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Abstract

Cyanobacterial harmful algal blooms (CyanoHABs) are a major threat to human and 

environmental health. As global proliferation of CyanoHABs continues to increase in prevalence, 

intensity, and toxicity, it is important to identify and integrate the underlying causes and controls 

of blooms in order to develop effective short- and long-term mitigation strategies. Clearly, nutrient 

input reductions should receive high priority. Legacy effects of multi-decadal anthropogenic 

eutrophication have altered limnetic systems such that there has been a shift from exclusive 

phosphorus (P) limitation to nitrogen (N) limitation and N and P co-limitation. Additionally, 

climate change is driving CyanoHAB proliferation through increasing global temperatures and 

altered precipitation patterns, including more extreme rainfall events and protracted droughts. 

These scenarios have led to the “perfect storm scenario”; increases in pulsed nutrient loading 

events, followed by persistent low-flow, long water residence times, favoring bloom formation and 

proliferation. To meet the CyanoHAB mitigation challenge, we must: (1) Formulate watershed and 

airshed-specific N and P input reductions on a sliding scale to meet anthropogenic and climatic 

forcings. (2) Develop CyanoHAB management strategies that incorporate current and anticipated 

climatic changes and extremes. (3) Make nutrient management strategies compatible with other 

physical-chemical-biological mitigation approaches, such as altering freshwater flow and flushing, 

dredging, chemical applications, introduction of selective grazers, etc. (4) Target CyanoHAB toxin 

production and developing management approaches to reduce toxin production. (5) Develop 

broadly applicable long-term strategies that incorporate the above recommendations.
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1. Introduction

Global expansion of harmful cyanobacterial blooms (CyanoHABs), is a major threat to 

safety and sustainability of water supplies for human consumption, agriculture (irrigation), 

inland fisheries resources, as well as recreational and aesthetic values of impacted waters 

(Burford et al., 2020; Paerl et al., 2019a, b). Nutrient over-enrichment has been strongly 

linked to CyanoHAB expansion in aquatic ecosystems (Paerl 1988). This link has a long 

history; going back at least to eutrophication that spawned massive blooms during the 

Roman Empire (Haas et al., 2019). Historically, P over-enrichment associated with 

agricultural, urban and industrial development has been identified as a key factor promoting 

this expansion (Elser and Bennett, 2011; Likens, 1972; Motew et al., 2017; Schindler, 2012; 

Smith, 2003). As such, reduction of P inputs to CyanoHAB-impacted waters has generally 

been prescribed as a key bloom mitigation step (Schindler, 2012). Because there are no 

gaseous forms of P that can potentially escape aquatic ecosystems, P accumulates in both the 

water column and sediments, leading to a “P legacy”, supporting persistent internal loading 

which can sustain eutrophication and blooms (Lewis et al., 2011; Reddy et al., 2011). Lake 

and reservoir systems can have lengthy water residence (or water age) times, often on the 

order of months to multiple years. Therefore, even if P inputs are reduced, it will take 

appreciable time to naturally “wean” these systems of internal P supplies (Havens, 1997; 

Paerl et al., 2016a, b).

The other major nutrient element controlling eutrophication, nitrogen (N), while also 

undergoing excessive anthropogenic enrichment, has gaseous forms (e.g. N2, N2O, NO, 

NH3), that can readily exchange with the atmosphere. Thus, even though anthropogenic N 

loading has increased at alarming rates (Erisman et al., 2013; Galloway et al., 2002) and has 

been shown to be directly implicated in both marine and freshwater eutrophication (Boesch 

et al., 2001; Conley et al., 2009; Elser et al., 2007; Lewis et al., 2011; Nixon, 1995; Ryther 

and Dunstan, 1971; Wurtsbaugh et al., 2019), there is an “escape route” via gaseous 

transformation processes. Furthermore, natural inputs of “new” N via N2 fixation are 

generally exceeded by losses due to in-system denitrification, especially in bloom-prone 

eutrophic systems (Paerl et al., 2016b; Scott et al., 2019). As a result, chronic N limitation is 

perpetuated, and external N inputs play a key role in maintaining eutrophic, bloom-prone 

conditions (Paerl et al., 2016b). Furthermore, recent studies have stressed the need to reduce 

N inputs into CyanoHAB-plagued systems due to the ties between N inputs, CyanoHAB 

growth and toxicity (Gobler et al., 2016; Harke et al., 2016; Shatwell and Köhler, 2019). 

Clearly, there is good reason to constrain external loads of both N and P, and impose more 

nutrient-limited conditions in order to help mitigate the CyanoHAB problem (Chaffin and 

Bridgeman, 2014; Müller and Mitrovic, 2015; Zohary et al., 2005).

Therefore, while P input reductions should be part of any long-term eutrophication and 

CyanoHAB control strategy, in order to speed up the “de-eutrophication” or 

“oligotrophication” process, parallel N input reductions are urgently needed, especially in 

light of global agricultural, urban and industrial expansion (Paerl et al., 2019 a).
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2. Legacy Effects of Nutrients in Freshwater Ecosystems

The term legacy effect entered the scientific literature in the late 1980s and early 1990s 

(Corbet, 1985; Molina and Amaranthus, 1991). Legacy effects are defined as the impacts 

that one generation leaves on the environment for future generations to inherit (Button et al., 

1999). In ecological terms, legacy effects can be considered to be ecological inheritance 

(Cuddington, 2011). In freshwater ecosystems, nutrient legacy effects add to the issues 

related to anthropogenic eutrophication (Duff et al., 2009). A large portion of the nutrient 

legacy is driven by land use and land cover changes, which have led to nutrient-enriched 

urban and agricultural runoff (Bain et al., 2012; Martin et al., 2011).

Since the rapid increases in chemical fertilizer use after WWII, nutrient loading has 

accelerated dramatically (Haygarth et al., 2014). As mentioned earlier, P can mainly leave 

aquatic systems by flushing or ending up in the sediments. Approximately 20–30% of P 

applied to agricultural land is exported directly out of the watershed as crop and animal 

production. The remaining 70–80% of the applied P ends up as stores in soils, river 

sediments, groundwater, wetlands, riparian floodplains, lakes, and estuaries (Jarvie et al., 

2013; Sharpley et al., 2013). Even though N can leave the aquatic systems as gases, some N 

also end up leaving a legacy on water bodies. Anthropogenic loading of N into agricultural 

soils can leach into groundwater, leading to an N legacy in aquifers (Puckett et al., 2011). A 

substantial fraction of accumulated CyanoHAB biomass is decomposed in the water column 

and surface sediments, fueling hypoxia (< 2.0 mg O2 L−1) and anoxia (< 0.5 mg O2 L−1) 

(Buzzelli et al., 2002; Paerl, 2014). The biomass fraction that is not immediately 

decomposed ends up in the sediments as legacy organic carbon, organic N, and organic P. 

Legacy nutrients provide for a positive feedback loop supporting CyanoHAB growth (Figure 

1), and it is a key reason why reversing the harmful effects of eutrophication can take a 

substantial amount of time, especially in large, long water residence time aquatic ecosystems 

(Paerl et al., 2019b).

3. Climate Change Effects on Nutrient Loading in Freshwater Ecosystems

While nutrient input reductions represent the “bottom line” in mitigating eutrophication and 

CyanoHAB expansion, there are additional, interacting drivers modulating this process, the 

most prominent and challenging being climate change (Paerl and Paul, 2012). Global 

warming, changes in precipitation patterns and amounts and altered wind speeds are strong 

modulators of eutrophication and CyanoHAB expansion (Deng et al., 2018; Paerl et al., 

2016a; Paerl and Huisman, 2009, 2008; Weber et al., 2020). Both of these symptoms of 

climate change are increasing in frequency and geographic distribution (Burford et al., 2020; 

Sinha et al., 2017; Trenberth, 2008; Wuebbles et al., 2013). Increasing temperatures, 

stronger vertical stratification, and salinization are also associated with climate change and 

linked to CyanoHAB magnitudes, frequency, distribution and duration (Chapra et al., 2017; 

Moore et al., 2008; Paerl, 2017; Paerl et al., 2011; Paerl and Huisman, 2009, 2008). As 

pointed out in Paerl et al., (2016a), the “perfect storm” scenario for CyanoHAB development 

and proliferation is excessive episodic rainfall events, followed by droughts, which can 

promote large nutrient input pulses followed by lengthy residence times, enabling blooms to 

develop and proliferate. Increased temperatures and nutrient loading can also enhance 
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CyanoHAB toxicity (Botana, 2016; Gehringer and Wannicke, 2014; Lehman et al., 2013; 

Moe et al., 2013). Furthermore, it is likely that these nutrient reduction thresholds will 

change with changing climatic conditions, human watershed and airshed activities, as 

populations continue to change (Erisman et al., 2013; Galloway et al., 2002; Moss et al., 

2008; Peierls et al., 1991). Wildfires brought on by climate change can also lead to nutrient 

loading due to increased mobility of sediment (Emelko et al., 2016), especially when 

followed by extensive rainfall and flooding as has been the case in California and most 

recently in Eastern and Southern Australia (Malmsheimer et al., 2008; Sharples et al., 2016). 

In addition to enhancing P inputs associated with sediment mobilization, deforestation also 

leads to N loading, as seen in N cycle shifts the Laurentian Great Lakes (Guiry et al., 2020). 

Therefore, changes in these climatic drivers will need to be incorporated into the 

development of nutrient input reductions that will effectively maintain bloom potentials 

below specific nutrient loading thresholds for individual water bodies. Warming and nutrient 

loading and temperature synergistically increase the intensity and recurrence of 

CyanoHABs, which amplify the feedback loop promoting CyanoHAB growth (Figure 1).

Anthropogenic influences on the atmosphere are also modulating CyanoHABs. Increasing 

atmospheric pCO2 can enhance phytoplankton blooms, including CyanoHABs (Verspagen et 

al., 2014). The augmented pCO2 will also favor CyanoHAB growth due to rapid adaptation 

to higher pCO2 environments as seen in microcosm and chemostat experiments (Sandrini et 

al., 2016; Shi et al., 2017; Ji et al., 2020). While the effects of increased pCO2 appear to 

promote CyanoHABs, much less is known about the in situ mechanisms compared to the 

effects of temperature (Verspagen et al., 2014; Ji et al., 2020). In addition to atmospheric 

carbon emissions, N and P emissions also impact CyanoHAB proliferation. Atmospheric 

deposition has been shown to be significant source of both N and P into aquatic systems. For 

example, Paerl et al., (2002) estimated that from 20 to >35% of N inputs to N-limited US 

Atlantic estuarine and coastal waters was attributed to atmospheric N deposition, while 63% 

of total N and 42% of total P loading in Cultus Lake near Vancouver, BC, Canada, come 

from atmospheric deposition (Putt et al., 2019). Atmospheric deposition also indirectly 

impacts coastal systems, as an average of 64% of riverine N export to coastal ocean systems 

is derived from NOx and NHx deposition (Church and Sickle, 1999; Jaworski et al., 1997). 

Groundwater inputs of N and P, much of it due to human pollution, provide an additional 

source of nutrients promoting eutrophication along the freshwater to marine continuum 

(Paerl, 1997). The combined effect of increased anthropogenic surface, subsurface and 

atmospheric nutrient loading, in addition to promoting eutrophication, has driven receiving 

waters into N and P co-limitation and N-limitation (Chaffin et al., 2014; Dodds and Smith, 

2016; Elser et al., 2007).

4. Management Recommendations

When reducing external N&P loading, both point-source and nonpoint-source nutrient inputs 

need to be addressed. Point source pollution is the easiest target for N and P reduction, as 

this source can be reduced by targeting readily identified and well-defined origins, such as 

effluents from wastewater treatment plants and industrial discharge points (Hamilton et al., 

2016; Wu et al., 2006). Reduction in point source pollution generally involves diversion of 

sewage from waterbodies and reduction in P and N concentrations in the wastewater 
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discharge (Sedlak, 1991). N removal from wastewater generally makes use of coupled 

nitrification-denitrification (US EPA, 2013). P removal occurs either through burial or 

flushing of P bound in biomass out of the system (Downing, 1997). Buried P can be 

removed by dredging (Reddy et al., 2007), although a short term P spike often results from 

dredging (Smith et al., 2006). While P-based detergent bans have been successful at 

reducing blooms (Dolan and McGunagle, 2005), there are cases where P from detergents 

continues to be an important component of P in surface waters while also imposing a major 

burden on wastewater treatment processes (Hamilton et al., 2016; Van Drecht et al., 2009). 

Greater attention needs to be focused on nonpoint sources of nutrients, which in many 

watersheds is the largest source of nutrient loading and is often dominated by agriculture 

(Hamilton et al., 2016). Furthermore, nonpoint-source pollution continues to increase as a 

relative proportion of total loading as more advanced treatment of point source pollution is 

implemented (Hamilton et al., 2016). Removing N and P from stormwater runoff can be 

achieved by using combined wetlands and infiltration ponds to naturally filter N and P 

(Marsalek and Schreier, 2009; Zheng et al., 2006). Retaining fertilizer-based N and P in 

agricultural soils should receive high priority (Hamilton et al., 2016). Maintaining N and P 

in soils at levels close to or below agronomic optima is critical and represents one of the 

simplest and most cost-effective methods to reduce eutrophication in receiving waters 

(Drewry et al., 2006; Rasouli et al., 2014). Where feasible, fertilizer should be directly 

injected into the soil to minimize nutrient-rich surface runoff (Seo et al., 2005).

Another method of removing nutrients from non-point sources is through in situ biological 

filtration, using non-harmful algal “scrubber” and “raceway” devices (Adey et al., 2013; 

Barnard et al., 2017; Mulbry et al., 2010, 2008). Adding denitrifying bacteria can greatly 

speed up N removal (Chen et al., 2017). Vegetated buffers are also a useful tool for 

remediating nonpoint source pollution; trees, shrubs and grasses in the vegetated buffer have 

been shown to remove more than 85% of pollutants (Zhang et al., 2010), including 85% of N 

and 84% of P (Polyakov et al., 2005). However, the biomass from buffers needs to be 

periodically harvested and exported in order to have net nutrient removal effect, unless 

processes such as denitrification are additionally enhanced by this approach (Hoffmann et 

al., 2009). Additionally, natural and constructed wetlands are very effective, low cost 

solutions for removal of nonpoint source nutrients from aquatic systems (O’Geen et al., 

2010; Ribaudo et al., 2001), with removal of over 80% of N loading and over 50% of P 

loading (Braskerud, 2002a, 2002b; Kao and Wu, 2001).

There is a significant association between cyanobacterial blooms and land use types (i.e., 

industrial, commercial, and transport areas) (Arthington, 1996; Soranno et al., 1996). These 

results are relevant to landscape planning for mitigating future impacts of climate change on 

the drainage network, surface runoff, nutrient loads and, ultimately, on the development of 

toxigenic cyanobacteria (Hamilton et al., 2016). A better knowledge of the relationships 

between land use type and discharge is essential to foresee the effects of climate change on 

drainage basins and therefore to evaluate potential triggers of CyanoHABs (Jimenez 

Cisneros et al., 2014).

Higher amounts of freshwater runoff can enhance vertical density stratification (reduced 

vertical mixing) in waters having appreciable salinity, including estuarine and coastal waters 
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as well as saline lakes and rivers; by allowing relatively light freshwater lenses to establish 

themselves on top of heavier (denser) saltwater. The resultant enhanced vertical stratification 

will favor CyanoHABs capable of rapid vertical migration to position themselves at 

physically-chemically favorable depths in both freshwater and marine systems (Paerl, 2014; 

Paerl and Huisman, 2009) by rapidly altering their buoyancy in response to varying light, 

temperature and nutrient regimes (Walsby et al., 1997).

The large biomass and long survival time of CyanoHABs in sediments can help explain the 

delayed recovery of affected lakes after reduction of external nutrient loads (Brunberg and 

Boström, 1992; Paerl et al., 2016a). Sediment removal involves expensive dredging and 

disturbance of lake bottoms, which can release additional nutrients (and potentially toxic 

substances) and adversely affect benthic flora and fauna. However, CyanoHABs were 

eradicated successfully with this approach in Lake Trummen, Sweden (~1 km2, mean depth 

1.6 m), which experienced CyanoHABs and water quality degradation from domestic 

sewage and industrial nutrient inputs during the mid-1900s (Cronberg, 1982; Peterson, 

1982). Suction dredging the upper half-meter of sediments over two years led to significant 

decreases in nutrient concentrations and CyanoHABs (Cronberg, 1982; Peterson, 1982). 

Lake Trummen’s rapid CyanoHAB eradication is attributed to its small size and the ability 

to simultaneously reduce external nutrient loads effectively from its small size (13 km2) 

(Cronberg, 1982; Peterson, 1982). Dredging is not a feasible solution for reducing internal P 

loading in large lakes, where P-rich sediments are distributed over hundreds or thousands of 

square kilometers and are highly mobile (James and Pollman, 2011).

CyanoHABs can be treated with chemical and/or biological agents to limnetic systems. 

Chemical treatments, including precipitation and immobilization of phosphorus in bottom 

sediments (Phoslock, alum, etc.), application of algaecides (Cu compounds, hydrogen 

peroxide, permanganate, etc.), as well as biological controls, such as the introduction of 

invertebrate and fish grazers, lytic bacteria, and viruses, may temporarily halt the advance of 

CyanoHABs (Matthijs et al., 2012; Paerl et al., 2015; Pan et al., 2006; Robb et al., 2003). 

However, there are unintended negative impacts on flora and fauna of the limnetic systems 

that make these chemical treatments potentially detrimental to these systems (Bishop et al., 

2018; Escobar-Lux et al., 2019; Paerl et al., 2015). Addition of selective grazers is another 

option, but successful control of CyanoHABs by grazers is unlikely except in specific cases 

(Paerl et al., 2001). This is due to cyanobacteria being generally considered to be relatively 

low preference foods for marine and freshwater herbivores because of chemical and 

structural defenses and poor nutritional quality (Cruz-Rivera and Villareal, 2006; DeMott 

and Moxter, 1991; Paerl et al., 2001; Paerl and Paul, 2012). The addition of the grazers can 

also have negative effects on the food webs through trophic cascades (Jeppesen et al., 2007; 

Wright and Shapiro, 1984). Given the lack of feasibility, unpredictable and unintended 

effects of chemical and biological additions, the most prudent and defensible approach is to 

prioritize nutrient input reductions; however, if nutrient reduction is not enough to reduce the 

impacts of the blooms, then reassessment of nutrient reduction thresholds as well as the use 

of any of the above mitigation methods should be considered to manage the CyanoHABs.

Remote sensing technology can be useful for tracking and evaluating management of 

blooms as a means of linking nutrient sources to bloom dynamics over varying temporal and 
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spatial scales (Dorigo et al., 2007; Field et al., 1995; Mishra et al., 2019). Using remote 

sensor networks, satellite imagery, and machine learning, the extent and drivers of 

CyanoHABs can be remotely sensed and analyzed (Davis et al., 2019; Mishra et al., 2018, 

2019; Zhang et al., 2016). Satellite-based imagery paired with Raspberry-Pi-based remote 

sensors (CyanoSense), cellular-phone-based application CyanoTracker, and social 

networking services such as Twitter can document the progression and proliferation of 

blooms (Boddula et al., 2017; Mishra et al., 2018, 2019; Page et al., 2018; Scott et al., 2016; 

Stumpf et al., 2016). While satellite imagery can measure biomass in CyanoHABs using the 

different spectral properties of chlorophyll and phycocyanin (Binding et al., 2019), it cannot 

accurately measure cyanotoxin production as CyanoHAB cellular toxin content can vary 

even on short time scales and can persist extracellularly after bloom biomass is dissipated 

(Davis et al., 2019). Therefore, remote sensing should be paired with long-term monitoring. 

On-lake long-term monitoring of water quality parameters is also critical for protecting 

human exposure to cyanotoxins during blooms (Davis et al., 2019). Management 

recommendations are outlined in Figure 2.

Anthropogenic forcing continues to alter natural systems and the climate, with major 

ramifications for nutrient loading, hydrologic changes (e.g., more intense and larger rainfall 

and flooding events), warming and changes in wind speed - all of which will alter the rates 

of eutrophication and nutrient-bloom threshold relationships. This calls for the formulation 

of adaptive nutrient management strategies aimed at maintaining bloom potentials and 

proliferation below critical nutrient-bloom thresholds. Given the current trajectory of climate 

change (warming, more extreme wet/dry cycles, reduced wind speed in many locations), it is 

likely that nutrient loading threshold levels above which blooms will occur, will be lowered, 

because CyanoHABs will grow more efficiently at elevated temperatures and persist longer 

under extreme wet/dry cycles (Paerl et al., 2016a). Furthermore, with more extensive 

wet/dry cycles, both external and internal nutrient cycling will be altered, and this will likely 

benefit CyanoHABs, which can affect internal cycling by lasting longer during the growth 

season and can promote positive feedbacks on sediment-water column nutrient cycling to 

maintain blooms (Fig. 1). This is especially true if CyanoHABs are not effectively consumed 

by grazers and ultimately finfish or shellfish, which can be exported from the system. More 

likely, CyanoHAB biomass will enter the detrital-microbial loop component of nutrient 

cycling, enhancing microbial decomposition and recycling of nutrients more effectively 

during a single growth season. Overall, this means that current nutrient loading targets aimed 

at controlling CyanoHABs will need to be set at lower levels than currently prescribed for 

many regions. With legacy nutrients and climate change leading to positive feedback loops 

of cyanoHAB proliferation, we need to focus on watershed and airshed nutrient reductions 

that can help reduce and ultimately break the loops. Lastly, we can complement these efforts 

with (where feasible and effective) biological and chemical treatments, remote sensing 

technology, and routine monitoring to help manage CyanoHABs into the future.
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Highlights

• Harmful cyanobacterial blooms are controlled by nutrient-climate synergism.

• >50 years of human nutrient loading has led to nitrogen-phosphorus co-

limitation.

• Legacy nutrient buildups pose novel nutrient reduction challenges.

• Controlling CyanoHABs requires climate-adaptable management strategies.
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Figure 1. 
Conceptual diagram, showing the feedback loops of climatic effects and nutrients on 

CyanoHAB biomass. a) Climate change is causing more intense wet/dry cycles, widespread 

wildfires, and warming, leading to an increase in CyanoHAB biomass. b) Increased 

CyanoHAB biomass is involved in a positive feedback loop with legacy nutrients and 

regenerated nutrients derived from the microbial loop. c) These feedback loops combined 

with climatic effects constitute a key challenge to mitigating CyanoHABs.
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Figure 2. 
Conceptual diagram, illustrating multiple, interacting controls in CyanoHAB management. 

Climatic influences have led to the need to reduce nutrient loading below previous reduction 

standards, putting additional pressure on reducing nutrient inputs from (a) point source 

pollution and (b) non-point source pollution, (c) regenerated nutrients, and (d) legacy 

nutrients though various mechanical, chemical, and biological means. (e) Short-term (several 

months) treatment, chemical and biological approaches used. (f) Appropriate monitoring is 

essential for assessing the CyanoHAB scales and the efficacy of management approaches.
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