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T h e  Smago r i n sky  subg r i d  mode l  is rev ised  to p rope r l y  accoun t  for g r i d  an isot ropy,  us i ng  e ne r gy  
equ i l i b r i um cons ide ra t i ons  in  isot rop ic tu rbu lence.  Fo r  mode r a t e  reso lu t i on  an isot rop ies,  
Deardo r f fs  est imate  invo lv ing  a n  equ iva len t  g r i d  sca le  A ,=  (A,A,A, )  1 ’3  is g i ven  a  r i go rous  
basis.  Fo r  m o r e  gene r a l  g r i d  an isot rop ies,  the  Smago r i n sky  e d dy  viscosity is recast  as  
~ E = k A e q f(a~ t 4 1 2 1 S I, whe r e  f(ai ,a2 )  is a  funct ion of the  g r i d  aspect  rat ios a l  a n d  a2 ,  a n d  
1  S  1  is the  r eso l ved  st ra in ra te  magn i t ude .  T h e  asymptot ic  behav i o r  of vr at seve ra l  l imits of the  
aspect  rat ios a r e  exam ined .  App rox ima t i on  fo rmu las  a r e  d eve l o p ed  so  that f(a, ,a2 )  c an  eas i ly  
b e  eva l ua ted  in  pract ice, for a rb i t ra ry va lues  of a 1  a n d  a2 .  It is a r g u e d  that t hese  resul ts shou l d  
b e  u s ed  in  con junc t i on  wi th the  dynam ic  mode l  of G e r m a n 0  et al. wheneve r  the  an iso t ropy  of 
the  test-f i lter d i f fers s igni f icant ly f rom that of the  bas ic  gr id .  

In this Br ie f  Commun i ca t i o n  w e  cons ide r  the  issue of 
p r o pe r  subg r i d -sca le  mode l i n g  for a  l a r ge  e d dy  s imu la t ion  
that emp l oys  a  rec tangu la r  g r i d  wi th m e s h  s ides  of a rb i -  
t rary l eng ths  ( A 1  ,A 2 ,A 3 )  = A . In the  Smago r i n sky  mode l ,  
the  dev ia to r ic  par t  of the  subg r i d -sca le  stress tenso r  is 
m o d e l e d  as  

~ i j = -2 [L (A ) ]~  [G m ,S ,,]“2Si j ,  (1 )  

whe r e  S i j  is the  r eso l ved  rate-of -st ra in tenso r  a n d  L (A )  is 
a  factor that h as  un i ts of length .  A lso,  L (A )  d e p e n d s  o n  
the  s ize of the  compu ta t i ona l  m e s h  a n d  o n  its an isot ropy.  If 
the  spac ings  in  a l l  d i rect ions a r e  e qua l  (A) ,  d imens i ona l  
cons ide ra t i ons  l e ad  to 

L (A )  =c,A,  (2 )  

whe r e  c, is the  Smago r i n sky  constant  (usua l ly  t aken  be -  
tween  0 .1  a n d  0.2).  W h e n  the  L E S  g r i d  h as  u n e q ua l  s ides  
Ai ,  the  c o m m o n  pract ice is to fo l low Deardo r f f’ in  emp l oy -  
i ng  E q . (2 )  us i ng  a n  equ iva len t  l eng th  sca le  

l /3 
A e 6 =  ( W A 3 )  . (3 )  

In the  case  of a  cub ic  mesh ,  w e  reca l l  that if the  assumpt i on  
is m a d e  that A  l ies in  the  iner t ia l  r a n g e  a n d  that the  un i -  
ve rsa l  K o lmogo r o v  spec t rum app l ies ,  t hen  the  cond i t i on  
that the  S G S  d iss ipat ion  b e  e qua l  to (E) ,  

(E )  =  -  ( ~ i j ~ i j )  (4 )  

c an  b e  u s ed  to est imate  c,$.~ In the  case  of a n  an iso t rop ic  
gr id ,  m o m e n ts of the  r eso l ved  rate-of -st ra in d e p e n d  o n  the  
g r i d  an isot ropy.  Howeve r ,  the  cor rect  va l ue  for (E )  must  
still b e  gene ra ted .  The re fo re ,  L (A )  c an  a lso  b e  ob t a i ned  
f rom the  ene rgy - f l ux  equ i l i b r i um cond i t ion,  n ame l y  

(E)=2[L(A) ]2 ( [2~~,s, , , ]1’2~ i j~ i j ) .  (5 )  

A  s imi la r  a p p r o a ch  was  u s ed  s o m e  tim e  a g o  by  S c h u m a n n 3  
to eva l ua te  mode l  constants  for the  cont ro l  v o l ume  a n d  
cont ro l  su r face fo rmu la t ion.  He re ,  w e  w ish  to revisit this 
i ssue for seve ra l  r easons .  T h e  first is to a r r ive  at a n  exp res -  
s i on  that c an  b e  imp l emen t ed  in  p ract ice m o r e  eas i ly  t han  
that a r is ing  f rom S c h u m a n n ’s o r i g ina l  fo rmu la t ion.  T h e  

second  m o t ivat ion is to g i ve  a  m o r e  r i go rous  f ounda t i on  to 
Deardo r f f  s exp ress i on  [E q . (3)]  a n d  to quant i fy  its l imits 
of val idity. Y e t ano t he r  m o t ivat ion is the  n e e d  to e luc ida te  
the  i n f l uence  of an iso t rop ic  f i l ter ing du r i n g  statist ical a  p r i -  
or i  test ing.” Last ly, w e  be l i eve  that w h e n  the  Smago r i n sky  
mode l  is emp l o y ed  in  con junc t i on  wi th the  dynam ic  
mode l , 5  the  g r i d  an iso t ropy  n e e d s  to b e  taken  in to accoun t  
sepa ra te ly  f rom the  mode l  constant .  Th is  is of cu r ren t  im-  
po r tance ,  g i ven  the  n e e d  to ex tend  L E S  to comp l ex  th ree -  
d imens i ona l  ( 3 -D)  g e o m e tr ies whe r e  nonun i f o rm  g r ids  a r e  
usua l l y  emp l oyed .  W e  sha l l  e l abo ra te  o n  this par t icu la r  
po in t  at the  e n d  of this commun ica t i on .  

W e  re tu rn  to E q . (  5),  wh i ch  shows  that the  d e p e n -  
d e n c e  of the  r eso l ved  ra te  of st ra in statistics o n  the  g r i d  
g e o m e try must  b e  cance l ed  t h r ough  a n  app rop r i a t e  exp res -  
s i on  for L (A )  in  o r de r  to gene r a t e  the  correct,  g r i d  i nde -  
p e nden t  (E) .  Next, the  r i gh t - hand  s ide  ( rhs)  of E q . (5 )  is 
app r ox ima ted  in  te rms of second - o r de r  m o m e n ts as  fo l lows 

(6 )  

Th is  assumpt i on  neg lec ts  in termi t tency effects, wh i ch  wi l l  
b e  cons i de r ed  in  m o r e  deta i l  i n  fu ture work.  Present ly ,  w e  
p r o ceed  by  ut i l iz ing second - o r de r  i n fo rmat ion  on ly.  T h e  
eva lua t i on  of <g i$ i j )  is in  p r inc ip le  s t ra ight fo rward if the  
e ne r gy  spect ra l  tenso r  Q i j(k) is p resc r ibed .  Assum i ng  that 
a l l  l eng ths  h i  of the  g r i d  b e l o n g  to the  iner t ia l  r ange ,  w e  
h a ve  

Q i j (k )=& 6i j -s E(k) ,  
(  1  

(7 )  

whe r e  E(k )  =  Ck.?‘3k - 5 ’3.  As  in  Li l ly,2 S c h u m a n n 3  etc., 
w e  a ssume  that the  va r i ab les  r eso l ved  at the  g r i d  sca le  a r e  
the  phys ica l  va r i ab les  convo l ved  wi th a  spat ia l  f i lter F(x)  
wi th character ist ic sca les in  e a ch  d i rect ion  e qua l  to Ai .  It 
fo l lows that 

(g i jg i j )  ~ 2 ’~  2  j- IF(k) 1 2 k k S L 3  dk.  

Subst i tu t ion in to E q . (6 )  y ie lds 
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1 F(k) I 2k-5’3 & . (9) 

The correspondence between the filter type (e.g., cutoff, 
top hat, etc.) and the actual LES numerical method em- 
ployed (spectral, finite differences, etc.) is not precise. 
Since the approach is thus of an approximate nature, the 
cutoff filter is employed, for which the calculations are 
done most easily. This filter is defined in Fourier space as 
the indicator function of the region B 

B={lkll <r/hi, lk21 <dA2,1k31 <dAj}. (10) 

For definiteness, we now select the largest edge of the 
grid (or filter) to be Amax=max{Al,A2,A3) and define 
al=AJA,,, a2=Ak/A,, as the aspect ratios of the 
other two sides of the filter. Also the angles 
&=arctan(al/u,), /32=arctan(a2/ul> will be employed. 

It is then convenient to work in spherical coordinates, 
where the elevation angle 0 is measured from the axis 
aligned with the direction of A,,, . Performing all integra- 
tions that can be done analytically one obtains 

s B 
k-5/3 dk=6($--)vI( JI’ qt($)d# 

+ 9 (11) 

where 

1 

s 

r/2 

'( Ui COS 4) “’ 
[sin #]- 1’3 de. 

arctan[l/(aicos q5)] 

(12) 

The behavior of highly anisotropic grids is as follows. The 
case of pencil-like grids with A1 -A2-Ami,,(A,,, (while 
maintaining the Kolmogorov scale ?IgAi) corresponds to 
B1-&- (r/4); a, -a2 Q 1. Thus the integral diverges 
like (Amin/A,,,) - . t’3 From Eq. (9) we obtain 

L-Am,, (A,,/A,,,) 1’4-Aeg ac5’t2. (13) 

In the case of a sheetlike grid A1=Ami,<Ax-A,,, the 
integral approaches a constant. This results because in 
Fourier-space one integrates kmmg’3 over a long but approx- 
imately one-dimensional (1-D) domain, and this yields in- 
tegrals that do not diverge at high k. In other words, the 
two-dimensional filtering effectively dampens most of the 
fine scales in the third direction as well. Therefore, L tends 
to a constant, namely 0.0844 A,,,=0.0844 A, a;1’3, 
where we have assumed the Kolmogorov constant to be 
C,= 1.6. Therefore, Eq. (3) underestimates the Smagorin- 
sky constant for meshes with small aspect ratios. 

We conclude that in general the Smagorinsky- 
Deardorff model should be corrected by introducing a 
function f( al ,a2), according to 

7ij=-2[C~e~f(“l,a2)12 [~mnSnn11’2~ij* (14) 

In such a formulation, the grid anisotropy is properly iso- 
lated from the model constant through Aerl and the correc- 
tion function f(al ,a2) which has the property that f( 1,l) 
=l. 

Next, the function f( al ,a,) is computed by evaluating 
Eq. ( 11) numerically (using a mixed Gauss-Gauss- 
Kronrod rule) and by substitution into Eq. (9): 

.f(q,a2)=(w2) -t’3 [L(A)/L(A,A,A) 1 , (15) 

In Fig. 1 we show f(al ,a2) for low4 <alp2 < 1. For in- 
stance, it can be seen that f(a,,u,) becomes larger than 1.3 
(an error of 30% in Deardorff s formula) for aspect ratios 
smaller than about l/5. We also point out. that when 
u1=u2=1, the numerical result for L(A) is L=O.l3A, 
which implies that c,=O.13. This value is slightly smaller 
than the value obtained by Lilly2 (c,r0.16) due to the fact 
that the latter is obtained integrating in the sphere in- 
scribed’in B only. 

To permit easier evaluation of the function f(ul ,a2) an 
empirical formula is developed that reproduces its behavior 
over a wide range of values of al and u2, as well as the 
proper asymptotics. It is obtained by expanding the inte- 
grand in ( 11) in Taylor series and performing the inner 
integral analytically. Further approximation of the remain- 
ing integrals with polynomials by means of curvilinear re- 
gression (keeping three terms only) yields the formula 

Rat ,a21 

+O.O77P3(B1)a, t1’3-3/?1+4P1(f12)ag1’3 

+0.222P2(&)a;‘3+0.077P3(~~)u2 11/3- 3fi2]- 3/4, 

(16) 

where the polynomials Pi are defined as follows: 

Pl(z)=2.5P2(z)-l.S(c0sz)“” sinz, 

P3(z) = +0.976z+O.1882- 1.1692+0.755z4-0.151~. 
(17) 

The maximum error of this approximation is smaller than 
4% over the entire range of al and u2. 

Next, we wish to gain a better understanding of the 
behavior of f( a1 ,a,) near the isotropic limit al =u2= 1. 
This is best accomplished by using an ellipsoidal domain 
B” in Fourier space, instead of the rectangular one which 
led to Eqs. ( 11) and ( 12). In spherical coordinates, we 
write 

k-5/3dk= j:= s,” s,*” kt’3sinOdkdBd$, 

Here kb is the distance from the origin to the surface of an 
ellipsoid with major axes r/A,,, (in the axial direction 
9==0), s-/alA,,, and r/a2Amax, 

kb=e (cos2 8 + uf cos2 Q, sin2 8 +u; sin2 46 sin2 0) - 1’2. 
max 
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FIG. 1. Numerically computed contour plots of the grid-anisotropy cor- 
rection function f(ai ,a,). Contours are values of log,, f(ai ,rz2), sepa- 
rated by 0.05 starting from 0 at the origin (a, ,az) = (1,l). 

Performing the radial integration, substituting into Fqs. 
(9), and comparing with Eq. (14) one recognizes that 

f(a1 ,a2) -4’3= (1/2Tr) (utaz)4’9 

27r I s T/2 
X (cos2 e+af cos2 q5 sin2 8 

0 0 

+aimsin2 4 sin2 6) -2’3 sin 0 df3 d$. 

Also, for this choice of limits, c,= (3Ck/2) -3’4?r- ’ ~0.16, 
the spherically symmetric value. The expression for 
f(ar,a,) is easy to expand in Taylor series around 
al =a2= 1, and it is most instructive to do this, with respect 
to the logarithmic variables In a, and ln u2. Up to second 
order in these variables one can write 

f~l+$ [(lna,)2-lnal lna2+(Ina2)‘]. (18) 

The fact that there are no linear terms can be viewed as 
further justification for the Deardorff approximation for 
moderate anisotropies. 
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FIG. 2. Comparison between different expressions for the correction 
function f(a, ,a,). Solid line: exact (numerical) value for as= 1; dashed 
line; exact (numerical) value for as=a,. Approximation using Elq. (16), 
for as= 1 (circles) and for a, =a2 (squares). Diamonds: simple fit using 
the cash function of Eq. (19) (same curve is obtained for a,=1 and 
q=a2). 

Returning to the question of finding practically useful 
fits for f(ar ,a2), we recall that the asymptotic limits were 
f -a1 -1’3 if a2= 1, and f-at “I2 if a,=a,. Therefore, by 
writing 

f zcosh $ [(In a1)2-ln al In a,+ (In a2)2], (19) 

one simultaneously obtains the small anisotropy limit of 
Eq. ( 18), and an asymptotic power law with exponent 
equal to - J$ at large anisotropies. Although this expo- 

nent is the same in the different directions of the (al,a2) 
plane, its value is between the two exact exponents of -f 
and -&. Therefore, the expression ( 19) provides a reason- 
able approximation even at large anisotropies. Figure 2 
shows a comparison between the different expressions for 
f(ar ,a2>, along the lines a2= 1 and al =a2. The series ex- 
pansions of Eq. ( 16) can be used if good approximations 
are needed at very high anisotropies, but it is evident that 
Eq. ( 19) provides sufficient accuracy over most practically 
relevant ranges of anisotropy. 

Finally, we elaborate on this formulation in conjunc- 
tion with the dynamic model of German0 et al. 5 There, the 
assumption is made that the Smagorinsky model is valid 
with the same model constant at the grid scale, as well as 
at the scale of the test filter. This is not entirely consistent 
with present results if the anisotropy of the grid at the scale 
of the test filter is different from that of the fundamental 
grid. This is easily remedied by rewriting the proposed 
generalized Smagorinsky model of Eq. ( 14) using the func- 
tion f(aI,a2) at both the grid- and test-filter levels. Then 
the dynamic model is used to find the model constant c,, 
independently of grid anisotropy. 
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