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ABSTRACT 

 Asteroid detection is a common field in astronomy for planetary defense, requiring 

observations from survey telescopes to detect and classify different objects. The amount of data 

collected each night is continually increasing as new and better-designed telescopes begin 

collecting information each year. This amount of data is quickly becoming unmanageable, and 

researchers are looking for ways to better process this data. The most feasible current solution is 

to implement computer algorithms to automatically detect these sources and then use machine 

learning to create a more efficient and accurate method of classification. Implementation of such 

methods has previously focused on larger asteroids, but this leads to less accuracy in classifying 

smaller and slower-moving asteroids. We use the source data from the Near-Earth Object 

Widefield Infrared Survey Explorer (NEOWISE) survey telescope to create a preprocessing pipeline 

allowing for better training and testing data for machine learning algorithms. We were able to 

create a pipeline that finds sources on an image within 0.02 degrees as well as a collection of data 

on the known sources. Next, we used several machine learning classifying models, including a 

logistic regression classifier, a support vector machine (SVM), a naïve Bayes classifier, and a 

random forest. Finally, we present and discuss these results as a confusion matrix for each model, 

describing the ability to classify a source as an asteroid or not. This was done with only the 

numerical data collected. In the future, to create a better classifier, we would use this data along 

with classified images to develop a system that could predict the possibility of a detected source 

within a NEOWISE image being an asteroid or not. 

 Keywords: machine learning, asteroid detection, astronomy, near-earth object 
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INTRODUCTION 

Improving asteroid detection has become increasingly important, as near-Earth 

asteroids (NEAs) have proven dangerous even at small sizes and velocities. For example, the 

Chelyabinsk meteor that exploded over a town in Russia that caused structural damage as well 

as many injuries, was only 20 meters or 66 feet in diameter. All information collected about 

these asteroids is beneficial either for impact prevention or for potential asteroid mining, which 

is becoming a desirable option for gathering natural resources for use on Earth. There is an 

increase in data each year used to detect NEAs and potentially hazardous asteroids (PHAs), and 

the incoming images and the additional data from survey telescopes are quickly becoming 

unmanageable to process via human analysis [1], [2]. In 1998 the Very Large Telescope (VLT) 

produced 10GB of data, while in 2019 the Large Synoptic Survey Telescope (LSST) produced 

around 20TB or 20,000GB of data per night. Recent studies have investigated the 

implementation of machine learning to decipher images collected from these telescopes to 

show that there are more accurate and faster ways to detect NEAs. Previous studies have 

demonstrated the effectiveness of machine learning for the detection and classification of NEAs 

in survey data [3], [4], [5]. The present research project first explores the astronomy behind 

asteroids, including their magnitude and other astronomical units such as right ascension and 

declination, before discussing the application of machine learning and the different models and 

algorithms used to classify asteroids. 

Asteroid Surveys   

The primary type of data in previous asteroid detection research has been image 

surveys, created either with the intent to observe all types of transient objects or to observe 

asteroids specifically. In such studies, the survey telescope images the same part of the night sky 
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multiple times per night with the intention of observing any transients moving over time [1], [9], 

[10], [13]. Astronomers and researchers often processed the raw data in different ways to fit 

better with the objective of the research. For example, Duev et al. converted survey images into 

grayscale because color was not necessary for the detection of the bright pixels and ultimately 

simplified the data and therefore the processing [2]. In multiple approaches, researchers 

subtracted known sources such as stars, planets, or satellites from images [6], [7], [8], and [13]. 

The researchers then utilized these subtracted or differenced images, focusing solely on the 

transients or unknowns that remained after the knowns were subtracted out. Another example 

of data preparation is the use of random horizontal and vertical image flipping rotations to avoid 

bias in the results [3]. The purpose of flipping the orientation of the images allowed for a better 

image set because there were source image examples from a variety of different perspectives 

that could then be used for processing. The most common sources of data that were used for 

these surveys included the Zwicky Transient Facility survey [2], [7] and the images collected 

from the Linear Synoptic Survey Telescope [9], [10]. Larger amounts of data are available for use 

for researchers as well as the general public, but, as made clear in previous studies, this raw 

data must be tweaked and manipulated with preprocessing steps in order to best serve the 

objective of the research and ultimate goal of the researcher. 

 The Near-Earth Object Widefield Infrared Survey Explorer (NEOWISE) was created to 

find NEAs and provides much of the sky pictured in two infrared wavelength bands (3.4 and 

4.6 μm) as well as data on multiple types of sources. The two different infrared bands capture 

different features based on the wavelengths given off from each source, allowing for more 

features to be observed on each source. Each image taken with NEOWISE has a specific scan 

identification as well as a frame number, allowing each image to have a unique name or 
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identification number. Some of the data provided for each image include the location of the 

image in right ascension and declination, absolute magnitude and visual magnitude of the 

objects in the image, and the difference in intensity of the infrared bands for each image 

object. Right ascension and declination are absolute units used to locate objects in the sky. Right 

ascension can be measured in hours, minutes, and seconds (0 to 24 hours) as well as in degrees 

(0 to 360 degrees), while declination is measured only in degrees (-90 to 90 degrees). Absolute 

magnitude is the brightness of a celestial object as seen from a set distance and gives 

information about the true luminosity of the object, whereas visual magnitude is the brightness 

of the object as viewed from Earth. The smaller the magnitude the brighter the object. Most of 

the stars in our night sky have visual magnitudes from 1 to 6 while our Sun has a magnitude of -

26. 

Previous asteroid-detection work has focused on faster-moving asteroids, often to the 

detriment of detecting slower-moving asteroids [6], [11], [12]. In survey images, faster asteroids 

show up as trails or streaks; the faster the asteroid is moving, the longer the streak. A common 

detection method is recognizing these streaks, but this method performs poorly on slower-

moving asteroids that may appear as only a couple of pixels and can look very similar to other 

stars. A better way to detect slower-moving asteroids is to recognize moving pixels between sets 

of images from the same portion of the night sky allowing a small amount of time to elapse 

between each image. The NEOWISE survey dataset contains considerable overlap between 

images, allowing for tracklets of images (or string of images with the moving object) to be 

created. These tracklets allow for better detection of slower asteroids, which appear as “moving 

pixels” when the images in each tracklet are compared.   
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Detection of most asteroids has historically relied on human interaction in terms of 

viewing the images and picking out each image that included streaks or pixels moving over time. 

This method is quite time-consuming and requires multiple human reviews for each image. 

Speeding up this process is beneficial in the long run because it would allow for same night 

follow-up, allowing further observation of the object of interest before it moves out of view and 

is unable to be seen. Multiple researchers point to machine learning as the solution to quicken 

and improve the asteroid-detection process [3], [4], and [5].  

Use of Machine Learning  

Researchers have previously used algorithms such as random forest ([1], [7]), k-Nearest 

Neighbors ([1], [8], [9]), and support vector machines ([10]) for the classification of detected 

sources. These methods have sped up the process of classification as compared to previous 

systems that relied heavily on human interaction. 

One example of machine learning that could be fruitfully applied to asteroid detection is 

logistic regression. Logistic regression is a binary classifier that uses a logistic function (a 

common sigmoid curve) to model a dependent variable. The output of logistic regression model 

is the classification of a source as an asteroid or not (true or false). The goal is to determine the 

boundary that divides classes of data based on fixed values of the model parameters.  

Another machine learning algorithm that could be applied to asteroid detection is a 

support vector machine. To train a support vector machine, a user must use datasets that are 

marked as belonging to two distinct categories. The model can then predict the possibility of a 

new data point (in this case, an object in an image) belonging to one class or another (e.g., 

“asteroid or not”) based on where it falls on a graph created using the features of both classes. 

The goal of a support vector machine is to find a hyperplane, or an area of overlap, within a 
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space that distinctly classifies the source points with the maximum margin, or the maximum 

distance between both points. The dimension of the hyperplane depends on the number of 

features. A support vector machine kernel transforms the data and finds the process, beyond a 

linear hyperplane, that best separates the data based on the user-defined classes. This becomes 

very useful when dealing with a non-linear classification problem.  

The naïve Bayes classifier can be used for source classification by applying the Bayes 

Theorem, which describes the probability of an event based on the prior knowledge of the 

conditions that are related the event (in this case being an asteroid), with the assumption of 

conditional independence between every pair of features given the value of the class variable. 

For example, the features for an asteroid might include the location, brightness, or size of the 

asteroid.  The Gaussian naïve Bayes algorithm assumes the likelihood of the features to be 

Gaussian, which is a function that is visualized as a symmetric bell curve. 

Finally, decision trees offer another aspect of machine learning that could usefully be 

applied to asteroid detection. Decisions trees use a tree-like model of decisions in order to reach 

a conclusion about the classification of a source. A common example is the classification of iris 

flowers. First, the tree looks at the sepal petal length and sets a threshold that splits the possible 

values into two different categories, and the next decisions are based on the sepal width, petal 

length, petal width until every picture is classified into 1 of 3 different categories. The model 

should be able to predict the class of a source by creating simple decision rules assumed from 

the data features. A random forest is a model of machine learning that constructs a multitude of 

decision trees for the classification of the data points. 

In each of these models, results are displayed using confusion matrices. In order to 

convey the number of correct and incorrect predictions, the results are broken into classes: true 
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positives (sources that are true and classified as true), true negatives (sources that are false and 

classified as false), false positives (sources that are false but classified as true) and false 

negatives (sources that are true but classified as false). Each of these categories are depicted in 

the confusion matrix. These can then be used to calculate other important aspects of the 

classifier, such as accuracy, precision, and recall.  

A machine learning model that has proven especially efficient in the field of image 

classification is Convolutional Neural Networks (CNNs). CNNs are a type of machine learning 

architecture that implement convolution kernels, or filters, on the input features of the data to 

create feature maps. A CNN model needs training data to establish[?] training weights and 

testing data to check its performance. Each image input passes through convolutional layers 

with filters or kernels. The process involves both convolution layers and pooling layers, which 

reduce the dimensions of the data by combining outputs at one layer into a single neuron, which 

is just one part of the larger neural layer, in the next layer, and finally a fully connected layer 

that applies the sigmoid function, an s-type curve activation function used to add non-linearity, 

to classify a source with a binary value of 1 or 0. For this research we are concerned with binary 

classification (asteroid or not an asteroid) and smaller images, so this would lead to fewer layers 

overall in a CNN. 

 CNNs can speed up processing by providing more accurate predictions than human-

based classification by eliminating the need for a person to check anomalies and asteroid 

candidates in each image. Previous research has shown that a CNN-based approach is more 

accurate at classifying streaks and other abnormal pixels as asteroids [5], [6], [10], and [11]. The 

CNN architecture can perform better than more simple machine learning algorithms, such as the 
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ones previously mentioned, with image classification because of its hierarchical model that 

works on building a complex network.  

Given the limitations of the current asteroid-detection approaches, this research 

attempted to develop a pipeline that could more accurately detect slow-moving asteroids.  

To detect the slower and dimmer asteroids, the images from the NEOWISE survey from multiple 

years were processed using machine learning to become more efficient at detecting slower and 

dimmer asteroids. This included a focus on the images, as well as the metadata from the 

database on each individual object such as the visible magnitude, absolute magnitude, and the 

magnitude of the object in the first and second wavelength bands. Our work builds on existing 

efforts in implementing deep learning to detect transients and possible asteroid candidates in 

asteroid surveys and improving the ability to recognize irregular moving asteroids, by exploring 

the different machine learning models outlined here with data collected from the NEOWISE 

asteroid survey. 

 

 

METHODS 

Data Collection:  

Data was collected from the NASA/IPAC Infrared Science Archive (IRSA) database, 

specifically the Near-Earth Object Wide-Infrared Explorer (NEOWISE) survey. To retrieve the 

images and other source data, we used MySQL programming to perform database inquiries. This 

allowed us to collect images that contained different types of source. The images collected were 

single-frame images from a range of -50 to 50 degrees in declination and the full range of right 

ascension. This allowed full coverage of the celestial equator around the entire celestial sphere. 
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We kept the range of declination smaller to reduce the number of images needed, and we 

noticed that there were less asteroids in the areas that we did not observe. 

Within these images, we collected data on 550,264 sources, which included asteroids, 

comets, planets, and planetary satellites. Data on each source included the object’s location (in 

right ascension and declination) and its absolute and visual magnitude. In addition, data 

included the object’s magnitude in infrared bands 1 and 2, the difference between these band 

values of each object, the image identification, and the x and y coordinates of the source within 

its image. To convert astronomical coordinates into pixels, we first converted the right ascension 

and declination values that were originally in degrees into arcseconds. These values were then 

converted to pixels using the NEOWISE pixel scale of 2.75 arcseconds per pixel. To save the 

images and data as workable files, we saved them as NumPy arrays and saved the data 

separately as CSV files. Both file names were named as the unique source identification and 

frame number of that image to keep them coordinated. We then applied a logarithmic filter to 

the image to improve visualization, scaling the values down to readable values and leaving the 

background and sources on the image.     

Initial Data Analysis  

 To better understand the collected data, we began by analyzing the sources separately 

by their specified labels. For this dataset, the labels were asteroid (A), comet (C), planet (P), and 

planetary satellite (S). To analyze the data, we calculate the minimum, median, and maximum 

for each different measurement collected for the source. Figures 1 to 3 show some of the 

different features plotted for both asteroids and non-asteroids. Figure 1 shows the general 

location of the objects, indicating that many of the non-asteroids lie within the region of the 

asteroids in the solar system, along the ecliptic in the night sky. Figure 2 plots the absolute and 
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visual magnitude of each source, and there is more of a definitive difference in this graph. 

Asteroids are shown to have higher absolute magnitudes, which indicates that they are usually 

dimmer than the non-asteroids. Finally, Figure 3 shows the difference between the magnitude 

of the objects in the two different wavelengths of infrared, indicating that the properties of the 

non-asteroids still lie within the area of the plotted asteroid data points. 

 

Figure 1. Right ascension vs declination for each source. The blue dots represent the non-asteroids, and 
the green dots represent the known asteroids. Both axes are in degrees showing right ascension from 0 to 
360 degrees and declination from -50 to 50 degrees. 
 
 



  11 

 
 
Figure 2. Absolute magnitude vs visual magnitude for each source. Blue dots represent non-asteroids, 
whereas green represent asteroids. Asteroids seem to have a higher absolute magnitude on average, but 
visual magnitude seems to be distributed evenly for both classes. This shows that asteroids are dimmer 
than other types of sources. 
 

 
 

Figure 3. Wavelength 1 vs wavelength 2 for each source. Blue dots represent non-asteroids, whereas 
green represent asteroids. Most of the non-asteroids lie within a smaller region within the area of the 
asteroids. 
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Preprocessing Pipeline  

Our image preprocessing pipeline started with the input of a 1016x1016 pixels grayscale 

image collected from the database with final goal of detecting the point sources directly on the 

image and comparing them with known sources collected from the IRSA database stored in the 

CSV file. If we are able to create a pipeline that can accurately detect the sources that are 

already in the IRSA database, we then can rely on that processor to find new data points that 

can be used to test other machine learning classifiers. 

The first step of the pipeline was data conditioning. The data contained negative 

numbers representing broken pixels, so we limited the arrays to contain only positive numbers 

to allow for image visualization. The second portion of the conditioning was limiting the data to 

values of 0 to 255, the standard values used in image processing. We accomplished this by 

converting all the images to 8-bit integers (whole numbers ranging from 0 to 255).  

Next, we fed the images into a source detection algorithm called DAOStarfinder [14]. This 

algorithm can detect stars and can also be used to detect other point-like sources. The sources 

can be detected by first calculating the median value of pixels, which is then assigned as the 

value of the background. Points that lie outside of the full width half maximum (FWHM) of this 

value are then flagged as sources. The last step of the pipeline was to add a threshold. We 

applied a threshold to pixels with values over five times the standard deviation. The output of 

this algorithm was a table with the x and y coordinates of each detected source on the image. At 

this point in the processing pipeline, our algorithm should have picked out all the point sources 

in the images. These could include stars, comets, asteroids, planets, and planetary satellites.  

Finally, to compare the actual locations of the sources and the sources detected from 

the algorithm outlined above, we used the coordinates stored in each individual CSV file and 
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compared that with the closest point possible from the source table generated. This comparison 

was done by calculating the smallest Euclidian distance (the length of the line segment between 

the two points). The final output was an image with all the sources circled in blue and the 

sources of interest (asteroids, comets, planets, planetary satellites) circled in red, as well as the 

value of the Euclidian distance of the original point to the detected point provided.  Figure 4 is a 

visual representation of this pipeline. 

 

 

 
 

Figure 4. Preprocessing pipeline. This figure shows the preprocessing pipeline developed to prepare 
images for machine learning detection, including the inputs and outputs of the pipeline, as well as an 
example output images with the blue detected sources and red sources of interest. 



  14 

 
Numerical Source Data Classification 

 The next step in our research was to test our data with the various types of machine 

learning algorithms discussed above to determine if any of these models were viable systems to 

classify our numerical data on each source. The first model we tested was logistic regression. To 

begin, we imported all of the known data for each source into a Pandas data frame. The 

imported CSV file included information on all 550,264 sources. To split the data into the training 

and testing sets we used the train_test_split function from sklearn.model_selection and set the 

test size to .2 of the original data frame. So, the testing data is 20% of randomly selected data 

from the original dataset, while the rest of the data makes up the training data. We want the 

training data to be a majority of the available data because more data means more training 

which should lead to a more efficient classifier. The features included the 'ra', 'dec', 'amag', 

'vmag', 'w1mpro', 'w1sgmp', 'w2mpro', 'w2sgmp', 'band_difference' columns, whereas the 

target only included the label column labeled ‘t’.  

 The collected NEOWISE data is heavily biased towards asteroids. There were 438,960 

asteroids and only 1,251 non-asteroids in this training set. (This bias and its implication for the 

results are explained more in-depth in the discussion section of this thesis.) Finally, we trained 

and tested the data with the LogisticRegression model from Scikit Learn. The output is a 

confusion matrix described in the results section. We then followed a similar process for the 

SVM, naïve Bayes, and random forest classifiers. For each classifier we generated a training and 

testing dataset and then used the respective model from Scikit Learn to generate a confusion 

matrix. 

 The next step in our system was to use a convolutional neural network to classify the 

images. We anticipated using the probability from the CNN as well as the best machine learning 
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classifier in order to create a precise source classification system, but we were ultimately unable 

to perform the CNN on the images for reasons explained in the results section. 

 

RESULTS 

 The preprocessing pipeline contained 548,700 asteroids, 1,331 comets, 35 planets, and 

198 planetary satellites in the images used. The average distance estimated between the object 

source location and the actual location on the image was 26.76 pixels, or 73.6 arcseconds. The 

standard deviation was 29.62 pixels or 81.4 arcseconds. This indicates that our process was 

accurate and can continue to be used. Along with the estimated distances of the sources of 

interest we also gathered and analyzed information on all of the sources, summarized in Table 1.   

 

  Right Ascension  Declination  Visual Mag.  Absolute Mag.   Band 1/Band 2 
Difference  

Asteroids            
Minimum  0.002  -49.99  -1.200  7.456  -7.593  
Median  183.9  -2.080  15.13  20.13  0.911  
Maximum  360.0  49.99  32.10  37.20  10.63  

Comets            
Minimum  0.471  -49.83  2.000  9.579  -3.143  
Median  192.6  -2.048  11.83  21.10  0.857  
Maximum  359.6  49.00  21.00  34.07  7.208  

Planets            
Minimum  0.626  -12.41  -9.400  -1.613  0.240  
Median  168.9  -1.590  -6.045  5.720  1.009  
Maximum  330.8  19.70  -1.52  8.151  2.010  

Planetary 
Satellites  

          

Minimum  0.101  -12.44  -2.000  5.637  -0.712  
Median   91.19  -0.473  6.498  15.83  0.788  
Maximum  359.6  19.63  16.90  26.20  5.409  
Table 1. Source Data Statistics. This table shows the different data associated with each source type. The 
minimum, medium, and maximum are reported for each feature. 
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 Most machine learning models returned a confusion matrix. The total number of 

sources labeled true or false changes slightly for each model. The matrices for the various 

machine learning models are given in the figures that follow. These matrices show a lot of 

correctly labeled true cases (asteroids). However, even with the relatively high number of true 

positives there was still a considerable number of sources incorrectly labeled within the context 

of our data, explained in the discussion. 

 
Figure 5. Logistic regression confusion matrix 
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Figure 6. Support vector machine confusion matrix 

 

 
Figure 7. Naïve Bayes confusion matrix 
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Figure 8. Random forest confusion matrix 

 
 

 
DISCUSSION 

 Our analysis showed that the preprocessing pipeline utilized in this 

research was useful at finding sources, as the mean average of the distance between the real 

source coordinate and the detected source coordinate was around 73.6 arcseconds (around .02 

degrees in the sky) or 26.76 pixels. Since we know the pipeline is able to detect the asteroids 

with some accuracy, we can be confident in using it to train future machine learning algorithms 

to detect other asteroids. However, there is still some work needed to ensure that more of the 

sources of interest are detected in the images. One possibility is making sure there are no 

anomalies, such as diffraction spikes or other lensing errors in the images, and no mistakes 

when collecting the coordinates of the sources from the database. 

 Another factor to note is that the NEOWISE survey data has a large bias towards 

asteroids, as there is a considerably larger amount of data collected for that source as compared 
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to the other types of objects. We can also use the data statistics previously outlined in Table 1 to 

determine certain parameters for common asteroids that should be used in training for machine 

learning and what the threshold might be for these parameters. For example, looking at the 

data collected in Table 1, there are some clear differences between asteroids and planets and 

planetary satellites, but the data is similar for asteroids and comets. This implies comets will be 

hardest to distinguished from asteroids in the images, as well as analyzing at the data. 

 We can see from the results of the different classification algorithms that there are a lot 

of true positives or true negatives, showing that each classifier was able to identify a majority of 

the asteroids. However, even though each confusion matrix showed a large percentage of 

asteroids identified, this does not necessarily mean these algorithms were successful. Because 

the training set has around 439,000 asteroids and only 1,300 non-asteroids, any algorithm had a 

good chance of labeling a source an asteroid simply due to the large amount of them. Because 

of this, we are more interested in the other boxes of the confusion matrix. There are non-

asteroids on the order of 1000 instead of 100,000, so even a small number of non-asteroids 

incorrectly identified is an issue. In every model above there are a couple hundred, if not more, 

incorrectly identified. Adding the probability of the classified sources from a CNN used on the 

images would be able to lower the incorrectly classified sources, but there were issues on 

implementing this system. 

 For a CNN image classifier, a clear training set of images is essential. The detected 

source should be in the center of the image, and there should be no other objects pictured. In 

our data, after creating an image with the collected source coordinates at the center, the source 

of interest was not in the center. This meant there was some loss in precision converting the 

center of the object to degrees and then pixels on the image. At the moment we are unsure 
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where this loss occurs, since the coordinates of the object and the coordinates of the center of 

the image are pulled directly from the IRSA database. We converted both coordinates into the 

same unit and then found the difference of the coordinates of the source from the center and 

then created an image by drawing a 90-by-90-pixel box around the supposed location of the 

object. Without being able to center the image on the intended object, we cannot assure that 

only the object will appear in the image because we cannot locate where the object is exactly 

without looking at the image and zooming in. There are also a lot of background sources that 

would need to be removed if in the future we are to use a CNN with the images. Therefore, we 

cannot ensure an accurate system using a CNN, due to the error in our images. Some of these 

images are pictured in figure 9, there is a brighter object in each image, but it is not at the 

center.  
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Figure 9. Collected images from the NEOWISE survey of known asteroids. Each image starts as a FITS file 
and is then depicted using matplotlib and astropy.visualization.  

 

 

Figure 10. An additional image of a larger known asteroid. This image of a larger asteroid shows some of 
the details that can be captured within these images. 
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Figure 11. A NEOWISE image example of a non-asteroid. This image shows how a non-asteroid might 
look as compared to the previous images of asteroids. 
 

 To continue this research, we would need to figure out how to calibrate these images to 

work well with the CNN which would allow us to create a more in-depth classification system 

along with the numerical data analysis. We would first start by checking the coordinates from 

the original database, or we could use the detected centers used from before. But this brings up 

the issue of which is more accurate, the provided coordinates or the detected sources. The end 

goal of this research would have been to use the images to classify an asteroid in figure 9 and 10 

and a non-asteroid which is shown in Figure 11, where you can see there is a difference 

between that image and the previous ones. Future researchers could combine the probability of 

the correct class from the image CNN classifier with one of the other machine learning 

algorithms used on the numerical data to create a more precise classifier that would be useful 

on other NEOWISE source and image data. Based on our collected results from each of the 

machine learning classifiers, that there is not one that outperforms the others significantly and 

that can confidently be chosen to be part of the combined system. For future development of 

this research there should be more investigation into these different classifiers as well as other 
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options not explored in this research. This combined system would then be able to detect the 

smaller and slower-moving asteroids with the help of the preprocessing steps as well. 
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