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Neighborhood infrastructure, such as sidewalks, medical facilities, public transit, com-

munity gathering places, and tree canopy, provides essential support for safe, healthy, and

resilient communities. This thesis proposes, develops, and implements an innovative ap-

proach to thoroughly examine the presence and condition of neighborhood infrastructure.

It demonstrates the necessity of considering multiple infrastructure types when studying

neighborhood infrastructure and its equity. This thesis provides an automated assessment

framework as well as case studies among four major metropolitan cities across the United

States, which expands the research opportunities for future infrastructure-related research.

Chapter 1 introduces the concept of neighborhoods infrastructure and describes the need

and benefits of studying neighborhoods infrastructure. It also highlights the importance of

including multiple infrastructure types while trying to fully understand neighborhood in-

frastructure. In Chapter 2, a generalized data-driven framework is developed and presented

at the street level. It addresses the methodological challenge of considering multiple infras-

tructure types and provides quantitative condition measures. The infrastructure equity is

also measured using statistical inference based on the overall infrastructure condition. In

Chapter 3, the background of four major cities is introduced including considered infrastruc-

ture deserts, assessment criteria, neighborhood demographic, and historical information. In

Chapter 4, The infrastructure assessment framework is implemented for 12 types of neighbor-

hood infrastructure in Dallas, Texas. The results show significant infrastructure inequities
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across income levels for most types of infrastructure. Statistical inference predicts (with 95%

confidence) that low-income neighborhoods are 2.0 to 3.5 times more likely to have highly

deficient infrastructure (8 or more deficient infrastructure types) than high-income areas

and 1.4 to 2.4 times more likely to have highly deficient infrastructure than middle-income

neighborhoods.

Chapter 5 continues to explore infrastructure equity by considering the neighborhood’s racial

and ethnic demographic composition. The results show significant infrastructure inequities

across neighborhoods with different race-ethnicity for most types of infrastructure. Statis-

tical inference also indicates (with 95% confidence) that predominantly Black and Hispanic

neighborhoods are 1.44 to 2.56 times and 1.95 3.63 times likelier to have highly deficient

infrastructure (8 or more deficient infrastructure types out of 12) than areas with no pre-

dominant race-ethnicity, respectively. Furthermore, chapter 5 also reveals the legacy of

historical discriminatory policy (redlining) and its long-term impacts on neighborhood in-

frastructure: neighborhoods marked as “less desirable” for financial services during the 1930s

still experience significantly higher infrastructure deficiencies nowadays. Chapter 5 expands

and deepens the perspectives of understanding infrastructure equity quantitatively using

racial-ethnic and historical information.

Chapter 6 generalizes and automates the infrastructure assessment framework using a Web-

based platform called "Clowder". The implementation of the assessment directly can be

executed using a Web browser with available data. A user-friendly graphical interface is also

provided for users to manage and set up the assessment steps based on their needs. Chapter

6 also applies the generalized assessment framework to four major cities across the United

States: Dallas, TX, New York City, NYC, Chicago, IL, and Los Angeles, CA. The results

show different levels of inequity among studied cities. It indicates infrastructure equity to be

region-specific and thus it is essential to understand the specificity among regions to better

examine, plan, and redevelop communities. Finally, the dissertation concludes with Chapter

7 where major conclusions, limitations of the thesis, and future work are discussed.
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Chapter 1

Introduction

This thesis develops and implements a generalizable data-driven framework for assessing

the condition and equity of neighborhood infrastructure. Neighborhood infrastructure is a

system of relatively small-scale physical structures and service facilities (e.g., sidewalks, tree

canopy, and medical facilities) that play an essential role in improving resident’s lives, health,

safety, and social justice [1, 2]. Understanding neighborhood infrastructure is necessary

for effective community growth, quality of life, and prioritization of future infrastructure

investments.

While efforts have been made to study the condition and impact of individual types of

neighborhood infrastructure, the focus and scope of such efforts remain relatively singular

(i.e., limited to one or a few infrastructure types) and fail to treat infrastructure as a complex,

interconnected system. For example, many daily activities involve multiple infrastructure

elements. Leisure walking experiences could be affected by sidewalk condition, crosswalk

presence at intersections, pavement condition, and street tree cover. Thus to truly under-

stand the overall infrastructure condition in a neighborhood, it is essential to rethink the

assessment and consider multiple infrastructure types simultaneously.

To address this need, a data-driven framework for assessing multiple infrastructure types

is developed and implemented in four U.S. cities to illustrate the framework’s advantages:

Dallas, TX; New York, NY; Chicago, IL, and Los Angeles, CA. Systematically examining

neighborhood infrastructure presence and condition identifies socially disadvantaged neigh-

borhoods suffering severe infrastructure deficits, known as "infrastructure deserts." The eq-

uity of the regional distribution of neighborhood infrastructure across social-economic status

is examined, along with residues from historic discriminatory mortgage lending practices.

Furthermore, the generalizable framework is implemented in a data cyberinfrastructure called

Clowder, enabling comparison and insights on how the level of infrastructure equity varies

1



across different cities. This Chapter introduces the motivation behind the proposed frame-

work, the primary research contributions, and an overview of the remainder of this thesis.

1.0.1 Background and Motivation

The forms of neighborhood infrastructure can be physical structures (such as sidewalks,

crosswalks, pedestrian trails, street lights, street tree canopy) or facilities (such as hospitals)

located or operated within or near a neighborhood to provide community services. The ser-

vices include human development support (such as health clinics, financial facilities), public

services (such as transportation, schools, libraries, internet), and shared space for social gath-

erings and recreational activities (such as parks, trails, community centers). Neighborhood

infrastructure is socially, economically, and operationally linked with the neighborhood and

is considered critical for communities’ growth and wellbeing [1]. Moreover, neighborhood in-

frastructure types can be highly diverse and vary from community to community depending

on geophysical, socio-cultural, and economic factors that influence a neighborhood’s growth.

Therefore, the estimation of impacts, changes, and future development of neighborhood in-

frastructure requires a thorough and in-depth understanding of infrastructure conditions and

the community’s social-economic setting.

Previous studies have shown the importance of neighborhood infrastructure for human

health, community growth, and community safety. For example, neighborhood infrastruc-

ture, particularly sidewalks, streets, and access to local destinations such as grocery stores,

parks, and recreation facilities, have impacts on obesity [3–5]; related chronic health out-

comes [6,7]; health behaviors [7–10]; mental health outcomes [6,9,11]; and social well-being

outcomes [10, 12, 13]. Pedestrian-friendly streets, open green spaces, and well-maintained

neighborhood infrastructure (such as sidewalks, crosswalks, healthcare, food stores, and

community centers) not only promote healthy activities such as walking and bicycling [12]

but also enhance social interactions [14], social cohesion and social capital [13]. These

factors facilitate the organic growth of community attitudes toward healthy and active

lifestyles [14–16]. Furthermore, studies have shown the positive influence of well-established

neighborhood infrastructure (such as sidewalks, crosswalks, improved street lighting) on

perceived safety from crime or traffic-related events [17–19]. For example, improved street
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lighting can reduce crime-related fear by intensifying community surveillance [17]. Similarly,

well-designed crosswalks and sidewalks help reduce pedestrian-vehicle crashes [19].

Conversely, the lack of quality neighborhood infrastructure makes the community more

susceptible to natural disasters and chronic economic crises. Lack of neighborhood infras-

tructure has also been considered a critical indicator of social injustice based on three main

allocation principles [20, 21]: equity, equality, and need. Equity calls for fairness and equal

treatment for equals [22]. Equality means that everyone receives the same public service [23],

which usually leads to more harmonious social relationships [20, 24]. The concept of need

is consistent with the idea that those needing more service should receive more rather than

less [23]. Each of these three principles operates in a specific domain. For neighborhood

infrastructure, including public utilities, parks, and facilities, equality is often impossible

to achieve in the sense of equal access because of the variation in community development

and terrain. The need is also likely tied to population and distributed geographically (Lucy,

1981). Therefore, analyzing the equitable distribution of infrastructure services is a better

approach for understanding the present condition and future investments. Thus the author

primarily focuses on the equity aspect of neighborhood infrastructure distribution in this

work.

One way of studying infrastructure equity, as suggested by the U.S. Department of Trans-

portation, is to compare the infrastructure characteristics or condition of neighborhoods

with high concentrations of socially vulnerable populations (such as low-income households,

minorities, and car-free households) to those in adjacent neighborhoods or to regional aver-

ages [25]. Following this guideline, many researchers have evaluated individual infrastructure

conditions and discovered infrastructure inequities across the spectrum of neighborhood in-

frastructure types. Studies [26–36] have shown economic and ethnic disparities in individual

types of neighborhood-scale infrastructure, including walkability, street trees, public trans-

portation, parks, pedestrian crosswalks, and trails. Grocery stores and farmer markets,

among categories of neighborhood infrastructure have also been widely studied in the realm

of "food deserts" and have also shown substantial inequities across different social-economic

and racial groups [37,38]. While these studies show the importance of individual infrastruc-

ture types and their impacts on communities, the presence and impact of multiple deficient
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types of physical infrastructure are not yet known. A systematic condition assessment must

be established at the community level to evaluate multiple neighborhood infrastructure types

and examine their aggregated impacts on the community.

Previous studies have attempted to assess neighborhood infrastructure using a variety

of measures. Inspecting infrastructure surface exteriors and identifying defects is the most

common method to assess infrastructure such as streets and sidewalks [39, 40]. Researchers

have also used proximity as the condition measure to assess the coverage of infrastructure’s

service such as parks [30,33,34,41–44], healthcare [45–48], public transportation system (bus

stops, rail stations) [49–51], and fresh food supplies [52–55].

In addition, measures derived from field audits, secondary data sources, or satellite im-

agery/videos allow the assessment of ground-based or hard-to-measure infrastructure such

as neighborhood street walkability [39,56–59], street tree canopy [60–62] internet speed [63],

and street condition [40,64]. However, the integrated physical assessment of multiple neigh-

borhood infrastructure types faces methodological challenges and limitations in effective

implementation [65]. Due to the difficulty of gathering neighborhood-scale data of multiple

infrastructure types on a large scale, most previous studies have primarily focused on either

small-scale studies of one or several infrastructure types or large-scale studies at the city or

regional scale of only a single infrastructure type.

This study fills the gap between these two scales by providing quantitative infrastructure

condition assessment at the city scale and systematically combining multiple infrastructure

types to show overall infrastructure condition using a data-driven framework. The results ob-

tained from the framework can be overlayed with the neighborhood’s social-economic (such

as income level) and social-demographic information (such as racial-ethnicity) to further

explore infrastructure inequities. The framework can also be used in other cities via an au-

tomated cyberinfrastructure that enables nationwide comparative studies on neighborhood

infrastructure among different cities. In the following chapters, Chapter 2 presents the struc-

ture of the generalized framework that addresses multiple infrastructure types and shows how

to statistically model infrastructure inequity. Chapter 3 provides background information

on the four cities that are examined as case studies of infrastructure equity. Chapter 4 ap-

plies the framework to the city of Dallas as the first case study and reveals the existence
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of "infrastructure deserts," as well as highlighting infrastructure inequity across neighbor-

hoods with different median income levels. Chapter 5 further explores the roles of race and

ethnicity, historical discriminatory housing policies, and neighborhood age on infrastructure

equity, in addition to neighborhood’s income characteristics in Dallas. In Chapter 6, the

assessment process is automated and the framework is integrated into a Cloud-based data

platform called Clowder. Using this cyberinfrastructure, the assessment framework is gener-

alized with application to three other case studies in major U.S. cities and identification of

the variability of infrastructure equity in different regions. Finally, in Chapter 7 the author

concludes the thesis by highlighting primary topics, limitations, and recommendations for

future work.
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Chapter 2

Infrastructure Assessment Framework

2.0.1 Introduction

This chapter develops a new framework for assessing overall infrastructure conditions

from available data and statistically modeling the relative risk of infrastructure inequity

across neighborhood social-economic characteristics. As noted in Chapter 1, previous stud-

ies have either assessed a single type of infrastructure or several infrastructure types on a

relatively small spatial scale: A systematic assessment of multiple infrastructure types across

an entire city has yet to be implemented. To accomplish this objective, this study collects

street-level data on multiple neighborhood infrastructure types and develops an innovative

data-driven framework to comprehensively assess the condition of all types. Furthermore,

given neighborhood social-economic characteristics, a risk model is developed to identify any

infrastructure inequity across the city.

2.0.2 Methodology

Fig. 2.1 shows the generalized data-driven framework developed in this work to assess

multiple neighborhood infrastructure types at the neighborhood level quantitatively and to

explore infrastructure inequity in urban settings. The framework consists of three primary

components: 1) compute neighborhood infrastructure deficiency by aggregating the presence

and condition of each infrastructure type from street to neighborhood level; 2) compare in-

frastructure deficiency across income levels to identify the existence of infrastructure deserts;

and 3) identify infrastructure inequity using statistical models. Each component is discussed

in more detail in subsection 2.0.2.1 through 2.0.2.3 below.

The framework given in Fig. 2.1 has several benefits: 1) It integrates street-level condition

assessment with neighborhood-level social-economic characteristics such as income; 2) it can

add new infrastructure types and still maintains its robustness; 3) The framework is highly
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Figure 2.1: Overview of the infrastructure equity framework.

generalized and can be applied to other cities or regions with available data. The first step of

the framework is to determine a proper spatial representation of neighborhoods. Ideally, the

chosen representation should naturally represent the boundary residency as a neighborhood.

To aid in generalization, the framework is applied with a consistent spatial representation

of neighborhoods as Census block groups for two main reasons. First, the size of a block

group (typically ranges from 500 to 1000 housing units) and the cartographic representation

approximates the overall size and geometry of a neighborhood. Second, the Census block

group is the smallest administrative boundary for which Census Bureau freely publishes

sample data [66]. Therefore, the Census block group seamlessly aligns with the U.S. Census

Bureau’s social-economic attributes.

Although the Census block group is one of the most popular geographic boundaries used

to represent residential neighborhoods, the correlation between administrative (U.S. Cen-

sus Bureau) and actual neighborhood boundary and the relevance of those boundaries in

neighborhood infrastructure distribution remain inconsistent and unclear [67–69]. Because

the administrative boundary was initially designed for data collection, tabulation, and dis-

semination of small-area data [66] instead of segregating residential neighborhoods. One

remedy to this problem would be to use perceived, resident-defined neighborhood bound-
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aries because it may better represent the neighborhood and neighborhood-based measures

such as access to destinations, walking routes, or the number of residences. For exam-

ple, Nextdoor, a hyperlocal social network service for neighborhoods, offers a more reliable

and accurate neighborhood geometry using a crowd-sourcing mechanism that allows users

to sketch or modify the neighborhood they currently live in [70]. However, despite better

geographic representation, resident-defined boundaries can be affected by neighborhood rep-

utation and can introduce bias in neighborhood-based studies; For example, residents might

report living in positively perceived neighborhoods but exclude stigmatized areas [67]. Be-

sides, resident-defined neighborhood boundaries do not have the spatial compatibility of the

social-economic measures embedded in administrative boundaries. Therefore, connecting

resident-defined boundaries to social-economic measures often results in improper assump-

tions or extra spatial interpolation, which introduces more bias to the system.

2.0.2.1 Compute overall infrastructure deficiency by neighborhood

The first step of the framework (shown in Step 1 of Fig. 2.1) examines each infrastructure

type’s condition and computes the overall neighborhood infrastructure deficiency. At the

street level, metrics for measuring infrastructure condition vary across different infrastructure

types and may vary in different cities. A neighborhood-level binary deficiency indicator (γ) is

used to aggregate from street level measures within the neighborhood to represent individual

infrastructure deficiency. To compute the binary infrastructure deficiency indicator for one

infrastructure type, any quantitatively measurable components are identified, equivalent to

the condition metric, within a neighborhood. Undoubtedly, there could be various types

of measurable components in the neighborhood, depending on the infrastructure type. The

most commonly used measurable component is the physical appearance of the structure. For

instance, street cracks and uneven surfaces usually indicate inadequate pavement conditions,

so street segments with surface information provide measurable components to evaluate

pavement conditions [40, 64]. For example, Pavement Condition Index (PCI) is a score-

based measure to classify pavement condition, pavement segment are considered as poor

if its PCI is less than 55 out of 100. Therefore, the neighborhood-level binary deficiency

indicator is determined by the percentage of "poor" pavement segments according to PCI
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scores.

Furthermore, if the infrastructure is a facility located in or outside of the neighborhood

that operates as a service provider (e.g., hospitals, grocery stores), then the number of resi-

dential households not in proximity represents the how inadequate such accessible services are

to residents and can be considered measurable infrastructure components. After identifying

all measurable infrastructure components within the neighborhood, a substandard criterion

is developed for each infrastructure type based on published studies or design manuals and

used to compute any substandard measurable components.

Here a fraction number (µ) is defined to represent substandard measurable components

as a percentage of measurable infrastructure components within the same neighborhood (see

in Equation 2.1). It is computed as:

µ =
substandard measurable infrastructure components

total measurable infrastructure components
(2.1)

As shown in Equation 2.2, the binary infrastructure deficiency indicator (θ) equals 1 if

at least half of the measurable components are substandard (µ ≥ 0.5), denoting a deficient

infrastructure type in a neighborhood. Otherwise θ = 0.

µ =

0 if µ ≥ 0.5

1 if µ < 0.5,
(2.2)

The benefit of using such indicators is to normalize all infrastructure measurements to the

same scale of 0 or 1, which allows multiple binary indicators to be combined mathematically

in later steps. The above procedure is repeated until γ is obtained for all infrastructure

types and then the overall infrastructure deficiency (γ) of a neighborhood is computed as

the summation of θ (Equation 2.3):

γ =
∑

i∈ all infrastructure types

θi (2.3)

The summation of multiple deficiency indicators into a single metric represents the over-

all neighborhood condition. Thus, γ ranges from zero to the total number of infrastructure
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types considered. If a neighborhood does not have any deficient infrastructure types, it gets

γ = 0. Finally, to aid in interpretation, a categorical representation of overall infrastruc-

ture deficiency is created based on the percentile of the resulting . As such, the resulting

overall infrastructure deficiency values are defined as (1) Excellent ([0% 10%]), (2) Good

([10% 25%]), (3) Moderate ([25%-75%]), (4) Deficient ([75%-90%]) and, (5) Highly Deficient

([90%-100%]).

2.0.2.2 Test for existence of infrastructure deserts

The next step is to find neighborhoods that are both economically disadvantaged and sig-

nificantly lacking in neighborhood infrastructure relative to wealthier neighborhoods. These

areas are labeled "infrastructure deserts," analagous to "food deserts," which are defined as

low-income neighborhoods with insufficient access to healthy food sources [55, 71, 72]; and

"transit deserts," which are transit-dependent areas that lack adequate public transit ser-

vice [29, 54]. The introduction of "infrastructure deserts" presents a more comprehensive

and integrated perspective of neighborhood weakness in physical assets and community ser-

vices. The category of Highly Deficient infrastructure condition from the previous step is

chosen as the quantitative representation of neighborhoods as significantly more deficient

in infrastructure presence and condition. Such areas that are low income are identified as

infrastructure deserts.

To define neighborhood income category, neighborhoods are classified into three groups

(low, middle, and high) using tertiles of annual median household income [73–75]. A few

studies use annual median family income as a income variable [74,76]. However annual me-

dian household income has richer historical data than family income since 2013 and has been

used to interpolate missing income for some neighborhoods. [66] Moreover, both measures

are highly correlated and should not significantly bias the resulting spatial patterns.

2.0.2.3 Estimate infrastructure inequity risk with cumulative logit models

Lastly, to account for any uncertainty within the observed data, statistical models can

further explain the relationship between neighborhood infrastructure condition and income,

as well as the significance of infrastructure inequity. Since the overall infrastructure deficiency

is computed as an ordinal integer according to Equation 2.3, the cumulative logit model

10



(also called proportional odds model) [77] is appropriate for this case as it was designed for a

response variable that takes values in a set of ordered categories (multiple ordinal responses).

This model was initially proposed by [78] as an extension of the logistic regression model for

binary responses.

In this study, the model relates a response variable γ, consisting of ordered categories (e.g.,

overall infrastructure deficiency), to a categorical explanatory variable (e.g., neighborhood

income characteristics) with k+1 levels and represented by x, a vector of k dummy variables

that represent k different levels (the remaining level is chosen as the reference level). The

model has the following generalized representation:

logit[Pr(Y ≤ j|x)] = αj + β
Tx; j = 1, ..., J − 1 (2.4)

where Pr(Y ≤ j|x) is the cumulative probability of the event (Y ≤ j), αj are the unknown

intercept parameters, and βT = (β1, β2, .., βk) is a vector of regression coefficients used for

all response categories. J is the total number of response categories. logit, also known

as the log-odds transformation, is the inverse function for the standard logistic cumulative

distribution function:

logit(t) = log
t

1− t
(2.5)

The model assumes the same effects β for each logit. Thus the regression coefficient vector,

β, does not depend on j, implying that the log-odds ratio is proportional to the difference

between two x values and shares the same proportionality constant regardless of j. This is

also called the proportional odds assumption. The validity of this assumption can be checked

based on a χ2 score test [79].

Applying this model with overall infrastructure deficiency as a response variable and

income level as a single explanatory variable results in:

logit[Pr(Y ≤ j|x)] = αj + βMxM + βHxH ; j = 1, ..., J − 1 (2.6)

Where is the computed overall infrastructure deficiency with each value of integer repre-

senting one category, xM , xH are two dummy variables: xM = 1 if the income level is middle,
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otherwise xM = 0; xH = 1 if income level is high, otherwise xH = 0; xM = xH = 0 if the in-

come level is low, serving as the reference level. J is the total number of infrastructure types

considered (J = 12 in this case study). βM , βH are regression coefficients for the dummy

variables of the categorical covariate with three levels (low,middle, high).

Once the model is fitted properly and validated by performing a likelihood ratio test

(LRT ) between fitted model and the same model except using a multinomial link. With

the null hypothesis that proportional odds assumption holds, p-value of greater than 0.05

indicates that the data does not show gross violation of the assumption, a relative risk

measure of deficient infrastructure types (RRxj) is computed between different income levels

to draw statistical conclusions. In particular, the relative risk of low-income neighborhoods

having "more deficient (> j)" infrastructure types compared to neighborhoods with income-

level denoted as x is written as:

RRxj =
Pr(γ > j|low − income)

PR(γ > j|x)

=
1− Pr(γ ≤ j|low − income)

1− Pr(γ ≤ j|x)

=
1 + eαj + βx

1 + eαj

j = 1, ..J − 1, x ∈ {M,H}

(2.7)

Relative risk offers adequate measures to compare overall infrastructure condition across

different neighborhood income levels. Given the values of j and x, if the relative risk value

(RRxj) is larger than one; then low-income neighborhoods have a higher risk of having more

than j number of deficient infrastructure types than neighborhoods with income level x, also

showing evidence of infrastructure inequity. To obtain the confidence intervals for relative

risk at each j, a bootstrapping method [80] is used with 20,000 iterations to compute the

upper (97.5%) and lower (2.5%) confidence level of the relative risk estimates. All of the

statistical computations described herein are executed with the statistical software R [81].

The cumulative logit model is fit using the function polr from package MASS [82]. All

coefficients were exported and visualized using Python.
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Chapter 3

Case Studies

This chapter gives overviews and background information on the cities that are investi-

gated in the following chapters, as well as corresponding datasets. The author implements

the infrastructure framework in a total of four cities in the United States: Dallas-TX, Los

Angeles-CA, Chicago-IL, and New York City-NY. Chapter 4 and Chapter 5 will primarily

discuss infrastructure inequities discovered in Dallas, TX, the first case study that was exam-

ined with the most detail. Chapter 6 presents the generalization of the assessment framework

by showing comparative results for the most critical analyses completed in Dallas, adding

Los Angeles, New York City, and Chicago.

3.0.1 Dallas, TX

This chapter chose one of the metropolises in the United States, Dallas, TX, USA, as the

first case study for the methodology developed previously because of its ongoing economic

development, significant infrastructure issues, and plans for redevelopment activities in the

future to address infrastructure issues. Dallas is one of the Rockefeller Foundation’s 100

Resilient Cities; its resilience strategy was released in 2018 [83], which includes equity and

neighborhood infrastructure investment as core goals. Currently, Dallas has the highest level

of income inequality in the United States (U.S.) [84,85] and one of the highest rates of increase

in urban heat among major US cities [86,87]. Furthermore, Dallas has the 4th highest number

of pedestrian fatalities among U.S. counties in 2016 [88]. The city also rated significantly

lower than the national average in street and infrastructure maintenance, according to a

community survey [89]. These statistics highlight the existing neighborhood infrastructure

issues and make Dallas an ideal location to study neighborhood-scale infrastructure equity.
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3.0.2 Infrastructure Data

To assess neighborhood infrastructure in Dallas, a total of 12 neighborhood infrastructure

types with available data were considered (pavement, sidewalk, crosswalk, noise wall, public

transportation, trails access, medical facilities access, food access, community gathering

places access, bank access, street tree canopy, and internet service). Measurable data for

each infrastructure type were identified based on multiple types of data (tabular data, spatial

lines, or spatial points) and related references and guidelines as shown in Table 3.1. The table

compiles measurable components for all neighborhood infrastructure types considered and

corresponding substandard criteria. For noise walls, since only households near highways

could potentially be affected by the presence or absence of noise walls, the measurable

components are restricted to only residential households within 200 feet away from major

highways instead of all residential households [90]. Please refer to Appendix A.1, A.2, and

A.3 for data source, steps on how to apply substandard criteria to each infrastructure type.

3.0.3 Neighborhood’s Income

To represent neighborhood income, the annual median household income of Census block

groups in the Dallas region was obtained from the 2018 U.S. Census table B19013. For block

groups with missing income records, the average between historical information at the block

group level (linear regression using the past five years’ income records, as available) and

current-year income at the tract level is used to fill in missing data. This method offers

a better estimation for missing income data because it accounts for currency inflation over

the years and impacts of nearby neighborhoods within the same Census tract. After filling

in missing income records, a total of 790 neighborhoods across Dallas had complete income

and infrastructure condition data. The neighborhood income was then categorized as low-

income (347 neighborhoods), middle-income (205 neighborhoods), and high-income (238

neighborhoods) using tertiles across all of Dallas County. The cutoffs between income levels

were $44,100 for the 33rd percentile and $70,200 for the 66th percentile. Income level is also

used as a continuous variable in Chapters 5 and 6.
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Table 3.1: Substandard criterion for neighborhood infrastructure types.

Infrastructure
Type

Assessment
Unit Substandard Criteria Criteria

Reference
Source

Reference

Pavement Street
segment

Pavement Condition Index
(PCI)<55 [64] City of Dallas

GIS Service

Sidewalks Sidewalk
Segment

Any existence of obstruction,
damage, or missing segments [39] City of Dallas

Public Works

Internet Residential
Unit

Internet speed less than 200
kbps in at least one direction [91]

Federal
Communication
Commission

Crosswalks Street
Intersection

Missing crosswalks at
Intersections with traffic
lights or school zones

[92] Google Static
Map API

Noise wall Residential
Unit

Within 200 feet of the highway
and no noise walls present [90]

Google
Streetview
Static API

Street Tree
Canopy

Street
Segment

Average percentage of street
segment covered by tree
canopy less than 25%

[60] The Trust for
Public Land

Public
Transportation

Access

Residential
Unit

Not within 5-min walking
distance (0.4 km) of the bus

stop or 10-min walking distance
(0.8 km) of the rail station

[51,93] City of Dallas
GIS Services

Medical
Service Access

Residential
Unit

Not within 2 miles (3.2 km)
of major hospitals or

1-mile (1.6 km) of walk-in
clinics or urgent care

[94,95]
NCTCOG’s
Regional

Data Center

Bike &
Pedestrian

Trails

Residential
Unit

Not within 10-min
walking distance (0.8 km)

City of Dallas
GIS Services

Gathering
Place

Residential
Unit

Including parks, libraries,
farmer markets and community
centers. Not within 10-min
walking distance (0.8 km)

Google Static
Map

Food Access Residential
Unit

Nearby food stores not
within a 1-mile distance (1.6 km) [96]

City of Dallas
GIS Services
NCTCOG’s
Regional

Data Center

Bank Access Residential
Unit

Nearby bank branches are not
within a 1-mile distance (1.6 km)

City of Dallas
GIS Services
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3.0.4 Neighborhood’s Race-ethnicity and Age

Neighborhood-level race-ethnicity data is obtained from the American Community Sur-

vey’s Table B03002 for 2018. To combine both racial and ethnic information, which are

documented as separate attributes by the Census Bureau, four race-ethnicity categories are

derived from the ratio of each population group in each Census block group (hereafter denoted

as a neighborhood): predominantly non-Hispanic White , predominantly non-Hispanic Black,

predominantly Hispanic, and no predominant race-ethnicity. The “predominant” classifica-

tion of each group is assigned if more than 60% of residents identified with that group [74].

For easier interpretation of the results, the author hereafter simplifies category names to

predominantly White, predominantly Black, predominantly Hispanic, and no predominant

race-ethnicity, respectively. To provide historical perspectives on infrastructure equity, each

neighborhood’s average year of construction is computed by averaging the built-year of all

residential buildings within the neighborhood. The year of construction for each building is

obtained from the building’s footprint map in the city’s parcel database [97].

3.0.5 Historical Redlining Practices

To further explore the impacts of historical practices on infrastructure equity, discrimi-

natory policies by the Home Owners’ Loan Corporation (HOLC) are considered. Redlining

is a common term for the HOLC’s denial of credit insurance, healthcare, loans, mortgages,

and other financial services based on a neighborhood’s demographic makeup. Redlining gets

its name from the red outlines drawn around “high-risk” neighborhoods in maps created in

the 1930s by HOLC, a New Deal agency formed to refinance mortgages during the Great

Depression. Neighborhoods were labeled into four categories, shown in Fig. 3.1 for Dallas,

to indicate the perceived level of risk for government-backed mortgages: Best, Still desirable,

Definitely declining, and Hazardous.

Neighborhoods received HOLC mortgages based on percentages of their homes’ appraised

values by category (80% for Grade A, 60%-80% for Grade B, 15% for Grade C,and 0% for

Grade D). The assignment of the grades was driven by neighborhoods’ racial and ethnic

composition, with the majority of “grade D” (redlined) areas having primarily Black house-

holds. Consequently, redlining has raised the level of racial and wealth inequity and caused
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long-term impacts on real estate wealth accumulation that persist today [98,99].

With the help of modern mapping software, Nelson [100] digitized and created download-

able online Web maps as ArcGIS Shapefile or GeoJSON) for the majority of the redlining

areas across the United States from hand-drawn and scanned maps. It is noteworthy that

when these redlining maps were first created in the 1930s, their boundaries did not follow the

Census administrative boundaries and their total areas are much smaller than current city

boundaries (Fig. 3.1). To spatially combine the maps with infrastructure data, a subset of

neighborhoods (Census block groups) are identified whose centroids are within the redlining

area. This resulted in 218 neighborhoods considered as historical redlining areas.

Figure 3.1: Historical Home Owner Loan Corporation Redlining Areas (1937).
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Note that available infrastructure data only show a snapshot of current conditions and

the lack of digitized historical infrastructure condition data hinders a full understanding of

how the city’s overall infrastructure is changing in history. Nonetheless, the author may still

find insightful associations between neighborhood infrastructure conditions and quantitative

historical indicators such as redlining maps and neighborhoods’ average built-year. This

can reveal the need for more laborious future studies to digitize and analyze the full set of

available historical data.

3.0.6 Los Angeles, CA, New York City, NY, and Chicago, IL

In addition to Dallas, the author also apply the generalized framework to three other

cities in Chapter 5: Los Angeles-CA, Chicago-IL, and New York City-NYC. The selection of

cities is made such that: (1) they are geographically located in 4 regions (west, south, central

north, and east) across the nation, which helps to represent the infrastructure condition in

each major region of the country. (2) Those cities offer platforms such as Open Data Portal to

allow most of the infrastructure-related datasets to be publicly accessible for infrastructure-

related research [29,44,96,101–103].

3.0.6.1 Infrastructure datasets

To properly compare infrastructure conditions between cities, the author should assess

common infrastructure types in each city. Despite the availability of data for a total of

12 infrastructure types in Dallas, due to difficulties in acquiring tree canopy and crosswalk

data for other cities, the author consider 10 common infrastructure types across the four

cities: pavement, sidewalk, bank access, trail access, medical facility access, gathering place

access, food access, internet service, noise walls, and public transportation access. It is worth

noting that certain datasets such as pavement and sidewalks do not have identical condition

attributes since each city measures streets and collects data differently. To ensure that the

assessment is as consistent as possible, the substandard criteria are adjusted accordingly for

each city without significantly altering the criterion. The resulting substandard criteria for

the four cities are also shown in Table 3.2.
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Table 3.2: Substandard criteria for Los Angeles, New York City, Chicago, and Dallas (con-
sidering 10 infrastructure types).

Infrastructure
Type

Los Angeles New York City Dallas Chicago

Pavement Pavement Condition
Index (PCI) < 55

"Poor" rating based on
National Performance

Managerment Measures
for Accessing Pavement

Condition

Pavement Condition
Index (PCI) < 55

"Poor" rating based on
assessment of NYC

streets by the agency

Sidewalk Any existence of missing
segments on residential
streets (Condition data

not available)

Any existence of missing
segments on residential
streets (Condition data

not available)

Any existence of
obstruction, damage or

missing segments

Any existence of missing
segments on residential
streets (Condition data

not available)

Internet Internet speed less than
200 kbps in at least one

direction

Internet speed less than
200 kbps in at least one

direction

Internet speed less than
200 kbps in at least one

direction

Internet speed less than
200 kbps in at least one

direction

Noise Wall Within 200 feet of
highway and no noise

walls present

Within 200 feet of
highway and no noise

walls present

Within 200 feet of
highway and no noise

walls present

Within 200 feet of
highway and no noise

walls present

Bank Access Not within 1 miles
distance (1.6 km)

Not within 1 miles
distance (1.6 km)

Not within 1 miles
distance (1.6 km)

Not within 1 miles
distance (1.6 km)

Public Transportation
Access

Not within 5-min
walking distance (0.4
km) of bus stop or

10-min walking distance
(0.8 km) of rail station

Not within 5-min
walking distance (0.4
km) of bus stop or

10-min walking distance
(0.8 km) of rail station

Not within 5-min
walking distance (0.4
km) of bus stop or

10-min walking distance
(0.8 km) of rail station

Not within 5-min
walking distance (0.4
km) of bus stop or

10-min walking distance
(0.8 km) of rail station

Medical Facility Access Not within 2 miles (3.2
km) of major hospitals
or 1-mile (1.6 km) of

walk-in clinics

Not within 2 miles (3.2
km) of major hospitals
or 1-mile (1.6 km) of

walk-in clinics

Not within 2 miles (3.2
km) of major hospitals
or 1-mile (1.6 km) of

walk-in clinics or urgent
care

Not within 2 miles (3.2
km) of major hospitals
or 1-mile (1.6 km) of

walk-in clinics

Bike&Pedestrian Trails Not within 10-min
walking distance (0.8

km)

Not within 10-min
walking distance (0.8

km)

Not within 10-min
walking distance (0.8

km)

Not within 10-min
walking distance (0.8

km)

Gathering Place Access Not within 10-min
walking distance (0.8
km), including: parks,
community centers,

farmers markets, and
libraries

Not within 10-min
walking distance (0.8
km), including: parks,
community centers,

farmers markets, and
libraries

Not within 10-min
walking distance (0.8
km), including: parks,
community centers,

farmers markets, and
libraries

Not within 10-min
walking distance (0.8
km), including: parks,
community centers,

farmers markets, and
libraries

Food Access Nearby food stores
(including farmers

markets) not within 1
mile distance (1.6 km)

Nearby food stores
(including farmers

markets) not within 1
mile distance (1.6 km)

Nearby food stores
(including farmers

markets) not within 1
mile distance (1.6 km)

Nearby food stores
(including farmers

markets) not within 1
mile distance (1.6 km)

3.0.6.2 Income, race-ethnicity, historical redlining, and car ownership

Neighborhood income is computed using annual median household income from the same

Census Table as mentioned in Section 3.0.3. Categorized 3-level income (low, medium, and

high) is used to visualize the comparisons between cities but the continuous income record is

used to fit the statistical models given in Chapter 6. Similar to income, neighborhood race-

ethnicity is represented as the four predominant groups mentioned in Section 3.0.4 and data

are obtained from the same Census Table B03002. For historical redlining areas, the redlining

regions were downloaded from the same data source provided by [100]. In Chapter 6, the

author also include car ownership (Table B25044 from American Community Survey) as a
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mobility indicator to discuss the impacts of highly deficient infrastructure on neighborhoods

with less vehicle access.
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Chapter 4

Do Infrastructure Deserts Exist? Assessment and Statistical Modeling of Neighborhood

Infrastructure in Dallas, Texas

4.0.1 Introduction

This chapter applies the infrastructure assessment framework defined in Chapter 2 to the

City of Dallas as the first case study described in Chapter 3. Categories of infrastructure defi-

ciency were then allocated to each neighborhood as follows: Excellent (γ ≤ 3), Good (γ = 4),

Moderate (5 ≤ γ ≤ 6), Deficient (γ = 7), and Highly deficient (γ ≥ 8). Following the defini-

tion of infrastructure deserts, low-income neighborhoods with highly deficient infrastructure

(γ ≥ 8) were then identified across the city. The results reveal the existence of infrastructure

deserts, low-income areas with significantly more deficient infrastructure types than higher-

income areas, and show a significant pattern of infrastructure inequity.The author discusses

the detailed findings in the following subsections.

4.0.2 Individual and Overall Infrastructure Condition

Fig. 4.1 shows the percentage of neighborhoods with deficiencies for each individual type

of infrastructure by income level. This distribution of deficient infrastructure exhibits three

distinct patterns by infrastructure type: 1) For crosswalks, internet service, medical facility,

noise walls, and food access, the share of neighborhoods with deficient infrastructure is much

higher in low-income neighborhoods than others, showing a decreasing trend with increasing

income; 2) For pavement, sidewalks, community gathering places, trail access, and street tree

canopy, the share of deficient infrastructure does not show much difference across the three

income groups; 3) For public transit, an increasing trend exists with deficient infrastructure

versus income level.

Some of the results are consistent with previous findings, which show inequities across

community’s socio-economic status for individual infrastructure, such as crosswalk [59,104],
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Figure 4.1: The percentage of individual deficient infrastructure types across neighborhood
income levels .

internet service [63], and food access [73]. However, high-income neighborhoods experience

more deficiency than low-income neighborhoods for public transit and, to some extent, side-

walks. This finding is not consistent with the literature [26] and may be due to the higher

percentage of vehicle ownership in high-income neighborhoods.

These types of mixed relationships between infrastructure types and neighborhoods’

socio-economic status introduce challenges to studying infrastructure equity by individual

infrastructure type. This illustrates the need to consider multiple infrastructure types si-

multaneously and to develop a multi-infrastructure framework with an overall infrastructure

deficiency metric.

Fig. 4.2 (a) shows a histogram of overall infrastructure deficiency as a percentage of whole

neighborhoods; infrastructure deficiency categories are also represented by color. Fig. 4.2

(b) shows the distributions of overall infrastructure deficiency by income level; the y-axis
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Figure 4.2: The percentage of individual deficient infrastructure types across neighborhood
income levels .

represents the number of neighborhoods as a percentage of neighborhoods with the same

income level. The results suggest that the overall infrastructure deficiency ranges from 1

to 11, meaning that all neighborhoods have at least one deficient infrastructure type. None

of the neighborhoods is deficient in all infrastructure types (12 types in total). The results

also show that the majority of neighborhoods have between 4 and 7 deficient infrastructure

types.

Overall,14% of the neighborhoods (114) are classified as Excellent for their overall infras-

tructure condition, while 13% of neighborhoods (104) are Highly deficient. As suggested in

Fig. 4.2 (b), middle-income neighborhoods show a similar distribution to high-income neigh-

borhoods, except that there are more high-income neighborhoods with very few infrastruc-

ture deficits (Excellent). However, the figure clearly shows that low-income neighborhoods

exhibit higher overall infrastructure deficiency than other neighborhoods, as the distribu-

tion is horizontally shifted towards the direction of Highly deficient (8 or more deficient

infrastructure types). This pattern reveals evidence of inequitable infrastructure between

low-income neighborhoods and others.

23



Figure 4.3: Infrastructure deserts identified in Dallas based on infrastructure assessment
framework.

4.0.3 Infrastructure Deserts

Fig. 4.3 shows the map of infrastructure deserts (low-income neighborhoods with highly

deficient infrastructure (γ ≥ 8)) in Dallas. A total of 62 neighborhoods were identified as

infrastructure deserts. The infrastructure deserts have a clear spatial pattern overlapping

with low-income areas located in the city’s southern region [105], as opposed to upper-income

areas that are more prevalent in the north. As further comparison of infrastructure deserts

versus other areas, Fig. 4.4 shows individual deficient infrastructure types as a percentage

of neighborhoods citywide versus within infrastructure deserts. It suggests that more than

half of the neighborhoods have inadequate infrastructure among street tree canopy, sidewalk,

noise wall, trail access, medical facility access, and food access. However, substantially more

neighborhoods suffer from these deficiencies within infrastructure deserts. Besides, more

than half of neighborhoods within infrastructure deserts have deficient crosswalks and access

to banks, internet services, and gathering places. However, street tree canopy and sidewalks

are the most widespread deficient infrastructure types.
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Figure 4.4: Deficient infrastructure as a percentage of block groups by individual infrastruc-
ture type.

4.0.4 Relative Risk and Infrastructure Inequity

Figure 4.5: Relative risk: Computed relative risk is shown as circles, and shaded regions
denote the upper (95%) and lower (5%) confidence limits. (a) The relative risk of overall
infrastructure deficiency between low-income and middle-income areas; (b) Relative risk of
overall infrastructure deficiency between low-income and high-income areas.

The estimated parameters for the fitted cumulative logit model are shown in Table A.5.

The positive coefficients for (βM , βH) indicate a tendency for overall infrastructure deficiency
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Table 4.1: Estimated coefficients of the cumulative logit model. The model assumption
(proportional odds) is validated by performing a likelihood ratio test (16 degrees of freedom)
between fitted model and the same model except using a multinomial link. With the null
hypothesis that proportional odds assumption holds, p-value of 0.678 indicates that the data
does not show gross violation of the assumption.

Value Std. Error t value
Coefficients

βM 0.714 0.157 4.558
βH 1.124 0.153 7.364

Intercepts (αj)
α1 -6.196 0.582 -10.641
α2 -3.430 0.178 -19.235
α3 -2.380 0.134 -17.796
α4 -1.436 0.113 -12.713
α5 -0.534 0.103 -5.209
α6 0.427 0.102 4.197
α7 1.450 0.121 12.022
α8 2.651 0.182 14.585
α9 4.645 0.452 10.283
α10 6.261 1.002 6.248

Residual Deviance 3088.505 AIC 3223.505

to become smaller (less deficient) for middle-income and high-income neighborhoods com-

pared to low-income neighborhoods. The estimated coefficient for the middle-income neigh-

borhoods (βM) is 0.714, and the estimated coefficient for high-income neighborhoods (βH) is

1.124. These mean that the tendency of overall infrastructure deficiency toward less deficient

appears to be stronger for high-income neighborhoods than middle-income neighborhoods.

To test the model assumption of proportional odds with these parameters, a likelihood ratio

test (16 degrees of freedom) was performed between the fitted model and the same model

with a multinomial link. With the null hypothesis that proportional odds assumption holds,

a p-value of 0.678 was computed, which indicates that the data do not show gross viola-

tion of the assumption. Fig. 4.5 shows the resulting relative risks: (1) between low-income

and high-income neighborhoods; (2) between low-income and middle-income neighborhoods.

The x-axis denotes the overall infrastructure deficiency to be equal or greater than displayed
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ticks. The y-axis represents the value of relative risk estimates where mean results are plotted

as lines and 95% confidence levels denoted by the shaded regions. As indicated in Fig. 4.5,

the positive values of relative risk for both scenarios suggest that low-income neighborhoods

show a greater risk of having "more" deficient infrastructure than middle and high-income

neighborhoods. Furthermore, the relative risk increases for both scenarios as overall infras-

tructure deficiency increases. More specifically, low-income neighborhoods are 2.04 ∼ 3.53

times more likely to have highly deficient infrastructure (γ ≥ 8) than high-income neighbor-

hoods; and 1.42 ∼ 2.44 times more likely to have highly deficient infrastructure (γ ≥ 8) than

middle-income neighborhoods. Such substantial differences suggest significant infrastructure

inequities across income levels for most types of infrastructure.

4.0.5 Robustness of Statistical Model

Table 4.2: Cumulative logit model parameters using continuous income.

Value Std. Error t value
Coefficients

Log Income (β) 0.670 0.105 6.404
Intercepts (αj)

α1 -12.941 1.292 -10.014
α2 -10.163 1.163 -8.741
α3 -9.117 1.153 -7.906
α4 -8.182 1.146 -7.141
α5 -7.294 1.139 -6.406
α6 -6.349 1.132 -5.609
α7 -5.340 1.130 -4.725
α8 -4.145 1.136 -3.648
α9 -0.215 1.207 -1.780
α10 -0.532 1.502 -0.354

Residual Deviance 3104.692 AIC 3126.692

To further confirm the association between neighborhood income and overall infrastruc-
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ture deficiency, the model was refit using continuous (log) income instead of categorical

income levels (Table A.5). The use of log income helps linearize the exponentially growing

trends and remain unbiased compared to linear income [106]. Table 4.2 shows the estimates

of model parameters. As the log income increases, the positive estimated coefficient shows

that the overall infrastructure deficiency has a trend to be "less" deficient, which corroborates

the previous findings using categorical income data. Fig. 4.6 shows the predicted probability

of overall infrastructure deficiency by different income percentiles (5th, 25th, 50th, 75th, 95th).

Note that the probability curve shifts to the direction of "more" deficient with decreased

neighborhood income, again showing a tendency to have more deficient infrastructure types

for lower-income neighborhoods. This trend agrees with the earlier findings that lower-

income neighborhoods have a significantly higher risk of greater infrastructure deficiency

than other neighborhoods and, meanwhile, show the model’s robustness using either contin-

uous or categorical income data.

Figure 4.6: Infrastructure deserts identified in Dallas based on infrastructure assessment
framework.
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4.0.6 Conclusions

Given a wide variety of physical attributes within a neighborhood and their inter-dependent

interactions, assessing neighborhood infrastructure conditions can be highly challenging. It

involves a substantial set of neighborhood infrastructure condition indicators that are mul-

tidimensional and heavily data-dependent. To the author’s knowledge, there is a lack of

approaches or frameworks in the existing neighborhood infrastructure-related literature that

consider the diversity of neighborhood infrastructure and study multiple types of infras-

tructure together. This chapter contributes a novel approach to assessing neighborhood

infrastructure conditions by systematically measuring multiple infrastructure types and sta-

tistically analyzing infrastructure inequity across neighborhood income characteristics. A

critical strength of this chapter is the systematic and street-level assessment of multiple

neighborhood infrastructure types. The introduction of binary infrastructure indicators and

overall infrastructure deficiency effectively integrates multiple infrastructure types and pro-

vides a straightforward and intuitive neighborhood-level representation of infrastructure is-

sues. Furthermore, with the new concept of "infrastructure deserts" – low-income areas

with substantially higher infrastructure deficiency – the case study in Dallas, TX showed the

existence of infrastructure deserts and infrastructure inequity throughout low-income areas.

The statistical analyses also show that the observed infrastructure inequities between low-

income and higher-income neighborhoods are statistically significant. In the next chapter,

the author continues to explore infrastructure equity in Dallas from another perspective,

considering neighborhoods’ racial and ethnic composition and indicators that reflect the

influence of historical housing policies.
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Chapter 5

Are Infrastructure Deserts Correlated with Neighborhood Race and Ethnicity?

5.0.1 Introduction

This chapter assesses and investigates the condition and equity of neighborhood infras-

tructure from the perspective of socio-demographic indicators and historical practices. Prior

studies have shown that predominantly White neighborhoods have better access to food

stores, medical resources, and community facilities than predominantly Black neighbor-

hoods [103, 107, 108]. However, none of those studies have examined the role of race and

ethnicity in neighborhoods as integrated, multi-infrastructure systems. This chapter extends

the infrastructure equity framework developed in Chapter 2 to consider race, ethnicity, and

historical data, in addition to their connection with neighborhoods’ income characteristics.

The infrastructure equity study presented in Chapter 3 considered neighborhood median

annual household income as the sole explanatory variable for infrastructure equity measure.

However, several other socio-demographic indicators may correlate with neighborhood infras-

tructure conditions, such as race and ethnicity. Areas with majority Non-White populations

receive inequitable resources and present racial disparity in various aspects including less

access to infrastructure facilities [health care services [109, 110], parks [107], urban green

space [103], and energy resources [111]], higher exposure to environmental risks such as

flooding and air pollution [112,113], and historically disproportionately fewer infrastructure

investments and redevelopments [101,114,115].

These findings are drawn from a variety of case studies that primarily emphasize one or

a few infrastructure types, but previous work has not considered how racial-ethnic charac-

teristics of a neighborhood relate to systematic measures of infrastructure condition across

multiple infrastructure types. This chapter addresses this gap by extending the infrastruc-

ture equity framework developed in Chapter 2 to consider the role of neighborhood race-
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ethnicity in infrastructure inequities. Furthermore, the author examines historical influences

on current neighborhood infrastructure conditions, including historical redlining regions and

neighborhood age.

More specifically, the following major research questions are addressed: I) Do infrastruc-

ture inequities exist among neighborhoods with different racial and ethnic populations, as

well as income levels? That is, do neighborhoods with certain predominant race-ethnicities

and incomes have higher infrastructure deficits than others? II) Do historical discriminatory

lending policies or neighborhood ages correlate with current infrastructure conditions?

5.0.2 Methodology

To answer the research questions posed above, several cumulative logit models were built

to examine the relative risk of having deficient infrastructure across neighborhoods with

different income and race-ethnicity combinations.

For the first analysis, the author explores the relationship between overall infrastructure

deficiency and neighborhood’s race-ethnicity by only considering a single explanatory variable

(race-ethnicity group) in a cumulative logit model. Next, the author further investigates how

both income and race-ethnicity interact with infrastructure deficiency via model selection

from a full cumulative logit model containing both explanatory variables. In the third

analysis, neighborhood age and historical information are used to reveal any legacies from

discriminatory practices in past decades on current infrastructure equity. A statistical metric,

Gamma statistic, is also used to show the statistical significance of any observed trends. For

any trends observed in the descriptive analysis, the author computes Gamma statistic to

provide their statistical significance. The following subsections provide details on each of

these steps in the methodology.

5.0.2.1 Cumulative logit model

Since the overall infrastructure deficiency (γ) is computed as an ordinal integer, the

author continues to use the cumulative logit model (also called proportional odds model) [77]

in this study, which is designed for a response variable with values in a set of ordered

categories. Chapter 2 discussed the several benefits of using the cumulative logit model to

study the relationships between explanatory variables and ordinal categorical responses.
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5.0.2.2 Overall infrastructure deficiency ∼ race-ethnicity

To understand the role of race-ethnicity in infrastructure equity, the author first builds a

model only between overall infrastructure deficiency and neighborhood race-ethnicity char-

acteristics. Applying the model with overall infrastructure deficiency as a response variable

and race-ethnicity as a single explanatory variable results in:

logit[Pr(γ ≤ j|x)] = αj + βWxW + βHxH + βBxB; j = 1, ..., J − 1 (5.1)

where γ is the computed overall infrastructure deficiency for one neighborhood and αj is the

intercept coefficients, where j is the number of deficient infrastructure types; xW , xH , xB are

three dummy variables. xW = 1 if the neighborhood is predominantly White, otherwise xW =

0; xH = 1 if the neighborhood is classified as predominantly Hispanic, otherwise xH = 0;

similarly, xB = 1 if the neighborhood is classified as predominantly Black. xW = xH = xB = 0

if the neighborhood has no predominant race-ethnicity, also serving as the reference level in

the model. J is the maximum observed number of deficient infrastructure types considered

(J = 11 out of 12 in this chapter). βW , βH , βB are regression coefficients for the dummy

variables of the categorical race-ethnicity covariate with four classes (predominantly White,

predominantly Hispanic, predominantly Black, no predominant race-ethnicity).

After the model is fit, the model is validated using the Chi-square test by performing

a likelihood ratio test (LRT) between the fitted model and the same model except using

a multinomial link. With the null hypothesis that proportional odds assumption holds, a

p − value of greater than 0.05 indicates that the data do not show a gross violation of the

assumption. As suggested in Chapter 2, a relative risk measure of deficient infrastructure

types (RRxj) is computed across the neighborhood race-ethnicity groups to draw statistical

conclusions about infrastructure equity. In particular, the relative risk of neighborhoods

with predominant race-ethnicity groups (denoted as x) having "more deficient (> j)" in-

frastructure types compared to neighborhoods with no predominant race-ethnicity is written
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as:

RRxj =
Pr(γ > j|x)

PR(γ > j|no predominant race-ethnicity)

=
1− Pr(γ ≤ j|x)

1− Pr(γ ≤ j|no predominant race-ethnicity)

=
1 + eαj

1 + eαj+βx

j = 1, ..J − 1, x ∈ {W,H,B}

(5.2)

Relative risk offers adequate measures to compare overall infrastructure conditions across

neighborhoods with different predominant race-ethnicity. Given the values of j and x, if the

relative risk value (RRxj) is larger than one, then neighborhoods with predominant race-

ethnicity group x have a higher risk of having more than j deficient infrastructure types

than neighborhoods with no predominant race-ethnicity, indicating evidence of infrastructure

inequity. To obtain the confidence intervals for relative risk at each j, a bootstrapping

method [80] is conducted with 20,000 iterations to compute the upper (97.5%) and lower

(2.5%) confidence levels of the relative risk estimates.

5.0.2.3 Overall infrastructure deficiency ∼ income, race-ethnicity

Next, a second cumulative logit model is built including both income and race-ethnicity

versus infrastructure deficiency. Unlike the implementation in Chapter 4, where income was

grouped into three levels (low, middle, high), the neighborhood’s average annual median

household income is used as a continuous variable with a logarithm transformation. To

establish the final model, the full model (including all interaction terms as shown in Equation

5.3) is first fit and then backward model selection [77] is performed to remove any insignificant

terms using Akaike Information Criterion (AIC) as the dropping criteria. To better interpret

the results, the author estimates and compares the probability of having highly deficient

infrastructure (γ ≥ 8 for this case study) given different combinations of income and race-

ethnicity composition. This allows statistical identification of the neighborhoods that have

the highest number of deficient infrastructure types, which is one of the two criteria used to
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identify infrastructure deserts in Chapter 2.

logit[Pr(γ ≤ j|x)] = αj + βIxI + βWxW + βHxH + βBxB+

βIWxIxW + βIHxIxH + βIBxIxB;

j = 1, ..., J − 1

(5.3)

5.0.2.4 Gamma statistic

Gamma statistic [116] is a correlation statistic for ordinal data based on the number

of concordant and discordant pairs among two variables. The use of Gamma statistics

for correlation analysis is recommended when data have tied observations [77]. Given n

observations, the number of concordant pairs P among two variables X and Y is:

P = |{i, j} : {1 ≤ i ≤ j ≤ n, (xi − xj)(yi − yj) > 0}| (5.4)

Similarly, the number of discordant pairs Q can be written as:

Q = |{i, j} : {1 ≤ i ≤ j ≤ n, (xi − xj)(yi − yj) < 0}| (5.5)

The Gamma statistic denoted as τ in this thesis is therefore defined as:

τ =
P −Q
P +Q

(5.6)

Like other correlation measures, Gamma statistic treats the variables symmetrically, and it

has a range of −1 ≤ τ ≤ 1. The absolute value of τ equals 1 when the relationship between

X and Y is perfectly linear. When = 1, the linear relationship has a monotone increasing

trend, versus a monotone decreasing trend with τ = −1. It is noted that independence

implies τ = 0, but the converse is not true because a U-shaped joint distribution can also

lead to τ = 0.

This chapter uses Gamma statistic to examine the associations between neighborhood
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infrastructure deficiency and any ordinal metric. For example, the statistic identifies whether

infrastructure deficiency trends across current race-ethnicity categories are statistically sig-

nificant. To compute the Gamma statistic, a contingency table is first created between two

ordinal factors: One of the ordinal factors, in this study, is always overall infrastructure

deficiency. Another factor is either the redlining Home Owner Load Corporation (HOLC)

grades or race-ethnicity categories depending on the analysis (called comparing factor). Fi-

nally, the author does not report Gamma statistics if the subgroup has zero observations

across any categories in the comparing factor.

5.0.3 Results and Discussion

Using the overall infrastructure deficiency computed from the infrastructure assessment

framework, the author overlays it with the neighborhood’s race-ethnicity. Several cumulative

models mentioned above are fitted to investigate the role of race-ethnicity and historical

lending policies to infrastructure equity in addition to income characteristics. In the result

section, the correlation between individual infrastructure conditions and race-ethnicity is

firstly examined. Secondly, statistical inference is conducted considering only race-ethnicity

and overall infrastructure deficiency to describe the relative risks of neighborhoods with

certain predominant race-ethnicity groups. Furthermore, a more complicated statistical

model is introduced including both race-ethnicity and income characteristics to examine their

interaction effects. Finally, this thesis shows how the historical redlining policies influence

the current infrastructure conditions by comparing the neighborhood’s age and groups of

neighborhoods that were inside historical redlining regions.

5.0.3.1 Individual infrastructure condition

The author first looks at the percentage of neighborhoods with deficiencies for each type

of infrastructure by race-ethnicity groups, as shown in Fig. 5.1. For consistent interpre-

tation, the author uses the order of (predominantly White, no predominant race-ethnicity,

predominantly Hispanic, and predominantly Black) in all figures to describe the distribution

of infrastructure conditions. Three primary patterns are seen, arranged as three separate

rows in Fig. 5.1. In the first row, a declining trend is observed across race-ethnicity, meaning

that predominantly White neighborhoods have on average the worst public transit access to
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all neighborhoods. This finding is consistent with the finding in Chapter 4 that high-income

neighborhoods, which are more likely to be predominantly White, have a higher percentage

of substandard public transit access. In the second row of Fig. 5.1, the author observes five

Figure 5.1: Percentage of deficient infrastructure by neighborhood income level and infras-
tructure type.

infrastructure types (pavement, gathering place access, trail access, sidewalk, and street tree

canopy) that have no clear trend in levels of deficiencies. Finally, predominantly Hispanic

and Black neighborhoods tend to have higher percentages of deficiencies in six infrastructure

types shown in the third row (noise wall, food access, bank access, crosswalk, medical facil-

ity access, and internet service). This means that predominantly White neighborhoods have

lower percentages than the other neighborhoods for the same infrastructure types, indicating

an “increasing” trend across the charts in the bottom row.

5.0.3.2 Infrastructure inequity across race-ethnicity groups

Fig. 5.2(a) shows the histogram of overall infrastructure deficiency as a percentage of city-

wide neighborhoods and Fig. 5.2(b) shows the distribution of overall infrastructure deficiency

by predominant race-ethnicity groups. The y-axis represents the number of neighborhoods
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as a percentage of neighborhoods with the same race-ethnicity category. It can be seen

that predominantly Black neighborhoods have the highest average infrastructure deficiency,

predominantly Hispanic neighborhoods have the second-highest average deficiency, and pre-

dominantly White neighborhoods have the lowest average deficiency score. Neighborhoods

with no predominant race-ethnicity have an infrastructure deficiency score between predomi-

nantly Hispanic and predominantly White neighborhoods (second lowest). Furthermore, the

race/ethnicity distributions in Fig. 5.2(b) are skewed to the right, indicating that the same

pattern holds for the highest numbers of infrastructure deficiencies predominantly Black >

Hispanic > no predominant race-ethnicity > White.

Figure 5.2: Overall infrastructure deficiency. (a) Histogram of overall infrastructure defi-
ciency as a percentage of block groups, (b) Histogram of overall infrastructure deficiency as
a percentage of block groups by neighborhood’s race-ethnicity.

To statistically investigate the inequities shown in Fig. 5.2(b), a simple cumulative model

between overall deficiency and race-ethnicity (Eqn. 5.1) is fit with the parameters estimated

as in Table 5.1. The positive coefficients for (βW , βH , βB) indicate a tendency for over-

all infrastructure deficiency to become lower (less deficient) for neighborhoods that have

predominant race-ethnicity groups in the order predominantly White, Hispanic, and Black

and the values indicate the strength of the trend. For example, the estimated coefficient
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for predominantly Hispanic neighborhoods (βH) is -0.739 and the coefficient for predomi-

nantly Black neighborhoods (βB) is -1.159, suggesting that these neighborhoods are likely

to have more deficient infrastructure types compared to neighborhoods with no predomi-

nant race-ethnicity and predominant Black neighborhoods are likelier than predominantly

Hispanic neighborhoods. The magnitude of the estimated coefficients also indicates that

the tendency of overall infrastructure deficiency toward more deficient (higher deficiency)

appears to be stronger for predominantly Black neighborhoods than predominantly Hispanic

neighborhoods. On the other hand, the estimated coefficient for predominantly White neigh-

borhoods (βW ) is 0.714, showing that predominantly White neighborhoods have a tendency

towards fewer deficiencies compared to neighborhoods with no predominant race-ethnicity.

These statistics also align with the patterns observed in Fig. 5.2(b) and described above.

Table 5.1: Estimated coefficients of the cumulative logit model (race-ethnicity only). Like-
lihood Ratio Test (27 degrees of freedom) was conducted between the fitted model and the
same model with a multinomial link. With the null hypothesis that proportional odds as-
sumption holds, a p-value of 0.075 indicates that the data do not show a significant violation
of the assumption.

Value Std. Error t value
Coefficients

Race-ethnicity
βW 0.53 0.17 3.13
βB -1.16 0.21 -5.55
βH -0.74 0.16 -4.54

Intercepts (αj)
α1 -5.51 0.59 -9.38
α2 -2.72 0.18 -14.93
α3 -1.65 0.14 -11.81
α4 -0.69 0.12 -5.51
α5 0.24 0.12 2.00
α6 1.22 1.13 9.41
α7 2.26 0.15 15.01
α8 3.46 0.20 16.94
α9 5.46 0.46 11.82
α10 7.08 1.01 7.03

Residual Deviance 3069.116 AIC 3085.116
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Fig. 5.3 shows the resulting relative risks (Eqn. 5.2) of neighborhoods with deficiencies for

the three categories of predominant race-ethnicity (predominantly White, predominantly His-

panic, and predominantly Black) versus neighborhoods with no predominant race-ethnicity.

The x-axis denotes the overall infrastructure deficiency to be equal or greater than the dis-

played ticks. The y-axis represents the value of relative risk estimates where mean results

are plotted as lines and 95% confidence levels are denoted by the shaded regions. The val-

ues of relative risk for predominantly Black and Hispanic neighborhoods across all possible

infrastructure types scenarios are greater than 1, suggesting that predominantly Black and

Hispanic neighborhoods show a greater risk of having "more" deficient infrastructure than

neighborhoods with no predominant race-ethnicity. For predominantly White neighborhoods,

the values of relative risk are less than 1, indicating that predominantly White neighborhoods

have a smaller risk of high infrastructure deficiency compared to neighborhoods with no pre-

dominant race-ethnicity.

Figure 5.3: Relative risk: Computed relative risk is shown as circles, and shaded regions
denote its upper (97.5%) and lower (2.5%) confidence limits. 95% confidence intervals of the
three cases were obtained using bootstrapping with 20,000 simulations. (a) The relative risk
of overall infrastructure deficiency between predominantly Black and No Predominant Race
neighborhoods, (b) Relative risk of overall infrastructure deficiency between predominantly
Hispanic and no predominant race neighborhoods, (c) Relative risk of overall infrastructure
deficiency between predominantly White and no predominant race-ethnicity neighborhoods.
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Furthermore, as the overall infrastructure deficiency increases (more deficient infrastruc-

ture types), the relative risk for predominantly Black and Hispanic neighborhoods also in-

creases. Specifically, predominantly Black neighborhoods are 2.0 ∼ 3.6 times; and predom-

inantly Hispanic neighborhoods are 1.4 ∼ 2.6 times more likely to have highly deficient in-

frastructure (γ ≥ 8) compared to neighborhoods with no predominant race-ethnicity. On the

contrary, the relative risk of predominantly White neighborhoods decreases as infrastructure

increases, with a maximum confidence interval of 0.4 ∼ 0.8 times less likely to have highly

deficient infrastructure compared to no predominant race-ethnicity neighborhoods. Such

substantial differences indicate significant infrastructure inequities across race-ethnicity for

most types of infrastructure.

5.0.3.3 Infrastructure inequity across income and race-ethnicity groups

To examine relative risk for both income and race-ethnicity, a full model with both

income and race-ethnicity is fitted with the estimated parameters shown in Table 5.2. After

backward model selection, no extra terms were dropped and the full model equals the final

model, as expressed in Eqn. 5.3. αj is the intercept coefficient, βI is the regression coefficient

for continuous income variable xI ; βW , βH , βB are regression coefficients for the dummy

variables of the categorical race-ethnicity covariate with four levels (predominantly White,

predominantly Hispanic, predominantly Black, no predominant race-ethnicity). βIB, βIH , βIW

are coefficients for income, race-ethnicity interactions.

To understand the relationship between infrastructure deficiency and income, race-ethnicity

combinations, under the full model the author computes the probability of having highly

deficient infrastructure based on neighborhoods’ income and race-ethnicity status, and the

results are shown in Fig. 5.4. Based on the predicted probability, predominantly Black neigh-

borhoods have the overall highest probability of highly deficient infrastructure compared to

other neighborhoods with similar annual income. Predominantly Hispanic neighborhoods

are the second-highest group and predominantly White neighborhoods have the lowest prob-

ability compared to all other neighborhoods with the same income level except for 95%

percentile income. In addition, the probability gaps among race-ethnicity are reduced as

neighborhoods’ income increases, as also shown in Fig. 5.4.
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Table 5.2: Estimated coefficients of the cumulative logit model for income and race-ethnicity.

Value Std. Error t value
Coefficients
Income

βI 0.40 0.25 1.59
Race-ethnicity

βW 17.57 4.35 4.04
βB -2.04 4.75 -0.43
βH -5.66 5.00 -1.13

Interaction
βIW -1.50 0.39 -3.87
βIH 0.10 0.46 0.22
βIB 0.46 0.47 0.99

Intercepts (αj)
α1 -9.85 2.77 -3.55
α2 -7.05 2.71 -2.60
α3 -5.97 2.71 -2.20
α4 -4.98 2.71 -1.84
α5 -4.04 2.71 -1.49
α6 -3.04 2.71 -1.22
α7 -1.99 2.71 -0.74
α8 -0.79 2.71 -0.29
α9 1.21 2.74 0.44
α10 2.83 2.88 0.98

Residual Deviance 3035.912 AIC 3069.912

At the higher incomes (95% income quantiles), predominantly Hispanic, predominantly

White, and neighborhoods with no predominant race-ethnicity have very comparable prob-

abilities risks of deficient infrastructure. Although predominantly Black neighborhoods still

have higher risks than the other neighborhoods, the probability is decreased for wealthier

neighborhoods. Note that these findings are consistent with the results in Chapter 4 for

neighborhood income characteristics.

5.0.3.4 Impacts of historical redlining on infrastructure condition

Fig. 5.5(a) shows the infrastructure deficiency within historical redlining areas (218 out

of the 790 block groups) for each HOLC grade. Fig. 5.5(b) shows the distribution of infras-
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Figure 5.4: Probability of having highly deficient infrastructure given neighborhood income
and race-ethnicity composition.

tructure deficiency in redlining areas for each HOLC grade by neighborhood race-ethnicity

groups. An increasing trend is seen, with infrastructure deficiency becoming higher from

grades A to D. This trend is found to be statistically significant with a positive Gamma

statistic of 0.222.

According to the HOLC, areas marked with grades C and D were considered to be the

most undesirable for mortgages. This practice negatively influenced infrastructure mainte-

nance and rehabilitation through the decades, where its long-term effect is reflected as the

uptrend of overall infrastructure deficiency from grade A to grade D shown in Fig. 5.5(a).

Despite re-development activities in the central core of the city since redlining, neighbor-

hoods that were graded “worse” in the past decades still persist with higher infrastructure

deficits in the present than other neighborhoods.

Fig. 5.5(b) also highlights different levels of racial inequity in historical redlining areas.

In areas with grades B, C, and D, predominantly Black neighborhoods have significantly

higher infrastructure deficiencies than other neighborhoods, but this inequity is greatest in

redlining areas with grade D, which have the highest gamma statistic in Table 5.3. From

these results, it can be seen that how the injustice of historical housing policies created racial

inequity whose legacy remains in the infrastructure of predominantly Black neighborhoods
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Figure 5.5: Box-whisker plot of overall infrastructure deficiency among HOLC rated neigh-
borhoods. (a) Box-whisker plot for each HOLC redlining grade. (b) Box-whisker plot for
each HOLC redlining grade by neighborhoods’ race-ethnicity (denoted by different colors).
Upper and lower whiskers indicate the maximum and minimum value of the population,
upper and lower boxes indicate the 1st and 3rd quartile respectively. The centerline across
the box indicates the median of the population

today.

5.0.3.5 Infrastructure inequity by neighborhood age

In addition to historical redlining, a neighborhood’s age could be another important indi-

cator of infrastructure condition, given how policies and development practices have changed

over time. Fig. 5.6(a) shows a box-whisker graph indicating decades of neighborhood aver-

age built-year (x-axis) and quantiles of infrastructure deficiencies across the neighborhoods

built in each decade (y-axis). Fig. 5.6(a) indicates that neighborhoods built from the 1930s

to 1960s have more infrastructure deficiencies, on average than neighborhoods built during
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Table 5.3: Trend analysis using Gamma statistic between overall infrastructure deficiency
and 1) redlining HOLC grades and 2) neighborhood race-ethnicity within each HOLC grade.
Gamma statistic is not reported if any of the neighborhood race-ethnicity categories have
missing records. Significance level: ∗ : p-value < 0.1; ∗∗ : p-value < 0.01; ∗ ∗ ∗ : p-value <
0.001. (Note: W: predominantly White; N: no predominant race-ethnicity ; H: predominantly
Hispanic; B: predominantly Black)

Categories of Areas Number of Observations (n) Gamma
Statistic

Significance
Level

Redlining A B C D
23 43 131 21 0.222 ***

HOLC Grade W N H B
A 20 3 0 0 - -
B 21 11 10 1 0.612 ***
C 19 36 57 19 0.565 ***
D 4 8 2 7 0.859 ***

other periods. It is worth noting that neighborhoods built earlier than this timespan have

relatively lower infrastructure deficiencies; this might be due to redevelopment projects and

programs for older neighborhoods [117].

Fig. 5.6(b) shows a further breakdown between infrastructure deficiency and average

neighborhood built-year by race-ethnicity. The results reveal that predominantly Black

neighborhoods have worse average infrastructure conditions than predominantly White neigh-

borhoods across all decades when predominantly Black neighborhoods were built. Further-

more, predominantly Hispanic neighborhoods also have higher average infrastructure defi-

ciencies than predominantly White neighborhoods except during the 1960s, when the average

deficiencies are equivalent. Overall, the race-ethnicity categories shown in Fig. 5.6(b) have

upward trends that are statistically significant according to the Gamma statistic given in

Table 5.4. While the infrastructure inequities are most severe in neighborhoods built from

the 1930s to the 1950s, when HOLC policies were in place, predominantly White neighbor-

hoods still have significantly better infrastructure conditions than predominantly Hispanic

and Black neighborhoods even in areas with average built-years during the 21st century.

These inequities also persist in neighborhoods built in most of the decades except the 1970s
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Figure 5.6: Box-whisker plot of infrastructure deficiency versus neighborhood average built-
year during each decade for (a) all neighborhoods combined and (b) neighborhoods by pre-
dominant race-ethnicity. (Denoted by different colors). Upper and lower whiskers indicate
the maximum and minimum value of the population, upper and lower boxes indicate the
1st and 3rd quartile respectively. The centerline across the box indicates the median of the
population

and the 1990s. These results imply that historical plans or policies in different decades might

play important roles in affecting neighborhood infrastructure and lead to today’s inequities.

5.0.4 Discussion

Dallas has a long history of racial and wealth segregation and the findings show that

this segregation persists today [118]. The city facilitated the underdevelopment of minority

neighborhoods through the process of zoning, which clusters landfills, liquor stores, and in-

dustrial activities in disenfranchised communities [119]. The segregation of housing based

on neighborhoods’ racial markup was reinforced through the introduction of HOLC redlin-
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Table 5.4: Trend analysis using Gamma statistic between overall infrastructure deficiency
and predominant neighborhood race-ethnicity by average built-year in decades. Gamma
statistic is not reported if any of the subgroups with missing records. Significance level: ∗ :
p-value < 0.1; ∗∗ : p-value < 0.01; ∗ ∗ ∗ : p-value < 0.001. (Note: W: predominantly White;
N: no predominant race-ethnicity ; H: predominantly Hispanic; B: predominantly Black)

Neighborhoods’ Aver-
age Built Decade

Number of Observations (n) Gamma
Statistic

Significance
Level

W N H B
1910s 0 2 2 0 - -
1920s 12 15 24 8 0.594 ***
1930s 9 11 18 6 0.526 ***
1940s 17 34 67 13 0.515 ***
1950s 52 42 74 38 0.366 ***
1960s 44 33 23 12 0.134 ***
1970s 31 38 14 10 0.246 ***
1980s 11 41 10 4 0.289 ***
1990s 18 5 2 0 - -
2000s 12 19 8 6 0.568 ***
2010s 1 0 1 0 - -

ing practices. Basic infrastructure services such as modern plumbing, electricity, and trash

pickups were disproportionately planned provided to neighborhoods with minorities [119].

Despite the city introducing revitalization plans to dissipate such disparities [120], neighbor-

hood infrastructure still reflects the legacy of these historic decisions and practices.

One of the major findings of this paper is that predominantly Black and Hispanic neigh-

borhoods have a statistically higher risk of highly deficient infrastructure compared to other

neighborhoods. The risk analysis shows that neighborhoods with a higher average level

of household income have a lower probability of highly deficient infrastructure, but not for

predominantly White neighborhoods. Such interactions also indicate a highly correlated rela-

tionship between wealth and a neighborhood’s racial demographic. While the infrastructure

inequities across race-ethnicity are higher in neighborhoods that were built during the redlin-

ing period, even neighborhoods built during the 21st century show clear race-ethnicity biases.

These findings indicate a pressing need for decision-makers to adopt policies and investment
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strategies that target predominantly Black and Hispanic neighborhoods for infrastructure

improvements.

It is also worth noting that predominantly Black neighborhoods, despite having overall

higher infrastructure deficiency, still have better public transit than predominantly White

neighborhoods. Many low-income communities in southern Dallas are predominantly Black

neighborhoods. Having access to public transit is more critical for low-income communities

that have lower rates of car ownership, which means investments in public transportation can

be more beneficial. On the other hand, in northern Dallas, many high-income neighborhoods

do not heavily rely on public transportation and may opt out of public transit routes or bus

stops to lower taxes. However, lack of public transit in high-income areas can still create

difficulties for those who cannot drive (e.g., youth or elderly) and may prevent those without

cars from entering these areas. This finding highlights the importance of considering diverse

neighborhood needs for building a more equitable city.

The existence of infrastructure inequity not only influences vulnerable neighborhoods

with a lack of infrastructure resources but also draws attention to highly deficient areas for

optimizing investments. Bond programs, separate from the city’s annual budget, focus on

improving capital funding for city assets, including neighborhoods infrastructure, such as

facilities, streets, libraries, and parks [121]. 2017 Bond investments data is acquired from

the city open data portal (https://www.dallasopendata.com) and extracted projects that

are infrastructure-related based on their included project description. The investments are

summarized for each city council district as shown in Fig. 5.7. The vertical bars indicate the

infrastructure-related funding allocation of 2017 bond projects by city council district (14

districts in total), the solid line represents the distribution of identified infrastructure deserts

within each council district (i.e., the percentage of the total number of neighborhoods that

are infrastructure deserts. It can be seen that the allocation of bond projects deviates from

the distribution of infrastructure deserts, which serves as a proxy of community needs for

infrastructure improvements due to the high deficiency. As a result, the most recent bond

investments do not resolve infrastructure inequity and infrastructure gaps remain unclosed.

For example, Districts 8 and 5, which have the highest percentages of infrastructure deserts,

will be unable to catch up with other districts if the investments aren’t distributed more
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Figure 5.7: Distributions of 2017 City of Dallas bond projects infrastructure-related invest-
ments and percentage of identified infrastructure deserts by city council districts

equitably. This result, again, highlights the important role of understanding infrastructure

equity to guide the city’s future plans and policies.

5.0.5 Conclusions

Studying infrastructure equity involves comparing infrastructure characteristics or condi-

tions in neighborhoods with a high concentration of socially vulnerable populations compared

to adjacent neighborhoods or the regional average [25]. In Chapter 4, the author identified

infrastructure deserts, low-income areas with highly deficient neighborhood infrastructure,

and showed increasing trends of infrastructure inequity across decreasing median neighbor-

hood income in a case study in Dallas, Texas. This chapter expands that work to explore

the relationships between overall infrastructure deficiency and neighborhood race-ethnicity

overall and by neighborhood age and historical redlining policies. To the author’s knowledge,

such analyses connecting multiple infrastructure types to neighborhood characteristics are

rarely discussed in previous literature due to a lack of available data at neighborhood scales.

This chapter delivers comprehensive insights on infrastructure inequity across income,

race-ethnicity, and statistically shows the various levels of inequity among neighborhoods

with different income and race compositions. Statistical inference indicates that predomi-

nantly Black and Hispanic neighborhoods are 1.4 to 2.6 times and 2.0 to 3.6 times likelier
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to have highly deficient infrastructure (8 or more deficient infrastructure types out of 12)

than areas with no predominant race-ethnicity, respectively. Furthermore, these disparities

reflect the legacy of historical discriminatory housing policies (“redlining”) and their long-

term impacts on neighborhood infrastructure. Neighborhoods marked as “less desirable”

for mortgages during the 1930s still experience significantly more infrastructure deficiencies

today.
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Chapter 6

Do neighborhood infrastructure deficits differ by city? A comparative infrastructure equity

study among Los Angeles, New York City, Chicago, and Dallas

6.0.1 Introduction

This chapter continues to assess and explore the existence of infrastructure deserts by

applying the infrastructure equity assessment framework to multiple major cities across the

country. In the previous chapters, The author investigated and demonstrated the inequities

in neighborhood infrastructure via the first case study conducted in the City of Dallas, Texas.

The findings raise the question of whether infrastructure equity in other cities shows similar

patterns. In order to efficiently address this question and enable future comparisons in more

cities, an automated system is created that allows researchers, planners, and engineers to

more easily implement infrastructure assessment. The automated framework is implemented

using a Cloud-based platform called “Clowder,” which enables a comparative analysis among

four major cities: Los Angeles, CA; Dallas, Texas; Chicago, IL, and New York City, NY.

Previous infrastructure-related studies have primarily focused on developing new ap-

proaches or improving existing methods to achieve better evaluation performance of single

types of infrastructure [29, 34, 44, 96, 108, 122, 123]. The generalization of these approaches

has not yet been discussed. However, the benefits of creating generalized tools for research

not only increase the applicability of the research but also create opportunities to foster

other innovative ideas within the field. For example, the Economic Research Service pub-

lished the Atlas guide in 2015 to create food desert indicators for many cities across the

country [124]. This guide raises awareness of food access inequities across the nation and

can support research related to food access.

With the development of Cloud-based storage and computing platforms, integrating the

framework with a Cloud-based platform supports easier publishing and sharing the tools
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among researchers [125]. Currently, the implementation of infrastructure assessment requires

users to gather all of the data and assess substandard criteria manually. The process is

repeated for each infrastructure type and becomes a time-demanding task to complete for

multiple cities and time periods without any automation. Furthermore, the size and number

of datasets collected continue to grow as more infrastructure types are added, which will

inevitably increase the efforts to transfer, share, and manage the data and analyses. Such

concerns could be preventing similar studies [31, 62, 113, 123] from being effectively and

efficiently implemented in other cities. Thus, generalizing the framework and integrating it

with a Cloud-based platform will allow the framework to be more accessible and effective for

testing results with other case studies.

6.0.2 Methodology

Clowder (https://clowderframework.org) [125] is a Cloud-based open-source data man-

agement platform developed by the National Center for Supercomputing Applications. More

details on Clowder are provided in Section 6.0.2.1. The integration between the infrastruc-

ture assessment framework described previously and Clowder delivers three main benefits.

First, the framework can be executed anywhere via any Internet-connected browser at any

time without any program installation. Second, Clowder offers functionalities for users to

store, manage, and share collected and analyzed datasets on the platform. Finally, using

Clowder, the framework can more easily be generalized to other cities and regions. Fig. 6.1

shows the flow chart of the Cloud-based assessment framework: Users first upload the config-

uration file and required datasets to Clowder. Then, an “infrastructure assessment extractor”

reads the configuration file and analyzes the uploaded data to compute the overall infrastruc-

ture deficiency rating as mentioned in Equation from Chapter 2. Finally, a map of overall

infrastructure deficiency and the relative risk results are generated as the outputs. All of

the computations are performed on the Cloud without any installation on the local machine

and the data can also be stored and shared on Clowder for future use. The implementation

of the automated infrastructure assessment framework in Clowder consists of three major

steps: 1) prepare the assessment configuration file as a JSON file; 2) upload datasets to

Clowder according to configuration; 3) execute the infrastructure assessment framework as
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the Clowder “extractor”. Each step is described in more detail in subsections 6.0.2.2 through

6.0.2.4 below.

Figure 6.1: Overview of the Cloud-based infrastructure assessment framework.

6.0.2.1 Clowder

Clowder is a Web-based, open-source, customizable and scalable data management frame-

work to support any data format and multiple research domains. It allows flexible metadata

representation which supports both user-defined and machine-defined metadata from either

a Web user interface or Web service Application Programming Interface (API). Clowder

also has a cluster of extraction services that process newly added data to extract metadata

and ways to write Javascript-based widgets to visualize the contents of files and datasets.

These services include previews of CSV files, interactive Web maps for GIS layers, and image

thumbnails for video data.

Clowder is built to simplify the ingestion and curation of data and to be extensible

to support the long tail of research data and many research domains. Since its inception,

Clowder has been leveraged and augmented to support scientific needs within numerous NSF-

funded projects, including DataNet SEAD, Sustainable Environment through Actionable

Data, http://sead-data.net [126,127]; DIBBs Brown Dog [128–130]; XSEDE [131]; and IML-
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CZO [132, 133]. Clowder has supported communities such as biology, geoscience, materials

science, crop science, urban science, social science [134], and the humanities. In addition,

Clowder’s rich Web interfaces let users upload, curate, and share raw data along with complex

metadata and extractors that process uploaded data, which allows users to better manage

project data and results.

6.0.2.2 Prepare assessment configuration JSON file

A JSON file is required for users to describe and define all of the needed assessment

parameters including considered infrastructure types, substandard criteria, corresponding

datasets, and intended output characteristics. The structure of the JSON file is shown in

Fig. 6.2, where the first few arguments include essential ArcGIS layers for the assessment

such as neighborhood boundaries (Census block groups in this case), income, and residential

parcels. The considered infrastructure type information is structured as an expandable

dictionary where users can decide how many infrastructure types are to be included.

Within each infrastructure type, the users choose a substandard criterion from one of two

predefined options that correspond with the two primary criteria for quantifying substandard

infrastructure (see Chapter 2). The first substandard criterion is directly assessed based

on the dataset’s existing attributes. For example, the Pavement Condition Index (PCI)

is commonly used to assess the pavement condition . Under the created dictionary for

pavement, the user should set the attribute corresponding to PCI in the condition attribute

and specify less than 55 as the criterion argument for substandard pavement segment.

The second substandard criterion uses the proxy relationship between neighborhood resi-

dential households and infrastructure facilities to define whether resident’s access to services

is sufficient. For example, the travel distance between the nearest grocery store to each

residential household is one of the most common measures to indicate accessibility to food

stores. A pre-filled template of commonly used substandard criteria is also provided to guide

users in easily configuring their infrastructure types properly. Once all of the considered in-

frastructure types have been configured, the user then uploads the JSON file to Clowder,

where it serves as the input to the assessment framework. On the extractor page after

clicking “submit for extractions” in the “dataset” page, Clowder also provides a Web-based
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user-friendly Graphical User Interface that guides users to create a new JSON configuration

file or import existing file from local.

Figure 6.2: Infrastructure assessment framework configuration file (JSON). The first three
arguments represent neighborhood boundary, residential households, and annual median
income. A common attribute of Block Group ID is required when preparing the datasets.
Each infrastructure type is defined as a separate dictionary (see an example of “pavement”)
with its data source and substandard criterion specified inside the dictionary.

6.0.2.3 Upload necessary datasets to Clowder

In addition to choosing substandard criteria in the configuration file, users also need to

note the name of the dataset files to the “file” argument under “criteria_input”of the con-

figuration file. Once users manually upload all required datasets to Clowder, they can click

the “submit for extraction” button shown along with the datasets page. A list of available

extractors will be displayed and choosing “Infrastructure Assessment” triggers and runs the

infrastructure assessment framework. The name and directory of the uploaded datasets

should follow the definitions in the configuration file. The uploaded format depends on the
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information within the dataset. If data contains spatial information such as location, lines,

or areas, uploading these data as a zipped ArcGIS Shapefile is recommended. Otherwise,

CSV files can be used to store tabular records if no geospatial information is used. To en-

sure that the assessment performs properly, all of the spatial data should have the same

Coordinate Reference System (CRS), for example set CRS to EPSG 3857 to represent WGS

84/Pseudo-Mercator.

6.0.2.4 Execute infrastructure assessment framework as a Clowder extractor

Once all of the datasets have been successfully uploaded to Clowder along with the

configuration JSON file, the infrastructure assessment framework is ready to be executed as a

Clowder extractor. “Extractors” are one of the functionalities built into the Clowder platform

to allow users to run customized operations on Clowder datasets. Extractors are executable

structured scripts that are compiled and stored on the Clowder platform. The extractor will

be executed when the user clicks the “submit” button on the page showing a list of available

extractors, the corresponding script will run and execute predefined operations. There are

several pre-built Clowder extractors that perform tasks such as creating preview images for

pdf and other data files, text extractions from documents, and information tagging for video

clips. The extractor can also be self-built by Clowder users in programming languages such

as Python, R, or Matlab to customize other needs.

The current Clowder infrastructure assessment framework consists of Python scripts to

execute spatial operations such as measuring distances and evaluating spatial relationships.

An open-sourced Python library "GeoPandas" is used to support all geometry implemen-

tation between datasets such as spatial intersection, addition, and deletion. Beyond these

scripts, extractors have been built to reproduce all of the steps in the infrastructure assess-

ment framework described in Chapters 4 and 5 and deploy them on Clowder for public use.

Users can see the list of available extractors by clicking “Submit for Extractors” on their

dataset page.

The infrastructure assessment framework consists of two main “extractors .” The first is

a Python-based extractor that imports datasets, applies substandard infrastructure criteria,

and calculates overall infrastructure deficiency. The second extractor is R-based and fits sta-

55



tistical models (described in Chapters 4, 5, and 6) using the overall infrastructure deficiency

from the first extractor and computing relative risk across demographic indicators such as

income and race-ethnicity, etc. The computation of relative risk along with 95% confidence

intervals is performed in the R-based extractors using the bootstrapping method [80, 135].

Once users submit the job by clicking “submit”, the extractor reads configuration file and

executes operations with uploaded datasets in the background, and generates results (e.g.,

new shapefiles and graphics) in the same Clowder storage directory as the datasets. During

execution, the progress of the assessment is tracked and can be seen by viewing the metadata

of the implemented datasets.

6.0.2.5 Statistical models

To compare the infrastructure condition among cities, the author fits cumulative logit

models similar to those discussed in Chapters 2, 4, and 5. In addition to income and race-

ethnicity, city is also included as one of the explanatory variables. Thus, the full model can

be written as:

logit[Pr(γ ≤ j|x)] =αj + βIxI + β
T
RxR + βT

CxC+

xIβ
T
IRxR + xIβ

T
ICxC + βT

RCxRxC+

xIβ
T
IRCxRC ;

j = 1, ..., J − 1

(6.1)

Where γ is the computed overall infrastructure deficiency with each value of integer

representing one category, xI is a continuous income variable from annual median household

income. Vector xR = [xRh, xRw, xRb] represents three dummy variables that indicate the

neighborhood’s race-ethnicity: xRh = 1, xRw = 0, and xRb = 0 if the race-ethnicity is

predominantly Hispanic; xRh = 0, xRw = 1, and xRb=0 if the race-ethnicity is predominantly

White; Similarly, if the race-ethnicity is predominantly Black, xRh = 0, xRw = 0, and xRb = 1.

If there is no predominant race-ethnicity group presented, xRh = 0, xRw = 0, and xRb = 0,

serving as the reference level. Vector xC = [xCn, xCd, xCc] represents four city locations

with Los Angeles as the reference level, where xCn = 1, xCd = 0, and xCc = 0 if it is
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New York City; xCn = 0, xCd = 1, and xCc = 0 if it is Dallas; xCn = 0, xCd = 0, and

xCc = 1 if it is Chicago; and xCn = 0, xCd = 0, and xCc = 0 for Los Angeles. J is the

total number of infrastructure types considered (J = 10 in this comparative study). Single

value βI is the regression coefficient for income; βR = [βRh, βRw, βRd], βC = [βCn, βRd, βRc] are

regression coefficients for race-ethnicity and city respectively. βIR, βIC , βRC , and βIRC are

the interaction coefficients between income, race-ethnicity, and city variables. The expanded

form of the model can be found in Appendix A.4.

To fit the model parameters, the author performs backward model selection [77] to re-

move any insignificant terms using Akaike Information Criterion (AIC) [136] as the dropping

criteria. Once the model is properly fit and passes the proportional odds assumptions men-

tioned in Chapters 2 (section 2.0.2.3) and Chapter 5 (section 5.0.2.1), the relative risk of

highly deficient infrastructure in neighborhoods of each predominant race-ethnicity group

compared to the baseline (neighborhoods with no predominant race-ethnicity groups) for a

given income level is computed (percentiles of continuous income). Recall from Chapter 2

that the category of “highly deficient” is derived based on the distribution of the city’s overall

infrastructure deficiency (90th quantile and above), which differs for each of the four cities.

Thus the risk is a measure of equity relative to other residents of the same city. The esti-

mated parameters can be used compute the relative risk as the ratio of the probabilities of

highly deficient infrastructure (refer to Chapter 5 section 5.0.2.2) for two compared scenarios

(e.g., In Chicago, the probability of having highly deficient infrastructure for predominantly

Black neighborhoods against neighborhoods with no predominant race-ethnicity) given in-

come, race-ethnicity, and city. Similarly, relative risk is computed at various income levels

(5%, 50%, and 90% quantiles of the distribution) to show how neighborhood income affects

infrastructure equity across the different race-ethnicity and cities.

6.0.3 Results

The author applied the Cloud-based framework described above to Los Angeles, New

York, Chicago, and Dallas, including data on 10 infrastructure types that were available in

all cities: pavement, sidewalk, public transit access, trail access, food access, bank access,

medical facility access, gathering place access, internet service, and noise wall. With the
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available Census data, the author identified 2637 Census block groups in Los Angeles, 6182

block groups in New York City, 2139 block groups in Chicago, and 790 block groups in Dallas.

The estimated parameters is shown in Appendix A.5 and the following sections focus showing

the comparison of overall infrastructure deficiency and individual deficient infrastructure by

income, race-ethnicity across four cities. The differences of top severe infrastructure types

and estimated relative risks from statistical model between cities are also discussed. The

author also highlights the comparisons the infrastructure condition within historical redlining

areas.

6.0.3.1 Comparison by individual infrastructure type

Fig. 6.3 shows the histogram of overall infrastructure deficiency by city. The author

observes that overall infrastructure deficiency is distributed differently among the cities:

Dallas has the worst average infrastructure condition and New York City has the best average

infrastructure condition. Los Angeles, New York City, and Chicago’s average infrastructure

condition ranges from 1 to 2, while Dallas’ average infrastructure condition is 6, which is the

highest of all. Fig. 6.4 shows the infrastructure deficiency by income level. Fig. 6.4 shows that

Figure 6.3: Histograms of computed overall infrastructure deficiency in Los Angeles, Chicago,
Dallas, and New York City. A total of 10 infrastructure types is considered.

low-income neighborhoods have the worst overall infrastructure than other neighborhoods

in both Dallas and Chicago, consistent with the earlier findings in Chapter 2. However, the
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author also observed a “reversed” pattern in Los Angeles, where high-income neighborhoods

have overall higher infrastructure deficiency than low-income neighborhoods. This might be

due to the location of many high-income areas in northern Los Angeles that are isolated

geographically from the city center and have low population density. This could lead to a

higher likelihood of access deficiencies, which account for six of the ten infrastructure types

examined in these cities. New York City, on the other hand, does not reveal any obvious

infrastructure inequities across income characteristics compared to the other cities.

Fig. 6.5 shows the infrastructure deficiency by neighborhood race-ethnicity. Inequities

across race-ethnicity are not apparent in Los Angeles and New York City, with all race-

ethnicity groups showing similar deficiency patterns. However, Chicago and Dallas show

strong signals revealing infrastructure inequity across race-ethnicity, with predominantly

Black and predominantly Hispanic neighborhoods having relatively higher overall infras-

tructure deficiency.

Figure 6.4: Overall infrastructure deficiency by neighborhood’s income level.

Fig. 6.6 shows how the percentage of each deficient infrastructure type changes with

income. This figure reveals three primary patterns: 1) an overall increasing or decreasing

trend across income and race-ethnicity groups (e.g., high-income neighborhoods have better

internet service and worse gathering place access compared to lower-income areas); 2) the

deficient infrastructure condition is relatively independent of income levels and does show

any specific trends (e.g., pavement condition, sidewalks, trail access, and noise wall have
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Figure 6.5: Overall infrastructure deficiency by neighborhood’s race-ethnicity.

little fluctuation across neighborhoods with increasing income characteristics); and 3) mixed

trends with increasing income level among cities. The figure also shows that higher-income

neighborhoods have more deficient food access in Los Angeles, New York City, and Chicago

but not in Dallas. Higher-income neighborhoods have more deficient medical facility access

in New York City, Chicago, and Dallas, but not in Los Angeles.

Fig. 6.7 shows how the individual types of deficient infrastructure change with race-

ethnicity groups. For all 10 infrastructure types, predominantly Black neighborhoods have

more deficient infrastructure than other neighborhoods. This trend is greatest for internet

service, food access, bank access, and medical facility access in the city of Dallas. Similar

to the findings by income, pavement and noise walls do not show any substantial changes

among different race-ethnicity groups. However bank access and internet services show a

consistent trend for all four cities: predominantly Black and Hispanic neighborhoods have a

higher percentage of deficient infrastructure.

Next, Fig. 6.8 shows the five infrastructure types with the highest percentage of deficient

infrastructure in each city. It can be seen that noise walls are the most prevalent deficiencies

in all cities. Although public transit is the fourth-highest deficient infrastructure in New York

City, the percentage of neighborhoods is 15%, significantly less than Los Angeles (44%). Note

that sidewalk is assessed in this chapter only by evaluating the number of missing segments;

damaged sidewalk data were only available in Dallas and were thus not included in this

comparative analysis. This adjustment explains why sidewalk is not showing in the top

five deficient infrastructure types in Dallas, despite its prevalence in Chapter 4. To further
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Figure 6.6: Percentage of individual deficient infrastructure at three levels of income (as low,
middle, high defined in chapter 2) by city: Los Angeles, Chicago, Dallas, and New York City.

Figure 6.7: Percentage of individual deficient infrastructure at different neighborhood’s race-
ethnicity by city: Los Angeles, Chicago, Dallas, and New York City.

investigate conditions in neighborhoods with the most severe infrastructure problems (defined

here as five or more deficient infrastructure types) , Fig. 6.9 shows the five most prevalent

deficient infrastructure in these areas. Compared to citywide deficient infrastructure in

Fig. 6.8, at least 78% of these highly neglected areas in all four cities have deficient food

access. Public transportation access is another infrastructure type that ranks relatively lower

in the citywide deficient infrastructure types but is deficient in up to 90% of the areas that

have at least five deficient infrastructure types. In addition, the author sees that in Chicago,

areas with five or more deficient infrastructure types have 100% deficient noise walls and
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trail access. In New York City, areas with five or more deficient infrastructure types have

100% deficient bank access. These results highlight the difference in deficient infrastructure

types between citywide regions and only regions that have severe infrastructure issues.

Figure 6.8: Top 5 Ranked deficient infrastructure types represented as percentages across
the city

6.0.3.2 Relative risk among Los Angeles, New York City, Chicago, and Dallas

Fig. 6.10 shows the computed relative risk of highly deficient infrastructure from the

cumulative logit model. To show the impacts of income, relative risks are computed at

three income levels: lower (5% quantile), average (50% quantile), and higher (95% quantile).

Colored squares show the relative risk of Black and Hispanic neighborhoods having highly

deficient infrastructure compared to neighborhoods with no predominant race, assuming the

average income across the city. It is noted that each city has slightly different cutoffs for

defining highly deficient areas because the definition of highly deficient is based on quantiles

of citywide infrastructure deficiency. Thus the results give relative measures of equity for

each city across neighborhood characteristics.

According to Fig. 6.10, predominantly Black neighborhoods are most likely to have highly

deficient infrastructure compared to predominantly White neighborhoods in all four cities.

Predominantly Hispanic neighborhoods are more likely to have highly deficient infrastructure
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Figure 6.9: Top 5 Ranked deficient infrastructure types represented as percentages within
neighborhoods with at least 5 deficient infrastructure types.

in Los Angeles, Chicago, and Dallas. Such risks are much higher in Dallas (up to 3.2 times

for predominantly Black neighborhoods and 2.6 times for predominantly Hispanic neighbor-

hoods) and Chicago (up to 5.3 time for predominantly Black neighborhoods and 3.7 times

for predominantly Hispanic neighborhoods).

In most situations, neighborhoods with higher income have decreased risks as indicated

by light blue arrows pointing downwards in Fig. 6.10, which agrees with the findings from

Chapter 4. However, for New York City, higher income shows the reverse trend, increasing

neighborhoods’ risk of highly deficient infrastructure. Similarly, risk increases as income

decreases, as indicated by the red arrows pointing upwards for Los Angeles, Chicago, and

Dallas. New York City, however, has the least inequities across both income and race-

ethnicity characteristics as the value of relative risk (squares in Fig. 6.10) is close to one and

has the least variation across higher and lower income neighborhoods compared to the other

cities. These patterns are consistent with the histograms in Fig. 6.3 shown previously.

6.0.3.3 Infrastructure equity from the view of historical redlining regions

Finally, Fig. 6.11 shows the overall infrastructure deficiency across redlining grades from

A to D. In Dallas, the author observes a trend of infrastructure becoming worse from areas

with “excellent” HOLC ratings (Grade A) to areas classified as “hazardous” (Grade D) that

were not eligible for mortgages. Los Angeles, however, shows the opposite pattern where

grade A areas have higher deficiencies and areas that had lower grades have much lower
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Figure 6.10: The estimated relative risks of having highly deficient infrastructure given
neighborhood’s income, race-ethnicity, and city. Baseline reference is a neighborhood with
an income level at 50% quantile of the distribution and no predominant race-ethnicity. The
reach of red arrow and purple arrow indicates the relative risk if neighborhoods are at 5%
(lower income) and 95% (higher income) of income quantiles respectively.

deficiency. For New York City and Chicago, the pattern is less obvious compared to Dallas

and Los Angeles.

6.0.4 Discussion

6.0.4.1 Car ownership and access-related infrastructure deficiencies

The previous analyses do not consider the potential impacts of car ownership, which can

be used as an estimate of residents’ extended mobility due to private vehicle transport. The

U.S. Census Bureau provides summarized statistics on the number of vehicles owned per

household at the scale of Census block groups. The percentage of car ownership can then be

can be computed for each block group as the ratio between the number of households that

own at least one car to the total number of households within the same block group. The

data can be acquired from American Community Survey Table B25044.

In current infrastructure assessment framework, car ownership is not included because

the private vehicle itself is not part of the infrastructure system. On the other hand, residents

with sufficient resources can determine whether they need vehicles based on their personal

64



Figure 6.11: The distribution of overall infrastructure deficiency across historical redlining
regions. The assignment of HOLC grades is 80% of mortgage value for Grade A, 60%-80%
for Grade B, and 15% for Grade C, or was not eligible for any mortgages for Grade D.

lifestyles, which may potentially be affected by the overall infrastructure condition. One

possible impact of being in a neighborhood without sufficient infrastructure support is that

residents may have no access to community facilities (for example, grocery stores, banks,

clinics, parks, and so on). Under these circumstances, neighborhoods with high car owner-

ship may may be able to greatly mitigate such negative influences because the majority of

residents can still travel further with vehicles to reach similar facilities.

Fig. 6.12 shows heatmaps of infrastructure deficiency and car ownership across the four

studied cities. It shows that Dallas, Los Angeles, and Chicago have relatively high car

ownership compared to New York City. Despite the lack of access-related infrastructure

across all four cities, the cities with high car ownership may experience less impact as opposed

to cities that have relatively low car ownership such as New York City which has been known

for having low car ownership in some boroughs.

To investigate this finding further, the author divides New York City into smaller areas

following borough administrative boundaries (Bronx, Queens, Manhattan, Brooklyn, and

Staten Island). The histogram of each borough’s infrastructure deficiency, together with its

car ownership, is shown in Fig. 6.13. Among the five boroughs, Manhattan has the lowest

car ownership percentage (20%) but it has the best average infrastructure condition. Even

though people do not have cars, the borough only has up to four deficient infrastructure

types, which indicates that Manhattan is a highly walkable area where people have access

to many facilities and resources.
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Figure 6.12: Heatmap of neighborhoods given car ownership levels and overall infrastructure
deficiency.

On the other hand, Staten Island has the highest car ownership (average 80%) and the

worst average infrastructure deficiency among all boroughs. However, neighborhoods within

Staten Island may not be heavily affected by such infrastructure deficits due to their high

car ownership percentage. This analysis shows that despite neighborhoods receiving a high

infrastructure deficiency score, having high car ownership can, to some degree, reduce the

negative impacts. However, having high car ownership is not equivalent to having high

mobility across the neighborhoods. A fraction of Staten Island residents have no cars and

can still struggle if they live in areas with high infrastructure access deficits. Therefore, future

public transit infrastructure planning should consider the role of car ownership and provide

transportation alternatives for those in low-transit areas who lack cars. This also pinpoints a

possible direction of future research to better understand the societal and behavioral impacts

of infrastructure deficits on communities.

6.0.4.2 Infrastructure inequity and racial segregation

Fig. 6.14 shows the spatial distribution of predominant race-ethnicity groups across four

cities. Except for New York City, the author observes various degrees of racial segregation

in the rest of the cities. In Los Angeles, large areas of the city are predominantly White

neighborhoods (shown in blue), while the majority of the remaining neighborhoods are pre-

dominantly Hispanic and are located on both the south and north side of Los Angeles. In

Chicago, the location of each race-ethnicity group is more spatially separated than LA, with
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most of the predominantly White neighborhoods in the northern region, predominantly Black

neighborhoods in the southern region, and predominantly Hispanic neighborhoods between

them. A similar pattern of segregation can be seen in the City of Dallas, where predominantly

Black and predominantly White neighborhoods are clustered in the southern and northern

parts of the city, respectively, and predominantly Hispanic neighborhoods are on the west

and east sides of the city.

It is interesting to note that Chicago and Dallas both experience the highest levels of

infrastructure inequity (Fig. 6.5 and Fig. 6.10) and the greatest racial segregation, as in-

dicated by the highly distinct race/ethnicity areas in Fig. 6.14. While the findings do not

try to establish a definitive connection between the two phenomena, it seems possible that

the higher cost of living in LA and NYC could have driven more integration of historically

segregated areas, thereby improving neighborhood infrastructure (e.g., through the forces

of redevelopment and gentrification). This hypothesis requires further research with more

cities, as well as tracking infrastructure and race/ethnicity patterns in the past compared

to today. Unfortunately identifying such trends would be difficult given a lack of available

historical infrastructure data. However, historical aerial maps, city records, and Census data

could yield some clues as to the generalizability of these findings.

6.0.5 Conclusions

Evaluating infrastructure equity across multiple cities poses many challenges due to the

difficulties of identifying a collection of measurable infrastructure types with sufficient com-

parable datasets for each location. In addition, in some scenarios (e.g., different sidewalk

assessment approaches in this study), researchers may need to adjust the approach to derive

comparable data, which requires more time and effort. Fortunately, infrastructure assess-

ment framework developed in Chapter 2 is sufficiently generalizable and automated to ease

this process.

This chapter describes how the framework generalized for multiple cities through im-

plementation in a Cloud-based platform called Clowder. The platform also allows users to

upload, store, and share data with other researchers, planners, city staff, etc. The ease and

rapid implementation of the Cloud-based framework allows users to analyze the city of their
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interests more efficiently with available datasets.

This chapter applied the new Cloud-based framework to four major cities located across

the United States: Los Angeles, New York City, Chicago, and Dallas, and observed varying

levels of infrastructure inequity across both income and race-ethnicity characteristics for

10 infrastructure types. The statistical analyses show that the prevalence of infrastructure

inequity across all cities and the levels of such inequity are more obvious when there is pre-

existing racial segregation within the region. In all four cities, the statistical analyses show

that predominantly Black and Hispanic neighborhoods are at a higher risk of having highly

deficient infrastructure compared to predominantly White neighborhoods and those with no

predominant race/ethnicity.

Although neighborhoods with higher income generally have reduced risks, some cities

(e.g., LA and portion of NYC) exhibit a pattern where higher-income neighborhoods have

more deficient infrastructure than lower-income neighborhoods. This situation is likely geo-

graphically dependent, with more wealthy areas being more sparsely populated and located

further from “clusters” of infrastructure facilities (banks, grocery stores, hospitals, and so

on). However, these access issues may cause few difficulties for residents of Los Angeles and

New York City due to a high percentage of car ownership in wealthy areas,

Several limitations must also be acknowledged. The number of neighborhood infrastruc-

ture types considered in this chapter is primarily determined by their data availability. This

may introduce bias to the overall infrastructure deficiency due to the absence of other impor-

tant neighborhood infrastructure types within the framework such as crosswalks, street tree

canopy, and water and sewer pipes. Despite considering more infrastructure types can offer

a more comprehensive, broader view of overall infrastructure condition, the associated cost

of collecting all measurable data is challenging to achieve for multiple cities. In addition, the

existing datasets do not represent the condition of the city at the same period which may

also introduce bias to the resulting patterns. However, it is important to realize that this

study provides a comprehensive comparison of infrastructure conditions across cities rather

than highlighting street-level issues. The findings also raise the awareness for future improve-

ments/investments as neighborhoods with high infrastructure deficits are identified. Further

investigation is needed to study the relationship between the city’s geographic, and demo-
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graphic information and neighborhood infrastructure, this leads to a more efficient process of

choosing significant infrastructure types and data preparation. With the growing availabil-

ity of fine-grained infrastructure-related data and a better understanding of neighborhood

infrastructure, the framework can provide a consistent, national-level analysis.
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Figure 6.13: The distributions of infrastructure deficiency, car ownership percentage by
boroughs in New York City.

Figure 6.14: Maps of Los Angeles, Chicago, Dallas, and New York City show the existence
of racial segregation.
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Chapter 7

Summary, limitations, and future work

7.0.1 Discussion

Assessing the condition of neighborhood infrastructure is essential to understanding in-

frastructure equity. Past studies of neighborhood infrastructure primarily focus on individual

types of infrastructure and rarely provide a quantitative solution for multiple infrastructure

types. Undoubtedly, fully assessing neighborhood infrastructure is a challenge due to the

variety of infrastructure types and the difficulty of obtaining neighborhood-scale measure-

ments across a city. This thesis bridges the gap between understanding infrastructure equity

and the need for a systematic, date-driven approach to assessing multiple neighborhood

infrastructure types.

More specifically, the author first develops a generalized assessment framework that con-

siders multiple infrastructure types. The framework is implemented in the City of Dallas as

a case study that reveals the existence of infrastructure deserts and widespread infrastruc-

ture inequity across the neighborhood income and race/ethnicity. To address these types

of inequities, long-term investments are needed to improve infrastructure in low-income and

Black/Hispanic areas. Investment prioritization based on asset conditions and economic im-

pacts [137] is one popular approach for infrastructure management that could be used to

foster healthier and more equitable communities.

A notable finding from this study is that sidewalk and street tree canopy deficits are more

widespread across the whole city than other neighborhood infrastructure types, which sug-

gests immediate opportunities for improvement, particularly with increasing urban warming

under climate [138] resulting in calls for massive tree planting [86,139].

Chapter 5 delivers comprehensive insights on infrastructure inequity across income and

race-ethnicity, statistically showing varying levels of inequity among neighborhoods with dif-
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ferent income and race compositions. The statistical inference indicates that predominantly

Black and Hispanic neighborhoods are 1.4 to 2.6 times and 2.0 to 3.6 times likelier to have

highly deficient infrastructure (8 or more deficient infrastructure types out of 12) than areas

with no predominant race-ethnicity, respectively. Furthermore, these disparities reflect the

legacy of historical discriminatory housing policies (“redlining”) and their long-term impacts

on neighborhood infrastructure. Neighborhoods marked as “less desirable” for mortgages

during the 1930s still experience significantly higher infrastructure deficiencies today.

Lastly, in Chapter 6, the author automates the assessment framework and integrate it

with a Cloud-based platform called Clowder so that it becomes more accessible and easy

to implement for researchers and others. The platform allows users to upload, store, and

share data with other users, thus providing ready sharing among teams. The ease and quick

implementation of the Cloud-based framework also allows users to analyze any city of interest

more efficiently with available datasets.

The author demonstrates this generalization of the framework through application to

three other case studies across the United States: Los Angeles, New York City, and Chicago.

One important contribution of Chapter 6 is the comparative analysis of infrastructure equity

across multiple cities considering 10 common infrastructure types. The statistical analyses

show that the prevalence and levels of infrastructure inequity across all cities appear to be

greater when there is pre-existing racial segregation within the region.

Further analyses show that predominantly Black and Hispanic neighborhoods are at a

higher risk of having highly deficient infrastructure in all four cities. Although neighborhoods

with higher income usually have reduced risks, some higher-income neighborhoods (e.g., in

Los Angeles) have more deficient infrastructure than lower-income neighborhoods. This is

likely due to access deficiencies in sparsely populated and geographically remote high-income

areas, which are mitigated by high car-ownership levels.

7.0.2 Limitations and Future Work

7.0.2.1 Limitations of the framework

This thesis has several limitations. First, the spatial representation of neighborhoods

is challenging and has been addressed in multiple ways [65, 67–69, 140]. Despite the pop-
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ularity that Census tracts or block groups have received, there is no definitive argument

claiming which is the best spatial neighborhood boundary among all available options such

as Census tracts, block groups, or zip codes [67–69]. Past studies have shown that the types

of geographic boundaries used to aggregate data can affect variance, standard deviations,

correlation, and regression analyses [67]. However, since this thesis aims to explore spatial

patterns of infrastructure conditions at the city level from a relative risk perspective, choos-

ing the Census block groups as the representation of neighborhoods provides ready access to

social-economic characteristics. Further research is needed to more deeply explore whether

spatial boundaries of neighborhood analyses introduce biases in the results.

A second limitation is uncertainties in the criteria for measuring substandard infras-

tructure components. Every criterion was developed based on prior studies, practical design

guidelines, or community surveys. However, access measures developed using GIS procedures

may fail to account for the actual quality of and access to infrastructure (e.g., healthcare

facilities) [65,141]. For example, residents may access facilities that are not necessarily near

their neighborhoods, potentially due to social networks, transportation availability, or per-

ceptions of crime and safety [141]. Hence relying only on proximity without considering

social aspects of neighborhoods can result in misinformation on infrastructure availability.

Similarly, the weighting scheme (currently equally weighted) for multiple infrastructure types

could be modified to better represent neighborhoods’ needs or city preferences. The choices

of weights and thresholds may be different from city to city. Exploring the sensitivity of

outcomes to these assumptions is recommended for future research.

Another issue is the limits of accuracy and validity of using fixed travel distances to

measure infrastructure accessibility. Recently, an increase in GIS implementation has led

to improvements in measuring the accessibility of activity locations [142–146]. The gravity

model-based method [147–149] calculates accessibility based on zones as a function of activity

opportunity attractiveness and the travel distance between other zones and the individual’s

resident zones. It becomes is one of the most popular methods to measure accessibility

because of the ease of interpretation and robustness of model extensions [150,151].

Nonetheless, fixed distance approaches, such as those implemented in this study, re-

main favorable in many infrastructure-related studies due to their simple intuition and easy
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implementation. However, the choice of "proper" distance is mostly empirical and lacks

theoretical justification. For instance, the critical distance used in assessing healthcare ser-

vices is 2-mile (3.2km) for major hospitals and 1-mile (1.6km) for walk-in clinics and urgent

care [94,95]. However, many factors could affect people’s accessibility to these destinations,

such as travel behaviors, transportation mode, and city development, resulting in different

values of suggested critical distances for accessibility assessment [152]. Despite these in-

evitable uncertainties, the criteria chosen for this case study are sufficient for a comparative

assessment of infrastructure equity across multiple infrastructure types. Future research is

needed to perform sensitivity analyses on the impacts of these assumptions.

Finally, a full and complete assessment of neighborhood infrastructure should involve

six primary categories: connective infrastructure, protective infrastructure, socio-economic

structures, water and sanitation lifelines, energy lifelines, and communication lifelines [1]. In

this study, 12 infrastructure types were considered that included four of the six categories,

excluding energy and water sanitation lifelines. With additional data availability, more

infrastructure types such as stormwater drains, water supply and wastewater pipes, and

street lights will undoubtedly add to the story of complex, interdependent dynamics among

neighborhood infrastructure. The framework proposed in this study can easily be expanded

to include other infrastructure types as data are available, providing the capacity to measure

conditions of a wide range of infrastructure types systematically.

7.0.2.2 Limitations of future infrastructure-related applications

Although the assessment framework is generalizable to be applied in other cities, it still

poses challenges to ensuring consistent substandard infrastructure criteria and measurements

across different regions, potentially limiting the number of infrastructure types that can be

considered. It has been a common practice for each city to have its own ways of collecting

and managing infrastructure-related datasets. This typically leads to inconsistent condition

attributes for the same or similar aspects of structures or facilities. For instance, for sidewalk

inspection, the city of Dallas provides attributes of each inspected sidewalk segment and the

level of inspection provides data on sidewalk segment obstruction or damage.

On the other hand, although Chicago also has a sidewalk dataset, the included attributes
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do not provide such detailed information. The information gap between two different mea-

suring practices may prevent the calculated substandard metrics from accurately describing

conditions between regions. Although in this thesis, the author minimized such inconsis-

tency by transforming datasets into comparable formats, this issue will inevitably be raised

again as the framework is continued to be applied to more case studies across the coun-

try. Therefore, researchers have to be aware of the datasets being used in the analysis and

try to avoid any inconsistent condition representations when preparing the data. To make

such cross-city comparisons more viable, establishing standard practices and metadata for

assessing neighborhood infrastructure and storing the data would be of great value for future

research.

The current framework also relies on the quality of collected data and does not have

built-in outliers detection to automatically detect and exclude abnormal records from the

infrastructure data. Although the aggregation process from street level to neighborhoods

using a 50% cutoff mitigates the impacts of outliers, it is still possible for errors to occur

if outliers are prevalent and closely located in a few areas. Manual inspection of the data

quality is recommended to minimize the impacts of such errors such as outliers and abnormal

data points.

Finally, the binary deficiency indicator (defined as µ in Eqn. 2.2) treats the infrastruc-

ture condition as binary values, which may not fully reflect the magnitude of infrastructure

deficits. For instance, a neighborhood having 99% substandard sidewalks is equivalent to

a neighborhood that has 51% substandard sidewalks because both have more than 50% of

sidewalks found to be substandard. To address this issue, the percentage of substandard in-

frastructure could be used directly in the framework. The trade-off of this change would be a

less intuitive and more complex measure overall infrastructure condition and the integration

of multiple infrastructure types as a single metric may require more interpretation.

7.0.2.3 Future work

Despite the limitations noted above, this thesis takes the first step to considering neigh-

borhood infrastructure as an integrated system that involves multiple infrastructure types

and assesses infrastructure conditions with data-driven approaches. The findings have im-
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portant policy implications and lessons for cities and developers that are promoting equi-

table infrastructure. Much progress has been made on this front in Dallas, with the Dallas

Sidewalk Replacement Program [153], Urban Forest Management Plan [154], and other ini-

tiatives to improve neighborhood infrastructure. However, as the findings of this thesis

suggest, infrastructure inequities persist across income and race-ethnicity lines and planners

and policymakers should address these issues to close the "infrastructure gap." In addi-

tion to prioritized investments in disadvantaged neighborhoods, community engagement is

also needed to better understand the impact of the lack of infrastructure on residents and

develop smart and effective strategies for promoting neighborhood infrastructure that bet-

ter meets neighborhood needs. For example, new designs of infrastructure, such as complete

streets [155–157], may better meet resident needs than the installation of previous standards.

It is also beneficial to consider a more complete inventory of historical investments to

show whether the investments address existing infrastructure issues and are moving towards

a more equitable future. The framework also needs to be adaptive to accommodate the

evolution of certain infrastructure types. For example, with advancements in high-speed

internet and cellular networks, many residents spend more time on virtual activities such as

virtual grocery shopping and banking. This may decrease the actual need for residents to

visit physical stores and banks, physical access for those facilities may become less important.

Another opportunity for future research would be to develop relative risk models that

include other parameters, such as redlining or neighborhood age. In terms of infrastructure

data sources, identifying noise walls would be considerably easier if a machine learning model

were trained to identify noise walls from the street images labeled in all four cities considered

in this study. However, as long as some residents lack high-speed or any internet access, these

measures should remain a consideration. Finally, the author hopes this proposed Cloud-

based framework gathers more interest in supporting neighborhood infrastructure and helps

to establish a nationwide understanding of infrastructure equity via more case studies across

the country.
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APPENDIX

A.1 Supplementary Tables

Table A.1: Dataset information for individual infrastructure type.

Dataset Source Data Year Notes
Pavement City of Dallas REST Service1 2018 Polyline

Crosswalk2 Object detection using Google Satellite
images on residential intersections 2019 Point

Noise Wall Annotated dataset using Google StreetView
images along state highways 2019 Point

Internet Service Federal Communication Commission3

Broadband width map 2016 point

Bank Access Bank branches locations from NCTCOG4

regional data center 2019 Point

Medical Facility Access Major hospitals, urgent care or clinics from
NCTCOG data center and Yelp search listings 2018 Point

Public Transportation Access Bus stops, rail stations locations from Dallas
Area Rapid Transit (DART) 2018 Point

Gathering Place Access
Public parks, libraries, farmer markets and

community centers extracted from NCTCOG
data center, tax parcel data

2019 Point

Food Access Food stores (grocery stores, wholesale)
locations from NCTCOG data center 2019 Point

Trail Access
Bike

pedestrian trails from Dallas GIS
Service website

2019 Polyline

Street Tree Canopy Tree coverage from Smart growth
for Dallas5 2018 Polygon

Sidewalk City of Dallas REST Service - Public Works 2019 Polygon
1:https://gis.dallascityhall.com/wwwgis/rest/services/

2:Crosswalks’ locations are predicted using object detection model (YoLOv3), which determines if a satellite image of intersection contains crosswalks

3:https://www.fcc.gov/reports-research/maps/

4:https://web.tplgis.org/smart_growth_dallas/

5:https://web.tplgis.org/smart_growth_dallas/
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Table A.2: Descriptive statistics for the substandard percentage (µ) of individual infrastruc-
ture type.

Infrastructure Type Census Block
Groups (n)

Standard
Deviation Min 25% 50% 75% Max

Pavement 790 0.150 0.000 0.136 0.246 0.346 0.794
Crosswalk 790 0.281 0.000 0.000 0.333 0.500 1.000
Noise Wall 70 0.446 0.000 0.013 1.000 1.000 1.000

Internet Service 790 0.195 0.100 0.100 0.300 0.500 0.700
Bank Access 790 0.439 0.000 0.000 0.458 1.000 1.000

Medical Facility Access 790 0.427 0.000 0.066 0.835 1.000 1.000
Public Transportation Access 790 0.322 0.000 0.000 0.138 0.473 1.000

Gathering Place Access 790 0.349 0.000 0.000 0.114 0.552 1.000
Food Access 790 0.416 0.000 0.029 0.529 1.000 1.000
Trail Access 790 0.361 0.000 0.341 0.765 1.000 1.000

Street Tree Canopy 790 0.131 0.286 0.763 0.856 0.943 1.000
Sidewalk 790 0.145 0.101 0.768 0.874 0.933 1.000
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Table A.3: Description of the Shapefile consisting information of all assessed infrastructure
types.

Filename Infrastructure_assessment_Dallas.zip
File Format ArcGIS Shapefile (zipped)

Attributes contains in the shapefile
BLOCKGROUP 12 digits Census block Group ID.
Income3 Categorical income class based on tertiles: Low, Middle, High.
IncomeLog Log value of annual household median income.
Overall_IF Overall infrastructure deficiency - integer.
IF_5 Categorical overall infrastructure deficiency: Excellent, Good, Mod-

erate, Deficient, Highly Deficient.
PCNG_PAVE Percentage of substandard pavement segments.
PCNG_SDWK Percentage of residential street segments that has substandard side-

walks.
PCNG_CRWK Percentage of intersections that do not have crosswalk present.
PCNG_MEDL Percentage of residential households that don’t have access1 to medical

service facilities.
PCNG_GATH Percentage of residential households that don’t have access to gather-

ing places.
PCNG_BANK Percentage of residential households that don’t have access to local

bank branches.
PCNG_INTT Percentage of residential households with substandard internet ser-

vice.
PCNG_TRIL Percentage of residential households that don’t have access to bicycle

& pedestrian trails.
PCNG_TRAN Percentage of residential households that don’t have access to bus

stops nor rail stations.
PCNG_TREE Percentage of residential street segments with substandard tree canopy

percentage (below 25%).
PCNG_NSWL Percentage of residential households near highways that do not have

noise wall present.
Geometry Geometry of census block group.
1:Based on corresponding substandard criteria table (see corresponding Table for more details).
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Table A.4: Infrastructure Data Source Table for Los Angeles, New York City, Chicago, and
Dallas (considering 10 infrastructure types).

Infrastructure
Type

Los Angeles New York City Dallas Chicago

Pavement LA Open Data1 - "Road
Surface Condition Map"

NYC Open Data2

-"Street Pavement
Rating"

City of Dallas GIS
Service3 -"pavement

condition"

Chicago Metropolitan
Agency for Planning4

(CMAP)

Sidewalk LA Geohub5 -
"Sidewalks"

NYC Open Data
-"Sidewalk"

City of Dallas
Department of Public
Works, City of Dallas

GIS Service -"sidewalks"

Chicago Data Portal6 -
"Sidewalks"

Internet Federal Communications
Commisson7 - "Fixed

Broadband Deployment"

Federal Communications
Commisson - "Fixed

Broadband Deployment"

Federal Communications
Commisson - "Fixed

Broadband Deployment"

Federal Communications
Commisson - "Fixed

Broadband Deployment"

Noise wall Google Streetview
imagery

Google Streetview
imagery

Google Streetview
imagery

Google Streetview
imagery

Bank Access LA Geohub - "Banking
and Finance"

NYC-Tax-Parcels8 -
"code [06,07,K7]"

City of Dallas GIS
Service - "tax Appraisal

parcels"

Cook County Open
Data9 - "historical

parcels - 2019"

Public Transportation
Access

LA Geohub -"rail lines
and stop benches"

NYC Open Data
-"subway stations, bus

stop shelters"

City of Dallas GIS
Service - "rails,

busstops"

Chicago Data Portal -
"CTA_Rail Lines,
CTA_Bustops"

Medical Facility LA Geohub -"hospitals
and medical centers"

NYC Tax Parcels -"code
[I, I1, I5]"

NCTCOG’s Regional
Data Center10; Yelp

search11 -"urgnet care"

Chicago Data Portal -
"Hospitals",

"Neighborhood health
clinics"

Bike & Pedestrian Trails LA Geohub -"trails" NYC Open Data -"Parks
Trails"

CMAP data hub -
"Bikeway inventory

System (BIS)"

City of Dallas GIS
Service - "trails"

Gathering Places LA Open Data - "Road
Surface Condition Map"

NYC Open Data
-"library", NYC Tax

Parcels - "code [Q1, P5]"

City of Dallas GIS
Service - "parks,

community centers,
farmet markets,

libraries", Google Static
Map API

Chicago Data Portal -
"parks, community

service centers, farmer
markets, libraries"

Food Access LA Geohub -"grocery
stores, farmer markets"

Open NY12 -"Retail
Food Stores"

NCTCOG’s Regional
Data Center

Chicago Data Portal -
"grocery stores, farmer

markets"

1:LA Open Data. https://data.lacity.org

2:NYC Open Data. https://opendata.cityofnewyork.us

3:City of Dallas GIS Service. https://gis.dallascityhall.com/shapefileDownload.aspx

4:CMAP data hub. https://datahub.cmap.illinois.gov/dataset

5:LA Geohub. https://geohub.lacity.org

6:Chicago Data Portal. https://data.cityofchicago.org

7:FCC Fixed Broadband Deployment.. https://broadbandmap.fcc.gov

8:NYC Tax Parcels. https://gis.ny.gov/gisdata/inventories/details.cfm?DSID=1300

9:Cook County Open Data. https://datacatalog.cookcountyil.gov

10:NCTCOG’s Regional Data Center. https://www.nctcog.org/regional-data

11:Yelp Search. https://www.yelp.com

12:Open NY. https://data.ny.gov
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A.2 Crosswalk detection

The recommended locations for crosswalk installation depend on many factors such as

speed limit, street type, and traffic volume [92]. To identify crosswalk deficiencies, the first

step is to find residential intersections (called “proposed intersections”) that should have

crosswalks installed according to available design guidelines. Next, a crosswalk detection

model is trained and executed on satellite images at each “proposed intersection”. Finally,

each proposed intersection is evaluated to identify whether it is deficient (i.e., lacking a

crosswalk). This information is then passed into the infrastructure assessment framework

described in Chapter 2.

In Step 1, each intersection is classified as a “proposed intersection” if it meets any of the

following conditions based on the design guidelines [92]:

1. The street speed limit is not less than 40 mph
2. The intersections contain traffic lights
3. The intersections are within school zones

For Step 2, an object detection model called YOLOv3 [158] was trained to identify any

crosswalks from the satellite images. YOLOv3 is a deep convolutional neural network for

detecting objects and their positions on the image as bounding boxes. The output of the

model gives the coordinates of detected crosswalks. It has been shown to have the benefits

of both fast prediction and good performance. To train the YOLOv3 model, images of 120

Figure 7.1: Three types of crosswalks in City of Dallas.

81



intersections with crosswalks were manually collected as training data. The data include

three types of crosswalks in the City of Dallas: zebra stripes, parallel lines style, and brick

style (Fig. 7.1). Because zebra stripes crosswalks are the most commonly observed crosswalk

type in the city, parallel line crosswalks are less common, and brick style crosswalks are only

found in downtown areas, the percentage of the three types in the ground truth dataset is

70%, 20%, and 10% respectively. After adding false images with no crosswalks, a total of

417 images are used for training. The trained model achieved an overall f1-score (Equation

7.1) of 0.8.

f1-score = 2× Precision× Recall
Precision+ Recall

(7.1)

Figure 7.2: Checking crosswalk presence at an intersection using a 30m search radius.

It is worth noting that more than one crosswalk may be at one intersection. For the

purposes of identifying deficiencies, the author defines crosswalk existence as at least one

crosswalk existing at the intersection. To avoid duplicate counting at intersections with more

than one crosswalk, a 30m-radius circle (shown in Fig. 7.2) is drawn around the intersection

to check whether it contains any positive predictions (crosswalk identified) from the YOLOv3

model. If there is at least one positive crosswalk detection within the radius, the intersection
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is considered to have crosswalks. Otherwise, the intersection is noted as lacking crosswalks

if there is no positive crosswalk prediction within the radius. For the Dallas case study, a

total of 2972 “proposed intersections” were found and 1728 intersections were identified as

having crosswalks.
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A.3 Pseudo-code of the method used to compute 12 deficient infrastructure
types

Algorithm 1 Pavement
Step-1: Initiate θ as an empty array with size N × 1 (N = the number of neighborhoods).
Step-2:
for each Neighborhood(i) do

Find all pavement segments Ci within/intersect with the neighborhood boundary.
Initialize Measurable Components M = 0;
Initialize Substandard Measurable Components Mstd = 0.
for each segment Cij do

Calculate segment length Lij.
Count MeasurableComponents in length M =M + Lij.
if segment Cij’s Pavement Condition Index ≤ 55 then Mstd =Mstd + Lij
end if
Calculate Substandard Measurable Components Percentage (µi) =

Mstd

M

if µi ≥ then θi = 1
else if then θi = 0
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Algorithm 2 Sidewalks
Step-1: Initiate θ as an empty array with size N × 1 (N = the number of neighborhoods).
Step-2:
for each Neighborhood(i) do

Find residential street segments Ci within/intersect with the neighborhood boundary.
Initialize Measurable Components M = 0;
Initialize Substandard Measurable Components Mstd = 0.
for each street segment Cij do

Calculate segment length Lij.
Count MeasurableComponents in length M =M + Lij.
if segment Cij’s has no sidewalks on both side then Lmissing = Lij
else if then Lmissing = 0
end if
if segment Cij has sidewalk on at least one side then Calculate the portion length

(Lstd) of segment that has been obstructed or damaged sidewalks;
Mstd =Mstd +max(Lmissing, Lstd)

end if
Calculate Substandard Measurable Components Percentage (µi) =

Mstd

M

if µi ≥ then θi = 1
else if then θi = 0

Algorithm 3 Noise Wall
Step-1: Initiate θ as an empty array with size N × 1 (N = the number of neighborhoods).
Step-2:
for each Neighborhood(i) do

Find residential households Ci located within 200 feet (61m) from major highways.
Initialize Measurable Components M = 0;
Initialize Substandard Measurable Components Mstd = 0.
for each segment Cij do

Count Measurable Components M =M + 1.
if no noise walls existed within 200 feet (61m) from Cij then Mstd =Mstd + 1
end if
Calculate Substandard Measurable Components Percentage (µi) =

Mstd

M

if µi ≥ then θi = 1
else if then θi = 0
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Algorithm 4 Crosswalks
Step-1: Initiate θ as an empty array with size N × 1 (N = the number of neighborhoods).
Step-2:
for each Neighborhood(i) do

Within Neighborhood boundary, find all crosswalk intersections Ci intersections that
are either:
1) Intersections between residential streets
2) Intersections between school zones.

Initialize Measurable Components M = 0;
Initialize Substandard Measurable Components Mstd = 0.
for each crosswalk intersection Cij do

Create a search buffer region (34m radius) bij given its coordinates.
Count Measurable Components M =M + 1
if no crosswalks existed within bij then Mstd =Mstd + 1
end if
Calculate Substandard Measurable Components Percentage (µi) =

Mstd

M

if µi ≥ then θi = 1
else if then θi = 0

Algorithm 5 Street Tree Canopy Coverage
Step-1: Initiate θ as an empty array with size N × 1 (N = the number of neighborhoods).
Step-2:
for each Neighborhood(i) do

Final all street segments Ci within the neighborhood
Create street buffer polygons C ′ij (use city-wide median width: 6.5 feet or 2 meter

radius)
Initialize Measurable Components M = 0;
Initialize Substandard Measurable Components Mstd = 0.
for each street polygon Cij do

Count Measurable Components M =M + 1
Compute the area of street polygon Aij.
Compute the area of the tree canopy Aijt within C ′ij.

Compute the street tree canopy percentage as pij =
At

ij

Aij
.

if pij ≤ 0.25 then Mstd =Mstd + 1
end if
Calculate Substandard Measurable Components Percentage (µi) =

Mstd

M

if µi ≥ then θi = 1
else if then θi = 0
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Algorithm 6 Pedestrian & bicycle trail access
Step-1: Initiate θ as an empty array with size N × 1 (N = the number of neighborhoods).
Step-2: Break the pedestrian & bicycle trails into points using 600-meter intervals.
Use points to create service area S for pedestrian & bicycle trails (0.8 km travel distance).
Step-3:
for each Neighborhood(i) do

Find all residential households Ci within the neighborhood.
Initialize Measurable Components M = 0;
Initialize Substandard Measurable Components Mstd = 0.
for each residential household Cij do

Count Measurable Components M =M + 1
if Cij is spatially outside of S then Mstd =Mstd + 1
end if
Calculate Substandard Measurable Components Percentage (µi) =

Mstd

M

if µi ≥ then θi = 1
else if then θi = 0

Algorithm 7 Medical Facility Access
Step-1: Initiate θ as an empty array with size N × 1 (N = the number of neighborhoods).
Step-2: Create service area S1 for major hospitals (2-mile or 3.2 km travel
Create service area S2 for walk-in clinics and urgent care (1-mile or 1.6 km travel dis-
tance).distance).
Step-3:
for each Neighborhood(i) do

Find all residential households Ci within the neighborhood.
Initialize Measurable Components M = 0;
Initialize Substandard Measurable Components Mstd = 0.
for each residential household Cij do

Count Measurable Components M =M + 1
if Cij is spatially not in S1 nor S2 then Mstd =Mstd + 1
end if
Calculate Substandard Measurable Components Percentage (µi) =

Mstd

M

if µi ≥ then θi = 1
else if then θi = 0

87



Algorithm 8 Public transportation access
Step-1: Initiate θ as an empty array with size N × 1 (N = the number of neighborhoods).
Step-2: Create service area S1 rail stations (0.8 km travel distance).
Create service area S2 for bus stops (0.4 km travel distance).
Step-3:
for each Neighborhood(i) do

Find all residential households Ci within the neighborhood.
Initialize Measurable Components M = 0;
Initialize Substandard Measurable Components Mstd = 0.
for each residential household Cij do

Count Measurable Components M =M + 1
if Cij is spatially not in S1 nor S2 then Mstd =Mstd + 1
end if
Calculate Substandard Measurable Components Percentage (µi) =

Mstd

M

if µi ≥ then θi = 1
else if then θi = 0

Algorithm 9 Food access
Step-1: Initiate θ as an empty array with size N × 1 (N = the number of neighborhoods).
Step-2: Create service area S for fresh food stores (1-mile or 1.6 km travel distance).
Step-3:
for each Neighborhood(i) do

Find all residential households Ci within the neighborhood.
Initialize Measurable Components M = 0;
Initialize Substandard Measurable Components Mstd = 0.
for each residential household Cij do

Count Measurable Components M =M + 1
if Cij is spatially not in S then Mstd =Mstd + 1
end if
Calculate Substandard Measurable Components Percentage (µi) =

Mstd

M

if µi ≥ then θi = 1
else if then θi = 0
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Algorithm 10 Bank access
Step-1: Initiate θ as an empty array with size N × 1 (N = the number of neighborhoods).
Step-2: Create service area S for bank branches (1-mile or 1.6 km travel distance).
Step-3:
for each Neighborhood(i) do

Find all residential households Ci within the neighborhood.
Initialize Measurable Components M = 0;
Initialize Substandard Measurable Components Mstd = 0.
for each residential household Cij do

Count Measurable Components M =M + 1
if Cij is spatially not in S then Mstd =Mstd + 1
end if
Calculate Substandard Measurable Components Percentage (µi) =

Mstd

M

if µi ≥ then θi = 1
else if then θi = 0

Algorithm 11 Gathering place access
Step-1: Initiate θ as an empty array with size N × 1 (N = the number of neighborhoods).
Step-2: Create service area S1 for parks (1-mile or 1.6 km travel distance).
Create service area S2 for libraries (1-mile or 1.6 km travel distance).
Create service area S3 for community centers (1-mile or 1.6 km travel distance). Create
service area S4 for farmers’ markets (1-mile or 1.6 km travel distance).
Step-3:
for each Neighborhood(i) do

Find all residential households Ci within the neighborhood.
Initialize Measurable Components M = 0;
Initialize Substandard Measurable Components Mstd = 0.
for each residential household Cij do

Count Measurable Components M =M + 1
if Cij is spatially not in S1 and S2 and S3 and S4 then Mstd =Mstd + 1
end if
Calculate Substandard Measurable Components Percentage (µi) =

Mstd

M

if µi ≥ then θi = 1
else if then θi = 0
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Algorithm 12 Internet Service
Step-1: Initiate θ as an empty array with size N × 1 (N = the number of neighborhoods).
Step-2: Uniformly dis-aggregate data from census tract level into neighborhood level (Note:
internet data is only available at Census tract level)
Step-3:
for each Neighborhood(i) do

Find attribute (pcatall)Si that represents the households with over 200 kbps in at least
one direction

Convert Si into percentage measure si by taking the average of the range
Calculate Substandard Measurable Components Percentage (µi) = 1− si
if µi ≥ then θi = 1
else if then θi = 0

A.4 Full cumulative logit model considering income, race-ethnicity, and city

logit[Pr(γ ≤ j|x)] =αj + βIxI + β
T
RxR + βT

CxC+

xIβ
T
IRxR + xIβ

T
ICxC + βT

RCxRxC + xIβ
T
IRCxRC ;

j = 1, ..., J − 1

(7.2)
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where:

βT
RxR = βHxH + βWxW + βBxB

βT
CxC = βNxN + βDxD + βCxC

βT
IRxR = βI×HxH + βI×WxW + βI×BxB

βT
ICxR = βI×NxN + βI×DxD + βI×CxC

βT
RCxRC = βN×HxNxH + βN×WxNxW + βN×BxNxB+

βD×HxDxH + βD×WxDxW + βD×BxDxB+

βC×HxCxH + βC×WxCxW + βC×BxCxB

βT
IRCxRC = βI×N×HxNxH + βI×N×WxNxW + βI×N×BxNxB+

βI×D×HxDxH + βI×D×WxDxW + βI×D×BxDxB+

βI×C×HxCxH + βI×C×WxCxW + βI×C×BxCxB

(7.3)

A.5 Estimated parameters of cumulative logit model for comparative study
between Los Angeles, New York City, Chicago, and Dallas
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Table A.5: Estimated coefficients of the full cumulative logit model.

Value Std. Error t value
Coefficients

βI -1.87 0.14 -13.74
βW 0.82 2.31 0.36
βB -8.13 3.12 -2.61
βH -8.79 2.03 -4.32
βN -14.58 1.81 -8.07
βD -22.38 2.75 -8.15
βC -16.44 3.18 -5.17
βI×W -0.07 0.20 -0.36
βI×B 0.65 0.29 2.26
βI×H 0.76 0.19 4.09
βI×N 1.35 0.16 8.28
βI×D 1.80 0.26 7.03
βI×C 1.67 0.29 5.77
βN×W -12.50 2.66 -4.70
βN×B 9.97 3.41 2.92
βN×H 4.85 2.47 1.97
βD×W 10.36 3.90 2.66
βD×B 4.06 3.79 1.07
βD×H 0.80 4.11 0.20
βC×W -3.71 4.13 -0.90
βC×B 3.58 4.22 0.85
βC×H -4.54 4.25 -1.07
βI×N×W 1.13 0.23 4.81
βI×N×B -0.87 0.31 -2.78
βI×N×H -0.40 0.22 -1.79
βI×D×W -0.85 0.35 -2.46
βI×D×B -0.38 0.36 -1.04
βI×D×H -0.09 0.39 -0.24
βI×C×W 0.37 0.37 1.03
βI×C×B -0.38 0.39 -0.99
βI×C×H 0.34 0.39 0.89

Intercepts (αj)
α1 17.35 1.51 11.50
α2 19.33 1.51 12.81
α3 20.69 1.51 13.70
α4 21.72 1.51 14.37
α5 22.70 1.51 15.01
α6 23.59 1.51 15.59
α7 24.61 1.51 16.24
α8 25.81 1.52 17.02
α9 27.29 1.52 17.92
α10 29.58 1.59 18.55

Residual Deviance 40393.78 AIC 40475.78
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