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José Manuel Fernández-Guisuraga1 , Susana Suárez-Seoane2 & Leonor Calvo1
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Abstract

The structural complexity of plant communities contributes to maintaining the

ecosystem functioning in fire-prone landscapes and plays a crucial role in driv-

ing ecological resilience to fire. The objective of this study was to evaluate the

resilience to fire off several plant communities with reference to the temporal

evolution of their vertical structural diversity (VSD) estimated from the data

fusion of C-band synthetic aperture radar (SAR) backscatter (Sentinel-1) and

multispectral remote sensing reflectance (Sentinel-2) in a burned landscape of

the western Mediterranean Basin. We estimated VSD in the field 1 and 2 years

after fire using Shannon’s index as a measure of vertical heterogeneity in vege-

tation structure from the vegetation cover in several strata, both in burned and

unburned control plots. Random forest (RF) was used to model VSD in the

control (analogous to prefire scenario) and burned plots (1 year after fire)

using as predictors (i) Sentinel-1 VV and VH backscatter coefficients and (ii)

surface reflectance of Sentinel-2 bands. The transferability of the RF model

from 1 to 2 years after wildfire was also evaluated. We generated VSD predic-

tion maps across the study site for the prefire scenario and 1 to 4 years postfire.

RF models accurately explained VSD in unburned control plots (R2 = 87.68;

RMSE = 0.16) and burned plots 1 year after fire (R2 = 80.48; RMSE = 0.13).

RF model transferability only involved a reduction in the VSD predictive capac-

ity from 0.13 to 0.20 in terms of RMSE. The VSD of each plant community

4 years after the fire disturbance was significantly lower than in the prefire sce-

nario. Plant communities dominated by resprouter species featured significantly

higher VSD recovery values than communities dominated by facultative or obli-

gate seeders. Our results support the applicability of SAR and multispectral data

fusion for monitoring VSD as a generalizable resilience indicator in fire-prone

landscapes.

Introduction

Wildfires are a key ecosystem process in the western

Mediterranean Basin (González-De Vega et al., 2016; Pausas

et al., 2008) that sharply determines the dynamics in the

composition and structure of plant communities (Calvo

et al., 2008; Doblas-Miranda et al., 2017; Fernández-

Guisuraga, Suárez-Seoane, et al., 2019). In this region, the

resilience of plant communities under historical fire distur-

bance regimes supports the recovery to prefire levels of their

structure and composition (Johnstone et al., 2016; Seidl

et al., 2014). However, the observed and projected increase
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in the frequency and severity of wildfires (San-Miguel-

Ayanz et al., 2012), as a consequence of current aridity levels

(Vieira et al., 2010) and rural land abandonment (Sagra

et al., 2019), may jeopardize vegetation resilience to fire

(Doblas-Miranda et al., 2017). In this sense, recurrent and

severe wildfires can exert strong effects on regenerative

strategies (i.e., resprouting and seeding capacity) that may

impair plant community recovery (Johnstone et al., 2016;

Meng et al., 2018; Zhao et al., 2016).

Among the components that drive forest ecological

resilience to fire, defined as the ecosystem capacity to

absorb disturbance before switching to an alternate stable

state (Folke, 2006; Gunderson & Holling, 2002; Müller

et al., 2016; Newton & Cantarello, 2015), the structural

complexity of plant communities plays a crucial role

(Chergui et al., 2018). Forest vertical structural complex-

ity can assist in maintaining the ecosystem functioning

and processes of fire-prone landscapes (Drever et al.,

2006; González-De Vega et al., 2016) for its connections

with the (i) diversity of plant functional traits related to

the physical arrangement of vegetation in the vertical pro-

file (Gara et al., 2018; LaRue et al., 2019), (ii) primary

production (Gough et al., 2019), and (iii) soil nutrient

availability (LaRue et al., 2019). In addition, the hetero-

geneity in vertical vegetation structure is heavily linked

with physical niche space and wildlife habitat (Wood

et al., 2012). Therefore, the assessment of how the struc-

tural complexity of plant communities recovers to a pre-

disturbance state is essential for improving the knowledge

about ecological resilience in fire-prone ecosystems

(González-De Vega et al., 2016) and providing new

insights into the implementation of postfire management

actions (Fernández-Guisuraga et al., 2020).

Several metrics of forest vertical structure diversity from

field-based inventories have been proposed in the literature

such as the foliage-height diversity index (FHD; MacArthur

& MacArthur, 1961), variation of plant height (Wiens &

Rotenberry, 1981) or diameter at breast height (Montes

et al., 2005), cover by plant life forms (Williams & Marsh,

1998), habitat heterogeneity index (HH; Freemark & Mer-

riam, 1986) or stand structural index (STVI; Staudhammer

& LeMay, 2001). Among these metrics, FHD or slight mod-

ifications of this index are the most commonly used in

Mediterranean ecosystems to quantify vertical heterogene-

ity in vegetation structure due to its flexibility and straight-

forward application (Wood et al., 2012). For instance,

Meeussen et al. (2020) examined the variation in forest

edge structural metrics, including FHD, in sub-

Mediterranean biomes across Europe. FHD metric was also

used to explore the long-term effects of fuel reduction

treatments on understory vegetation in Mediterranean for-

ests in southern Portugal (Santana et al., 2011). Suárez-

Seoane et al. (2002) assessed the effects of agricultural

abandonment on FHD across a successional gradient in a

Mediterranean region in northwest Spain. However, field-

based inventories of vertical structure diversity are labor-

intensive and time-consuming for monitoring large areas,

especially in time-series analyses (Fernández-Guisuraga,

Suárez-Seoane, & Calvo, 2021), and do not allow spatially

explicit (i.e., wall-to-wall) measurements (Bergen et al.,

2009). Hence, approaches based exclusively on field data

present little versatility for resilience assessments in large

burned areas. In this sense, remote sensing earth observa-

tions offer nowadays an efficient way to accomplish this

objective (Fernández-Guisuraga et al., 2020).

Most research on forest resilience quantification using

remote sensing techniques has been based to date on the

monitorization of vegetation greenness recovery through

vegetation spectral indices (VIs) computed from passive

optical data (e.g., Cuevas-González et al., 2009; Ireland &

Petropoulos, 2015; Jin et al., 2012; Vila & Barbosa, 2010).

The drawback of this approach in burned areas is related

to the (i) lack of physical sense because VIs are not

intrinsic physical quantities (Fernández-Guisuraga,

Suárez-Seoane, & Calvo, 2021), (ii) performance loss

attributable to the background signal of charred material

and soil in recently burned areas (Vila & Barbosa, 2010),

(iii) canopy variability regarding vegetation greenness

while exhibiting identical biophysical properties (Veraver-

beke et al., 2012), and (iv) reflectance signal saturation at

high vegetation cover (Lu et al., 2016). Other remote

sensing approaches have used the fractional vegetation

cover (FVC) retrieved from time series of passive optical

satellite data as a resilience indicator using pixel unmixing

models (Fernández-Guisuraga et al., 2020; Fernandez-

Manso et al., 2016) and radiative transfer models

(Fernández-Guisuraga, Suárez-Seoane, & Calvo, 2021).

However, such a resilience indicator exclusively reflects

the recovery of the green vegetation fraction at the top of

canopy when dealing with passive remote sensing data

and plant communities that feature several strata (Fernán-

dez-Guisuraga, Suárez-Seoane, & Calvo, 2021). Con-

versely, active remote sensors, such as light detection and

ranging (LiDAR) and synthetic aperture radar (SAR),

enable the characterization of vegetation structural and

biophysical properties in the vertical profile (Bergen et al.,

2009; Fernández-Guisuraga, Suárez-Seoane, et al., 2022)

because of their sensitivity to the quantity and distribu-

tion of scatterers in the canopy (Tanase et al., 2015).

Unfortunately, the limited temporal availability of LiDAR

data prevents the analysis of postfire recovery trajectories

in forest resilience assessments (Wood et al., 2012).

Despite the potential, physical sense, and unlimited avail-

ability of SAR backscatter data in the characterization of

vegetation vertical structure in burned landscapes (Kalo-

girou et al., 2014), to date this approach remains
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completely unexplored for quantifying vertical structural

diversity in burned areas, and particularly, for estimating

this parameter as a resilience indicator in fire-prone

ecosystems.

Remarkably, SAR acquisitions are independent of cloud

cover and sun illumination (Belenguer-Plomer et al.,

2019), and the signal penetrates and interacts with the

vegetation canopy components in a magnitude that

depends on the SAR wavelength (Jagdhuber, 2012) but

also on canopy closure and architecture (Bartsch et al.,

2020; Inoue et al., 2002). Specifically, shorter SAR wave-

lengths (e.g., C-band) are sensitive to canopy leaves and

small branches and feature a lower penetration into the

canopy than longer wavelengths (e.g., L band) (Patenaude

et al., 2005). For that reason, the estimation of vegetation

structural parameters through C-band SAR data is

deemed appropriate for regions with low to moderate

vegetation standing biomass and canopy closure (Lu

et al., 2016; Patenaude et al., 2005). However, in this sce-

nario, increased ground scattering and soil moisture effect

on SAR signal must be considered in SAR time-series

acquisitions (Minchella et al., 2009).

The synergistic use of SAR backscatter and passive

optical reflectance data can also provide integrated

insights into the vertical stand structure and the vegeta-

tion biophysical parameters since optical data are sensitive

to vegetation type, architecture, and traits of the upper-

most section of the canopy (Healey et al., 2020; Monte-

sano et al., 2013), which are also strongly related to the

stand structural complexity (Conti et al., 2021). Thus, the

fusion of optical and SAR data would provide comple-

mentary information on the vegetation vertical structure

(Lu et al., 2016) and reduce the soil background influence

on the retrieval of structural parameters compared with

the individual use of SAR images (Wang et al., 2019).

This approach has been shown to improve the estimation

of structural parameters such as leaf area index or above-

ground biomass worldwide (e.g., Huang et al., 2016;

Montesano et al., 2013; Naidoo et al., 2019), but, as with

SAR data alone, there are no studies up to date that

exploit this approach for mapping vertical structural

diversity and vegetation resilience in burned areas.

The objective of this study was to evaluate the resili-

ence to fire off several plant communities with reference

to the temporal evolution of their vertical structural

diversity estimated from the fusion of C-band SAR

backscatter (Sentinel-1) and multispectral (Sentinel-2)

remote sensing data. Specifically, we selected as case study

a burned landscape of the western Mediterranean Basin

that comprises several plant communities dominated by

either shrub or tree species. Vertical structure diversity

index was measured in each community using Shannon’s

index applied to vegetation cover data in several strata

and modeled across the pre and postfire time series using

Sentinel-1 and Sentinel-2.

Materials and Methods

The methodology comprised the following three steps

(Fig. 1): field data acquisition, remote sensing data acqui-

sition/processing, and data analysis.

Study site

The study site is located in the northwestern Iberian

Peninsula within the Sierra de Cabrera mountain range,

where a wildfire that occurred between 21 and 27 August

2017 and burned 9940 ha of forest and shrubland plant

communities (Fig. 2). The site is characterized by rugged

topography with altitudes ranging between 836 and

1938 m above sea level and is dominated by siliceous

lithologies, mainly slates and quartzites (GEODE, 2022).

The region lies in a transition area between Mediter-

ranean and Eurosiberian biogeographic conditions (Rivas-

Martı́nez et al., 2011). Annual mean precipitation in the

study site ranges between 600 and 1500 mm and annual

mean temperature between 5°C and 15°C for a 50-year

period (Ninyerola et al., 2005), corresponding to a

Mediterranean temperate climate (Garcı́a-Llamas et al.,

2019). Extreme fire weather conditions regarding maxi-

mum temperatures and relative humidity were recorded

during the fire progression (Garcı́a-Llamas et al., 2020).

The wildfire affected gorse Genista hystrix Lange and

broom Genista florida L. shrublands dominated by facul-

tative seeders, as well as heath Erica australis L. shrub-

lands dominated by resprouter species. The wildfire also

affected forests dominated by the resprouter Pyrenean

oak Quercus pyrenaica Willd. and the obligate seeder Scots

pine Pinus sylvestris L. The plant communities were

mapped (Fig. 2) using a prefire Sentinel-2 multispectral

image classified by means of the maximum likelihood

algorithm (Strahler, 1980), with an overall accuracy of

91%. See Fernández-Guisuraga, Suárez-Seoane, Garcı́a-

Llamas, et al. (2021) for more details on the computation

of the vegetation classification map.

Field data

One year after the wildfire event (June 2018), 74 field

plots of 30 × 30 m were established in relatively homoge-

neous areas regarding vegetation legacies within the fire

perimeter (Fig. 2) for calibrating and validating remote

sensing retrievals in postfire scenarios. Following an

unburned control plot approach (Dı́az-Delgado et al.,

2002), 40 additional field plots of 30 × 30 m were located

in unburned areas for assessing prefire retrievals. Burned
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and control plots were equally stratified into the plant

communities of the study site, ensuring a minimum sepa-

ration of 200 m between plots. The plots were located in

the field using a submeter accuracy GPS receiver and were

initially surveyed in June 2018 (both burned and control

plots) as well as in June 2019 (burned plots). Within each

plot, we established a group of four subplots of 2 × 2 m

at azimuths of 45°, 135°, 225°, and 315°, located 6.5 m

away from the plot center (Fernández-Guisuraga, Calvo,

et al., 2022). Within the subplots, we estimated vegetation

cover as the vertical projected area occupied by vegetation

in several strata (0–0.5, 0.5–1, 1–4, and >4 m) corre-

sponding to the herbaceous, low shrub, tall shrub, and

overstory layers (Casenave et al., 1995), using a visual

estimation method in steps of 5% (Delamater et al.,

2012) following the protocol of Fernández-Guisuraga,

Verrelst, et al. (2021). Depending on the height stratum,

vegetation cover was estimated in a top-down or bottom-

up direction using a quadrat and long sticks as estimation

assistance (Fernández-Guisuraga, Suárez-Seoane, & Calvo,

2021; Fernández-Guisuraga, Verrelst, et al., 2021). The

vegetation cover per stratum for each plot of 30 × 30 m

was obtained by averaging the estimation of the four sub-

plots of 2 × 2 m. Vertical structure diversity index (VSD)

was calculated for each plot using Shannon’s index (unit-

less), analogous to the calculation of FHD (MacArthur &

MacArthur, 1961) but using an appropriate notation to

the present methodology (foliage vs. cover; Angelo, 2010):

VSD ¼ �∑
S

i¼1

pilnpi,

where pi is the proportion of vegetation cover in the ith

stratum, and S is the total number of strata.

Remote sensing data sources and processing

Sentinel-1

The Sentinel-1 mission of the Copernicus program of the

European Space Agency (ESA) comprises a constellation

of two C-band (wavelength of 5.6 cm) SAR polar-orbiting

satellites launched in April 2014 (Sentinel-1A) and April

2016 (Sentinel-1B). This constellation provides a 6-days

repeat cycle at the equator and operates in four imaging

acquisition modes with different spatial resolution and

coverage (ESA, 2022a). Five Sentinel-1 SAR scenes were

acquired from the Copernicus Open Access Hub (https://

scihub.copernicus.eu/) during peak biomass of the study

site in the summer months between 2017 and 2021

(Table 1), as close as possible to the end dates of the field

sampling campaigns of summer 2018 and 2019. We also

avoided SAR scene acquisitions in which precipitation

Figure 1. Methodology workflow of the present study.
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events have been recorded for 7 days prior to the SAR

image date (AEMET, 2022) due to the influence of soil

moisture on SAR backscatter (Belenguer-Plomer et al.,

2019). SAR scenes were a Level-1 Ground Range Detected

(GRD) product acquired in interferometric wide swath

mode at dual polarization (VV vertical-vertical + VH

vertical-horizontal) (ESA, 2022b). GRD products were

preprocessed using the Sentinel-1 Toolbox (S1TBX; ESA,

2022c). The processing chain included (i) radiometric cal-

ibration to radar brightness, (ii) multi-looking to the

nominal Sentinel-1 resolution (20 m square pixels), (iii)

terrain-flattening correction (Small, 2011) for removing

topographic effects, and (iv) orthorectification using the

range Doppler method (Small & Schubert, 2008). Finally,

gamma naught (γ0) backscatter coefficients of VV and

VH polarizations were log-transformed to dB units. γ0

VV and VH values of the year 2018 and 2019 scenes were

extracted for each field plot of 30 × 30 m by averaging

the values of a regular grid of points (spacing of 5 m)

systematically sampled (Picotte & Robertson, 2011) due

to the overlap of several pixels within each plot.

Sentinel-2

Sentinel-2 is a multispectral satellite mission also included

in the ESA Copernicus program. The mission comprises

Figure 2. Study site within the perimeter of Sierra de Cabrera wildfire (9940 ha), plant community classification map (Fernández-Guisuraga,

Suárez-Seoane, Garcı́a-Llamas, et al., 2021), and location of the burned and control plots.
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two polar-orbiting satellites launched in June 2015

(Sentinel-2A) and March 2017 (Sentinel-2B), which fea-

ture a revisit time of 5 days at the equator. Sentinel-2

MultiSpectral Instrument (MSI) on-board satellite plat-

forms is a push-broom sensor that provides 13 spectral

bands over the visible (VIS), near-infrared (NIR), and

shortwave infrared (SWIR) regions of the electromagnetic

spectrum at different spatial resolutions (ESA, 2022d)

(Table 2).

Sentinel-2 MSI Level 2A scenes covering the study site

were also obtained from the Copernicus Open Access

Hub. Specific acquisition dates (Table 1) were chosen on

the basis of the availability of cloud-free scenes closest to

field campaigns and Sentinel-1 scene dates. Level 2A is a

surface reflectance product corrected for topographic and

atmospheric effects by the image provider (ESA, 2022d).

The nearest neighbor resampling technique was used to

downsample bands at 10 m of spatial resolution to 20 m.

We discarded the bands at 60 m because they are heavily

affected by atmospheric effects (Jia et al., 2016). Sentinel-

2 surface reflectance values for the year 2018 and 2019

scenes were extracted for each plot of 30 × 30 m follow-

ing the same procedure as for Sentinel-1 backscatter data.

Data analysis

Random Forest (RF) regression (Breiman, 2001) ensemble

learning algorithm was used to model VSD in the control

(analogous to prefire scenario) and burned plots (1 year

after fire) using as predictors (i) Sentinel-1 VV and VH

backscatter coefficients and (ii) surface reflectance of

Sentinel-2 bands. RF can properly handle spatial autocor-

relation in the predictors (Garcı́a-Llamas et al., 2020) and

minimize overfitting issues (Cutler et al., 2007). The

increase in mean square error (%IncMSE) and the inter-

nal out-of-bag error rate parameters were used to assess

the relative importance of the predictors and the variance

explained (pseudo-R2) by the model, respectively. RF

models were calibrated with the randomForest function

using the RandomForest package (Liaw & Wiener, 2002)

in R 4.0.5 (R Core Team, 2021). Model parameter mtry

was tuned using the trainControl and train functions

(Fernández-Garcı́a et al., 2022) of caret package (Kuhn,

2020), whereas ntree parameter was set to 1000, which

balances stable model predictions with computational effi-

ciency (Probst & Boulesteix, 2018). A parsimonious sub-

set of predictors that maximize model robustness and

VSD prediction performance was selected through recur-

sive feature elimination based on five times repeated 10-

fold cross-validation using rfeControl and rfe functions

(Fernández-Garcı́a et al., 2022) within caret package. The

univariate relationships between VSD and remote sensing

predictors were examined through scatterplots.

RF model object of the burned plots (1 year after fire)

was used to generate VSD predictions for 2019 (2 years

after fire) with contemporaneous Sentinel-1 and Sentinel-

2 data. The coefficient of determination (R2) and the root

mean-squared error (RMSE) were computed to quantify

prediction performance. Burned and control RF model

objects were used to generate VSD prediction maps across

the study site for the prefire scenario and 1–4 years post-

fire using raster (Hijmans, 2021) and rgdal (Bivand et al.,

2021) packages. Although we calibrated and validated RF

models in the prefire scenario, as well as 1 and 2 years

after fire, we generated predictions beyond that time per-

iod to analyze the evolution of the VSD in the longer

term, similar to previous remote sensing research (e.g.,

Fernández-Guisuraga et al., 2020). A random sampling of

10 000 points stratified by plant community was per-

formed within the fire perimeter to extract VSD values

for each period of the time series. A minimum distance

of 100 m between points was ensured. A one-way

Table 1. Acquisition date of Sentinel-1 and Sentinel-2 scenes.

Satellite Acquisition date Time since fire

Sentinel-1 scene #

1 1A 7 August 2017 18:19:36 UTC Prefire (14 days)

2 1A 21 July 2018 18:19:41 UTC 1 year

3 1A 28 July 2019 18:19:48 UTC 2 years

4 1A 10 July 2020 18:19:53 UTC 3 years

5 1A 29 July 2021 18:20:00 UTC 4 years

Sentinel-2 scene #

1 2A 13 August 2017 11:21:21 UTC Prefire (7 days)

2 2A 29 July 2018 11:21:11 UTC 1 year

3 2B 29 June 2019 11:21:19 UTC 2 years

4 2A 18 July 2020 11:21:21 UTC 3 years

5 2B 17 August 2021 11:21:19 UTC 4 years

Table 2. Sentinel-2A band configuration.

Sentinel-2 band # B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B10 B11 B12

Spatial resolution (m) 60 10 10 10 20 20 20 10 20 60 60 20 20

Region VIS VIS VIS VIS NIR NIR NIR NIR NIR NIR SWIR SWIR SWIR

Band center (nm) 443 492 560 665 704 741 783 833 865 945 1374 1614 2202

Bandwidth (nm) 21 66 36 31 15 15 20 106 21 20 31 91 175
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repeated measures ANOVA (1w-rmANOVA) and subse-

quent Tukey’s HSD test were performed in rstatix (Kas-

sambara, 2021) package to determine the earliest point in

the postfire time series where VSD values for each plant

community do not differ significantly from prefire VSD.

The VSD recovery (%) for each plant community was

Figure 3. Relationship between Sentinel-1 and Sentinel-2 predictors included in Random Forest (RF) parsimonious models and vertical structure

diversity index (VSD) in unburned control plots (A) and burned plots 1 year after fire (B).
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computed as the ratio of 4 years postfire to prefire VSD

estimates. A one-way ANOVA (1w-ANOVA) and subse-

quent Tukey’s HSD test were implemented to evaluate

VSD recovery differences as a function of the plant com-

munity. Statistical significance was determined at the 0.05

level.

Results

The fusion of Sentinel-1 backscatter coefficients and

Sentinel-2 surface reflectance data accurately explained

VSD in unburned control plots (R2 = 87.68; RMSE =
0.16) and burned plots 1 year after fire (R2 = 80.48;

RMSE = 0.13) through parsimonious RF models. The

relationships between Sentinel-1 predictors and VSD were

quadratic and direct, whereas Sentinel-2 predictors fea-

tured a linear and inverse relationship with VSD (Fig. 3).

In the burned plots, Sentinel-1 backscatter coefficients

showed a stronger correlation with VSD (R2 = 0.65–0.70)
than Sentinel-2 reflectance (R2 = 0.52–0.56). In the con-

trol scenario, both Sentinel-1 backscatter coefficients and

Sentinel-2 band 12 (SWIR) reflectance featured a strong

relationship with VSD (R2 > 0.69). RF relative variable

importance evaluated from the %IncMSE parameter fol-

lowed the same pattern as the univariate relationships

(Fig. 4), except in the case of Sentinel-2 band 4 (red)

reflectance, which gained the greatest importance in the

control plots.

External model validation based on the extrapolation

of the RF predictive relationships from 1 to 2 years after

wildfire featured an R2 equal to 0.57 and an RMSE of

0.20 (Fig. 5), which involves a slight reduction in VSD

predictive capacity with respect to the internal model vali-

dation (RMSE = 0.13).

All plant communities gradually recovered VSD over

the postfire time series (Fig. 6). Nonetheless, 4 years after

the fire disturbance, the VSD of each plant community

was significantly lower than in the prefire scenario (p val-

ues <0.001) and, therefore, resilience has not been

achieved at short term (Fig. 7 and Table S1). Plant com-

munities dominated by resprouter species (i.e., heath

shrublands and Pyrenean oak forests) featured signifi-

cantly higher VSD recovery values (p values <0.001) at

the end of the time series than communities dominated

by facultative (gorse and broom shrublands) or obligate

seeders (Scots pine) (Fig. 8 and Table S2).

Figure 4. Relative variable importance in Random Forest models measured as the percentage increase in mean square error (%IncMSE), in

unburned control plots (A) and burned plots 1 year after fire (B).

Figure 5. Relationship between observed and predicted vertical structure diversity index (VSD) 1 year after wildfire (internal model validation) and

2 years after wildfire (model extrapolation) through Random Forest models. The dotted black line represents the 1:1 line.
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Figure 6. Maps of predicted vertical structure diversity index (VSD) by the Random Forest models throughout the pre- and postfire time series.

Figure 7. Boxplots showing the relationship between vertical structure diversity index and plant community type throughout the pre- and postfire

time series.
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Discussion

Prediction of vertical structure diversity by
C-band SAR and optical data

Monitoring vegetation vertical structure diversity in fire-

prone burned landscapes of the Mediterranean Basin is

critical for implementing postfire management actions

aimed at maintaining ecosystem function and processes

affected by wildfire disturbance (Chergui et al., 2018;

González-De Vega et al., 2016). The proposed remote

sensing-based approach based on data fusion of Sentinel-

1 SAR backscatter and Sentinel-2 reflectance successfully

captured in this study the spatial variability in VSD

through RF models in several pre- and postfire scenarios.

Sentinel-1 backscatter data in C-band featured a higher

model contribution for characterizing VSD 1 year after

fire than Sentinel-2 reflectance. In this sense, SAR signal

in burned landscapes is more sensitive to changes in the

forest structure than optical data (Tanase et al., 2015)

because C-band SAR waves are directly influenced by the

size distribution and density of stems, branches, and foli-

age (Bergen et al., 2009), particularly in Mediterranean

forest and shrub plant communities (Belenguer-Plomer

et al., 2019). In addition, fire consumption of leaves and

small branches in the burned plots (i.e., reduced canopy

closure) enables the penetration of SAR signal in shorter

wavelengths to the lower vegetation strata (Tanase et al.,

2010). The direct relationship between Sentinel-1

backscatter coefficient and VSD was consistent with previ-

ous research in which fire consumption reduced C-band

backscatter intensity as a result of the reduction in the

number of scatterers (i.e., lower VSD) throughout the

vertical stand profile (e.g., Antikidis et al., 1998; Tanase

et al., 2014). Conversely, Sentinel-2 reflectance bands

gained the highest importance in the RF models of VSD

in the unburned control plots, even though Sentinel-1

backscatter data were also selected as relevant in the

model selection routine. The higher biomass density in

unburned plots may prevent the penetration of C-band

SAR signal to the forest floor compared with longer SAR

wavelengths such as L-band data (Inoue et al., 2002;

Jagdhuber, 2012; Tanase et al., 2010), undermining the

strength of the relationship between SAR backscatter and

VSD. In such scenarios, Sentinel-2 reflectance coupled

with SAR backscatter may be associated with canopy

architecture (Montesano et al., 2013) and top of canopy

traits such as moisture content, shadowing, and photo-

synthetic capacity (Fernández-Guisuraga, Suárez-Seoane,

& Calvo, 2021; Goetz & Dubayah, 2011; Healey et al.,

2020), which are themselves proxies of subcanopy struc-

tural density (Conti et al., 2021; Gao et al., 2000). In fact,

Sentinel-2 band 4 (red) and band 12 (SWIR) were

selected in RF models as important variables because of

their sensitivity to the above-mentioned traits (Fensholt &

Sandholt, 2003; Karlson et al., 2015), which are generally

enhanced in plant communities characterized by high

structural complexity and lower red and SWIR reflectance

values (Avitabile et al., 2012; Fernández-Guisuraga,

Suárez-Seoane, et al., 2022). The latter explains the

inverse relationship between VSD and the reflectance of

Sentinel-2 bands.

Extrapolation of C-band SAR and optical
predictive relationships of vertical structure
diversity

Although the spatial and temporal transferability of

remote sensing-based approaches is currently one of the

biggest challenges in the field (Fernández-Guisuraga,

Calvo, et al., 2019; Zandler et al., 2015), the extrapolation

of the RF predictive relationships from 1 to 2 years after

wildfire only entailed a reduction in the predictive capac-

ity of the VSD from 0.13 to 0.20 in terms of RMSE. This

behavior could be explained by the physical sense of SAR

backscatter data for characterizing vegetation structure

variability in burned areas (Kalogirou et al., 2014), which

leads to an improvement in the transferability of predic-

tive relationships (Fernández-Guisuraga, Verrelst, et al.,

2021). The proposed SAR and optical synergistic

approach could be transferable to other Mediterranean

ecosystems and, in general, to biomes characterized by

low to moderate vegetation biomass or high-intensity fire

regimes in which biomass consumption enables the pene-

tration of short wavelength SAR signal to the lower vege-

tation layers (Belenguer-Plomer et al., 2019). For

Figure 8. Boxplot showing the relationship between vertical structure

diversity index recovery and plant community type. Lowercase letters

denote significant differences in VSD recovery at the 0.05 level

between plant communities (see Table S2).
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example, C-band SAR data have proven to be useful in

the monitorization of stand structural characteristics in

recently disturbed (i.e., early successional stages) North

American boreal forests (Harrell et al., 1995; Ranson

et al., 1997), characterized by high-intensity fire regime

(van Leeuwen et al., 2014). In the tundra biome, which

features typically low biomass values and where the role

of wildfires in shaping ecosystem structure and dynamics

has been underestimated Bartsch et al. (2020) and Jones

et al. (2013) evidenced the ability of a Sentinel-1 and

Sentinel-2 data fusion approach to retrieve tundra vegeta-

tion structural characteristics. Conversely, it is expected

that backscatter saturation at short SAR wavelengths in

biomes with high canopy closure and biomass, such as

tropical forests (e.g., Englhart et al., 2011; Huang et al.,

2018; Musthafa & Singh, 2022), do not allow to evaluate

resilience to fire in terms of vegetation structural com-

plexity through the proposed approach. Future research

should consider the use of SAR sensors with longer wave-

lengths such as PALSAR-2 L-band SAR on-board ALOS-2

satellite (JAXA, 2022) or the P-band SAR instrument of

the future Biomass mission (ESA, 2022e), which would

penetrate the canopy to a higher extent in both unburned

and postfire scenarios with strong vegetation responses

(Kasischke et al., 2007; Tanase et al., 2010). Alternatively,

the increased sensitivity of interferometric SAR (InSAR)

or polarimetric InSAR to forest vertical structure (Gares-

tier et al., 2008; Lu et al., 2016; Solberg et al., 2010) could

provide promising advances in ecological studies of resili-

ence to fire.

Resilience to fire in terms of vertical
structure diversity recovery

Remote sensing estimates of VSD revealed that none of

the plant communities dominated by shrub or tree spe-

cies have recovered to a prefire state in the short term

(4 years after fire disturbance), although their VSD values

have increased progressively over the time series. Previous

remote sensing research was conducted in similar

Mediterranean plant communities in the western

Mediterranean Basin (Fernández-Guisuraga et al., 2020;

Fernández-Guisuraga, Suárez-Seoane, & Calvo, 2021) as

well as chaparral shrublands in California (Kibler et al.,

2019; Storey et al., 2016), evidenced that vegetation cover

reached prefire conditions in the short-term after wildfire

disturbance. These studies used fractional vegetation

cover (FVC) as an engineering resilience indicator

retrieved from passive optical data by means of vegetation

indices, pixel unmixing models, and radiative transfer

models. However, this indicator encompasses the recovery

of the photosynthetic vegetation fraction seen from the

nadir, regardless of the vegetation stratum in multilayered

plant communities when dealing exclusively with optical

data (Fernández-Guisuraga, Suárez-Seoane, & Calvo,

2021). Conversely, the recovery trends of the vertical

complexity in the considered shrub and tree plant com-

munities, identified through the fusion of active and pas-

sive remote sensing data, follow a slower progression as

evidenced in the present study. The higher VSD recovery

evidenced for heath shrublands and Pyrenean oak forests

could be related to the remarkable resprouting ability of

the dominant and accompanying species of both commu-

nities (Calvo et al., 2003), which enables fast recovery of

plant aboveground biomass (Fernández-Guisuraga et al.,

2020; Pausas & Keeley, 2014). In addition, lower fire

intensities typically reached in Pyrenean oak forests

(Calvo et al., 2003), also evidenced in previous research

in the study site (Fernández-Guisuraga, Suárez-Seoane,

Garcı́a-Llamas, et al., 2021), favor tree survival and

canopy re-establishment in the short-term (Tárrega et al.,

1996).

Conclusion

The assessment of how the structural complexity of plant

communities recovers to a predisturbance state is crucial

for maintaining the ecosystem functioning in fire-prone

landscapes and providing new insights about ecological

resilience to fire. This study is a pioneer in the use of

SAR and multispectral data fusion for this purpose. The

physical sense and sensitivity of SAR signal to the size

distribution and density of stems, branches and foliage,

together with the strong association between multispec-

tral reflectance and top-of-canopy traits and architecture,

enabled accurate predictions of vertical structure diver-

sity. Sentinel-1 backscatter data in C-band featured a

higher contribution than Sentinel-2 reflectance in the

modelization of vertical structure diversity in burned sce-

narios, with the opposite behavior occurring in unburned

control areas. In addition, the proposed approach was

transferable between different postfire scenarios. Despite

the resprouting ability of the dominant species favoring a

fast recovery of plant aboveground biomass and vertical

structure diversity recovery, neither plant community

reached a prefire state regarding this ecological resilience

indicator.
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Le Toan, T. (2010) Sensitivity of X-, C-, and L-band SAR

backscatter to burn severity in mediterranean pine forests.

IEEE Transactions on Geoscience and Remote Sensing, 48,

3663–3675.
Tanase, M.A., Santoro, M., Aponte, C. & de la Riva, J. (2014)

Polarimetric properties of burned forest areas at C- and L-

band. IEEE Journal of Selected Topics in Applied Earth

Observation and Remote Sensing, 7, 267–276.
Tanase, M.A., Kennedy, R. & Aponte, C. (2015) Radar Burn

Ratio for fire severity estimation at canopy level: an example

for temperate forests. Remote Sensing of Environment, 170,

14–31.
Tárrega, R., Luis-Calabuig, E. & Marcos, E. (1996)

Relationship between soil changes and plant succession in

postfire regeneration of Quercus pyrenaica ecosystems. Arid

Soil Research and Rehabilitation, 10, 85–93.
van Leeuwen, T.T., van der Werf, G.R., Hoffmann, A.A.,
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