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INTRODUCTION 

While the discussion in this paper is limited mainly to the two-way 
classification for ease and compactness of presentation, it applies to most 
of the models encountered in experimental design. 

If we were to assume a linear relationship between x and y described by 
the model y = a + f,x + e it is unlikely that we would consider writing 
the model as y = a + bx + ex + e. It is even more unlikely that we would 
apply the least squares principle by minimizing !e2 with respect to a, b, 
and c. Yet a similar thing happens in experimental design. In fact, it is 
common practice to use less than full-rank models where the parameters 
are not defined and, in cases where they are defined, to minimize !e2 with 
respect to the full set of parameters which are not functionally independent. 

Certainly, it is valuable to have more than one way of looking at a 
given situation and it seems that one's understanding is deepened by having 
many perspectives. However, it is the author's conviction that in many cases 
the use of the less than full-rank models has not aided understanding. From 
a computational viewpoint, their use has led to the situation where people 
build unreasonably large sets of equations and then proceed to impose 
conditions in order to get a solution. This is often done with a complete 
lack of understanding of the consequences. Alternatively, we build a large set 
of equations and then proceed to go through some process of reducing the 
number of equations ( Harvey, 1960). This can be avoided. The model can 
be written in the first place as a full-rank model- the principle of least 
squares yielding immediately a smaller set of linearly independent equations. 

POSSIBLE MODELS 

Model I: Jijk = /J,ii + eijk 

i = 1, 2, ... , r 
i=l,2, ... ,s 
k = 0, 1, 2, , .. n;; 

This simply means that in cell i-j, we have nii observations from that 
population. This is a perfectly workable model and would suffice for testing 
any hypothesis about cell means for the two-way classification. 

'·Statistical Laboratory, Oklahoma State University. 
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Model II: 

EXPERIMENTAL DESIGN MODELS 

Yiik = a; + /3i + ( af3)ii + eiik 

a'.i = /J,i 

/3i = µ.j-µ .. 
(af3)u = µ;i-/J,i. -µ.; + µ .. 
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The dots indicate averages over the respective subscripts. Ir should be 
emphasized that the additive property of the model, as far as parameters are 

concerned, is not merely assumed but follows directly from the identity: 

It is a consequence of the definition of parameters that 

I/3; = I (a/3);; = I(af3)ii = o 
i i i 

If we assume that ( a{3)ii = 0 for all i and i, the non-interaction model follows 

directly since ( a/3 j ii = 0 for all i and i implies 

µij- µ;. - f-1-.j + µ .. = 0 

µ;j = µ;. + (µ.;-µ .. ) 

= a;+ /3i 

Alternative definitions for a;, f3i, and ( af3)u in terms of µii are sometimes 

given either explicitly or in terms of conditions the parameters must satisfy. 

These alternative definitions will not be discussed in this paper. 

Model III: Yiik = µ + a; + {3; + (af3)u + euk 

µ=µ .. 
a; = fJ,i. - µ .. 

/3; = µ.;-µ .. 
( af3)ii = /J,ii - µi. - µ,.;+fl, .. 

Again, it should be emphasized that the additive property of the 

parameters is not assumed but follows directly from their definition in terms 

of the µ,'s. Also Ia;= I/3i = I(af3)ii = I(a/3)iJ = O is a consequence of 
i i 

definition. The assumption that raf3)ii = 0 for all i and j leads immediately 

to the model 

/J,ii = fl, + a; + /3; 

As with Model II, we shall not consider alternative definitions in this paper 

Model IV: Yiik = a; + /3i + ( a/3/ii + eiik 

Definitions in terms of µ,'s and the conditions satisfied by parameters 

are not stated. 
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Since the set of equations 

/J.,ii =a;+ /3i + (a/3);i, i = 1, 2, ... , r 
j = 1, 2, ... , s 

has no unique solution, a model of this type simply means that the param
eters have not been defined in terms of the µ,'s. This seems to be an 
unnatural way of conceiving of a model. Yet such models are in common 
usage. 

Model V: 

Definitions in terms of µ,'s and conditions satisfied by parameters are 
not stated. 

As with model IV, the parameters are simply not defined. 

All of the above models describe the so-called fixed effect situations. 
That is, the µ,;/s involved in the experiment represent the entire population 
of f-1,i/s to which inference is to be made. 

THE MATTER OF ESTIMABILITY 

If an observation is obtained in cell i-j, /J.,ii can be estimated. Any param
eter which is a function of estimable µ,;/s is estimable. Thus, with no missing 
cells, all parameters in models I, II, and III are estimable. With missing cells, 

( 1 ) The parameters must be redefined in terms of cell means represented 
in the data, or 

( 2) The assumption of no interaction permits estimates of the param
eters in models I, II, and III if the data set is a connected set. 

The question of estimability occupies a large part of the literature in the 
design of experiments, particularly for models IV and V. Since the parameters 
in these models are not explicitly defined, they are not estimable. While this 
fact is obvious, it seems somehow to be obscured by the array of theorems 
and methods for handling such models ( Graybill 1960) . Any function of 
these parameters which is uniquely defined in terms of estimable µ,;/s is 
also estimable. This fact also seems less profound than when it is obscured 
by all sorts of matrix manipulations. 

It is common to speak of reparametrization of models IV and V. This 
amounts to defining parameters in terms of estimable f-tii's. Any such param
eter is then estimable. Actually, it would be better to refer to this process 
as parametrization instead of reparametrization since the a's, f3's, etc., of 
models IV and V are not even defined. 
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THE HANDLING OF NORMAL EQUATIONS 

In the opinion of the author, the following two practices seem to be 

widespread and will be referred to as the usual approach: 

1. Using models IV and V and imposing conditions upon the estimates, 

and 

2. Using models II and III, ignoring the functional dependence of the 

parameters, and imposing conditions upon the estimates. The conditions 

imposed may or may not be the same as the condition imposed by the 

parameters in the model. 

It seems to be ignored that by using models II and III and recognizing 

the functional dependence, we are led at once to a smaller set of normal 

equations than by the usual approach - a set which, in addition, is generally 

simpler to solve and is of full rank. 

Example 1. Two-Way Classification without Interaction 

Supposer= 3, s = 2, nii = 1. 

The usual approach with models III and V leads to the normal equations 

A 

6 2 2 2 3 3 µ, y 
A 

2 0 2 0 1 1 <X1 Yi. 

2 0 0 2 1 1 <X2 Y2. 

A 

3 1 1 1 3 0 (X.3 Y3. 

A 

3 1 1 1 0 3 /31 Y.1 

A 

2 2 0 0 1 1 /3z Y.z 

l 

Here we have six equations, four of which are linearly independent. 

If alternatively we work with model III and recognize the functional 

relationships, the observation equations are: 

y11 

1 
1 1 0 1 µ, e11 

y12 1 1 0 -1 <X1 e12 

yz1 1 0 1 1 <X2 e21 

yzz 

j 
1 0 1 -1 /31 

+ e22 

ys1 1 -1 -1 1 es1 

ysz 1 -1 -1 -1 e32 
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The normal equations are: 

6 0 0 0 

0 

0 

0 

4 

2 

0 

2 

4 

0 

0 

0 

6 

A 

A 

Y .. 

Y1. -Ya. 

Y2. -Ya. 

Y.1 -Y.2 

We again have four linearly independent equations which are simpler to 
solve than those given by the usual approach. 

Example 2. Two-way classification with interaction. one observation per cell. 

Of course, in this example, we have no estimate of error, but the example 
suffices to illustrate the problems of handling the normal equations. 

Suppose r = 3, s = 2. The usual approach with models III or V leads to 
the normal equations: 

6 2 2 2 3 3 1 1 1 1 1 1 

2 2 0 0 1 1 1 1 0 0 0 0 

2 0 2 0 1 1 0 0 1 1 0 0 

2 00211000011 

311130101010 

31110301 01 01 

1 

1 

1 

I O O 1 0 1 0 0 0 0 0 

1 0 0 0 1 0 1 0 0 0 0 

0 1 0 1 0 0 0 1 0 0 0 

1010010001 00 

1 0 0 1 1 0 0 0 0 0 1 0 

1 0 0 1 0 1 0 0 0 0 0 I 

A 

µ 
A 

A 

(a/3)11 
A 

(a/3)12 
A 

( a/3)21 
A 

(a/3)22 

( :Xf3)a1 
A 

(a/3)a2 

Y .. 

Y1. 

Y2. 

Ya. 

Y.1 

Y.2 

Jll 

y12 

J21 

J22 

Jal 

ya2 

We then have twelve equations, six of which are linearly independent. Alter
natively if we recognize the functional relationships in model III and 
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express our model in terms of the functionally independent parameters, we 
have the observation equations: 

y11 1 I 0 1 1 0 µ, e11 

y12 1 1 0 -1 -1 0 lX1 e12 

y21 1 0 1 1 0 1 az + e21 

y22 1 0 1 -1 0 -1 /31 e22 

J31 1 -1 -1 1 -1 -1 (a/3)i1 e31 

J32 1 -1 -1 -1 1 1 ( a/3)21 C32 

This leads us immediately to rhe normal equations: 

f; 
0 0 0 0 0 It Y .. 

4 2 0 0 0 Y1.-Y3. 

2 4 0 0 

lJ 

a2 Yz.-Y3. 

l~ 
0 0 6 0 l /31 Y.1-Y.2 

0 0 0 4 ( ~/3)11 ly11 + y32 - y12 - y31 

0 0 0 2 ( a/3)21 y21 + J32 - y22 - J31 

We then have six linearly independent equations which are simple tO solve. 

Example 3. N-Way Classification with Interaction. The following problem 
is a problem with which the author came in contact. 

An experiment involving seven factors, each with three levels, had been 
run and had resulted in unequal subclass numbers with no missing cells. 
Three facror interactions and higher were assumed negligible. A set of 
normal equations had been constructed by the usual approach, resulting in 
85 equations. Of course, only 57 of these were linearly independent. By 
recognizing the functional dependence of the parameters in the first place 
and expressing the observation equations in terms of the functionally inde
pendent parameters, we were led at once ro 5 7 linearly independent equations. 
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Example 4. Two-way Classification with Empty Cells. 

Suppose we wish to test whether the levels of factor B have the same 
effect in the following classification: 

1 

1 3 

Factor A Level 2 4 
3 X 

Factor B 
Level 

2 

4 
6 

X 

3 

X 

X 

7 

Proceeding in the usual manner, we would set up the normal equations, 
impose conditions, and obtain a sum of squares for testing the levels of 
factor B. A little reflection, however, will show that in reality the non
centrality factor of our test is A= (µ,.1-µ,.2)2/2. That is, it does not 
involve the third level of B at all. In a simple example of this type, we 
recognize this readily, but in an n-way classification with missing data the 
procedure of imposing conditions may mislead us in that the non-centrality 
factor may not be at all what we think it is. 
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