)=\lim \xi_{j}$. The sets τ_{c} and τ_{r} are recognized as the sets of conservative and regular matrix summability operators, respectively. All of the subsets of τ listed above except τ_{r} form subspaces of $\boldsymbol{\tau} . \tau_{r}$ forms a convex set in τ, actually a coset of τ_{θ} in τ_{c}. Inclusion relations for these subsets of τ are shown by the following diagram:

[^0]

The following theorems yield some decompositions of τ :
LEMMA. $\quad \tau_{b} \cap \tau_{z}=\tau_{o}$.
If $T \epsilon \tau_{b} \cap \tau_{z}$, then $\delta_{j}=0$. Since $T \epsilon \tau_{b}$,
$\delta=\lim _{i} \sum_{j} a_{i j}=\sum_{j} l i m a_{i j}=\sum_{j} \delta_{j}=0$, so $T \epsilon \tau_{o}$.
Therefore $\tau_{\mathrm{b}} \cap \tau_{z} \subset \tau_{o}$.
If $T \epsilon \tau_{o}$, then $T(B) \subset Z$, so $T \in \tau_{b}$.
Since $T(B) \subset Z, T(C) \subset Z, T \in \tau_{z}$.
Therefore $T \epsilon \tau_{b} \cap \tau_{z}$, implying $\tau_{o}=\tau_{b} \cap \tau_{z}$.
THEOREM 1. $\tau_{c} / \tau_{o}=\tau_{c} / \tau_{o} \oplus \tau_{b} / \tau_{o}$.
Clearly $\tau_{b}+\tau_{z} \subset \tau_{c}$.
Let $T \epsilon \tau_{c}, \xi \in C$. Since $\sum_{j}\left|a_{i j}\right|<M$ for every $i, \sum_{j-1}^{n}\left|a_{i j}\right|<M$ for any n.
Taking the limit with respect to i yields

$$
\sum_{j-1}^{n}\left|\delta_{j}\right|<M, \text { for every } n
$$

Therefore $\sum_{j}\left|\delta_{j}\right|<M$.
Hence,

$$
t_{i}(\xi)=\sum_{j} a_{i j} \xi_{j}=\sum_{j}\left(a_{i j}-\delta_{j}\right) \xi_{j}+\sum_{j} \delta_{j} \xi_{j}
$$

and T is expressed as the sum of

$$
\left(a_{i j}-\delta_{j}\right) \in \tau_{z} \text { and the matrix }\left(b_{i j}\right) \text {, where } b_{i j}=\delta_{j} \text { for every } i .
$$

Therefore $\tau_{c}=\tau_{b}+\tau_{z}$.
Suppose $\left\{t_{i}(\xi)\right\}$ also has the representation

$$
t_{i}(\xi)=\sum_{j} \beta_{i j} \xi_{j}+\sum_{j} \gamma_{i j} \xi_{\mathrm{j}}
$$

where $\left(\beta_{i j}\right) \in \tau_{b},\left(\gamma_{i j}\right) \in \tau_{z}$.
Then

$$
\sum_{j}\left(a_{i j}-\delta_{j}\right) \xi_{j}-\sum_{j} \gamma_{i j} \xi_{j}=\sum_{j} \delta_{j} \xi_{j}-\sum \beta_{i j} \xi_{j},
$$

for every i.
But $\left(a_{i j}-\delta_{j}-\gamma_{i j}\right) \in \tau_{z}$ and $\left(\delta_{j}-\beta_{i j}\right) \in \tau_{b}$, so each matrix belongs to $\tau_{o}=\tau_{z} \bigcap \tau_{b}$. Therefore the two representations for T differ by a matrix $\epsilon \tau_{o}$. Taking coset decomposition with respect to τ_{o}, one has the direct sum

$$
\tau_{c} / \tau_{o}=\tau_{b} / \tau_{o} \oplus \tau_{z} / \tau_{o}
$$

Now consider a decomposition of τ_{z}. Let $T_{z} \epsilon \tau_{z}$ and A be any matrix summability operator in τ_{r}. Then if $\delta \neq O$,

$$
\begin{align*}
& T_{z}=\delta\left(1 / \delta T_{z}-A\right)+\delta A \tag{1}\\
& =T_{\theta}+\delta A
\end{align*}
$$

where $T_{\theta}=\delta\left(1 / \delta T_{z}-A\right) \in \tau_{\theta}$. If $\delta=O$, then $T_{z} \in \tau_{0}$ and the equation (1) is still valid with $T_{\theta}=T_{z}$. Now suppose T_{z} admits another decomposition of the form

$$
T_{z}=T_{\theta}^{\prime}+\delta^{\prime} A
$$

where $T^{\prime}{ }_{\theta} \in \tau_{\theta}$ and $\delta^{\prime} \neq O$. Then $T_{\theta}+\delta A=T^{\prime}{ }_{\theta}+\delta^{\prime} A$ or $T_{\theta}-T^{\prime}{ }_{\theta}=\left(\delta^{\prime}-\delta\right) A$. Since $T_{\theta}-T^{\prime \prime}{ }_{\theta} \in \tau_{0},\left(\delta^{\prime}-\delta\right) A \epsilon \tau_{0}$ which implies $\delta=\delta^{\prime}$ and thus $T_{\theta}=T^{\prime \prime}$. Therefore the decomposition given in (1) is unique. This yields the following direct sum decomposition:

$$
\tau_{z}=\tau_{\theta} \oplus\{\delta A \mid \delta \text { a real number }\}
$$

For a coset decomposition of τ_{z} with respect to τ_{o}, first notice that $\tau_{o} \subset \tau_{\theta}$. If $\tau_{A}=\{\delta A \mid \delta$ a real number $\}+\tau_{o}$, the coset decomposition of τ_{z} with respect to τ_{o} is given by

$$
\begin{equation*}
\tau_{z} / \tau_{o}=\tau_{\theta} / \tau_{o} \oplus \tau_{A} \tag{2}
\end{equation*}
$$

Combining (2) with Theorem 1 yields
THEOREM 2. τ_{c} can be decomposed into a direct sum of the form

$$
\tau_{c} / \tau_{o}=\tau_{b} / \tau_{o} \oplus \tau_{\theta} / \tau_{o} \oplus \tau_{A}
$$

REFERENCE
[1] Hardy, G. H. Divergent Series. Oxford University Press, London, 1956.

[^0]: ${ }^{1}$ Mathematics Department, Stephen F. Austin State College.
 ${ }^{2}$ Mathematics Department, University of Arkansas.

