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In the next wave of swarm-based applications, unmanned aerial vehicles (UAVs) need to

communicate with peer drones in any direction of a three-dimensional (3D) space. On a given

drone and across drones, various antenna positions and orientations are possible. We know

that, in free space, high levels of signal loss are expected if the transmitting and receiving

antennas are cross polarized. However, increasing the reflective and scattering objects in the

channel between a transmitter and receiver can cause the received polarization to become

completely independent from the transmitted polarization, making the cross-polarization

of antennas insignificant. Usually, these effects are studied in the context of cellular and

terrestrial networks and have not been analyzed when those objects are the actual bodies

of the communicating drones that can take different relative directions or move at various

elevations. In this work, we show that the body of the drone can affect the received power

across various antenna orientations and positions and act as a local scatterer that increases

channel depolarization, reducing the cross-polarization discrimination (XPD).

In addition to communicating with other UAVs in a swarm, UAVs can also serve users on

the ground. For example, at ultra-low altitudes, an unmanned aerial vehicle (UAV) can act

as a personal base station where it communicates only with one or two users on the ground.

The communication device used by a user can be in their pocket, held by hand, or attached

to their bodies. In these scenarios, the wireless channel can go through different fading

levels, depending on the UAV’s location, user orientation, the location of the UE near the
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user’s body, and the frequency of the transmitted signal. The extent to which these factors

can affect Air-to-Ground channels at ultra-low altitudes is studied in this work. We answer

questions regarding how the human body and different use-cases of holding a communication

device on the ground can affect the quality of the wireless channel and the optimal UAV

hovering location. Furthermore, we demonstrate how the observed effects can be leveraged

to our advantage and increase the physical layer security of UAV-assisted networks relying

on the human-induced effects.

Finally, in situations where a UAV swarm needs to communicate with a target that is

far or surrounded by undesired receivers, beamforming can be an attractive solution. With

beamforming, the transmitted signal becomes shaped towards a certain direction confining

its spatial signature and increasing the received signal-to-noise-ratio (SNR) at the receiver.

However, phase synchronization across the swarm is difficult to achieve and there will always

exist some degree of phase incoherency across the transmitted signals from the distributed

UAVs. Phase differences between the distributed nodes would result in signals arriving at

different times and their phases might not align with each other resulting in reductions in

beamforming gain. Hence, a method to increase phase coherency at the receiver with limited

channel overhead is desired. To this end, we propose a UAV rotation-based method through

which the UAV, relying on its heterogeneous body structure, can alter the phase of the

incoming signals and increase the beamformed signal level.
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Chapter 1

Introduction

Due to many attractive features, such as low cost, ease of on-demand deployment, and

ability to maintain position or move in any direction, investment in unmanned aerial vehicles

(UAVs) has surged in recent years resulting in a diversified array of applications such as

smart agriculture [1,2], delivery of commercial products as well as life-saving equipment [3],

inspection, entertainment, 3D imaging, and responding to natural disasters. However, most

of these (and other) applications make use of a single drone that usually communicates with

or senses a signal arriving from a node that is not mobile in 3D space (e.g., cellular base

station). Drone swarms and related research is still in its infancy. Currently, even if a

group of drones could appear to be coordinating, this coordination is pre-planned and non-

adaptive. For example, festivals and exhibitions that demonstrate drone swarms forming

different shapes through lights, such as Intel’s 1825 drones fleet in Tokyo Olympics (2021),

leverages pre-planned flights that do not necessary require communication across the drone

swarm.

The next wave of applications will be the use of UAV swarms to achieve certain tasks.

For example, in a search and rescue mission, a swarm of UAVs could cover a larger area

compared to a single drone, thus resulting in a faster and a higher probability of mission

success. One key limitation of UAV swarms, however, is the communication channel between

the drones. In a swarm, drones can have any arbitrary heading direction and exist at various

relative elevation angles from each others. Moreover, the antennas mounted on these drones

can be of different types, have different orientations, and be mounted on different positions.

In addition to cooperating in a swarm, UAVs can simultaneously serve nodes on the

ground using multiple mounted antennas. The ground node could be a fixed base station, a

person holding a device, or a moving target. In these cases, factors such as the surrounding

environment or the body-induced effects from the human holding the device could add to the
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Figure 1.1: Scenarios for UAV swarms.

complexity of the wireless channel resulting in potentially different channel effects compared

to aerial nodes. Fig. 1.1 illustrates an example of a disaster recovery scenario where a

swarm of UAVs provide communication services to an area that lost its communication

infrastructure. In such scenario, UAVs communicate with each other, with fixed ground

nodes, and with moving objects on the ground such as humans and vehicles. The wireless

links in such scenario are exposed to the various above-mentioned factors and studying the

interaction bet‘ween them is necessary.

One issue with current UAV literature is that the majority of it is still theoretical. If we

were to lookup the proceedings of a venue that targets UAV communications, we will find that

most of the works presented are theoretical contributions that, while valuable, need to be ex-

perimentally verified. (An example of this claim can be found in the UAV-related workshops

at the International Conference on Communications (ICC), IEEE’s Flagship conference; for

example, in 2019 only 8% of the UAV-related papers were experimental.) Optimization mod-

els that target optimal deployments and trajectories constitute the majority of drone-related

works. Unfortunately, these works make many assumptions and neglect important factors

(discovered or emphasized in this work) that could lead to misleading results. Grounding

these studies to reality, through extensive and careful experimentation, is essential. This is
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one contribution of this work.

Measurement based studies that characterizes UAV-based channels have recently emerged

and became more common. These studies, however, mostly target air-to-ground channels.

The focus on air-to-ground channel might be due to the fact that less efforts are needed in

terms of experiment design and automation compared to UAV-to-UAV channels. Therefore,

there is a need for studies that investigate air-to-air channels in 2D and 3D space. Lastly,

even in the air-to-ground literature, the ground nodes are either cellular base stations, such

as the LTE eNB station [4], cars [5], or tripod-mounted nodes above the ground [6]. The

role of the human body on such channels, with the exception of a few recent works [7], have

been mostly disregarded in literature. Therefore, studies that target the above-mentioned

issues, and contribute to understanding them, are necessary.

1.1 Summary of Thesis Contributions

UAVs within a swarm can communicate with each other to accomplish a certain task

(e.g., find a missing person or deliver data to remote area), communicate with a ground base

station in scenarios of natural disasters, or work as a personal base station to communicate

with only one or a handful of users/soldiers on the ground. An illustration of these use cases

is shown in Fig. 1.1.

In such scenarios, the antenna position on the UAV, its orientation, radiation pattern,

and polarization could have a considerable impact on the wireless channel as we shall see

in this work. Furthermore, as the location of the drone changes, these effects can vary

accordingly. For example, When a UAV changes its heading direction, its body can become

an obstacle in the signal path affecting both, the magnitude and phase of the waves arriving

at the antenna. In addition, when communicating with humans on the ground, the body

of the human can influence the wireless channel in a way that depends on their orientation

relative to the flying drone and the location of the device near their body.

Our work addresses these aforementioned issues and can be summarized as follows. First,

we understand the fundamental effects of the UAV body on the radiation pattern and po-

larization (direction of the electric field) of UAV-mounted systems. In doing so, we conduct

several anechoic chamber experiments and evaluate the radiation pattern of vertically and

3



horizontally mounted antennas while rotating the antennas 360◦. The experiments are con-

ducted first without the drone body and then with the drone body to directly compare and

evaluate the UAV body effect. The obtained findings from this work can be useful when de-

signing UAV swarms, for in a swarm topology, UAVs will ultimately be at different directions

from each other and their bodies should be taken into account.

Second, we conduct several experiments to understand UAV-to-UAV channels in 2D and

3D space. In doing so, we design several flight paths where UAVs visit different waypoints

resulting in either partial or full obstruction of the mounted antennas by their bodies. We

analyze channel fading, both large-scale and small-scale, shadowing induced by the drone

body, and the impact of having different antenna orientations on the drone on the wire-

less channel performance. Six different single-input-multiple-output (SIMO) setups/antenna

configurations at the receiver are investigated. The role of elevation angle is of particular

interest and is thoroughly analyzed in terms of received signal strength (RSS) and signal-to-

noise-ratio (SNR) improvements that are achievable due to having multiple antennas. We

analyze small-scale fading in UAV-to-UAV channels for co-polarized and cross-polarized an-

tenna setups. Specifically, we analyze the Rician K-factor – which is the ratio of the power of

the main LOS component to multipath components and a measure of channel fading sever-

ity – across all antenna orientations and elevation angles and draw important insight that

has not been provided by any other work regarding how the K-factor for co-polarized and

cross-polarized links behave across the different UAV elevation angles.

Third, to understand the ground effects on UAV-based channels and decouple them from

antenna/body effects, we conduct UAV-to-Ground experiments with the same setup for

the previous experiments and compare the results. We also calculate and analyze how the

envelope correlation coefficient of our drone-based multiple antenna system might be affected

by the elevation angle, antenna orientation, and spacing decision.

Finally, to complete the picture and understand how humans can possibly influence UAV-

to-ground channels, we conduct several experiments that span three different use cases of

holding a device, eighteen UAV hovering positions, and two carrier frequencies. We first

start with free-space experiments and compare the results to when there exists a human

body. Then, for the same human subject we investigate how their orientation and near-
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body location of the communication device can affect the channel. Analysis is conducted in

terms of shadowing, multipath, and the Rician K-factor. Insight is then drawn regarding

the optimal UAV hovering position based on the observed use case. Then we conclude with

possible applications highlighting the impact of our findings on air-to-ground channels that

seek including the human body into such channels, as opposed to the majority of related

work which do not consider such factor.

1.2 Thesis Overview

This thesis is structured as follows. In Chapter 2, we present the background needed

to understand this work. We start with the theory and fundamentals of wireless commu-

nications, then we discuss the hardware and software setup. In Chapter 3, we analyze the

impact of the UAV body on radiation pattern and XPD and quantify the effect of azimuth

and elevation angle and antenna spacing on the performance of UAV-to-UAV channels in

2D and 3D space. In Chapter 4, we investigate UAV-to-ground channels for various antenna

setups without the involvement of humans on the ground. In Chapter 5, the impact of the

human body is quantified for different use-cases of holding a device on the ground across

various UAV hovering positions and carrier frequencies. We then conclude in Chapter 6 and

discuss possible future work.
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Chapter 2

Background

The objective of this work is to better understand UAV-based channels under different

contexts and application scenarios. Before we tackle these issues, however, it is important

to explain some of the underlying concepts.

2.1 Radiation Pattern

The energy flux density and the direction of propagation of an electromagnetic wave is

the result of the cross-product of two fields, the electric field and the magnetic field. The

intensity of the radiated power is usually described by a certain radiation pattern model that

represents the power radiated in the elevation and azimuth planes. An isotropic antenna,

which is an idealistic view of how radiation occurs, radiates electromagnetic energy equally

in all directions. Omni-directional antennas, on the other hand, radiates equal energy in the

azimuth plane (i.e., across all ϕ) while the magnitude of radiation in the elevation plane is

a function of the elevation angle, θ. A vertically oriented dipole antenna for example, has a

radiation pattern that can be described as [8]:

U(θ, ϕ) = cosn(θ) (2.1)

With n determining the directionality of the radiation pattern. The larger the n the narrower

the radiation pattern beam in the elevation plane and consequently the more directivity.

Since omni-directional antennas radiate equal amount of energy across all ϕ values, its value

is only dependent on θ.

2.1.1 Antenna Radiation Pattern Modeling for Different Orientations

The antennas used in our work are linearly-polarized omnidirectional dipole antennas

(VERT2450) [9]. To explain how we model the radiation pattern of this antenna, we show a
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Figure 2.1: Vertically oriented dipole antenna.

vertically-oriented dipole antenna along the z direction in Fig. 2.1. The radiation pattern in

the elevation plane is measured from the vertical (z) direction and described in the spherical

coordinate system in terms of Θ. Conversely, the horizontal (azimuth) plane is described in

terms of Φ. In the case of a vertically-mounted dipole, the radiation pattern1 is given by [8]:

Gz = sinΘ, with no azimuth variation. Note that this assumption of no azimuth variation

for omnidirectional antennas will be proven here to no longer hold true when the antenna is

mounted on a drone.

If mounted horizontally (i.e., over the x-y plane), the pattern becomes: Gy = − cosΘ sinΦ.

We use the notation of GV V to indicate the gain product of vertical Tx-Rx antennas (VV

link), whereas GV H is used to indicate the gain product of a vertical Tx and a horizontal

Rx antenna (VH link). Note that we are interested in the elevation angle θ from the xy

plane, which is computed as θ = π
2
− Θ. In our experiments, this elevation angle, θ, can

be calculated using θ = arctan(l/dh), where l is the altitude of one drone relative to the

other node, and dh is the horizontal separation distance between the two nodes. Given these

models, the gain product for a VV link becomes |GV V | = cos2(θ). For a VH link, the gain

product becomes |GV H | = cos(θ)sin(θ) sinϕ. With the horizontal dipole mounted in the y

direction, sinϕ = sin π
2
= 1, and we are left with |GV H | = cos(θ) sin(θ). If we use these

models and compare them to the manufacturer’s datasheet [9], we find that the average

difference between the two methods across the considered elevation angles is 1.14 dB with a
1Radiation pattern and gain are used interchangeably in this work.
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standard deviation of 2.25 dB. Using this model allows us to study elevation dependencies

with relatively low errors.

2.2 Polarization

Polarization is defined by the direction of the electric field [8]. In an ideal case, if two

identical, linearly polarized (LP) antennas are oriented the same and used to communicate

with each other, there should be no loss due to polarization mismatch. However, if an LP

antenna is oriented with a tilt angle that is different from the angle of the incident wave,

there will be a resultant loss which is only a function of the relative difference between the

antenna’s tilt angle and the incidence angle of the incoming wave. Cross-polarization dis-

crimination (XPD), describes how well the two orthogonal polarization components (vertical

and horizontal) can be separated by the antenna. This XPD is calculated as the ratio of the

amount of power received in the co-polarized versus cross-polarized directions [10]:

XPD = Pcopol/Pxpol (2.2)

Here, Pcopol can represent PV V or PHH and Pxpol can represent PV H or PHV where the first

and second index represent the transmit and receive antenna orientations, respectively. The

subscripts V and H denote vertical and horizontal antenna orientations, respectively.

Strong XPD values indicate strong separation of the two polarizations and that distin-

guishing between the two orthogonal components by the antenna is possible. Low XPD

values indicate strong mixing between the two orthogonal components resulting in very little

distinction between the two components. From the perspective of the wireless environment,

strong LOS channels with minimal reflections can lead to strong XPD values while environ-

ments rich with scattering and reflecting components result in low XPD values. Hence, XPD

in multiple antenna systems is directly related to the ability to perform spatial multiplexing

and diversity. While low XPD values mean the two polarizations are strongly mixed and po-

tentially resulting in no multiplexing gains, they can indicate a rich scattering environment

with high diversity gains [11].

Impact of XPD on MIMO Capacity: To appreciate the influence of XPD variations on the

capacity of multiple-input-multiple-output (MIMO) systems, we briefly discuss a 2×2 MIMO
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system. We demonstrate the effect of XPD at different SNR regimes on the channel capacity

of a 2×2 cross-polarized MIMO system. If we assume that we have a high K-factor that

results in an approximately deterministic channel, mimicking an anechoic chamber setup,

the channel can then be represented as:

H =

 1
√
η

√
η 1


where 0 ≤ η ≤ 1 indicates the level of XPD. Very poor discrimination between the two

orthogonal components would result in a high η, reaching approximately a value of 1, whereas

perfect discrimination (very high XPD), would result in an almost zero value for η. The

channel capacity at perfect XPD (η ≈ 0) can be described as Cη=0 = 2 log2(1 +
γ
2
), while at

poor XPD (η ≈ 1) it can be given as Cη=1 = log2(1+ 2γ). If SNR is high, then, Cη=0 can be

approximated to Cη=0 ≈ 2 log2(
γ
2
) and , Cη=1 ≈ 1+log2(γ). At low SNR (γ << 1), and using

the approximation, log2(1 + a) = a log2(e), the channel capacity at perfect XPD becomes

Cη=0 ≈ γ log2(e), while at poor XPD the capacity becomes Cη=1 ≈ 2γ log2(e). Therefore,

it is clear that at high SNR values, high XPD can provide substantial improvements in

channel capacity. However, at low SNR values, high XPD results in no increase in channel

capacity. Very poor XPD can indicate a richness in scattering in the environment and

therefore, diversity gains can be achieved. This of course, relates to how relative direction

and/or the rotation of a drone can affect SNR and consequently the achieved capacity given

a certain XPD in a drone-based MIMO channel. A numerical example is given in Fig. 2.2.

It is clear that at high SNR regions, low XPD values can lead to significant degradation in

the capacity achieved by a MIMO system. At low SNR, however, the impact of XPD on

spatial multiplexing and achieved capacity is negligible.

2.3 Signal Model

In our work, the transmitted signal can be represented by [12]:

s(t) = ℜ{m(t)ej(2πfct+ϕo)} = ℜ{m(t)} cos (2πfct+ ϕo) + ℑ{m(t)} sin (2πfct+ ϕo) (2.3)

9



0 5 10 15 20 25 30 35

SNR (dB)

0

5

10

15

20

25

S
p
e
c
tr

a
l 
e
ff
ic

ie
n
c
y
 (

b
p
s
/H

z
)

High XPD

Low XPD

Figure 2.2: Impact of XPD on the capacity of a 2× 2 MIMO system.

Here, m(t) is the message signal and fc is the carrier frequency generated by the local

oscillator with a phase offset of ϕo. When the transmitted signal passes through the wireless

channel, which can be considered as a linear time-invariant (LTI) system, the received signal

will be a scaled and phase-shifted version of the transmitted signal. Due to multipath

reflection, multiple components will have to add up at the receiver, giving rise to constructive

and destructive interference. Hence, the received signal can be represented by:

r(t) = ℜ{
N(t)∑
n=0

αn(t)m(t− τn(t))e
(j2π(fc(t−τn(t))+ϕDn+ϕo))} (2.4)

Where N(t) is the number of multipath components, τn is the propagation delay of compo-

nent n which is equal to rn(t)/c with rn(t) and c being the path length in meters and c the

speed of light; αn(t) is the amplitude of the nth multipath component, and ϕDn is the phase

shift due to Doppler shift. Since our work is mainly with narrowband channels, multipath

components are non-resolvable because the time difference between, say two components is

not much greater than the inverse of the bandwidth [12].

If an unmodulated continuous wave (CW) transmission is used, the transmitted signal is
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s(t) = cos(2πfct) and the received signal can be written as:

r(t) = ℜ{[
N(t)∑
n=0

αn(t)e
−jΦn(t)]ej2πfct} (2.5)

Where we have collected the phase terms in Φ. That is, Φn(t) = 2πfcτn(t)− ϕDn − ϕo. The

received signal can be written as:

r(t) = rI(t) cos(2πfct) + rQ(t) sin(2πfct) (2.6)

Where rI(t) =
∑N(t)

n=0 αn(t) cosΦn(t) is the in-phase, and rQ(t) =
∑N(t)

n=0 αn(t) sinΦn(t) is the

quadrature component. After quadrature demodulation and low-pass filtering, and assuming

there is no carrier frequency offset (CFO), the received signal at baseband (which is used for

actual processing) has the complex magnitude of:

r̂(t) = |r(t)| =
√
r2I (t) + r2Q(t) (2.7)

2.4 Fading and Pathloss

The stochastic nature of the wireless channel makes it best described in terms of statis-

tical distributions. The random fluctuation in the attenuation of the wireless signal as it

propagates through the medium is called fading. Fading can be measured and modeled on a

small-scale of time and space (on the order of a wavelength) or on a larger scale usually as

an average over many meters of distance or large scales of time. In this section, we describe

how to model small-scale and large-scale fading of UAV-based channel.

2.4.1 Small-scale fading

Depending on the nature of the multipath environment, the statistical distribution of the

received signal envelope will change. If there exists no LOS component (NLOS), then the

in-phase and quadrature components can be modeled as two zero mean Gaussian random

variables and the envelope will be Rayleigh distributed. On the other hand, if there exists

a strong/dominant LOS in addition to the multipath components, then, the in-phase and
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quadrature components are not zero mean and the complex envelope has a magnitude that

can be better represented by a Rician distribution. The Rician probability density function

is given by [12]:

f(r) =
r̂

σ2
exp(− r̂

2 + a2

2σ2
)Io(

r̂a

σ2
), r ≥ 0 (2.8)

where a represents the amplitude of the direct component and 2σ2 is the average power of

the multipath components. The ratio of power in the main LOS component to that obtained

by the rest of multipath components is an important indicator of channel fading severity and

is conventionally known as the Rician K-factor. The Rician K-factor in (dB) is given by:

K(dB) = 10 log10[
a2

2σ2
] (2.9)

In this work, we will model the channel, investigate the hypothesis that it is a Rician channel

when experiments are conducted in LOS, and then we will analyze small-scale fading in

terms of the Rician K-factor. Specifically, we will study the impact of UAV body, antenna

orientation, ground reflection, and the human body on the K-factor.

It is important to understand how the K-factor can affect the actual performance of

digital communication systems. Not only the K-factor is an indicator of fading severity and

how deterministic the channel is, but it can be directly related to the bit-error-rate (BER)

of wireless communication systems. To realize the impact of these K variations on system

performance, we simulate a 64-QAM Rician fading channel with different K values. The

results are shown in Fig. 2.3. We can see that a reduction of K from 20 dB to 3 dB can, at

an SNR of 18 dB, increase the bit error rate (BER) by three orders of magnitude.

2.4.2 Large-scale Fading and The Pathloss Model

In the previous subsection we discussed multipath effects and how the channel can be

modeled as a function of the multipath nature in the environment. Signal fluctuations in the

previous section are on a small-scale of space (at the order of a wavelength or smaller) and

time (depending on the symbol/signal duration of interest). In many times, we find ourselves

interested in understanding the average wireless link performance when changes occur on a

larger scale of distance and/or time. For example, how does the received signal varies as the
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Figure 2.3: The impact of K-factor variations on symbol error rate for a 64-QAM system in
a Rician fading channel.

transmitter-receiver distance changes by 40 or 100 meters? In such scenario, we are only

interested in what is conventionally known as the large-scale fading nature of the channel.

Such large-scale changes in distance usually mean changes in the surrounding environment

and nature of obstacles around. When large-scale fading is considered, pathloss models are

usually used to predict the received signal power at further distances. A pathloss model uses

measurements to model the relationship between distance and received power or pathloss.

The reduction in received power due to distance can be described by the log-distance pathloss

model [12]. In particular:

PL(d) = PL(dref ) + 10n log
d

dref
+ χσs (2.10)

where PL(d) is the pathloss at a distance d, χσs is the shadowing parameter, which is usually

modeled as a zero mean Gaussian random variable, PL(dref ) is the pathloss at a reference

distance, and n is the pathloss exponent. Using the reference pathloss at a known distance

(usually measured or referred to from a known environment) one can predict the received

signal power at further distances. However, in aerial communications, due to the 3D nature

of the channel which is a function of the location of the UAV and its mounted antennas’ 3D

radiation pattern, such models can fall short due to excluding how the radiation pattern in
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one plane can be very different at other elevation/hovering angles. Hence, angle-dependent

models are more suitable for UAV-based channels [4, 13].

2.4.3 Angle-dependent Models for UAV Channels

In this section, we demonstrate the reason behind the need for angle-dependent models for

UAV communications. In free-space, and assuming a deterministic channel, i.e., no random

channel fading, the received power can be described by the Friis formula where the received

power is a function of deterministic factors. Specifically, the received power is a function of

the transmitted power Pt, Transmit/Receive (Tx/Rx) antenna radiation patterns (GT and

GR), carrier wavelength λ, distance d, and polarization loss factor ψ. It can be described by

the Friis formula [8]:

Pr(θ, ϕ) = PtGT (θ, ϕ)GR(θ, ϕ)(
λ

4πd
)2ψ (2.11)

In co-polarized links, the polarization of the incident electric field matches the polarization of

the receiving antenna, and no losses are incurred. On the other hand, in a cross-polarized link,

due to the mismatch between the direction of the incoming electric field and the receiving

antenna orientation, the received signal is reduced.

For a polarization-matched link, the free-space received power is given by:

Pr(dBm) = Pt(dBm) + 10 log(GT,R) + 20 log(
λ

4πd
) (2.12)

Here, GT,R = GTGR is the transmit-receive antenna radiation pattern product discussed

above. To account for shadowing caused by objects in the Tx-Rx path, equation (2.12)

should include a shadowing term ξs, which is usually modeled as a normally-distributed

random variable with zero mean and a standard deviation of σs (i.e., N (0, σs)). Finally, as

the drone can rotate in any direction while hovering at a fixed altitude, we find that the

average RSS can be reduced due to drone body blockage. As a result of this body blockage,

the received power will be reduced by a term denoted here as Γϕ(θ) which is specific to the

drone body. The dependency of Γϕ(θ) on elevation angle will be discussed in Section 3.4.2.
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When the shadowing and body-induced losses are added to equation (2.12), it becomes:

P V V
r = Pt + 10 log(cos2 θ) + 20 log(

λ

4πd
)− ξs − Γϕ(θ) (2.13)

For the VH link, the received power becomes:

P V H
r = Pt + 10 log(cos θ sin θ) + 20 log(

λ

4πd
)− ξs − Γϕ(θ) (2.14)

Angle-dependent vs. Distance-dependent Loss: It is important to understand that in

some scenarios, angle-dependent models are more convenient and help to accurately char-

acterize the behavior of drone-based links over conventional, distance-based models. This

observation was mentioned in other works such as [4, 13], but no examples were given to

quantify the effect. Here, we provide an example scenario where angle-based models greatly

outperform distance-based models. In this example, a ground node communicates with a

hovering drone with a fixed horizontal distance of dh = 20 m. The drone moves from an

altitude of l = 10 m to l =30 m in 10-m increments. The elevation angles created are,

respectively, 26.5◦, 45◦, and 56.3◦. If we exclude the radiation pattern effects, the reduction

in power due to the increase in the separation distance from d =
√

(202 + 102) = 22.3 m

to d =
√

(202 + 302) = 36 m is approximately 4 dB. If we model the elevation pattern

of each of the Tx/Rx antennas as cos2(θ), the loss just due to the antenna pattern mis-

alignment would be 10 log(cos4(θ)) = 10 log(cos(tan−1( l
dh
))4) =10 dB. Hence, by excluding

the radiation pattern in this scenario, the received power would be overestimated by 6 dB.

Conventional pathloss models that relies on taking a reference pathloss measurement in a

certain direction can result in underestimating pathloss in 3D aerial communications due to

different azimuth and elevation radiation pattern values in different directions.

In an ideal scenario, the transmitter and receiver antenna are perfectly aligned (i.e.,

θ = 0◦), and the loss is 0 dB. The antenna gain product for the three altitudes and horizontal

distances of up to 80 m is shown in Fig. 2.4. We can see that the effect of the gain product is

greatest at small horizontal distances with high drone elevations (i.e., large elevation angles).

As the horizontal distance increases for a fixed altitude, the elevation angle becomes smaller,

resulting in a small antenna gain misalignment loss compared to losses due to the increasing
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Figure 2.4: Tx-Rx antenna gain product for omnidirectional dipole antennas at different
elevation scenarios. At some angles, losses caused by radiation pattern misalignment can be
greater than distance-based losses.

distance. In our 3D experiments we will include the radiation pattern effect according

to (2.13) and (2.14). Given that dh = d cos θ, |GV V | = cos2(θ), |GV H | = cos(θ)sin(θ) sinϕ,

which at ϕ = π
2

becomes |GV H | = cos(θ)sin(θ), and by subtracting Pr from Pt, the angle-

dependent loss for the VV and VH links, after some manipulation, respectively, becomes:

LV V (θ) = 20 log

(
4πdh

λ cos(θ)2

)
+ ξs + Γϕ(θ) (2.15)

LV H(θ) = 20 log

(
4πdh
λ

)
+ 10 log

(
1

cos(θ)3 sin(θ)

)
+ξs + Γϕ(θ)

(2.16)

2.5 Software-Defined Radios, Signal Generation, and Logging

Software defined radios (SDRs) are radio equipment that contain RF front-ends and

baseband units which are fully controllable and programmable. Their architecture allows

for easy deployments and adaptability to changing requirements. For these reasons, SDRs

have recently become a ubiquitous wireless experimentation tool. In this section we briefly

describe the software and hardware used in this work.
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(a) (b)

Figure 2.5: (a) Experiment software stack using SDRs. (b) Illustration of 3D printing of
antenna mounts.

2.5.1 Hardware and Software Design

In all experiments, two of the Universal Software Radio Peripheral (USRP) E312s from

Ettus Research™ are configured for collecting measurements. The antennas are directly

connected to the TxRX or Rx port using an SMB to SMA adapter. When mounting on

the UAV body, which is a DJI Matrice 100, the radios are mounted to the top center of the

body using a specially designed 3D printed bracket (see Fig. 2.5). Multiple antennas can

be mounted on the drone body. We are able to mount the following configurations of two

antennas: VV, VH, HH, HV, DD, and HV with V, H and D indicating, respectively, vertical

up, horizontal and vertical down antenna orientations.

The USRP E312 runs a Linux distribution based on OpenEmbedded with driver support

for interfacing with the radio hardware using Ettus’ USRP Hardware Driver (UHD). The

GNU Radio Companion (GRC) is used on a host machine to develop signal processing

flowgraphs. UHD is leveraged within the flowgraphs to interface with the RF front end on

both radios via the FPGA fabric. In most experiments a modulated/unmodulated carrier is

sent at different frequencies (2.5 GHz and 900 MHz) at 32kS/s, 64kS/s or 1.25MS/s. The

receiver, sampling at the same rate, is configured to write the received IQ samples to a

binary data file as complex floats. Then, from the IQ samples, we calculate the complex

magnitude of the received signal according to . Large-scale and small-scale fading analysis

is then conducted according to the aforementioned methods.

Drone Description: The body and frame of the Matrice 100 is made up of various
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lightweight materials including carbon fiber, aluminum, plastic, and steel. The frame is

braced with aluminum brackets and held together with steel screws. The majority of the

frame, including the top and bottom plate as well as the propeller arms, is constructed out

of epoxy hardened carbon fiber weave. Carbon fiber is known to shield radio frequencies but

the degree of shielding largely depends on various characteristics of how the carbon fiber is

manufactured. The exact characteristics of the carbon fiber used by DJI are unknown to us

and this limits our ability to fully model its effects. While not the focus of this investigation,

our anechoic chamber experiments should capture the behavior that this particular drone

body presents.

Experiment Control and Data Logging: The experiments’ software is mostly designed

and written using flowgraphs that are compiled into a python script within the GRC en-

vironment and the resultant python code is transferred to the USRP E312 to be executed

in the embedded environment. An additional python script is then developed in order to

log the output from the GPS receiver and inertial measurement unit (IMU) internal to the

USRP E312. Time, location, altitude and orientation data are logged to a text file every

half-second. To maintain efficiency while performing experiments, a controlling shell script

is written to automate the execution of the two python files. In addition, the shell script also

logs an additional timestamp of when the python scripts are executed for more precise of-

fline synchronization of location data. An experiment that has two simultaneously receiving

antenna generates 4 data files: shell script log, GPS/IMU log, and two files for each channel

of received IQ samples. Received power is calculated offline at each point of interest. In

order to take repeated drone-based measurements at the defined 3D points of interest, the

flight controller is programmed with a GPS based waypoint mission. The software stack of

our system is shown in Fig. 2.5.
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Chapter 3

Characterization of UAV-to-UAV and UAV-to-Ground Channels in 3D Space

In this chapter, we study the role of the UAV body and different antenna positions and

orientations on the large-scale and small-scale fading of UAV-to-UAV and UAV-to-Ground

channels. Through systematic in-field experimentation, we prove that the drone body can

significantly change the radiation pattern of mounted antennas and the polarization of the

electromagnetic wave resulting in significant degradation of XPD. We minimize environmen-

tal effects by conducting a series of line-of-sight (LOS) experiments in an almost building-free

environment in Taos, New Mexico. We address how the orientation and location of drone-

mounted antennas can affect the fading nature of drone-based channels. We show that the

drone body can increase the standard deviation of the shadowing parameter for polarization-

matched vertical links. We also show that when the antenna is mounted on the opposite

side of the receiving drone from the transmitter, the extra losses induced by the drone body

need to be included in conventional models for more accurate predictions. We do that by

analyzing and modeling the impact of the drone rotation on the average channel gain/loss

and show improvements of up to 85% in prediction accuracy with rotational aspects taken

into account.

Then, we move to characterizing the small-scale fading of these drone-based channels in

terms of the Rician K-factor. We show that the K-factor is strongly dependent on elevation

for polarization-matched vertical links, while it is approximately flat for cross-polarized links.

To isolate the impact of position and orientation of the drone-mounted antennas and not

confuse that with fading caused by the ground, we compare results of the Ground-to-Drone

(GtG) experiments to those obtained by another set of Drone-to-Drone (DtD) experiments

and find that ground reflections can reduce the K-factor by approximately 10 dB. However,

as we move to higher altitudes, the K-factor observed by both experiments becomes approx-

imately the same, indicating less of a role for the ground compared to the actual antenna
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location and orientation. To the best of our knowledge, this is the first study to provide a

systematic and comprehensive understanding of these fundamental drone-related issues.

The contributions of this paper are summarized as follows:

• We quantify, via anechoic chamber measurements, the effect of the drone body on

the azimuth radiation pattern of omnidirectional antennas and find that, while the

measured azimuth pattern is approximately constant for antennas in isolated mode

(not mounted on a drone), it can vary by up to 10.25 dB when the same antennas are

mounted on a drone. This finding proves that the assumption of a constant azimuth

radiation pattern when dealing with drone-mounted antennas is no longer valid.

• We measure the co-polarized and cross-polarized radiation pattern of various antenna

placements on the drone and show that the drone body can significantly impact channel

depolarization and reduce XPD by an average of 15 dB compared to the XPD of an

isolated antenna in the absence of a drone body.

• We show that there is an additional loss term caused by the drone body that needs to be

accounted for unless the antennas on the transmitter and receiver are mounted on sides

that face each other. This body-induced loss is found to be elevation-dependent for

polarization-matched vertical links. We propose a model that describes this rotational

loss and show that our model can be 85% more accurate than conventional models

that neglect this body-induced effect.

• To understand how the orientation and location of drone-mounted antennas can affect

small-scale fading, we characterize the Rician K-factor of the GtD channel and find that

polarization-matched vertical links exhibit strong dependency on elevation, while cross-

polarized channels result in an approximately flat behavior when elevation changes are

considered. Then, by comparing a set of DtD experiments to our GtD experiments, we

find that ground reflections can cause a degradation in the K-factor by up to 10 dB.

• Even though all of our experiments are conducted in LOS, we show that an antenna

spacing of 0.67λ results in a correlation coefficient of less than 0.7 regardless of antenna
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orientation. In terms of diversity, this indicates achievable diversity gains in the range

of 9.5 to 11.5 dB with basic selection or maximal ratio combining techniques.

We first start with reviewing related literature then move to the experimental frame work,

results and analysis.

3.1 Related Work

Broadly speaking, literature related to drone communications can be classified into two

main areas: (i.) models that cover optimal placement, efficient deployment, and simulations

that test different scenarios of trajectory and user mobility [14–16], and (ii.) measurement-

based studies that investigate the wireless channel in the uplink or downlink direction be-

tween a flying drone and a fixed or a moving node on the ground or in the air. The wireless

channel in these measurement studies can be categorized as an air-to-ground (AtG), ground-

to-air (GtA) or air-to-air (AtA) channel, depending on the nature of the target node.1

AtG channels. Many works have investigated the wireless channel between a hovering

drone and a ground user with emphasis on how distance and antenna orientation can affect

the received power or throughput at the ground node [6,17–19]. The AtG channel at ultra-low

drone altitudes was characterized with different settings of user equipment (UE) locations [7].

The AtG channel was studied after building a MIMO system that supports instantaneous

measurements at different receiver locations on the ground as well as beamforming from the

drone transmitting antennas [20, 21]. Shadowing was measured at diverse frequencies, and

a modification to the conventional path loss model was made to account for the obtained

frequency-dependent variations [22].

GtA channels. Due to its unique body structure, continuous movement, and limited space

on board, in addition to being envisioned in scenarios where multiple antennas on the drone

are receiving packets from ground sensors or users, the receiving channel characteristics of

multiple drone-mounted antennas have been of interest. For example, the channel between

a ground transmitter and an aircraft flying at speeds around 120 km/hour was studied, and

it was concluded that placing two antennas one above and another below the aircraft body

can result in throughput improvements [23]. Correlation coefficients and diversity gains
1While we would consider GtD/DtD a subset of GtA/AtA, we specifically use the former in this work to

emphasize on the impact of the drone body on the wireless channel.
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were studied for various antenna positions on a fixed wing structure and packet delivery

improvements of up to 32% were achieved [24]. An array of multiple antennas at the ground

was used to sound the channel in a forest environment, where a fixed wing UAV flew at

different altitudes and with co-polarized and cross-polarized links, and measurements of the

cross-polarization discrimination were made at those altitudes with some emphasis on the

achieved gains using different antenna orientations [25]. In the same context of GtA channels,

the work by Akram et. al. has resulted in an angle-dependent model for cellular-to-UAV

channels, where the received power and the shadowing parameter can change based on the

depression angle [4].

AtA channels. The channel in a drone-to-drone LOS scenario was studied at different

altitudes, and an extension of the Rician model was developed, where the variance of the re-

ceived power, which describes multipath components, was modeled as a function of the drone

altitude [26]. The throughput of a two-hop network was studied under different scenarios

of mobility [19]. While all of the above mentioned studies target important issues that can

help in understanding drone communications, none of them consider how signal reception

on a drone with multiple antennas can be affected by the drone body and its rotation. In

addition, the environments in which the above mentioned experiments took place and the

scenarios involved make it difficult to isolate the impact of the antennas and the drone body

on the presented results. In contrast, this work focuses on the impact of the drone body and

drone-mounted antennas via carefully-designed experiments.

3.2 The Impact of UAV Body Radiation Pattern and Polarization

Due to its unique structure and the various possible locations for antenna mounting, the

drone body can affect the radiation pattern of the mounted antennas. With the exception of

few works such as [7], most studies that present the radiation pattern of the antennas used

in their UAV-related experiments disregard this impact [4,6,27]. In this work, we will show

that the UAV can significantly alter both, the magnitude and phase of the arriving signal.

To quantify the impact of the drone body and antenna placement on the radiation pattern

and polarization, we conduct multiple controlled anechoic chamber and in-field experiments.

We show that placing antennas on drones is a nontrivial task due to the interaction of the
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Figure 3.1: Anechoic chamber setup. The two antenna positions/locations are shown on the
drone body.

drone body with mounted antennas.

The drone with the two antenna locations in the chamber is shown in Fig. 3.1. Note

that to mimic the structure of the drone in our in-field experiments, the same experiment’s

hardware is mounted on the drone and explained in Section 3.4.1. In the isolated case,

only the antenna is mounted at the receiving end of the chamber, and its radiation pattern

is measured. Then, in the antenna-on-drone scenario, we place the antenna on the drone

according to the positions shown in Fig. 3.1 and study the resulting radiation pattern. The

transmitting antenna is fixed and vertically-oriented while the vertically-receiving antenna

automatically rotates over the azimuth plane (ϕ) in 1.8◦ increments as the received power is

being recorded.

The results of the anechoic chamber experiment are shown in Fig. 3.2. In this figure,

"simulated" indicates a constant-azimuth radiation pattern, which is the general assump-

tion made in most drone-related literature. The antenna-only measurements represent the

measured values using the antenna in isolated mode, meaning only the antenna exists in the

chamber. We see, as expected, strong symmetry and the radiation pattern follows closely

the constant-azimuth pattern assumption made in literature. If we mount the antenna on

the drone, however, the results become significantly different, and the constant-azimuth pat-

tern is no longer valid. This variation can be clearly seen in the blue and red lines that
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Table 3.1: Impact of Drone Body on Co-Polar Radiation Pattern Values

Experiment Average Loss Maximum Loss
Antenna on Drone (position 1) 2.57 dB 8.34 dB
Antenna on Drone (position 2) 3.27 dB 10.25dB

indicate the measured power values of the drone-mounted antennas, where differences from

the isolated (antenna-only) scenario can reach up to 10.2 dB. In addition, there is also a

difference in radiation pattern due to different antenna positions on the drone (see Fig. 3.1

for antenna positions). This difference can be seen by inspecting the red and blue lines in

Fig. 3.2(a), which correspond to antenna position 1 and 2, respectively. In this figure, we

point to an angle where we can see a difference of 6.5 dB, which is the maximum difference

in radiation pattern due to different antenna locations on this drone. One might ask the

question why such differences exist even though the antenna positions look symmetrical on

the drone body. The answer is as follows: when the drone body starts to rotate, each Rx

antenna sees a slightly a different signal level because each position exhibits a different part

of the drone body (i.e., obstacle). This difference is clear if we look at the difference in

received power – by the two antennas – for the whole 360 degrees azimuth plane (shown in

Fig. 3.3). As we can see in the figure, at 0 degrees (Facing tx antenna) there is approxi-

mately no difference. As the drone rotates, however, differences in rx power manifest and

cause the values of received power to slightly differ. In this figure (Fig. 3.3), |∆p(ϕ)| is the

absolute difference in received power between the two mounted antennas at positions 1 and

2, respectively.

The average and maximum reductions in radiation pattern for the two antenna positions

are summarized in Table 3.1. These average and maximum losses are taken over the whole

azimuth (ϕ) plane. The loss is simply the difference between the azimuth power in the isolated

(antenna-only) scenario and the drone-mounted antenna scenario. We see that these losses

can reach up to 10 dB, with an average of up to 3.3 dB. It is important to note that while

this reduction might not seem significant, on average, reductions of more than 5 dB appear

multiple times over the whole azimuth plane for a fixed antenna position. We conclude

from these controlled experiments that antenna placement decisions on drones, trivial as
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Figure 3.2: (a) Azimuth radiation pattern for the simulated, antenna only (measured), and
antenna on drone for two positions (measured). (b) The HH/VH co-polarized/cross-polarized
radiation pattern for the antenna only setup: clear distinction between the two orthogonal
polarizations exists. (c) The HH/VH co-polarized/cross-polarized radiation pattern for the
antenna on drone setup (position 1): high polarization mixing exists due to the drone body.

they might seem, can considerably impact wireless channels in drone-based networks, where

rotating a drone or switching to a nearby antenna on the same drone, can lead to significantly

stronger channels.

3.2.1 Anechoic Chamber Cross-polarization Discrimination (XPD)

After realizing the impact of the drone body on the azimuth radiation pattern, a natural

question comes to mind: Is the local scattering caused by the drone body strong enough to

cause polarization mixing? If so, by how much? Here, we answer these questions.

The results of the measured co-polarized and cross-polarized channels for the antenna-

only and antenna-on-drone (position 1) scenarios are shown in Fig. 3.2(b)-3.2(c). Through a

quick visual inspection, we can see that there is a clear distinction between the co-polarized

and cross-polarized received powers in the isolated (antenna-only) scenario. This distinction,

however, becomes almost nonexistent for the antenna-on-drone scenario. The disappearance

of this distinction is due to higher polarization mixing between the vertical and horizontal

components, caused solely by the drone body. This polarization mixing, according to the
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geometrical theory of channel depolarization [28], can be attributed to the local scattering

and reflection caused by the drone body.

While there is an abundance of works on XPD and how it is affected by scattering

objects [10,29–31], none have investigated the drone body as the only source of polarization

mixing, except for one other work [32] that was published around the same time as our

work [11]. Here, we show that the drone body by itself can act as a source of scattering

and reflection, demonstrated by significant reductions in XPD. For example, if we look at

XPD at ϕ = 270◦, we can see that in the isolated scenario, XPD is 29.16 dB. In the drone-

mounted scenario at the same angle, it is 10.76 dB for antenna position 1 and 11.25 dB at

antenna position 2 (not shown here). Over all rotational angles, the average XPD for the

isolated (antenna-only) scenario is XPDisolated = 17.33 dB. In contrast, the average XPD

for antenna positions 1 and 2 is XPDpos.1 = 2.33 dB XPDpos.2 = 4.71 dB, respectively. A

similar (around 10 dB) degradation in XPD due to mounting antennas on the UAV were

measrued in [32].

We believe that these are significant findings due to the impact that XPD can have on

achievable capacity and diversity gains in MIMO applications that leverage cross-polarized

channels [33]. For example, an average XPD value of 0 dB means that the spatial multi-

plexing gain is limited. On the other hand, the same 0 dB value can indicate a richness

of scatterers in the multipath environment, which leads to a low correlation coefficient and

high diversity gains [34]. While it can be argued that these results are specific to this drone

(DJI Matrice 100), the insight we gain from this study can be valuable for drone swarm

designers [35] or researchers who aim to model drone-based polarized MIMO channels. In

addition, simulation tools, such as [36] can incorporate these findings through an effective

antenna pattern and XPD lookup tables rather than treating the antennas as point objects,

which is proven here to be highly inaccurate.

3.2.2 In-field XPD

We now evaluate the impact of different drone relative directions on the measured XPD

from a set of experiments conducted in the field. The experiment set is conducted with

two drones at an altitude of 60 m above the ground. While the Rx drone is continuously
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Figure 3.3: Difference in received power by the two vertically mounted antennas on position
1 and 2 in the anechoic chamber.

hovering at a fixed location, the Tx drone moves in 20 m increments from one location to

another until it reaches 100 m of separation distance. This Tx drone movement takes place

in each of the four cardinal directions (North, South, East, and West). See Fig. 3.4(a). The

Tx drone has one vertically-oriented (V) antenna, while the Rx drone is equipped with one

vertical and one horizontal antenna that are connected to the same USRP and fed from the

same local oscillator. (For more details regarding the setup, refer to [11].) Both drones face

North throughout all experiments. The Rx vertical (V) antenna is mounted in position 1

in Fig. 3.1, while the horizontal antenna (H) is mounted in position 2, creating two links

denoted as VV and VH from the transmitter to receiver. We can view the receiver as a

dual-polarized system and use our measurements for the VV and VH channels to predict

the in-field XPD at the receiver. We follow [10, 30] and calculate XPD as the difference in

co-polarized and cross-polarized pathloss (i.e.,, XPD = PLV V − PLV H) and investigate

how diverse Tx directions from the Rx can affect polarization mixing at the receiver. XPD

is calculated for each hovering location, and the results are summarized in Table 3.2.

We see that XPD can considerably change if the transmit drone takes different relative

directions from the receiving drone. For example, we see that the strongest measured XPD
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Table 3.2: XPD for Different Relative Directions in DtD Channels

Direction 20m 40m 60m 80m 100m Avg.
XPDNorth 1.29 1.55 2.64 2.1 3.53 2.22
XPDSouth 5.67 3.45 7.61 6.01 5.2 5.58
XPDEast 4.56 10.1 11.61 8.0 8.32 8.51
XPDWest 4.2 9.83 11.24 10.6 8.43 8.86

values are when the transmit drone is on the side (East or West), while the lowest value

is when the transmit drone is North of the receiving drone (shown in Fig. 3.4(b)). On

average, the North XPD value is 6 dB less than that in the East or West and 3.3 dB less

than in the South experiment. This result suggests that if the Tx drone is facing-away

from the receiving drone, the transmitted polarization becomes almost independent from

the received polarization. It is important to note that, while they fall approximately in the

same range, the measured XPD values here are slightly different from the anechoic chamber

results since the transmitter is actually mounted on a drone as opposed to just the antenna

in the chamber. In addition, XPD here is measured using two antennas mounted on the Rx

drone. In the chamber, we changed the orientation of the Tx antenna to get the cross-polar

radiation pattern with the Rx antenna fixed. However, the focus here is not on replicating

the chamber measurements in the field but to demonstrate the influence of different relative

drone directions on XPD, which is found to vary by up to 10 dB (from 1.29 to 11.61 dB).

3.3 UAV-to-UAV Channels in 3D Space

After creating a baseine understanding of how the UAV body can affect the radiation

pattern of antennas and the polarization of the arriving/departing waves, it is now conve-

nient to move to characterizing the performance of UAV-to-UAV links with various antenna

configurations and movement in 3D space.

It is well established in literature that the performance of MIMO systems highly depends

on the spatial correlation of the channel matrix. This spatial correlation is found to vary

according to changes in the channel induced by different antenna radiation patterns, spacing,

orientation, polarization, and elevation and azimuth angle of arrivals [34,37,38]. In addition,

recent studies, such as [39], found that, in drone swarm applications, if all ground station
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Figure 3.4: (a) Illustration of the 2D Drone-to-Drone experiments. (b) Measured XPD values
for the North scenario.

antennas are identically oriented and a UAV is moving at different elevation angles, the

received signal can be effectively lost due to polarization mismatch. This motivates us to

experimentally investigate the effects of elevation angle on the RSS with various antenna

orientations at the receiver drone in a 1 × 2 receive diversity system. First, we discuss the

experiment procedure. Then, the effect of the elevation angle on RSS for different antenna

orientations is analyzed. After that, we discuss antenna spacing and correlation and conclude

the section with SNR gains due to diversity and their dependence on antenna orientation

and elevation.

3.3.1 Experiment Procedure

In this set of experiments, the transmitting UAV is hovering at an altitude of 80 m

with its transmitting antenna oriented vertically upward (VU), facing the receiving drone

which moves around the transmitting UAV in a predefined sequence of hovering locations,

creating a 3D shape (Fig. 3.5). Diversity is implemented at the receiving UAV which flies in

an automated, repeatable fashion using waypoints and resulting in four distinct (negative)

angles below the transmitter and four (positive) angles above the transmitter. The below

and above points are separated by an elevation angle of θelev. = 0◦. The horizontal distance

(dh) between the Tx and Rx drones is 20 m at θelev. = 0◦ and the angle-specific distance
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Figure 3.5: (a) Illustration of Drone-to-Drone experiments. (b) Illustration of the experi-
ments’ elevation angles with with 6 Rx antenna orientation combinations in the 1×2 diversity
system.

is dθelev. =
√
d2h + d2v, where dv is the vertical distance, which varies from -30 m (i.e., 50

m above ground) to +30 m (i.e., 110 m above ground) in 10-m increments. The different

elevation angles made (in sequence) are: −90◦, −56.3◦, −45◦, −26.5◦, 0◦, +26.5◦, +45◦,

+56.3◦ and +90◦ and can be calculated as θelev. = arctan(dv/dh).

Experiments are carried out for six different antenna orientation combinations (VU-VU,

VU-VD, VU-H, VD-VD, H-H and H-VD) where VU, VD, and H represents vertical-up,

vertical-down, and horizontal antenna orientations, respectively. See Fig. 3.5. The received

signal strength (RSS) is recorded at each hovering location for 30 s at a sampling rate of 32k

samples/s and averaged over 10 seconds. The two UAVs are in a perfect LOS condition at a

carrier frequency of 2.5 GHz and a measured average noise floor of -110 dBm.

The average RSS values are fitted using a second-order polynomial in the range θelev. =

−56◦ to +56◦, and the results are plotted and analyzed.

3.3.2 Effect of Elevation Angle on UAV-to-UAV Channels

In this section, we study the dependence of RSS on the elevation angle between two drones

for different antenna orientations. In general, if we look at Figs. 3.6(a) and 3.6(b), we observe

an expected trend where the average RSS follows an arch-like shape in all vertically-oriented

antennas in the range θelev. = −56◦ to +56◦, with the strongest average RSS recorded at an
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elevation angle of θelev. = 0◦; this is where the two drones exhibit perfect LOS at the same

altitude. As the receiving drone starts moving up (to 110 m) or down (to 50 m), reductions

in the signal level start to appear. These reductions are mainly caused by polarization

mismatch and the elevation profile of the radiation pattern, which we characterized in the

anechoic chamber for isolated (no drone, antenna only) and drone-mounted scenarios.

We first analyze results from the vertically-oriented receivers (VD-VD) (Fig. 3.6(b)) to

understand the effect of elevation on RSS between two UAVs when the antennas used are

identical with matched orientations (vertical). We can see that the two receiving antennas

undergo the same behavior versus the elevation angle. The received signal level increases

from around −87 dBm to −67 dBm (20 dB increase) when the receiving drone moves from

−56.3◦ to 0◦ elevation angle. Then, as the drone moves higher (from 0◦ to +56◦ elevation),

the received signal level decreases from -67 dBm to -85 dBm (18 dB decrease), until it

reaches around -91 dBm as it reaches exactly above the transmitting drone (+90◦). When

this receiving drone moves to the −90◦ elevation location (right below the Tx drone), an

average RSS level of -97 dBm is reported. This trend is observed for all vertically-oriented

receivers.

We conclude here that in an air-to-air links where two drones have the same antenna types

and orientation, movement of the receiving drone at different elevation angles can reduce the

signal level by up to 30 dB. This 30 dB difference in RSS can be crucial when designing

algorithms for optimal drone placement [40]. Similar findings in cellular to UAV and air-to-

ground scenarios were reported in [4,6]. However, in addition to not covering air-to-air links,

the proximity of the receiver or transmitter to the ground in both studies makes it difficult

to isolate the elevation factor from multipath and the surrounding environment.

Furthermore, the nature of drone movement in 3D space and the low RSS levels measured

by vertical antennas at θelev. = |90|◦ motivate us to employ polarization diversity [41] that is

represented by using two co-located orthogonally-oriented antennas. If we look at Fig. 3.6,

where we implement a horizontally-oriented (H) receive antenna in addition to a vertically-

oriented (VD) antenna, we can see that although VD results in higher RSS values throughout

most elevation angles, around +56◦ the RSS for the H receiver starts to increase, where lower

RSS values for the VD receiver are measured. For example, at exactly +90◦, H is reported to
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Figure 3.6: Average RSS vs. elevation angle for two different antenna orientation combina-
tions: (a) H-VD and (b) VD-VD. Correlation coefficient for the received signal envelope in
the 1× 2 drone-based system with different antenna orientations (c).

measure an average RSS value of -85.8 dBm, where VD results in an average RSS of -98 dBm

(approx. 12 dB higher RSS at H). In another example (VU-H experiment) the H antenna

captures 20 dB higher average RSS compared to the VU antenna.

3.3.3 Antenna Placement, Orientation and Correlation

Since the orientation and spacing of two co-located receiving antennas can greatly affect

the correlation and consequently the capacity of a MIMO system, we analyze the cross-

correlation coefficient of the received signal at the two receiving branches in all of our six

experiments. Since reasonable diversity gains can be achieved in multiple antenna systems

that have a correlation coefficient less than or equal to 0.7 [34], it is useful to analyze the

correlation between the two receiving antenna elements in all of the six different antenna

orientation combinations. In doing so, we see how our antenna spacing decision of 2
3
λ com-

pares against what has been studied in literature and provide recommendations on antenna

placement and polarization decisions. The correlation coefficient between the two received

signal envelopes is calculated according to [34]:

ρi,j =

∑N
n=1(ri − ri)(rj − rj)√∑N

n=1(ri − ri)2
√∑N

n=1(rj − rj)2
(3.1)

Here, N is the total number of samples, and ri is the mean value of the fast-fading signal

32



envelope ri, which corresponds to the first antenna orientation. The term rj corresponds

to the second receiver’s antenna orientation. For example, ρh,vd is the correlation coefficient

between the signal envelopes of the H and VD antennas in the H-VD experiment. We calcu-

late this correlation coefficient for the signal envelopes received throughout the flight path

mentioned above and find that, except for one antenna orientation combination (VD-VD),

the correlation coefficient is found to always be less than 0.7. For example, the VU-VU and

VU-VD experiments result in ρvu,vu = 0.61 and ρvu,vd = 0.62. Furthermore, the orthogonal

antenna orientations (H-VD and VU-H) result in the lowest correlation coefficients (around

0.2) among all experiments, which can offer greater diversity gains. The correlation coef-

ficient for the six antenna orientation combinations are shown in Fig. 3.6(c). Using these

results and based on the objective (diversity or multiplexing gains), researchers can make in-

formed decisions when selecting antenna orientation and spacing for drone communications.

For example, if diversity gains are required, our results suggest that an antenna spacing of
2
3
λ on drones using VU-H, H-VD, VU-VD, H-H, and VU-VU antenna orientation might be

sufficient for reasonable gains in UAV-to-UAV networks .

3.3.4 Elevation Impact on SNR Improvements for Different Antenna Orientations

We now analyze the effect of elevation on the SNR improvements that can be achieved

by selection diversity in all of the six experiments. The SNR improvement over a reference

branch i at an elevation angle θ is defined here (in dB) as the expected value of the difference

between the selected (maximum) SNR in the 1 × 2 setup over the reference branch. It is

given by:

γθi = E[SNRθ
1×2 − SNRθ

i ] (3.2)

The results of SNR improvements in the VU-H experiment are plotted in 3.7. In this

figure, γH and γV U are the SNR improvements over the H and VU antenna orientations,

respectively. We can see that a higher SNR of 20 dB can be achieved around 0◦ elevation

due to the VU antenna orientation (γH is higher) which matches the orientation of the

transmit antenna. In contrast, around 18.5 dB SNR improvement can be achieved around

+90◦ elevation by the H orientated antenna (γV U is higher) due to its radiation pattern

main lobe being directed toward the transmit antenna as opposed to the null created by the
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Figure 3.7: SNR improvement due to diversity in VU-H setup.

Table 3.3: SNR improvement (in dB) due to diversity: improvement is with respect to branch
1 (γ1) and branch 2 (γ2)

γi(dB) VU-VU VD-VD VU-VD H-H H-VD VU-H
γ1(max) 2.1 6.3 4.0 8.8 16.1 18.2
γ1(avg) 2.1 1.1 1.7 4.3 4.5 5.6
γ2(max) 9.6 8.5 8.7 0.3 11.5 20.7
γ2(avg) 5.5 1.90 2.4 0.3 2.18 4.13

vertical antenna.

The SNR improvement over the first and second branch in each experiment are summa-

rized in Table 3.3. We can clearly see that SNR improvements vary according to the different

antenna orientations and that cross-polarized setups result in larger overall gains.

From these results, we conclude that having cross-polarized antennas when drones move in

three dimensions is important, especially at angles above/below 45◦ because of polarization

mismatch losses. Measured improvements in SNR values of 20 dB can be achieved using

cross-polarized receiving antennas.

3.4 Ground-to-UAV Channels in 3D Space

In addition to communicating with other aerial vehicles, UAVs might simultaneously

communicate with or serve users/nodes on the ground. To further enhance our understanding
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(a) (b)

Figure 3.8: (a) GtD Experiment setup and hovering locations for the Rx drone. (b) Rx
drone structure and the mounted V and D antennas.

of the role of antenna orientation, UAV body, and elevation angle, in UAV-based channels,

we conduct another set of experiments and investigate how these factors can impact UAV-

to-ground channels at ultra low altitudes (around 30 m). We then model the impact of the

UAV body as a function elevation and azimuth angles and show that prediction of angle-

dependent loss in UAV-to-ground links becomes more accurate with the proposed model.

Finally, we analyze small-scale fading for both UAV-to-UAV and UAV-to-Ground channels

to first isolate the ground impact and focus on how antenna orientation can affect such

channels.

3.4.1 Experiment Procedure

The experiment procedure is illustrated in Fig. 3.8. The transmitter is located on the

tripod at a height of 1 m above ground level. The receiving drone is positioned at a fixed

horizontal distance of dh = 20 m. The drone navigates to each point of interest and hovers

there while directly facing towards (and away from) the transmitter. The drone maintains a

stable hovering position at each location for 20 seconds per heading direction. As the drone

ascends in altitude, different elevation angles are realized by θ = arctan(l/dh), where l is the

altitude of the drone with respect to the transmitter.

At each hovering location, I/Q samples are collected for both RF chains for the facing
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and facing-away directions. By leveraging the log files generated by the shell and python

scripts that we implemented on the USRPs, we are able to accurately match the timestamps

of the received data to the location and direction of the drone. Sensor measurements are

used in the offline processing of the received samples, where we splice the dataset according

to time, altitude, heading direction, and GPS location. Three (3) experiments are carried

out: V-VV, V-VH, and V-HD. The first letter is the transmitter’s antenna orientation, and

the second two letters are, respectively, the orientations of the first (antenna position 1) and

second (antenna position 2) receiving antennas. V, H, and D are, respectively, vertical up,

horizontal, and vertical down. Fig. 3.8 depicts the antenna setup at the receiver for the V

and D orientations. The H orientation is shown in Fig. 3.1. In the V-VH experiment, H is

in position 2. In the V-HD experiment, H is in position 1. We refer to a Tx-Rx link in an

experiment as VX where V is the transmitter orientation (which is always V), and X is the

receiver orientation.

3.4.2 Effect of Elevation Angle on Ground-to-UAV Channels

Before we characterize the impact of drone rotation at different elevation angles (i.e., θ),

we first investigate the impact of elevation on the received signal for vertical and horizontal

antenna orientations. Using the developed angle-dependent models, with |GV V | = cos2(θ)

and |GV H | = cos(θ)sin(θ), we analyze the measured and predicted values of this loss as the

drone hovers at different elevation angles from the ground.

The angle-dependent loss for V-VH and V-VV experiments is shown in Fig 3.9. We notice

that experiment results closely follow our analytical models. For the vertically-oriented

antenna (VV links), loss is minimum at 3◦ elevation. The loss increases as the drone flies to

higher altitudes. The increase in loss is due to gain misalignment of the mounted antennas in

addition to the distance impact. This behavior is consistent and can be seen in all vertically-

oriented receivers: see Fig. 3.9(b) and the VV loss in Fig. 3.9(a).

However, the results are different for the horizontally-receiving antenna (VH links). We

see that the highest loss is recorded at 3◦ elevation. Then, as the drone moves to higher

altitudes (30◦ to 45◦ range), this angle-dependent loss gets smaller. Then, the loss goes up

again at θ = 55◦. This behavior can be better understood based on the analytical models
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Figure 3.9: Measured and predicted values of the angle-dependent loss for the (a) V-VH and
(b) V-VV experiments.

that we developed. The measured values shown in these graphs are the difference between

the transmitted power and the average received power when facing the transmitter.

The facing-away scenario will be dealt with separately. The predicted values are given

by LV V (equation (2.13)) for the VV link and LV H (equation (2.14)) for the VH link. Here,

the standard deviation of the shadowing parameter is chosen to be σs = 2 dB. Although the

exact shadowing value might vary in different situations, based on numerous experimentation

over multiple years, we found that a 2 dB value to be appropriate. The body-induced loss

(Γϕ(θ)) is assumed to be 0 dB. This body-induced loss will be a contributing factor when the

drone is facing-away from the transmitter. The assumption here is that since the antennas

are mounted near the edge of the drone, the elevation radiation pattern when facing a node

is unaltered and can be modeled as above. We see that the angle-dependent models, because

of their inclusion of the proposed radiation pattern models, capture the measured values

of the angle-dependent losses to a good extent. In contrast, predictions provided by LXX ,

which is simply the free-space path loss in addition to shadowing, is shown to be the least

accurate due to its exclusion of the important radiation pattern effects.

Another observation is that around 45◦ elevation, we can see that VV and VH links

exhibit similar losses, although cross-polarized. This effect can be explained if we equate
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GV V to GV H and solve for θ, which would give us an angle of θ = 45◦. We refer to this

as the cross-over angle, the angle at which a flip occurs in antenna gain product for VV

and VH links. Fig. 3.10 illustrates the antenna gain product for the two links. We see that

before this angle, VV links experience higher antenna gain product. However, after this

angle, VH links have the higher antenna gain product, consequently resulting in lower angle-

dependent loss values. This dependency on antenna gain product explains the behavior of

the measured values and shows how understanding the radiation pattern of the used antennas

is of paramount importance in drone-based links since significant differences can occur with

minimal distance variations. In fact, when we measure the received signal at an elevation

angle of θ = 90◦ (i.e., the Rx drone directly above the transmitter, with a vertical separation

distance of 20 m), we record a stronger signal of up to 20 dB greater for VH links compared

to VV links [11].
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Figure 3.10: Antenna gain product for VV and VH links and the crossover angle.

3.4.3 UAV-Induced Shadowing in 3D Space

Before quantifying the losses induced by the drone body, we analyze the shadowing caused

by the drone body. Shadowing describes received signal fluctuations around the mean signal

as the receiver changes its location, consequently experiencing different surrounding envi-

ronments and objects in the signal’s path [12]. Here, the cause of shadowing is completely
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different: it is exclusively due to the drone body. While many other works have investigated

elevation-dependent shadowing in UAV channels [4,26,42], the emphasis was on the conven-

tional shadowing caused by the surrounding environment. In addition, the effect of drone

rotation on shadowing at various elevations is never addressed. For example, Akram et. al

has proposed an elevation-dependent shadowing model as the UAV moves to higher altitudes

away from buildings in urban environments [4]. Until now, little is known about how shad-

owing is affected solely by the drone body at various elevations and for different antenna

orientations. Through the above explained LOS experiments, we evaluate the shadowing

based on drone rotations.

The parameter that describes shadowing (i.e., ξs) is usually modeled in empirical path

loss models as a zero-mean, Gaussian random variable with a standard deviation of σs (i.e.,

N (0, σs) [12]). The question is: if nothing else surrounding the drone is changing, does the

drone body result in a different shadowing at slightly different elevation angles? We will

find that the answer is yes. To analyze this drone-induced shadowing, the mean RSS per

hovering location is subtracted from the instantaneous values for the two cases of facing and

facing-away from the ground transmitter.

Effect of Drone Rotation with Vertical and Horizontal Antennas. First, we

notice that, in general, significantly higher shadowing occurs when facing-away from the

ground transmitter compared to when facing it. When facing the transmitter (i.e., ϕ = 0◦)

and across all elevation angles for all antenna setups, shadowing does not exceed 4 dB with

a standard deviation never exceeding σs = 2 dB. On the other hand, when facing-away from

the transmitter (i.e., ϕ = 180◦), shadowing can reach up to 9 dB with a standard deviation

of up to σs = 6.36 dB, an increase of 4.3 dB in standard deviation.

Second, we describe an interesting finding: when facing away from the ground trans-

mitter, shadowing increases with elevation for all VV links. For VH links, however, this

dependency is not observed. Fig. 3.11 shows the measured shadowing for the VV and VH

links in the V-VH experiment. In Fig. 3.11(a) at 55◦ elevation, more shadowing (reaching

up to 9.8 dB) is measured compared to 23◦, at which shadowing does not exceed 2.5 dB.

In Fig. 3.11(b), we find that the measured shadowing for the VH link does not change with

elevation. The standard deviation of the measured shadowing parameter for facing-away ver-
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Figure 3.11: Measured shadowing for (a) VV and (b) VH links when facing-away (ϕ = 180◦).
Higher elevations lead to higher body-induced shadowing in VV links.

tical and horizontal Rx antennas is shown in Fig. 3.12. For the vertically-receiving antennas,

Fig. 3.12(a), we find that σs increases with elevation for values in the range of 1 dB at θ = 3◦

to approximately 6 dB at θ = 90◦. This phenomena can be explained by how the antennas

are placed on the side of the drone body: as the drone flies to relatively higher elevations and

because it is facing away from the transmitter, more of the drone body obstructs the signal’s

path before it reaches the receiving antennas. However, since our horizontal antennas are

mounted outwards of the body (see Fig. 3.1), the blockage they experience from the body

is the same regardless of elevation. This can be seen in Fig. 3.12(b), where the standard

deviation barely changes with elevation.

Effect of Diverse Antenna Positions for Same Orientation. Finally, for the same

antenna orientation, different locations on the drone do not change the standard deviation

of the shadowing parameter. For example, in the V-VV experiment, the average standard

deviation of the V antenna in position 1 is σs = 1.38 dB, while the V antenna in position

2 experiences a value of σs = 1.40 dB. The vertically-down (D) antenna experiences similar

shadowing to the V antenna with an average standard deviation of σs = 1.46 dB. Here,

average refers to the mean over all elevation angles.
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Figure 3.12: Measured shadowing standard deviation (σs) at different elevations for the
scenario of facing-away from the ground Tx. (a) σs for vertically mounted antennas. (b)
σs for horizontally mounted antennas. Rx1 and Rx2 refer to antenna positions 1 and 2,
respectively.

3.4.4 Modeling the Impact of Drone Rotation

Through our anechoic chamber measurements, we have seen that the drone body and its

rotation can result in considerable variations in the azimuth radiation pattern of the mounted

antennas, introducing reductions in received power of up to 10 dB at some azimuth angles.

This issue is worth investigating via in-field experiments, where we can also study the impact

of elevation on this rotational loss. As explained in Section 3.4.1, at each hovering location,

the drone is rotated 180◦, facing away from the ground transmitter, and the received I/Q

samples are recorded for a period of 20 seconds. We analyze the effect of this rotation on

the average RSS at every elevation angle and propose a model that captures this rotational

loss. The conclusion reached is that this rotational loss is elevation-dependent for vertically-

mounted antennas.

We define the average rotational loss per elevation angle per link as the difference in

average RSS between the facing (ϕ = 0◦) and facing-away (ϕ = 180◦) measurements. The

rotational loss, Γϕ(θ), can be calculated as RSS(ϕ0, θ) − RSS(ϕ180, θ), where ϕ0 indicates

facing, and ϕ180 indicates the direction of facing-away from the Tx. We calculate this value
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Table 3.4: Fitting parameters of the rotational loss model

Experiment Link Rx Ant. µ β RMSE
V-VV V V 1 0.0463 1.4768 0.814
V-VV V V 2 0.0448 1.8769 0.4267
V-VH VV 1 0.0822 1.5628 0.4195
V-HD VD 2 0.0978 0.7583 0.9386

for all VV experiments and find that it is elevation-dependent with higher elevations leading

to higher Γϕ(θ) values. This result can be explained by the same intuition described in

Section 3.4.3, where more of the drone body starts to obstruct the receiving antennas at

relatively higher elevations.

We plot this rotational loss for all VV links in Fig. 3.13 and see that this factor can

increase from a range of 1 to 2.5 dB at θ = 3◦ to the range of 5 to 7.5 dB at θ = 55◦. A

linear regression line that fits the average measured values as a function of elevation angle

was created, and the results of this fitting for all VV links are shown in the same figure. In

Fig. 3.13, links 1 to 4 represent the vertical links in the V-VV (twice), V-VH, and V-HD,

experiments, respectively. It is not shown here, but, we additionally investigated another

elevation angle where the drone is exactly above the ground transmitter (i.e., θ = 90◦), and,

intuitively, rotation seemed insignificant. In other words, no change in average RSS was

observed. Moreover, no specific trend was observed for the VH links, as the rotational loss

is approximately constant with a value around 2 dB across the investigated elevation angles.

For the VV links, the model that describes the elevation-dependent rotational loss Γ (in

dB) as a function of the elevation angle, θ, can be described as:

Γϕ(θ) = µθ + β (3.3)

Here, µ is the slope of the straight line, β is the intercept, and θ is the elevation angle between

the ground Tx and the drone Rx. The values of these parameters for all vertical-to-vertical

links are summarized in Table 3.4.

We now quantify the benefit of including this rotational term in predicting the angle-

dependent loss. The results of the measured and predicted values for LV V of the VV link in
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Figure 3.13: Rotational loss and its linear fit representation Γϕ(θ).

the V-VH experiment are shown in Fig. 3.14. In this figure, we have 4 results: (i.) LV V is

measured at ϕ = 0◦, which is simply the average measured loss (difference between transmit

power and average received power for 20 s) at the corresponding elevation angle when the Rx

drone is facing the ground Tx. (ii.) LV V is measured at ϕ = 180◦ with the drone facing-away

from the Tx, which is clearly larger due to the drone body. (iii.) A prediction is produced by

using LV V excluding Γϕ(θ)), which is the result of predicting this angle-dependent loss using

equation (2.15) but without the above-modeled rotational loss. In other words, it excludes

the rotational loss (i.e., Γϕ(θ) = 0 dB). (iv.) Finally, we have the prediction using LV V

including the average value of the rotational loss, Γϕ(θ), which is predicted using the above

model (equation (3.3)).

First, we can see that only using the elevation radiation pattern provides good prediction

when facing the Tx. However, to predict the angle-dependent loss when facing-away from the

Tx, a significant underestimation in the link budget of up to 11 dB can occur. An example

of this error can be seen at an elevation angle of 55◦, where we predict 75 dB of average link

loss, but it is actually 86 dB. This error is due to the fact that this model, as in many other

drone-related works [6,18], neglects drone rotation and antenna placement effects. Therefore,

we recommend including this body-induced rotational factor when predicting drone-based

links that involve drone rotation at different elevation angles.
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Figure 3.14: Impact of using Γϕ(θ) on predicting the angle-dependent loss when a drone is
rotated 180◦ at different elevation angles.

Introducing the body-induced rotational factor into predicting angle-dependent losses

would result in a more accurate capturing of the average (large-scale) behavior of drone-

based links. For example, in the above discussed link, the average absolute error of our

prediction is 0.89 dB. However, if we use a conventional model that excludes the rotational

loss, the average error is 6.11 dB. As a result, our model is 85% more accurate because of the

drone-body inclusion. The limitation of this model, however, is that it is only valid for the

case of LOS ground-to-drone channels with no surrounding buildings, where the impact of

the body is prominent. However, many applications can find this model useful including but

not limited to smart agriculture systems, where ground nodes send data to a collector drone

that hovers in a certain direction. In such a scenario, the transmit power can be carefully

designed to compensate for the above Γϕ effects.

3.5 Small-Scale Fading For UAV-based Channels in 3D Space

In this section, we study how the orientation of multiple drone-mounted antennas can

affect small-scale fading severity. The effects are measured in terms of the Rician K-factor

and are investigated for polarization-matched and cross-polarized GtD links. Furthermore,

to focus on the role of the mounted antennas and not confuse it with that of ground-induced

fluctuations, we quantify the impact of ground reflection on the Rician K-factor via another

set of DtD experiments at high altitude, where the effect of ground reflections are minimal.
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We then compare the Rician K-factor values to those obtained in the GtD experiments.

Lastly, to determine the impact of our antenna placement decisions on possible diversity

gains, we analyze the correlation coefficient at all elevation angles for both heading direction

scenarios (facing and facing-away) and make recommendations that could lead to the efficient

design of drone-based networks.

3.5.1 K-factor in 3D Ground-to-Drone Channels

We analyze the instantaneous received signal envelope recorded at both RF chains for

three GtD experiments. We include a unique elevation angle, where the receiving drone

hovers above the ground transmitter at an angle of 90◦ with a vertical distance of 10 m.

This angle was examined to demonstrate the impact of extreme elevation as opposed to the

θ = 3◦ angle. An example of how the measured LOS channel follows a Rician distribution

is shown in Fig. 3.15, where a histogram of 3000 samples (a time period of 93.7 ms) of

the instantaneous received signal is plotted. Then, a Rician distribution is fitted to the

measurements using the maximum-likelihood estimate (MLE). In this figure, we can see

that higher K values (17.7 and 9.6 dB) are obtained for VV links compared to the VH links

(6.5 and 3.6 dB) at 3◦ and 23◦ elevations, respectively. It is worth mentioning that the

Kolmogorov–Smirnov test was performed to compare our measurements to the fitted Rician

distribution. The results of this comparison indicated that we accept the null hypothesis

that the two sample vectors (measurements and fitted distribution samples) come from the

same distribution. This is true for the investigated elevation angles of 3◦, 23◦, 45◦, and 55◦.

In general, our results indicate that the K-factor is strongly dependent on the elevation

angle for polarization-matched VV links since it can change by as much as 15 dB, whereas it

is approximately flat for the VH link across all elevation angles. For example, refer the GtD

results in Fig. 3.16(b), where each point (indicated by blue squares) represents the average

of six values of the K-factor of the VV link. We see that the strongest K values are recorded

at 3◦ with a range of 13-15 dB. However, after this angle, as the drones moves to higher

altitudes, the K-factor starts to decrease, reaching approximately 4 to 5 dB at θ = 55◦. This

reduction can be explained by the analytical models developed above, where the radiation

pattern product becomes weaker as the receiving drone moves to higher elevations. At 90◦
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(a) VV at θ = 3◦ (b) VH at θ = 3◦

(c) VV at θ = 23◦ (d) VH at θ = 23◦

Figure 3.15: Measured received signal envelope for VV and VH Ground-to-Drone links and
its Rician fitting.
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elevation (i.e., the Rx drone hovers above the ground Tx), the K factor becomes almost

0 dB, indicating an extremely weak LOS component.

For the VH link (Fig. 3.16(a)), this strong elevation dependency is not observed. The K-

factor is nearly constant because of the low variation in the radiation pattern product over a

wide range of elevation angles (shown in Fig. 3.10). However, since our GtD experiments are

conducted close to the ground, the impact of fluctuations caused by the ground needs to be

understood so that we can isolate the impact of drone-mounted antenna position/orientation

on small-scale fading. To quantify these ground effects, we analyze another set of results

from DtD experiments that we carried out in the same geographical location but at altitudes

where no surrounding objects exist, and the ground is at least 80 m below the drone (i.e.,

the effect of ground reflections is weak).

3.5.2 Ground-to-Drone vs. Drone-to-Drone K-factor

To investigate the impact of the ground on the Rician K-factor, we conduct a set of

DtD experiments that matches the GtD experiments. We then calculate the K-factor at

the same elevation angles. The experiments are conducted at 80 to 110 m altitude, where

the environment is free of reflecting objects, and the two drones are facing each other. The

DtD experiment is shown in Fig. 3.5(a). The Tx drone is fixed at its hovering location

at 80-m altitude, where the Rx drone is automated to fly at locations that would result in

approximately the same elevation angles as in the GtD experiments. Similar to Section 3.5.1,

we conduct three experiments: V-VV, V-VH, and V-HD.

We calculate the K-factor and report this finding. At 3◦ and 23◦ elevation angles, the

K values from the DtD experiments are always stronger than those obtained from the GtD

experiments. For example, in Fig. 3.16(b), we see at 3◦ to 23◦ elevation, the DtD K-factor can

reach values of up to 24 dB, which is 10 dB higher than that of the GtD experiments. As the

elevation angle increases, however, this difference starts to diminish, indicating a lesser role

of the ground than that of the actual hovering drone and its mounted antennas. To further

understand the impact of the ground on the K-factor, consider Fig. 3.16(c)-3.16(d) as an

example. Here, the CDF of measured σ, the parameter that describes the reflected/scattered

components is plotted. We can see that it is definitely higher in the GtD experiments than
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Figure 3.16: (a) The K-values for the VH link. (b) The K values for the VV link. The
empirical CDF of σ for the V-HD experiment in the GtD and DtD scenarios is shown in (c)
and (d), respectively.
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Table 3.5: Rician K-factor For VV and VH Links in GtD and DtD Experiments

Ground-to-Drone K (dB)
Link θ = 3◦ θ = 23◦ θ = 45◦ θ = 55◦ θ = 90◦

VV 13.31 11.21 8.27 6.16 0.37
VH 5.61 4.27 6.58 4.71 7.55

Drone-to-Drone K (dB)
Link θ = 3◦ θ = 23◦ θ = 45◦ θ = 55◦ θ = 90◦

VV 20.60 14.03 7.75 4.78 0.45
VH 10.69 13.09 7.75 5.22 10.10

in the DtD experiments. For example, 40% of measured values are greater than 0.15 in

the GtD experiment, as opposed to 20% in the DtD experiment. If we assume a fixed-LOS

component, a higher σ results in a lower K, as is happening at altitudes close to the ground.

The measured K-factor values for VV and VH links in the GtD and DtD experiments are

summarized in Table 3.5.

It is worth mentioning that while previous works have analyzed the Rician K-factor

variations with drone height [26, 43], the nature of the environment in those experiments

makes it difficult to isolate radiation pattern and antenna orientation effects from the impact

of the actual obstructions and reflectors in the signal’s path. In this study, these K variations

are solely due to the antenna location/orientation and drone proximity to the ground, not

induced by the surrounding environment (e.g., buildings, trees, and cars).

3.5.3 Correlation and Diversity Gains in 3D GtD Channels

As future drones might be expected to carry large number of antennas for a variety of

applications, a thorough analysis of the impact of antenna orientation, spacing, and 3D

placement on correlation and diversity gains is critical. Here we calculate the correlation

coefficient between the two received signal envelopes of each antenna setup and analyze the

results, which are summarized in Table 3.6.

First, we notice that the envelope correlation coefficient between the two receiving an-

tennas in the facing Tx scenario is highest at 3◦ elevation, even for the cross-polarized setup.

Then, correlation decreases as the elevation angle increases. At 55◦ and 90◦, correlation

becomes slightly negative for the cross-polarized setups, indicating the increase of the re-
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Table 3.6: Correlation Coefficient Vs. Elevation Angle

Facing Tx (ϕ = 0◦)
θ ρv,h ρv,v ρh,d
3◦ 0.45 0.43 0.63
23◦ 0.32 0.35 0.25
45◦ 0.3 0.21 0.19
55◦ -0.22 0.1 -0.15
90◦ -0.08 0.1 -0.3
Facing-way from Tx (ϕ = 180◦)
θ ρv,h ρv,v ρh,d
3◦ 0.34 0.33 0.43
23◦ 0.08 0.19 0.16
45◦ 0.5 0.06 0.45
55◦ 0.14 0.02 0.1
90◦ 0.22 0.14 0.06

ceived signal envelope (horizontal), while the other (vertical) decreases. When the drone

is facing away from the transmitter, ϕ = 180◦, no specific trend is observed. Interestingly,

even though our experiments are in perfect LOS, we report that for all antenna setups, at

all elevation angles and for both azimuth directions, the correlation coefficient never exceeds

0.7. As a result, diversity gains can be achieved in the 9.5 to 11.5 dB range using Maximal

Ratio Combiner (MRC) or Selection Combining (SC) in Rayleigh and Rician fading channels

at an outage probability of 0.01. This is an important result due to the fact that diversity

gains for a fixed outage probability would fall more rapidly at correlation values higher than

0.7 [44]. Given this result and our previous findings, we can conclude that in LOS Ground-

to-Drone and Drone-to-Drone channels, an antenna spacing of 0.67λ (8 cm in this case) is a

good design choice if diversity gains are of interest, regardless of antenna orientation.
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Chapter 4

Characterization of The Human-induced Effects in UAV-to-Ground Line-of-Sight Channels

In many applications, UAVs might need to communicate with a device that is either being

held or attached to a person at altitudes close to the ground. A person can be holding user

equipment (UE) near their chest or in their pocket while downloading or uploading data.

Moreover, the direction of the user relative to the UAVs can take on any arbitrary value. For

example, a user could be texting (holding the UE near their chest with both hands) while

facing the UAV or facing-away from it. Because of these different use cases, the wireless

channel might go through dramatic changes [45, 46]. Consequently, the optimal placement

decision of the UAVs, which targets, say, the highest achievable throughput or minimum

energy consumption, could depend on the near-body location (near chest or in pocket) or

user direction (facing or facing-away). Moreover, due to user-antenna interaction and the

near-field coupling effects, antenna radiation patterns can be altered [7, 47], and significant

variations in the received signal can be experienced by the user [48]. Similar effects can

be observed in the case of facing a transmitter while holding a receiver with different grips

and/or postures [49].

While the role of the human body and its effects on terrestrial wireless channels has been

the focus of many works, the impact of the user-induced effects on UAV-to-ground1 channels

has been mostly disregarded in literature. The uniqueness of this case study comes from the

ability of UAVs to adjust their position in 3D space based on the observed use case. Factors

such as UE location and user orientation along with the UAV’s 3D location and its antenna

radiation pattern will have a considerable impact on the wireless channel, as we shall see in

this work. In addition, simulation and optimization models, which constitute the majority

of UAV-related work, do not consider such human-related factors. Therefore, measurement

campaigns that target this issue are necessary.
1We use Air-to-ground and UAV-to-ground interchangeably

51



In this work, we investigate how three different use cases of holding a communication

device, namely, near-chest facing (NCF), in-pocket facing (IPF), and near-chest facing-away

(NCFA), can affect the UAV-to-ground channel at ultra-low altitudes (less than 30 m alti-

tude). We measure and analyze how the average received signal strength (RSS), shadowing,

and small-scale fading can be affected by the UAV hovering location, user orientation, and

the UE near-body location. We target two carrier frequencies, 900 MHz and 2.5 GHz, both of

which have many narrowband Internet-of-Things (IoT) based applications such as the IEEE

802.15.4 technology as well as broadband services. This is, to the best of our knowledge, the

first study that measures and quantifies how the human body and user behavior can impact

the UAV-to-ground channel at various drone locations. The conclusions presented here are

the results of the thorough analysis of 108 dataset files spanning 18 different drone hovering

locations, three different use cases, and two carrier frequencies. Our findings could help

the aforementioned research efforts establish more realistic UAV-to-ground channel models

that consider users on the ground. Adaptive algorithms, for example, that are designed to

optimize drone mobility and network performance when communicating with ground UEs,

such as [50], could find our work insightful.

The contributions of this chapter can be summarized as follows.

• We show that, compared to a baseline user-free (free-space) scenario, the existence of

the human body near a UE can result in increased or decreased RSS levels, depending

on the user’s orientation. These user-induced “gains”, or “losses” are found to depend

on the frequency used and the UAV’s hovering position.

• We demonstrate how the UAV’s hovering position and user orientation can affect shad-

owing and multipath in ultra-low LOS UAV-to-Ground channels. We quantify their

effect and show that, except for one drone hovering position at which the UAV’s body

dominates influence on the channel, shadowing, mutipath and the Rician K-factor

strongly depend on the user body orientation, not the UAV’s body nor its location.

• We show that, while moving the UE from near the chest to inside the pocket could

lead to some degradation in channel quality, improvements could be achieved by sim-

ply readjusting the drone’s hovering altitude. For example, if the transmitting UAV
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Figure 4.1: The experiment location and an illustration of the investigated use cases.

descends from 30 m to 10 m altitude after the UE is placed inside the pocket, the

received signal level is improved by 7.5 dB on average. We explain how these improve-

ments relate to the elevation radiation pattern of the antenna, traveled distance, and

clearance from the UAV body.

• We address the time-varying nature of the K-factor as a result of UAV hovering and

relative direction of the user. Then, we show that, except for one drone hovering po-

sition, the user’s body could lead to significant degradation in the K-factor causing an

average and a maximum reduction of 6.8 and 15 dB, respectively. Frequency compari-

son is then performed revealing that the K-factor at 900 MHz is stronger than 2.5 GHz

across all use-cases.

• To highlight the impact of our findings, we propose two applications in which the

obtained insight could be valuable for the case of a UAV-assisted soldier.

First, we allude briefly into the basic mechanisms of signal propagation through the

human body. Then, we discuss literature related to the two main topics involved in this

work.
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Figure 4.2: Illustration of how the body can affect signal propagation.

4.1 Propagation Through The Human body:

The human body absorbs and reflects electromagnetic energy. At the air-human interface,

some energy will be reflected, depending on the refraction index or the intrinsic impedance,

both of which are a function of the permeability and permittivity of the the human body

tissues [51] which in turn are frequency dependent. Another part of the signal will penetrate

through the body’s multiple layers experiencing attenuation mainly due to absorption and

multipath reflections within the tissues. Attenuation due to absorption and propagating

through the human body is exponential with respect to the thickness of the body and has

been shown to be the main contributor to electromagnetic energy loss with values reaching up

to 35 dB [52]. The amount of attenuation due to absorption has been shown to considerably

vary with frequency and the tissue thickness [51, 53], with visceral fat being the dominant

tissue type in determining the loss. Finally, and after many reflections/transmissions within

the body’s many layers, the remaining part of the signal will leave the human body and

propagates back into the air. A high level illustration of the propagation mechanics is shown

in Fig. 4.2.
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4.2 Related Work

We breakdown related literature into two main bodies of work. The first deals with

human-based communications while the second studies UAV air-to-ground channels at low

or ultra-low altitudes. Human-Induced Effects : The impact of the human body on the

wireless channel has been the focus of many studies in literature. The human body as an

antenna was investigated in [54] and the results showed that the human body could increase

signal reception and that the reflection coefficient could be improved by different human

body postures. The human body interaction with devices and its use as an antenna was

leveraged in [55] into building a system that can recognize gestures. [48] Showed that

the human body can significantly alter the effective radiation pattern of the antenna at

2.4 GHz. In addition, losses of up to 25 dB were found due to blockage from the human

body. A similar finding of 21 dB loss at the same frequency was reported in [56]. In [45] an

average loss of 20 dB was recorded due to covering a mobile device antenna by the hand.

In [49], it was shown that the body of the user, when facing a transmitter at millimeter wave

frequencies, can actually contribute to the radiation of the antenna and result in higher

received signal levels compared to free-space scenarios. Similar finding was reported in [46]

where four different frequencies were investigated for a user facing and facing-away from

a ground transmitter. Variations in RF losses within the human body at two frequencies

(403 MHz and 923 MHz) were investigated in [51]. The work in [53] investigated the impact

of three different human body types on radiated power at 17 different frequencies. It was

shown that at high frequencies gains, compared to free space, could be achieved. The work

also highlighted how the radiated and absorbed power could vary with body type. It was

shown that the RF transmission loss within the human body is higher at the lower frequency

and that the results varied depending on the thickness of the tissues, especially the visceral

fat. A study that investigates on-body communications for a wide range of frequencies

(420 MHz to 2.4 GHz) and technologies was conducted in [57]. The impact of a user’s head

and hand on antenna radiation pattern at 880 MHz was studied in [45] and it was shown that

user-antenna interaction can alters both the magnitude and phase of the antenna radiation

pattern. Leveraging the strong multipath effects experienced within the body tissues, the

work in [52] used signals with different frequencies to achieve beamfroming at a target placed
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within the tissue of an animal. A machine learning approach that utilizes received signal

strength to distinguish between different user modes at millimeter wave frequencies was

proposed in [58].

UAV-to-Ground Studies : The work in [7], which targets the same issue investigated here,

studies a UAV-to-Ground channel at ultra-low altitudes for three different environments

and two user modes: texting and calling. Measurements and analysis were carried out for a

limited drone path of 20 m with an emphasis on the impact of the environment on the channel

rather than the human body. The work in [21] experimentally characterizes large-scale fading

components in drone-to-ground channels where the ground node was mounted on a tripod.

The work in [27] characterized the K-factor for low-altitude UAVs in urban environments

crowded with buildings and spanned large horizontal distances. Channel characterization

of wideband air-to-ground channels in different environments and for different frequencies

was carried out in [5, 22]. Another AtG sounding method for millimeter wave channels

was demonstrated in [17]. Autonomous QoS-driven UAVs in air-to-ground channels are

prototyped and experimentally investigated for three ground devices, that were not held by

humans, in [50]. The work in [40] demonstrated a UAV that can change its hovering location

based on changes on the wireless channel that were induced by a user holding the device.

However, the impact of the human body was not considered and the movement decisions

were predefined.

While the above two bodies of work provide valuable insight, studies that bridge the gap

between the two are still missing. This is what we attempt through our work. Specifically,

our study provides an understanding of how the human body can influence such channels with

various use cases and considering many UAV hovering positions and frequencies. We believe

that although only considering the user and UAV might not be enough to fully understand

all the intricate details of such channels, the ability to measure and characterize the relative

impact is key into moving forward with more realistic channel models and algorithms that

take the human body into account. Our findings can affect the design and deployment of

adaptive UAV-based algorithms that target optimizing a certain wireless performance metric

when actual ground users are considered. For example, in [50], if the UE was held by an

actual user or placed inside their pocket, the SNR, trajectory, and likely the fairness index
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might have been very different. Furthermore, the integration of the obtained user-induced

effects into models that target the optimal deployment of UAVs, such as [16,59], could lead

to more realistic results. In [16], for example, where the capacity of a UAV-to-ground link

is studied with two users on the ground, the near-body location of the UE and/or the user’s

direction relative to the broadcasting UAV could lead to altering the required transmit power

from the UAV, consequently impacting its flying time and/or the network throughput. For

these reasons, we believe that our findings could enhance the practical understanding of

UAV-to-ground channels that consider the human body effects and help in the process of

creating adaptive algorithms for drone deployments.

4.3 Experiment Setup

In this section, we present our hardware and software setup, then, we discuss the exper-

iment procedures.

4.3.1 Hardware and Software Setup

Two of the Universal Software Radio Peripheral (USRP) E312s from Ettus Research™ are

configured for collecting measurements. The transmitting radio is mounted on a tripod in the

baseline ground-to-ground (GtG) experiments and on the UAV in the Air-to-Ground (AtG)

experiments. The transmitting antenna is vertically mounted, oriented upward and is directly

connected to the TRX port using an SMB to SMA adapter. The receiver USRP is either

mounted on a tripod, such as the case in the user-free GtG and AtG experiments, or being

held by the user, which is the case in the human-related experiments. Both radios utilize

omni-directional, linearly-polarized antennas (Ettus VERT2450) with a radiation pattern in

the azimuth and elevation planes as shown in Figs. 4.3(b) and 4.3(c). The transmitter is

configured to send an unmodulated carrier at a sampling rate of 64 thousand samples/second.

The receiver, sampling at the same rate, is configured to write the received IQ samples to a

binary data file as complex floating point numbers. Measurements are recorded for a period

of 20 seconds per hovering/Rx location. The processing and analysis is conducted over the

middle 15 seconds to ensure the exclusion of the unwanted drone transition effects that might

occur when the UAV is coming to or moving from the desired location. The absolute value

of the complex envelope is then used for further postprocessing.
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4.3.2 Measurement Environment

The experiments were held in the SMU-in-Taos campus in Taos, New Mexico. The

location is shown in Fig. 4.1. The experiment path (depicted by the white arrow) is clear

from any obstacles, i.e., no trees, buildings, or cars. The surrounding environment, which

constituted mostly of trees, was monitored to make sure that no moving objects existed

throughout the experiments. The frequency spectrum was continuously monitored to make

sure there was no interfering tones.

4.4 Experiments Procedure and Calibration

We conducted three sets of experiments: User-free Ground-to-Ground, User-free UAV-

to-Ground, and UAV-to-Ground with different UE use cases. In the following section, we

explain the procedure of each of these experiment sets.

4.4.1 User-free Ground-to-Ground Channels

To construct a baseline understanding of pathloss and the surrounding environment,

we conduct Ground-to-Ground (GtG) measurements at carrier frequencies 900 MHz and

2.5 GHz. Here, the only variable is the horizontal distance between the transmitter and

receiver. Both nodes are mounted on a tripod approximately 1.5 m above ground (see

Fig. 4.3(d) for one tripod location) and measurements take place at six horizontal distances

of d1 =0 m (Rx next to Tx), d2 =20 m, d3 =40 m, d4 =60 m, d5 =80 m, and d6 =100 m.

4.4.2 User-free UAV-to-Ground Channels

With the same receiver (Rx) still on the tripod, the transmitter (Tx) is now mounted

on the UAV. The Tx UAV visits the same previous Tx locations (same horizontal distances)

at three different altitudes from the ground: h1 = 10 m, h2 = 20 m, and h3 = 30 m. See

Fig. 4.3(d) for a depiction of the altitudes and experiment location. If we denote one location

by its horizontal distance (d) and altitude (h), then to describe, for example, the Tx UAV

location at the fifth horizontal distance (80 m) and third altitude (30 m), we use the notation

of (d5, h3).

Measurement collection starts when the UAV hovers above the user at d1 and altitude

h1. Then, the UAV changes its horizontal distance from d1 to d2 and measurements are
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Figure 4.3: (a) The UAV platform with the used antennas at 2.5 GHz and 900 MHz. (b)
Azimuth and (c) elevation radiation pattern of the antenna at 2.5 GHz. (d) Location and
setup for the UAV-to-Ground experiments. The user-free (no human body involvement)
setup (left) and NCF setup (right) are shown.

collected again. The process is repeated until the UAV reaches d6 for the same altitude, h1.

The UAV then moves to h2 and the process is repeated until we cover the rest of hovering

positions, ending with (d6, h3). Refer to Fig. 4.1 for the hovering positions.

4.4.3 UAV-to-Ground Channels with Different UE Use Cases

Here, we repeat the previous measurements but with a user holding the UE (Rx USRP).

The wight and height of the human subject are approximately 56 kg and 164 cm. We

investigate three use cases: (i) Near chest and facing (NCF) towards the Tx UAV, (ii) Near

chest and facing-away (NCFA) from the Tx UAV, and (iii) In-pocket while facing (IPF) the

Tx UAV. For each use case, we perform AtG experiments at carrier frequencies of 900 MHz

and 2.5 GHz, totalling 6 experiment sets. In each of these experiment sets, we analyze how

the RSS levels, shadowing, and the Rician K-factor are affected by user orientation, UE

near-body location, and the drone’s hovering position. An illustration of when a user is

facing the Tx UAV while holding the radio device with two hands is shown in Fig. 4.3(d).

4.4.4 Power calibration with USRP E312

With software-defined radios, such as USRPs, different units can produce slightly different

results when used to generate, modulate, and demodulate signals. Hence, a calibration of

the transmit power at various gains is needed. The term gain here refers to the RF path gain
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Figure 4.4: (a) Power calibration setup for USRP E312. (b) User-free measurement results
for the Ground-to-Ground setup at 900 MHz and 2.5 GHz.

Table 4.1: Measured Transmit Power (dBm) in USRP E312

Gain (dB) 40 45 50 55 60 65 70
fc=2.5 GHz -14.2 -18.8 -13.6 -8.7 -3.8 1.2 6.2
fc=900 MHz -24.3 -19.7 -14.4 -9.2 -4.3 -0.3 0.4

within the USRP, which comes from the power amplifier and other components within the

device’s circuit. The calibration setup is shown in Fig. 4.4(a). We connect our Linux-based

laptop to the E312 via a serial USB cable. Then, we generate a continuous wave (CW) and

measure the RMS power via a Rohde & Schwarz spectrum analyzer that was connected to

the output port of the E312. The same cables E312 output port were used in our in-field

experiments. We perform this calibration at 900 MHz and 2.5 GHz carrier frequencies. The

results are given in Table 4.1. Cable loss was measured at 0.4 dB.

4.5 User-free Ground-to-Ground and UAV-to-Ground Channels

In this section, we briefly discuss our measurement results for the user-free GtG and

AtG channels. A user-free AtG experiment is shown in Fig. 4.3(d) (left). The objective

of these two experiment setups is two-fold: (i) to create a baseline understanding of the

conventional ground-based channel and see how it might differ from a UAV-based link, and
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(ii) to investigate the UAV-to-Ground channel with no user/human body involvement to

directly compare to when a user is holding the UE.

4.5.1 User-free GtG Measurements Results

In this set of experiments, both the Tx and Rx are mounted on tripods about 1.5 m above

the ground. Keep in mind that there is no human near or holding the receiving USRP. The

received signal is averaged over 15 seconds per Rx location. The average RSS levels with

their first-order, least-squares fit are plotted in Fig. 4.4(b) for both carrier frequencies.

We see that the results follow the expected behavior of terrestrial networks, where the

received signal is reduced by increasing the separation distance. This reduction can be de-

scribed by the log-distance pathloss model. In particular, PL(d) = PL(dref )+10n log d
dref

+

χσs , where PL(d) is the pathloss at a distance d, χσs is the shadowing parameter, PL(dref )

is the pathloss at a reference distance, and n is the pathloss exponent. If we take dref = 20 m

as our reference distance measurement, a value of n = 2.53 can be obtained, which is quite

common for LOS experiments in this environment [46]. Moreover, the standard deviation of

the shadowing parameter, σs, is estimated as 3.2 dB.

4.5.2 User-free UAV-to-Ground Measurement Results

Let us now examine the AtG channel with the same Rx still mounted on the tripod but

with the Tx being mounted on the UAV (see Fig. 4.3(a)). As explained in Section III, the

Tx UAV visits six locations per altitude while the ground Rx records the received signal.

Average RSS: The mean values of the obtained RSS levels at 900 MHz and 2.5 GHz

are shown in Fig. 4.6 as dashed lines. First, we can clearly see the distinction between the

AtG and GtG channels. The AtG channel results follow a curve instead of the expected

straight line obtained by the GtG experiments. This curved behavior is explained here. At

d = 0 m (i.e., when the Tx UAV is directly above the Rx), low RSS levels are experienced.

These results are due to two factors: the antenna elevation radiation pattern (Fig. 4.3(c))

and the UAV body. Since the Tx and Rx antennas are vertically-mounted, omni-directional

antennas, the radiated power is at the minimum value in the vertical direction (i.e., θ =

arctan(h
d
) = 90◦). As a result, we expect to see lower RSS levels at this location compared to

other distances/altitudes with angles less than 90◦. Furthermore, due to the antenna being
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mounted on the UAV body, the transmitted signal is partly blocked (and shadowed) by the

UAV body, especially when seen from a below node. As the Tx UAV moves to the next

locations, the Rx starts to experience a stronger received signal due to more alignment of

the radiation pattern and less drone body obstruction. The mean RSS reaches its maximum

value between 20 m and 40 m horizontal distance for all altitudes. Then, mainly due to its

inverse relationship to distance, the received power starts to decrease in a way that is similar

to the conventional terrestrial links. It is interesting to see that for a fixed UAV altitude,

the RSS can vary by as much as 20 dB as the UAV moves from one location (above the

ground Rx) to another, only 20 m away from the ground Rx. This significant change in RSS

is attributed to the elevation radiation pattern of the antennas.

Shadowing: Shadowing here is exclusively caused by either the drone body or the user’s

body or a combination of both. As the body becomes an obstacle in the signal path, shad-

owing will occur and it will be a function of how much of the obstacle is obstructing the

receiver path. We calculate shadowing by subtracting the received power from its average

value [27] and analyze its distribution. First, we observe that the measured shadowing for

all investigated cases definitely be modeled as a zero mean Gaussian random variable with

its standard deviation (in dB) changing depending on the investigated scenario. Second, we

find that the UAV-based channel, except for the directly above hovering position, results in

less shadowing compared to the ground-based channel. We can see an example of this effect

in Fig. 4.5(a) where we we plot the shadowing at 900 MHz and location (d3, h1). Third,

compared to the user-free experiments, we find that user orientation can significantly alter

the spread/standard deviation of the shadowing parameter. This can be seen in Fig.4.5(b)

where shadowing is plotted for the three use cases. We can see that while the NCF and

IPF are close to the user-free AtG result, the NCFA shadowing is characterized by a larger

spread and standard deviation. We will elaborate on shadowing standard deviation for all

use cases in the next section.

4.6 User Impact: Average Gain/Loss, Shadowing and Multipath

In this section, we investigate how different use cases of holding a UE can affect: (i)

average RSS levels, (ii) shadowing, (iii) multipath characteristics, and (iv) the Rician K-
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Figure 4.5: Shadowing at 900 MHz for the (a) user-free GtG and AtG experiments, and (b)
the three use cases in AtG channels.

factor of an AtG channel at various drone altitudes, locations, and carrier frequencies. In

doing so, we consider the relative impact of user versus UAV properties on the resulting

wireless channel characteristics at ultra-low drone altitudes.

4.6.1 Average RSS and User-induced Loss/Gain

Here, we define user-induced loss/gain as the difference in RSS between the baseline

(User-free) scenario and the facing and facing-away scenarios when the user holds the UE

close to the chest. Fig. 4.6 shows the average RSS for these three scenarios (user-free, NCF,

and NCFA) at both frequencies.

User-Induced Gain Compared to Free Space. To investigate how the existence of

the human body can affect the UAV-to-ground channel, we first compare the results of the

Near Chest Facing (NCF) scenario to those obtained in the user-free experiment. Visually,

this comparison could be made by inspecting Fig. 4.6. We find that the body of the user

when facing the transmit UAV can actually result in increased RSS levels. For example,

while the mean RSS level at (d5, h1) is −46.2 dBm in the user-free setup, it is −40.3 dBm

when the user holds the UE facing the transmit UAV (i.e., NCF), a 5.8 dB increase in the

mean RSS. At the location of (d2, h3) a 7.6 dB increase in the mean RSS level is experienced

due to the existence of the user body. Similar results are found when the UE is inside the
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user’s pocket. We have previously observed this effect in a GtG channel [46], where the

user’s body was found to result in 14% increase in throughput over a reference, user-free

setup. However, it is worth noting here that the above finding depends on the UAV hovering

position. For example, at 0 m horizontal distance (i.e., when the UAV is directly above

the user), the existence of the user’s body and orientation becomes almost irrelevant to the

average RSS changes as the gain/loss compared to the baseline are minimal (less than a

standard deviation). Other works have also shown that the human body can increase the

radiation of the antennas and additional gains of 15 dB were measured compared to free

space [49]. We conclude that, compared to a user-free scenario, there exists a user-induced

gain that yields increases in RSS levels when the UE is facing a transmitting, in-flight drone

when a free-space path exists from sender to receiver. This gain can reach an average and

a maximum value (across all locations at 2.5 GHz) of 3.4 dB and 12.05 dB, respectively.

Finally, we report that with the exception of three hovering positions, average user-induced

gains compared to free space at 900 MHz were insignificant, i.e., less than the standard

deviation of the measured signal. This might be due to the fact that the human body

absorbs more power at low frequencies compared to higher frequencies at which it can reflect

more power [51]. A similar effect is shown in [53] where three different human bodies were

studied at 17 different frequencies. It was concluded that the radiated and attenuated power

(Prad and Ploss) across frequencies can vary according to the human body type, and that

gains with respect to free-space were achieved at higher frequencies while at low frequencies,

absorption resulted in no recorded gains.

User-Induced Loss Compared to Free Space. Next, we seek to understand the role

of the human body on the channel when the user’s orientation changes (i.e., the whole body

is in the path of the signal). To do so, we compare the measured RSS samples in the Near

Chest Facing-away (NCFA) scenario to those obtained in the baseline (User-free) setup. We

find that the user’s body indeed causes reductions in the average RSS, which is is clear via

visual inspection of Fig. 4.6. In particular, if we exclude the strictly-vertical UAV position at

which the user’s orientation is virtually irrelevant, the user’s body is found to considerably

reduce the average RSS. At 2.5 GHz, an average reduction of 13.2 dB and a maximum

reduction of 23.1 dB across all drone hovering positions is experienced. An example of this
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Figure 4.6: Average RSS levels for the user-free, NCF, and NCFA scenarios for all UAV
hovering positions at (a) 900 MHz and (b) 2.5 GHz

loss at 2.5 GHz for location (d2, h2) is shown in Fig. 4.7(a) with an average value of 12.3 dB.

Higher loss is measured at 900 MHz, with an average and maximum reduction of 17.5 dB and

26.3 dB, respectively. An example of this loss at 900 MHz is shown in Fig.4.7(b). This result

is inline with the finding above as the human body involved in this study is found to result in

more attenuation (most likely through absorption) at this frequency than 2.5 GHz. Similar

values of human-induced losses compared to free-space can be found in literature [56].

Impact of User Orientation. Now that we understand how the user’s body can

affect the channel compared to a free-space baseline, it is interesting to compare, for the

same person, how their orientation and near-body location of the UE can affect the UAV-

to-ground channel. First, we compare the NCFA measurements to those obtained in the

NCF (Near Chest Facing) scenario. This corresponds to comparing the top and bottom

solid lines/curves in Fig. 4.6. We see that,for both frequencies, the human body results in

signal blockage significantly reducing the average RSS. These losses can reach about 25 dB

at 2.5 GHz, and 21 dB at 900 MHz (Fig. 4.8). Interestingly, this observation does not

apply to the strictly-vertical location, as the user’s orientation is arbitrary relative to the

UAV and the difference between the two cases is minimal. The effect of this UAV hovering
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Figure 4.7: Comparing the RSS in three use cases to the free-space scenario at (a) 2.5 GHz
and (b) 900 MHz for UAV hovering position (d2, h2). User-induced gains are recorded at
2.5 GHz where at 900 MHz, only losses are experienced.

position can be clearly seen in Fig. 4.8 where the first horizontal distance has both, negative

and positive average values of the investigated impact. As we move to the next hovering

positions, however, the human body blockage starts to be quite consistent ranging between

15 dB and 21 dB across all locations. Similar reductions due to user blockage can be found

in [49,56,57].

Impact of Near-Body Location for a Fixed User Orientation. For the same drone

hovering location and the same user orientation of facing the transmit UAV, we investigate if

placing the UE near different body locations yield different received signal strengths. To do

so, we calculate the difference in average RSS level in NCF and IPF scenarios and analyze

the results. This difference at 900 MHz is plotted (as grey bars) in Fig. 4.8. First, we see that

placing the UE inside the pocket causes reductions in average RSS levels, which is evident

by the positive loss values across many hovering positions. This degradation can reach

around 8.5 dB. Interestingly, we find that this difference is not constant and can change by

altering drone’s hovering altitude. Specifically, the difference increases as the UAV’s hovering

altitude increases. This trend can be seen in Fig. 4.8. For example, at 40 m distance and

10 m altitude, the average difference between the two use cases is around -2.5 dB. At a 30 m
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Figure 4.8: Average user-induced loss/gain for all investigated distanced and altitudes at
900 MHz.

altitude of the same horizontal distance, this difference is about +5 dB (a 7.5 dB increase

in difference).This improvement (negative dB values at low altitudes) could be attributed to

the fact that, as the drone hovers at lower altitudes, it starts to exhibit a stronger LOS with

the UE inside the pocket, and as a result, the difference between the two use cases decreases.

This finding is consistent across all but the first hovering position. We also find that this

behavior (stronger RSS in IPF compared to NCF at h1) occurs mostly at 900 MHz but not at

2.5 GHz and it diminishes as we go to higher altitudes. Fig. 4.9 shows the difference in RSS

due to placing the UE inside the pocket at two frequencies, averaged over all distances for h1

and h3. From Fig. 4.9(a) we can see that at h1 and 900 MHz frequency about 60% of NCF-

IPF values are negative indicating stronger IPF while zero values are recorded at the same

altitude for 2.5 GHz. As we move to higher altitudes the distinction between two frequencies

become negligible with an almost identical CDF at h3 (see Fig. 4.9(b)). This effect might be

attributed to the longer wavelength at 900 MHz and better penetration characteristics over

2.5 GHz. However, more investigation is needed.

Recalling that the user’s orientation is fixed (facing the UAV), we conclude that there

exists not only an optimal UAV position for a UAV-to-user connectivity based on their ori-

entation, but there also exists an optimal UE location on/near their body when facing the

UAV in a LOS setup. This result could influence algorithms that adapt to different user

gestures based on wireless sensor measurements.
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Figure 4.9: User-induced loss/gain due to placing the UE inside pocket at two frequencies
at drone altitudes (a) h1 = 10 m and (b) h3 = 30 m.

4.6.2 Shadowing and Multipath Due to UAV and User Bodies

In this section, we discuss how shadowing and multipath are affected by the UAV, its

mounted antenna radiation pattern, and the human body. Specifically, we investigate how

these factors can impact the shadowing standard deviation and the multipath parameter

(σ in (2.9)). Fig. 4.10(a) shows the instantaneous RSS when the UAV is directly above

the user (i.e., at (d1,h1)), while Fig. 4.10(b) illustrates the RSS when the UAV is at d2 at

the same altitude (i.e., at (d2,h1)). Fig. 4.10(c) shows the estimated multipath parameter,

from measurements and the fitted Rician model, at one altitude of 20 m across all distances.

There are two important observations to be made here.

Impact of the elevation radiation pattern and UAV body on shadowing stan-

dard deviation. Even though the separation distance increases from when the drone is

hovering above the user (d1, h1) to when the UAV is at (d2, h1), (i.e., from dx =
√
d21 + h21 =

√
02 + 102 = 10 m to dx =

√
d22 + h21 =

√
202 + 102 = 22.36 m), which would lead us to

expect a reduction in the received power by an approximate 7 dB as a result of the inverse

relationship between received power and distance, it actually increases by 28 dB in the facing

scenario.

The reason behind this behavior is the increased power in the radiation pattern of the

antennas along the elevation plane and the reduced UAV body shadowing. The elevation

radiation pattern of the omni-directional dipole antenna, which is depicted in Fig. 4.3(c)
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Figure 4.10: Effect of UAV body on shadowing and multipath effects. (a) Drone is hovering
directly above the user at d1 = 0 m, h1 = 10 m; significant multipath resulting in multiple
deep fading events. (b) Drone is 20 m away resulting in less multipath effects and a more
stable signal level with no deep fading events. Also, a significant increase in signal level
is experienced due to better radiation pattern product and less shadowing caused by the
drone body. (c) The Rician multipath parameter σ obtained from measurements and Rician
fit versus drone hovering locations; it is noticeable that as the UAV moves away from the
strictly above location less multipath is exhibited by the ground user.

clearly shows that at strictly-vertical links (θ = +/− 90) the antenna experiences significant

reductions in its radiated power. This is inline with the theory that indicates zero radiated

power in the vertical plane (i.e., GTx(θ) = cos(θ) = cos(90) = 0) [8]. In addition to this,

the UAV body acts as an obstruction causing shadowing (reduction in the strength of the

otherwise LOS component) and an increase in multipath effects. As the UAV moves from

d1 to d2, there becomes more clearance in the Tx-Rx path and less obstruction/shadowing

caused by the drone body, and the radiation pattern product GTxGRx becomes stronger.

For example, the radiation pattern product at 20 m horizontal distance and 10 m altitude

is GTxGRx = cos2(θ) = cos2(arctan(10
20
)) = 0.8. This value corresponds to -0.97 dB which,

compared to approximately -35 dB (assuming a θ = 89◦), is a significant increase in received

power value. This reasoning is valid for the facing scenario, regardless of the UE near-body

location. When the user is facing-away, as the UAV moves to d2, the increase in the RSS

level, which was previously obtained due to the radiation pattern impact, is now negated by

the impact of the user’s body. That is, even though the UAV moves to a location where the

elevation radiation pattern is much stronger and with a less obstructed path by the UAV
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Figure 4.11: Shadowing standard deviation for the three use cases at a carrier frequency of
2.5 GHz.

body, the user’s body now becomes the main obstruction, and the received signal ultimately

remains approximately the same as when the drone hovers above the user (see Fig. 4.10(b)).

We have investigated the shadowing standard deviation for all experiments and found

that it is greatest when the UAV is directly above the user (at d1) with values of σs > 4 dB

across all experiments and frequencies. Then, it gradually decreases as the UAV moves to

more-distant locations that have a less obstructed Tx-Rx path. This behavior occurs in both

scenarios of facing and in-pocket, and it can be clearly seen in Fig. 4.11, where we plot σs

(shadowing standard deviation) for all UAV locations at 2.5 GHz. In this figure, we can see

that shadowing is approximately the same for the three use cases when the UAV is above the

user at location d1 for all altitudes. At this UAV hovering position, shadowing is dominated

by the UAV’s body, not the user or their orientation. Moving away from this location,

shadowing starts to decrease for the facing and in-pocket scenarios while, in the facing-away

scenario, it stays approximately the same regardless of the UAV location, suggesting that

shadowing becomes dominated by the user’s body, not the UAV.

The shadowing standard deviation at 900 MHz is summarized in Table 4.2. Similar to

the 2.5 GHz results, we notice that, while there is little difference between the facing and

in-pocket scenario, differences between these two and the facing-away scenario can reach up
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Table 4.2: Shadowing Standard Deviation at 900 MHz

Pos. NCF IPF NCFA

h
d

d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6

h1 4.7 2.4 2.1 1.5 1.9 1.0 4.0 2.4 3.3 1.9 3.6 2.4 4.9 3.2 3.1 3.7 3.7 4.6
h2 4.1 2.6 2.4 2.3 0.8 0.8 4.0 1.9 1.1 1.3 1.2 1.4 5.1 3.7 4.5 3.5 5.7 5.0
h3 4.9 2.6 2.0 1.4 0.8 0.9 3.1 2.1 2.2 1.4 1.2 1.1 4.6 5.3 5.1 3.6 3.6 5.5

to 5.7 dB. Also, shadowing, regardless of the use case, is highest at the location of (d1, any

h) due to the above explained effect of the UAV body. We then conclude that in LOS UAV-

to-User channels there exists two regions for shadowing: one that is dependent on the UAV

body and another that is mainly affected by the user’s body. This conclusion excludes any

external/environmental causes. That is, the observed effects are due to either the UAV or

the user, not any environmental changes. As stated in the experiment setup, the experiments

were done clear of any obstacles and free of any surrounding moving objects.

Impact of the UAV body on multipath. When the UAV is flying directly above the

user, the multipath experienced at the receiver is stronger than in any other UAV hovering

location. This result holds true across all frequencies and use cases. We can clearly see

this effect by comparing the two figures in Fig. 4.10. Let us define a deep fading event to

be that at which the SNR falls to approximately 0 dB. At this value, the packet delivery

ratio of many off-the-shelf IEEE 802.11 products could fall between 0% to 5% indicating the

potential of a complete loss of data packets. Our measured noise floor was in the range of

-100 dBm to -105 dBm. If we observe Fig. 4.10(b), which corresponds to location (d2, h1), we

see that the received signal is characterized by no deep fading events and the strong fading

events that occur still give us an SNR of at least 10 dB. However, when the UAV is hovering

directly above the user (Fig. 4.10(a)), this is not the case: multiple deep fading events

occur, where the received signal falls to extremely low levels, indicating strong destructive

interference effects. More specifically, during a time duration of 15 seconds, more than 10

deep fading events can occur as a result of the UAV body being strictly above the user. To

understand how multipath is induced by the UAV body and how it can dramatically change
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Figure 4.12: The average and standard deviation of the measured Rician K-factor for the
three use cases of the LOS UAV-to-Ground channel at 2.5 GHz and a UAV altitude of (a)
10 m, (b) 20 m, and (c) 30 m.

depending on the drone’s relative UAV location, and consequently the Tx-Rx path clearance,

let us examine Fig. 4.10(c). In this figure, we plot the estimated multipath parameter (σ

in equation ( 2.9)) across all distances for a fixed UAV altitude. Both the value obtained

from measurements and that from fitting a Rician distribution are plotted. When the UAV

is directly above the user, we obtain σ = 0.11. As the UAV transitions to the next location,

it falls to 0.075 and then settles at around 0.055, which is a 50% decrease in multipath from

when the UAV is strictly above the user. It is interesting to note that a similar curve was

obtained by [26] with a model that describes how multipath decreased with increasing drone

height was obtained. However, here, the altitude is fixed, and the only variable is horizontal

distance, which corresponds to the Tx-Rx path clearance.

4.7 The Rician K-factor in UAV-to-Ground Channels for Different Use Cases

In this section, we present how the Rician K-factor, which is a measure of channel fading

severity, can be influenced by the user’s orientation, UE near-body location, and the UAV’s

hovering location. Before elaborating on these scenarios, the time-varying nature of the

K-factor as a result of the UAV’s continuous hovering is addressed.

4.7.1 Impact of UAV Hovering and User Body on The K-factor’s Time Variability

The UAV’s continuous movement while hovering could result in variations in the K-factor.

That is, the main LOS component and/or the multipath components from one window to

another, might vary. To visualize the issue, Fig. 4.13 shows the calculated K-factor for 200
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Figure 4.13: The time-varying nature of the K-factor as a function of the use case.

windows (approx. 13 seconds of hovering duration) at location (d4, h2). We first consider

the case where the user is facing the drone (NCF or IPF). We see that the K-factor varies

along a range of 10 dB to 14 dB. The average value for both cases, however, is the same.

This variation in the K-factor is due to the time-varying nature of the channel, which is a

result of the UAV’s hovering motion. Recall that the user is fixed, and there is no moving

objects in the experiment area. When the user’s body is added to the equation (i.e., the

user is facing-away), severe fluctuations are experienced in the K-factor, and the mean value

becomes unstable. This is clear in the NCFA plot in the same figure where the value of K

can vary from -12 dB to 10 dB (22 dB range). After investigating the K-factor variance as a

function of the user’s body, we found that a worst case scenario of 20-times stronger variance

is observed as a result of fluctuations induced by the user’s body. These strong fluctuations

could be attributed to the random nature of multipath reflections caused by propagation

through the human body [60]. The time-varying nature of the K-factor has been addressed

in [13], but the experiments were conducted with a high-altitude platform in an urban area;

in other words, variations in the K-factor where not specifically due to a UAV’s hovering

state nor the user’s body, but variations in the urban environment. Similarly, the work

in [27] characterized the K-factor for low-altitude UAVs, but the experiments were done in

an urban environment crowded with buildings and spanned large horizontal distances. The

work in [60] leveraged the time-varying nature of multipath reflections within the body to
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achieve incoherent beamforming using signals of different frequencies.

4.7.2 Rician K-factor When Facing Tx UAV

In this section, we analyze the Rician K-factor when the user is facing the Tx UAV. The

average value and standard deviation of the Rician K-factor at 2.5 GHz for all use cases

across all locations is plotted in Fig. 4.12.

First, we see that, for a fixed altitude, the Rician K-factor experiences a significant change

as the UAV moves from d1 to any other hovering location. For example, in Fig. 4.12(a),

when in-pocket and at a UAV altitude of 10 m, the average K-factor can change from

approximately K = 0 dB when the Tx UAV is directly above the ground Rx (i.e., d1 = 0 m)

to K = 12 dB as the UAV hovers at d2 = 20 m. Such a dramatic change in the K-factor

is attributed to the impact of both the elevation radiation pattern of the vertically-oriented

antenna and the body of the UAV. Recall that a vertically-oriented omni-directional dipole

antenna theoretically does not radiate in the vertical direction. In reality, however, there

will still be some radiated power at significantly-less levels. This radiation-pattern effect will

impact the main LOS component of the received signal, while the body of the UAV and its

induced reflections will cause a larger value of the multipath component (σ in (2.9)). The

end result of this effect is the significant reduction in the K-factor, which we observed at

d1 at all altitudes and both carrier frequencies. The same observation can be made for the

near-chest scenario with slightly higher K values at the same distances.

The K-factor also, for the same horizontal distance, decreases when increasing the drone

altitude. For example, if we examine the results of the K-factor at d3 for the near-chest

scenario, we see that it decreases from around K = 17 dB at h1 = 10 m to K = 11 dB at

h2 = 20 m to approximately K = 9.5 dB at h3 = 30 m. This reduction in value is mainly

due to increases in distance and the radiation pattern misalignment loss, both of which will

cause reductions in the strength of the main LOS component. This behavior (reduction

in K-factor with increased altitude) has been previously analyzed by our research team in

UAV-to-UAV channels.
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Figure 4.14: (a) Average K-factor for the three use cases at one horizontal distance and
different UAV altitudes at 900 MHz. (b) The empirical CDF of the average K-factor across
all locations and use cases at 900 MHz.

Table 4.3: Average K-factor at 10 m drone altitude for 900 MHz and 2.5 GHz in the three
use cases.

Frequency NCF IPF NCFA
900 MHz 20.65 13.41 17.92
2.5 GHz 12.6 11.2 6.63

4.7.3 Rician K-factor When Facing-Away from Tx UAV

In the previous section, we saw how the Rician K-factor can vary with UAV altitude and

its location relative to a ground user that is facing the drone. If the user is facing-away

from the transmitting UAV, the question becomes about how severe is the user’s impact on

the channel and the Rician K-factor and whether or not it turns into a Rayleigh channel

(K = −∞ dB).

We find that in all but one location, where the Tx UAV hovers directly above the ground

user, the K-factor experiences great reductions as the user faces-away from the flying UAV.

This is clear in the results plotted in Fig. 4.12. At h1, for example, the difference in K-

factor between the facing and facing-away for the same body position (near chest) can reach

up to 11 dB and an average value across all locations of 6.18 dB. As the UAV moves to
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Table 4.4: Parameters of the LOS UAV-to-user channel in NCF setup

Measured Rician Fit Error
dist. a σ a σ RMSEa RMSEσ

d1 0.643 0.1097 0.633 0.1107 0.01 9.41E-04
d2 0.7877 0.0733 0.7843 0.0734 0.0035 1.61E-04
d3 0.8462 0.0567 0.8443 0.0568 0.0019 6.38E-05
d4 0.8552 0.0575 0.8533 0.0561 0.0019 6.07E-05
d5 0.8029 0.0561 0.8008 0.0576 0.0021 4.57E-05
d6 0.798 0.063 0.7958 0.0631 0.0025 9.77E-05

higher altitudes and the general trend of the K-factor tends to result in weaker values for all

scenarios, the user’s body blockage starts to result in negative values (in dB) at h3, suggesting

an extremely weak LOS component and an increase in multipath effects.

4.7.4 Frequency Impact on K-factor:

To investigate how carrier frequency can affect channel fading severity measured by the

K-factor, we compared the average values of the K-factor at both frequencies across all three

use cases. We found that across most measurements, the K-factor at 900 Mhz was higher

than the 2.5 GHz results. Comparison results at h1 are given in Table 4.3. The stronger

K-factor at 900 MHz is evident across all three use cases reaching an average and maximum

difference of 7.18 dB and 11.3 dB respectively. However, slightly larger variance in the K-

factor is observed at 900 MHz. Due to stronger K-factor values at 900 MHz, the values

obtained when facing-away are positive dB values, indicating a stronger ratio of LOS to

scattered/multipath power than that at 2.5 GHz. An example of the 900 MHz K-factor is

given in Fig. 4.14. To the left (Fig. 4.14(a) the average value at (d5, h2) for the three cases

is shown. If we compare those to the values obtained at the same location but at 2.5 GHz

(Fig. 4.12(b)), we can see that the NCFA K-factor at 900 MHz is about 8 dB stronger.

As a result, the NCFA K-factor at 900 MHz is approximately the same as the NCF K-

factor at 2.5 GHz. To further investigate this frequency dependence, we compare all average

values of the K-factor at 900 MHz (Fig. 4.14(b)) to those obtained at 2.5 GHz (Fig. 4.12).

We can first notice that while there exists no negative (in dB) values of the K-factor at
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Figure 4.15: Histogram of the measured values of the normalized received signal envelope
and its fitted Rician distribution at a drone altitude of 20 m.

900 MHz, at 2.5 GHz and a UAV altitude of 30 m, many instances result in negative K-

factor values. Moreover, we can see that about 50% of the values at 900 MHz exceeds 17 dB

for NCF and IPF while no values reach that level at 2.5 GHz. The above discussion reveals

that using lower frequencies might result in a more deterministic behavior of UAV-based

fading channels. This finding might be attributed to the fact that lower frequencies has a

longer wavelength and therefore less sensitivity to UAV hovering jitter/fluctuations error.

Designers of UAV-based air-to-ground channels should expect about 7 dB degradation in

K-factor values as they move from 900 MHz to somewhere near 2.5 GHz, and plans, in terms

of adaptive power control and required SNR – to meet certain bit error rates – should change

accordingly.

4.7.5 Is Rician Distribution a Good Fit for All Three Cases?

While it might be expected that the channel follows a Rician distribution in NCF and

IPF scenarios, it is interesting to see if this assumption still holds when facing-away from the

UAV. Therefore, to test the assumption of the Rician channel for all three scenarios at both

frequencies, we fit a Rician distribution using the Maximum Likelihood Estimate (MLE) to

the measured values of the normalized received signal envelope for various time durations and

compare the obtained fit to the measurements. The comparison shows that the Rice model

can adequately represent the channel for all three scenarios with an average RMSE error of
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Figure 4.16: Illustration of human-based physical layer security for UAV-assisted networks.
(a) User 1 faces east and User 2 faces west, (b) Both Users face west. (c) Impact of including
the human-induced effects on optimal location of UAVs for maximum secrecy, where marker
size is proportional to secrecy rate.

4.99E-03 and 4.16E-04 in a and σ (of equation (2.9)), respectively. This result indicates that

even though the main LOS component was shadowed by the human body in the NCFA case,

there still exists some dominant component compared to the multipath/scattered component

captured within that time period. A summary of the obtained parameter values through

measurements and the Rician fit for a UAV altitude of h2 = 20 m in the NCF scenario

are given in Table 4.4. We see that the Rician model is a good fit for all UAV positions,

even d1 (drone directly above user). An example of the measured normalized received signal

envelope and its Rician fit when the UAV is 80 away at h2 is shown in Fig. 4.15. We see a

close proximity between the histogram of measured data and the Rician fit. In addition, the

impact of the user’s body on the measurements is clear; the measurements are distributed,

from lowest to highest, in the following order: near chest facing-away (NCFA), in-pocket

facing (IPF), and near-chest facing (NCF). We note that even though the signal path is

obstructed by the user’s body, the received signal envelope still follows a Rician distribution

in the facing-away scenario, indicating that there still exists a dominant signal component,

however, at significantly lower level compared to the other two scenarios.

4.8 Applications: Human-based Deployment of UAVs for Optimal Secrecy

The obtained insight from this work can find various applications. The focus here is on

physical layer security and secrecy maximization based on the orientation of ground users

relative to ultra-low UAVs.

Physical layer security has been recently proposed for UAV-based communication sys-
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tems [61–63]. However, none of these works consider the human-body effect, its orientation,

and the UAV-body impact on wireless channels to understand real-world physical layer secu-

rity performance. Here, based on the collected experimental measurements of UAV-to-user

channel for different UAV positions and human body orientations, we show that the average

secrecy performance of UAV-based wireless communication systems for different low-altitude

UAV positions and human body orientation is significantly different compared to the theo-

retical analysis on physical layer secrecy performance that do not consider user and drone

body effects [61–63].

Consider a UAV-assisted wireless communication system with two UAVs and two users as

shown in Fig. 4.16. The location (0, 0) is shown with a ‘red dot’ in Figs. 4.16 (a) and (b), and

users 1 and 2 are located at (0, 40) m and (0, 80) m, i.e., 40 m apart from each other. Each

UAV can move to one of the locations (i× 10, j × 20) m where i ∈ {1, 2, 3}, j ∈ {0, .., 6}, as

marked with ‘blue dot’s in Figs. 4.16(a) and (b). The UAVs 1 and 2 aim to send confidential

messages to users 1 and 2, respectively, and interference can be avoided by using two separate

carrier frequencies, 2.5 GHz and 900 MHz for signals intended for users 1 and 2, respectively.

Each user i tries to overhear the signal intended for the other user j which is transmitted

from UAV j (i, j ∈ {1, 2}, j ̸= i). We investigate the secrecy performance for such a network

with two different user orientation configurations; (1) User 1 is facing east while user 2 is

facing west, as shown in Fig. 4.16(a), and (2) Both users are facing west, as shown in Fig.

4.16(b). We measure secrecy performance for each user for a given configuration in terms of

ergodic secrecy rate. For a given location l of UAV i, the instantaneous secrecy rate for user

i at time slot n can be defined according to [64]:

rl(n) =
[
log2

(
1 + γli(n)

)
− log2

(
1 + γlj(n)

)]+ (4.1)

Here, γli(n) and γlj(n) are the SNR for UAV i to user i and UAV i to user j at time n

(i, j ∈ {1, 2}, j ̸= i), respectively, and [x]+ = max(x, 0). Then, the ergodic secrecy rate can

be obtained as follows:

Rl =
1

N

N∑
n=1

rl(n) (4.2)
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Here, N is the total duration of measurements in terms of number of time slots. The ergodic

secrecy rate for UAV 1’s signal for different UAV 1’s locations in case of configurations 1

and 2 are shown in Tables 4.5 and 4.7, respectively and the ergodic secrecy rate for UAV 2’s

signal for different UAV 2’s locations in case of configurations 1 and 2 are shown in Tables

4.6 and 4.8, respectively 2. It can be observed that the ergodic secrecy rate for a given user

i is impacted by UAV i to users i and j distances as well as the factors that determine

the shadowing effect on these channels, e.g., carrier frequency and the orientation of each

user. As shown in Tables 4.5-4.8, the ergodic secrecy rate of user i is low when UAV i is

behind or above the user i while user j is facing UAV i, and the ergodic secrecy rate of

user i is high when user i is facing UAV i while the UAV is behind the user j. The reason

is that the shadowing effect on a UAV-to-user channel is less when the user is facing the

UAV as compared the scenario in which the UAV is behind or above it. If the UAV-to-user

channel is assumed to follow a free-space path-loss model3 i.e., with channel gain between

UAV i to user j modeled as gi,j = β
d2i,j

(assuming the probability of a LoS channel as 1 for

rural area [61]), where β is the channel power gain at the reference distance 1 m, and di,j

is the link distance, the sum ergodic secrecy rate for configuration 1 or 2 is maximum if

UAVs 1 and 2 are positioned at (10, 60) and (10, 100), respectively. However, positioning

the UAVs 1 and 2 at (10, 60) and (10, 100), respectively, would result in a poor ergodic

secrecy rate for users 1 and 2, as shown in Tables 4.5-4.8. It can be observed from Tables 4.5

and 4.6 that the optimal locations of UAVs 1 and 2 for configuration 1 that maximizes

the sum ergodic secrecy rate are (10, 80) m and (30, 20) m, respectively, for which the sum

ergodic rate is 16.38 bps/Hz. It can be observed from Tables 4.7 and 4.8 that the optimal

locations of UAVs 1 and 2 for configuration 2 are (10, 20) m and (20, 60) m, respectively, for

which sum ergodic rate is 9.9 bps/Hz. The change in the optimal location of both UAVs

due to the discussed human-induced effects are shown in Fig. 4.16(c). We then conclude

that positioning UAVs using the knowledge of human body orientation and human body
2We assume that RSS measurements for each UAV-to-user channel can be obtained at the UAV since

both users are part of the communication system. Therefore, the UAVs can determine users’ orientations
and locations using machine learning methods, such as [58] or using an optical camera if available. Using
this information and (4.2), the ergodic rate lookup tables, such as Tables 4.5-4.8, can be generated.

3Free-space path-loss models have been commonly adopted by the UAV research community to model
the UAV-to-user channel [61–63].
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Table 4.5: Secrecy Performance of UAV 1’s signal at different locations of the UAV 1 when
UE 1 Faces East and UE 2 Faces West

Alt.
Dist. 0 m 20 m 40 m 60 m 80 m 100 m 120

10 m 0 0 0 0 8.75 3.12 5.61
20 m 0 0 0 0 8.72 5.13 6.37
30 m 0 0 0 0 7.88 4.70 5.04

Table 4.6: Secrecy Performance of UAV 2’s signal at different locations of the UAV 2 when
UE 1 Faces East and UE 2 Faces West

Alt.
Dist. 0 m 20 m 40 m 60 m 80 m 100 m 120

10 m 4.14 1.72 4.10 0 0 0 0
20 m 6.04 6.76 4.98 0 0 0 0
30 m 6.97 7.63 6.33 0 0 0 0

effects on wireless channels when UAVs are flying at low altitudes results in a significantly

higher ergodic secrecy rate compared to the UAVs’ location optimization strategies that are

employed without considering the human-induced effects.
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Table 4.7: Secrecy Performance of UAV 1’s signal at different locations of the UAV 1 when
Both UEs Face West

Alt.
Dist. 0 m 20 m 40 m 60 m 80 m 100 m 120

10 m 2.34 3.30 0 0 1.25 0.29 0.41
20 m 1.85 0.68 0 0 1.14 0.17 0.92
30 m 0.41 0.17 0 0 2.73 0.63 0.16

Table 4.8: Secrecy Performance of UAV 2’s signal at different locations of the UAV 2 when
Both UEs Face West

Alt.
Dist. 0 m 20 m 40 m 60 m 80 m 100 m 120

10 m 0.16 0 4.10 5.08 0.91 2.98 1.54
20 m 0.09 0.46 4.98 6.60 2.12 0.20 1.23
30 m 1.13 1.96 6.33 5.67 0.68 0.46 0.33
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Chapter 5

Leveraging UAV Rotation to Increase Phase Coherency in Distributed Beamforming

Systems

Research has been recently exploring distributed beamforming from a UAV swarm to

achieve extended range and limited interference [65]. In the previous chapters of this work

we showed that the UAV body can increase polarization mixing and result in significant

reductions in cross-polarization discrimination (XPD). This finding meant that the UAV

alters the phase of the incident electromagnetic wave. In this chapter, we study the impact

of this effect on phase coherency in distributed transmit beamforming systems under the

context of UAV swarms.

The use of UAV-based distributed transmit beamforming (DTBF) is motivated via the

search and rescue example illustrated in Fig. 5.1. In this scenario, a drone swarm covers a

large search area to look for missing persons/soldiers. The swarm hovers over the large area

while an anchor UAV, near the base camp, acts a relay. We are interested in the swarm-to-

anchor link. Due to the long distance separating the swarm and the anchor drone, the UAV

swarm is tasked to beamform the common message signal (e.g., target found) to the anchor

drone which in turn will relay back the information to the base. As is the case with any

wireless system, there are many challenges to overcome (e.g., carrier frequency offset, timing

errors, channel reciprocity). However, there are two challenges that are unique to achieving

transmit beamforming from a UAV swarm:

1. Phase errors due to local oscillator (LO)/phased locked loop (PLL): each UAV will

have its own independent radio equipment with its own local oscillator (LO), resulting

in a phase offset from a certain reference (e.g., zero degrees).

2. Phase offsets due to drone hovering position error: changes in the phase of the incoming

or departing wave due to position deviation could be significant, depending on the
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Figure 5.1: A scenario where DTBF could help search and rescue missions.

wavelength and the amount of displacement.

It is well documented that phase coherency among the transmitters is critical to the

success of beamforming [66]. Even if the system were to implement perfect channel state

information (CSI) feedback for conjugate beamforming (which would require significant over-

head), the phase incoherent LOs and UAV hovering would result in a reduction of the beam-

forming gain. An additional factor, which we will use to our advantage in this work, is that

the particular placement of the antenna on the body of a drone can significantly alter the

antenna’s radiation pattern and cause local scattering, which further disrupts the phase of

the signals.

In this chapter, we characterize the two sources of phase incoherency listed above, an-

alyze their potential impact on a distributed beamforming system, and then demonstrate

experimentally how local rotations at the receiver can counteract some of the impact of phase

incoherency at the transmitter.

5.1 Related Work

Many works have addressed the issue of distributed transmit beamforming in the past

two decades. Stemming from the idea of cooperation between distributed sensors, the work

in [67] addressed how the beam pattern of a distributed set of sensors could affect beamform-

ing gains, while [68] addressed issues related to synchronization and phase errors. In [69],
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a distributed transmit beamforming (DTBF) approach that utilizes 3 bits for feedback is

proposed. One-bit feedback schemes, such as [70], have also been proposed to achieve beam-

forming gains in DTBF scenarios. In [71], a fully-wireless implementation of DTBF with

one-bit feedback was demonstrated. Other methods that also rely on some sort of feed-

back, such as SNR [72], have been proposed. In [73], a time slot was continuously allocated

for phase synchronization followed by a beamforming time slot; the process resulted in low

spectral efficiency but good overall beamforming gains.

Works that investigate UAV-based beamforming have been emerging recently. For ex-

ample, in their AirBeam prototype, the work in [65] has experimentally demonstrated dis-

tributed beamforming in an air-to-ground channel with the clocking solution achieved via an

OctoClock cable that was connected to UAVs. In [74], tilted antennas were proposed to form

beams in certain directions. Event-triggered DTBF has been proposed in [75] as a solution

to reduce the overhead of channel estimation and feedback. A model-free DTBF system has

been simulated and studied in [76]. An adaptive positioning algorithm for the distributed

Tx nodes, which required feedback from the receiver nodes, was proposed in [77] to im-

prove beamforming performance. Other works, such as [78], have analytically investigated

the impact of phase offset between the distributed nodes on beamforming gains. The work

in [79] has studied the minimization of probability of outage in a drone-based data collection

system with distributed beamforming from the sensor nodes. Moreover, governments have

started focusing on DTBF in drone swarms. For example, the U.S. Air Force is currently

looking at the automation of a drone swarm for distributed beamforming [80].

Many of the above mentioned works have produced algorithms and system design con-

siderations that help in understanding and solving some problems related to DTBF systems.

However, none of these works have considered leveraging the heterogeneous structure of the

UAV by rotation at the receiver to offset the negative impact of the phase errors at the dis-

tributed transmitter side. With short coherence times and the continuous hovering/moving

state of UAVs, channel estimation and feedback as a method of attempting to improve the

received signal at the receive UAV, is computationally expensive. In addition, due to the

short coherence times, it is highly likely that the obtained channel state information (CSI)

will be outdated. Therefore, a local receiver method in which the channel can be improved
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is highly desirable. Such a method will result in significant reduction in channel feedback

overhead and more autonomy at the beamformee side. Hence, works that investigate the

potential for such a UAV-based receiver method are necessary.

5.1.1 Contributions

In this chapter, we investigate how the UAV body and its rotation can improve the

beamforming gain for various antenna positions. To this end, we conduct various controlled

experiments at 2.48 GHz (IEE 802.11 Channel 14) that span different drone rotation angles,

induced phase offset values at two distributed Tx nodes, and four antenna positions at the

receiver UAV. We quantify what we term rotational gain and show that regardless of the

antenna placement, the UAV’s heterogeneous body structure can be used to increase the

level of the beamformed Rx signal simply by rotating the receiver drone relative to the

transmitters. Additionally, we show that as the different phase offsets between Tx nodes

change, the optimal rotational angle for a given antenna position changes as well. Lastly, we

explore the trade-offs of this rotation strategy, specifically that rotation angles that result in

the strongest possible Rx signal do not always have the highest average Rx signal, depending

on the distribution of the phase offset between the two transmitters.

We first start with the system model, then, we discuss the above-mentioned two sources

of phase error. The experiments that characterize the UAV body effect on phase coherency

are then presented, followed by conclusions and future work.

5.2 System Model

We will now present the model for a DTBF system, including the previously mentioned

sources of error. Let mission drone i be at a distance of d = do + derr from the anchor drone

(see Fig. 5.1). Here, do is the nominal distance and derr is the error in distance resulting

from location error due to hovering movement. If the anchor drone broadcasts a message

signal m(t) cos(2πfct) to all mission drones, then, mission drone i will receive [68]:

ri(t) = wim(t) cos(2πfct+ ϕo(i) + ϕer(i)) + ni(t) (5.1)

Here, wi is the complex channel fading coefficient, ϕo(i) = 2πdo(i)
λ

is the nominal phase
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offset from the transmit carrier signal, and ϕer(i) =
2πderr(i)

λ
is the phase error due to location

error. Mission node i then demodulates the received signal by the carrier cos(2π(fc+δfi)t+

ϕlo(i)), where δf is the CFO between the anchor and mission drone, and ϕlo(i) is an arbitrary

phase offset value created by its own LO. The complex baseband signal at mission node i

will be:

ri(t) = m(t)wie
j(2πδfit+γi) (5.2)

where γi = ϕo(i) + ϕer(i) + ϕlo(i). The mission drones can estimate the channel ŵi and use

that estimate to beamform the common message signal x(t) in the direction of the anchor

drone using conjugate-based beamforming. That is, each node uses ŵ∗
i multiplied by the

message signal and modulated by the carrier. Hence, the transmitted signal from mission

drone i is [81]:

qi(t) = ℜ(ŵ∗
i s(t− τsyn(i))e

j(2π(fc+δfi)t−τsyn(i)−γi) (5.3)

Here, s(t) =
∑

k p(t − kT )xk, where xk is the stream of sent symbols, and p(t) is the

transmitted pulse with power ps. We assume a narrow band fading model and henceforth

disregard inter-symbol interference. The received baseband signal as a result of transmitting

from N drones is: rk = wHŵ∗xk+nk. Then, the received, beamformed power at the receiver

(anchor UAV) will be:

Pr = ||
N∑
i=1

wie
−jΘi||2 (5.4)

Here, we collect all phase error terms in Θi, i.e., Θi = ϕer(i) + ϕlo(i) + ϕo(i). We will first

analyze experimental results pertaining to the two phase errors (LO phase offset and drone

hovering position movement). Then, through controlled experiments, we will show how to

combat the negative effects of these errors via local decisions by the UAV in the form of

rotation and antenna selection.

5.3 Sources of Phase Error and Their Impact on Distributed Transmit Beam-
forming Gains

Here, we provide an experimental insight about the behavior and severity of phase errors

caused by distributed LOs and UAV hovering position movement. Then, we discuss their

joint impact on beamforming gains via a simulation example.
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5.3.1 Phase Errors in Centralized and Distributed SDR Systems

To understand the behavior of phase offset between different radios, we conduct mul-

tiple experiments and measure the phase offset between daughterboards of the same SDR

(centralized) and two spatially-distributed SDRs. The SDR explored in this study is the

USRP N310 which is composed of two Analog Devices daughterboards. We leverage our

facility, MuDDI (Multi-dimensional Drone Communications Infrastructure), to conduct the

experiments. MuDDI is a distributed massive MIMO testbed for drone experimentation and

it constitutes 72 distributed antennas/dedicated RF chains for 18 USRP N310s. We refer

the reader to [82] for details about the facility and its architecture. The phase offset between

two RF chains is calculated by unwrapping the phase of each received signal’s phase and

finding the difference. This difference is then analyzed over time and across different USRP

daughterboards.

After conducting more than fifty experiments, we conclude the following:

(1) Over time, when no phase drifts occur, the phase offset follows a Normal distribution.

Figs. 5.2(a) and 5.2(b) show the phase offset over time and its histogram of an experiment

which lasted for about three minutes. The normal distribution result is true for many tested

time durations (1 s, 16 s, 160 s, and 300 s). We can also see that the offset is stable over

time and its standard deviation is small (0.022 rad).

(2) Phase drifts occur frequently when phase offset is measured across distributed US-

RPs. When the phase offset drifts, its distribution will be characterized by multiple normal

distributions with their mean being uniformly distributed. An example of this drift, which

causes a jump in the phase difference between the signals, is shown in Figs. 5.2(c) and 5.2(d).

About 40% of the conducted experiments with different and spatially distributed SDRs ex-

hibit phase drifts. In a distributed UAV swarm, each UAV radio will likely experience a

different phase noise and temperature, consequently experiencing drifts and/or phase jumps

relative to the other radios.

5.3.2 Position Error in Hovering UAVs

There are two modes of error in the positioning of a hovering UAV. The first is an

absolute deviation from the intended location due to errors in GPS coordinates or a lack of
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Figure 5.2: (a) and (b) show phase offset between two boards within the same USRP while
(c) and (d) show phase offset between two distributed USRPs.

precision in the flight control software. The second is random fluctuations in the position of

the UAV, both small (e.g., flight vibrations) and large (e.g., wind). Both of these errors can

be mitigated by improved GPS sensing and flight control systems, but will always exist to

some degree. With this in mind, we have measured the positioning error in hovering UAVs

as part of several in-field measurement campaigns in [83].

Specifically, we have measured derr, which is defined as the deviation (in meters) from

the intended hovering position, for more than a hundred flying locations. Refer to [83] for

details regarding the experimental setup. The measured error for a fixed hovering period

of 7 minutes for one trial is shown in Fig. 5.3(a). There is an offset of approximately 30 cm,

around which the error changes rapidly. Fig. 5.3(b) shows violin plots for eight different trials

of the same fixed hovering location. The shape of each violin represents an estimation of the

distribution of the instantaneous measurements using kernel density estimation. The true

mean of the measurements is shown by the black lines. In our experiments, the maximum

instantaneous position error for this fixed, hovering UAV was 1 m across all trials. Together,

these figures show that the displacement error can change over time and that its distribution
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Figure 5.3: (a) Instantaneous position error for a single hovering UAV. (b) Violin plots
showing the estimated distributions of position error for repeated trials of a fixed UAV
hovering location.

is unlikely to be a uniform one, which is the assumption made in many related works, such

as [81]. The nature of the distribution of the hovering movement varies from flight to flight

and depends on many factors, including the environmental conditions and the performance

of the flight control system. This situational variation is unique to UAV-based DTBF.

The severity of the impact of this placement error on the phase of the arriving/departing

wave depends on its carrier frequency. Low frequencies (i.e., large wavelengths) have looser

constraints on this placement error compared to high frequencies.

5.3.3 Impact of LO and Hovering Phase Errors on DTBF Gains

In this section, using (5.4), we simulate the impact of the above discussed sources of

phase errors on beamforming gain in a 2×1 distributed beamforming system. Note that the

UAV body and its rotation impact is not considered. The purpose is to motivate receiver-

based strategies to counteract the impact of phase incoherence from the transmitters and

potentially reduce the overhead needed for channel estimation and feedback. Let us assume

that the two channel fading coefficients have the same unit magnitude, i.e., w1 = w2 = 1.

Also, let the time synchronization error be negligibly small compared to the message time

duration. Lastly, we can assume that CFO is the same across the nodes or has been accounted
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Figure 5.4: The joint impact of UAV position and LO phase errors on beamforming for a
2×1 DTBF system at (a) 2.4 GHz (λ = 12.5 cm) and (b) 900 MHz (λ = 33.3 cm).

for. With these assumptions, we focus solely on the two sources of phase errors and their

impact on beamforming gain.

The LO phase offset is assumed to be uniformly distributed in a range of 2b, i.e. ϕlo ∼

U [−b,+b], where b changes from 0 to π in π
8

intervals. For the sake of simplicity, let us

assume that the UAV hovering error is normally-distributed with some intended mean, which

is zero in the following analysis, and a standard deviation of σd. For each hovering error

standard deviation, we generate 1-by-N normally distributed random variables representing

hovering errors, which is derr. The values of these random variables are then translated

to phase errors and then added to another 1-by-N uniformly distributed random variables,

representing the LO phase offsets. The received power is averaged over 1000 trials of different

random instances per hovering and LO phase errors.

The results of the mean received power for two carrier frequencies 2.4 GHz and 900 MHz

are plotted in Fig. 5.4. Let us first inspect the 2.4 GHz results (Fig. 5.4(a)). If we look at

the case of no hovering error (i.e., σd = 0 m) we can see that the result follows intuition.

That is, as the amount of b increases, beamforming gain decreases. Beamforming gain is the

amount of increase in received power as a result of beamforming compared to the single Tx

case (dashed line in the figure). For any hovering error standard deviation, the increase in

LO phase offset would result in a reduction in the received power level. If we now look at

91



the case of zero LO phase offset, we can observe that the received power could dramatically

change according to the hovering error standard deviation. For example, while we can reach

an almost ideal beamforming gain level (N2 = 22 = 4) at a σd = 0.02 m with received

power levels of 3.84 (96.2% of ideal gain), the beamformed power could drop to 3.15 (about

78% of the ideal beamforming gain), as the error standard deviation increases to 0.08 m.

At σd = 0.1 m, destructive interference results in received power levels that are below the

beamforming gain threshold (dashed line in the figures), rendering beamforming useless. This

discrepancy in beamformed power at various combined phase error values demonstrates how

crucial the position error of the UAV can be on beamformed power.

To show the impact of frequency choice on the sensitivity of beamforming gains to

hovering and LO phase errors, we compare the obtained results at 2.4 GHz to those at

900 MHz (Fig. 5.4(b)). This comparison is performed for the same simulation run (i.e.,

same randomly-generated numbers). We can see that the 900 MHz system can tolerate hov-

ering error standard deviations of up to 10 cm. This result is evident by how all the received

power levels are above the beamforming gain threshold. This result is a direct consequence

of the approximately 2.7 times longer wavelength at 900 MHz compared to 2.4 GHz. It is

worth mentioning that the impact of phase error on DTBF has been studied in many works

before, such as [69, 73, 76, 81]. However, these studies either did not consider the potential

impact of hovering errors or simply assumed a uniform or normal distribution for phase

offsets without a measurement-based justification.

5.4 Improving Beamforming Gain Through UAV Body Rotation: Experimental
Results

Here, we investigate how UAV rotation can help counteract the impact of phase offsets

experienced by the distributed transmit nodes. Four different antenna positions on the UAV

body are analyzed to further emphasize its role.

5.4.1 Experimental Setup

We use two USRP E312s for the experiments: one USRP, which acts as the transmitter

is connected to two spatially-distributed Tx antennas that are 10 inches apart; while the

other USRP is mounted on the drone body and connected to four antennas. The Rx drone is
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(a)

(b)

Figure 5.5: (a) Experiment setup illustration. (b) The four UAV-mounted antennas.

attached to a tripod which is adjusted to approximately the same height of the distributed

transmit antennas. Fig. 5.5(a) illustrates the experiment setup, and Fig. 5.5(b) shows the

Rx UAV with the four antenna positions.

GNU Radio is used to create a flow graph that does the following: creates two sinusoids

m1(t) and m2(t); m2(t) = ejϕindm1(t) where ϕind is the artificially-induced and controlled

phase offset, which we use to emulate a real distributed system that exhibits such offset. The

message signal is used to modulate a carrier at a frequency of 2.48 GHz (channel 14 in IEEE

802.11), which is transmitted using two identical VERT2450 omnidirectional dipole antennas.

With the same antenna types at the receiver, the four Rx antennas receive the transmitted

signal in two turns: first, Rx1 and Rx2, then Rx3 and Rx4. Measurements are taken in

turns because USRP E312 is limited to two receive RF chains. The process is automated

and controlled via GNU Radio. The collection of measurements lasts for 3 seconds per Rx

combination. The induced phase offset values are done in π/9 intervals and span −π to +π.

93



0

30

60

90

120

150

180

210

240

270

300

330

-50

-40

-30

-20

-10

-5

0

Figure 5.6: Measured receive power at the four UAV-mounted receive antennas across all
rotation angles and 0◦ induced phase offset. Solid lines indicate Rx power when DTBF and
dashed lines indicate no beamforming.

For comparison, a measurement is also taken for a transmission from a single antenna (no

beamforming). For each induced phase offset, the drone is rotated in 45◦ increments from

0◦ to 360◦.

5.4.2 Results

The results of the received power at the four UAV-mounted receive antennas for a fixed

induced phase offset of 0◦ and for both, beamforming and non-beamforming scenarios, are

given in Fig. 5.6. We make the following observations:

5.4.2.1 UAV Rotation gain

For a fixed antenna position, rotation of the drone can result in an increase in received

power. This rotation gain can offset the decrease in beamforming gains that might be

experienced due to phase offset at the distributed Tx nodes. This rotation gain, compared

to 0◦ (no rotation), can reach up to 6.6 dB for Rx1, 7.4 dB for Rx2, 14.5 dB for Rx3, and

13.9 dB for Rx4. This result shows that by performing local, Rx-based rotation, the received

signal power could be significantly improved, and the reductions experienced by phase offsets
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Table 5.1: Rotation Gain Standard Deviation (in dB)

Rx Antenna Standard Deviation

Rx 1 2.980
Rx 2 3.060
Rx 3 6.060
Rx 4 3.940

at the Tx side could be alleviated. We can also observe that, for a fixed rotational angle and

an induced phase offset, different antenna positions can provide substantial improvements

in received power levels (Fig. 5.6). For example, at 90◦ rotation, the received power at

Rx3 is about 7 dB stronger than that of Rx1. At 45◦, the beamformed signal power is

7.5 dB stronger at Rx2 than that of Rx1. Lastly, and due to polarization mismatch, the

horizontal Rx antenna (Rx4 in Fig. 5.6) is performing the worst in most cases, regardless

of whether DTBF is performed or not. The standard deviation of this rotation gain at 0◦-

induced phase offset for the four antennas is summarized in Table 5.1. We can see from the

table that UAV rotation indeed results in variations in the beamformed power level with the

least standard deviation belonging to Rx1 (antenna mounted on top of the UAV), and the

maximum standard deviation belonging to Rx4, which is the horizontal antenna attached to

the leg of the drone.

5.4.2.2 Joint impact of phase offset and drone rotation

In the previous discussion, we fixed the induced phase offset between the distributed

Tx nodes and investigated how drone rotation and antenna position affect the beamformed

receive power. Here, we analyze how beamforming can be influenced by the joint variation in

phase offset and drone rotation. To do so, we visually inspect Fig. 5.7, where the beamformed

receive power for the three vertical antennas at all induced phase offsets and rotation angles is

plotted. First, we see that the beamformed signal power changes not only with rotation but

also with the (controlled) induced phase offset for a fixed rotation angle. Second, we see that

the antenna mounted on top of the drone body (Rx1) exhibits one peak concentrated around

0◦ phase offset around 180◦ rotation (Fig. 5.7(c)), while the other two vertical antennas (Rx2
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(a) (b) (c)

Figure 5.7: Received power in a DTBF system for three antennas at different rotation and
induced phase-offset angles. Values are normalized to the maximum received power across
all antennas measurements. (a) Vertical antenna mounted to the left (Rx2), (b) Vertical
antenna mounted in the middle (Rx3), and (c) Vertical antenna mounted at the top of the
drone body (Rx1).

and Rx3) exhibit two peaks that alternate depending on the UAV rotation angle (Figs. 5.7(a)

and 5.7(b)).

5.4.2.3 Trade-offs in Rotational Gain

Rotation is found to also alter the statistics of the beamformed signal power across

different induced phase offsets. For example, in Fig. 5.7(b) while at 45◦, the average of the

received signal’s power across all phase offsets is higher than the average received power at

270◦, the maximum power at 270◦ is higher (around 0.8) than that at 45◦, which is only

0.6. The minimum received signal power at 45◦ is around 0.4, while at 270◦, it is 0.1 – a

significant reduction solely due to the change in UAV rotation angle and the resultant local

reflection/scattering. Depending on the required performance (higher average and lower

minimum vs. higher maximum value for example) intelligent rotation by the UAV can be

designed according to these needs.

Fig. 5.8 depicts a cross-section of the surface plot of Rx power for the antenna mounted

in the middle of the front of the drone (Rx3). This cross-section shows the Rx power as a

function of the phase offset, parameterized by the drone rotation angle. This figure makes

the trade-off between rotation angles clear. To experience the highest possible Rx power, the

receiver drone should rotate to an angle of 270◦. However, in achieving a high peak power,

the receiver sacrifices stability–the Rx power is much more sensitive to changes in the net
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Figure 5.8: Cross-section for the received power by Rx3.

phase offset of the system. On the other hand, if the receiver wishes to maximize the lowest

possible Rx power, it should rotate to 45◦, but in doing so, it sacrifices peak power. These

statistical trade-offs are summarized in Table 5.2. Per column, maximums/minimums are

written in bold/italics, respectively.

Lastly, it is worth noting that the rotation impact can change according to the distributed

transmitters topology. For instance, if the transmitters are spatially distributed in a way

that spans more than one side of the UAV, then, rotation might be more beneficial to

certain transmitters than others. An interesting issue arises where the optimal topology of

distributed transmitters can change according to the relative UAV direction. We leave this

problem for future work.
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Table 5.2: Rx Power Statistics per Drone Rotation

Rotation Max Min Mean
0 0.087 0.033 0.061
45 0.730 0.478 0.597
90 0.830 0.442 0.630
135 0.313 0.013 0.156
180 0.055 0.004 0.029
225 0.284 0.044 0.158
270 1.000 0.171 0.565
315 0.703 0.180 0.429
360 0.087 0.033 0.061
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Chapter 6

Conclusions and Future Work

In this work, we showed that the UAV body can affect the radiation pattern of its

mounted antennas and act as a local source of scattering altering the polarization of the

arriving/departing electromagnetic wave. Significant reductions in the cross-polarization

discrimination (XPD) are measured solely due to the UAV body. As a result, UAVs in

a swarm could potentially seek optimizing their heading direction and antenna selection

decisions based on our findings.

We also investigated how the human body affects UAV-to-ground channels for various

drone hovering positions, frequencies, and use cases. We quantified and analyzed the user’s

impact on the channel, and demonstrated that as a result of the quantified body-induced

effects, the optimal UAV hovering position is significantly different from theoretical models

that excludes the human-induced effects on the channel.

Finally, we demonstrated that by leveraging the heterogeneous structure of the UAV

body, rotation can provide significant improvements in the level of beamformed signal power

when transmit nodes are performing distributed beamforming. We also showed that there

exists an optimal combination of a UAV rotation angle and an antenna position that yield

highest beamforming gains.

The latter findings are true for a scenario where the distributed transmitters exist at one

side of the UAV. However, when the distributed transmitters are at geographically different

locations that span different sides of the UAV, body rotation, we hypothesise, could be

optimal for only a subset of the transmitters. Therefore, the effectiveness of this rotation-

based method when distributed transmit UAVs exists in 3D space that span all sides of the

receiver UAV is still an open question.
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