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The growing complexity of the urban travel pattern and its related traffic congestion, 

along with the extensive usage of mobile phones, invigorated On-Demand Mobility 

Services (ODMS) and opened the door to the emergence of Transportation Network 

Companies (TNC). By adopting the shared economy paradigm, TNCs enable private car 

owners to provide transportation services to passengers by providing user-friendly mobile 

phone applications that efficiently match passengers to service providers. Considering the 

high level of flexibility, convenience, and reliability of ODMS, compared to those 

offered by traditional public transportation systems, many metropolitan areas in the 

United States and abroad have reported rapid growth of such services. 

This dissertation presents a modeling framework to study the operation of on-demand 

mobility services (ODMS) in urban areas. The framework can analyze the operation of 

ODMS while representing emerging services such as ridesharing and transfer. The 

problem is formulated as a mixed-integer program and an efficient decomposition-based 

methodology is developed for its solution. This solution methodology aims at solving the 

offline version of the problem, in which the passengers’ demand is assumed to be known 
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for the entire planning horizon. The presented approach adopts a modified column 

generation algorithm, which integrates iterative decomposition and network 

augmentation techniques to analyze networks with moderate size.  

Besides, a novel methodology for integrated ride-matching and vehicle routing for 

dynamic (online) ODMS with ridesharing and transfer options is developed to solve the 

problem in real-time. The methodology adopts a hybrid heuristic approach, which 

enables solving large problem instances in near real-time, where the passengers’ demand 

is not known a priori. The heuristic allows to (1) promptly respond to individual ride 

requests and (2) periodically re-evaluate the generated solutions and recommend 

modifications to enhance the overall solution quality by increasing the number of served 

passengers and total profit of the system. 

The outcomes of experiments considering hypothetical and real-world networks are 

presented. The results show that the modified column generation approach provides a 

good quality solution in less computation time than the CPLEX solver. Additionally, the 

heuristic approach can provide an efficient solution for large networks while satisfying 

the real-time execution requirements. 

Additionally, investigation of the results of the experiments shows that increasing the 

number of passengers willing to rideshare and/or transfer increases the general 

performance of ODMS by increasing the number of served passengers and associated 

revenue and reducing the number of needed vehicles. 
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Chapter 1  

INTRODUCTION 

 

 

1-1. Background 

The increasing complexity of the urban travel pattern and associated traffic 

congestion, and the widespread usage of mobile phones invigorated On-Demand 

Mobility Services (ODMS) and opened the door to the emergence of Transportation 

Network Companies (TNC). For private car users, ODMS provides alternative door-to-

door service without the burden of driving and searching for parking, especially in 

congested situations. While the ODMS is relatively more expensive for transit users, the 

service is more convenient and reliable than conventional transit services. Many 

metropolitan areas in the United States have reported rapid growth of such services. For 

instance, major United States metropolitan areas such as San Francisco, Dallas, and 

Washington, D.C. have reported that Uber served about 71%, 50%, and 49% of their 

expensed rides in 2016, respectively (Fischer, 2017). The number of trips given by Uber 

has jumped from 3.79 billion in 2017 to 4.98 billion in 2020 (Iqbal, 2022). In addition, 

Lyft announced that its annual rides reached over $8.1 billion, accounting for 39% of the 

market share in the United States. (Carson, 2022).  

The concept of ridesharing has first emerged in the 1950s in the form of 

carpooling, where a group of commuters shares the exact origin, destination, and time 

windows for pickup and drop-off. The cost of the trip is usually split equally among the 

group members. The concept has then evolved, allowing a driver of a privately-owned 

https://www.bizjournals.com/newyork/bio/19581/Ben+Fischer
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vehicle to pick up and drop off passengers at any location along the driver's route towards 

her/his destination. With the emergence of TNCs, ODMS with a ridesharing option is 

offered at a discounted rate. Efficient vehicle tours are constructed to visit the passengers’ 

pickup and drop-off locations at pre-specified time windows (Cozza, 2019).  

Fiedler et al. (2018) quantified the potential of ridesharing in an ODMS system in 

Prague. Their simulation results show that the average occupancy of a vehicle will 

increase to 2.7 passengers compared to the system without ridesharing. Accordingly, the 

mileage traveled by vehicles will decrease to 35% of the amount in the ODMS system 

without ridesharing and to 60% of the number of private car trips. 

In a similar study, Soza-Parra et al. (2021) presented a set of experiments to 

identify the benefits of ridesharing and concluded that compared to private rides, a 

carpooling service could reduce the vehicle travel time by 18-59%, assuming a fixed 

demand level and depending on the concentration of travel destinations and the trip 

length distribution. Their experiments indicate that the vehicle occupancy rate in a 

carpooling service varies from 1.25 to 1.74. 

The effort is underway by most ODMS providers to develop new services to 

increase their market share while maintaining the first-rate customer experience. For 

instance, TNCs have introduced new services, which provide passengers the option to 

rideshare in return for discounted fares (e.g., UberPool). Furthermore, providing 

passengers the option to transfer between vehicles or existing transit services is under 

investigation (Campbell, 2017; Ma et al., 2017, Lotfi et al., 2019). If a passenger accepts 

the transfer option, the TNC offers the service at a discounted rate to compensate for the 

inconvenience associated with transferring. A parallel effort is proceeding by urban 
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transportation planners to understand the short- and long-term impacts of ODMS on the 

travel pattern in their regions as many policies, planning, and operation questions related 

to these services are rapidly arising (DuPuis et al., 2015). 

Generally, “ridesharing” is used when drivers give rides to travelers for profit. In 

this case, drivers do not have a specific destination. Instead, they are moving in the 

network to find new passengers. On the other hand, “carpooling” is used when a driver 

and passengers have the same destination and share the car to reduce the trip cost. The 

United States Congress, in June 2012, signed into law the "Moving Ahead for Progress in 

the 21st Century (MAP-21) Transportation Act” and included online ridesharing in the 

definition of carpooling to make ridesharing eligible for federal funds that were 

previously dedicated for carpooling. 

Previous studies in several cities imply that ride-hailing services, which are 

individual customer-focused, may lead to higher congestion levels, primarily due to the 

addition of empty miles that vehicles are traveling to reach the origin of the passengers. 

In a study by Tirachini et al. (2020), the effect of a ridesharing system on traffic 

congestion that offers shared-ride services with a car, van, or bus in Mexico City was 

investigated. They found that the effect of ridesharing on vehicle miles traveled (VMT) 

depends on many factors, including the availability of public transportation services as a 

replacement for ridesharing and the occupancy distribution in ridesharing vehicles. Their 

sensitivity analysis denotes that offering hailing services may increase VMT (in the range 

of 4.3 to 6.2 mile/passenger), while shared vans can decrease VMT (around −0.1 to 

−0.7 mile/passenger), whereas buses are estimated to increase VMT (0.2 to 

0.7 mile/passenger). They argued that these differences between VMTs are due to the 
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tradeoff between increasing the occupancy rates per vehicle and decreasing the 

attractiveness of the service for passengers for larger vehicles. One significant result of 

their study is the relevance of ridesharing with more occupancy rate in decreasing the 

VMT and congestion on the roads. 

In a similar study, Oh et al. (2021) presented a simulation framework to evaluate 

the impacts of Automated Mobility on-Demand (AMOD) on network traffic, congestion, 

energy consumption, and vehicle emissions. Their study showed that AMOD services 

might induce additional traffic on the network resulting in more congestion. This 

congestion is due to the demand patterns, dead-heading, and empty trips for operational 

purposes. 

Many factors could cause motivation or reluctance of passengers to share the ride 

with others. Alonso-Gonzalez et al. (2020) investigated these elements and stated that 

addition to the travel time due to ridesharing is the primary concern for travelers when 

they are considering this service. Their simulation experiments showed that willingness 

to share the ride for most passengers depends on the tradeoffs between travel time and 

cost. This result emphasizes the importance of considering proper ridesharing discounts 

when TNCs offer this type of service.  

Nonetheless, the success of these efforts requires the availability of adequate tools 

that can be used to evaluate new services and answer arising policy, planning, and 

operation questions. For example, ODMS providers are interested in predicting 

passengers’ demand in response to changes in the service configuration, estimating the 

number of required drivers and their working schedules, determining pricing schemes and 

driver payments, and estimating operation costs and revenues, to name a few. Similarly, 
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transportation planners are interested in predicting the travel demand induced by ODMS, 

possible changes in the modal split and route assignment patterns, and the impact of 

ODMS on existing transit services and parking facilities. A tool that can address these 

questions should be able to represent (I) passengers’ key characteristics, including 

distribution over time and space, and flexibility of time windows for pickup and drop-off; 

(II) service availability and pricing schemes; and (III) emerging services such as 

ridesharing and transferring while taking into consideration passengers’ preferences on 

these services.  

Considering transfer services would enable ODMS providers to provide service in 

situations where there is a shortage in the vehicle supply. For instance, TNCs might not 

be able to recruit an adequate number of drivers in some locations or during specific 

periods to serve the anticipated passengers’ demand. Although enabling the transfer 

service may cause an increase in passengers’ travel time, it would allow TNCs to serve 

more customers using fewer vehicles. Besides, offering discounted services such as 

ridesharing and transfer would allow TNCs to diversify their services to attract demand 

from low-income groups. Furthermore, the operating cost of serving a transferring 

passenger is minimal compared to that of other passengers. Thus, designing efficient 

networks that accommodate more transferring passengers could significantly enhance 

network profitability.  

Moreover, the main requirement in offering ODMS is to match ride seekers to 

vehicles and confirm service availability promptly. In addition, vehicle tours need to be 

optimally designed to ensure that the service is offered efficiently. An efficient service 

will serve more passengers with a limited number of vehicles without violating 
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passengers' preferences on ridesharing and transfer and their time window constraints. 

Several challenges complicate satisfying these requirements. For example, the problem 

can be viewed as an extension of the traditional vehicle routing problem with time 

window constraints, which is an NP-hard problem as its execution time grows 

exponentially with the problem size defined in terms of the number of vehicles and 

number of passengers (Cordeau et al., 2007). In addition, the demand for ODMS is not 

known a priori. As such, the problem is typically solved myopically upon the arrival of a 

new ride request. The inability to foresee the demand for an extended horizon is expected 

to result in less-efficient solutions as vehicles might not be optimally assigned or routed. 

This research describes a modeling framework for ODMS operation that 

addresses these requirements. The framework presents a mixed integer programming of 

the problem and provides an efficient methodology for its solution. The optimization-

based solution methodology integrates iterative decomposition and network augmentation 

techniques to analyze networks of moderate sizes. In addition, a novel heuristic-based 

methodology for integrated ride-matching and vehicle routing for ODMS with 

ridesharing and transfer options is presented. The methodology adopts a hybrid heuristic 

approach, which enables solving large problem instances in near real-time. The 

methodology enables ODMS providers to (1) promptly respond to individual ride 

requests and (2) periodically re-evaluate the generated solutions and recommend 

modifications to enhance overall efficiency.  

The framework evaluates the network performance from the operator and 

passenger’s perspectives by providing different operational and financial performance 

measures. The framework is also ready for integration within the conventional 
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transportation planning processes to enable transportation planners to study the impact of 

ODMS on the travel pattern in their regions.  

 

1-2. Research Motivation  

Significant growth of ODMS has been reported over the past decade in many 

cities worldwide. This growth is due to the high convenience of these services that reduce 

dependence on private cars and eliminate challenges associated with driving and finding 

parking spaces in congested areas and/or during bad weather conditions. ODMS services 

are also getting more popular by offering a variety of personal mobility choices ranging 

from simple rideshare to a business class service. 

Soon, we will see new business models that transform many traditional industries 

into services-on-wheels; therefore, ODMS will play an essential role in all businesses. 

For instance, Toyota introduced the e-Palette Concept Vehicle to satisfy multi-function 

transportation and business demands and provide different transportation experiences 

based on the purpose of the trip, which could include a wide range of services such as 

transporting people and delivering packages, serving as shopping centers, restaurants, 

offices, and hotel rooms (Bakutyte, 2017). This will cause a rapid change away from 

personal vehicle ownership to a shared, on-demand mobility model. This shift in 

passengers’ behavior encourages transportation planners to develop models to study 

ODMS performance, investigate the challenges associated with ODMS growth, and study 

the effect of ODMS on different industries.  

This research is inspired by the necessity of developing a framework for analysis 

of ODMS operation in urban regions while representing emerging services such as 

http://corporatenews.pressroom.toyota.com/releases/toyota+launches+new+mobility+ecosystem+concept+vehicle+2018+ces.htm
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ridesharing and transfer. The framework captures the spatial-temporal interactions 

between service requests and routes the vehicles to maximize service coverage/revenue. 

Furthermore, the developed model could be adopted by many industries/services. In the 

following, the economic and social effects of ODMS on different industries are 

discussed.  

 

1-2-1. ODMS and Food Delivery 

The food delivery business from famous chain restaurants is not new; however, 

many companies have recently been founded, like DoorDash, Postmates, GrubHub, and 

UberEats, to offer food delivery services from local restaurants. For instance, DoorDash, 

a company that started business in 2012, attracted investors to raise more than $700 

million, created thousands of jobs for drivers, and valued at $28 billion in 2022 (Curry, 

2022). These companies have developed a new business model to serve customers who 

are willing to pay for the food delivered to their homes instead of going to the restaurant. 

This platform will also allow restaurants to increase their customers without adding new 

resources to serve them. Revenue from the online food delivery market is estimated to be 

more than $16 billion, with more than 78 million active users across the United States 

(Kohl, 2018). 

 

1-2-2. On-Demand Delivery Services 

Logistics companies can ship and deliver large quantities of products with low 

shipping costs. However, the efficient last-mile delivery to the customer’s door is still a 

challenge for retailers and delivery companies. Recently, technology companies have 

https://movimentogroup.com/blog/on-demand-mobility-services-are-converging-industries/
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introduced new services to solve this problem, rapidly gaining a considerable market 

share. These companies are referred to as on-demand delivery providers. Studies show 

that the total transaction value of the on-demand delivery services was $171 billion at the 

end of 2020 (Mazareanu, 2021). Recently, Target, one of America's biggest retailers, 

purchased a delivery company, Shipt, in a $550 million agreement (Shieber, 2017). This 

agreement shows the response of traditional warehouses and retailers to the Amazon 

business model, which is delivering products to customers in a one-hour window. It 

should be noted that coining the pickup and drop-off of people and packages delivery is 

not an easy process for ODMS providers. There are many challenges like the waiting 

time of a passenger in the vehicle during pickup or drop-off of a package. 

 

1-2-3. ODMS and Autonomous Mobility 

Autonomous Mobility-as-a-Service (AMaaS) is the future of transportation. 

Autonomous taxi networks can offer ODMS with a cost of $0.35 per mile due to high 

utilization rates and eliminating the cost of a driver, which is almost half of the cost of 

driving private cars (Keeney, 2017). In addition, autonomous electric trucks and drones 

will deliver products at lower costs than traditional delivery methods. Due to this low-

cost model, travelers will stop driving personal cars and use the autonomous mobility 

service. In addition, autonomous vehicles will provide better access to transportation to 

non-driving populations, such as people with disabilities and the elderly. Shortly, one 

might expect such service to be the first option for trips in urban areas or delivery 

services.  

 

https://www.target.com/
https://www.shipt.com/
https://techcrunch.com/2017/12/13/target-is-buying-alabama-based-same-day-delivery-service-shipt-for-550-million/
https://ark-invest.com/research/self-driving-cars
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1-2-4. ODMS and Health Services 

Recent studies show that 30% of hospitals’ medical appointments are being 

canceled in the United States, which imposes over $150 billion costs on the healthcare 

system each year (Gadam, 2018). Shortage of reliable transportation is one of the leading 

causes of these missed appointments, especially for senior people. Uber recently 

launched UberHealth that provides reliable, comfortable, and safe ODMS to healthcare 

organizations for patients. Lyft provides the same service via Lyft Concierge and a new 

partnership with Allscripts, a large electronic health record company. These companies 

provide healthcare organizations with a platform to schedule rides for patients going to 

and from hospitals. These on-demand services enable people with limited mobility to get 

to healthcare organizations without facing the challenge of transportation. 

 

1-2-5. ODMS and Public Transit 

Travelers, traffic managers, and governments consider a new transportation model 

that integrates ODMS and public transit to solve the first/last mile problem and connect 

travelers to the transit network from/to areas with no transit coverage. A simulation study 

by Narayan et al. (2020) showed that an integrated fixed-route public transportation 

system with a flexible-route ridesharing service could decrease the average waiting time 

for travelers and cover 30% more of the demand compared to the traditional public 

transportation systems. Cats et al. (2021) studied Uber trip data in six cities in the U.S. 

and Europe and identified the best public transportation alternative for each ride. 

Comparing the Uber data and public transportation alternatives for each trip showed that 

Uber trips have shorter out-of-vehicle and in-vehicle travel times for most passengers 

https://hbr.org/2010/03/how-behavioral-economics-can-h
https://hbr.org/2010/03/how-behavioral-economics-can-h
https://movimentogroup.com/blog/on-demand-mobility-services-are-converging-industries/
http://money.cnn.com/2018/03/05/technology/lyft-concierge-health-care/index.html
http://money.cnn.com/2018/03/05/technology/lyft-concierge-health-care/index.html
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than their fastest public transport counterparts. For 13-36% of the Uber trips, the travel 

time associated with ridesharing was at least twice as fast. Moreover, for 0-7% of the 

Uber trips, no alternative public transportation was found within a reasonable walking 

distance.  

Particularly in congested urban areas, instead of adding new bus or subway lines, 

planners turn to the shared economy to expand urban transportation networks and provide 

access to public transit to more people (Elliott, 2017). The City of Arlington, Texas, is 

among the first cities in the United States to offer ODMS as a public transportation 

solution. The “Via” rideshare program provides affordable transportation to 

entertainment, shopping and dining options, work or school, and medical appointments. 

Customers also can connect to the Trinity Railway Express (TRE) Station, where they 

can catch a train to Dallas or Fort Worth (Schrock, 2017). 

Moreover, Masabi, a technology company that is the leader in mobile ticketing, 

has announced a partnership with Uber to add the option of purchasing public transit 

tickets into the Uber application, which allows users to transfer from TNCs to public 

transit services for convenient and affordable multi-modal trips (Gooch, 2018).  

 

1-2-6. ODMS, Transportation Equity, and Job Accessibility 

Transportation equity is an essential factor to assure everyone can access 

opportunities such as jobs, healthcare, and services. Transportation planners face 

challenges ensuring transportation equity due to geographic, economic, and socio-

demographic diversity. Shared mobility, including bike-sharing, carsharing, and TNCs 

that provide users affordable on-demand access to transportation, has been considered as 



12 

a solution to these challenges (Shaheen et al., 2017). Shared mobility is a good travel 

option in a multi-modal transportation system, particularly in low population areas and 

during off-peak hours, but still, there are many challenges in attracting low-income 

communities, minorities, and the elderly. 

 

1-3. Research Objectives 

Several objectives are considered for this research. First, an inclusive literature 

review will be conducted to review current research works related to the ridesharing 

systems and their solution procedures. The second objective pertains to developing a 

modeling framework for the ODMS with the transfer option. The problem is formulated 

in the form of a mathematical programming formulation to determine the most optimal 

routes of vehicles to maximize revenue. Lastly, the third objective is to develop efficient 

solution methodologies to solve large-size problems. We present two solution 

methodologies that target different applications. The first methodology focus on ODMS 

offline planning applications in which the passengers’ demand is known for the entire 

horizon of interest. The second methodology is more suitable for online applications in 

which the service is scheduled in real-time to meet the received ride requests. 

1-4. Research Contribution 

This research contributes to the current literature in several ways. First, to the 

authors’ understating, it is among the first efforts to provide a comprehensive 

methodology for the operation of ODMS considering a variety of service options, 

including single-ride, ridesharing, and transfer. While considerable research work 

considered ODMS with ridesharing option, to our knowledge, the research effort that 
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focuses on developing methodologies that combine ridesharing and transfer options for 

real-time ODMS dispatch is still in its infancy. As these services evolve, rides with a 

transfer are expected to grow, especially when integrated with existing public 

transportation services to support first/last-mile transportation.  

Second, existing models assume homogenous passengers in terms of their service 

preferences. For instance, most models assume passengers are identical in terms of the 

flexibility of their pickup and drop-off time windows, willingness to carpool or transfer, 

sensitivity to ride with a particular gender, and inclination to travel through or transfer in 

certain parts of the region. Capturing the heterogeneity of customers' preferences while 

quantifying the effect of different passengers’ preferences on the number of served 

passengers, total profit, travel time, and total mileage traveled by vehicles and passengers 

enhances the fidelity of these tools in representing the demand and supply interactions.  

Third, the framework represents the vehicle routes using the existing roadway 

network; thus, enabling it to capture the effect of congestion on routes used by the drivers 

and helping to map their vehicles as part of the traffic in the roadway network. 

 Fourth, this research presents a novel solution methodology, which adopts a 

modified version of the column generation methodology to account for transfer trips. The 

methodology allows solving problems of moderate sizes compared to other similar 

problems reported in the literature. 

Fifth, this research proposes a heuristic solution methodology explicitly designed 

to suit the real-time nature of ODMS operation. Most existing methodologies adopt 

computationally-demanding optimization frameworks that fail to solve large-scale 

problems while meeting the real-time execution requirement. We propose a rollback 
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approach to periodically re-optimize the generated vehicle routing solutions to overcome 

the problem of not foreseeing the ODMS demand for an extended horizon. 

Finally, this research demonstrates the framework's application considering a real-

world network. A network representing the downtown area of the City of Dallas is used 

to examine the performance of the developed solution methodology considering different 

combinations of passengers’ demand and the number of vehicles available to provide 

ODMS. 

 

1-5. Dissertation Organization 

This dissertation consists of eight chapters. Chapter 2 offers a revision of different 

methods given in the existing literature to formulate and solve the ODMS problem. 

Chapter 3 defines the ODMS with ridesharing and transfer options and provides a 

mathematical formulation describing the problem's decision variables, objective function, 

and constraints. Chapter 4 describes the optimization-based solution methodology used 

for solving the static version of the problem. Chapter 5 describes the heuristic-based 

solution methodology to solve the online version of the problem. Chapter 6 presents the 

results of applying the optimization-based solution methodology, while chapter 7 

presents the results of the heuristic-based solution methodology. Finally, chapter 8 

provides a summary and concluding comments on the research tasks that have been 

completed. 
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Chapter 2  

BACKGROUND REVIEW 

 

 

2-1. Introduction 

The vehicle routing problem (VRP) is a well-studied optimization problem that 

pertains to determining the optimal routes and schedule of a set of vehicles to serve 

passengers or deliver packages. The problem was first introduced by Dantzig and Ramser 

(1959), which was considered a generalization of the traveling salesman problem (TSP). 

The solution methodologies developed to solve the TSP determine the shortest route to 

visit all customers, where the routes start and end at a depot. The problem has been 

extensively studied since then and researchers focused on different aspects of this 

problem (Balinski and Quandt, 1964; Fisher and Jaikumar, 1978). Good coverage of 

advances in formulating and solving vehicle routing problem classes can be found in 

Cordeau et al. (2007), Agatz et al. (2012), Furuhata et al. (2013), Braekers et al. (2016), 

and Vidal et al. (2019). 

The Vehicle Routing Problem is a classical operations research problem with 

numerous applications. The problem is an NP-hard problem as the computation time 

required to obtain its optimal solution grows exponentially with the problem size (Golden 

et al., 2008). Many factors contribute to the complexity of the vehicle routing problem. 

For example, in the context of MOD services, the problem involves many decision 

variables, including vehicles’ and passengers’ routing decision variables and time 

windows variables. Besides, for problems that include ridesharing and transfer, more 
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variables will be added to the problem representing passengers’ preferences on 

ridesharing and transfer. Therefore, the execution time required to obtain the optimal 

solution grows exponentially as the problem size increases.  

Moreover, the decision variables involved in this problem are not independent; 

thus, the problem cannot be optimized separately for passengers and vehicles. For 

example, the arrival and departure time of a passenger to the transfer node depend on the 

arrival time of the first vehicle which has the passenger onboard, and the departure time 

of the second vehicle which will pick up passengers from the transfer node. 

Developing a modeling framework for studying ODMS operation in urban areas 

can be viewed as a generalization of the multi-vehicle Dial-a-Ride-Problem (DARP) in 

which a ride is requested by indicating passengers’ pickup and drop-off locations and 

time windows for the earliest pickup and the latest drop-off times. Two general versions 

of the DARP are studied in the literature: the carpooling problem (Giuliano et al., 1990; 

Calvo et al., 2004) and the taxi-sharing problem (Braekers et al., 2014; Alonso-Mora et 

al., 2017; and Ho et al., 2018). In the carpooling problem, drivers define their destination 

and time window to reach that destination and move from their current location to the 

destination regardless of whether they find a passenger to share the ride with or not. On 

the other hand, the drivers do not have a specific destination in the taxi-sharing problem 

and are willing to change their routes to serve more passengers. 

The problem can also be considered as a version of the Vehicle Routing Problem 

with Time Window (VRPTW), which is extensively studied in the literature (Cordeau et 

al., 2007; Eksioglu et al. 2009; Desaulniers et al., 2014; Braekers et al. 2014; Toro et al. 

2016; and Dixit et al. 2019). 
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This chapter reviews the vehicle routing problem and its extensions related to the 

ODMS problem. Section 2-2 provides a review of the classical single-vehicle routing 

problem, while section 2-3 reviews the literature related to the multi-vehicle routing 

problem. Section 2-4 presents the different formulations and solution methodologies for 

routing problems with online demand. Section 2-5 describes an essential extension of the 

problem, which includes transfer. Research works reviewed in this section consider the 

transfer of packages and passengers in the vehicle routing problem. Finally, section 2-6 

concludes this background review and highlights the main research gaps identified in the 

literature. 

 

2-2. The Single-Vehicle Routing Problem with Time Window 

Early research works have focused on the single-vehicle routing problem with 

time windows. Examples of the exact algorithms to solve this problem include: set 

partitioning and column generation (Balinski and Quandt, 1964), dynamic programming 

(Eilon et al., 1971), and branch-and-bound algorithm (Laporte et al., 1986).  

Exact algorithms are developed to obtain optimal solutions for the problem. 

However, these algorithms can only be applied to problems with a small number of 

vehicles and passengers because they require high computation time, even for a small 

problem. In one of the first research works to develop an exact algorithm, Psaraftis 

(1980) presented a branch-and-bound approach with the objective to minimize the 

weighted combination of the time to serve all customers and the dissatisfaction 

experienced by passengers. They defined a linear function to measure this dissatisfaction, 

which correlates each customer's waiting and riding times with their level of 
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dissatisfaction. Their research focused on solving both static and dynamic versions of the 

problem. In the static problem, new requests that may appear during the execution of the 

problem are not considered. On the other hand, when the dynamic version of the problem 

is solved, new requests are considered into the problem at the time of their arrival. 

Furthermore, they extended the developed algorithm and presented a framework to solve 

problems with specified pickup and drop-off time windows for each passenger (Psaraftis, 

1983).  

Another example of developing exact algorithms for the single-vehicle routing 

problem with time windows can be found in Sexton et al. (1985a, 1985b). They 

implemented Benders’ decomposition technique to solve the single-vehicle VRPTW. The 

final solution to their problem is the order of pickup and drop-off for requests, as well as 

the times of pickup and drop-off of each request. Similar to the Psaraftis (1980), the 

objective of the problem was to minimize the total customer inconvenience.  

Many researchers started developing heuristic algorithms to generate good quality 

near-optimal solutions and reduce computation time compared to exact methods to solve 

large-size problems in a reasonable computational time window. One of the first heuristic 

algorithms for solving the VRP is the famous method of Clarke and Wright (1964). The 

algorithm is developed based on the saving concept to find one route with the highest 

saving cost by merging two routes. Similar to all other heuristic methods, Clarke and 

Wright’s algorithm is designed in a way to provide a near-optimal solution, but there is 

no guarantee to find the optimal solution (Clarke and Wright, 1964).  

 Many other researchers have focused on improving the solution quality and the 

computation time of the Clarke and Wright algorithm. For example, Wark and Holt 
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(1994) introduced a matching heuristic using Clarke and Wright algorithm and 

investigated the use of parallel computing to reduce the running time of their heuristics. 

Reimann et al. (2004) presented a heuristic algorithm that implemented the Clarke and 

Wright saving approach and decomposition method that results in small subproblems and 

solved them using an Ant System process. 

Hosny and Mumford (2010) compared different heuristic approaches and 

presented a heuristic-based solution methodology that implements intelligent 

neighborhood moves. Their objective function minimizes the total route duration and the 

degree of infeasibility in capacity and time window constraints. The constraints in their 

problem are considered soft, which means an infeasible solution that violates the 

capacity, and/or the time windows constraints will be penalized by adding a term in the 

objective function.  

Unlike the heuristic approaches, the metaheuristics algorithms may even accept a 

temporary deterioration of the solution (moves that worsen the objective function value) 

which allows them to explore more thoroughly the solution space and, therefore, to get a 

hopefully better solution (that sometimes will coincide with the global optimum). Similar 

to heuristic methods, metaheuristics do not guarantee to find the optimal solution. 

Examples of metaheuristics used to solve the VRP include tabu search (Glover, 1986), 

simulated annealing (Corana et al., 1987), genetic algorithms (Goldberg, 1989), and ant 

search algorithms (Bullnheimer et al., 1997).  

 

http://neo.lcc.uma.es/vrp/solution-methods/metaheuristics/genetic-algorithm/
http://neo.lcc.uma.es/vrp/solution-methods/metaheuristics/ant-algorithms/
http://neo.lcc.uma.es/vrp/solution-methods/metaheuristics/ant-algorithms/
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2-3. The Multi-Vehicle Routing Problem with Time Window 

A significant number of studies focused on the more complicated version of the 

problem in which multiple vehicles are routed, namely, the multi-vehicle routing 

problem. The problem has been considered for dial-and-ride services as well as the 

package pickup and delivery services. Jaw et al. (1986) were among the first to consider 

the multi-vehicle DARP with time window constraints and presented a heuristic-based 

solution for this problem. To consider a specific time window for passengers, they 

defined two elements: (I) the amount of delay added to the customer’s desired pickup or 

delivery time; (II) the riding time that a customer can spend in a vehicle. Their two-step 

sequential insertion procedure first orders customers by the earliest pickup time and then 

inserts them into the vehicles’ routes considering the cheapest feasible insertion criterion. 

Dumas et al. (1991) presented an exact algorithm, which solves the pickup and 

delivery problem for package pickup and delivery considering multiple depots. They 

were the first to use column generation for solving VRPTW. Their algorithm uses a 

column generation scheme with a constrained shortest path as a sub-problem. They 

considered heterogeneous vehicles, time windows, and multiple depots. The constrained 

shortest path problems in sub-problems are solved utilizing a forward dynamic 

programming algorithm. 

A common approach to solve VRPTW is branch-and-price, a variant of the 

branch and bound in which the nodes are processed by solving linear-programming 

relaxations via column generation. Barnhart et al. (1998) adopted a branch and bound 

scheme in which lower bounds are computed by column generation.  
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Baldacci et al. (2004) studied the problem of offering carpooling services for 

company employees and proposed an exact solution methodology based on Lagrangian 

decomposition and column generation. Cordeau (2006) and Ropke et al. (2007) proposed 

a branch-and-cut approach with valid inequalities and efficiently solved small to 

medium-size problem instances.  

Baldacci et al. (2011) proposed an exact algorithm that integrates set partitioning 

and column generation procedures for the VRPTW in which a set of identical vehicles are 

located at a central depot. The objective function minimizes the total travel cost plus the 

vehicle fixed cost. Hosni et al. (2014) proposed a mixed-integer program to solve the 

multi-vehicle version of the VRPTW. A Lagrangian decomposition approach was 

proposed, which decomposed the problem into a master problem and smaller single-

vehicle sub-problems that are solved separately.  

Santi et al. (2014) introduced the concept of shareability networks which allows 

modeling the benefits of sharing a taxi as a function of passenger inconvenience. They 

showed that although ridesharing will increase passenger discomfort, the average travel 

distance for passengers would decrease by 40% or more. Alonso-Mora et al. (2017) 

applied the concept of the shareability network to an extensive data set representing the 

taxi services in New York City to quantify the benefits of providing ridesharing services. 

Their solution algorithm starts from a greedy assignment and improves this passenger-

vehicle assignment through a constrained optimization, quickly returning solutions of 

good quality and converging to the optimal assignment over time.  

Mahmoudi and Zhou (2016) proposed a time-discretized multi-commodity 

network flow model based on the integration of vehicles’ carrying states within space-
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time transportation networks. Their three-dimensional state–space-time network 

enumerates possible transportation states at a given time along with the vehicle’s space-

time paths and further allows a forward dynamic programming solution algorithm to 

solve the single-vehicle VRPTW problem. Tong et al. (2017) also used a similar space-

time transportation network model to customize the design of bus services and developed 

a solution algorithm based on the Lagrangian decomposition for solving the problem. 

Several metaheuristic approaches have been developed to solve the multi-vehicle 

routing problem with time windows. Huang (2016) presented an integer programming 

model for the carpooling problem and implemented the Tabu search algorithm to solve 

large instances of problems. The objective function of their problem was to minimize the 

total operating cost and assign the passengers to their nearest driver. 

In a more recent study, Ma et al. (2017) proposed a genetic algorithm to find an 

efficient solution for a multi-vehicle routing problem with time windows. The presented 

model is limited to carpooling services in which a taxi collects all passengers from their 

origins and then travels to a predefined destination. In addition, the problem assumed a 

homogenous passenger population in terms of their service preferences. Moreover, the 

model does not allow the transfer of passengers between vehicles. Finally, the 

performance of their solution methodologies is evaluated using a relatively small network 

(24 nodes, nine passengers, and three taxis), which limits the validity of the obtained 

results for real-world operations. 

Liang et al. (2019) proposed an integer programming model that optimizes the 

routing of the automated taxis intending to maximize the profit. They considered the 

effect of automated taxis’ flow on travel times in the network. They developed a solution 
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approach based on a customized Lagrangian relaxation algorithm, which identifies a 

near-optimal solution for this problem. 

 

2-4. The Routing Problem with Online Demand 

The reviewed studies above assume all passengers’ demands to be known for the 

entire planning horizon. One of the challenging aspects of the DARP is to solve the 

online version of the problem in which passengers’ demand is not known a priori. The 

problem entails determining whether to accept new ride requests upon their arrivals in 

real-time. If a ride request is accepted, a new vehicle is dispatched, or the route of one of 

the vehicles currently in the network is modified to serve this new request. Considering 

the complexity of the problem and the requirement to solve it in near real-time, existing 

solution methodologies mainly adopt heuristic-based approaches that solve for near-

optimal solutions.  

For example, Attanasio et al. (2004) implemented parallel tabu search heuristics 

for the online DARP to insert new passengers into planned routes with the objective to 

maximize the number of served requests. The algorithm developed for the problem works 

as follows: an initial solution is obtained by randomly assigning requests to routes while 

satisfying constraints. Starting from the initial solution 𝑆0, the algorithm moves at 

iteration 𝑡 from 𝑆𝑡 to the best solution in a neighborhood  𝑁(𝑆𝑡) of 𝑆𝑡. Solutions that have 

some attributes of recently visited solutions are forbidden, or tabu, for several iterations 

to avoid cycling. Kirchler and Calvo (2013) also described a tabu search heuristic for 

DARP to design a set of least-cost vehicle routes capable of serving all requests. Recent 
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examples of using Tabu search algorithm for solving dynamic VRP can be found in Li et 

al. (2020) and Arockia et al. (2021). 

Gendreau et al. (2006) proposed neighborhood search heuristics to optimize the 

already planned routes when new requests occur in real-time. The presented numerical 

results showed the benefits of their procedures for online applications. Coslovich et al. 

(2006) developed an efficient insertion algorithm, which examined the validity of 

inserting new requests into the already computed routes. They developed a two-phase 

insertion algorithm using route perturbations. The first phase creates a feasible 

neighborhood of the current route. The second phase, which runs in real-time at the time 

of each new request, inserts the pickup and delivery stop of the new customer in the 

current route. Parragh and Schmid (2013) presented a solution methodology that 

integrated variable neighborhood search into a column generation algorithm, which 

produced high-quality solutions.  

Agatz et al. (2011) developed optimization-based approaches that minimize the 

total system-wide vehicle miles incurred by system users and their travel costs and used 

travel demand data from metropolitan Atlanta for their simulation. They compared the 

performance of a greedy heuristic to that of a rolling horizon modeling framework. 

Berbeglia et al. (2012) introduced a hybrid algorithm that combined an exact constraint 

programming algorithm and a tabu search heuristic. These two optimization modules are 

set to run in parallel and continuously optimize the newly arrived requests. The new 

request is accepted if any of the two modules identify a feasible solution.  

Hyland and Mahmassani (2018) compared six different strategies to assign new 

ride requests to vehicles for single rides. Allowing vehicles to change their ride 
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assignments and considering solving the problem simultaneously for multiple passengers 

outperforms the simplistic assignment of travelers to the nearest vehicle or to the vehicle 

that is idle for a longer time. 

Several metaheuristics were also proposed for the problem, which provided high-

quality solutions. Jorgensen et al. (2007) presented a Genetic Algorithm (GA) for solving 

the DARP. The algorithm is based on the cluster-first, route-second approach, where it 

assigns customers to vehicles using a GA and solves separate routing problems for the 

vehicles. In a recent study, Cheikh et al. (2017) presented a model to optimize taxi 

carpooling services. Their problem can be viewed as a simplified version of the problem 

presented in this research. They developed a GA to solve the problem; however, they 

ignored heterogeneity of customer preferences and assumed a homogenous passenger 

population in terms of their service option preferences. 

Parragh et al. (2010) solved the DARP using a Variable Neighborhood Search 

(VNS) heuristic. Schilde et al. (2011) studied the problem of transporting patients from 

home to a hospital or back home from the hospital and modeled the problem as a 

dynamic stochastic dial-a-ride problem. They proposed different metaheuristic solutions 

for this problem, including Variable Neighborhood Search (VNS) and stochastic VNS.  

 

2-5. The Vehicle Routing Problem with Transfer 

New mobility services have the option to transfer passengers or packages between 

multiple vehicles. Early research works have focused on applying transfer location in the 

package delivery system. The transfer allows a request to be served by two vehicles: one 

vehicle collects them at the pickup location, drops it at the transfer point, and another 
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vehicle carries the load to the delivery location. Several studies have considered the 

vehicle routing problem with transfer for freight transportation in multi-modal networks. 

For example, Mitrovic´-Minic´ and Laporte (2006) were among the first to prove 

the benefits of adding transfer points in the operation of package delivery companies. For 

a case study of a company located in San Francisco, they proposed a heuristic solution for 

freight transportation and showed that by adding the transfer option, the availability and 

range of the service are expected to increase, and the total miles traveled by all vehicles 

in the network will reduce. In addition, the transfer option enables serving larger 

geographic areas and more trips with a limited number of vehicles and reduces total 

operating costs. 

Kerivin et al. (2008) considered the case in which shipments can be transferred 

from one vehicle to another at any node in the network and developed a branch-and-cut 

algorithm to solve the problem. The problem ignored the time windows constraint for 

pickup and delivery.  

Qu and Bard (2012) combined Adaptive Large Neighborhood Search (ALNS) and 

greedy randomized adaptive search procedure (GRASP) to solve a problem with one 

transfer location. The algorithm is evaluated on instances with up to 25 shipment requests 

and one transfer point. Masson et al. (2013) proposed an ALNS method, which assumed 

that transfers could only happen at predefined sets of transfer nodes. The heuristic was 

applied to the problem instances presented in Mitrovic´-Minic´ and Laporte (2006) and to 

real-world instances of 33 transfer points and 193 requests. 

Fugenschuh (2009) studied the transfer application in the passenger transportation 

system. They presented an integer programming model to coordinate the public bus 
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services and included the transfer option in a school bus model. Their model assumed a 

predefined set of bus routes. Hence, their problem is reduced to minimize the number of 

buses needed to cover this set of predefined routes and find the optimal schedule for 

buses. They proposed a branch-and-cut algorithm to solve the problem and stated that 

allowing transfer would decrease the number of buses needed to serve the demand.  

Cortes et al. (2010) presented a new formulation of the classical pickup and 

delivery problem and added the flexibility for passengers to transfer from one vehicle to 

another at specific locations. They concluded that allowing transfers results in better 

performance of the system and good quality optimal solutions for most of the cases. They 

proposed a solution method based on Benders decomposition to solve the problem. 

Hou et al. (2012) stated that similar to delivering packages using a one-hop freight 

system, which usually performs worse than allowing multi-hop systems, carpooling 

platforms without transfer cannot fully utilize the vehicles’ available capacity. They 

proposed a carpooling paradigm with the option of transfer and the objective to maximize 

the number of served passengers. Their analysis of this system showed that the proposed 

system could significantly improve the number of served passengers (by 35% to 60%) 

compared to the traditional carpooling system without transfer. Besides, they conclude 

that allowing one transfer improves the performance of the carpooling system, while 

allowing more than one transfer does not result in more improvement. 

In another study, Coltin and Veloso (2014) studied the benefit of transferring 

passengers between multiple drivers in a ridesharing system. They considered a 

ridesharing system without time window constraints and proposed a greedy heuristic 

insertion algorithm to solve the problem and schedule rideshare routes with transfers. 
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They conclude that by allowing transfers, the availability and coverage range of the 

ridesharing service will be increased. In addition, they showed that in the case of 

ridesharing with the transfer, the total mileage traveled by vehicles will be reduced by 

nearly 30%.  

Masson et al. (2014) proposed three mathematical models for integrating TNC 

services into shuttle services. The problem requires the transportation of passengers from 

a large set of pickup locations to a limited set of delivery locations. The branch-and-cut 

technique is used to develop an efficient solution methodology for the problem. 

Nam et al. (2018) developed a simulation platform that included ridesharing, 

transit, bike-sharing, and walking. This research included a case study of the operation of 

the multi-modal system that includes ridesharing participants, the Los Angeles Metro 

Redline subway rail, and the Los Angeles downtown bike-share system. The results 

indicate that a multi-modal network with the option of transfer between ridesharing and 

transit services expands public transit coverage and that ride- and bike-sharing could feed 

transit systems effectively when properly designed and integrated into the transit system. 

Nonetheless, the enabling of the transfer option adds to the complexity of the 

problem. Thus, most existing solution methodologies adopt heuristics and metaheuristics 

approaches to solve the problem. Herbawi and Weber (2011) considered a multi-hop 

ridesharing problem where drivers have fixed routes and schedules. In this system, the 

ridesharing system with a fixed route and schedule act as a feeder to the public transit 

system. They solved this problem using the genetic algorithm to assign passengers to a 

route that minimizes costs, time, and number of transfers. Their experiments show that 

the multi-hop ride-matching system increases the number of matched requests while 
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increasing the total travel time for the system's users. The problem ignored heterogeneity 

of the passengers' willingness to rideshare and/or transfer. Furthermore, the 

methodology's performance is presented using small networks compared to the one 

presented in this research. 

Masoud and Jayakrishnan (2017) developed a decomposition algorithm to solve 

the multi-hop ride-matching problem. They provided a heuristic insertion algorithm that 

adopts a pre-processing procedure to reduce the size of the input sets and decomposes the 

problem into smaller problems that are iteratively solved.  

Andini et al. (2019) considered a ridesharing system with fixed transfer locations 

and used an insertion heuristic method to obtain a solution for the online version of the 

problem. The objective of the problem was to minimize the operational cost of the TNC 

by reducing the travel distance of each vehicle. Based on the result of the simulation 

experiment, their proposed system can serve more requests, up to 16.7%, compared to the 

conventional ridesharing systems. 

Ma et al. (2019) proposed a ridesharing system with integrated transit in which a 

private TNC provider may drop off passengers at the transit station or pick up passengers 

from a transit station. They created a discrete event simulation scheme to solve the 

problem and conducted several experiments to test the effectiveness of this integrated 

system, the influence of different model parameters, and measure the benefit of such 

cooperation. Their results suggest that vehicle travel time can reduce by 40–60% when 

the demand is high. A case study of Long Island commuters to New York City (NYC) 

suggests that this proposed operating strategy can reduce passengers’ travel times and 

travel costs by up to 54% and 60%, respectively. 
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Singh et al. (2019) proposed a multi-hop ridesharing algorithm with the option of 

transfer and developed a deep reinforcement learning algorithm to find optimal vehicle 

dispatch and matching decisions. Their experiment showed that by allowing customers to 

transfer between vehicles, travel costs would decrease by 30%, and utilization of fleets 

would increase by 20% compared to the conventional ridesharing algorithms. 

In a recent study, Lu et al. (2021) proposed a vehicle-space-time network model 

for optimizing the integration of a ridesharing system in short-notice evacuations and 

solved the problem using the Lagrangian relaxation approach. Their proposed method is 

suitable for offline applications. Their analysis showed that transfer option could improve 

the capacity of evacuation corridors, reduce traffic congestion, and alleviate the fuel 

shortage problem. 

 

2-6. Summary 

While the existing literature captures essential aspects of ODMS operation, the 

developed methodologies lack essential capabilities that preclude their adoption in real-

world applications. For example, existing models cannot represent both ridesharing and 

rides with transfer in one comprehensive model. As mentioned above, ODMS is rapidly 

growing with more drivers offering their services and more customers getting familiar 

with the service. As the system grows and matures technically (developing user-friendly 

applications with more capabilities) and behaviorally (drivers and customers are more 

familiar with the service), one expects more services to be introduced to maximize 

service coverage and reduce the cost for customers. Similar to introducing shared-ride 

services, one can anticipate transfer options to be included as part of the offered services. 
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In addition, existing models ignored the heterogeneity of passengers’ preferences, 

especially with respect to their willingness to rideshare and/or transfer, which affects the 

fidelity of these models in representing the demand-supply interactions. 

Furthermore, unlike the traditional DARP, where the entire demand must be 

served, ODMS providers can decline ride requests if they are not profitable. Examining 

the profitability of ODMS requires a modeling framework that can identify profitable 

trips based on the temporal-spatial distributions of passengers and vehicles in the 

network. Finally, despite the previous effort to develop efficient solution methodologies, 

they are still short of modeling ODMS in networks of moderate sizes.  
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Chapter 3  

PROBLEM DEFINITION AND FORMULATION 

 

 

3-1. Introduction 

As mentioned earlier, this research is motivated by the need to develop a 

modeling framework for the planning and operation of ODMS with transfer option and 

time window constraints. This chapter presents a formal definition of the problem in the 

form of a mathematical program formulation. In this mathematical program, the objective 

function maximizes the total ODMS profit, which is a function of total revenue collected 

from all served passengers considering discounts offered to passengers who rideshare or 

transfer and the operation cost of the vehicles. A set of constraints is presented to satisfy 

passengers’ time window constraints and rideshare and/or transfer preferences and ensure 

path continuity for vehicles and passengers. This chapter is organized as follows. Section 

3-2 describes the problem and presents the list of variables and other notations used to 

formulate it. Section 3-3 presents the mathematical formulation of the problem. Finally, 

section 3-4 gives a summary of the chapter. 

 

3-2. Problem Definition 

The following notation is used to describe data sets, model parameters, and 

decision variables to develop a modeling framework for ODMS operation. This notation 

builds on the one given in Hosni et al. (2014) to facilitate model cross-reference.  

Notation: 
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𝐺: Directed graph 

𝑁: Set of nodes  

𝐴: Set of links 

𝑉: Set of all vehicles (|𝑉| = 𝑚) 

𝑣: Vehicle index (𝑣 ∊  𝑉) 

𝑃: Set of all passengers (𝑂 ⋃ 𝑆) 

𝑂: Set of all onboard passengers 

𝑆: Set of all ride seeking passengers 

𝑝: Passenger index (𝑝 ∊  𝑃) 

𝑄𝑣: The capacity of vehicle 𝑣 

𝑅𝑝: Revenue of serving passenger 𝑝 

𝑇𝑝: Request time of passenger 𝑝 

𝑒𝑝: Earliest pickup time of passenger 𝑝 from the origin  

𝑙𝑝: Latest drop-off time of passenger 𝑝 at destination 

𝐷𝑝: 
Maximum trip duration for each passenger 𝑝 

𝑟𝑝: = 1 if passenger 𝑝 is willing to rideshare, and 0 otherwise  

𝑡𝑝: = 1 if passenger 𝑝 is willing to transfer, and 0 otherwise 

𝜔𝑝: A weight for each passenger which is equal to 𝑄𝑣 if 𝑟𝑝 = 0 and 1 if 𝑟𝑝 = 1 

(𝑖, 𝑗): Index of the link between adjacent nodes 𝑖 and 𝑗 

𝑇𝑖𝑗: Travel time from node 𝑖 to 𝑗 

𝐶𝑖𝑗: Travel cost from node 𝑖 to 𝑗 

𝑚: Total number of vehicles 

𝑁1: The subset of nodes associated with the drop-off nodes of onboard passengers 
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𝑁2: The subset of nodes associated with the pickup nodes of ride seeking passengers 

𝑁3: The subset of nodes associated with the drop-off nodes of ride seeking passengers 

𝑁4: The subset of nodes where the transfer is prohibited 

𝑁(𝑣): Current location of vehicle 𝑣 

𝑣(𝑝): The vehicle that is currently transporting onboard passenger 𝑝 

𝑝(𝑝): Pickup location of passenger 𝑝 

𝑑(𝑝): Drop-off location of passenger 𝑝 

𝛼: Fare discount rate associated with ridesharing in any part of the trip  

𝛽: Fare discount associated with each transfer along the trip  

𝑀: Very large number 

 

Decision variables: 

 

 

𝑋𝑖𝑗
𝑝𝑣

: = 1 if passenger 𝑝 traverses link (𝑖, 𝑗) on vehicle 𝑣, and 0 otherwise 

𝑌𝑖𝑗
𝑣: = 1 if vehicle 𝑣 traverses link (𝑖, 𝑗), and 0 otherwise 

𝑑𝑝𝑣: = 1 if passenger 𝑝 is picked up by vehicle 𝑣, and 0 otherwise 

𝑛𝑖
𝑝

: = 1 if node 𝑖 is used as a transfer node for passenger 𝑝, and 0 otherwise 

𝑎𝑝: Number of transfers along the route of passenger 𝑝 

𝑢𝑣𝑖
𝑎 : Time at which vehicle 𝑣 arrives at node 𝑖 

𝑢𝑣𝑖
𝑑 : Time at which vehicle 𝑣 departs from node 𝑖 

𝑧𝑝𝑖
𝑎 : Time at which passenger 𝑝 arrives at node 𝑖 

𝑧𝑝𝑖
𝑑 : Time at which passenger 𝑝 departs from node 𝑖 

Here, we consider a transportation network of a typical metropolitan area which is 

represented by a directed graph 𝐺(𝑁, 𝐴), where 𝑁 is the set of nodes and 𝐴 is the set of 
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links. The time-varying travel time 𝑇𝑖𝑗 and travel cost 𝐶𝑖𝑗 are specified for each link (𝑖, 𝑗), 

which could capture the congestion pattern in the network. Consider an ODMS provider 

operating a set of vehicles 𝑉 in this metropolitan area. Each vehicle 𝑣 ∊  𝑉 is defined in 

terms of its maximum capacity 𝑄𝑣, starting location, and number of onboard passengers 

at the start of the horizon of interest.  

These vehicles serve a set of passengers 𝑃 with heterogeneous characteristics 

consisting of the two groups 𝑂 and 𝑆, where 𝑂 is the set of all onboard passengers at the 

start of the operation horizon, and 𝑆 is the set of all ride seekers during this horizon. 

Passengers are assumed to differ in terms of their characteristics. Each passenger 𝑝 ∊  𝑃 

requests a ride at time 𝑇𝑝 and is associated with a set of attributes including pickup 

location 𝑝(𝑝) and drop-off location 𝑑(𝑝), the earliest time for pickup 𝑒𝑝 and latest time 

for drop-off 𝑙𝑝, and maximum trip duration 𝐷𝑝. In addition, two binary parameters, 𝑟𝑝 and 

𝑡𝑝, are defined for each passenger to specify her/his willingness to rideshare and transfer, 

respectively.  

Each served passenger 𝑝 ∊  𝑃 is assumed to yield a revenue 𝑅𝑝. In this 

formulation, this revenue is assumed as a function of the shortest distance between the 

passenger’s pickup and drop-off locations. Of course, other revenue accounting methods 

can be used as adopted by the ODMS provider under consideration. Passengers can 

transfer between vehicles at a predetermined set of nodes in the network. The variable 𝑎𝑝 

tracks the number of transfers made by each passenger. We assume that each passenger 

receives discount percentages of 𝛼 and 𝛽 for ridesharing and transferring, respectively.  
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To track the itinerary of passenger 𝑝, we use 𝑣(𝑝) to denote the vehicle(s) 

transporting this passenger, 𝑧𝑝𝑖
𝑎  to denote her/his arrival time at node 𝑖, and 𝑧𝑝𝑖

𝑑  to denote 

the passenger’s departure time from node 𝑖. Similarly, to track each vehicle, we use 𝑢𝑣𝑖
𝑎  

and 𝑢𝑣𝑖
𝑑  to denote the arrival and departure times of vehicle 𝑣 at node 𝑖, respectively. 

Here, without loss of generality, considering that both 𝑢𝑣𝑖
𝑎  and 𝑢𝑣𝑖

𝑑  are formulated as 

scalar variables, no vehicle is assumed to visit any of the nodes along its route more than 

one time. This assumption prevents route circuity, which is negatively perceived by 

passengers using ridesharing services.  

The problem is to assign vehicles to ride seekers and to determine the optimal 

route for each vehicle such that the total profit of the ODMS is maximized. Each route 

starts from the vehicle's current location assigned to that route. Following the starting 

node, the route includes a sequence of nodes representing the pickup and drop-off 

locations of the passengers served by this vehicle. The problem entails satisfying all 

customer constraints related to pickup and drop-off time windows, maximum trip time, 

and rideshare and/or transfer preferences. The proposed model maximizes the total 

network profit, which is computed as the total revenue of all served passengers. Ride 

seekers that are determined to be unprofitable or causing problem infeasibility, receive no 

service. 

Two flavors of this problem are considered in this dissertation. The first problem 

pertains to solving one operation stage of a predefined horizon (e.g., one to two hours) 

with predefined demand. In other words, the problem assumes that the demand for ride 

requests is known a priori for the entire horizon; that is the time 𝑇𝑝 ∀ 𝑝 ∈ 𝑃 at which 

passengers requested the service is always before the time at which the problem is solved. 
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As needed, the problem can be solved at any point in time (e.g., the arrival of new 

requests). 

The problem also entails determining an efficient route for each vehicle to serve 

all assigned passengers while satisfying their time window constraints and their 

preferences with respect to ridesharing and transfer. This version of the problem is more 

suitable in the situation where TNCs provide riders the options to schedule their trips 

ahead of time. The problem is also encountered in operation planning applications, in 

which TNCs examine the system performance under different possible operational 

conditions (e.g., demand levels, number of vehicles, pricing schemes, etc.) derived from 

historical data.  

The second type is the online version of the first problem. It entails matching each 

received ride request to one of the vehicles in the network in real-time (i.e., upon the 

service is requested). If no single vehicle can be found to offer the service, the ride 

request is matched to two vehicles considering a transfer. Once a passenger requests a 

ride, this passenger is expected to promptly receive a confirmation message from the 

TNC operator, typically through a mobile application, on the service availability. The 

confirmation message sent to a passenger includes the vehicle identification information, 

expected pickup time, and the route to the destination, including information on the 

transfer location, if any (i.e., trip itinerary). If the generated itinerary does not satisfy the 

passenger's trip constraints and preferences, the passenger is declined the service, and 

she/he is free to request the service from another TNC. We assume that the TNC operator 

can communicate with the passenger later and check if she/he is still seeking a ride. 
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3-3. Mathematical Formulation 

This problem is formulated in the form of a mixed-integer program (MIP-1) as 

follows.  

MIP-1: 

Max  ∑ 𝑅𝑝(1 − 𝛼. 𝑟𝑝) ∑ 𝑑𝑝𝑣𝑣∊𝑉 − ∑ 𝑅𝑝. (1 + 𝛽). 𝑎𝑝 . 𝑡𝑝𝑝∊𝑃 −𝑝∊𝑃 ∑ ∑ 𝐶𝑖𝑗 . 𝑌𝑖𝑗
𝑣

𝑣∊𝑉𝑖,𝑗∊𝑁  

 

(1) 

∑ 𝑋
𝑁(𝑣(𝑝)) 𝑗

𝑝 𝑣(𝑝)
= 1

 𝑗∊𝑁

 ∀ 𝑝 ∊ 𝑂 (2) 

∑ 𝑋𝑗 𝑑(𝑝)
𝑝𝑣

= 1

 𝑗∊𝑁

 ∀ 𝑝 ∊ 𝑂, ∀ 𝑣 ∊ 𝑉 (3) 

∑ 𝑋𝑗 𝑝(𝑝)
𝑝 𝑣

= ∑ 𝑋𝑝(𝑝)𝑗
𝑝 𝑣

−

 𝑗∊𝑁

( 

 𝑗∊𝑁

∑ 𝑑𝑝𝑣

𝑣∊𝑉

− 𝑎𝑝 . 𝑡𝑝) ∀ 𝑝 ∊ 𝑆, ∀ 𝑣 ∊ 𝑉 (4) 

∑ 𝑋𝑗 𝑑(𝑝)
𝑝 𝑣

= ∑ 𝑋𝑑(𝑝)𝑗
𝑝 𝑣

+

 𝑗∊𝑁

( 

 𝑗∊𝑁

∑ 𝑑𝑝𝑣

𝑣∊𝑉

− 𝑎𝑝 . 𝑡𝑝) ∀ 𝑝 ∊ 𝑆, ∀ 𝑣 ∊ 𝑉 (5) 

∑ ∑ 𝑋𝑗 𝑖
𝑝 𝑣

=  ∑ ∑ 𝑋𝑖𝑗
𝑝 𝑣

 

 𝑗∊𝑁𝑣∊𝑉 𝑗∊𝑁𝑣∊𝑉

 ∀ 𝑝 ∊ 𝑃, ∀ 𝑖 ∊ 𝑁 − {𝑁(𝑣), 𝑝(𝑝), 𝑑(𝑝)} (6) 

∑ 𝜔𝑝𝑋𝑖𝑗 
𝑝 𝑣

≤  𝑄𝑣

𝑝∊𝑃

𝑌𝑖 𝑗
𝑣  ∀ 𝑣 ∊ 𝑉, ∀ 𝑖 ∊ 𝑁, ∀ 𝑗 ∊ 𝑁 (7) 

𝑋 𝑖𝑗
𝑝 𝑣

≤ 𝑑𝑝 𝑣           ∀ 𝑝 ∊ 𝑃, ∀ 𝑣 ∊ 𝑉, ∀ (𝑖, 𝑗) ∊ 𝐴 (8) 

∑ 𝑑𝑝𝑣

𝑣∊𝑉

≤ 𝑎𝑝 . 𝑡𝑝 + 1             ∀ 𝑝 ∊ 𝑃 (9) 

∑ 𝑌𝑖 𝑗
𝑣

𝑗∊𝑁

≤ 1            ∀ 𝑣 ∊ 𝑉, ∀ 𝑖 ∊ 𝑁 (10) 

∑ 𝑌𝑗 𝑖
𝑣

𝑗∊𝑁

≤ 1            ∀ 𝑣 ∊ 𝑉, ∀ 𝑖 ∊ 𝑁 (11) 

∑ 𝑌𝑖 𝑗
𝑣

𝑗∊𝑁

≤ ∑ 𝑌𝑗 𝑖
𝑣

𝑗∊𝑁

            ∀ 𝑣 ∊ 𝑉, ∀ 𝑖 ∊ {(𝑁1, (𝑁2 − 𝑁(𝑣)), 𝑁3} (12) 

∑ 𝑌𝑖 𝑗
𝑣

𝑗∊𝑁

≥ ∑ 𝑌𝑗 𝑖
𝑣

𝑗∊𝑁

          ∀ 𝑣 ∊ 𝑉, ∀ 𝑖 ∊ {(𝑁2⋂𝑁(𝑣))} (13) 



            

39 

 

∑ 𝑌𝑖𝑗
𝑣

𝑗∊𝑁

= ∑ 𝑌𝑗𝑖
𝑣

𝑗∊𝑁

       ∀ 𝑣 ∊ 𝑉, ∀ 𝑖 ∊ 𝑁 − {𝑁1, 𝑁2, 𝑁3, 𝑁(𝑣)} (14) 

∑ 𝑌𝑁(𝑣) 𝑗
𝑣

𝑗∊𝑁

≥ 𝑑𝑝 𝑣         ∀ 𝑣 ∊ 𝑉, ∀ 𝑝 ∊ 𝑃 (15) 

 𝑢𝑣𝑗
𝑎 − 𝑢𝑣𝑖

𝑑 ≥ 𝑇𝑖 𝑗 − 𝑀(1 − 𝑌𝑖 𝑗
𝑣 )      ∀ 𝑣 ∊ 𝑉, ∀ 𝑖 ∊ 𝑁, ∀ 𝑗 ∊ 𝑁 (16) 

𝑢𝑣𝑝(𝑝)
𝑑 ≥  𝑒𝑝−𝑀(1 − 𝑑𝑝 𝑣)       ∀ 𝑝 ∊ 𝑆, ∀𝑣 ∊ 𝑉 (17) 

𝑢𝑣𝑑(𝑝)
𝑎 ≤  𝑙𝑝+ 𝑀(1 − 𝑑𝑝 𝑣)      ∀ 𝑝 ∊ 𝑆, ∀𝑣 ∊ 𝑉 (18) 

𝑢𝑣 𝑑(𝑝) − 𝑢𝑣 𝑝(𝑝) ≤ 𝐷𝑝 + 𝑀(1 − 𝑑𝑝 𝑣)      ∀ 𝑝 ∊ 𝑃, ∀ 𝑣 ∊ 𝑉 (19) 

 𝑢𝑣𝑖
𝑑 ≥ 𝑢𝑣𝑖

𝑎       ∀ 𝑣 ∊ 𝑉, ∀ 𝑖 ∊ 𝑁 (20) 

𝑢𝑣𝑁(𝑣)
𝑎 = 𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒      ∀ 𝑣 ∊ 𝑉 (21) 

𝑧𝑝𝑖
𝑎 ≤ 𝑢𝑣𝑖

𝑑 + 𝑀 (1 − ∑ 𝑋𝑖 𝑗
𝑝 𝑣

 𝑗∊𝑁

)      ∀ 𝑝 ∊ 𝑃, ∀ 𝑣 ∊ 𝑉, ∀ 𝑖 ∊ 𝑁 − {𝑝(𝑝)} (22) 

𝑧𝑝𝑖
𝑑 ≥ 𝑢𝑣𝑖

𝑑 − 𝑀 (1 − ∑ 𝑋𝑖 𝑗
𝑝 𝑣

 𝑗∊𝑁

)      ∀ 𝑝 ∊ 𝑃, ∀ 𝑣 ∊ 𝑉, ∀ 𝑖 ∊ 𝑁 (23) 

𝑧𝑝𝑗
𝑎 − 𝑧𝑝𝑖

𝑑 ≥ 𝑇𝑖 𝑗 − 𝑀 (1 − ∑ 𝑋𝑖 𝑗
𝑝 𝑣

 𝑗∊𝑁

)      ∀ 𝑝 ∊ 𝑃, ∀ 𝑣 ∊ 𝑉, ∀ 𝑖 ∊ 𝑁 (24) 

𝑧𝑝𝑝(𝑝)
𝑎 = 𝑒𝑝                  ∀ 𝑝 ∊ 𝑆 (25) 

𝑧𝑝𝑁(𝑣)
𝑎 = 𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒                  ∀ 𝑝 ∊ 𝑂 (26) 

𝑧𝑝𝑖
𝑑 ≥ 𝑧𝑝𝑖

𝑎       ∀ 𝑝 ∊ 𝑃, ∀ 𝑖 ∊ 𝑁 (27) 

𝑧𝑝𝑑(𝑝)
𝑎 ≤ 𝑢𝑣𝑑(𝑝)

𝑎 − 𝑀 (1 − ∑ 𝑋𝑑(𝑝) 𝑗
𝑝 𝑣

 𝑗∊𝑁

)      ∀ 𝑝 ∊ 𝑃, ∀ 𝑣 ∊ 𝑉 (28) 

∑ 𝑛𝑖
𝑝

𝑖∊𝑁

= 𝑎𝑝 . 𝑡𝑝   ∀ 𝑝 ∊ 𝑃 (29) 

∑ 𝑛𝑖
𝑝

𝑝∊𝑃

= 0 ∀ 𝑖 ∊ 𝑁4 (30) 
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The objective function given in (1) maximizes the total ODMS profit, which is 

computed as the total revenue collected from all served passengers minus the operation 

cost of the vehicles. The objective function accounts for discounts offered to passengers 

who rideshare or transfer. Different mechanisms can be used to account for these 

discounts. For instance, they could be granted only if the scheduled ride requires 

ridesharing or transferring. On the other hand, they could be granted as long as the 

customer indicates her/his willingness to rideshare or transfer, even if the scheduled ride 

does not include ridesharing or transferring. In this formulation, a ridesharing discount is 

assumed to be granted to all passengers as long as they indicate their willingness to 

rideshare, while transfer discount is granted only for passengers who make a transfer 

along with their trips. In this version of the trip, the ridesharing discount is given for each 

leg in the transfer trip. Also, the formulation allows an unlimited number of transfers for 

each passenger. However, we limit the solution to one transfer. 

While in this version of the problem we adopt an objective function that focuses 

on maximizing the profit, the framework is flexible to consider other objective functions 

that explicitly incorporate passenger-oriented performance measures such as passengers’ 

waiting time. However, one should note that a profit-oriented objective function 

implicitly reduces the passengers’ waiting time. Maximizing the profit requires 

maximizing the utilization of the vehicles by serving as many passengers as possible. 

Therefore, the vehicle routes push to pick up passengers as soon as their pickup time 

windows open, ultimately reducing their waiting times. 

Constraints (2) and (3) ensure that all onboard passengers continue their trips to 

reach their destinations. Constraints (2) ensure that these passengers leave their current 
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location, while constraints (3) ensure that onboard passengers arrive at their destinations. 

Similarly, constraints (4) and (5) ensure those ride seekers are picked up from their 

pickup locations and dropped off at their destinations, respectively. Constraints (6) are for 

the conservation of flow. Constraints (7) ensure that the number of passengers assigned to 

a vehicle is less than the vehicle's capacity. The weight 𝜔𝑝 ensures that passengers who 

are not willing to rideshare get no other passengers in their vehicles.  

Constraints (8) relate the different vehicle-passenger matching variables used in 

the formulation. Constraints (9) map the number of transfers to the number of vehicles 

used to serve each passenger. Passengers who are willing to transfer (𝑡𝑝 = 1) could be 

served by more than one vehicle. Constraints (10) ensure that a vehicle cannot 

simultaneously leave its location to two different destination nodes from a specific source 

node. Similarly, Constraints (11) ensure that a vehicle cannot reach a destination node 

from two different source nodes.  

Constraints (12) and (13) ensure the path continuity for the vehicle from the 

passenger’s pickup and to the drop-off location, respectively. Constraints (14) ensure 

path continuity for vehicles along with all other nodes. Constraints (15) ensure that the 

vehicle moves from its location if a passenger is assigned to it. Constraints (16) define the 

vehicle arrival time at a downstream node in terms of its departure time from its current 

link's upstream node and the travel time on that link. Constraints (17) and (18) ensure that 

passengers can only be picked up after the specified earliest pickup time and dropped off 

before the specified latest drop-off time, respectively. 

Constraints (19) ensure that the passenger's time on the road is less than the 

maximum ride time. Constraints (20) ensure that the departure time from a node is 
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greater than the arrival time at this node for all vehicles. Constraints (21) define the 

arrival time of a vehicle at its current location at the beginning of the planning horizon. 

Constraints (22) and (23) map a passenger’s arrival and departure times at a node to those 

of the vehicle serving this passenger. Constraints (24) are similar to constraints (16); they 

define the arrival time for passengers at each node along her/his route. Constraints (25) 

define the time at which ride seekers are ready for pickup, while constraints (26) define 

the start time of onboard passengers.  

Constraints (27) ensure that a passenger’s departure time from a node is greater 

than her/his arrival time at that node. Constraints (28) define the arrival time of each 

passenger at her/his destination. Constraints (29) define the total number of transfers 

along each passenger's trip. Finally, constraints (30) prevent the transfer from occurring 

at any node where the transfer is prohibited (e.g., for safety considerations). 

 

3-4. Summary 

This chapter presented a formal definition of the ODMS with transfer option and 

time window constraints. The problem is formulated in the form of a mixed-integer 

mathematical program. In this mathematical program, the objective function maximizes 

the total profit of passengers. The profit is calculated as the difference between (a) the 

sum of the fares collected from passengers considering discounts for ridesharing and 

transfer options and (b) the operation cost of the service. A set of constraints is presented 

to satisfy passengers’ time windows, rideshare, and/or transfer preferences and ensure 

path continuity for vehicles and passengers. 
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Chapter 4  

SOLUTION METHODOLOGY FOR OFFLINE PROBLEMS WITH 

PREDEFINED DEMAND  

 

 

4-1. Introduction 

This chapter presents the solution methodology for solving the offline version of 

the ODMS with ridesharing/transfer options and time window constraints. As mentioned 

above, this problem assumes that the passengers’ demand is known a priori for the entire 

horizon of interest. The developed solution methodology is a modified version of the 

column generation proposed to solve the classical vehicle routing problem to consider the 

transfer option. The methodology integrates network decomposition and augmentation 

approaches to allow solving problems of reasonable sizes. This chapter is organized as 

follows. Section 4-2 describes the general idea of modified column generation. Section 4-

3 and 4-4 present the mathematical formulation of the master problem and sub-problems, 

respectively. Section 4-5 explains the network augmentation method used to solve the 

sub-problems. Finally, section 4-6 gives a summary of the chapter. 

  

4-2. An Overview of the Solution Methodology 

The solution methodology adopts a modified version of the column generation 

(CG) technique to account for rides with the transfer. CG is one of the most commonly 

used methods to solve the vehicle routing problem with time windows constraints 

(Desaulniers et al., 2006). This method implements a decomposition approach leading to 
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smaller sub-problems that can be solved separately. In most implementations, the 

constraints that ensure each passenger is assigned to at most one vehicle are relaxed 

leading to 𝑚 single-vehicle problems that are solved separately (Desaulniers et al., 2006). 

The technique iterates to determine the upper and lower bounds of the problem until these 

bounds coincide and yield the optimal solution. For example, in a maximization problem, 

the optimal solution of the relaxed problem presents an upper bound on the primary 

problem. Solving the master problem at each iteration finds a new cut for the relaxed 

problem. The relaxed problem is solved using this new cut to provide a new lower bound 

for the problem. The algorithm ends when the upper and lower bounds coincide, or the 

difference between these bounds is within a pre-specified threshold.  

Most CG implementations for the vehicle routing problem represent the sub-

problems in the form of a constrained shortest path problem. Thus, at each iteration, the 

master problem finds new multipliers, which are used by sub-problems to find new routes 

(columns) to send back to the master problem. Nonetheless, this approach is suitable only 

for problems in which the transfer option is not considered.  

Figure 4-1 shows the general idea of the application of column generation to solve 

the conventional vehicle routing problem. At each iteration of solving the master 

problem, a set of primal optimal solutions and a set of dual solutions are obtained. More 

details about these primal and dual solutions are given in section 4-3. The dual solutions 

will be introduced to sub-problems to generate a new set of routes (columns) in the next 

iteration. These new columns will be given to the master problem, and the master 

problem picks the set of most profitable routes such that each customer is served in at 

most one route (infeasibility elimination). 
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Figure 4-1: Application of column generation method in the conventional vehicle 

routing problem 

 

Accounting for the transfer option adds to the complexity of the problem as the 

search for the optimal solution must examine vehicle combinations that can jointly offer a 

service to ride seekers who are willing to transfer. It means that if the original problem is 

divided into single-vehicle sub-problems, no solution can be found in which a passenger 

is served with two different vehicles via a transfer point in the middle of the route. As 

such, the CG methodology needs to be modified to allow the sub-problems to generate: a) 

columns that define the routes of single vehicles serving passengers with no transfer and 

b) hybrid columns that define the itineraries of multiple vehicles serving transferring 

passengers. 

Figure 4-2 demonstrates the structure of the columns generated for a hypothetical 

problem of three trips and two vehicles. In this problem, only the ride seeker of Trip 3 is 

willing to transfer. Figures 4-2b and 4-1c illustrate the structure of the columns generated 

for Vehicle 1 and Vehicle 2, respectively. The figures show the route used by each 
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vehicle to serve the three trips. For instance, Vehicle 1 serves Trip 1, Trip 2, and Trip 3. 

Vehicle 2 serves Trip 2, Trip 1, and then Trip 3. Figure 4-2d provides an example of a 

hybrid column for the routes of Vehicle 1 and Vehicle 2. In this hybrid column, Vehicle 1 

serves Trip 1, and Vehicle 2 serves Trip 2. In addition, Trip 3 is served via a transfer 

between the two vehicles. This solution is shared with the master problem in the form of 

three columns: I) a column for Vehicle 1; II) a column for Vehicle 2, and III) a column 

for a virtual vehicle that is created to represent the case in which Vehicle 1 and Vehicle 2 

jointly serve Trip 3. The actual vehicles (Vehicle 1 and Vehicle 2) serving Trip 3 are 

mapped to this virtual vehicle. While no cost is assigned to this virtual vehicle, the fare 

collected from Trip 3 is considered the virtual vehicle's revenue. 

 The overall framework of the solution methodology is described in Figure 4-3. 

As shown in the figure, the framework consists of two main loops. The outer loop iterates 

between a master problem and sub-problems following the structure of the conventional 

CG algorithm. More details on these problems are given in sections 4-4 and 4-5. An inner 

loop is set up for each sub-problem to determine the optimal route for each vehicle or a 

combination of vehicles that provide a transfer option.  
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Figure 4-2: Columns generated for a hypothetical problem of two-vehicle and three 

passengers considering the transfer option  

 

Considering the example in Figure 4-2, three sub-problems are solved. In the first 

sub-problem, an optimal route is constructed for Vehicle 1, aiming to serve all three 

passengers. In the second sub-problem, a route for Vehicle 2 aiming to serve all three 

passengers is constructed. The third sub-problem includes both Vehicle 1 and Vehicle 2 

and the three passengers. The first and second sub-problems generate two columns for 

Vehicle 1 and Vehicle 2, respectively, as shown in Figures 4-2b and 4-1c. The third sub-

problem generates three columns: one route for Vehicle 1, one route for Vehicle 2, and 

one route for a virtual vehicle. The columns generated for Vehicle 1 and Vehicle 2 in the 

third sub-problem could be different from those generated in the first and the second sub-
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problems. The route of the virtual vehicle matches the route of the transferring passenger 

who is served by transferring between Vehicle 1 and Vehicle 2.  

The methodology starts by generating an initial feasible route for each vehicle. In 

the simplest implementation, the initial route for the vehicle is generated such that it 

serves one passenger. Given the initial set of feasible routes for all vehicles, the master 

problem described in section 4-3 is solved. The master problem picks the set of most 

profitable routes such that each customer is served in one route only. The duals of the 

master problem are made available to the sub-problems.  

Unlike the conventional CG algorithm, the proposed methodology allows sub-

problems to include multiple vehicles to serve transfer trips. Thus, a module to set up 

these sub-problems is activated. This module implements a set of feasibility checks and 

profitability rules, as described in more detail in section 4-4, to determine vehicle and 

customer combinations considered in each sub-problem. This module prevents setting up 

sub-problems that are either infeasible or expected to generate columns with low profits. 

We assume ride seekers are unlikely to make more than one transfer in the current 

implementation. Thus, the number of vehicles considered in each sub-problem is limited 

to a maximum of two vehicles. 
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Figure 4-3: Overall modeling framework 
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Each sub-problem is solved iteratively. The smallest possible sub-network is 

extracted from the original roadway network in the first iteration. This sub-network 

includes links most likely used to route the vehicles while serving the customers specified 

in this sub-problem. A K-Distinct Shortest Path Algorithm (KDSPA) is used to determine 

this set of links. More details on selecting these links are given below.  

Given the reduced-size sub-problems in terms of the number of vehicles, the 

number of customers, and the size of the routing network, the MIP-1 described above is 

used to solve these problems considering the dual values obtained from the master 

problem. Following the inner loop iterations for each sub-problem, the size of the sub-

network is incrementally increased by adding more links using the KDSPA.  

Each sub-problem is again solved using the new augmented sub-network. If the 

sub-problem solution stabilizes in two successive iterations, the inner loop terminates, 

and the generated routes for each actual and virtual vehicle are saved to be sent back to 

the master problem. The master problem is again solved using the newly generated 

columns from the sub-problems. New dual values are generated and shared with the sub-

problems. The outer loop terminates when the gap in the objective function for two 

successive iterations is less than a predefined threshold. 
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Algorithm: Modified Column Generation  
Input: Network topology, set of passengers P, and set of vehicles V  
begin 
Initialization 
𝑖𝑚 = 1 ← Iteration number of the master problem 
𝑖𝑠 = 1 ← Iteration number of sub-problem s 
𝑒𝑚 = +∞ ← error for master problem 
𝑒𝑠 = +∞ ← error for sub-problem s 
𝜉𝑚 ← error threshold for the master problem objective function 
𝜉𝑠 ← error threshold for the sub-problem objective function 
𝜋𝑝 ← Dual variable for passenger p 

𝑆 ← Number of sub-problems 
𝑅𝑝 ← Revenues associated with serving passenger p 

𝑂𝑚
𝑖𝑚 ← Objective value of the master problem in the iteration 𝑖𝑚 

𝑂𝑠
𝑖𝑠 ← Objective value of sub-problem s in the iteration 𝑖𝑠 

Setup master problem and sub-problems 
//original problem is decomposed to a master problem and sub-problems of single and 
multi-vehicle considering feasibility and profitability rules. The initial set of routes 
(columns) is obtained. 
while 𝑒𝑚 > 𝜉 do  
Add columns to master problem 

Solve the master problem and save 𝑂𝑚
𝑖𝑚  

𝑒𝑚 ←
𝑂𝑚

𝑖𝑚 − 𝑂𝑚
𝑖𝑚−1

𝑂𝑚
𝑖𝑚−1

 

Save dual variables 𝜋𝑝 ∀ 𝑝 

 for 𝑠 ≔ 1 to 𝑆, do 
Update the sub-problem objective function  

//Update of sub-problem’s objective functions using 𝑅𝑝
𝑖𝑚 

 𝑅𝑝
𝑖𝑚 ← 𝑅𝑝 − 𝜋𝑝  ∀ 𝑝 

while 𝑒𝑠 > 𝜉𝑠 do 
      Generate DSP and augment network 

      Solve MIP-1 and save 𝑂𝑠
𝑖𝑠 

       𝑒𝑠 ←
𝑂𝑠

𝑖𝑠−𝑂𝑠
𝑖𝑠−1

𝑂𝑠
𝑖𝑠−1

 

       Penalize links in the augmented network 
 𝑖𝑠 + 1 

   end 
Generate optimal routes for actual and virtual vehicles  
end 

Save all new columns 
𝑖𝑚 + 1 

end 
Solve the integer master problem 
Output: Final set of vehicle routes and a list of served passengers  

 

Figure 4-4: The modified column generation algorithm 
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4-3. The Master Problem 

The master problem is formulated as a set partitioning problem represented in the 

form of an integer mathematical program as presented in (31)-(34). Given the set of 

routes generated for all actual and virtual vehicles, the master problem determines the 

most optimal route for each vehicle such that each passenger is served by at most one 

vehicle. The parameter 𝑎𝑝𝑟
𝑣  defines which route-vehicle combinations serve passenger 𝑝, 

based on the solution of the sub-problems. Constraints (32) and (33) assign each 

passenger and vehicle to at most one route, respectively. Constraint (34) ensures that the 

route of a virtual vehicle is selected as part of the optimal solution only if the routes of 

two actual vehicles associated with this virtual vehicle are also selected. 

  

𝐌𝐚𝐱 ∑ ∑(𝑅𝑉𝑁𝑟
𝑣 − 𝐶𝑆𝑇𝑟

𝑣) ∙ 𝑍𝑟
𝑣 

𝑣∊𝑉𝑟∊𝑅𝑣

 (31) 

∑ ∑ 𝑎𝑝𝑟
𝑣 ∙ 𝑍𝑟

𝑣 ≤ 1

𝑣∊𝑉𝑟∊𝑅𝑣

 ∀ 𝑝 ∊ 𝑃 (32) 

∑ 𝑍𝑟
𝑣 ≤ 1

𝑟∊𝑅𝑣

 ∀ 𝑣 ∊ 𝑉 (33) 

(𝑛(𝑣′) + 1) ∙ 𝑍𝑟
𝑣′ = ∑ 𝑍𝑟

𝑣𝑒ℎ𝑖(𝑣′)

𝑖∊𝑛(𝑣′)

 ∀ 𝑣′ ∊ 𝑉′, ∀ 𝑟 ∊ 𝑅𝑣  (34) 

where, 

𝑉: Set of all vehicles (actual and virtual) 

𝑉′: Set of virtual vehicles 𝑉′  ⊂ 𝑉 

𝑣: Index of vehicles  

𝑣′: Index of virtual vehicles such that 𝑣′  ∊ 𝑉′ 

𝑣𝑒ℎ𝑖(𝑣′): Index of the 𝑖th actual vehicle serving the transfer trip of virtual vehicle 𝑣′ 
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𝑛(𝑣′): Number of transfers of passenger that is served with actual vehicles (here 

equal to zero or 1) 

𝑅𝑣: The set of routes generated for vehicle 𝑣 

𝑟: Index for routes in 𝑅𝑣 

𝑅𝑉𝑁𝑟
𝑣: The revenue of route 𝑟 served by vehicle 𝑣  

𝐶𝑆𝑇𝑟
𝑣: The cost of route 𝑟 served by vehicle 𝑣 

𝑎𝑝𝑟
𝑣 : = 1 if passenger 𝑝 is served by vehicle 𝑣 traveling route 𝑟, and 0 

otherwise 

𝑍𝑟
𝑣: = 1 if vehicle 𝑣 is assigned to route 𝑟, and 0 otherwise 

 

The solution of the linear relaxation of the master problem includes the primal 

optimal solution 𝑍𝑟
𝑣 and the dual solution 𝜋 = (𝜋1, 𝜋2, 𝜋𝑝, … , 𝜋|𝑃| | ∀ 𝑝 ∈ 𝑃) for the 

current iteration. Where π includes the values of the dual variables of constraints. These 

dual values are shared with the sub-problems to determine a new set of columns. At 

convergence, the optimal integer solution is obtained for the master problem.  

 

4-4. Setting-up the Lower Level Problems  

As stated earlier, the CG technique relaxes the problem by removing the 

constraints that prevent the assignment of each passenger to more than one vehicle. For 

services with no transfer option, this relaxation allows solving the problem for every 

single vehicle separately using a constrained shortest path algorithm (Desaulniers et al., 

2006). Nonetheless, with the integration of the transfer option, this approach will not be 

proper to solve the sub-problems.  
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Thus, we use the mathematical program MIP-1 to solve each sub-problem. Each 

sub-problem is defined in terms of a maximum of two vehicles, a set of customers that 

can be efficiently served by the specified vehicle(s), and a reduced-size network that 

defines links that are most likely used to route these vehicles. As explained above, two 

types of sub-problems are considered. In the first type, a sub-problem is set for every 

single vehicle. In the second type, two vehicles are combined to examine if they can 

jointly offer service to customers willing to transfer.  

Several rules are considered to determine efficient vehicle combinations. For 

example, as shown in Figure 4-5a, two vehicles are included in one sub-problem only if 

the distance between their current locations is less than a certain threshold. This distance 

is typically double the maximum distance a driver is willing to drive to arrive at a 

customer's location (e.g., 10 to 15 miles). If the shortest travel distance between two 

vehicles is greater than the defined threshold (e.g., 30 miles in large networks), there is 

no possibility that the routes of these two vehicles intersect to serve one transferring 

passenger.  

An additional set of feasibility checks and profitability rules are used to determine 

the subset of customers that can be included in the sub-problem of each vehicle or a 

combination of vehicles. The first rule excludes passengers if the vehicle(s) violates their 

time window constraints. The shortest path algorithm is used to determine the fastest 

route to serve a passenger by each vehicle allocated to a sub-problem. As shown in 

Figure 4-5b, this route consists of the segment from the vehicle’s current location to the 

passenger’s origin and the segment from the passenger’s origin to her/his destination. If 
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none of the vehicles arrives at the passenger’s destination before her/his latest drop-off 

time, this passenger is excluded from this sub-problem.  

The second rule considers the profitability of a trip. This rule checks the travel 

distance from the vehicle’s current location to the passenger’s origin. Because drivers 

usually prefer to pick up passengers in their vicinity, a passenger is excluded if the travel 

distance to the location of this passenger exceeds a predefined limit (e.g., 10 to 15 miles). 

Finally, other rules related to the behavior of passengers can be incorporated. For 

example, for safety concerns, a passenger possibly will agree to share the ride only if 

other passengers are diverse in terms of gender and/or ethnicity. Consequently, if such a 

condition is not satisfied, this passenger is excluded from this sub-problem. 

As such, two types of sub-problems are created. Sub-problems that determine the 

optimal route of a single vehicle, and sub-problems that determine the routes of two 

vehicles. If the solution of the two-vehicle sub-problem results in serving any passengers 

via transfer, the routes of the two vehicles and the route of a virtual vehicle are created. 

The route of the virtual vehicle represents the route of the transferring passenger. 

These sub-problems are solved using a modified version of MIP-1. Similar to the 

objective function presented for MIP-1, the objective function given in (35) maximizes 

the total ODMS profit, which is computed as the total revenue collected from all served 

passengers minus the operation cost of the vehicle (for the single-vehicle sub-problem) or 

the operation cost of the two vehicles (for the two vehicles sub-problems). The objective 

function accounts for discounts offered to passengers who rideshare or transfer. However, 

as presented in (35), the objective function is modified to incorporate the values of the 

dual variables 𝜋𝑝 obtained from the master problem. The revenue of each passenger will 
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be reduced by 𝜋𝑝 to make passengers that were served in more than one route in the 

previous iteration less attractive in the current iteration.  

Max ∑ ((1 − 𝛼. 𝑟𝑝)𝑅𝑝 − 𝜋𝑝) ∑ 𝑑𝑝𝑣𝑣∊𝑉 − ∑ (𝑅𝑝 − 𝜋𝑝). (1 + 𝛽). 𝑎𝑝 . 𝑡𝑝𝑝∊𝑃 −𝑝∊𝑃 ∑ ∑ 𝐶𝑖𝑗 . 𝑋𝑖𝑗
𝑣

𝑣∊𝑉𝑖,𝑗∊𝑁  (35) 

If the master problem yields 𝜋𝑝 > 0, it implies that passenger 𝑝 appears in more 

than one route. To avoid infeasibility, the master problem picks the route that maximizes 

its objective function. Then, to prevent this passenger from appearing in multiple routes 

in the next iteration, the revenue of this passenger is reduced. Thus, in the next iteration 

of solving the sub-problems, this passenger appears only in routes that remain profitable 

despite her/his reduced revenue.  

 

 

Figure 4-5: Illustration of feasibility and profitability checking rules 
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4-5. Network Augmentation 

As mentioned earlier, each sub-problem is solved iteratively. Determining the 

vehicles and passengers belonging to each sub-problem, the KDSPA is applied to specify 

the network used to solve each sub-problem. In each iteration, as illustrated in the gray 

box in Figure 4-3, a set of new distinct shortest routes is generated, and their links are 

added to augment the network of each sub-problem. The augmented network includes a 

subset of nodes and links of the original network.  

For each sub-problem, the KDSPA is activated to determine the shortest paths 

between three sets of origin-destination (OD) pairs. As illustrated in Figure 4-6, the first 

set is from the vehicles’ current locations to the origins of all passengers. The second set 

is from the origin to the destination of each passenger. The third set is from each 

passenger’s destination to the origin of all other passengers in the sub-problem. For each 

sub-problem, we set the parameter K as a large number. The links generated from the 

first iteration of the KDSPA give the basic sub-network used to solve this sub-problem.  

Penalizing all links in the basic sub-network, the KDSPA is again activated to 

determine a new set of paths for all OD pairs mentioned above. The links of these paths 

are added to all links determined in the previous iteration(s), forming a larger sub-

network. The sub-problem is solved again using the new augmented sub-network. The 

process continues for each sub-problem until no change is recorded in the optimal routes 

generated for all vehicles in the sub-problem. 

  



            

58 

 

 

Figure 4-6: Network augmentation using the KDSPA for a network used to route 

one vehicle and two customers 

 

4-6. Summary 

This chapter presented the solution methodology for solving the offline version of 

the ODMS with ridesharing/transfer options and time window constraints. As mentioned 

above, this problem assumes that the passengers’ demand is known a priori for the entire 

horizon of interest. The solution methodology adopts a version of column generation that 

can create hybrid columns, including passengers served by one vehicle and those served 

via a transfer between two vehicles. The original problem is solved as a bi-level 

optimization problem with a master problem and a set of sub-problems. Each sub-

problem is solved iteratively. In each iteration, several distinct (non-overlapping) shortest 

routes are generated, and their links are added to create an augmented network of each 
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sub-problem. Hence, the augmented network includes a subset of nodes and links within 

the original network. When there is no change in the solutions of the sub-problems 

obtained in two consecutive iterations, the results are introduced to the master problem. 

The master problem picks columns that maximize the objective function.   
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Chapter 5  

SOLUTION METHODOLOGY FOR PROBLEMS WITH ONLINE DEMAND  

 

 

5-1. Introduction 

This chapter describes an innovative methodology for integrated ride-matching 

and vehicle routing for ODMS with ridesharing and transfer options with online demand. 

Unlike the problem presented in the previous chapter, this problem assumes that the 

demand is not known a priori. Therefore, when a new ride request arrives, the problem is 

solved to assign a ride to this new customer. The methodology implements a hybrid 

heuristic approach, which can solve large problem instances in near real-time. From now, 

this problem is referred to as the dynamic (online) ODMS. The heuristic is capable of (1) 

promptly responding to individual ride requests and (2) periodically re-evaluating the 

generated solutions and recommending modifications to enhance the overall solution 

quality. 

This chapter is organized as follows. Section 5-2 describes the general idea of the 

solution methodology. Section 5-3 describes the method to create the service area of each 

vehicle. Section 5-4 explains the network augmentation technique for fast shortest path 

computation. Section 5-5 describes how candidate vehicles to offer a service to a new 

ride request are determined, while section 5-6 describes the mechanism used to update 

the routes of these vehicles. Section 5-7 describes the rollback strategy used to enhance 

the overall quality of the solution. Finally, section 5-8 provides a summary of the chapter. 
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5-2. An Overview of the Solution Methodology for Online Problems 

Consider the directed network described in chapter 3. Once a passenger requests a 

ride, this passenger is expected to promptly receive a confirmation message from the 

TNC operator, typically through a mobile application, to inform the passenger about 

service availability. The confirmation message sent to a passenger includes the vehicle 

identification information, expected pickup time, and the route to the destination, 

including information on the transfer location, if any (i.e., trip itinerary). 

The problem entails matching each received ride request to one of the vehicles in 

the network. In case no single vehicle can be found to offer the service, the ride request is 

matched to two vehicles considering a transfer. The problem also entails determining an 

efficient route for each vehicle to serve all assigned passengers while satisfying their time 

window constraints and their preferences with respect to ridesharing and transfer. If the 

generated itinerary does not satisfy the passenger's trip constraints and preferences, the 

passenger is declined the service, and she/he is free to request the service from another 

TNC. We assume that the TNC operator can communicate with the passenger later and 

check if she/he is still seeking a ride. 

The methodology adopts a hybrid heuristic-based approach that integrates (a) a 

myopic-based heuristic to allow fast response to individual calls following the First-

Come-First-Served (FCFS) rule, which is activated upon receiving a new ride request 

(i.e., event-based activation); and (b) a greedy-based heuristic to re-optimize previous 

service commitments which is activated periodically at predefined activation intervals 

(i.e., time-based activation).  
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The framework generates ride-matching and vehicle routing solutions based on 

the latest information available on ride requests and vehicle locations and schedules. If no 

passenger is assigned to a vehicle, they are assumed to stay in their current location while 

waiting for ride-matching. As shown in Figure 5-1, the methodology starts by defining a 

potential service (catchment) area for each vehicle, which is dynamically updated based 

on the current location of the vehicle, the time windows of all passengers currently 

assigned to the vehicle, and prevailing traffic congestion in vehicle’s vicinity.  

Upon the arrival of a new ride request, the methodology determines candidate 

vehicle(s) that can serve the passenger(s) associated with this request. More details about 

determining the candidate vehicles are given in section 5-5. If a passenger could be 

served in multiple vehicle tours, these tours are evaluated considering a pre-specified 

criterion, and the most efficient tour is selected. Once a vehicle(s) is selected, the service 

area of the vehicle(s) is updated to include new nodes along with their feasible visiting 

time windows. A new node is added if the vehicle can reach it without violating the time 

window constraints of any of the passengers already assigned to it. 

As no information on future ride requests is available, there might be a situation 

in which a future more-profitable ride request is denied service if all vehicles are 

currently busy serving less-profitable requests. The rollback procedure, which is 

described in more detail in section 5-7, is designed to reduce such revenue losses by re-

assigning vehicles and updating passenger itineraries, if feasible. The rollback process is 

activated periodically by considering a past horizon of a pre-determined length. The 

procedure re-evaluates the passenger-vehicle assignments made in this past horizon. The 

procedure determines if a passenger could be assigned to a different vehicle or if a 
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service can be offered to a passenger(s) who was previously denied service due to vehicle 

unavailability. The following sections describe the main procedures constituting the 

solution methodology given in Figure 5-1. 

 

 

 

Figure 5-1: Overall framework of the solution methodology 
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5-3. Creating the Service Area of Each Vehicle  

The service area of a vehicle is a sub-network that includes all nodes that can be 

reached by the vehicle considering the time window constraints of all passengers 

currently assigned to that vehicle and the prevailing traffic congestion along with the 

roadway network. To illustrate how the service area of a vehicle is determined, consider a 

vehicle that is assigned to serve one passenger with a given earliest pickup time and latest 

drop-off times. In this example, there are three nodes in the route of the vehicle, 1) the 

current location of the vehicle, 2) the origin of the passenger, 3) the destination of the 

passenger. Consider the earliest time of visiting the current location of vehicle equal to 

the current time, the earliest time of visiting of origin node equal to passenger’s earliest 

pickup, and latest visiting time of destination equal to passenger’s latest drop-off time. 

The shortest path algorithm is used to determine the earliest and latest times (𝑎𝑖, 

𝑏𝑖) at which each node 𝑖 in the vehicle tour can be reached without violating the pickup 

and drop-off time windows defined by the passenger. Given the vehicle tour and the 

earliest and latest time to visit each node, other nodes in the network are checked to be 

included in the vehicle's service area. As illustrated in Figure 5-2, node 𝑘 can be included 

in the vehicle's service area between nodes 𝑖 and 𝑗 in the vehicle tour if the condition in 

(36) is satisfied. 

𝑡𝑖𝑘 +  𝑡𝑘𝑗  ≤ 𝑏𝑗 − 𝑎𝑖 (36) 
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Figure 5-2: Tour Divergence to Add a New Node to the Vehicle’s Service Area 

 

Where 𝑡𝑖𝑘 and 𝑡𝑘𝑗 are the travel time between node pairs 𝑖 − 𝑘 and 𝑘 − 𝑗, 

respectively, a𝑖 is the earliest pickup time at node 𝑖, and 𝑏𝑗 is the latest drop-off time at 

node 𝑗. Satisfying this condition implies that the vehicle can deviate from its current tour 

to visit node 𝑘 after node 𝑖 and return to node 𝑗 without violating the time window 

constraint of node 𝑗. The earliest and latest times to access node 𝑘 are determined as 

explained in Equation (37) and Equation (38), respectively. This step is repeated to 

determine all nodes that can be included in the service area of the vehicle, along with 

their earliest and latest access times. 

 𝑎𝑘 =  𝑎𝑖 + 𝑡𝑖𝑘 (37) 

 𝑏𝑘 =  𝑏𝑗 − 𝑡𝑘𝑗 (38) 

Reaching the last node in the tour (dropping off the last passengers at a 

destination or a transfer node), the vehicle could reach any node in the network with no 

constraints. Equation (37) is used to determine the earliest time that a node could be 

visited from the last node in the tour. One should note that a node could be included 

multiple times in the service area of a vehicle with different earliest and latest access 
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times. This allows a node to be visited multiple times by the vehicle to construct efficient 

vehicle tours. Such a feature overcomes the limitation of most existing vehicle routing 

methodologies in which each node is visited once (e.g., frameworks presented in Hosni et 

al., 2014 and Mahmoudi and Zhou, 2016). 

 

5-4. Network Augmentation for Efficient Shortest Route Computation  

As mentioned above, constructing the service area of each vehicle requires 

information on the shortest route between the vehicle’s already scheduled stops and 

potential nodes to be included in the service area. To reduce the running time associated 

with such computation, we adopt the Ellipsoid Spatiotemporal Accessibility Method 

(ESTAM) as a network augmentation method (Masoud and Jayakrishnan, 2017). 

According to ESTAM, the region in the network accessible by the vehicle is assumed to 

be restricted to the inside and on the circumference of an ellipse. All nodes outside the 

ellipse are assumed to be outside the service area of the vehicle. The vehicle's origin and 

destination are the two focal points of this ellipse. For ellipse with two focal points 𝑖 and 

𝑗, the transverse diameter 𝐷 is the summation of the distance from the first foci 𝑖 and 

node 𝑘 on the circumference of the ellipse plus the distance from node 𝑘 and the second 

foci 𝑗. The diameter, 𝐷, is computed as a function of the maximum time available for the 

vehicle to travel between 𝑖 and 𝑗, assuming a conservative average traveling speed, 𝑠, as 

given in (39). Thus, node 𝑘 falls inside or on the circumference of the ellipse if it satisfies 

the inequality given in (40), where 𝑑 measures the Euclidean distance between two 

nodes.  

 



            

67 

 

𝐷 = (𝑏𝑗 − 𝑎𝑖) ∙ 𝑠 (39) 

𝑑(𝑖, 𝑘) + 𝑑(𝑘, 𝑗) ≤ 𝐷 (40) 

As shown in Figure 5-3, each pair of consecutive nodes (origin, destination, and 

transfer) in the vehicle tour are considered as focal points of an ellipse. Hence, multiple 

ellipses are constructed to form the augmented network for the vehicle. It should be noted 

that not all nodes in the ellipse are accessible to the vehicle as the actual travel time in the 

network is higher than the travel time of the straight line between nodes, which is also 

computed using a conservative traveling speed. 

 

 

 

Figure 5-3: Network augmentation to determine the service area of each vehicle 

  



            

68 

 

5-5. Determining Candidate Vehicles to Serve a New Ride Request 

A new ride request is defined with the passenger's origin-destination pair 𝑂𝐷, 

earliest pickup time 𝑒𝑝, and latest drop-off time 𝑙𝑝. Given the travel time from the origin 

to the destination 𝑡𝑂𝐷, the latest feasible pickup time from origin 𝑏𝑂, and the earliest 

feasible drop-off time at destination 𝑎𝐷, are computed in Equation (41) and Equation 

(42), respectively. 

𝑏𝑂 =  𝑙𝑝 − 𝑡𝑂𝐷 (41)  

𝑎𝐷 =  𝑒𝑝 + 𝑡𝑂𝐷 (42) 

Thus, the passenger’s pickup time window extends from 𝑒𝑝 to 𝑏𝑂, and her/his 

drop-off time window extends from 𝑎𝐷 to 𝑙𝑝. The ride information is then compared 

against the service areas of all vehicles in the network to find candidate vehicles to serve 

the passenger. A vehicle is a candidate to serve this ride with no transfer if both the origin 

and the destination of the trip are falling in the service area of that vehicle and they are 

reached within the time windows specified by the passenger. 

If the transfer option is considered, two vehicles are determined such that the 

origin and the destination of the trip belong to the service areas of the first and the second 

vehicles, respectively. Again, the time windows at which these two vehicles are available 

at the origin and destination must overlap with the passenger's pickup and drop-off time 

windows. In addition, the service area of these two vehicles must include a transfer node 

such that the time windows scheduled for the two vehicles to reach that transfer node 

overlap to enable the transfer to occur. If no single vehicle or two vehicles are available, 

the passenger is marked as unserved at the current time. We assume that the TNC 
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operator can communicate with this passenger later to offer the service as it becomes 

available, and the passenger is still seeking it. 

 

5-6. Vehicle Tour Construction and Selection of the Best Tour 

As described earlier, candidate vehicles are selected by checking the feasibility of 

inserting one node at a time in the current tour of the vehicle. Thus, there is no guarantee 

of the feasibility of a newly constructed tour if two new nodes (e.g., origin-destination, 

origin-transfer, or transfer-destination) are simultaneously inserted in the current tour. 

Therefore, a step is required to determine the set of feasible vehicle tours after inserting 

the two new nodes associated with the new ride request. Inserting the two new nodes 

could result in different tours for the vehicle, as shown in Figure 5-4. In this step, taking 

advantage of the limited number of stops in any tour, all feasible tours are generated after 

inserting the origin and the passenger's destination in the original tour of the vehicle(s). 

This step is implemented in parallel following a multi-threading technique to expedite the 

generation of these tours. Any tours that do not meet the passenger's preferences 

regarding ridesharing and transfer are eliminated. The feasible tours then are ranked 

based on the performance criterion of interest. For example, ride requests could be 

assigned to vehicles such that the TNC profit is maximized considering any paid 

discounts for ridesharing and transfer. Alternatively, the ride requests are assigned to 

vehicles that minimize the passengers’ travel time. After selecting the best tour and 

determining the vehicle(s) serving this new ride, the vehicle(s)’ service area is updated to 

reflect the time window constraints of all passengers served by this vehicle, including the 

newly added passenger. 
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Figure 5-4: Different insertion strategies for new passenger 

 

5-7. Activation of the Rollback Procedure 

The methodology periodically activates a greedy-based heuristic to examine if a 

solution generated during a predefined past horizon can be improved considering updated 

information on the ride requests and the tours scheduled for all vehicles. A list of 

passengers is constructed at each activation, including passengers already assigned rides 

but have not yet started their trips, and passengers previously denied the service due to 

vehicle unavailability when they initially requested the service. Figure 5-5 illustrates the 

logic of the procedure. The steps of the greedy-based heuristic implemented at each 

activation are also given in Figure 5-1. 

The heuristic starts by removing any passenger previously assigned to a vehicle 

from the tour of that vehicle and updating the service area of that vehicle accordingly. 

Then, all ride requests in the rollback list are grouped. The ride-matching algorithm is 
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activated to determine a match for each passenger in the list, as described above. The 

passenger-vehicle(s) combination with the highest performance is selected following a 

greedy strategy. The service area of the vehicle(s) matched to this passenger is updated to 

consider the time window constraints of this new passenger. This passenger is removed 

from the list, and the process is repeated until all passengers in the list are matched to 

vehicles or marked as passengers who cannot be served. At the end of the process of 

matching all passengers in the list, the performance of this new solution is compared to 

the solution found before activating the rollback procedure. The new solution is adopted 

if it has a higher performance and it does not deny the service to any passengers who 

were previously assigned a service. 

 

 

 

Figure 5-5: Implementation of the rollback procedure 
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5-8. Summary 

This chapter presented the solution methodology for solving the online version of 

the ODMS with ridesharing/transfer options and time window constraints. In this version 

of the problem, the passengers’ demand is not known a priori for the entire horizon of 

interest; therefore, at the arrival of a new ride request, the problem is solved to assign a 

ride to this new customer. The methodology adopts a hybrid heuristic approach, which 

enables solving large problem instances in near real-time. The heuristic allows to (1) 

promptly respond to individual ride requests and (2) periodically re-evaluate the 

generated solutions and recommend modifications to enhance the overall solution quality. 

The solution methodology starts with creating each vehicle's service area, which 

is updated dynamically through the horizon. Then, at the arrival of each ride request, 

candidate vehicles to offer a service to the new ride request are determined. Different 

criteria could be defined to choose the best route among these candidate routes. After 

selecting the best vehicle to serve this passenger, the route(s) and service area(s) of the 

vehicle(s) will be updated. A network augmentation technique is used to compute the 

shortest paths in real-time, which adopts the Ellipsoid Spatiotemporal Accessibility 

Method (ESTAM). Finally, a rollback strategy which is a greedy-based heuristic, is 

activated periodically to examine if a solution generated during a predefined past horizon 

can be improved considering updated information on the ride requests and the tours 

scheduled for all vehicles.  
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Chapter 6  

RESULTS AND ANALYSIS: THE OFFLINE SOLUTION METHODOLOGY 

 

 

6-1. Introduction 

This section applies the modified column generation solution methodology to 

solve hypothetical and real-world problems. The experiments examine the performance 

of the solution methodology with respect to different factors, including network size, the 

number of passengers and vehicles, and the percentage of passengers willing to rideshare 

and/or transfer. This chapter is organized as follows. Section 6-2 describes the setup of 

the experiments. Section 6-3 compares the performance of the proposed solution 

methodology with that obtained using the CPLEX solver. Section 6-4 describes the 

convergence pattern of the solution methodology. Section 6-5 presents vehicle occupancy 

distribution for one test problem. Section 6-6 shows the effect of passengers’ preferences 

on the overall performance of the ODMS. Finally, section 6-7 presents a summary of this 

chapter. 

 

6-2. Experimental Setup  

To demonstrate the capabilities of the modeling framework and to assess the 

performance of the developed solution methodology, a set of experiments is conducted. 

These experiments examine the effect of different features, including network size, 

number of passengers, number of vehicles, and percentage of passengers willing to 

rideshare or transfer. Java programming language and the CPLEX 12.6.1 as solver are 
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used to implement the algorithm. Experiments were executed on a Dell workstation with 

512 GB of Memory and 72 processors of 2.3 GHz.  

The results are recorded for two grid networks of 25 (5x5) and 100 (10x10) 

nodes. The results are also recorded for a real-world network representing the downtown 

area of the City of Dallas, which consists of 2,424 nodes and 5,947 links (see Figure 6-1). 

To evaluate the performance of the proposed algorithm, these problems are solved using 

the CPLEX solver using the default settings of the solver. For the grid network, the initial 

location of each vehicle and the OD pair of each passenger are selected randomly.  

For the Dallas network, the passengers are randomly picked such that they 

resemble the region’s OD demand matrix for the morning peak hour (North Central 

Texas Council of Government, Transportation Department, 2009). The earliest pickup 

time for each passenger is randomly selected within the operation horizon. To set the 

latest drop-off time for a passenger, a randomly generated time interval between 15 and 

30 minutes plus the travel time of the shortest path between the passenger's OD pair is 

added to the passenger's earliest pickup time. Without loss of generality, we assume 

identical vehicles with a maximum capacity of four passengers and an average operating 

cost of $0.50/mile. A fare value of $2.0/mile is assumed to be collected from each 

passenger with a 10% discount for passengers who rideshare and transfer. 
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Figure 6-1: The Dallas downtown network used in the analysis 

 

6-3. Benchmarking Against CPLEX  

As given in Table 6-1, several performance measures are recorded for each 

problem instance, including Lower Bounds and Upper Bounds (LB, UB) for the best 

solution found by the CPLEX solver, the percentage gap of the CPLEX solution, the 

value of the objective function obtained by the modified CG methodology, and the 

execution time of both methods. The network augmentation step is not considered for the 

first ten problem instances (5x5 grid networks) as the network is already small. However, 

as described above, the network augmentation step is activated for both the 10x10 grid 

and the Dallas networks. 
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Table 6-1: Computation results of the modified column generation methodology 

     CPLEX Modified Column Generation 

Test 

No. 
Network  

No. of 

Vehicles 
No. of 

Passengers 
Objective 

Function ($) 

CPU 

Time 
(Sec.) 

Gap 

(%) 

Objective 

Function 

($) 

CPU Time 
(Sec.) 

1 

5
x
5
 G

ri
d

 N
et

w
o
rk

 

 2 8 45 53 0.0 45.0 130 

2  2 10 68.0 195 0.0 64.0 320 

3  3 6 33.5 1,756 0.0 33.0 760 

4  3 10 60.0 2,280 0.0 60.0 730 

5  3 12 (68.9,92.0) >10,800 4.0 66.5 785 

6  4 8 (43.2,49.2) >10,800 14.0 39.0 825 

7  4 10 (54.4,60.6) >10,800 12.0 54.4 885 

8  4 12 (67.3,74.3) >10,800 10.0 59.9 1,035 

9  5 14 (75.9,84.1) >10,800 11.0 60.4 3,100 

10  5 20 (72.5,102.0) >10,800 41.0 75.3 7,500 

11 

1
0

x
1

0
 G

ri
d

 N
et

w
o
rk

 

 3 4 60.0 1,680 0.0 60.0 510 

12  3 10 (112.0,169.8) >10,800 51.0 140.0 585 

13  4 13 (128.0,219.4) >10,800 71.4 155.6 565 

14  4 26 - >10,800 - 286.8 805 

15  5 20 - >10,800 - 252.3 950 

16  5 30 - >10,800 - 334.4 1,150 

17  6 25 - >10,800 - 382.0 1,248 

18  6 40 - >10,800 - 444.5 1,330 

19  7 45 - >10,800 - 475.5 1,410 

20  7 50 - >10,800 - 505.5 1,480 

21 

D
a

ll
a
s 

N
et

w
o

rk
  10 40 - >10,800 - 594.0 7080 

22  15 50 - >10,800 - 758.0 8,350 

23  18 60 - >10,800 - 913.5 9,200 

24  22 65 - >10,800 - 983.0 12,150 (> 3 Hr.) 

25  25 70 - >10,800 - 1,058.0 13,980 (> 3 Hr.) 
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The results show that the CPLEX solver can solve only small problem instances. 

As the problem size increases, the solver fails to provide the solution within the three-

hour limit defined for the execution time. On the other hand, the modified CG algorithm 

could generate near-optimal solutions in reasonable execution times. It should be noted 

that for some problems, the CG methodology finds a solution with an objective function 

that is less than the LB obtained by the CPLEX. The main reason for obtaining a lower 

objective function is the value of the gap used as a stopping criterion for the master and 

sub-problems (10% gap). For example, considering problem 6, when the gap is reduced 

to 0%, the objective function increases to 46.0, which is higher than the LB obtained by 

the CPLEX. 

While the CPLEX solver recorded less execution time than the CG algorithm for 

small problem sizes (e.g., problem no. 1 and problem no. 2), the CG algorithm obtained 

the optimal or near-optimal solutions for all other problem instances in much fewer 

execution times. For example, considering problem 11, which includes three vehicles and 

four passengers, the CPLEX solver obtained the optimal solution in 1,680 seconds 

compared to 510 seconds recorded by the modified CG. For problem 13, which includes 

four vehicles and 13 passengers, the CPLEX solver provided lower and upper bounds of 

$128.0 and $219.5 within three hours. The modified CG algorithm obtained an objective 

value of $155.6 in 565 seconds. No solution was obtained for any of the Dallas network's 

problem instances using the CPLEX solver within the three-hour execution time, as 

shown in Table 6-1.  
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6-4. Convergence Pattern  

Figure 6-2 shows an example of the convergence pattern of the modified CG 

algorithm. This pattern is recorded for a problem instance that utilizes the Dallas 

downtown network with 18 vehicles and 60 passengers (Problem 23 in Table 6-1). The 

convergence pattern is recorded for the mater problem and four different sub-problems. 

Two of the sub-problems are selected to include one vehicle only, while the other two 

sub-problems include two vehicles. As shown in the figure, the master problem 

converged in six iterations. In addition, the sub-problems converge in five to six 

iterations. Sub-problems with a single-vehicle tend to converge in slightly fewer 

iterations compared to sub-problems with two vehicles. These results demonstrate the fast 

convergence pattern of the algorithm, including its embedded sub-problems.  

 

 

Figure 6-2: Convergence pattern of the solution algorithm 
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6-5. Vehicle Occupancy Distribution 

Table 6-2 provides the occupancy distribution of the vehicles used to serve the 60 

passengers. For example, the first vehicle was not occupied by any passengers for 16% of 

the time. The same vehicle was occupied by one, two, and three passengers for 37%, 

29%, and 18% of the time, respectively. The vehicle was not observed to serve four 

passengers at any time on the horizon. The table also shows that only 12 vehicles are 

used in the solution. The occupancy of other vehicles is equal to zero for the entire 

horizon. The average percentage of time in which vehicles were idle is about 45%. 

Excluding the six unused vehicles, this percentage drops to 16.7%. Fifteen customers 

were denied service according to the obtained solution. Careful examinations of these 

customers reveal that these customers are either not profitable or have tight time windows 

that were infeasible to satisfy considering the locations of the vehicles. As explained 

earlier, if a vehicle's travel cost to arrive at the customer's origin is greater than the 

revenue generated by serving the customer, this vehicle is not assigned to this customer. 

Similarly, if the vehicle's expected arrival time at the customer's origin plus the travel 

time to her/his destination is beyond the latest drop-off time of this passenger, the 

customer is marked as infeasible to be served by this vehicle. 
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Table 6-2: Vehicle occupancy rate for a problem instance of 18 vehicles and 60 passengers in Dallas’s downtown network 

 
Vehicle 

Percentage of time vehicle occupancy is: 

0 1 2 3 4 

1 16 37 29 18 0 
2 19 48 33 0 0 
3 15 14 39 19 13 
4 25 34 26 15 0 
5 13 38 22 19 8 
6 19 27 42 12 0 
7 18 82 0 0 0 
8 16 34 23 15 12 
9 21 28 35 16 0 

10 12 25 63 0 0 
11 3 39 30 18 10 
12 23 21 39 17 0 
13 100 0 0 0 0 

Average 44.6 23.5 21.1 8.2 2.3 
Average (without 

vehicle 13 to 18) 
16.7 35.6 31.8 12.4 3.6 
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6-6. Passenger Preferences 

The last set of experiments examines the effect of passengers’ preferences on the 

performance of the ODMS. The experiments show the effect of serving demand 

populations with different percentages of passengers willing to rideshare or transfer. 

These experiments are conducted using Dallas’ downtown network with 18 vehicles and 

60 passengers. The results of these experiments are presented in Table 6-3 and Table 6-4, 

respectively. Table 6-3 gives the value of the objective function, the number of used 

vehicles, and the number of served passengers considering different percentages of 

passengers willing to transfer. For example, in the scenario with no transferring 

passengers, the ODMS utilizes 16 vehicles and serves only 34 customers. The ODMS’ 

total profit under this scenario is $688.1. 

On the other hand, in the scenario in which all passengers are assumed to be 

willing to transfer, the ODMS’ profit jumps to $913.5 by serving 45 passengers using 12 

vehicles. Twelve passengers transfer in this scenario with an average waiting time of 4.5 

minutes, which explains the increase in the average passenger travel time. Serving more 

passengers with a smaller number of vehicles led to increasing the average miles traveled 

by vehicles from 16.5 to 23.5 miles.  
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Table 6-3: The effect of the percentage of passengers willing to transfer on the ODMS performance  

(Percentage of passengers willing to ride share = %100) 

 
Test 

No. 

Percentage 

of 

passengers 

willing to 

transfer % 

No. of 

transferred 

passengers 

No. of 

served 

passengers 

Objective 

Function 

($) 

No. of 

used 

vehicles 

Average 

miles 

traveled 

per vehicle 

(M) 

Average 

Passenger 

travel time 

(Sec.) 

Average 

passenger 

waiting time at 

transfer nodes 

(Sec.) 

1 0 0 34 688.1 16 16.5 840 0 
2 25 5 37 733.5 14 18.7 936 252 
3 50 7 38 762.6 14 19.3 1,044 318 
4 75 10 40 818.0 13 20.9 1,242 360 
5 100 12 45 913.5 12 23.5 1,176 270 
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Table 6-4 gives the results of the experiments in which different percentages of 

passengers are willing to rideshare. As shown in the table, serving demand populations 

with more passengers willing to rideshare could significantly impact the ODMS 

profitability. For example, if none of the passengers is willing to rideshare, a total profit 

of $354.0 is recorded as a result of serving 20 passengers. The profit almost tripled when 

this percentage increased to 100% serving 45 passengers. One can also notice that fewer 

vehicles are used as the percentage of passengers willing to rideshare increases. While 16 

vehicles are used to serve 20 passengers in the scenario with no ridesharing, 45 

passengers are served by only 12 vehicles when all passengers are assumed to be willing 

to rideshare.  

As more passengers are served through ridesharing, the average passenger travel 

time and average miles traveled by vehicles also increase. The average travel time 

increases from 12 minutes to about 20 minutes when all passengers are assumed to be 

willing to rideshare. One can notice that the solutions in some problem instances include 

unutilized vehicles and unserved passengers as it could be infeasible and/or unprofitable 

for these unutilized vehicles to serve these passengers given their locations and 

pickup/drop-off time windows. This set of experiments shows that the attitude of 

passengers towards ridesharing and transfer services may have a substantial impact on the 

ODMS profitability. Accordingly, introducing these services demand careful studying of 

passengers’ preferences, which could vary significantly across metropolitan areas. 
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Table 6-4: The effect of the percentage of passengers willing to rideshare on the ODMS performance  

(Percentage of passengers willing to transfer = %100) 

Test No. 
Percentage of 

Passengers Willing 

to Rideshare % 

No. of 

Served 

Passengers 

Objective 

Function 

($) 

No. of 

Used 

vehicles 

Average miles 

traveled per 

vehicle (M) 

Average 

Passenger travel 

time (Sec.) 

1 0 20 354.0 16 16.2 726 
2 25 26 465.5 15 17.3 780 
3 50 31 559.0 15 19.6 990 
4 75 34 727.0 14 21.3 1,068 
5 100 45 913.5 12 23.5 1,176 
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6-7. Summary 

The chapter presents the results of a set of experiments that are performed to show 

the capabilities of the modeling framework and to evaluate the performance of the 

developed solution methodology. Different problems are solved using the CPLEX solver 

and the proposed methodology. Results show that CPLEX can solve only small-size 

problems; however, the proposed method generates good quality solutions for problems 

with reasonable sizes. Moreover, experiments are conducted to show the effect of serving 

demand with different percentages of passengers willing to rideshare or transfer. 

Increasing the percentage of passengers willing to transfer and/or rideshare enables the 

system to serve more passengers using fewer vehicles. This set of experiments shows that 

passengers' preferences towards ridesharing and transfer services could substantially 

impact the performance and profitability of the ODMS. 
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Chapter 7  

RESULTS AND ANALYSIS: THE ONLINE SOLUTION METHODOLOGY 

 

 

7-1. Introduction 

In this chapter, we present the outcomes of numerous experiments that are 

performed to demonstrate the potentials of the heuristic-based solution methodology 

presented in chapter 5. The first set of experiments evaluates the effect of the criteria used 

to match passengers to vehicles on the overall solution quality. The second set of 

experiments examines the quality of the solution considering different passenger 

populations that vary in terms of the percentage of passengers willing to rideshare and/or 

transfer.  

The third set of experiments investigates the effect of applying the rollback 

procedure on improving the overall solution quality. Finally, the last set of experiments 

pertains to benchmarking the solution quality obtained using the solution methodology 

presented in chapter 5 against those of the methodology presented in chapter 4 and the 

framework developed by Cheikh et al. (2017). 

The methodology is implemented using the Java programming language, and all 

runs are carried out on a Dell workstation with 72 logical processors of 2.3 GHz and 512 

GB Memory. Two different networks are used in this analysis, considering an operation 

period of three hours. The first network is a hypothetical grid network of 400 (20 × 20) 

nodes. The second network, presented in Figure 6-1, is a real-world network representing 

the core area of the City of Dallas, consisting of 2,424 nodes and 5,947 links. The initial 
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location of each vehicle and the OD pair of each passenger are selected randomly for the 

grid network. For the Dallas network, passengers are randomly picked such that they 

resemble the region's OD demand matrix for the morning peak hour. The service request 

time of each passenger is randomly generated over a two-hour horizon.  

A randomly generated number between 10 and 20 minutes is added to the service 

request time to set the earliest pickup time for each passenger. Similarly, to define the 

latest drop-off time for a passenger, a randomly generated time interval between 15 and 

30 minutes plus the travel time of the shortest path between the passenger’s OD pair is 

added to the passenger’s earliest pickup time. In addition, a randomly generated 

passenger is assigned to each vehicle at the beginning of the horizon to construct the 

initial tour and the service area of each vehicle. Without loss of generality, we assume 

identical vehicles with a maximum capacity of four passengers and an average operating 

cost of $0.50/mile. A fare rate value of $2.50/mile multiplied by the shortest route 

distance between passenger’s OD pair is assumed to be collected from each passenger 

with a 10% discount for ridesharing and transferring passengers.  

 

7-2. Effect of Adopting Different Passenger-Vehicle Matching Criteria 

Two different criteria for matching passengers-vehicles are assessed. In the first 

criterion (C-I), a passenger is matched to a vehicle that maximizes the TNC total profit, 

which is computed as the difference between the ride fare minus the extra cost of re-

routing the vehicle to serve the new request. The second criterion (C-II) focuses on 

enhancing the passengers’ travel experience. Options without transfer are first examined, 

and the vehicle that offers minimum travel time is matched to the passenger. If no route 
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without transfer is available, the passenger is matched to two vehicles that offer the 

minimum travel time route with the transfer. The experiment is conducted considering 

the grid network with 20 vehicles and 100 passengers and the Dallas network with 50 

vehicles and 200 passengers. It is assumed that all passengers are willing to share the ride 

and to have a transfer. 

Table 7-1 compares the solution quality obtained under these two criteria. Several 

performance measures are recorded, including the number of served passengers, the 

number of transferred passengers, total profit, average miles traveled per vehicle, average 

passenger travel distance, and the average time that is taken to respond to a ride request. 

As shown in the table, solutions that adopt C-I record more profit for both networks. For 

example, 20.5% and 18.4% more profits are recorded for the grid and Dallas networks, 

respectively, compared to their corresponding solutions in which C-II is considered. 

Furthermore, solutions that adopt C-I serve more passengers than those of C-II. For 

example, 159 passengers are served under C-I compared to 138 passengers served under 

C-II for the Dallas network. On the other hand, solutions that adopt C-II enhance the 

passengers’ travel experience as indicated by the average passengers’ travel distance and 

the total number of passengers served with the transfer.  

As shown for the Dallas network, the average passenger travel distance is reduced 

by 23.8% under C-II compared to C-I. Similarly, the total number of transfers dropped 

from 29 to 10 for these two solutions. It should be noted that the average time taken to 

respond to a new ride request (i.e., the execution time of the methodology) does not 

exceed 48.0 seconds in any of the tested cases. 
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 Table 7-1: Effect of the ride-vehicle matching criteria 

Matching 

criteria 
Network 

No. of 

served 

passengers 

No. of 

transferred 

passengers 

Total 

profit ($) 

Average miles 

traveled per 

vehicle (miles) 

Average miles 

traveled per 

passenger (miles) 

Average time to 

respond to a ride 

request (sec.) 

Increasing 

Profitability 

(C-I) 

20 x 20 

grid 

network 
73 15 1456.3 18.4 8.7 13.0 

Dallas 

network 
159 29 3859.5 25.3 11.9 48.0 

Enhancing 

Travel 

Experience 

(C-II) 

20 x 20 

grid 

network 
60 4 1208.4 16.2 7.9 11.0 

Dallas 

network 
138 10 3256.7 23.8 9.6 42.0 
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7-3. Effect of Passengers’ Willingness to Ridesharing and Transfer 

This set of experiments evaluates the effect of having passenger populations with 

different preferences on ridesharing and/or transfer. These experiments are conducted 

using the Dallas network with 50 vehicles and 200 passengers. The passenger-vehicle 

matching criteria C-I is adopted in this set of experiments. Three cases are considered. In 

the first case, 50% of passengers are assumed to be willing to rideshare, with the 

percentage of passengers willing to transfer being 0%, 10%, 50%, and 100%. In the 

second case, all passengers are assumed to be willing to rideshare while the percentages 

of passengers willing to transfer are 0%, 10%, 50%, and 100%. Finally, in the third case, 

all passengers are assumed to be willing to transfer, with the percentages of passengers 

willing to rideshare being 0%, 10%, 50%, and 100%. 

The outcomes of these experiments are given in Table 7-2. As shown in the table, 

increasing the percentage of passengers willing to rideshare and/or transfer increases the 

profitability and improves other performance measurements of the ODMS. In addition, 

having passengers willing to rideshare is shown to have a more positive impact on the 

ODMS operation than having passengers willing to transfer. Comparing the solutions of 

the case of 50% ridesharing and 10% transfer with the case of 100% ridesharing and 10% 

transfer, the number of served passengers increased by 22.9% resulting in a 12.5% 

increase in the profit. Comparing the solutions of the case of 100% ridesharing and 10% 

transfer with the case of 100% transfer and 10% ridesharing, the number of served 

passengers increased by 21.5% resulting in a 25.1% increase in the profit. This set of 

experiments illustrates that passenger preferences regarding the ridesharing and transfer 

options could play an essential role in ODMS profitability. Therefore, introducing such 



            

91 

services requires carefully studying passengers' preferences, which vary significantly 

across communities. 
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Table 7-2: Effect of passenger preferences on the performance of ODMS 

Passenger population 
No. of 

served 

passengers 

No. of 

transferred 

passengers 

Total profit 

($) 

Average ride cost 

for each passenger 
($) 

Average miles 

traveled per 

vehicle (miles) 

Average miles 

traveled per 

passenger (miles) 

Transfer 
(50% of passengers 

are willing to 

rideshare) 

0 82 0 2658.4 23.8 17.5 7.5 

10 87 3 2743.2 22.7 17.9 7.8 

50 93 8 3079.2 20.9 19.7 8.1 

100 111 12 3375.8 17.3 21.2 8.3 

Transfer 
(All passengers are 

willing to rideshare) 

0 105 0 3040.2 18.9 19.1 9.5 

10 107 2 3087.5 18.9 19.5 9.9 

50 128 12 3689.0 17.7 21.4 10.5 

100 159 29 3859.5 15.3 25.3 11.9 

Rideshare 
(All passengers are 

willing to transfer) 

0 81 9 2239.7 20.5 19.8 8.0 

10 88 11 15 2467.0 19.9 20.6 8.4 

50 114 29 3489.7 18.1 22.7 9.8 

100 159 9 3859.5 15.3 25.3 11.9 
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7-4. Effect of Activating the Rollback procedure 

In this set of experiments, the performance of the ODMS is compared for cases 

with and without activating the rollback procedure. The experiment is conducted 

considering the Dallas network. Four instances of the problem are created with different 

numbers of vehicles and passengers. It is assumed that all passengers are willing to 

rideshare and transfer. In addition, the passenger-vehicle matching criteria C-I is adopted 

in this set of experiments. The rollback is activated every 15 minutes covering a rollback 

horizon of 5, 15, and 30 minutes, respectively. The results of these experiments are 

presented in Table 7-3. As shown in the table, activating the rollback procedure enhances 

the quality of the solution in terms of TNC profitability and the number of served 

passengers. For example, for the case with 5 minutes rollback horizon, the number of 

served passengers and total profit improved by 4.6% and 3.9%, respectively. When the 15 

minutes rollback horizon is considered, the average improvements in the number of 

served passengers and total profit are 14.2% and 12.7%, respectively.  

One can also observe the additional improvements achieved by further extending 

the rollback horizon; however, improvements are not as significant as those with 15 

minutes rollback horizon. These average improvements are increased to 15.1% and 

13.3% when the rollback horizon is extended to 30 minutes. Moreover, the rollback 

procedure will allow re-assign passengers who have been previously assigned a vehicle 

but have not started their trip yet (at-home passengers). The results of this set of 

experiments did not show any trend in change to the overall travel time and trip cost due 

to re-assigning these passengers. 
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Table 7-3: Effect of applying rollback procedure on ODMS performance 

Length of 

rollback 

horizon 

(Min) 

Test No. 
No. of 

vehicles 
No. of 

passengers 

Without rollback With rollback 

No. of 

served 

passengers 
Profit ($) 

No. of served 

passengers 
Profit ($) 

5 

1 40 100 71 1705.2 74 1812.5 

2 40 150 119 2904.8 126 3045.7 

3 50 150 125 3078.9 130 3164.8 

4 50 200 159 3859.5 163 3976.0 

15 

5 40 100 71 1705.2 82 1923.1 

6 40 150 119 2904.8 138 3245.5 

7 50 150 125 3078.9 141 3367.9 

8 50 200 159 3859.5 178 4258.0 

30 

9 40 100 71 1705.2 84 1966.0 

10 40 150 119 2904.8 138 3245.5 

11 50 150 125 3078.9 142 3379.0 

12 50 200 159 3859.5 178 4258.0 
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7-5. Benchmarking the Solution Quality 

This section compares the methodology's performance presented in this chapter 

with those obtained by two other ridesharing frameworks in the literature. The first 

framework is presented in chapter 4, and the second methodology is presented by Cheikh 

et al. (2017). In chapter 4, the problem is modeled in the form of a Mixed Integer 

Program (MIP) and a solution methodology that integrates a modified version of the CG 

algorithm, and a network augmentation technique is used to obtain a near-optimal 

solution of the problem. This CG methodology assumes that information on all ride 

requests is available at the start of the operation horizon. In this set of experiments, three 

problem instances with the different number of vehicles and passengers are considered 

for the Dallas network, as presented in Table 7-4. The CG methodology was able to solve 

problems with up to 20 vehicles and 60 passengers in a pre-specified three-hour 

execution time threshold. Thus, no problem instances of larger sizes are considered in 

this set of experiments. All passengers are assumed to be willing to rideshare and 

transfer. Both methodologies are set to maximize the TNC profit. In addition, the rollback 

procedure is activated considering a rollback horizon of 15 minutes.  

As shown in Table 7-4, the proposed ride-matching and vehicle routing 

methodology outperforms the modified CG methodology regarding the number of served 

passengers and total profit in two out of the three tested problem instances. Higher 

profitability of 4% and 2.9% are recorded for problem instances 1 and 3, respectively. In 

addition, the number of served passengers increased by 6.4% and 4% for these two 

problems. The average time to respond to the ride requests does not exceed 42 seconds. 

Although the CG provides a good quality solution, it had an execution time of 7,450 and 
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9,430 seconds for the first and third problems, limiting its applicability considering the 

real-time nature of the ODMS operation. 
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Table 7-4: Comparing solution of the proposed framework and the modified column generation 

   Modified column generation 
Ride-matching and vehicle routing 

methodology 

Test No. 
No. of 

vehicles 
No. of 

passengers 

No. of 

served 

passengers 

Total 

profit ($) 

Execution 

time 

(sec.) 

No. of 

served 

passengers 

Total 

profit ($) 

Average time to 

respond to a ride 

request (sec.) 

1 10 40 31 986.6 7,450 33 1025.3 40.0 

2 15 50 41 893.0 8,160 39 849.0 40.0 

3 20 60 49 1043.5 9,430 51 1065.0 42.0 
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In the following, we compare the performance of our solution methodology with 

the one presented in Cheikh et al. (2017) to solve a dynamic ride-matching problem with 

the transfer. Cheikh et al. (2017) considered a carpooling problem in which drivers have 

pre-determined origins and destinations as well as specified departure and arrival times. 

This assumption is expected to significantly reduce the complexity of the problem 

compared to the general settings considered for the ODMS presented here. In addition, 

they assume all passengers are willing to share the ride with others and have transfer in 

their routes. The problem is solved using a meta-heuristic approach that adopts a 

Controlled Genetic Operators (MACGeO). Table 7-5 summarizes the results of a set of 

experiments that compare the performance of the solution methodology presented above 

against that of MACGeO. Two scenarios are considered as presented in Cheikh et al. 

(2017).   

The first scenario assumes 20 vehicles and 36 service requests, while the second 

scenario assumes 75 vehicles and 120 service requests. The first scenario results show 

that our approach used 11 vehicles to serve all passengers (36 passengers), while 

MACGeO serves only 34 passengers using 12 vehicles. Because drivers do not have pre-

determined origins, destinations, and specified departure and arrival times in our 

framework, more passengers are served using a smaller number of vehicles. Our 

methodology is also shown to be more superior in terms of offering more convenient 

services to passengers as only 20% of the passengers are served by a transfer option 

compared to 26.5% in the solution of MACGeO. A similar pattern is observed for the 

second scenario. According to the MACGeO solution, 36 vehicles are used to serve 115 

passengers, with about 26% of the passengers being served with a transfer. Our 
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methodology offered service to 119 passengers using 34 vehicles, where only 22% of the 

passengers are served by a transfer option. The results show the superiority of our 

methodology as it provides services to more passengers and reduces the number of trips 

with transfers, which enhances the passengers’ travel experience and overall service 

satisfaction. One should note that the result of some presented experiments indicates that 

not all passengers are served. This result pertains to the limited number of vehicles used 

in the setting of these experiments to compare our algorithm’s performance with that of 

other methods. As illustrated, increasing the number of vehicles allows serving more 

passengers and increasing the overall profitability. 
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Table 7-5: Comparing solution of the proposed framework and the MACGeO 

Methodology 
No. of 

vehicles 
No. of 

passengers 

No. of 

used 

vehicles 

No. of 

served 

passengers 

% of 
transferred 

passengers 

MACGeO 
20 36 12 34 26.5 

75 120 36 115 25.6 

Ride-matching 

and vehicle 

routing 

20 36 11 36 20.0 

75 120 34 119 22.0 
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7-6. Summary 

This chapter presented the results of experiments that are performed to illustrate 

the capabilities of the heuristic-based solution methodology to solve the online version of 

the problem. The first set of experiments evaluates the effect of the criteria used to match 

passengers to vehicles on the overall solution quality. In the first criterion (C-I), a 

passenger is matched to a vehicle that maximizes the TNC profit. The second criterion 

(C-II) focuses on enhancing the passengers’ travel experience. Results show that 

solutions that adopt C-I record more profit and more served passengers. 

On the other hand, solutions that adopt C-II enhance the passengers’ travel 

experience as indicated by the average passengers’ travel distance and the total number of 

passengers served with the transfer. The second set of experiments examines the quality 

of the solution considering different passenger populations that vary in terms of the 

percentage of passengers willing to rideshare and/or transfer. As shown, increasing the 

percentage of passengers willing to rideshare and/or transfer increases the profitability 

and enhances other performance measures of the ODMS.  

The third set of experiments investigates the effect of applying the rollback 

procedure on improving the overall solution quality. Activating the rollback procedure 

will enhance the quality of the solution in terms of TNC profitability and the number of 

served passengers. Finally, the last set of experiments pertains to benchmarking the 

solution quality obtained using the solution methodology presented in chapter 5 against 

those obtained by two other ridesharing frameworks in literature. The first framework is 

presented in chapter 4, and the second methodology is presented by Cheikh et al. (2017).
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Chapter 8  

SUMMARY 

 

 

This dissertation presents a modeling framework for ODMS operation in 

metropolitan areas. The framework represents ridesharing and transfer services while 

capturing the passengers’ critical characteristics, including the willingness to rideshare 

and transfer. The problem pertains to routing vehicles efficiently to serve passengers who 

specify their desirable pickup and drop-off times and their willingness to rideshare and/or 

transfer in return for fare discounts. Previous studies show that considering transfer 

services would enable ODMS providers to offer service in situations where there is a 

shortage in the vehicle supply. For instance, TNCs might not be able to recruit an 

adequate number of drivers in some locations or during specific periods to serve the 

anticipated passengers’ demand. Although enabling the transfer service may cause an 

increase in passengers' travel time, it would allow TNCs to serve more customers using 

fewer vehicles. 

In chapter 2, an inclusive review of the vehicle routing problem and its extensions 

related to the ODMS problem was presented. Problems reviewed in this chapter include 

(I) single-vehicle and multi-vehicle static routing problems with time window, (II) the 

vehicle routing problem with dynamic (online) demand, and (III) the vehicle routing 

problem with the transfer. 

Reviewing the previous research reveals that while the existing literature captures 

essential aspects of ODMS operation, the developed methodologies lack essential 
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capabilities that prevent their adoption in real-world applications. For example, existing 

models cannot represent both ridesharing and transfer in one comprehensive model. In 

addition, existing models ignored the heterogeneity of passengers' preferences, especially 

with respect to their willingness to rideshare and/or transfer. Furthermore, ODMS 

providers can decline ride requests if they are not profitable. Examining the profitability 

of ODMS requires a modeling framework that can identify profitable trips based on the 

temporal-spatial distributions of passengers and vehicles in the network. Finally, despite 

the previous effort to develop efficient solution methodologies, they are still short of 

modeling ODMS in networks of moderate sizes. 

Chapter 3 described the formal definition of the problem in the form of a 

mathematical program formulation. In this mathematical program, the objective function 

maximizes the total ODMS profit, which is a function of total revenue collected from all 

served passengers considering discounts offered to passengers who rideshare or transfer 

and the operation cost of the vehicles. A set of constraints is presented to satisfy 

passengers’ time window constraints and rideshare and/or transfer preferences and ensure 

path continuity for vehicles and passengers. 

Chapters 4 and 5 provided the solution methodologies to solve the problem's 

offline and online versions, respectively. In chapter 4, a modified version of the column 

generation that can create hybrid columns is proposed to solve the classical vehicle 

routing problem to consider the transfer option. The methodology integrates network 

decomposition and augmentation approaches to solve problems of reasonable sizes. The 

original problem is solved as a bi-level optimization problem with a master problem and 

a set of sub-problems. Each sub-problem is solved iteratively. In each iteration, several 
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distinct (non-overlapping) shortest routes are generated, and their links are added to 

create an augmented network of each sub-problem. When there is no change in the 

solutions of the sub-problems obtained in two consecutive iterations, the results are 

introduced to the master problem. The master problem picks columns that maximize the 

objective function. 

Chapter 5 presented a novel methodology that adopts a hybrid heuristic approach, 

enabling solving large problem instances in near real-time. The methodology adopts a 

hybrid heuristic-based approach that integrates (a) a myopic-based heuristic to allow fast 

response to individual calls following the First-Come-First-Served (FCFS) rule, which is 

activated upon receiving a new ride request (i.e., event-based activation); and (b) a 

greedy-based heuristic to re-optimize previous service commitments which is activated 

periodically at predefined activation intervals (i.e., time-based activation). The 

framework generates ride-matching and vehicle routing solutions based on the latest 

information available on ride requests and vehicle locations and schedules. The 

methodology starts by defining a potential service (catchment) area for each vehicle, 

which is dynamically updated based on the vehicle's current location, the time windows 

of all passengers currently assigned to the vehicle, and prevailing traffic congestion in the 

vehicle's vicinity. Upon the arrival of a new ride request, the methodology determines 

candidate vehicle(s) that can serve the passenger(s) associated with this request. Once a 

vehicle(s) is selected to serve the new passenger, the service area of the vehicle(s) is 

updated to include new nodes along with their feasible visiting time windows. The 

rollback process is activated periodically by considering a past horizon of a pre-

determined length. The procedure re-evaluates the passenger-vehicle assignments made 
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in this past horizon. The procedure determines if a passenger could be assigned to a 

different vehicle or if a service can be offered to a passenger(s) who was previously 

denied service due to vehicle unavailability. 

A set of experiments is conducted using the grid and real-world networks to 

illustrate the capabilities of the modeling framework and the performance of the 

developed solution methodologies. The results are presented in chapters 6 and 7 for 

offline and online solution methodologies, respectively. 

In chapter 6, different problem instances were solved using the CPLEX solver and 

the proposed methodology. Results show that the CPLEX could solve only small-size 

problems; however, the proposed method generates good quality solutions for problems 

with reasonable sizes. Moreover, experiments are conducted to show the effect of serving 

demand with different percentages of passengers willing to rideshare or transfer. 

Increasing the percentage of passengers that are willing to transfer and/or rideshare 

enables the system to serve more passengers using fewer vehicles. This set of tests 

explains that passengers' preferences towards these new services could significantly 

affect the performance and profitability of the service.  

Chapter 7 presented the results of experiments that are performed to illustrate the 

capabilities of the heuristic-based solution methodology. Two different criteria were used 

to match passengers to vehicles in this experiment. In the first criterion (C-I), a passenger 

is matched to a vehicle that maximizes the TNC profit. The second criterion (C-II) 

focuses on enhancing the passengers’ travel experience. Results show that solutions that 

adopt C-I record more profit and more served passengers. On the other hand, solutions 
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that adopt C-II enhance the passengers’ travel experience as indicated by the average 

passengers’ travel distance and the total number of passengers served with the transfer. 

In addition, the results of experiments show that increasing the percentage of 

passengers who are willing to rideshare and/or transfer increases the profitability and 

enhances other performance measures of the ODMS. Comparing the solutions of the case 

of 100% ridesharing and 10% transfer with the case of 100% transfer and 10% 

ridesharing resulted in a 25.1% increase in the profit. Moreover, activating the rollback 

procedure will result in enhancing the quality of the solution in terms of TNC 

profitability and the number of served passengers. 

Three main extensions could be considered for this research work. For example, 

the framework could be extended to consider ODMS integration with public 

transportation services. In this case, ODMS could play a vital role as a feeder to the 

public transportation system and increase public transportation ridership. However, 

coordination of this integrated system is challenging. In addition, integrating the above 

methodology in demand forecasting studies to capture the effect of ODMS modal split 

and route assignment is another extension. 

Moreover, studying the effect of the congestion dynamics in the traffic network 

on ODMS operation is another possible extension. Considering congestion in the network 

and its effect on the travel time will improve the solution quality and reliability of the 

ODMS. Although the problem instances considered in this research are large compared to 

the problems studied in the literature, larger problem instances with higher demand 

levels, more vehicles, and a bigger coverage area could be considered in future works.  
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