Some Functions in the Theory of Neutron Logging

By L. S. Allen* and C. W. Tittle**

Abstract

The solution to the one-energy-group diffusion equation for the case of a point neutron source on the axis of two concentric cylindrical media has been programmed for a digital computer. Numerical results for a wide range of values of diffusion length and diffusion coefficient for the outer medium, and for four radii of the inner cylinder are presented. The outer radius in all cases is effectively infinite.

INTRODUCTION

In order to gain insight into the response of epithermal neutron logging devices Tittle (1961) solved the single-speed neutron diffusion equation for the simulated drill-hole geometry shown in Figure 1. The epithermal neutron flux was found to be expressible as a Fourier-Bessel series, and a graphical method for determining the necessary eigenvalues was given.

Shortly after the initial paper on this theory was submitted for publication, a computer program treating the entire numerical problem of the analysis was completed (Allen, 1961). This program was written for the Remington Rand Univac 1103 computer at Southern Methodist University, and was used to make an extensive study of the numerical behavior.

In the course of this work an error was discovered in the normalization procedure, as it was described in our earlier writings. The error can be corrected by setting the quantity U_{n}, as defined in those papers, equal to unity. This correction has been incorporated into the work described here.

A new version of the theory, utilizing an expansion into eigenfunctions of z, has been developed and programmed for the Control Data Corporation 1604 computer at Southern Methodist University. The details of this theory will be described elsewhere. '

The purpose of this paper is to present the results of a series of calculations in which the diffusion parameters and bore-hole size were parameters of variation.

[^0]

Fig. 1. Geometrical Arrangement of the Media, Source and Detector.

ACKNOWLEDGMENTS

Financial assistance in the form of a research grant from Socony Mobil Oil Company is gratefully acknowledged. The invaluable assistance of the Computing Laboratory of Southern Methodist University is also acknowledged, and especially the aid of Mr. Robert L. McCauley and Mr. Robert G McAfee of that Laboratory.

RESULTS OF THE MATHEMATICAL THEORY

Since a derivation of the desired mathematical expressions has been given elsewhere (Tittle, 1961), only a listing of the important equations will be presented here. If the geometrical designations of Fig. 1 are employed, the series solution for the epithermal flux can be written as:

$$
\begin{equation*}
\phi_{1}=\sum_{n} A_{n} J_{o}\left(C_{n} r\right) e^{-F F_{n} z} \quad 0 \leq r \leq a \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi_{z}=\sum_{n} G_{n}\left[J_{0}\left(P_{n} r\right)+H_{n} Y_{0}\left(P_{n} r\right)\right] e^{-F_{n}^{z}, a \leq r \leq b} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
A_{n}= & Q / 2 D_{1} F_{n} M_{n} \tag{3}\\
F_{n}= & \sqrt{C_{n}{ }^{2}+\frac{1}{L_{1}{ }^{2}}}=\sqrt{P_{n}{ }^{2}+\frac{1}{L_{2}{ }^{2}}} \tag{4}\\
G_{n}= & A_{n} J_{o}\left(C_{n} a\right) / Z_{o}\left(P_{n} a\right) \tag{5}\\
H_{n}= & -J_{o}\left(P_{n} b\right) / Y_{o}\left(P_{n} b\right) \tag{6}\\
M_{n}= & \pi a^{2}\left\{J_{0}{ }^{2}\left(C_{n} a\right)+J_{1}{ }^{2}\left(C_{n} a\right)\right. \\
& \left.+\frac{D_{2}}{D_{1}}\left[\frac{G_{n}}{A_{n}}\right]^{2}\left[k^{2} Z_{1}^{2}\left(P_{n} b\right)-Z_{1}^{2}\left(P_{n} a\right)-Z_{0}^{2}\left(P_{n} a\right)\right]\right\}
\end{align*}
$$

$$
\begin{equation*}
k=b / a \tag{7}
\end{equation*}
$$

In these expressions ϕ_{1} and ϕ_{2} stand for the epithermal neutron flux in the inner and outer cylinders, respectively. The symbols $Z_{0}(x)$ and $Z_{1}(x)$ represent the linear combinations of Bessel functions $J_{o}(x)+H_{n} Y_{o}(x)$ and $\mathrm{J}_{1}(x)+H_{n} Y_{1}(x)$, respectively. Characteristic values of C_{n} or P_{n} are determined by the transcendental equation

$$
\begin{equation*}
\frac{J_{o}\left(C_{n} a\right)}{D_{1} C_{n} J_{1}\left(C_{n} a\right)}=\frac{J_{o}\left(P_{n} a\right)+H_{n} Y_{o}\left(P_{n} a\right)}{D_{2} P_{n}\left[J_{1}\left(P_{n} a\right)+H_{n} Y_{1}\left(P_{n} a\right)\right]} \tag{9}
\end{equation*}
$$

Equations (1) through (9) were obtained by applying appropriate boundary and source conditions to the steady-state neutron diffusion equation

$$
\begin{equation*}
D \nabla^{2} \phi-\Sigma_{r} \phi=0 \tag{10}
\end{equation*}
$$

for the two regions in Fig. 1. In solving Eq. (10) it is conventional to divide the equation by the diffusion coefficient $D(\mathrm{~cm})$. The division of the effective removal cross section $\Sigma_{r}\left(\mathrm{~cm}^{-1}\right)$ by the diffusion coefficient leads to the definition of a new constant, the slowing down length of epithermal neutrons. This constant is defined as

$$
\begin{equation*}
L_{s}(\mathrm{~cm})=\sqrt{D / \Sigma_{r}^{-}} \tag{11}
\end{equation*}
$$

In this paper the slowing down length is represented by the letter L with a subscript for a region designation.

THE NUMERICAL PROBLEM

The constants C_{n} and P_{n} must be known for each term which is to be included in the series expression for the flux. As pointed out, these values must be determined from Eq. (9) with the aid of Eq. (4). Unfortunately,
the eigenvalues of Eq. (9) are not easily obtained. Asymptotic expressions for the Bessel functions can be used to calculate the root spacing of Eq. (9) for large n, but this information is of little use for $n<10$, a region of vital importance. This being the case, a straightforward method for solving the equation must be employed.

A graphical method for solving Eq. (9) was presented by Tittle (1961). This method permits hand calculations to be made, but is laborious if three significant figures are desired in the values of small roots. In many cases an estimate of the third significant figure is sufficient. However, one term in the series will occasionally show considerable sensitivity to the value of the corresponding root. Although the effect of root indeterminacy may be significant for the particular term involved, the net effect on the expression for the flux is usually much less than 10%. If greater accuracy is desired, the graphical method should be abandoned in favor of a computational scheme which can be programmed for a digital computer.

As the first step in devising one such method, Eq. (9) can be rewritten as

$$
\begin{align*}
& x J_{o}(y)\left[J_{1}(x) Y_{o}(k x)-J_{o}(k x) Y_{1}(x)\right] \\
& -\left(D_{1} / D_{2}\right) y J_{1}(y)\left[J_{o}(x) Y_{o}(k x)-J_{o}(k x) Y_{o}(x)\right]=0 \tag{12}
\end{align*}
$$

where

$$
\begin{gather*}
x=P_{n a} \tag{13}\\
y=C_{n} a=\left(x^{2}+\frac{a^{2}}{L_{1}^{2}}-\frac{a^{2}}{L_{2}^{2}{ }^{2}}\right)^{1 / 2} \tag{14}
\end{gather*}
$$

Since D_{1} / D_{2} is the only division in Eq. (12) and the Bessel functions are continuous, the left hand side of the equation must oscillate if the equation has real roots. If this portion of the equation is called $F(x, y)$, the sign of $F(x, y)$ can clearly be used as a mechanism to achieve convergence in an iterative solution for the roots of the equation. Assuming that Eq. (12) has no roots in the immediate vicinity of $x=0$, one may compute a reference value of $F(x, y)$ for some arbitrarily small value of x, add a small increment to x and recompute $F(x, y)$, and then compare the two values of $F(x, y)$ for sign. If both values have the same sign the root obviously has not been passed; if the signs differ the root has been passed by an amount less than the magnitude of the increment and some method, such as the method of halving, can be used to locate the root. It is clear that any number of roots can be found by this procedure and that good accuracy can be achieved. Evident also is the fact that a judicious choice of the increment size is
desirable to reduce computing time. Fortunately, $F(x, y)$ is nearly periodic and such a choice can readily be made. A curve showing an approximate relationship between root spacing and the diameter ratio k is shown in Fig. 2.

Fig. 2. Average root spacing of Eq. (12) for various values of diameter ratio k .

It was assumed earlier that Eq. (12) did not have a root in the immediate vicinity of $x=0$. This can be shown to be true by considering the behavior of $F(x, y)$ for values of x near zero. For cases of interest in logging, L_{1} is always less than L_{2} if the hole is liquid filled; thus Eq. (15) demands y to be imaginary, yet finite, for values of x near zero. Even though y is imaginary, $J_{o}(y)$ and $y J_{1}(y)$ are real; the functions $J_{o}(i u)$ and $-i J_{1}(i u)$ are conventionally tabulated as $I_{o}(u)$ and $I_{1}(u)$. Furthermore, $J_{o}(y)$ is a positive real number when x is zero. Consider the following portion of Eq. (12):

$$
x J_{o}(y)\left[J_{1}(x) Y_{o}(k x)-J_{o}(k x) Y_{1}(x)\right]
$$

As x approaches zero, the functions $Y o(k x)$ and $Y_{1}(x)$ lose their oscillatory behavior and approach minus infinity. At $x=0, Y_{o}(k x)$ has a logarithmic pole and $Y_{1}(x)$ has a pole of order one. On the other hand, $J_{o}(k x)$ approaches unity for small x, but $J_{1}(x)$ goes to zero. Hence the above portion of Eq. (12) must be a positive quantity for small values of x.

Consider the remaining portion of Eq. (13):

$$
-\left(D_{1} / D_{2}\right) y J_{1}(y)\left[J_{o}(x) Y_{o}(k x)-J_{o}(k x) Y_{o}(x)\right]
$$

If k is greater than unity, the preceding remarks indicate that $\left|J_{0}(x)\right|>$ $\left|J_{o}(k x)\right|$ and $\left|Y_{o}(k x)\right|>\left|Y_{o}(x)\right|$ for small values of x. (It should be pointed out that a reasonable value of k is something like 5 or $6 ; k=1$ infers a single medium, but $k<1$ has no meaning). Since the product $y J_{1}(y)$ is negative (because y is imaginary for small x) and the subject portion of Eq. (12) is preceded by a negative sign, the entire expression is positive for values of x near zero, and there can be no root in that vicinity.

The computer program used in this work employs the scheme outlined above to determine the roots of Eq. (12). Only 10 or 12 halvings of the x-increment (usually 0.2) are required to compute a root to an accuracy of 5 parts in 10^{6} and the halving can be accomplished very rapidly in the digital computer by dropping a digit from the characteristic of the floating point number. For this reason, a more refined extrapolation technique is not required in the root determination routine. Bessel functions were calculated by Tschebycheff polynomials (Werner, 1959) for values of the argument (x) which are less than 8.0, the upper range of the polynomial fit. Asymptotic series (McLachlan, 1948) were used to compute the Bessel functions which have $k x$ as their argument for values of $k x$ exceeding 8.0.

RESULTS OF THE COMPUTATION

The present work was undertaken to provide numerical results which can be used to obtain a flux curve for any value of the diffusion parameters or borehole size that might arise in a practical logging situation. To accomplish this end, the following values of the parameters were included in the survey:

$$
\begin{aligned}
a & =5,6,8,10 \mathrm{~cm} \\
b & =\text { value required for medium } 2 \text { to be effectively "infinite" } \\
L_{1} & =7.00 \mathrm{~cm} \\
D_{1} & =68.8 \mathrm{~cm} \\
L_{2} & =7,9,11,13,15,20,25,30 \mathrm{~cm} \\
D_{2} / D_{1} & =0.2,0.3,0.4,0.6,0.8,1.0,1.2,1.4 \\
z & =10,20,30,40,50,60 \mathrm{~cm} \\
Q & =10^{6} \text { neutrons } / \mathrm{sec} .
\end{aligned}
$$

Since the theory was developed for finite cylinders, it can be used readily to interpret experiments which are performed in finite models. However, if one wishes to know the flux for an outer cylinder which is effectively infinite
in radius, one takes b to be so large that the flux has nearly its asymptotic value, say within 99% of that value. A method of estimating the required value of b, based on a one-cylinder theory, was given by Tittle (1961). In this computation the effect of the borehole is neglected. Our experience indicates that this is a good approximation, the error in the flux ratio resulting therefrom being less than 1 per cent in typical cases. Figure 3 presents the minimum value of b which will make the axial flux at $z=60 \mathrm{~cm}$ at least 99 per cent of the value for an infinite value of b, based on the onecylinder theory.

Fig. 3. Radius of Outer Cylinder Required to Give 99% of Flux at Spacing z. Based on One-Cylinder Theory.

The results of the parametric survey are presented in Tables I through VIII. In these tables the unit for the epithermal flux is neutrons $/ \mathrm{cm}^{2}$-sec- U. The symbol U stands for "unit lethargy interval" where lethargy is defined as the logarithm of the energy ratio. In all of the tabulated cases the value of b was selected to make the flux values at $z=60 \mathrm{~cm}$ approximately 99 per cent of their asymptotic values. Truncation errors are believed to be completely negligible.

In all cases the medium in the borehole is water ($L_{1}=7.0 \mathrm{~cm}, D_{1}=68.8$ $\mathrm{cm})$. The indicated parameters for water are for $\mathrm{Ra}-\mathrm{Be}$ primary neutrons, at a final energy of 1 ev . Other values of the diffusion parameters of Medium 1 can be obtained however, if a suitable transformation of the tabulated data
is made. Suppose, for example, that one wishes to make a flux plot for $a=10 \mathrm{~cm}, b=150 \mathrm{~cm}, D_{2} / D_{1}=1.0, L_{2}=25 \mathrm{~cm}$, but, $L_{1}=8.75 \mathrm{~cm}$ instead of 7.00. An examination of Eq. (12) indicates that the same eigenvalue problem is solved for the case where $a=10, b=150, L_{1}=8.75$, $L_{2}=25.0$, as for the case where $a=8, b=120, L_{1}=7.00, L_{2}=20.0$, if D_{2} / D_{1} is the same in both cases. Moreover, since the product $F_{n} a^{2}$ appears in the denominator of Eq. (3), and F_{n} appears in the exponential function of Eq. (1), a flux value computed at a z-value of 10 cm for the case where L_{1} equals 8.75 cm will agree with a flux value computed at a z-value of 12.5 $\mathrm{cm},(10 \mathrm{~cm}$ multiplied by $8.75 / 7.00)$, if the former flux value is multiplied by $7.00 / 8.75$. For precise agreement between the two cases it is clear that b, as well as a and L_{2}, must be increased in the same ratio as L_{1}. This requirement is not absolutely essential in this instance however because both values of b are effectively infinite (Fig. 3); a value of 120 cm would suffice for b in both cases. From this illustration, it can be seen that the desired fluxes for the case where $a=10 \mathrm{~cm}, L_{4}=8.75 \mathrm{~cm}, L_{2}=25 \mathrm{~cm}, D_{2} / D_{1}=1.0$, with an effectively infinite value of b, can be obtained by multiplying the fluxes tabulated for $D_{2} / D_{1}=1.0$ in the table by a factor $c=7.00 / 8.75$ and then identifying the resulting flux values with values of z which are $1 / c$ times larger than the tabulated z 's. As far as D_{1} is concerned, it can be seen from Eq. (3) that this parameter simply scales the flux, the flux varying inversely with D_{1} as it should. Thus the tabulated flux should be multiplied by

$$
\frac{7.00}{L_{1}} \cdot \frac{68.8}{D_{1}}
$$

to convert to values of L_{1} and D_{1} different from those employed in these computations. To summarize:

1. The flux ϕ for given values of $L_{1}, D_{1}, L_{2}, D_{2}, a, b$, and z is desired.
2. Compute $c=7.0 / L_{1}$.
3. Find the flux ϕ^{\prime} for $c L_{2}, c a, c b, c a, D_{2} / D_{1}$ in the tables.
4. Multiply ϕ^{\prime} by $68.8 \mathrm{c} / D_{1}$ to obtain ϕ.

An example is given in Table IX.

Table I; $\mathrm{L}_{2}=7$

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=0.2
$$

z
10
20
30 40 50 60

10 20 30 40 50 60
10
10
20
30
40
50
60
$\quad a=s$
78.89
14.09
2.692
0.5327
0.1080
0.02232
52.96
8.086
1.410
0.2630
0.05124
0.01030

$a=8$	$a=10$
46.31	37.28
8.576	6.505
1.767	1.358
0.3734	0.2933
0.08008	0.06420
0.01736	0.01418

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.3$

53.83	41.53	34.98
9.128	7.103	5.691
1.709	1.390	1.132
0.3345	0.2828	0.2357
0.06738	0.05881	0.05011
0.01387	0.01243	0.01080

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.4$
46.63
7.368
1.326
0.2527
0.05000
0.01016

38.00	33.21
6.067	5.087
1.139	0.9702
0.2249	0.1960
0.04574	0.04071
0.009500	0.008607

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.6$

10	40.19
20	5.532
30	0.9222
40	0.1682
50	0.03239
60	0.006471

37.33
5.268
0.8969
0.1657
0.03217
0.006461
33.14
4.718
0.8286
0.1568
0.03098
0.006301
30.68
4.253
0.7561
0.1456
0.02920
0.006461
0.006301
0.006012

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=0.8
$$

32.66	31.59
4.163	4.079
0.6761	0.6693
0.1221	0.1215
0.02343	0.02340
0.004677	0.004680

29.96
3.884
0.6477
0.1190
0.02310
0.004644
28.96
3.706
0.6220
0.1153
0.02255
0.004561

Table I; $\mathrm{L}_{2}=7$ (Continued)

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=1.0
$$

z	$a=5$	$a=6$	$a=8$	$a=10$
10	27.72	27.72	27.72	27.72
20	3.321	3.321	3.321	3.321
30	0.5307	0.5307	0.5307	0.5307
40	0.09538	0.09538	0.09538	0.09538
50	0.01829	0.01829	0.01829	0.01829
60	0.003652	0.003652	0.003652	0.003652

10	24.24	24.93	26.05	26.78
20	2.757	2.801	2.917	3.036
30	0.4355	0.4383	0.4492	0.4647
40	0.07808	0.07825	0.07934	0.08132
50	0.01497	0.01497	0.01508	0.01534
60	0.002992	0.002988	0.002999	0.003035
		$\mathrm{D}_{2} / \mathrm{D}_{1}=1.4$		
		22.83	24.77	26.04
10	21.65	2.422	2.613	2.817
20	2.354	0.3727	0.3896	0.4150
30	0.3686	0.06622	0.06781	0.07092
40	0.06602	0.01266	0.01281	0.01320
50	0.01266	0.002526	0.002539	0.002591

Table II; $\mathrm{L}_{2}=9.0$
$\mathrm{D}_{2} / \mathrm{D}_{1}=0.2$
85.35
16.84
3.662
0.8480
0.2061
0.05211
68.39
13.72
3.022
0.7023
0.1701
0.04268
$\mathrm{D}_{2} / \mathrm{D}_{1}=0.3$
69.72
12.99
2.778
0.6451
0.1589
0.04092
58.19
11.01
2.376
0.5518
0.1351
0.03445
43.61
8.079
1.759
0.4077
0.09881
0.02482
36.01
6.213
1.340
0.3090
0.07421
0.01840

Table II; $\mathrm{L}_{2}=9.0$ (Continued)

z	$=5$	$a=6$	$a=8$	$a=10$
10	59.04	50.89	40.13	34.30
20	10.52	9.164	7.051	5.630
30	2.228	1.952	1.504	1.185
40	0.5202	0.4539	0.3473	0.2709
50	0.1296	0.1121	0.08461	0.06513
60	0.03380	0.02895	0.02147	0.01627

10	45.47	41.18	35.19	31.78
20	7.567	6.842	5.644	4.790
30	1.590	1.432	1.165	0.9646
40	0.3750	0.3348	0.2677	0.2173
50	0.09488	0.08387	0.06579	0.05236
60	0.02515	0.02203	0.01695	0.01323

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.8$

10	37.24	35.03	31.86	30.01
20	5.886	5.451	4.729	4.214
30	1.234	1.128	0.9505	0.8165
40	0.2934	0.2652	0.2177	0.1816
50	0.07497	0.06710	0.05387	0.04381
60	0.02007	0.01781	0.01403	0.01116

	$\mathrm{D}_{2} / \mathrm{D}_{1}=1.0$			
10	31.74	30.79	29.47	28.70
20	4.809	4.528	4.089	3.794
30	1.007	0.9302	0.8029	0.7102
40	0.2410	0.2196	0.1835	0.1561
50	0.06203	0.05597	0.04563	0.03768
60	0.01671	0.01496	0.01197	0.009652

	$\mathrm{D}_{2} / \mathrm{D}_{1}=1.2$			
10	27.80	27.69	27.66	27.69
20	4.062	3.874	3.617	3.475
30	0.8508	0.7909	0.6953	0.6303
40	0.2046	0.1875	0.1586	0.1370
50	0.05291	0.04802	0.03959	0.03306
60	0.01431	0.01290	0.01044	0.008507

Table II; $\mathrm{L}_{2}=9.0$ (Continued)
$\mathrm{D}_{2} / \mathrm{D}_{1}=1.4$

z	$a=s$	$a=6$	$a=8$	$a=10$
10	24.86	25.33	26.25	26.89
20	3.515	3.387	3.254	3.224
30	0.7363	0.6878	0.6136	0.5680
40	0.1778	0.1635	0.1396	0.1222
50	0.04615	0.04207	0.03497	0.02946
60	0.01252	0.01134	0.009265	0.007607

Table III; $\mathrm{L}_{2}=11.0$
$\mathrm{D}_{2} / \mathrm{D}_{1}=0.2$

10	89.93
20	19.02
30	4.557
40	1.192
50	0.3342
60	0.09917

71.32
15.16
3.624
0.9354
0.2573
0.07473

49.49	38.80
10.15	7.299
2.403	1.694
0.6072	0.4198
0.1619	0.1091
0.04533	0.02965

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.3$

10	74.39	61.32	45.08	36.73
20	15.17	12.52	8.835	6.604
30	3.663	3.003	2.083	1.514
40	0.9836	0.7934	0.5351	0.3791
50	0.2851	0.2255	0.1469	0.1010
60	0.08749	0.06782	0.04261	0.02834

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.4$
63.56
12.60
3.064
0.8390
0.2486
0.07784
54.02
10.66
2.564
0.6897
0.2005
0.06167
41.66
7.834
1.838
0.4785
0.1342
0.03987
35.07
6.050
1.371
0.3457
0.09375
0.02693
$\mathrm{D}_{2} / \mathrm{D}_{1}=0.6$
49.49
9.382
2.312
0.6499
0.1977
0.06336
44.09
8.208
1.986
0.5478
0.1638
0.05176
36.71
6.411
1.490
0.3952
0.1141
0.03496
32.58
5.222
1.155
0.2940
0.08175
0.02424

Table III; $\mathrm{L}_{2}=11.0$ (Continued)
$\mathrm{D}_{2} / \mathrm{D}_{1}=0.8$

z	$a=5$	$a=6$	$a=8$	$a=10$
10	40.78	37.66	33.30	30.79
20	7.465	6.674	5.450	4.633
30	1.859	1.622	1.254	1.001
40	0.5310	0.4548	0.3368	0.2558
50	0.1640	0.1384	0.09906	0.07232
60	0.05324	0.04440	0.03093	0.02188

10	34.88	33.17	30.81	29.44
20	6.197	5.625	4.758	4.192
30	1.555	1.371	1.084	0.8854
40	0.4492	0.3890	0.2935	0.2265
50	0.1401	0.1197	0.08744	0.06477
60	0.04585	0.03879	0.02765	0.01987

$\mathrm{D}_{2} / \mathrm{D}_{1}=1.2$

10	30.62	29.85	28.91	28.40
20	5.297	4.865	4.235	3.850
30	1.336	1.188	0.9545	0.7952
40	0.3893	0.3399	0.2601	0.2033
50	0.1222	0.1055	0.07823	0.05861
60	0.04023	0.03441	0.02497	0.01817
		$\mathrm{D}_{2} / \mathrm{D}_{1}=1.4$		
		27.31	27.41	27.56
10	27.40	4.288	3.827	3.577
20	4.625	1.048	0.8533	0.7230
30	1.172	0.3018	0.2335	0.1845
40	0.3435	0.09424	0.07075	0.05350
50	0.1084	0.03090	0.02273	0.01671

Table IV; $\mathrm{L}_{2}=13.0$
$\mathrm{D}_{2} / \mathrm{D}_{1}=0.2$

10
20
30
40
50
60
73.47
16.30
4.152
1.166
0.3555
0.1162
50.42
10.67
2.648
0.7147
0.2076
0.06454
39.23
7.553
1.816
0.4741
0.1323
0.03935

JOURNAL OF THE GRADUATE RESEARCH CENTER
Table IV: $\mathrm{L}_{2}=13.0$ (Continued)

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=0.3
$$

z	$a=s$	$a=6$	$a=8$	$a=10$
10	77.93	63.66	46.16	37.26
20	16.99	13.76	9.433	6.908
30	4.492	3.573	2.365	1.662
40	1.346	1.043	0.6598	0.4449
50	0.4409	0.3327	0.2004	0.1292
60	0.1540	0.1135	0.06525	0.04028

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.4$

10	52.63
20	10.97
30	3.033
40	0.9671
50	0.3356
60	0.1230

56.39	42.80	35.65
11.90	8.466	6.382
3.138	2.137	1.532
0.9417	0.6110	0.4179
0.3092	0.1913	0.1250
0.1082	0.06422	0.04023

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.6$

46.33	37.87	33.19
9.377	7.050	5.572
2.525	1.792	1.326
0.7858	0.5298	0.3712
0.2672	0.1726	0.1154
0.09640	0.06014	0.03873

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.8$

10	43.58	39.72	34.41	31.39
20	8.869	7.742	6.061	4.980
30	2.497	2.114	1.544	1.171
40	0.8127	0.6728	0.4664	0.3329
50	0.2869	0.2335	0.1557	0.1062
60	0.1067	0.08568	0.05548	0.03653

$\mathrm{D}_{2} / \mathrm{D}_{1}=1.0$

10	37.38
20	7.446
30	2.123
40	0.7004
50	0.2500
60	0.09377

35.05
6.597
1.819
0.5877
0.2067
0.07669
31.86
5.333
1.356
0.4159
0.1412
0.05104
30.03
4.527
1.050
0.3013
0.09778
0.03424

Table IV; $\mathrm{L}_{2}=13.0$ (Continued)

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=1.2
$$

z	$a=5$	$a=6$	$a=8$	$a=10$
10	32.87	31.58	29.89	28.95
20	6.418	5.750	4.774	4.170
30	1.847	1.596	1.210	0.9522
40	0.6152	0.5214	0.3750	0.2750
50	0.2213	0.1852	0.1289	0.09038
60	0.08349	0.06921	0.04707	0.03205
$\mathrm{D}_{2} / \mathrm{D}_{1}=1.4$				
10	29.45	28.89	28.34	28.08
20	5.640	5.099	4.331	3.882
30	1.634	1.422	1.092	0.8723
40	0.5483	0.4685	0.3413	0.2529
50	0.1984	0.1675	0.1183	0.08388
60	0.07517	0.06296	0.04357	0.03003

Table V: $\mathrm{L}_{2}=15$
$\mathrm{D}_{2} / \mathrm{D}_{1}=0.2$

10
20
30
40
50
60
95.92
22.23
6.084
1.888
0.6477
0.2401
75.10
17.23
4.615
1.387
0.4599
0.1652
51.12
11.08
2.856
0.8143
0.2543
0.08628
39.56
7.750
1.918
0.5231
0.1552
0.04997
$\mathrm{D}_{2} / \mathrm{D}_{1}=0.3$
10

65.47	46.98	37.66
14.78	9.916	7.149
4.085	2.611	1.787
1.290	0.7786	0.5057
0.4503	0.2566	0.1579
0.1693	0.09168	0.05372

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.4$

69.74	58.24	43.69	36.09
15.86	12.94	8.984	6.649
4.620	3.662	2.402	1.671
1.556	1.196	0.7397	0.4861
0.5764	0.4313	0.2527	0.1574
0.2275	0.1666	0.09333	0.05552

Table V; $\mathrm{L}_{2}=15$ (Continued)

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=0.6
$$

z	$a=5$
10	55.13
20	12.34
30	3.724
40	1.305
50	0.4995
60	0.2023

$a=6$	$a=8$	$a=10$
48.12	38.78	33.66
10.38	7.583	5.861
3.032	2.067	1.478
1.034	0.6648	0.4462
0.3872	0.2377	0.1516
0.1542	0.09133	0.05597

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.8$

10	45.84	41.38	35.30	31.87
20	10.10	8.669	6.581	5.270
30	3.119	2.585	1.812	1.325
40	1.118	0.9045	0.5991	0.4094
50	0.4360	0.3463	0.2202	0.1433
60	0.1791	0.1404	0.08661	0.05441

10	39.41	36.57	32.70	30.49
20	8.555	7.448	5.827	4.811
30	2.682	2.252	1.613	1.200
40	0.9764	0.8019	0.5433	0.3768
50	0.3851	0.3115	0.2035	0.1347
60	0.1597	0.1277	0.08125	0.05210

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=1.2
$$

10	34.71
20	7.420
30	2.353
40	0.8656
50	0.3442
60	0.1436

32.98	30.69	29.40
6.533	5.241	4.444
1.995	1.453	1.098
0.7192	0.4961	0.3483
0.2822	0.1883	0.1264
0.1166	0.07601	0.04956

$\mathrm{D}_{2} / \mathrm{D}_{1}=1.4$

10	31.12	30.18	29.08	28.51
20	6.552	5.821	4.771	4.143
30	2.096	1.791	1.322	1.012
40	0.7770	0.6515	0.4559	0.3235
50	0.3108	0.2575	0.1748	0.1187
60	0.1303	0.1070	0.07113	0.04703

Table VI; $\mathrm{L}_{2}=20$

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=0.2
$$

z	$a=5$
10	100.3
20	24.88
30	7.550
40	2.680
50	1.074
60	0.4703

$a=6$
77.84
18.90
5.537
1.882
0.7245
0.3072
$a=8$
52.29
11.80
3.258
1.029
0.3677
$0.146+$

$$
\begin{aligned}
& a=10 \\
& 40.10 \\
& 8.093 \\
& 2.110 \\
& 0.6254 \\
& 0.2090 \\
& 0.07830
\end{aligned}
$$

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=0.3
$$

10	85.42
20	21.37
30	6.845
40	2.582
50	1.089
60	0.4957

68.55
16.66
5.135
1.861
0.7585
0.3365
48.37
10.78
3.098
1.041
0.3972
0.1671
38.32
7.576
2.028
0.6359
0.2272
0.09054
$\mathrm{D}_{2} / \mathrm{D}_{1}=0.4$
74.50
18.73
6.230
2.441
1.061
0.4939
61.44
14.90
4.762
1.798
0.7592
0.3456

45.20	36.83
9.932	7.128
2.937	1.945
1.031	0.6350
0.4101	0.2373
0.1784	0.09839

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.6$
59.59
$\int 1.26$
12.31
4.125
1.639
0.7209
0.3385
40.37
8.587
2.640
0.9808
0.4105
0.1858
34.48
15.03
5.246
2.151
0.9677
0.4619
0.3383
0.1858
6.393
1.785
0.6158
0.2438
0.1061
$\mathrm{D}_{2} / \mathrm{D}_{1}=0.8$
49.90
12.56
4.515
1.899
0.8709
0.4216
44.34
10.49
3.622
1.483
0.6676
0.3187
36.87
7.576
2.384
0.9176
0.3959
0.1834
32.70

Table VI; $\mathrm{L}_{2}=20$ (Continued)

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=1.0
$$

z	$a=5$	$a=6$	$a=8$	$a=10$
10	43.10	39.32	34.21	31.31
20	10.79	9.142	6.788	5.352
30	3.956	3.222	2.168	1.518
40	1.692	1.346	0.8546	0.5550
50	0.7854	0.6149	0.3763	0.2333
60	0.3836	0.2969	0.1771	0.1065

$\mathrm{D}_{2} / \mathrm{D}_{1}=1.2$

10	38.07	35.52	32.13	30.20
20	9.457	8.104	6.158	4.971
30	3.518	2.898	1.985	1.409
40	1.522	1.227	0.7961	0.5240
50	0.7124	0.5668	0.3556	0.2242
60	0.3502	0.2759	0.1692	0.1038

$\mathrm{D}_{2} / \mathrm{D}_{1}=1.4$

10	34.20	32.55	30.45	29.28
20	8.418	7.281	5.642	4.653
30	3.165	2.631	1.830	1.314
40	1.381	1.126	0.7431	0.4948
50	0.6506	0.5242	0.3356	0.2145
60	0.3213	0.2567	0.1611	0.1004

Table VII; $\mathrm{L}_{2}=25$
$\mathrm{D}_{2} / \mathrm{D}_{1}=0.2$

10	103.0	79.51	52.98	40.42
20	26.66	20.00	12.27	8.309
30	8.646	6.212	3.543	2.243
40	3.345	2.290	1.199	0.7045
50	1.479	0.9704	0.4693	0.2558
60	0.7183	0.4567	0.2075	0.1062
		$\mathrm{D}_{2} / \mathrm{D}_{1}=0.3$		
		70.47	49.22	38.72
10	88.40	17.94	11.36	7.852
20	23.34	5.925	3.452	2.199
30	8.068	2.342	1.255	0.7387
40	3.334	1.053	0.5262	0.2887
50	1.552	0.5167	0.2454	0.1276

Table VII; $\mathrm{L}_{2}=25$ (Continued)
$\mathrm{D}_{2} / \mathrm{D}_{1}=0.4$

z	$a=s$
10	77.53
20	20.75
30	7.490
40	3.223
50	1.546
60	0.7950

$a=6$
63.46
16.25
5.605
2.317
1.079
0.5430

$a=8$	$a=10$
46.13	37.29
10.57	7.444
3.334	2.143
1.273	0.7549
0.5574	0.3098
0.2684	0.1423

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=0.6
$$

10	62.49	53.29	41.38	34.99
20	16.97	13.67	9.278	6.752
30	6.473	4.989	3.077	2.014
40	2.919	2.178	1.251	0.7564
50	1.449	1.056	0.5772	0.3299
60	0.7634	0.5472	0.2888	0.1588

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=0.8
$$

10
20
30
40
50 60

10	45.56
20	12.44
30	5.015
40	2.363
50	1.210
60	0.6524

52.58
14.36
5.661
2.622
1.326
0.7086
46.28
11.80
4.458
2.009
0.9969
0.5254
37.88
8.274
2.830
1.196
0.5692
0.2913
33.23
6.192
1.884
0.7369
0.3336
0.1652

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=1.0
$$

41.14	35.20	31.85
10.38	7.472	5.731
4.014	2.608	1.763
1.846	1.132	0.7088
0.9306	0.5497	0.3292
0.4959	0.2856	0.1662

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=1.2
$$

40.33
37.23
9.262
33.08
30.72
10.98
4.495
3.644
1.701
0.8665
0.4654
6.818
5.345
2.144
1.107
0.6007
2.413
1.652
$1.067 \quad 0.6778$
$0.5259 \quad 0.3206$
0.2762
0.1641

JOURNAL OF THE GRADUATE RESEARCH CENTER

Table VII; $\mathrm{L}_{2}=25$ (Continued)

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=1.4
$$

	$a=5$	$a=6$	$a=8$	$a=10$
z	36.28	34.14	31.35	29.79
10	9.820	8.364	6.276	5.018
20	4.069	3.332	2.241	1.553
30	1.958	1.573	1.005	0.6466
40	1.018	0.8075	0.5011	0.3101
50	0.5547	0.4364	0.2654	0.1604
60				

$$
\text { Table VIII; } \mathrm{L}_{2}=30
$$

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.2$

10	104.8
20	27.93
30	9.481
40	3.894
50	1.841
60	0.9586

80.62
20.77
6.720
2.620
1.187
0.5995
53.44
12.59
3.753
1.334
0.5568
0.2647

$$
\begin{aligned}
& 40.62 \\
& 8.457 \\
& 2.339 \\
& 0.7662 \\
& 0.2955 \\
& 0.1319
\end{aligned}
$$

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.3$

10	90.42
20	24.76
30	9.017
40	3.964
50	1.971
60	1.062

71.76	49.78	38.99
18.84	11.76	8.042
6.528	3.716	2.325
2.740	1.428	0.8201
1.316	0.6388	0.3415
0.6917	0.3195	0.1620

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.4$

10	79.62	64.84	46.76	37.59
20	22.21	17.22	11.02	7.663
30	8.481	6.258	3.634	2.289
40	3.886	2.752	1.471	0.8509
50	1.991	1.368	0.6875	0.3725
60	1.094	0.7365	0.3545	0.1835

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=0.6
$$

10	64.52	54.70	42.07	35.34
20	18.41	14.68	9.776	7.007
30	7.454	5.670	3.414	2.186
40	3.584	2.637	1.476	0.8710
50	1.899	1.365	0.7272	0.4058
60	1.069	0.7557	0.3890	0.2092

Table VIII; $\mathrm{L}_{2}=30$ (Continued)

$$
\mathrm{D}_{2} / \mathrm{D}_{1}=0.8
$$

z	$a=5$	$a=6$	$a=8$	$a=10$
10	54.47	47.63	38.58	33.60
20	15.71	12.77	8.783	6.462
30	6.589	5.126	3.179	2.069
40	3.255	2.462	1.431	0.8612
50	1.758	1.305	0.7273	0.4167
60	1.003	0.7343	0.3977	0.2207

10	47.31
20	13.69
30	5.880
40	2.956
50	1.616
60	0.9302

$\mathrm{D}_{2} / \mathrm{D}_{1}=1.0$

42.43	35.89	32.22
11.30	7.977	6.006
4.654	2.957	1.953
2.283	1.368	0.8376
1.228	0.7096	0.4158
0.6990	0.3938	0.2244

$\mathrm{D}_{2} / \mathrm{D}_{1}=1.2$

10	41.94	38.43	33.74	31.09
20	12.13	10.14	7.310	5.619
30	5.298	4.250	2.754	1.843
40	2.697	2.117	1.300	0.8079
50	1.487	1.151	0.6843	0.4086
60	0.8613	0.6603	0.3839	0.2236

$\mathrm{D}_{2} / \mathrm{D}_{1}=1.4$

10	37.77	35.27	32.00	30.15
20	10.89	9.188	6.751	5.288
30	4.816	3.905	2.572	1.742
40	2.473	1.967	1.232	0.7760
50	1.373	1.079	0.6560	0.3980
60	0.7989	0.6222	0.3711	0.2201

54
 JOURNAL OF THE GRADUATE RESEARCH CENTER

Table IX

Example of Transformation for
 Different Values of L_{1} and D_{1}

Flux values are desired for $a=10, b=150, L_{1}=8.75, L_{2}=25, D_{1}=68.8$, and $D_{2}=68.8$ (all values in cm). In the tables, values of flux for $a=8$, $b=120, L_{1}=7.00, L_{2}=20, D_{2} / D_{1}=1$ are found. $c=0.8$.

$c z$	ϕ^{\prime}		$\phi=0.8 \phi^{\prime}$
10	34.21	12.5	27.37
20	6.788	25.	5.430
30	2.168	37.5	1.734
40	0.8546	50	0.6837
50	0.3763	62.5	0.3010
60	0.1771	75	0.1417

REFERENCES

Tittle, C.W., 1961, Theory of - Neutron Logging I: Geophysics, vol. 26, no. 1, pp. 27-39. Allen L.S., 1961, A Theory of Neutron-Neutron Well Logging: Southern Methodist University, M.S. Thesis.
Jahnke, E., Emde, F., and Lösch, F., 1960, Tables of Higher Functions: New York, McGraw Hill.
Werner, H., 1959, Tschebyscheffsche Approximation für Bessel-Funktionen: Nukleonik, Bd. 1, H. 2.
McLachlan, N.W., 1948, Bessel Functions for Engineers: London, Oxford University Press.

[^0]: *Socony Mobil Field Research Laboratory, Dallas, Texas.
 **Department of Mechanical Engineering and Department of Physics, Southern Methodist University.

