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ABSTRACT  16 

Albendazole (ABZ) is an anthelmintic with a broad-spectrum activity, widely used in 17 

human and veterinary medicine. ABZ is metabolized in all mammalian species to 18 

albendazole sulphoxide (ABZSO), albendazole sulphone (ABZSO2) and 19 

albendazole 2-aminosulphone (ABZSO2-NH2). ABZSO and ABZSO2 are the main 20 

metabolites detected in plasma and all three are detected in milk. The ATP-binding 21 

cassette transporter G2 (ABCG2) is an efflux transporter that is involved in the 22 

active secretion of several compounds into milk. Previous studies have reported 23 

that ABZSO was in vitro transported by ABCG2. The aim of this work is to correlate 24 

the in vitro interaction between ABCG2 and the other ABZ metabolites with their 25 

secretion into milk by this transporter. Using in vitro transepithelial assays with cells 26 

transduced with murine Abcg2 and human ABCG2, we show that ABZSO2 and 27 

ABZSO2-NH2 are in vitro substrates of both. In vivo assays carried out with wild-28 

type and Abcg2-/- lactating female mice demonstrated that secretion into milk of 29 

these ABZ metabolites was mediated by Abcg2. Milk concentrations and milk-to-30 

plasma ratio were higher in wild-type compared to Abcg2-/- mice for all the 31 

metabolites tested. We conclude that ABZ metabolites are undoubtedly in vitro 32 

substrates of ABCG2 and actively secreted into milk by ABCG2. 33 

 34 

 35 

 36 
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ABBREVIATIONS: ABC, ATP-binding cassette, ABCG2, ATP-binding cassette 38 

transporter G2; ABZ, Albendazole; ABZSO, Albendazol sulphoxide; ABZSO2 39 

Albendazole sulphone; ABZSO2-NH2, Albendazole 2-aminosulphone; AP-BL, apical 40 

to basal; BL-AP, basal to apical; DMEM, Dulbecco’s modified Eagle’s medium; 41 

HBAs, hydrogen bond acceptors; i.v., intravenous; LOD, limit of detection; LOQ, 42 

limit of quantification; MDCK-II, Madin-Darby Canine Kidney; Papp, apparent 43 

permeability coefficient.   44 
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INTRODUCTION  45 

ABZ is a benzimidazole drug with a broad-spectrum anthelmintic activity, 46 

commonly used in human and veterinary medicine (1). It is effective against 47 

lungworms, gastrointestinal nematodes, tapeworms (Echinococcosis spp) and liver 48 

flukes (Fasciola hepatica) (2). In humans, it is widely used against soil-transmitted 49 

helminths which are responsible for high diseases burdens and are still endemic in 50 

some countries (3, 4). It also is the election drug in programmes to eliminate 51 

lymphatic filariasis (5). Deworming, with anthelmintic drugs such as ABZ, is 52 

extensively recommended in women in reproductive age, including pregnant and 53 

lactating women, who are infected with hookworm which causes malabsorption of 54 

nutrients, loss of appetite, chronic blood loss and iron deficiency anaemia (4). 55 

Recent studies have reported antitumor activity of ABZ (6–9). This drug is well 56 

tolerated in humans but some minor to moderate adverse effects such as 57 

headaches, fever and gastrointestinal upset have been reported (5).  58 

ABZ is metabolized in all mammalian species studied (10). After its oral 59 

administration, it is absorbed from the intestinal lumen and metabolized in gut and 60 

liver by oxidation to ABZSO followed by further oxidation to ABZSO2, and finally by 61 

deacetylation of carbamate group to ABZSO2-NH2 (2, 11–13) (Fig. S1). In most 62 

cases, ABZSO and ABZSO2 are the main metabolites detected in plasma and 63 

urine; the parent drug, ABZ, is not detected in plasma (2, 14). With regard to 64 

anthelmintic activity, ABZSO has been reported to be active whereas in the case of 65 

ABZSO2 there are contradictories studies (15–18). The sum of ABZSO, ABZSO2 66 

and ABZSO2-NH2 is used as a marker residue in milk, kidney, liver, fat and muscle 67 
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from livestock (19). Regarding the transfer of drugs into milk, the ATP-binding 68 

cassette (ABC) transporter ABCG2 is an important and widely described 69 

mechanism. The ABCG2 protein behaves like a pump that extrudes a broad range 70 

of xenotoxins from cells due to its expression at the apical membrane of epithelial 71 

cells in several organs such as intestine, kidney, liver, brain, testicles, among 72 

others (20–22), limiting drug accumulation in cells and modulating absorption, 73 

distribution and elimination. Moreover, ABCG2 is located in the apical membrane of 74 

alveolar epithelial cells in the lactating mammary gland (23), and is the only ABC 75 

transport involved in active secretion of  its substrates into milk (24). Several 76 

natural compounds (25, 26), carcinogens, antitumoral (27), antibiotic (28, 29), anti-77 

inflammatory (30, 31),  hypertensive (32) and antiparasitic drugs (33) have been 78 

reported to be actively secreted into milk by ABCG2.  79 

ABCG2 in vitro interaction with ABZ and ABZSO has been shown in preceding 80 

studies. ABZSO was efficiently transported by murine Abcg2 and moderately by 81 

human ABCG2 (34). However, the in vitro interaction of ABZSO2 and ABZSO2-NH2 82 

with ABCG2 using ABCG2-transduced cells and its correlation with the in vivo 83 

effect of ABCG2 on active secretion of these ABZ metabolites into milk using 84 

Abcg2-/- mice have not yet been investigated and are the main aims of our study.  85 

86 
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RESULTS  87 

In vitro transport of ABZ metabolites: ABZSO2 and ABZSO2-NH2.  88 

To determine whether ABZ metabolites are efficiently transported in vitro by 89 

ABCG2, we used MDCK-II cell line and its subclones transduced with murine 90 

Abcg2 and human ABCG2 to conduct transepithelial transport assays. The 91 

parental and subclones cell lines were grown to confluent polarized monolayers, 92 

and vectorial transport of tested drugs at 5 μM across the monolayers was 93 

determined. As stated before, ABZSO has been previously tested in vitro using 94 

murine and human subclones cell lines, being a substrate of both (34). 95 

For ABZSO2, the outcome obtained in the MDCK-II parental cells for apical and 96 

basal translocation was similar (Fig. 1A, Table 1). Nevertheless, basal to apical 97 

transport in cells transduced with murine Abcg2 (Fig. 1B) was higher than apical to 98 

basal transport, with an efflux ratio significantly higher (5.47 ± 0.32) than in the 99 

parental cells (Fig. 1A) (0.97 ± 0.08; p ≤ 0.05). When human ABCG2-transduced 100 

cells were used (Fig. 1C), the difference with parental cells in apically directed 101 

translocation was lower compared to apical directional transport in the case of 102 

murine cells. A significant difference between the efflux ratio obtained for human 103 

ABCG2-transduced cells and for parental cells was observed (1.35 ± 0.16 vs 0.97 104 

± 0.08; p ≤ 0.05). To confirm that this effect is caused by ABCG2, the specific 105 

ABCG2 inhibitor Ko143 was used (35) (Fig. 1D-F), causing a similar efflux ratio in 106 

the transduced cells compared to the MDCK-II parental cell line (Fig. 1A). 107 

In the same way, for ABZSO2-NH2, the apical and basolateral translocations in 108 

MDCK-II parental cells were similar (Fig. 2A). Apical directional transport in murine 109 
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Abcg2 (Fig. 2B) and human ABCG2-transduced cells (Fig. 2C) was higher (efflux 110 

ratio of 4.48 ± 0.53 and 3.58 ± 0.79; respectively) than in parental cells (Fig. 2A), 111 

showing in both cases, a significant difference in efflux ratio compared to parental 112 

cells (1.02 ± 0.12; p ≤ 0.05). Similarly, the ABCG2 inhibitor Ko143 was used (Fig. 113 

2D-F) to confirm the Abcg2 specific transport effect. The results also show a similar 114 

efflux ratio between murine and human subclones compared to the MDCK-II 115 

parental cell line (Fig. 2A) with the use of Ko143. From this, it can be seen that 116 

ABZSO2 and ABZSO2-NH2 are in vitro substrates of murine Abcg2 and human 117 

ABCG2.  118 

Secretion of ABZ metabolites into milk in Abcg2−/− and wild-type female mice.  119 

To determine whether Abcg2 is involved in the secretion of ABZ metabolites into 120 

milk, Abcg2-/- and wild-type lactating female mice were used. Intravenous (i.v.) 121 

administration of 2 mg/kg of tested compounds was made, and blood and milk 122 

samples were collected 30 min after administration.  123 

After ABZSO administration (Fig. 3A), a similar concentration of ABZSO was 124 

obtained in plasma from wild-type and Abcg2-/- mice (1.95 ± 0.29 μg/ml vs. 2.11 ± 125 

0.41 μg/ml). In contrast to plasma, milk concentration of ABZSO was higher in wild-126 

type than in Abcg2-/- mice (2.19 ± 0.33 μg/ml vs. 1.83 ± 0.21 μg/ml; p ≤ 0.05). 127 

Moreover, the milk-to-plasma ratio of ABZSO in wild-type was 1.3-fold higher 128 

compared to Abcg2 -/- mice (1.13 ± 0.14 μg/ml vs. 0.89 ± 0.17 μg/ml; p ≤ 0.05). 129 

ABZSO2 was detected in plasma and milk at very low levels and no differences 130 

were found between both types of mice (data not shown).  131 
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Likewise, similar assays were carried out by administrating ABZSO2 and ABZSO2-132 

NH2. After ABZSO2 administration (Fig. 3B), plasma concentrations of ABZSO2 133 

were similar in wild-type and Abcg2-/- mice (1.25 ± 0.46 μg/ml vs. 1.30 ± 0.41 134 

μg/ml). However, milk concentration of ABZSO2 was also higher in wild-type than in 135 

Abcg2-/- mice (1.78 ± 0.50 μg/ml vs. 1.34 ± 0.41 μg/ml; p ≤ 0.05). Therefore, the 136 

milk-to-plasma ratio of ABZSO2 in wild-type was 1.4-fold higher compared to Abcg2 137 

-/- mice (1.52 ± 0.49 μg/ml vs. 1.09 ± 0.32 μg/ml; p ≤ 0.05). In this case, ABZSO2-138 

NH2 was detected in milk and plasma at low levels and no differences were found 139 

between both types of mice.  140 

Finally, after administration of ABZSO2-NH2 (Fig. 3C), wild-type and Abcg2-/-  141 

plasma concentrations were not different (0.43 ± 0.12 μg/ml vs. 0.48 ± 0.08 μg/ml). 142 

Nonetheless, there were differences in milk concentrations between wild-type and 143 

Abcg2-/- mice (2.62 ± 0.79 μg/ml vs. 1.45 ± 0.34 μg/ml; p ≤ 0.05). The milk-to-144 

plasma ratio of ABZSO2 -NH2 in wild-type was 2.2-fold higher compared to Abcg2 -/- 145 

mice (6.60 ± 2.61 μg/ml vs. 3.00 ± 0.25 μg/ml; p ≤ 0.05).  146 

These results show that ABCG2 is clearly involved in the active secretion of ABZ 147 

metabolites into milk. 148 
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DISCUSSION  149 

Widely validated in vitro-in vivo correlation approaches have shown the in vitro 150 

interaction between ABCG2 and ABZ metabolites and the in vivo role of Abcg2 in 151 

the secretion of these compounds into milk. 152 

In vitro transepithelial assays using MDCK-II cells transduced with murine Abcg2 153 

and human ABCG2 show that ABZSO2 (Fig. 1) and ABZSO2-NH2 (Fig. 2) are in 154 

vitro substrates of murine Abcg2 and human ABCG2, and that they are both 155 

efficiently transported by murine Abcg2 (efflux ratio of 5.47 ± 0.32 for ABZSO2 and 156 

4.48 ± 0.53 for ABZSO2-NH2). However, ABZSO2 is moderately transported by 157 

human ABCG2 (efflux ratio of 1.35 ± 0.16) compared to ABZSO2-NH2 (efflux ratio 158 

of 3.58 ± 0.79). This difference in efficiency of transport between murine and 159 

human has been previously shown in other tested drugs. A difference in the 160 

affinity/selectivity of murine Abcg2 and human ABCG2 for substrates could be a 161 

possibility (31, 34, 36). In this regard, the concentration used in the present study 162 

(5 µM) is similar to the in vivo plasma concentrations achieved in rats and in 163 

livestock after therapeutic dosing (2, 11, 13, 37, 38). 164 

ABZSO has been described in preceding studies as an in vitro substrate of murine 165 

Abcg2 and human ABCG2, but ABZ has not been found to be an in vitro Abcg2 166 

substrate (34). Interactions with ABCG2 are closely related to physicochemical 167 

properties of drugs, especially hydrophobicity (39). In our case, ABZ is metabolized 168 

to more hydrophilic metabolites (2), ABZSO, ABZSO2  and ABZSO2-NH2, which are 169 

efficiently transported by ABCG2, in contrast to ABZ. In addition, ABZSO, ABZSO2 170 

and ABZSO2-NH2, described as ABCG2 substrates, have a lower octanol-water 171 
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partition coefficient compared to ABZ (Table S1). Other benzimidazoles previously 172 

identified as substrates of ABCG2, such as oxfendazole or pantoprazole, with 173 

transport ratios of around 6 (34, 40), have similar octanol-water partition 174 

coefficients. However, ABCG2 is inhibited by more hydrophobic benzimidazoles 175 

with higher lipid-water partition coefficients such as triclabendazole metabolites, 176 

with inhibitory potencies between 40-55% (41). Furthermore, substrate binding with 177 

ABCG2 transporter increases with the number of hydrogen bond acceptors (HBAs) 178 

(42) and, in our case, ABZSO and ABZSO2  have one more HBA than ABZ and the 179 

same as oxfendazole (Table S1).  180 

In vivo assays with lactating Abcg2−/− and wild-type lactating female mice were 181 

carried out to determine whether Abcg2 is involved in the secretion of ABZ 182 

metabolites into milk and whether the drug levels in milk could be affected by 183 

Abcg2. The dose chosen was 2 mg/kg because milk concentrations achieved with 184 

this dose were similar to those in ovine milk in a former study (43). Our results 185 

show that after i.v. administration of ABZSO (Fig. 3A), ABZSO2 (Fig. 3B) and 186 

ABZSO2-NH2 (Fig. 3C), milk levels and milk-to-plasma ratios were higher in wild-187 

type compared to Abcg2-/- mice. Pilot attempts to administer the parent drug ABZ 188 

failed to show differences in milk levels and milk-to-plasma ratios for metabolites 189 

between both types of mice (data not shown), probably due to the difficulty in 190 

obtaining the appropriate parameter settings, including ABZ metabolism, for 191 

ABCG2 interaction in these kind of assays. Future experiments on target species 192 

are needed. In fact, we cannot discard that changes in administration route, dose 193 

rate and sampling points may alter the final outcome.  194 
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Most drugs pass into milk from blood by passive diffusion, and the milk-to-plasma 195 

ratio can be affected by the composition of the milk or by the physicochemical 196 

properties of the drug. However, drugs actively transported into milk by ABCG2 197 

present higher milk-to-plasma ratios than predicted by diffusion, usually higher than 198 

1 (44–46). In fact, in these experiments the milk-to-plasma ratios pointed to a 199 

specific role for ABCG2 in transport because in all cases the ratio was higher than 200 

1 in the presence of the transporter (Fig. 3). It should be noted that the milk-to-201 

plasma ratio in wild-type mice for ABZSO2-NH2 is the highest (6.60 ± 2.61) in all 202 

the drugs tested, despite its in vitro ratio transport in murine-Abcg2 transduced 203 

cells being the lowest (4.34 ± 0.68, Fig. 2B) compared to ABZSO, higher than 10 204 

(34), and ABZSO2 (5.59 ± 0.40, Fig. 1B). Probably, in this case, passive diffusion 205 

or another transport mechanism (24) play an important role in its transfer into milk, 206 

since the milk-to-plasma ratio is also higher than 1 in the Abcg2 -/- mice (3.00 ± 207 

0.25). 208 

Regarding plasma levels, no significant differences were noted at the doses and 209 

collection times tested in female mice (Fig. 3). Comparable results have been 210 

reported for other ABCG2 substrates such as danofloxacin (47), ciprofloxacin (36), 211 

flunixin and its metabolite (30) and meloxicam (31) between wild-type and Abcg2-/- 212 

lactating female mice. A sex-dependent effect of ABCG2-mediated transport has 213 

been reported (48), so a systemic effect of Abcg2 cannot be ruled out in other 214 

experimental settings. In fact, sex dimorphism in plasma pharmacokinetics of ABZ 215 

metabolites has been reported in humans (49). 216 



11 

The role of ABCG2 in ABZ metabolite secretion into milk may have significant 217 

consequences in human and veterinary medicine, although this needs to be 218 

proven. In veterinary medicine, helminth infections are the main factor cause of 219 

significant problems and losses in livestock, and chemotherapy with anthelmintics 220 

is essential for parasite control (50, 51). Despite the benefits, drug therapy in dairy 221 

cows constitutes a public health and food-safety issue owing to the unwanted 222 

disposition of drug residue in milk. It is essential to prevent unacceptable levels of 223 

residues from those medicines entering the food chain within a welfare-friendly 224 

livestock industry (52). To protect consumers from the presence of risky 225 

concentrations of ABZ and its metabolite residues, potentially embryotoxic and 226 

teratogenic, maximum residue limits have been established at 100 µg/kg for the 227 

milk of all ruminants, and withdrawal periods of 3 days (10–12, 19, 43, 53).  ABZ 228 

metabolites have been reported in routine milk samples from dairy farms that 229 

produce and supply milk to the markets and dairy food producers (54). Although 230 

levels do not exceed the limits, any change in ABCG2 activity may affect this 231 

outcome. However, further in vivo studies are needed to confirm this hypothesis. 232 

There are several factors that could modify the expression and function of ABCG2,  233 

such as co-administration of drugs and dietary compounds (45, 47, 55–57). 234 

ABCG2 polymorphisms such as the bovine Y581S have been associated with 235 

changes in transfer of ABCG2 substrates into milk (28–30), thus providing 236 

evidence that genetic factors can alter drug concentrations in milk and 237 

consequently drug exposure to dairy consumers.  238 
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In conclusion, our results support the fact that ABCG2 is clearly involved in the 239 

active in vitro transport of ABZ metabolites by both murine and human variants. In 240 

addition, we demonstrate the crucial role of Abcg2 in the secretion into milk of ABZ 241 

metabolites using Abcg2-/- mice.   242 



13 

MATERIAL AND METHODS 243 

Reagents and drugs 244 

ABZ metabolites were purchased from LGC Standards (Teddington, Middlesex, 245 

UK). Lucifer Yellow, danofloxacin and oxfendazole were purchased from Sigma-246 

Aldrich (St. Louis, MO, USA). Ko143 was acquired from Tocris (Bristol, UK). For in 247 

vivo studies, isoflurane (Isovet®) was obtained from Braun VetCare, Barcelona 248 

(Spain) and oxytocin (Facilpart®) from SYVA, León (Spain). All the other 249 

compounds used were reagent grade and were available from commercial 250 

sources.  251 

Cell Cultures 252 

The polarized cell line Madin-Darby Canine Kidney (MDCK-II) was used in the 253 

transport assays. Murine Abcg2 and human ABCG2-transduced subclones were 254 

provided by Dr. A.H. Schinkel from the Netherlands Cancer Institute (Amsterdam, 255 

The Netherlands). Culture conditions have been previously reported (20). Briefly, 256 

cells were cultured in DMEM (Dulbecco’s modified Eagle’s medium) supplemented 257 

with 1% mixture of antibiotics (penicillin and streptomycin) and 10% fetal calf serum 258 

at 37 ºC in the presence of 5% CO2. Cells were trypsinized every 3 to 4 days for 259 

subculturing.  260 

Transport Assays  261 

Transport assays were carried out as previously described by Merino et al. (58) 262 

with minor variations. Cells were seeded on microporous membrane filters (3.0 μm 263 

pore size, 24 mm diameter; Transwell 3414; Costar, Corning, NY) at a density of 264 
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1.0 x 106 cells per well. Cells were grown for 3 days and medium was replaced 265 

every day. Two hours before the start of the experiment, medium in both 266 

compartments, apical and basal, was replaced with 2 ml of OptiMEM medium 267 

(Invitrogen, Carlsbad, CA), with or without 1 µM Ko143. The experiment began by 268 

replacing the medium on both sides with fresh OptiMEM medium, with or without 1 269 

µM Ko143 and 5 µM ABZSO2 or ABZSO2-NH2. Cells were incubated at 37 ºC in 270 

5% CO2 and 100 µl aliquots were taken at 1, 2 and 3 h on the opposite side where 271 

drugs were added; this volume was replaced with fresh medium. Finally, 600 µl 272 

aliquots were taken at 4 h on both sides of the well. Aliquots were stored at -20ºC 273 

until analysis by high performance liquid chromatography (HPLC) as described 274 

below. 275 

The appearance of ABZ metabolites in the opposite compartment was related to 276 

the total drug added at the beginning of the experiment. At the beginning and the 277 

end of the experiment, transepithelial resistance was measured to check the 278 

tightness of the monolayer using Millicell ERS (Millipore Burlington, MA). Lastly, at 279 

the end of the experiment, confluence of the monolayer was also measured with 280 

Lucifer Yellow permeability assays (33). Transport proficiency of these cells is 281 

constantly checked by testing a typical ABCG2 substrate like danofloxacin (47). 282 

The (Papp) across MDCK-II parent, MDCK-II Abcg2 and MDCK-II ABCG2 cells 283 

monolayers in both apical to basal (AP-BL) (Papp A-B) and basal to apical (BL-AP) 284 

(Papp B-A) directions were calculated using following equation:  285 

Papp = ∆Q∆t 1ACo 
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Where ΔQ/Δt is the rate of corresponding ABZ metabolite appearing in the receiver 286 

chamber, which was obtained as the slope of the regression line on the transport-287 

time profile of ABZ metabolite across the cell monolayers; C0 is the initial 288 

concentration of drug; A is the cell monolayer surface area (4.67 cm2). The efflux 289 

ratio is the Papp B-A / Papp A-B quotient. 290 

Animals 291 

Mice were housed and handled according to institutional and ARRIVE guidelines 292 

complying with European legislation (2010/63/EU). Experimental procedures were 293 

approved by the Animal Care and Use Committee of the University of León and the 294 

Junta de Castilla y León (ULE_011_2019). Animals used were lactating female 295 

Abcg2-/- and wild–type mice, all of > 99% FVB genetic background between 8 and 296 

17 weeks of age. Animals, generated (59) and kindly provided by Dr. A. H. 297 

Schinkel (The Netherlands Cancer Institute), were kept in a controlled temperature 298 

environment with 12 h of light and 12 h of darkness, and received a standard diet 299 

and water ad libitum.  300 

For milk secretion experiments, pups of approximately 10 days old were separated 301 

from their mothers 4 h before starting the experiment. To stimulate milk secretion, 302 

200 µl of oxytocin (1 IU/ml) was administrated subcutaneously to lactating mice 10 303 

min before sample collection. ABZSO, ABZSO2 or ABZSO2-NH2 (2 mg/kg) were 304 

administrated in the tail vein to wild–type and Abcg2-/-  lactating female mice as a 305 

solution of 10% ethanol, 40 % PEG400 and 50% saline. Intravenous (i.v.) 306 

administration consisted of 150 µl of solution per 30 g of body weight. Blood was 307 
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collected 30 min after administration from the retro-orbital sinus under anaesthesia 308 

with isoflurane, and then milk was collected from the mammary glands by pressing 309 

around the nipple using capillaries. Heparinized blood samples were centrifuged 310 

immediately at 3000g for 15 min to obtain plasma. Finally, animals were sacrificed 311 

by cervical dislocation. Milk and plasma were stored at -20 ºC until the HPLC 312 

analysis. Four to eleven animals were used for each group of mice. 313 

HPLC analysis 314 

The conditions for HPLC analysis of ABZ metabolites were based on a previously 315 

described method (10, 34, 38) with minor modifications. To each 100 µl aliquots of 316 

milk and plasma, 10 µl of internal standard (oxfendazole 10 µg/ml) and 100 µl of 317 

acetonitrile were added in a 1.5 ml reaction tube. The mixture was vortexed 318 

horizontally for 15 min and then the samples were centrifuged at 6000 g for 6 min 319 

at 4 ºC. The supernatant was collected and evaporated to dryness under N2 at 40 320 

°C. Samples were resuspended in 100 μl of cold methanol (Merck, Darmstadt, 321 

Germany) and injected into the HPLC system. Samples from the transport assays 322 

were not processed and 100 μl of the culture media was directly injected into the 323 

HPLC system. The chromatographic system used in samples analysis consisted of 324 

a Waters 2695 separation module and a Waters 2998 UV photodiode array 325 

detector. Separation was performed on a reversed-phase column (4 mm particle 326 

size, 250 x 4.6 mm, Max-RP 80 Å, Phenomenex®, Torrance, CA, USA). The 327 

mobile phase used was ammonium acetate 0.025 M pH 5: acetonitrile (76:24). The 328 

flow rate of the mobile phase was set to 0.8 ml/min and UV absorbance was 329 

measured at 292 nm.  330 
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For culture samples, standard samples of ABZSO2 and ABZSO2-NH2 for calibration 331 

curves were prepared at concentrations of 0.039–10 µg/ml, with coefficients of 332 

correlation >0.99. Precision coefficients of variation were <15%, and accuracy 333 

values were <20%. LOD (limit of detection) and LOQ (limit of quantification) were 334 

calculated as described by Taverniers et al.  (60).  LOQ was 0.006-0.018 µg/ml 335 

and the LOD 0.002-0.008 µg/ml for cell culture samples.  336 

For milk and plasma samples, standard samples of ABZSO, ABZSO2 and 337 

ABZSO2-NH2 for calibration curves were prepared at concentrations of 0.156-10 338 

µg/ml for milk and 0.078-10 µg/ml for plasma, with coefficients of correlation >0.98. 339 

Precision coefficients of variation were <15%, and accuracy values were <20%. 340 

LOQ was 0.102-0.155 µg/ml and LOD 0.038-0.06 µg/ml for milk samples and LOQ 341 

was 0.077-0.118 µg/ml and LOD 0.033-0.047 µg/ml for plasma samples. 342 

 343 

Statistical Analysis 344 

The SPSS Statistics software (v. 26.0; IBM, Armonk, New York, NY, USA) was 345 

used for the statistical analysis. Comparisons between groups were made using  346 

Student`s t-test and Mann-Whitney U test for normal or not normally distributed 347 

variables, respectively. P value ≤ 0.05 indicates that the differences were 348 

statistically significant.   349 
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FIGURE LEGENDS 587 

Figure 1. Transcellular transport assay of ABZSO2 (5 μM) with or without Ko143 588 

(ABCG2 inhibitor) in parental MDCK-II cells (A and D, respectively) and MDCK-II 589 

cells transduced with murine Abcg2 (B and E, respectively) and with human 590 

ABCG2 (C and F, respectively). The assay was started by changing the medium in 591 

apical or basolateral compartment with fresh culture medium with or without Ko143 592 

at 1 μM and 5 μM of ABZSO2. The appearance of ABZSO2 in the opposite 593 

compartment measured by HPLC, was related to the total drug added at the 594 

beginning of the experiment. Results represented the mean and error bars indicate 595 

S.D. (●) transport from basal to the apical compartment; (○) transport from apical to 596 

the basal compartment. (n = 3-6). (*) significant differences in transport ratio 597 

compared to parental MDCK-II cells (p ≤ 0.05). 598 

Figure 2. Transcellular transport of ABZSO2-NH2 (5 μM) with or without Ko143 599 

(ABCG2 inhibitor) in parental MDCK-II cells (A and D, respectively) and MDCK-II 600 

cells transduced with murine Abcg2 (B and E, respectively) and with human 601 

ABCG2 (C and F, respectively). The assay was started by changing the medium in 602 

apical or basolateral compartment with fresh culture medium with or without Ko143 603 

at 1 μM and 5 μM of ABZSO2-NH2. The appearance of ABZSO2-NH2 in the 604 

opposite compartment measured by HPLC, was related to the total drug added at 605 

the beginning of the experiment. Results represented the mean and error bars 606 

indicate S.D. (●) transport from basal to the apical compartment; (○) transport from 607 

apical to the basal compartment. (n = 3-7). (*) significant differences in transport 608 

ratio compared toparental MDCK-II cells (p ≤ 0.05). 609 
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Figure 3. (A) Plasma and milk concentration and milk-to-plasma ratio of ABZSO in 610 

wild-type and Abcg2−/− lactating females after i.v. administration at a dose of 2 611 

mg/kg. (B) Plasma and milk concentration and milk-to-plasma ratio of ABZSO2 in 612 

wild-type and Abcg2−/− lactating females after i.v. administration at a dose of 2 613 

mg/kg. (C) Plasma and milk concentration and milk-to-plasma ratio of ABZSO2-NH2 614 

in wild-type and Abcg2−/− lactating females after i.v. administration at a dose of 2 615 

mg/kg. Milk and plasma were collected 30 min after administration and metabolite 616 

concentrations were determined by HPLC. Results are means ± SD (n = 4–11). (*) 617 

p ≤ 0.05 significant differences between both groups of mice.  618 
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TABLES  630 

Table 1. Apparent permeability coefficients (Papp) for transepithelial transport of 631 

ABZSO2 (5 µM) and ABZSO2-NH2 (5 µM) with or without the inhibitor Ko143 (1 µM) 632 

AP-BL: Apical to basal, BL-AP: basal to apical. Abcg2: murine Abcg2, ABCG2: 633 

human ABCG2. Results are expressed as mean values and standard deviations 634 

from at least three experiments. *Significant differences from parental group 635 

(MDCK-II), p ≤ 0.05. 636 

Drug Subclones 
BL-AP, x10-5 cm/s

(Papp B-A) 
AP-BL, x10-5  cm/s 

(Papp A-B) 
Efflux ratio 

Papp B-A / Papp A-B

 
 

ABZSO2  
 

MDCK-II 1.27 ± 0.36 1.32 ± 0.37 0.97 ± 0.08 

MDCK-II Abcg2 1.94 ± 0.54 0.36 ± 0.11   5.47 ± 0.32 * 

MDCK-II ABCG2 1.35 ± 0.29 1.02 ± 0.26 1.35 ± 0.16 * 

     

ABZSO2  
+ 

Ko143 

MDCK-II 0.99 ± 0.08 0.96 ± 0.11 1.03 ± 0.10 

MDCK-II  Abcg2 1.03 ± 0.08 0.98 ± 0.08 1.04 ± 0.07 

MDCK-II ABCG2 1.08 ± 0.06 1.04 ± 0.12 1.04 ± 0.10 

     

 
ABZSO2 -NH2  

 

MDCK-II 0.38 ± 0.14 0.37 ± 0.12 1.02 ± 0.12 

MDCK-II Abcg2 0.70 ± 0.14 0.16 ± 0.03   4.48 ± 0.53 * 

MDCK-II ABCG2 0.50 ± 0.05 0.14  ± 0.02   3.58 ± 0.79 * 

     

ABZSO2-NH2  
+ 

Ko143 

MDCK-II 0.28 ± 0.07 0.31 ± 0.08 0.92 ± 0.1 

MDCK-II Abcg2 0.28 ± 0.08 0.28 ± 0.07 1.01 ± 0.06 

MDCK-II ABCG2 0.28 ± 0.08 0.27 ± 0.08 1.05 ± 0.06 
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