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In this study, geometrically complex planar heat exchangers, designed in line with the 

Constructal Law and operating at steady-state, are investigated numerically. The work is divided 

into two parts, one focusing on diffusion heat transfer in a rectangular plane and another on 

conjugate diffusion-convection heat transfer in a circular plane heat exchanger.  

In the first part, a heat generating rectangular solid volume made of a low conductivity 

material is cooled through a small, isothermal side-section of the domain. The diffusion cooling 

process is improved by distributing within the heat generating material a fixed amount of a high 

conductivity material.  The question of how to best distribute the high conductivity material to 

cool the domain and at the same time optimize the decrease in its maximum temperature is 

answered via geometric optimization based on Constructal Law. The result is a T-shaped network 

type distribution for the high conductivity material embedded in the heat generating volume. 

However, this embedded approach, called here the “in-plane” distribution, is of very limited 

practical use for being too intrusive to the domain. An alternative proposed and investigated here 

is the “out-of-plane” distribution, in which the high conductivity material network is placed on top 

of the heat generating plane. Three different network distributions with increased complexity and 

same specifications (i.e., same uniform heat generation rate, planar aspect ratio and thickness of 
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generating volume, and same volumes of base material and high conductivity material) are 

investigated numerically for both, in-plane and out-of-plane configurations. The main objective is 

to compare the heat transfer effectiveness achieved by each configuration. This aspect is very 

important because, if the effectiveness are comparable, the option of using the out-of-plane 

distribution could alleviate the practical limitations of the in-plane (embedded) configuration. An 

additional effort in this first part of the project is to extend the analysis to a non-dimensional 

parametric study, where the number of different networks is increased to six and different amounts 

of low and high thermal conductivity materials are investigated. This part if not only to establish 

if in-plane and out-of-plane yield similar results, but also to understand how the high/low thermal 

conductivity volume ratio influences the removal of heat out of the heat generating volume.  

The results, obtained numerically, show the two networks, i.e., in-plane and out-of-plane, 

yield nearly identical temperature distributions and heat transfer effectiveness (to within the 

numerical uncertainty achieved by the simulations) for all configurations tested. Hence, one can 

confidently use the out-of-plane networks instead of the in-plane networks in practical applications 

of T-shaped network cooling cold plates. The results also confirm the robustness of the thermal 

design and extend previous work, showing an increase in network complexity (e.g., by increasing 

the number of assemblies in each network) indeed yields better cooling performance, even when 

some of the stringent assumptions imposed in the analysis of building the networks are not fully 

satisfied. 

In the second part of the work, a heat generating material in a circular planar domain (a 

disk) is now cooled via convection through circular channels from the center to the periphery of 

the domain. The optimum distribution of the fixed volume convection channels in the domain, 

again following Constructal Law, yields a tree-shaped network starting with one inlet at the center 
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of the disk, and flowing through bifurcating channels toward a set number of outlets distributed 

uniformly at the periphery of the disk. Here the thermal-hydraulic performance of the resulting 

tree-shaped flow networks is obtained numerically and compared to the simpler, radial flow 

networks (feeding the same number of peripheric outlets) for cooling the disc. The flow entering 

at the center of the disc is assumed isothermal and fully developed. Two tree-shaped flow networks 

are considered, having either six (one bifurcation level) or twelve (two bifurcation levels) outlets, 

conceived for maximizing the cooling and minimizing the flow resistance. Both, tree-shaped and 

radial flow configurations are set with the same disc solid and fluid (channels) volumes, and same 

uniformly distributed volumetric heat generation rate in the solid region.  

The results show the best performance flow distribution depends on factors that go beyond 

the channels being either radial or bifurcating, highlighting the very complex heat transfer 

interaction in this conjugated convection-diffusion system. Moreover, the flow separation effect 

intrinsic to the channel bifurcations and neglected in previous studies, is essential to the thermal 

design as it affect not only the overall pressure loss but also the overall heat transfer performance, 

particularly when the flow channel Reynolds number is high, as one would expect. 
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NOMENCLATURE 

 

 

C                     constant 

𝐷                     disc diameter, m 

Di path height, m 

𝐷𝑖                   section hydraulic diameter, m 

𝑓                     dimensionless flow resistance 

𝐻                     height, m 

Hi height length, m 

𝑘                                thermal conductivity, Wm-1K-1 

𝐿𝑖                     depth length, m 

�̇�                     mass flow, kg s-1 

𝑀                     dimensionless mass flow 

𝑁                    number of outlets 

𝑁𝑢                   Nusselt number  

n direction perpendicular to surface 

𝑛0                   number of central ducts 

𝑝                      constructal level, pressure, N m-2 

𝑃𝑟                   Prandtl number 

𝑞                      heat generation rate, W 

𝑞′′′                   volumetric heat generation rate, W m-3 

𝑅                      disc radius, m 

𝑅𝑒                    Reynolds number 

𝑅                      solid radius, m 

S                      mean rate-of-strain tensor 

𝑆𝑣                    svelteness number 

𝑡                      disc thickness, m 

𝑇0                    inlet temperature, K 

𝑇𝑚
∗                    thermal resistance 

𝑇∗                    non-dimensional temperature 

𝑢                      velocity, m s-1 
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𝑈0                    mean inlet fluid velocity, m s-1            

𝑉                               total flow channel volume, m3 

 

 

Greek symbols 

 

𝛼, 𝛽, 𝛾             angles, rad 

∆𝑃                   pressure loss, N m-2 

𝜇                      fluid viscosity, kg m-1 s-1 

𝜌                      fluid density, kg m-3 

 

Subscripts 

 

eff                   effective     

𝑓                      fluid 

i assembly index, rank of tube 

H                     high  

L                      low 

k                      kinetic 

𝑜𝑝𝑡                  optimal 

𝑝                      pipe 

𝑥, 𝑦, 𝑧               Cartesian coordinates 

rd                     radial  

𝑠                      solid     

t                       turbulent 

0, 1, 2, …          tubes positioned sequentially from the origin 

o                     elemental volume parameter  

 

Superscripts 

 

∗                  non-dimensional parameter 



 

 

 

1 

 INTRODUCTION 

 

In a ground-breaking study, Bejan [1] considered how to best distribute a finite amount of 

high thermal conductivity material into a uniformly heat-generating volume to facilitate the flow 

of heat out of the volume through a small lateral isothermal area (a heat sink), or, equivalently, to 

minimize the maximum temperature attained by the heat generating material. Originally a simple 

optimization challenge, the search for an appropriate solution to the material distribution problem 

gives rise to an infinity of possible geometric alternatives. Following the simplest possible 

geometry for the high thermal conductivity material distribution, a set of paths resembling T-

shaped networks emerge. As one proceeds from the simplest to the more complex network 

alternative, the results get progressively better – meaning, the maximum temperature inside the 

heat generating domain gets smaller. That is, the evolution toward more complex geometries (or 

networks) yields an easier flow of heat and a more efficient system. This fundamental engineering 

design process, in turn, was observed to mimic the time evolution of several natural transport 

systems, systems observed to progress in time, or to evolve toward more complex geometries to 

achieve better, easier processes. This observation supports a new natural (physics) law, named 

Constructal law.  

Constructal law successfully explains the observed time-evolution of shapes and structures 

of diverse natural and engineering systems [2]. The law deals with the morphing of the system 

through time, or the design evolution, and it postulates that “For a finite-size flow to persist in time 
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(or to continue to exist), it must evolve in such a way that it provides easier and easier access to 

the flow that goes through it” [1]. Constructal law has been applied in many fields of science, not 

only in engineering [3-8].  

Here, guided by the Constructal law, consideration is given to planar heat transfer systems 

of increasingly complex geometry. These systems aim to operate as cold-plates, or simply as 

facilitators of thermal energy transferring from where it is generated to where it is cooled. In 

common, the systems considered here are planar (i.e., one dimension is much smaller than the 

other two), they have specific base-configurations (simplest possible geometries) used for 

performance comparison, they operate either under conduction or under a conduction-convection 

(conjugate heat transfer) combination, and have limited real-estate available for design (either a 

fixed volume of high thermal conductivity material available for the conduction case or a fixed 

amount – volume - of flow channels available for the conduction-convection case). The work is 

divided in two parts, as detailed next. 

The first part of the work consists of a 3D and steady numerical analysis of the conduction 

heat transfer process through a uniform heat generating low conductivity material in a planar 

rectangular geometry. The volume is cooled by an isothermal heat sink located along one of the 

sides of the domain, with all other exposed surfaces considered adiabatic. A base configuration is 

built by imbedding a high conductivity material throughout the heat-generating volume forming 

T-shaped networks as suggested by the optimization distribution process.  This distribution, called 

in-plane configuration, aims at improving the heat transfer process out of the domain, resulting in 

a lower maximum temperature within it. For being disruptive and highly impractical (for requiring 

imbedding the high conductivity material within the heat generating volume) an alternative 

distribution is also considered, in which the high thermal conductivity material is placed atop the 



 

 

 

3 

heat generating material without directly disturbing it, in a configuration called out-of-plane. A 

preliminary effort is then pursued considering a square domain designed with practical geometrical 

dimensions and materials. Three of the simplest T-shape square networks for the high conductivity 

material are shaped and applied to each configuration for comparison purposes, each using exactly 

the same amount (volume) of low and high conductivity materials. The main objective is to 

compare the performance of the two (in-plane and out-of-plane) configurations, evaluating the 

practicality of using the out-of-plane, instead of the in-plane, configuration as a cold plate design. 

The second effort follows focusing on a parametric study of the thermal performance of each 

configuration in terms of the thermal conductivity ratio of the cold plate. In this effort, several 

additional T-shape networks for the high conductivity material are considered as well. 

The second part of the work consists of 3D and steady numerical analysis of radial (the 

base-configuration) and tree-shaped flow networks for cooling a planar heat generating disk. The 

disk has a single inlet at the center and a certain number of outlets uniformly distributed along its 

periphery.  The incoming flow is isothermal and fully developed and the channels to the periphery 

are all regular circular channels. Two tree-shaped flow networks are considered, having either six 

(one bifurcation level) or twelve (two bifurcation levels) peripheric outlets, all conceived for 

minimizing flow resistance. The diameter and length of the channels change after each bifurcation 

in the tree-shaped networks. Both, tree-shaped and radial, flow configurations are set with the same 

disc solid and fluid (channels) volumes, and volumetric heat generation rate. The effect of varying 

the flow rate through the disk is considered not only in the heat transfer performance but also in 

the hydraulic efficiency of the system.  
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1 OUT-OF-PLANE T-SHAPED CONDUCTING NETWORKS:                              

ALTERNATIVE FOR PRACTICAL APPLICATION 

 

The volume-to-point cooling design problem proposed by [1] was tackled with basic 

conduction principles, considering a heat generation rate q uniformly distributed within a certain 

thin rectangular material of thermal conductivity kL and volume 𝑉0, where 𝑉0 = 𝐿0𝐻0𝑊, 𝐿0 being 

the depth, 𝐻0 the height, and W the width of the volume, yielding a volumetric heat generation rate 

𝑞′′′ = 𝑞/(𝐿0𝐻0𝑊). Figure 1 shows a view from the top of volume 𝑉0. This volume is cooled via 

a mid-side opening of small area (heat sink), maintained at temperature T0, centrally located at 

(x,y) = (0,0) in the figure, through which heat flows out of the volume, with all other boundaries 

being adiabatic. At steady-state, this configuration leads to a maximum temperature Tmax in the 

volume achieved at the corners (symmetry) at 𝑥 = 𝐿𝑜 and 𝑦 = ±𝐻𝑜/2, opposite to the heat sink.  

The analysis [1] then proceeds with the utilization of a finite amount of a high thermal 

conductivity material, of volume VH and conductivity kH, to help reduce the maximum 

temperatures in the domain. This material is considered to be imbedded with the heat-generating 

material as if distributed “in-plane” with it. Note in the analysis that both, high and low thermal 

conductivity materials, occupy the domain volume 𝑉0; i.e., there is in this analysis an intrinsic 

assumption of the volume occupied by the high conductivity material 𝑉𝐻 being much smaller than 

V0. A first and simplest (most regular) geometric alterative for distributing the 𝑘𝐻 material is a 

straight path connecting the heat sink centered at (x,y) = (0,0) to the opposite end of the volume, 

located at (x,y) = (0, 𝐿𝑜), as shown by the dashed area in Figure 1. Observe the volume occupied 

by the high conductivity material in this simplest configuration is 𝑉𝐻 = 𝐿0𝐷0𝑊 as shown in Fig. 

1, with 𝐷0 being its height; hence, VH/V0 = H0/D0, and the requirement 𝑉0 ≫ 𝑉𝐻 translates into 

𝐷𝑜 ≪ 𝐻𝑜. 
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Figure 1. Elemental volume 𝑉0 with heat generating material 𝑘𝐿                                                     

and high thermal conductivity material 𝑘𝐻. 

 

The temperature difference between the heat sink temperature 𝑇0 and the hottest spot 

temperature 𝑇𝑚𝑎𝑥 in 𝑉0 of Fig. 1, written as ∆𝑇0= 𝑇𝑚𝑎𝑥 − 𝑇0, can be shown to be equal to [1]: 

∆𝑇𝑜 =
𝑞′′′

2𝑘𝐿
(

𝐻0

2
)

2

+
𝑞′′′𝐻𝑜

𝑘𝐻𝐷𝑜

𝐿𝑜
2

2
 

(1) 

                    

It is worth keeping in mind Eq. (1) is an approximated result valid when the heat conduction 

through 𝑘𝐿 is unidirectional in y, which is satisfied when the domain is slender, i.e., 𝐻𝑜 ≪ 𝐿𝑜. Also 

note Eq. (1) allows for the minimization of T0 with respect to the shape of the elemental domain, 

H0/L0 (this can be seen by nondimensionalizing T0, dividing it by 𝑞′′′𝐿0𝐻0/𝑘𝐿), yielding the 

result:  

(
𝐻0

𝐿0
)

𝑜𝑝𝑡

= 2 (
𝑘𝐿𝐻0

𝑘𝐻𝐷𝑜
)

1/2

 
(2) 
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In view of the slenderness requirement, 𝐻𝑜 ≪ 𝐿𝑜, and remembering by construction H0 > D0, Eq. 

(2) also requires kL < kH, which reassures the design choice of using a high thermal conductivity 

material, in relation to the heat generating base material. The geometrical lengths of the first 

assembly, i = 0, is now complete because H0, D0 and kH, kL are all specified by the thermal designer 

and Eq. (2) provides the remaining shape relation of the first construct i = 0.  

The evolution of the 𝑘𝐻 distribution within 𝑘𝐿 proceeds by realizing the need to 

approximate the high thermal conductivity material even more to the points with maximum 

temperature, at the top and bottom right corners of Fig. 1, to better cool the domain. This leads 

naturally to a second construct, i = 1, a T-shape structure built by placing several optimized first 

constructs side-by-side perpendicular to the y = 0 line of the domain, as shown in Fig. 2 (only two 

first constructs are shown in the top right corner of the domain for visual simplicity). This simple 

option immediately yields a geometric requirement for this second construct, namely H1 = 2L0,opt, 

which links the geometry of the first construct to the geometry of the second. The optimization of 

the lengths H1, L1 and D1 of this second construct follows the same analysis as the optimization of 

the first, by reducing the visual resolution used to look at the domain to “see” the region occupied 

by the first construct (the regions above and below the horizontal kH region) simply as a 

homogeneous heat generating region occupied by a composite material made of materials kL and 

several branches of kH. In passing, this homogenization trick is commonly used to simplify the 

analysis of complex porous media. Under this homogenization approach, the new construct is seen 

exactly as the first one, as shown in Fig. 1, but now with a different heat generating region, still 

dissipating the same total amount of thermal energy but with an equivalent conductivity k1. 

Observe the analysis provides the optimum number of first constructs to be connected to the 

horizontal (L1,D1) section as n1opt = 2 L1opt/H0. 



 

 

 

7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Primary volume 𝑉1 with composite heat generating material made of several            

(only two shown) first constructs i = 0 with kL and kH and each measuring H0, L0                       

and D0, connected to kH, measuring L1 and D1 forming the new construct i = 1. 

 

A third T-shaped construct, i = 3, can be imagined in a manner similar to the first and 

second, with additional similar steps followed by induction. Figure 3 shows the resulting structured 

(network) after four iterations, with the first elemental construct having length 𝐿0, and the last 

having length 𝐿4, as indicated in the figure. Only the two extreme assemblies L0 are shown 

connected to L1 in Fig. 3; the full network would be populated with these assemblies on both sides 

of L1, filing the entire domain. Also noteworthy is that, when the constructs evolve from i = 0, the 

number of branches continuously decreases; in line with the fact of the domain being adiabatic on 

the right side, it becomes unnecessary to fill the entire domain with high conductivity material. 

That is why the length of the high conductivity material of constructs larger than i = 1 does not 

cover the entire domain length; for instance, in the case i = 4 in Fig. 3, L4 is not equal to the total 

depth of the domain. 
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Figure 3. Assembly i = 4 of the T-shape network. 

 

Finally, every assembly construction step i is followed by the optimization of the 𝑘𝐻 

volume dimensions (i.e., assembly height Hi, depth Li and branch height Di; keep in mind the 

assembly width W is kept constant for 𝑘𝐻 being in-plane with 𝑘𝐿) to minimize the maximum 

temperature of the system. More details about the construction and the optimization process can 

be found in [1] and [9]. Table 1 shows the resulting parameters optimized for the first seven 

assemblies, from [1]. 
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Table 1. Main geometric parameters of the first seven optimized assemblies [1]. 

 

Assembly i Assembly height         

factor Hi/Hi−1 

Assembly  

Shapea 

Branch height 

factor Di/Di−1 

Assembly depth        

factor Li/Li−1 

0 - R -  

 

1 
(

𝐷0𝑘𝐻

𝐻0𝑘𝐿
)

1/2

≫ 1 
 

R 
(

𝐷0𝑘𝐻

𝐻0𝑘𝐿
)

1/2

≫ 1 
 

1 

2 1 S 2.31 1 

3 2 R 2 1 

4 1 S 2 1 

5 2 R 2 1 

6 1 S 2 2 

aS – square, Hi = Li; R – a rectangle with aspect ratio Li/Hi = 2  

 

 

 

1.1 Designing Practical T-shaped Network Cold Plates: Out-of-plane Configuration 

The construction analysis leading to the geometry presented in Fig. 3, is based on 

imbedding the high thermal conductivity material in the heat generating domain. In practice, this 

would be a tremendous task for being very invasive – one would have to insert the very complex 

network of kH into kL without disrupting the heat generating characteristics of the domain. An 

alternative to facilitate the use of the high conductivity network in practice, particularly by 

circumventing the imbedding (in-plane) of material 𝑘𝐻 in the domain, is introduced here. 

Because of the practical nature of the present effort, all the basic dimension and material 

specifications are chosen with a possible future manufacturability and assembly of the cold plate 

in mind. Hence, the domain is chosen as square, with height H and depth L equal to 0.254 m (10 
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in) and width W equal to 6.35  10-3 m (¼ in). Copper and resin are chosen as material 𝑘𝐻 = 400 

W/mK and 𝑘𝐿 = 1.5 W/mK, respectively, due to their large difference in thermal conductivities 

(leading to kH/kL = 267), great availability, and easy machining/molding. Resin volume VL equals 

2.56  10-4 m3 (15.625 in3) and copper VH equals 1.536  10-4 m3 (9.375 in3), with total volume 

being 4.097  10-4 m3 (25 in3). Notice, with these volumes, the last construct ratio of the network 

is set as having Hn/Dn = 1.67. Also set is the smallest dimension feature of the network to be equal 

or larger than 2 mm (this is the high conductivity material height D0 of the first construct). 

Three networks, shown in Fig. 3 (imbedded in the base material), with different assembly 

levels of increasing complexity (i.e., 𝑖 = 0, 2 and 4), are pursued for preliminary analysis and for 

establishing how the in-plane configuration compares to the new alternative configuration.  

The height Hi, depth Li and branch height Di, of each assembly in each network are found 

using the data and correlations shown in Table 1. Keep in mind the fitting of the network within 

the available volume is not a simple task. The resulting geometries are generated in a CAD 3D 

software with a parametric link to Excel to iteratively solve for all lengths involved in each network 

assembly to guarantee the correct final resin and copper volumes in each case.  

 

Figure 4. From left to right, embedded (in-plane) T-shaped networks with i = 0, 2, and 4, respectively. 
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The construction of the networks is based on the smallest element of the fourth assembly 

[10], that is, the building process is from the smallest to the largest construct, with all dimensions 

having a tolerance of ± 0.2 mm (set as a convergence criterion in Excel). 

Before proceeding, it is worth pointing out the chosen very small resin-copper volume 

ratio, namely 1.67, does not align itself with the analysis followed when building the optimized 

network – recall in the initial assumption of negligible high conductivity volume. It so happens the 

resulting geometric relations derived from the analysis impose severe restrictions on the network 

geometry because the height D0 of the smallest branches become very small very quickly when i 

increases. A relatively large volume of high conductivity material is chosen here to allow for a 

reasonable (manufacturable) size of the smallest branch height (limited to 2 mm). Nevertheless, 

the deviation from the original assumption regarding the high conductivity material volume will 

be revisited in the conclusion section of this chapter. 

Now, the alternative configuration considered here places material 𝑘𝐻 atop (out-of-plane) 

the base material 𝑘𝐿. In this way, the high conductivity material need not be imbedded in the base 

material, but simply placed on top (or bottom) of it, a configuration much easier to achieve in 

practice once a high conductivity material network is built. The two considered configurations, 

i.e., either imbedded or atop the base material, are shown in Fig. 5 for the i = 4 network.  

Observe the width W of the resin in the out-of-plane configuration (right of Fig. 5) must be 

adjusted to yield the same total resin volume as the amount used in the in-plane network (left of 

Fig. 5), that is W = 3.97  10-3 m (5/32 in) for the out-of-plane configuration. Doing so guarantees 

not only the same resin volume but also the same total thermal energy dissipated by the base 

material (keep in mind the same base material volumetric heat generating rate is used in all cases). 
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The width of material 𝑘𝐻 in the out-of-plane network, on the other hand, is maintained as 6.35  

10-3 m (¼ in), or the same as the width used in the in-plane networks (because the copper network 

used in both configurations is identical, with identical volume). 

 

    

Figure 5. In-plane network (left) and out-of-plane network (right) for i = 4.  

 

1.2  Comparing In-plane and Out-of-plane Configurations: Numerical Simulations 

The in-plane and out-of-plane configurations form two sets, each with the three networks 

shown in Fig. 4, for a total of six domains to be tested. In all cases, the volumetric heat generation 

rate dissipated in the resin (base material, 𝑘𝐿) is set as 𝑞′′′ = 50 kW/m3. The resulting thermal 

energy generated in the domain is drained through the isothermal heat sink operating steadily at 

22 C along the side of the domain (Fig. 5). Observe the heat sink area coincides with the area 

occupied by the high conductivity copper material at the left boundary of the domain in all cases, 

while all other surfaces of the domain are considered adiabatic.  

The numerical simulation of the heat transfer process in each configuration is performed 

considering a domain with height H, depth L and width W, using a 3D, steady conduction equation 

Copper, 𝑘𝐻
 

Resin, 𝑘𝐿
 

 q 
 q 
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for homogeneous material with volumetric heat generation rate term 𝑞′′′ applied to the resin (base, 

low conductivity kL material) region, and without the heat generation term when applied to the 

copper (high conductivity kH material) region, respectively Eqs. (3) and (4): 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
+

𝑞′′′

𝑘𝐿
= 0 (3) 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
= 0 (4) 

with adiabatic boundary conditions, i.e., 𝜕T/𝜕n = 0, along all external surfaces with normal n 

except the heat sink surface, where T = T0. Equation (4) might give the wrong impression the 

problem solution is independent of kH. However, in dealing with two distinct materials in the 

domain, as in the present case, compatibility conditions must be imposed at their interfaces, i.e., 

identical temperatures TH = TL, and heat fluxes kH𝜕TH/𝜕n = kL𝜕TL/𝜕n, where n is now the direction 

perpendicular to the resin-copper interface. Keep in mind that, imposing of continuous heat flux 

at the interface implies a perfect thermal contact between the two materials. Observe once the 

network is chosen, the parametric space affecting the temperatures within resin and copper is 

composed of H, D, W, kH, kL and 𝑞′′′, all with values set already. 

A second-order space-accurate finite-volume scheme, with non-uniform grid distributed in 

all directions, is used for the simulations. The numerical grids are refined near the interfaces of the 

two materials to reduce the effects of heat-generation and thermal conductivity discontinuities. 

Extensive grid accuracy tests are performed considering the most demanding (with largest 

temperature gradients) case, i.e., for the i = 4 network. The results presented here are guaranteed 

to be accurate to less than 1%, in terms of the difference in local temperatures within any domain, 

when the number of grid points used is doubled.  



 

 

 

14 

Figure 6 presents temperature distribution results side-by-side for both configurations, 

namely in-plane (left) and out-of-plane (right), for the simplest i = 0 network case (see Fig. 4). 

Recalling the domain is 3D, these temperature distributions are along the top plane of the domain. 

Notice in the out-of-plane case the temperature distribution is of the top surface of the resin (the 

region interfacing the copper network placed above it). Notwithstanding, the thicknesses of both 

configurations being so small (in comparison to the domain lengths along the two other directions) 

and the top and bottom sides being adiabatic guarantee negligible temperature variation along the 

z direction (i.e., direction perpendicular to the plane of Fig. 6). The minimum temperature in all 

cases equals 22 C, which is the heat sink set temperature.  

 

 
 

  

Figure 6. Temperature distribution for in-plane (left) and out-of-plane (right)               

configurations, both for the simplest i = 0 network case. 

 

The temperature distributions of Fig. 6 show the heat flux within the domain to be 

predominantly along the y direction toward (perpendicular to) the high conductivity material 

region, in support of one of the assumptions made when deriving Eq. (1). The maximum 
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temperature within the entire domain in each case is 124.45 C for the in-plane case, and 129.71 

C for the out-of-plane case. The resulting Tmax being slightly higher for the out-of-plane case is 

consistent with the slightly longer path for the heat to flow through and out of the system (the heat 

must move up from the base material to the high conductivity material in the out-of-plane 

configuration to be transported to the heat sink, as opposed to moving through it in the in-plane 

configuration). In conclusion, the maximum difference in the local temperatures between the two 

configurations in this case equals 5.26 C, or 4.2 % deviation from the in-plane network result.  

Figure 7 shows similar temperature distribution results, but now using the second network 

of Fig. 4, with i = 2, when the maximum temperatures in each case equal 38.73 C for the in-plane 

case (left) and 39.04 C for the out-of-plane case (right). Again, the maximum temperature of the 

out-of-plane case is slightly higher than the maximum temperature of the in-plane case. Observe 

the difference between the two cases drops to only 0.31C, or approximately 0.8 % deviation from 

the in-plane configuration result – the distributions of both configurations are practically identical.  

 

    
 

Figure 7. Temperature distribution for in-plane (left) and out-of-plane (right) networks (i = 2). 
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The last network considered here, with i = 4, yielded the temperature distributions shown 

in Fig. 8. In this case, the maximum temperature equals 37.28 C for the in-plane case (left) and 

36.98 C for the out-of-plane case (right). Observe the maximum temperature difference between 

the two cases drops again, although slightly, now to 0.30C, or approximately − 0.8 % deviation 

from the in-plane network result. Noteworthy is the maximum temperature of the out-of-plane case 

being slightly lower than the maximum temperature of the in-plane case. This result is meaningless 

because the difference is within the uncertainty of the numerical results.  

 

 

           
 

  

Figure 8. Temperature distribution for in-plane (left) and out-of-plane (right), both with i = 4. 

 

1.3 Summary and Conclusions 

The problem of cooling a heat generating planar (thin) volume through a small, lateral, 

isothermal heat sink, utilizing a finite amount of high thermal conductivity material, is re-visited 

with emphasis on the practical utilization of the resulting cold plate design.  
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The minimization of the maximum temperature of the heat generating material using T-

shape networks leads to a series of geometric relations for the dimensions of the network branches 

in the cold plate. The minimization analysis assumes the high conductivity material to be imbedded 

(in-plane) into the base heat generating material, restricting its application. An alternative out-of-

plane configuration, in which the high conductivity material network is placed on top of the 

generating base material is then considered to facilitate the utilization of the resulting cold plate 

design. A preliminary comparison of the two (in-plane versus out-of-plane) configurations is then 

pursued numerically considering a practical cold plate system made of heat generating resin (the 

base material) and copper (the high conductivity material), with each configuration tested for three 

distinct and simple networks.  

Resulting temperature distributions indicate the increase in network complexity, by 

increasing the number of assemblies in each network (i.e., increasing i from 0 to 2), indeed yields 

better cooling performance, even when some of the stringent assumptions imposed in the 

optimization analysis of building the networks (for instance 𝐻𝑜 ≪ 𝐿𝑜 and 𝑉𝐻 ≪ 𝑉𝐿, see [1]) are 

not strictly satisfied by the present design. The results obtained here then show the optimized T-

shaped network to be more robust than originally expected (this aspect concurs with and extends 

some of the observations found in [10]).  

More importantly, the present results also show the two, in-plane and out-of-plane, 

configurations yield essentially identical temperature distributions (to within the numerical 

uncertainty achieved by the simulations) when i  2. Hence, the practical utilization of the 

Constructal-inspired networks using T-shape assemblies with two distinct materials at steady-state 

can be more easily accomplished in practice by using the out-of-plane networks instead of the in-

plane networks. 
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A final note is necessary regarding the thermal contact resistance between the surfaces of 

the two materials, not accounted for in the model and numerical simulations performed here. In 

practice, even if the imbedded configuration is possible, the thermal contact resistance between 

the two materials would exist in the in-plane configuration. This is also the case for the out-of-

plane configuration. When i is small (0 and 1), however, the contact area (interface) between the 

two materials is much larger in the out-of-plane configuration than in the in-plane configuration. 

Hence, it is possible to anticipate the present results are conservative with respect to the out-of-

plane configuration, as in practice the thermal contact resistance is likely to be a more imposing 

hindrance to heat flow in the in-plane configuration than in the out-of-plane configuration. As the 

number of constructs increases (i > 1), the difference in contact area between the two materials is 

reduced, and the thermal contact effect should tend to become equal in both cases. Again, in 

practice the out-of-plane configuration has the advantage of allowing for pressing the high 

conductivity network against the base material more easily, hence allowing for a better thermal 

contact, and reduced thermal resistance, than in the in-plane configuration. 
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𝑇𝑚𝑖𝑛 

 

2 CONDUCTIVITY RATIO EFFECT ON THERMAL PERFORMANCES                       

OF IN-PLANE AND OUT-OF-PLANE CONDUCTIVE NETWORKS 

 

2.1 Introduction 

Here the problem considered in the previous chapter is revisited and expanded to 

investigate the thermal conductivity ratio, kH/kL, effects on both, in-plane and out-of-plane 

configurations. Also, all networks included in Table 1 are tested – notice the network final shape 

depends on the number of assemblies used, with i = 1, 3 and 5 yielding rectangular networks with 

Hi/Li = 2, and i = 2, 4, and 6 leading to square networks with Hi/Li = 1, which affects the ideal 

domain shape H and L where such networks can fit. Figure 9, as an example, shows the most 

complex network considered here, i = 6 (square), with the first elemental construct having a height 

D0 and depth 𝐿0, and the last having height D6 and depth 𝐿6, as indicated in the figure. All the 

resulting optimized parameters are obtained following Table 1.  

 

 

 
 

 

 

Figure 9. Sixth assembly, i = 6, of the T-shape network. 
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2.2 Modeling and Numerical Simulations 

The numerical simulations of the resulting heat transfer process in each configuration, 

within a domain with height H, depth L and width W, are performed as described before, using 

Eqs. (3) and (4) with listed boundary and interface conditions. The formulation is altered, to make 

the results broader, by nondimensionalizing the length parameters in respect to the domain depth 

L, with (x*,y*,z*) = (x,y,z)/L, and the temperatures as  

𝑇∗ =
𝑇 − 𝑇0

𝑞′′′𝐿2

𝑘𝐿

 
(5) 

The resulting balance equations, equivalent to Eqs. (3) and (4), for the base and high 

conductivity material regions, become:  

𝜕2𝑇∗

𝜕𝑥∗2
+

𝜕2𝑇∗

𝜕𝑦∗2
+

𝜕2𝑇∗

𝜕𝑧∗2
+ 1 = 0 (6) 

𝜕2𝑇∗

𝜕𝑥∗2
+

𝜕2𝑇∗

𝜕𝑦∗2
+

𝜕2𝑇∗

𝜕𝑧∗2
= 0 

(7) 

The boundary conditions become 𝜕T*/𝜕n* = 0, along all surfaces and T* = 0 along the heat sink 

surface, and the compatibility conditions imposed along all interfaces between the base and the 

high conductivity materials become: k*𝜕TH
*/𝜕n* = 𝜕TL

*/𝜕n*, and TH
* = TL

*, where the new 

parameter is k* = kH/kL. Observe the parametric space ruling the heat transfer results, once a 

network is chosen, is now made of only three parameters, namely the domain height and width 

aspect ratios, H* = H/L and W* = W/L (note the other domain dimension becomes L* = 1), and the 

thermal conductivity ratio k*. Interestingly, the nondimensional results, in terms of T*, are 

independent of the volumetric heat generation rate term 𝑞′′′. 
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2.3 Domain and Networks 

Because of the different resulting shape of the networks (see Table 1), two domains are 

considered here, one with H* = L* = 1, for the square networks i = 2, 4, and 6, and another with H* 

= 2, L* = 1, for the rectangular networks i = 1, 3, and 5. In all in-plane configuration cases, the 

even (square) assemblies had W* = 0.025 and the odd (rectangular) assemblies had W* = 0.0354 

(these are reasonable dimensions, considering the planar nature of the cold plates). The total 

domain volumes are then either 0.025 or 0.0708, depending on the aspect ratio of each domain.  

All high conductivity material networks are built following Table 1, using CAD 3D with a 

parametric link to Excel as described in the previous chapter. Figure 10 shows the resulting six 

different network geometries tested. The ratio between the heat generating volume VL and the high 

conductivity volume VH is set as VL/VH = 3/2 for all cases. Again, the thickness of the heat 

generating material must be adjusted in the case of the out-of-plane configuration to keep the same 

heat generating volume.  

 

 

 

Figure 10. T-shape networks, from left to right with i = 1 to 6, with correct aspect ratios. 
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Hence, WL
* = 0.015 for the square assemblies and WL

* = 0.0425 for the rectangular 

assemblies in the out-of-plane configurations; no thickness adjustment is necessary for the high 

conductivity material, as the network is maintained the same in both configurations.  

The out-of-plane configuration is designed similarly as described before (Chapter 1). 

Figure 11 shows a side-by-side 3D rendition of the two configurations for the square network 

obtained with i = 2. Keep in mind, again, the thickness of the heat generating material is reduced 

in the out-of-plane configuration, while the high conductivity material network is identical in both 

configurations. The size of the heat sink surface equals the size of the high conductivity material 

surface centered at the origin to the left of the domain, indicated with T* = 0 in Fig. 11, being 

identical in both cases. 

Finally, the numerical simulations are done as before, using a second-order finite volume 

scheme, with a non-uniform grid in all directions. Again, the grids are refined near the interfaces 

of the two materials to reduce any discontinuity effects. Extensive grid accuracy tests are 

performed, and less than 1% difference is achieved by the local temperature values reported here 

when the number of grid points used in the numerical simulations is doubled.  

 

 

Figure 11. In-plane network (left) and out-of-plane network (right) for i = 2. 
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2.4 Results 

 

Figures 12 and 13 present, for a qualitative comparison, the T* distribution at the top surface 

of the domains, side-by-side for the 𝑖 = 1 to 6 networks (from left to right), and for the in-plane 

and out-of-plane configurations, respectively (out-of-plane configuration T* distribution refers to 

the top of the heat generating material).  

 

 

Figure 12.  Temperature distribution for in-plane configuration,                                                      

i = 1 to 6 (from left to right), with k* = 267. 

 

 

Figure 13. Temperature distribution for out-of-plane configuration,                                                   

i = 1 to 6 (from left to right), with k* = 267. 
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Keep in mind the minimum temperature in the domain for all cases is 𝑇∗ = 0 located at the 

heat sink surface of each cold plate (centered along the left side of the domain in the region 

occupied by the high conductivity material). As seen, the results of each configuration in Figs. 12 

and 13 are very similar to each other. Also interesting, the increase in the number of assemblies 

makes the variation of temperature in the domain more subtle (the network branches become less 

discerning as i increases), as expected. This is a consequence of the eas access to the flowing heat 

in the domain achieved by the higher order and more complex network assemblies. 

The obtained maximum temperature T*
max within each domain is shown in graphical form 

in Figure 14, for the rectangular (i = 1, 3, 5), and for the square networks (i = 2, 4, 6). Observe, as 

mentioned before in the modeling section, the T* results are independent of the heat generation 

rate term 𝑞′′′ but not of the domain geometry, which are different when the aspect ratio of the 

networks differs. This explains why the temperatures of the even assemblies in Fig. 14 differ from 

the temperatures of the odd assemblies.  

 

 

Figure 14.Maximum nondimensional temperature T*
max versus i for k* = 267. 
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The in-plane results of Fig. 14 fall slightly above the results for the out-of-plane 

configurations, with the difference increasing with i. Although the difference is very small and 

very close to the uncertainty of the numerical simulations, this difference is likely a manifestation 

of the larger contact area between the heat generating material and the high conductivity material 

provided by the out-of-plane configuration in comparison to the in-plane configuration.  

The graphs presented in Figures 15 through 21 show T*
max for similar cases as in Fig. 14, 

but with different k*, from 10 to 8,000. Included are the results for k* = 267 for completeness. 

Figure 15, for instance, for k* = 10, shows not only a large T*
max value, of order 0.10, as expected 

when k* is small (see Eq. (5)), but also a small variation as i increases. This indicates the small 

difference between the thermal conductivities of the generating material and the high conductivity 

material hinders the networking role of facilitating the heat flow out of the domain. Observe also 

the very small difference between the in-plane and out-of-plane results in each case. 

Interestingly, a strong effect of increasing the complexity of the networks is observed only 

when k* increases beyond 100, Fig. 17. Before then the results show little change as i increases. 

 

 
Figure 15. Maximum nondimensional temperature T*

max versus i for k* = 10. 
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Figure 16. Maximum nondimensional temperature T*
max versus i for k* = 30. 

  

Figure 17. Maximum nondimensional temperature T*
max versus i for k* = 100. 

  

Figure 18. Maximum nondimensional temperature T*
max versus i for k* = 267. 
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Figure 19. Maximum nondimensional temperature T*
max versus i for k* = 800. 

  

Figure 20. Maximum nondimensional temperature T*
max versus i for k* = 1,200. 

  

Figure 21. Maximum nondimensional temperature T*
max versus i for k* = 8,000. 
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As k* increases beyond 100, the effect of using more complex networks (higher i) of high 

conductivity material becomes much more prevalent, particularly when i is smaller than 4. This 

aspect becomes independent of the aspect ratio of the network as well. Note, when k* increases 

beyond 3,000, the effect of increasing i does not change much anymore. Finally, all results indicate 

very little difference between the in-plane and out-of-plane configurations. Figures 22 and 23 

present results for in-plane and out-of-plane, respectively. The similarity of the results of both 

configurations is striking. 

 

 

Figure 22. Maximum temperature versus i for in-plane configuration. 

Figure 23. Maximum temperature versus i for out-of-plane configuration. 
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A highlight of the effect of increasing k* is shown in Fig. 24, where the temperature 

distribution of the domain is presented for k* from 10 to 8,000, for the out-of-plane configuration 

with the i = 4 assembly. The effect of enhancing the flow of heat through the high conductivity 

material is clear as k* increase: observe how the network becomes increasingly more visible as k* 

goes from 10 to 8,000 - the tendency is for the high conductivity material region to become more 

isothermal. Temperature range is the same for all plot of Fig. 24. 

+          

  k* = 10                               k* = 100                               k* = 800 

 
                                     k* = 1,200                          k* = 3,000                              k* = 8,000 

 

Figure 24. Effect on temperature distribution T* as k* increases out-of-plane with i = 4. 

 

2.5 Summary and Conclusions 

The analysis presented in Chapter 1 is extended to perform a comparison between in-plane 

and out-of-plane configurations under different high-to-low thermal conductivity ratio, using six 

distinct optimal T-shape networks of increasing complexity. The geometries of these networks 
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present two distinct aspect ratios, making them suitable for two distinct cold plates (with different 

surface areas).  The mathematical formulation, including balance equations, boundary and 

compatibility conditions for numerical simulations presented in Chapter 1, is nondimensionalized 

to identify the ruling parameters of the heat transfer process in the cold plate.   

The results, obtained numerically, indicate the increased effectiveness of the high 

conductivity material network to cool better the heat generating material as the complexity of the 

design increases using more assemblies. This increase becomes predominant as the thermal 

conductivity ratio k* increases beyond 100, and it tends to flatten out for i larger than 3 and k* 

larger than 800. Similarly to the results presented in Chapter 1, the high conductivity material 

networks seem to be very robust: they achieve the desired objective even when some of the 

stringent assumptions imposed in the derivation of their geometries (for instance 𝑉𝐻 ≪ 𝑉𝐿, see [1]) 

are not satisfied.  

More importantly, the present results also show the two networks, i.e., in-plane and out-of-

plane, yield essentially identical temperature distributions. Hence, the practical utilization of the 

T-shape networks in plane cold plates becomes much more feasible, now that the out-of-plane 

configuration is shown to be as efficient as the in-plane configuration. 
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3 OPTIMAL BIFURCATING FLOW NETWORKS FOR COOLING                                                 

A HEAT GENERATING DISC – LAMINAR FLOW CASE 

 

This chapter considers the thermo-hydraulic implications of using convection channels for 

cooling a heat generating disc-shaped domain. This is essentially a conjugate problem, when 

conduction through a solid domain is coupled with convection through a flow network. 

Thermal science in the past decades has been marching towards smaller and smaller scales. 

The proper use of the real estate available is one of the priorities in thermal design.  Hence, 

volumetric optimization is extremely important, particularly in the cooling of electronics [11-13], 

where high heat density (heat generated per unit of volume) is a common characteristic [1]. 

In the previous two chapters, consideration is given to cooling a heat generating planar 

rectangular volume utilizing conduction heat transfer through a high conductivity material. T-

shape networks emerge as a simple, feasible optimal path for the high conductivity material. A 

similar approach can be used for colling a solid plane disc [14].  

The problem gets more complicated, and interesting, when one envisions replacing the 

conductive heat transfer path made of a solid material by ducts carrying a cooling (or heating) 

fluid, yielding a flow cold plate. When the total volume of the ducts is fixed, the question of how 

best size and distribute the ducts to minimize the maximum temperature of the heat generating 

material emerges naturally, making the problem very similar to the one tackled in Chapters 1 and 

2.  Wechsatol et al. [15] considered such a problem, suggesting an optimal tree-shaped flow 

network designed for cooling an insulated heat generating solid disc by convection. The simplest 

possible flow networks are the radial configuration, formed by circular ducts emanating from the 

center of the disc going straight (radially) toward the periphery. More complex networks are built 
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by allowing the original radial ducts to bifurcate, with the number of bifurcations determining the 

number of delivery (flow outlets) at the periphery. The geometry of the ducts (diameter and length) 

is optimized, following a very simplified analysis, for reducing the maximum temperature of the 

heat generating material. Thermo-hydraulic performance curves are then obtained for each 

network, with the results indicating the direct radial flow configuration (without any branching) 

yielding best thermal performance, while the branched (bifurcated) networks yielding best flow 

performance (less pressure-drop or pumping power).  

Lu Zhihao [16] considered a disc-Y-shaped liquid cooling cold plate, where the effect of 

branching level on cooling performance was analyzed. When comparing networks with one to four 

branching levels, the peak temperature and average temperature were reduced by 28.8% and 

13.5%, respectively, with the increases in pressure loss to be less than 0.04 kPa.  

Further studies on the optimization of disc heat convection flow networks were performed 

by [17, 18], where the goal was the minimization of flow and thermal resistances. Due to the 

reduction of electronic components, microchannel disc-shaped cold plates are considered [19-21] 

good alternatives to the more common and less effective parallel flow cold plates.  

The objective here is to re-visit the original work of [15] leading to the design of optimal 

bifurcating flow networks for cooling a heat generating disc material. The simplifications imposed 

in the analysis leading to the optimized flow networks, mainly that of fully developed laminar flow 

in each flow branch, are likely to have distorted thermo-hydraulic results. Several flow networks 

are then investigated, with the thermo-hydraulic process studied by a heat generating disc 

simulated numerically for several flow configurations, covering laminar and turbulent flow 

regimes in the flow branches.  
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3.1 Flow Networks 

A sample configuration considered here is presented in Fig. 25, showing the top view of a 

solid heat generating plane disc of diameter R fit with an optimal flow network made of circular 

pipes emerging from its center. This flow network sprawls toward the periphery of the disc, 

linking, via discrete branches, the center inlet to discrete outlets located around the outer 

circumference. Notice each of the three symmetric radial pipes leaving from the disc center, with 

diameter D0 and length L0, undergoes a bifurcation with angle 𝛼, giving rise to six pipes each with 

diameter D1 and length L1. Each of these secondary pipes will then undergo another bifurcation of 

angle 𝛽, forming tertiary pipes of diameter D2 and length L2, resulting in a N = 12 outlet network. 

 

Figure 25.Two-level flow network for cooling a heat generating disc.  



 

 

 

34 

 

      

  

Figure 26. Radial and bifurcating flow networks, with N = 6 and N = 12, for cooling a heat 

generating solid disc. 

 

Consideration is given here to the simplest network, the radial network, with either six (N 

= 6) or twelve (N = 12) outlets, as shown in Fig. 26. Notice these networks have the same number 

of center branches (for being radial), either six (n0 = 6) or twelve (n0 = 12). Also shown in Fig. 26 

are the corresponding branched networks studied here, both with three center branches (n0 = 3). 

Observe the first branched network, with N = 6, is a one-level bifurcating flow network, while the 

one for N = 12 is a two-level bifurcating flow network, shown also in Fig. 25.  

The optimization of the flow network geometries for the configurations shown in Fig. 26 

is obtained from [23]. Using the listed relations, and choosing a disc radius R = 254 mm, for 

instance, the primary dimensions obtained are shown in Table 2, including the primary diameter 

𝐷𝑜 and the length of the pipes for each bifurcating level, in the form 𝐿𝑖
∗ = 𝐿𝑖/𝑅. The branching 

networks considered here have n0 = 3 because this number of center pipes yields minimum total 

pressure drop for any bifurcating network [23]. 

N = 6 

𝑅 

𝑞′′′ 

N = 12 
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The subsequent pipe diameters are obtained following [22], who, in a study of blood 

capillary networks, have shown there is an empirical relation observed for the optimal sizing of 

flow pipe diameter D across bifurcations, namely: 

 
𝐷𝑖+1

𝐷𝑖
= 2−

1
3 (8) 

where i refers to the upstream (of the bifurcation) pipe, and (i+1) to the immediate downstream 

pipe. Notice for each flow branch in Fig. 25, the two-level bifurcating network, i = 0 refers to the 

pipes emanating from the center of the disc, and i = 2 refers to the pipes delivering the fluid to the 

disc periphery.  

 

Table 2. Optimized dimensions for radial, single- and two-level bifurcation of Fig. 26. 

N Configs. D0 [mm] n0 𝐿0
∗  𝐿1

∗  𝐿2
∗  𝑓 

6 radial 3.94 6 1 - - 6 

 one-bifurc. 5.00 3 0.214 0.822 - 5.85 

12 radial 2.79 12 - - - 12 

 two-bifurc. 4.58 3 0.157 0.509 0.432 9.82 

 

Notice the total volume occupied by the fluid (the total pipe volume of the flow network) 

𝑉 is the summation of the individual pipe volumes, given by: 
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𝑉 = 𝑛0 ∑ 2𝑖
𝜋

4

𝑝

𝑖=0

𝐷𝑖
2𝐿𝑖 (9) 

where 𝑝 is the pipe section that touches the periphery (equal to the number of bifurcation by each 

flow branch from the center of the disc). With Eq. (9) and Table 2, and assuming a disc thickness 

equal to 6.35 mm (1/4 in), the calculated volume of the pipes in this case equals 1.86 × 10-5 m3; 

this value is maintained fixed for all configurations. Observe the ratio of pipes volumes to disc 

volume (VD = 1.2870 × 10-3 m3) equals 0.0145, or 1.45 %. 

Using the parameters from [15] and Eq. (8), one can reproduce the geometries using a CAD 

software. However, due to the size difference between 𝐷𝑖  to 𝐷𝑖+1 one must create a geometric 

transition at each bifurcation, which affects very slightly the total pipe volumes. This transition, 

however, is carefully done to guarantee all pipe volumes match to within 0.5 %.   

 An additional note is necessary about the construction of the flow networks, as indicated 

by [23]. From a practical standpoint, the pump power necessary to maintain the fluid flowing 

through the disc flow network is related to the volumetric (or mass, for an incompressible fluid) 

flow rate and the pressure loss P along a flow branch, i.e., from the center of the disc to one of 

the peripheric outlets. It is convenient then to define a friction coefficient in terms of the flow rate 

through the disc, and the disc overall geometric characteristics, namely 

𝑓 =
∆𝑃

8𝜋𝜈�̇�

𝑉2

𝑅3
 (10) 

where �̇� = �̇�0𝑛0 is the total mass flow rate that enters the disc, with �̇�0 = 𝜌𝑓𝑈𝑜𝐴0 being the 

mass flow rate through each center emanating branch,  and f are the fluid (considered Newtonian 

and incompressible) kinematic viscosity and density, U0 is the cross-section averaged fluid speed 

and A0 is the cross section area (uniform) of the center pipe, and 𝑛0 is the number of pipes from 
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the disc center. Observe once a disc (with V and R), a fluid (with  and ), and a flow rate entering 

the disc �̇� are chosen, Eq. (10) yields a direct proportion between f and P. This makes f a 

representative of the total pressure drop of the disc, and a comparable parameter between all flow 

configurations, as long as V, R, f, , and �̇� are set. 

In a simplified analysis [23], assuming the flow in each pipe of a flow branch laminar and 

fully developed and neglecting the bifurcating pressure losses, the minimization of the flow 

pressure drop yields f to be at most function of n0, f(n0), because the individual friction factors 

through the pipes forming the branched path are dependent on each pipe length and volume (or 

diameter) only. In the case of a radial flow configuration, f equals n0 and Eq. (10) recovers the 

known Hagen-Poiseuille relation between P and �̇�. Expressions for f(n0) for the optimized 

bifurcating configurations were obtained by [23]. When the one-level bifurcation is considered, 

for instance, the expression for f(n0) becomes: 

𝑓(𝑛0) = 𝑛0 ([𝑐𝑜𝑠
𝜋

2𝑛0
+ 𝑠𝑖𝑛

𝜋

2𝑛0
(

2−1/3

𝑠𝑖𝑛 𝛽
−

1

𝑡𝑎𝑛 𝛽
)]

3

) (11) 

 

where, in the optimization process to minimize the network flow resistance P, the bifurcation 

angle turns out to equal  = 0.654 rad (recall this is the first branching angle, Fig. 25), which does 

not depend on the angle 𝛼. Notice Eq. (11) indicates the smallest f is obtained for the minimum n0, 

which equals 3 [23]. The corresponding f values for each of the four flow configurations considered 

here are included in Table 2. 

Figure 27 [23] shows, for a fixed number of outlets N, fixed total pipe volume V and fixed 

disc radius R, the disc flow resistance, f, or the total pressure drop imposed to the inlet flow by a 

branch of the flow network. Notice the curves for the bifurcating configurations (pairings) start at 



 

 

 

38 

their minimum, i.e., when n0 = 3 - e.g., the one-level bifurcation curve begins at N = 6. Observe 

for the radial network (no pairing) configuration, f(n0) = n0 = N, as shown in Fig. 27. 

 

 

 

Figure 27. Effect of the number of bifurcations (pairings) on the disc flow resistance (f) as 

function of number of outlets N at the periphery of the disc [23]. 

 

Where a branching (pairing) curve begins, shown with a small circle in Fig. 27, the friction 

factor f for this branching is very similar to the f value of the preceding branching level; for 

instance, the two-level branching (two-pairings) begins when N = 12, and the f value for this 

network is very close to the f value for the preceding one-level branching. This means there is no 

preferred configuration between the two when it comes to total pressure drop, and this does not 

hold when comparing with one branching level. For instance, for the same N = 12 the figure shows 
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the radial flow configuration (no pairing curve) yielding a higher flow resistance f than any of the 

two branching alternatives.  

Finally, the fully developed laminar flow assumption made in obtaining f shown in Fig. 27 

and the neglect of the bifurcation losses, make f independent of the mass flow rate. This, and other 

aspects, are investigated in the following sections.  

 

3.2 Mathematical Modeling and Numerical Simulations: Laminar Flow 

The conjugate convection-diffusion problem resulting from using the flow networks to cool 

a heat generating solid disc is simulated numerically considering the 3D process at steady-state, 

with all fluid and solid properties being uniform and constant (i.e., incompressible and Newtonian 

fluid, homogeneous and isotropic solid and fluid), negligible viscous dissipation, and no body 

forces. The resulting system of mass, momentum, and energy conservation equations is: 

𝛻. 𝒖 = 0        (12) 

𝒖. ∇𝒖 = −
1

ρf
∇P + ν∇2𝒖      (13) 

𝒖. ∇𝑇 = αf∇
2T           (14) 

0 = 𝑘𝐬∇2T + q′′′            (15) 

where u is the local fluid velocity (inside the flow pipes), P is the local fluid pressure, f, , f are 

respectively the fluid density, kinematic viscosity, and thermal diffusivity, T is the temperature (of 

the fluid in the fluid energy equation Eq. (14), or of the solid in the solid energy equation Eq. (15)), 

ks is the solid thermal conductivity and q′′′ is the volumetric heat generation rate in the solid region 

only. 
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Equations (12)-(15) are solved under boundary conditions of impermeable and non-slip 

solid surfaces (u = 0 along the solid-fluid interfaces), adiabatic (∇𝑇 = 0) top, bottom and side 

(except flow outlet) disc boundaries, uniform pressure Pp and ∂T/∂z = 0 at any flow outlet (located 

at the periphery of the disc; equivalent to fully developed flow condition), uniform temperature T0 

at the flow inlet, and fully developed flow u = uz(r) at any disc inlet branch. Also imposed are 

compatibility thermal conditions along the fluid-solid interfaces, namely Tf = Ts and  𝑘𝑠(∇𝑇)𝑠 =

𝑘𝑓(∇𝑇)𝑓, with f and s referring to solid and fluid and kf being the fluid thermal conductivity.  

Assuming the inlet flow as laminar, the axisymmetric and fully developed condition in 

each flow branch emanating from the center of the disc is: 

𝑢𝑧(𝑟) = 2𝑈0 [1 −
𝑟2

𝑅𝑜
2] (16) 

where 𝑈𝑜 = 4�̇�0/(D0
2), is the average fluid speed at the inlet branch, R0 = D0/2, is the radius of 

the inlet branch, r is the local radial coordinate in the circular pipe The formulation is now 

complete. Before proceeding, the nondimensionalization of the formulation is performed by using 

as length scale the disc diameter D = 2R, and as speed scale the inlet average speed U0. The pressure 

and temperature are nondimensionalized following: 

𝑃∗ =
𝑃 − 𝑃𝑝

𝜌𝑈0
2            ,            𝑇∗ =

𝑇 − 𝑇0

𝑞′′′𝐷2

𝑘𝑓

 
(17) 

With these nondimensionalizations, the balance equations Eqs. (12)-(15) then become: 

∇∗. 𝒖∗ = 0               (18) 
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𝒖∗. 𝛻∗𝒖∗ = −𝛻∗𝑃∗ + (
𝑛0

𝑀
) 𝛻∗2𝒖∗ (19) 

𝒖∗. 𝛻∗𝑇∗ = (
𝑛0

𝑀𝑃𝑟
) 𝛻∗2𝑇∗ (20) 

0 = 𝛻∗2𝑇∗ +
1

𝑘∗
 

(21) 

The ruling parameters emerging from the nondimensionalization process are the fluid 

Prandtl number, Pr = /f, the solid-fluid thermal conductivity ratio, k* = ks/kf, the number of inlet 

branches n0, and a nondimensional mass flow rate parameter, 

𝑀 =
4�̇�

𝜇𝜋𝐷
 (22) 

Observe M relates directly to the Reynolds number in each flow branch at each bifurcation level i, 

namely 𝑅𝑒𝑖 (i = 0, 1, 2, … p) via: 

𝑅𝑒𝑖 =
𝐷

𝐷𝑖
(

1

2𝑖
) (

𝑀

𝑛0
) (23) 

Equation (23) is useful because it allows for three important extensions, namely: 

𝑅𝑒0 =
𝐷

𝐷0
(

𝑀

𝑛0
) 

(24) 

𝑅𝑒𝐵𝑖_𝑖

𝑅𝑒𝑅𝑑
= 2(𝑝−𝑖) 𝐷𝑅𝑎𝑑

𝐷𝑖
 (25) 

𝑅𝑒𝑖

𝑅𝑒𝑖−1
=

𝐷𝑖−1

2𝐷𝑖
= 0.63 (26) 

The first Eq. (24) is valid for any network, either radial or bifurcating (observe each of these will 

have a different n0). The second relation compares the Re of any bifurcating segment i of a p-level 
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bifurcation with the Re of the corresponding (with same total number of outlets N) radial 

configuration. Because p ≥ i and DRad > Di, Eq. (25) anticipates ReBi_i > ReRd. The last, Eq. (26), 

is valid for a bifurcating network only (for which more than one flow duct segment exists, and n0 

is a fixed number). Observe from Eq. (25) the flow branch with highest Re is the initial branch, 

namely Re0 is the maximum Reynolds number in a bifurcating network, and this is the Re signaling 

potential transition from laminar to turbulent flow in the entire network. 

A word of caution in relation to Eq. (24): hydraulic results in studies of flow bifurcation 

are usually presented in terms of the inlet Reynolds number, Re0, e.g., [27].  This is certainly a 

trait inherited from classical fluid mechanics, where the predominant analysis of flow with average 

speed U0 through a single, regular (un-bifurcating) duct of diameter D0, results in Re0 = U0D0/ 

being directly proportional to the mas flow rate, Re0 = 4 �̇�0/(D0). In bifurcating networks as the 

ones dealt with here, this relation still holds; however, when comparing for the same flow rate �̇�0 

the pressure drop of distinct networks, for instance with N = 6 radial and one-level bifurcating, the 

Re0 values of each configuration will differ because their D0 is different (Table 2). Hence, if one 

presents pressure drop results calculated at the same Re0 value for both configurations, these two 

Re0 will not refer to the same mass flow rate – this is like comparing apples with oranges! That is 

why in here all flow comparisons are done in terms of M, not Re0. 

The boundary and compatibility conditions for solving Eqs. (18-21) become: u* = 0 along 

the fluid-solid interfaces); adiabatic ∇𝑇∗ = 0 top, bottom and side (except flow outlet) disc 

boundaries; P* = 0 and ∂T*/∂z* = 0 at the flow outlet; T* = 0 and u* = u*
z(r

*) = 2[1−(r*2/R0
*2)] at 

the flow inlet; and T*
f = T*

s and k*∇T*
s = ∇T*

f along the fluid-solid interfaces. 
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The nondimensional balance equations, with boundary and compatibility conditions, are 

solved using a second-order accurate finite-volume method to find the fluid velocity and 

temperature fields in the fluid and solid regions of the disc. Due to symmetry, the thermo-hydraulic 

simulations of each of the four configurations (Fig. 26) are restricted to four disc sectors, with 

symmetry conditions in T* at their radial solid boundaries. These 3D sectors are covered with an 

unstructured mesh in the solid and fluid regions, as shown in Fig. 28, with grid refinement near 

the solid-fluid interfaces and near the flow inlet and outlet. Notice the mesh density is much 

increased in the pipe network to accurately capture the flow (pressure-velocity and temperature) 

variations and the variations caused when the fluid pass through any of the bifurcations along the 

network. 

 

Figure 28. Sample computational meshes for N = 6 (top) and N = 12 (bottom) disc sectors for 

simulating configurations shown in Fig. 26. 

 

1/6 disc sector  
1/3 disc sector  

1/12 disc sector  

Radial 
Bifurcating  



 

 

 

44 

Grid sensitivity analyses are thoroughly investigated, particularly for the most stringent 

cases (i.e., highest fluid speed, pressure and temperature gradients) of each network configuration. 

Pressure loss and maximum temperature results presented here are within 0.5% of the equivalent 

results obtained with a grid having double the grid density. The mesh quality is checked by 

comparing the resulting nondimensional total pressure drop of the two radial flow configurations 

(for N = 6 and 12) with the theoretical predictions from the Hagen-Poiseuille equation, for several 

different nondimensional flow rate M values. The pressure drop results are recast in the form of f, 

Eq.(10), using the P* definition Eq. (17), for being more representative as a comparison parameter, 

𝑓 = (
1

2𝜋2𝜈

𝑉2

𝑅3

𝑈0

𝐷0
2) 𝑃0

∗ (27) 

As shown in Figure 29, the numerical results fall within less than 2.5 % of the equivalent 

theoretical predictions. The results for the bifurcating configurations can be validated in a similar 

manner using the prediction by [23] when the bifurcating effects are negligible. Otherwise, there 

is no way to validate the results because no theoretical prediction or experimental measurements 

exists for the pressure loss across bifurcations identical to the ones used here.  
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Figure 29. Total nondimensional branch pressure-drop comparison between numerical (Num) 

results and theoretical (Th) predictions for radial configuration with N = 6 and 12. 

Numerical simulations are performed for Pr = 7 (water) and M varying from 0.2 to 130, 

which is equivalent to Reynolds number at the inlet branch, Re0 (for radial or first branch of 

bifurcating network, with D0 and L0) varying from a minimum of 6 (for the N = 12 and radial 

configuration) to a maximum of about 4,800 (for N = 12 and two-level bifurcation configuration) 

– see Eq. (24) and Table 2 the values vary a little with the flow configuration and N chosen. It is 

worth recalling Re0 is the highest Reynolds in any branch of a bifurcating network, Eq. (26). 

Results are also sought for five different k* = 1, 4, 18, 63, 260. There is a total of about 220 different 

simulated cases (55 for each network configuration). 

Of interest to evaluate the hydraulic performance of the cold plate is the parameter f, Eq. 

(27), and to evaluate the thermal performance is the maximum temperature within the domain 𝑇𝑚
∗ ,  
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𝑇𝑚
∗ =

𝑇𝑚 − 𝑇0

𝑞′′′𝐷2

𝑘𝑓

 
(28) 

The best configuration among the four studied in this work should present the lowest flow 

resistance and lowest thermal resistance, or equivalently the lowest f and 𝑇𝑚
∗ .  

Also of interest is the Nusselt number of the branch convective flow from the origin 

towards the periphery of the disc, defined by: 

𝑁𝑢 =  
−𝑞′′

(𝑇0 − 𝑇𝑓_𝑚)

𝐷

𝑘𝑓
 (29) 

where 𝑞′′ is the average heat flux crossing the solid-fluid interface of the network, namely:  

𝑞′′ =  
𝑞′′′𝑉𝑠

𝐴𝑑
 (30) 

with Vs being the solid total volume and Ad the total solid-fluid interface surface area of the flow 

network, and Tf_m being the maximum temperature recorded in the fluid region (note this is not the 

bulk fluid temperature), likely registered at the solid-fluid interface at the outlet of the flow. In this 

sense, the Nusselt number tells the extent to which the fluid flow is effective in removing the heat 

generated from the solid.  

A note about the pressure loss caused by the bifurcations becomes important. According 

to [26], it is possible to show bifurcation losses have a sizeable effect when optimizing the 

geometry of flow channels when Sv2 < 10, which happens when the flow segments along a branch 

are thick (not slender), where Sv is the svelteness, a global property of the flow branch defined as:  
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𝑆𝑣 =
(∑ 𝐿𝑖

𝑁
𝑖=0 )

𝑉1/3
 (31) 

with (∑ 𝐿𝑖
𝑁
𝑖=0 ) being the total length of ducts from the center to the periphery of the disc and V 

being the total duct volume. In the present work, the svelteness of the bifurcation configurations 

is Sv = 9.9 for the one-level and Sv = 10.5 for the two-level; therefore, Sv2 < 10 is not satisfied by 

either configuration. Hence, significant bifurcation losses are not expected, and the pressure losses 

of the bifurcating cases should be similar to those of the radial flow.  

 

 

 

3.3 Results and Discussions  

 

3.3.1 Fluid Flow Resistance 

Figure 30 presents some velocity and pressure distribution for radial configuration with N 

= 6, and with M = 0.35. Recall the inlet flow is set as fully developed, so the velocity profile is not 

to change throughout the duct and the pressure drop should equal a constant.  
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Figure 30.Velocity and pressure distribution for radial flow with N = 6 and M = 100. 

 

 

Figure 31.Velocity and pressure distribution for one-level bifurcation flow network with N = 6 

and M = 100. 

 

 

 

flow separation 
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Figure 31 shows the velocity and pressure distributions for the one-level bifurcated flow 

network, with N = 6 and M = 100 as well. The small inset shows the velocity vectors across the 

bifurcation. There is flow separation right pass the bifurcation, where a small recirculating flow 

cell can be seen in each side on the outer surface of the duct (shown in the inset). 

Figure 32 shows the total pressure drop results, in terms of f, versus the nondimensional 

mass flow rate M, for the two configurations with N = 6, namely the radial and the one-bifurcation 

network. Noticeable, the pressure loss for both configurations is almost identical until M is about 

10, beyond which they diverge. 

.  

Figure 32. Dimensionless flow resistance f versus M for N = 6 and radial (Rad) and one-level 

bifurcation network (TN) configurations. 

 

When M > 8, the bifurcated geometry starts to yield higher pressure losses. This result 

seems contrary to the conclusion by  [23], in which the dimensionless flow resistance 𝑓 should be 
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a constant in the laminar range (with N = 6, f = 6 for radial and f = 5.849 for bifurcating – note the 

theoretical predictions by [23] are verified by the numerical results) if Sv2 > 10. However, for the 

current bifurcating networks Sv2 > 10, and the dimensionless flow resistance of the bifurcating 

network increases, surpassing the radial pressure drop when M > 8, as the local pressure loss 

imposed by the bifurcations becomes a significant component to the total pressure loss. The radial 

flow configuration, as expected, keeps a constant flow resistance for the entire M-range. 

 

Figure 33. Dimensionless flow resistance f versus M for N = 12 and radial (Rad) and two-level 

bifurcation network (TN) configurations. 

 

Similar observations can be made for the configurations with N = 12, as seen in Fig. 33. 

According to [23], the dimensionless flow resistance f should be a constant in the laminar range 

(for N = 12, f = 12 for radial and f = 9.82 for bifurcating – again, this theoretical prediction is 
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validated by the numerical results). As seen in Fig. 33, however, the pressure loss in the bifurcating 

network departs from the constant value when M > 3, eventually surpassing the pressure drop of 

the radial network when M ~ 30. 

 Results presented in Figs. 32 and 33 highlight an important conclusion: to answer what is 

the best configuration in terms of flow resistance, one should first ask the range of 𝑅𝑒 the 

configuration will work under, simply because the pressure loss imposed by bifurcations becomes 

increasingly important as the flow rate increases (or, as the Reynolds number increases).  

Figure 34 summarizes the flow resistance results using the 𝑓𝑇𝑁/𝑓𝑅𝑎𝑑 ratio, where fTN is the 

friction factor for the bifurcating configuration and fRad is for the radial configuration, which is 

equivalent to ∆𝑃𝑇𝑁/∆𝑃𝑅𝑎𝑑 (Eq.(10)). Hence, results above 1.0 means the radial configuration 

yields lower flow resistance compared to its equivalent bifurcating network configuration. From 

Fig. 34, for M > 100 the radial configurations yield the best performance and for M < 100 the 

bifurcating networks are preferred.  

Also noticeable from Fig. 34 is the flipping, around 1.0, of the pressure-loss ratio of N = 6 

and 12 as M increases. Before M ~ 10 the radial and bifurcating networks with N = 6 show a closer 

pressure-drop than with N = 12. The reverse is true when M grows beyond 10. This is a result of 

the two bifurcation levels in the N = 12 network yielding a substantial gain in pressure drop when 

the dominant pressure drop effect is that of the longitudinal flow in each pipe. This also causes a 

small delay, for N = 12, in the M value (~ 30) for which the loss caused by the bifurcations 

overcome the segment losses, as compared to M ~ 8 for the N = 6 cases.  
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One should keep in mind there should be no comparison in terms of flow resistance 

between N = 6 and N = 12 networks. As the total pipe volume is constant for all geometries, N = 

6 will always present lower pressure loss than that of N = 12. 

 

Figure 34. Dimensionless flow resistance ratio. 

 

Noteworthy, the results presented here agree with Figure 27 curves for low 𝑅𝑒 numbers 

only. Therefore, in the present case, there is a mass flow dependency on the dimensionless flow 

resistance even for svelteness values Sv2 > 10. 

 

3.3.2 Thermal Resistance 

 

Figure 35 shows the solid and liquid nondimensional temperature distribution in the mid-

plane of the disc for 𝑁 = 6 and one-level bifurcating configuration with M = 0.35 for the case k* 
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= 1 (same solid and fluid thermal conductivity). The fluid temperature is zero at the origin and 

warms up as it moves towards the rim of the disc, as expected. The three solid hot spots (maximum 

temperature) are located furthest from the flow ducts near the periphery of the disc.  

 

  

Figure 35. Disc mid-plane nondimensional temperature distribution (equivalent thermal 

resistance) for N = 6, M = 0.35, one-level bifurcation configuration with k* = 1. 

 

As the mass flow M increases, the maximum temperature Tm
* is expected to decrease for a 

given 𝑘∗ and configuration. The results presented in Figure 36 confirm this expectation for the 

radial flow configuration case, N = 6 and k* from 1 to 260.  

Noticeable in Fig. 36 is the very small flow rate effect in the maximum temperature when 

k* = 1. Recalling this is a conjugate heat transfer process, this result is a consequence of the high 

thermal resistance offered by the solid region to the heat transfer process, even when the solid and 

fluid thermal conductivities are equal, holding the convective effect in the ducts irrelevant for the 

overall cooling of the disc.  
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Figure 36. Nondimensional maximum temperature in the disc versus nondimensional mass flow 

rate, for radial configuration with N = 6 and several k*. 

 

As the solid-fluid thermal conductivity ratio increases beyond 1, the convective effect 

becomes progressively more evident as the conduction thermal resistance decreases in relation to 

the convective thermal resistance. Figure 36 shows this trend very clearly. Notice the variation in 

Tm
* gets progressively reduced as k* grows beyond 18. Also evident is the limitation in the effect 

of increasing M: as M grows beyond about 10, the changes in Tm
* with M tend to flatten out. 

A similar graph is shown in Figure 37, in this case also for N = 6 but with a one-level 

bifurcation network. As can be seen, the results in Figs. 36 and 37 seem very similar for both 

configurations. 
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Figure 37. Nondimensional maximum temperature in the disc versus nondimensional mass flow 

rate, for one-level bifurcating configuration with N = 6 and several k*. 

 

Figures 38 and 39 show the nondimensional maximum temperature for the radial and 

bifurcated flow configurations with N = 12. The results are very similar to the results for the N = 

6 cases. In all cases, the best thermal performance in terms of minimum maximum temperature is 

obtained when k* = 260, as expected.   
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Figure 38. Nondimensional maximum temperature in the disc versus nondimensional mass flow 

rate, for radial configuration with N = 12 and several k*. 

 

Figure 39. Nondimensional maximum temperature in the disc versus nondimensional mass flow 

rate, for two-level bifurcating configuration with N = 12 and several k*. 



 

 

 

57 

 

The thermal performances of the radial and bifurcating networks, with N = 6 and 12, are 

compared in Fig. 40, in terms of 𝑇𝑚
∗  for k* = 260. Recall this case yields the smallest diffusion 

resistance (for ks being much higher than kf) of all cases. An initial observation, common to both 

N cases, is that when M is small (less than about 3) the radial networks seem to yield slightly better 

thermal performance than the bifurcating ones, in line with [15].  

 

 

Figure 40. Nondimensional maximum temperature in the disc versus nondimensional mass flow 

rate, for radial and bifurcating configuration, N = 6 and 12, with k* = 260. 

 

However, as M increases past 3, the performance of the two networks flips, with the 

bifurcating networks yielding better results, with smaller 𝑇𝑚
∗ , than their radial counterparts. This 

is likely a result of the extra mixing induced in the convective flow by the bifurcations, an effect 

known to increase as M increases. Hence, the more bifurcations a network branch has, the better 
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the overall mixing effect will be. Indeed, the bifurcating network with N = 12 (two bifurcations 

for every channel leaving the center of the disk) leads to better thermal performance than the 

bifurcating network with N = 6 (only one bifurcation). This effect is less predominant when small 

k* values are considered, because convection is less effective in this case (because of the strong 

conduction resistance by the solid). 

Figure 41 shows the nondimensional temperature distribution in the mid-plane of the disc 

for M = 100 and k* = 260. These temperature distributions correspond to the limit of the laminar 

range. It is clearly seen the two-level network with N = 12 provides a much better and more 

uniform cooling of the disc than any of the other three alternatives. This is a manifestation of the 

better access to the flowing heat provided by the two-level bifurcating configuration in this case. 

Interestingly, the access in question is the one provided by the convection ducts, and their access 

is effective only when the diffusion resistance by the solid is small, otherwise their effect becomes 

hindered – i.e., to access the ducts, the heat must flow to them first through the solid. Again, the 

highest nondimensional temperature of the disc happens at a point along the periphery equidistant 

to two consecutive and furthest outlet ducts in all cases. 
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Figure 41. Disc mid-plane nondimensional temperature distribution for radial and bifurcating 

cases, with M = 100 and k* = 260. 

 

At the opposite extreme of the conductivity spectrum, the case with k* = 1 is shown in 

Figure 42 for all flow configurations. Now, an increase in M does not yield much variation in Tm
*. 

Clearly seen in the graph is the best thermal performance by the radial configurations, with the one 

for N = 12 leading the pack. With this low k*, the bifurcations always hinder the cooling 

performance as their geometry increases the diffusion thermal resistance of the solid.  
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Figure 42. Nondimensional maximum temperature in the disc versus nondimensional mass flow 

rate, for radial and bifurcating configuration, N = 6 and 12, with k* = 1. 

 

                  

                     

Figure 43. Disc mid-plane nondimensional temperature distribution for radial and bifurcating 

cases, N = 6 and 12, with M = 0.35 and k* = 1. 
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Figure 43 shows the non-dimension temperature distribution for all four geometries, with 

M = 0.02 and 𝑘∗= 1. Clearly seen, for k* = 1, the radial distribution covers more of the solid region, 

improving the thermal diffusion resistance of the solid region, then leading to a better overall 

cooling. The opposite happens when the bifurcating configurations are pursued.    

Finally, the visual effect on the mid-plane nondimensional temperature distribution of the 

disc by changing k* is shown in Figure 44, for the two-level bifurcating network, N = 12, and M = 

0.35. With the same network, increasing k* facilitates the generated heat of the solid to reach the 

convective branches, allowing the convection transport to carry the heat away as efficiently as 

possible.  

                                            

                                                           𝑘∗ = 1                                   𝑘∗ = 4                               

                                   

                              𝑘∗ = 18                             𝑘∗ = 63                           𝑘∗ = 260 

Figure 44. Disc mid-plane nondimensional temperature distribution for the two-level bifurcating 

configuration, N = 12, with M = 0.35 and several k* values. 
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3.3.3 Convective Heat Transfer  

 

Equation (29) shows that the Nusselt number increases as 𝑇𝑓_𝑚 → 𝑇0. Therefore, high 

Nusselt Numbers are the main objective when the target is to remove the dissipated heat from the 

disc with minimum fluid temperature increase.  

Results for Nu are shown in Fig. 45 for N = 6 configuration cases and k* = 1 and 260. As 

M increases, or the mass flow rate through the disc increases, all Nu increase, as expected. Also 

expected in the increase in Nu as k* increases. Noticeable is the small effect k* has on Nu when M 

is smaller than 1, in which case all configurations yield about the same Nu. At this low M level, 

the convection effect of the network is hindered, and the conduction thermal resistance in the solid 

region is expected to prevail, as the results show. The differences between the configurations 

becomes more evident as k* increases beyond 1, in which case an increase in k* leads to a stronger 

convective effect on Nu. Note the M effect differs slightly between the radial and the bifurcating 

configurations: the curving of the Nu evolution as M approaches 100 is more accentuated in the 

radial cases. Therefore, the bifurcating Nu with k* = 1 overcomes the Nu for radial with k* = 260. 

From all cases, the bifurcating configurations yield better thermal performance than their radial 

counterparts in the entire M range considered. 



 

 

 

63 

 

 

Figure 45. Nusselt number versus M, for N = 6, and k* = 1 and 260. 

 

 

Figure 46. Nusselt number versus M, for N = 12, and k* = 1 and 260. 
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A similar behavior is observed for the case N = 12, with the Nu results shown in Fig. 46. 

Again, the bifurcating configurations show better performance than their radial alternatives, except 

for when k* = 1, in which case the results, although close, indicate a slightly better performance 

for the radial configuration. One interesting aspect in the definition of Nu is the effect of 𝑞′′ – the 

heat flux across the solid-fluid interfaces is function of the surface area between the two 

constituents, Eq. (30), and this area decreases as the number of bifurcation increases, leading to a 

higher heat flux.  

A summary of the Nu results is shown in Fig. 47. It is worth recalling the flows are always 

laminar, being fully developed in the radial flow configuration. The bifurcating cases add another 

component to the heat transfer process, as seen in the flow results, of flow recirculation as M 

increases. The separation and fluid recirculation that occurs when the fluid passes through the 

bifurcations hinders the convective process, and this effect should be more evident when 

bifurcations are present. It seems, nevertheless, this effect is overcome by the reduction in the heat 

flux and by the better access to the heat flow provided by the bifurcating configurations.  
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.  

Figure 47. Nusselt number versus M, for N = 6 and 12, and k* = 1 and 260. 

 

3.4 Conclusions 

 

Numerical simulations of four distinct optimal flow configurations designed for cooling a 

heat generating and adiabatic disc are performed to identify and compare their thermo-hydraulic 

behaviors. The configurations are for a fixed volume of fluid channels, with the fluid entering 

through the center of the disc, splitting into either radial (straight) segments or bifurcating 

branches, feeding either 6 or 12 outlets positioned at the periphery of the disc. The bifurcating 

configurations have either one-level or two-level bifurcating networks, and all have three equally 

distributed branches emanating from the disc center. All geometric parameters of these flow 

configurations, such as length and diameter of the pipes, are optimized for minimizing the total 

pressure loss. The geometric optimization process [23] assumes fully developed laminar flow in 
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all ducts (assuming circular pipes), and it neglects pressure losses at the bifurcations, yielding 

theoretical estimates for the pressure drop across every configuration. The neglect of the 

bifurcating effects is supposed to be acceptable (i.e., lead to accurate results) when the svelteness 

Sv of the network is smaller than 3.16 (or Sv2 < 10), a result derived for T-shape flow networks 

[26].   

The present effort is started with the mathematical modeling of the thermo-hydraulic 

process in the solid and fluid regions of the disc, including balance transport equations and 

boundary and compatibility conditions. Nondimensional equations are derived, and ruling 

parameters identified. The importance of presenting the thermo-hydraulic results in terms of the 

nondimensional mass flow rate entering the disc, instead of the usual Reynolds number, is 

highlighted, particularly for comparison purposes of distinct flow configurations. Nondimensional 

pressure drop, maximum disc temperature, and the Nusselt number are defined for investigating 

the thermo-hydraulic performances. 

Numerical simulations are performed for the case of isothermal water (Newtonian and 

incompressible fluid) flowing into the disc, under laminar fully developed flow regime in all flow 

configurations. For the one-level and two-level branching configurations, the Reynolds number of 

the flow in each pipe segment is shown to decrease for the optimal network as one moves from the 

center segment to the outmost (exit at the disc periphery) segment. The solid material of the disc 

has a uniformly distributed volumetric heat dissipation rate, and is considered homogeneous and 

isotropic.  

The numerical pressure loss results are verified against the analytical results available for 

the radial cases and for the theoretical results obtained by [23] valid for small flow rate (when the 

laminar fully developed flow and negligible bifurcation loss assumptions are valid). The results 
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show the hydraulic performance of the flow networks (with bifurcations) is strongly dependent on 

the number of bifurcations and on the flow strength (mass flow rate). Even though the Sv numbers 

of the bifurcating configurations should validate a negligible bifurcation effect on the pressure 

drop, the results clearly show the Sv2 < 10 criterion not to be valid for the current configurations. 

In this respect, bifurcating networks perform better than their radial counterparts when M < 10 for 

the cases considered here. Of course, when bifurcation effects become pronounced, the more 

bifurcations a network has the more pressure loss it imposes on the flow. Radial with N = 6 

performed best in terms of pressure loss. 

In terms of thermal performance, a prediction of the best performance becomes even more 

complex with the introduction of the solid-fluid thermal conductivity ratio k* into the conjugate 

convection-diffusion process inside the disc. In general, as k* increases the conduction thermal 

resistance of the solid decreases, making the convection thermal resistance of the flow network 

more predominant on the overall thermal performance, and this makes the maximum disc 

temperature decrease with an increase in the flow rate, as expected. For small k*, say k* = 1, the 

flow configuration affects the thermal performance more and the radial configurations perform 

better than their bifurcating counterparts. This means when the thermal resistance by conduction 

is high, the proximity of the flow channels to the heat generating material becomes important, and 

the radial design provides shorter distances for the heat to reach the flow channels as compared to 

the bifurcating configurations. When k* is high, such as 260, the maximum temperature of the disc 

is similar for all configurations until M reaches beyond about 10. This makes sense: as k* increases, 

the convection effect becomes more important; hence the distance for the heat to reach the flow 

channels becomes less important, so the geometry differences between radial and bifurcating 

configurations becomes less important. Nevertheless, the heat transport effectiveness of 
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convection increases when the flow is strong. So, the differences between the flow configurations 

emerge only when the flow rate is high enough, in which case the bifurcating configurations 

emerge as better options. 

In terms of Nu, the most complex configurations considered, namely the bifurcating 

configurations, yield the best performance, or the highest Nu, for the entire M range and high k*, 

with their values being very similar. Interestingly, the flow configurations and k* have a limited 

effect on the Nu variation with M, with the effect increasing slightly as M increases, as expected. 

Hence, the overall convection effect, which occurs inside the flow channels, seems very robust in 

terms of variations in the flow configuration and on k*. 

A final observation about the numerical simulations becomes necessary. As attempting to 

achieve convergence of the numerical results as M increases, not only the computational time 

necessary to achieve convergence, but also instability toward a convergent result is observed. This 

explains for instance the slight variation in behavior when M closes in the maximum value used 

in the laminar regime, namely M = 100. In this range, the flow at the initial pipes coming off the 

disc center present a very high Re, at the border of what is expected for laminar regime. Although 

the Re of each pipe from the center decreases for the optimal configurations, the numerical 

simulation certainly feels the difficulty in solving the flow and temperature fields of these high Re 

pipes. Although this is a localized effect, the numerical simulation everywhere in the domain is 

affected by this difficulty. This is why the laminar range was limited here to Mmax = 100. 
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4 BIFURCATING FLOW NETWORKS FOR COOLING                                                         

A HEAT GENERATING DISC – TURBULENT FLOW CASE 

 

As one attempts to resolve the flow and temperature fields of the configurations considered 

in Chapter 3 with increasing mass flow rate M, one quickly ends up facing increased computational 

time and eventually numerical instability, and even lack of converged results. This was 

experienced near the maximum M value considered in the previous chapter, as indicated 

previously, even when the turbulent regime sets in on a few of the flow pipes making a branch 

(recall the Reynolds number of each flow segment decreases from the disc center toward the 

periphery). An alternative to allow overcoming this difficulty is the utilization of turbulent models 

for facilitating the numerical simulations of higher M values. Hence, the analysis performed in the 

previous chapter for the laminar regime is here extended to turbulent flow inside the four 

configurations considered.  

In the literature, it is unusual to find studies considering turbulent flow when applying 

complex, optimal flow networks as the ones used here, because of the reduction in strength (recall 

the Reynolds number decreases) as the flow goes through the bifurcating networks. It is a well-

known fact in the respiratory tract of human lungs, for instance, the convection process initiated 

at the trachea level during air inspiration eventually transitions to a diffusion dominated process 

when the air reaches a certain depth into the lungs (usually past the 17th bifurcation). This transition 

happens because of the several bifurcations undergone by the original flow. Even though the 

diameter of individual bifurcated channels decreases, which would cause an increase in fluid speed 

for the same flow rate, the total available flow area past the bifurcation increases, yielding a smaller 

Re in the individual channels.  
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Nevertheless, turbulent flows can be achieved in flows through optimal bifurcation 

networks, particularly when the number of bifurcations is not large. Miguel [29], for instance, 

reported an analysis of optimal branching networks of tubes for heat transfer and fluid flow. His 

work unveils the structural features of these networks, mainly via relationships between the sizes 

of the parent and daughter tubes and the branching angles of the bifurcations. The process of 

construction of these networks is described for both laminar and turbulent flow, Newtonian and 

power-law fluids, and constant and pulsatile flows. 

 

4.1 Mathematical Modeling and Numerical Simulations: Turbulent Flow 

 

The geometries, or flow configurations, used to simulate the turbulent flows here are the 

same as the one described in laminar flow chapter, see Fig. 26 and Table 2.  The balance equations, 

Eqs. (12)-(15), are also the same, except for the inclusion of turbulence diffusions in the 

momentum, Eq. (13), and energy, Eq. (14), equations of the fluid flow. In this case,  of Eq. (13) 

is replaced by ( + t) and f of Eq. (14) is replaced by (f + f_t), where the subscript t indicates 

turbulence diffusivity. Before discussing the determination of these new two turbulence 

parameters, the boundary and compatibility conditions of the model equations also remain the 

same, except the inlet velocity profile, which must be modified from laminar profile to turbulent 

profile. The nondimensional expressions, including the M, f, Tm
*, and Nu definitions Eqs. (22), 

(27)-(29), the Re versus M relations, Eqs. (23)-26, are still valid, observing of course the 

modifications indicated so far. 
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The determination of the turbulence diffusivities t and t follows from using turbulence 

models. Although there are several types of turbulent models in the literature, the standard k− 

model is chosen due to its accuracy in confined (pipe) flows [30].  

The k− model incorporates two additional balance equation, one for the turbulence kinetic 

energy k and one for its dissipation rate . These equations require an additional set of closure 

equations, and these equations carry several constants. Modifications of the closure equation and 

its constants have given rise to several modified k− models. Here, the standard k− model is used, 

for being well developed, suitable for the present need, and validated for a large number of flow 

configurations [31]. The underlying assumption of the k− model is that the turbulent diffusivity 

is isotropic, in other words, the ratio between Reynolds stress and the mean rate of deformations 

is the same in all directions. The balance equations for turbulence kinetic energy k, and its rate of 

dissipation, , are, respectively: 

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕(𝜌𝑘𝑢𝑖)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝑃𝑘 + 𝑃𝑏 − 𝜌𝜖 − 𝑌𝑀 + 𝑆𝑘 (32) 

 

𝜕(𝜌𝜖)

𝜕𝑡
+

𝜕(𝜌𝜖𝑢𝑖)

𝜕𝑥𝑖
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𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜖
)

𝜕𝜖

𝜕𝑥𝑗
] + 𝐶1𝜖

𝜖

𝑘
(𝑃𝑘 + 𝐶3𝑘𝑃𝑏) − 𝐶2𝜖𝜌

𝜖2

𝑘
+ 𝑆𝜖 (33) 

 

The turbulent viscosity 𝜇𝑡, where t = ft, is obtained by combining k and , as: 

𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜖
 (34) 

 

where 𝐶𝜇 is a constant (𝐶𝜇 = 0.09). The turbulence thermal diffusivity is set as 
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𝛼𝑡 =
𝜈𝑡

𝑃𝑟𝑡
 (35) 

 

with the default value of the turbulent Prandtl number Prt is 0.85.  

The term 𝑃𝑘 is the generation of turbulent kinetic energy from the mean velocity gradients, 

defined as:  

𝑃𝑘 = −𝜌𝑢𝑖
′̅𝑢𝑗

′̅
𝜕𝑢𝑗

𝜕𝑢𝑖
 (36) 

 

and can be evaluate in a manner consistent with the Boussinesq hypothesis: 

𝑃𝑘 = 𝜇𝑡𝑆2 (37) 

 

where 𝑆 is the modulus of the mean rate-of-strain tensor, defined as: 

𝑆 ≡ √2𝑆𝑖𝑗𝑆𝑖𝑗 (38) 

 

The default constants 𝐶1𝜖, 𝐶2𝜖, 𝐶𝜇, 𝜎𝑘 and 𝜎𝜖 have been achieved from fine tuning the 

numerical predictions of the method with experiments with air and water for fundamental turbulent 

shear flow [30]. They have been found to work well for a wide range of wall-bounded and free 

shear flows, and are used here: 𝐶1𝜖 = 1.44,  𝐶2𝜖 = 1.92, 𝐶𝜇 = 0.09, 𝜎𝑘 = 1.0, 𝜎𝜖 = 1.3. 

The inlet velocity profile used for the turbulence case is: 
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𝑢𝑧(𝑟) =  𝑈0 [1 −
𝑟

𝑅
]

1/𝑛

 (39) 

 

where 𝑛 is the exponent given by the power-law equation; usually, 𝑛 = 7 is chosen, giving rise to 

the term “a one-seventh power profile”. The mean velocity U0 can be used to calculate the 

maximum velocity 𝑢𝑚𝑎𝑥 in the center pipe entry using the following relation [30] : 

𝑈0 =
2𝑛2

(2𝑛 + 1)(𝑛 + 1)
𝑢𝑚𝑎𝑥 (40) 

 

Here, the numerical simulations are performed for M extended from about 120 (recall the 

maximum M value of the laminar regime is 100) to about 5,700. The high end of M is equivalent 

to a maximum entry Re0 of about 100,000.  

The numerical simulations of the turbulent flow through the radial branches can be 

validated against the theoretical predictions for pressure loss of turbulent flow along a straight 

channel, using [32]: 

𝛥𝑃 = 𝑓𝜌𝑅
𝑈0

2

2𝐷0
 (41) 

 

For smooth-walled pipes, the relation established by Prandtl in 1935 with the constants 

adjusted slightly to fit the friction data better, can be used, namely: 

1

√𝑓
= 2.0 𝑙𝑜𝑔 (𝑅𝑒0𝑓

1
2) − 0.8 (42) 

 

Equation (42) needs to be solved iteratively.  
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Figure 48. Nondimensional pressure loss versus nondimensional flow rate comparison with 

theoretical predictions for radial configuration with N = 6 and 12. 

 

The numerical results are validated against the theoretical predictions available for 

turbulent flow through a smooth straight pipe, with the results shown in Figure 48. Included in the 

same graph are the results for the laminar regime, for completeness. Because the numerical model 

does not capture well the transition regime, one shouldn’t expect good agreement within this region 

(shown with a dashed circle in the figure). Outside this small range, the agreement is remarkable. 

This agreement also speaks about the grid accuracy – several grid tests are performed to guarantee 

the same criterion used for the laminar regime, namely better than 5% agreement with results 

obtained when using a grid twice as dense for all simulations.  

 

transition  
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4.2 Results and Discussions  

 

The results follow pretty much the presentation of results for the laminar regime, which is 

included in the figures for completeness. The hydraulic performance of the configurations used 

here are presented in terms of the nondimensional pressure drop across a flow branch, versus the 

nondimensional flow rate, shown in Figures 49 and 50 for N = 6 and 12, respectively.  

 

 

Figure 49. Dimensionless pressure drop versus flow rate for N = 6. 

 



 

 

 

76 

  

Figure 50. Dimensionless pressure drop versus flow rate for N = 12. 

 

Both figures show a switch in how hydraulic performance of the radial and bifurcating 

configurations compare. Within the laminar regime, in both cases, for N = 6 and 12, the radial 

configurations pressure drop is very comparable to the pressure drop of the bifurcating 

configurations for the same M, with the latter being slightly better when M < 30, then worse when 

M > 30. In the turbulent regime the performance switches again, with the bifurcating 

configurations clearly performing much better than their radial counterparts.  

This switch in performance can be explained with the help of Figure 51, where streamlines 

are shown for the flow across the first bifurcation of the two-level bifurcating network with N = 

12.  For 𝑀 = 100 the flow separation downstream of the bifurcation is larger than the separation 

observed when M = 5,700. This means the flow area restriction when M = 100 is also larger, 
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causing a larger pressure drop, which becomes larger than the pressure drop for the same M in the 

radial flow. As M increases, the constricted flow area gets smaller, and the resulting pressure drop 

becomes smaller than the corresponding pressure drop of the radial configuration. 

 

 

Figure 51. Streamlines for two-level bifurcation network branch across the first bifurcation for M 

= 100 and M = 5,700.  

 

The pressure drop distribution in four configurations are presented in Figure 52 for M = 

5,700. For this high flow rate the bifurcating networks yield lower pressure drop than their 

corresponding radial configurations.  

M = 5,700 

M = 100 

 



 

 

 

78 

 

 

Figure 52. Nondimensional pressure distribution along the flow pipes of radial and bifurcating 

configurations, for N = 6 and 12, with M = 5,700. 

 

Figure 53 summarizes the flow resistance results using the 𝑓𝑇𝑁/𝑓𝑅𝑎𝑑 ratio, now with results 

for the laminar and turbulent flow regimes. The ratio above 1.0 means that the radial geometry has 

lower flow resistance compared to its equivalent bifurcating network configuration. Therefore, 

roughly for M < 10 and M > 120, the bifurcating configurations yield the best performance 

independent of N, and, for 30 < M < 100, radial configuration seems best.  
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Figure 53. Dimensionless flow resistance ratio versus M. 

 

One can notice, for the whole 𝑀 range, (𝑓𝑇𝑁/𝑓𝑅𝑎𝑑)𝑁=6 > (𝑓𝑇𝑁/𝑓𝑅𝑎𝑑)𝑁=12. Keep in mind 

the turbulence results are not expected to be very accurate within the transition zone, 120 < M < 

400.  

A summary of the hydraulic results is presented in Figure 54. When the volume of pipes is 

constant, as in here, the configurations with N = 6 (radial and bifurcated) automatically present 

higher pipe diameters and therefore, for the same mass flow rate, they will yield lower pressure 

loss in the laminar flow range. The results corroborate this, indicating the radial configuration to 

be slightly better as M increases. This predominance of the N = 6 configuration as best hydraulic 

performers is also true in the turbulent regime, except now the bifurcating configuration is better 

than the radial one. 
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Figure 54. Dimensionless pressure drop versus flow rate for N = 6 and 12. 

 

Figures 55 and 56 show 𝑇𝑚
∗  results for radial and bifurcating configurations, respectively, 

with N = 6, for varying M and several k* values. In all cases 𝑇𝑚
∗  decreases as M increases, as 

expected. Notice, however, how the effect of increasing M becomes much more pronounced as k* 

increases: this indicates the reduction in the solid diffusion resistance to heat transfer as k* 

increases. The turbulent results extend the laminar results, maintaining pretty much the same 

general tendencies observed at the high end of the M values for the laminar regime: the variations 

tend to flatten out as M increases being 7,000 for all k* values, showing the limit of the convection 

ability to remove the heat. 
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Figure 55. Nondimensional maximum disc temperature versus M, for N = 6 and radial 

configuration. 

 

Figure 56. Nondimensional maximum disc temperature versus M, for N = 6 and one-level 

bifurcating configuration. 

Turbulence 
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Figures 57 and 58 show similar results, now for the cases of N = 12. The same observations 

made in respect to Figs. 48 and 49 apply to this case as well. Hence, each k* case has a limiting M 

beyond which 𝑇𝑚
∗  no longer decreases appreciably – this marks the convection resistance limit, 

beyond which this resistance becomes negligible, and M no longer affects the overall thermal 

performance. Observable also in all four figures the smaller sensitivity of the radial configurations 

to changes in k* as compared to the bifurcating networks: see how the spreading of 𝑇𝑚
∗  (particularly 

for high M) as k* varies from 1 to 260 is narrower in the radial cases. Once again, the turbulent 

results corroborate the trend seen for the laminar flow. Except for the radial flow case where, for 

𝑘∗ > 63 the thermal resistance dropped in the turbulent regime.  

Figure 57. Nondimensional maximum disc temperature versus M, for N = 12 and radial 

configuration. 
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Figure 58. Nondimensional maximum disc temperature versus M, for N = 12 and two-level 

bifurcating configuration. 

 

The radial and bifurcating networks performances, for N = 6 and 12, can be compared again 

in terms of 𝑇𝑚
∗  when considering Fig. 52, for the case k* = 260, for the entire M range including 

laminar and turbulent flow. Recall this case yields a very small diffusion resistance (for ks being 

much higher than kf). An initial observation, common to both N cases, is that when M is in the 

laminar regime the results seem to be less sparse if compared to the turbulence regime.  

As observed in the previous chapter, as M increases past 10, the performance of the two 

networks flips, with the bifurcating networks yielding better results with smaller 𝑇𝑚
∗  than their 

radial counterparts until the end of the laminar regime range. However, for M > 120 the results 

flip again with radial flow yielding better results than the bifurcating results. 
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Figure 59. Nondimensional maximum disc temperature versus M, for N = 6 and 12 and k* = 260. 

 

A possible justification for the switch is the likely predominance of the turbulence 

diffusivity affecting the effect of flow separation region the bifurcations induce when M is in the 

turbulence regime compared with the end of the laminar flow range. Notwithstanding, the radial 

network with N = 12 leads to better thermal performance for all turbulent flow range.  

Figure 60 shows the solid and liquid region temperature distributions for all flow networks 

with M = 5,700 and k* = 260.   

 

Turbulent 
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Figure 60. Nondimensional temperature distribution for M = 5,700 and k* = 260. 

 

As it can be identified, the fluid temperature does not seem to vary much as the fluid flows 

from the center of the disc toward the periphery, as expected (very high k* and M). The best thermal 

performance, in terms of smallest 𝑇𝑚
∗ , is achieved by the radial configuration with N = 12. Notice 

with very small convective thermal resistance, the thermal performance is best for the 

configuration that shortens the most the path to be travelled by the heat from the solid region to 

the pipes. Although this observation is in line with the conclusion by [15], here the situation 

involves turbulent flow, as opposed to laminar flow. 

Figure 54 shows nondimensional temperature distributions for radial configurations N = 

12 and M = 5,700, for several k* values.  Observe the temperature distribution for the case k* = 

260 differs from the one presented in Figure 53 because of the temperature range used – the same 
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for all cases in Figure 54 – is not wide enough to allow for the distinct observation of the 

temperature variation in the cases of k* = 18 and 260. Hence, in relation to the temperature variation 

observed for the k* = 1 case, the high k* cases show basically isothermal condition in the disc. 

 

 

 

 

Figure 61. Nondimensional temperature distribution for N = 12, radial configuration, M = 5,700 

and several k* values. 

Figures 62 and 63 show Nu results for all four geometries considered in this work for k* = 

1 and 260. Notice that the best performing configurations near the end of the laminar regime to be 

the bifurcating ones with N = 6 and 12. As M increases further, there is a shift in the performance 

of the radial and bifurcating networks with N = 6 and 12. That is, for the entire turbulent flow 

range, the radial flow configurations perform better, with k* = 260 a little better than k* = 1. This 

is in line with the results for 𝑇𝑚
∗ .  

𝑘∗ = 1 𝑘∗ = 4 

𝑘∗ = 18 𝑘∗ = 260 
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Figure 62. Nusselt number versus M for N = 6, radial and one-level bifurcating configurations, k* 

= 1 and 260. 

 

Figure 63. Nusselt number versus M for N = 12, radial and one-level bifurcating configurations, 

k* = 1 and 260. 

Turbulent 
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In terms of k*, there is no single flow configuration that performs better for the entire M 

range considered here. For laminar flow, the bifurcating configurations seems to hold an edge for 

high k* , while radial configuration performs better for any k* in turbulent flow. 

The thermal resistance results show that k* = 260 configurations perform better for either 

radial or bifurcated geometries. One can try to establish a parallel for Nu numbers for the same 

configuration. Figure 57 shows the Nu results for N = 6 and 12 bifurcating configurations. One 

can see that the results are very similar for the entire mass flow range. Therefore, the comparison 

in terms of Nu numbers is inconclusive to determine if a higher number of outlets is preferable. 

The results for k* = 4, 18 and 63 aren't included since they would be in between the result obtained 

for k* = 1 and k* = 260.  

 

Figure 64. Nusselt number versus M for N = 6 and 12, k* =1 and 260. 
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4.3 Conclusions 

The numerical results presented here expand to turbulent regime the analysis and 

conclusions reached in the previous chapter, particularly in terms of thermal-hydraulic 

performances of radial and bifurcating networks, designed for cooling a heat-generating disc. The 

hydraulic performance of the flow networks is strongly dependent on the number of bifurcations 

and on the flow strength (mass flow rate) beyond which the bifurcations induced pressure losses 

become comparable/larger than the pressure losses caused by the straight sections of the flow 

channels. In this respect, bifurcating networks can be expected to perform best when the flow rate 

is small, and radial networks can be expected to perform best when the flow rate is high. 

Conversely, when the flow becomes turbulent, the shift in performance occurs again and 

bifurcating networks tend to perform better for N = 6 and 12.  

Similarly, there seems to be no simple prediction in how the radial and bifurcating networks 

perform when it comes to the thermal performance of the disc. In this case, the relative solid-fluid 

thermal conductivity is an additional parameter to affect the behavior of the flow configuration. 

This parameter affects the diffusion thermal resistance in the solid region, and, as such, controls 

the extent to which the convection effect is effective in helping remove the generated heat from 

the disc. The heat transfer process being conjugated makes the prediction the thermal performance 

very difficult indeed, with the results showing again a shift in the behavior of radial and bifurcating 

networks when 𝑘∗ increases, with radial networks performing better when k* is small (close to 

one) and when M is large. 
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In summary, the decision to choose the flow network with the best performance depends 

on factors that go beyond the network being either radial or bifurcating. Moreover, the bifurcating 

effects (flow separation), which may or may not occur, seem to affect not only the overall pressure 

loss but also the overall heat transfer performance, with this effect being again dependent on k*. 

Figure 65 presents a summary of the best performance in terms of thermal resistance, flow 

resistance, and Nusselt number. 

Although it is difficult to choose between radial and bifurcated geometries in terms of 

thermal resistance, configurations with high k* values present better performance with lower 

maximum temperature. This is an important conclusion of the present work since the number of 

applications in the industry that uses this type of configuration is large.   
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Figure 65. Summary of the best flow configurations in term of 𝑇𝑚
∗ , 𝑓 and 𝑁𝑢 for M and k*. 
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