Generalized Smagorinsky model for anisotropic grids
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The Smagorinsky subgrid model is revised to properly account for grid anisotropy, using energy
equilibrium considerations in isotropic turbulence. For moderate resolution anisotropies,
DeardoriP’s estimate involving an equivalent grid scale A,,= (A;A,A;) 173 is given a rigorous
basis. For more general grid anisotropies, the Smagorinsky eddy viscosity is recast as
vr=leAqf(ay, az)]zlS |, where f(a,a,) is a function of the grid aspect ratios a; and a,, and
|§| is the resolved strain rate magnitude. The asymptotic behavior of v at several limits of the
aspect ratios are examined. Approximation formulas are developed so that f(a,,a,) can easily
be evaluated in practice, for arbitrary values of a; and a,. It is argued that these results should
be used in conjunction with the dynamic model of Germano et al. whenever the anisotropy of
the test-filter differs significantly from that of the basic grid.

In this Brief Communication we consider the issue of
proper subgrid-scale modeling for a large eddy simulation
that employs a rectangular grid with mesh sides of arbi-
trary lengths (A;,A;,A3;)=A. In the Smagorinsky model,
the deviatoric part of the subgrid-scale stress tensor is
modeled as

T".I':_?‘{L(A)]Z [2‘§mn§mn]l/2§ij’ | N

where S; is the resolved rate-of-strain tensor and L(A) is
a factor that has units of length. Also, L(A) depends on
the size of the computational mesh and on its anisotropy. If
the spacings in all directions are equal (A), dimensional
considerations lead to

L(A) =c,A, (2)

where ¢, is the Smagorinsky constant (usually taken be-
tween 0.1 and 0.2). When the LES grid has unequal sides
A;, the common practice is to follow Deardorff! in employ-
ing Eq. (2) using an equivalent length scale

D= (8180452 (3)

In the case of a cubic mesh, we recall that if the assumption
is made that A lies in the inertial range and that the uni-
versal Kolmogorov spectrum applies, then the condition
that the SGS dissipation be equal to (€},

() =— (Tijgij> (4)

can be used to estimate c,.> In the case of an anisotropic
grid, moments of the resolved rate-of-strain depend on the
grid anisotropy. However, the correct value for {¢) must
still be generated. Therefore, L(A) can also be obtained
from the energy-flux equilibrium condition, namely

() =2[ L(A) 1 [ 28 muSpnl 2 511y (5)

A similar approach was used some time ago by Schumann®

to evaluate model constants for the control volume and
control surface formulation. Here, we wish to revisit this
issue for several reasons. The first is to arrive at an expres-
sion that can be implemented in practice more easily than
that arising from Schumann’s original formulation. The
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second motivation is to give a more rigorous foundation to
Deardorif’s expression [Eq. (3)] and to quantify its limits
of validity. Yet another motivation is the need to elucidate
the influence of anisotropic filtering during statistical a pri-
ori testing.* Lastly, we believe that when the Smagorinsky
model is employed in conjunction with the dynamic.
model,’ the grid anisotropy needs to be taken into account
separately from the model constant. This is of current im-
portance, given the need to extend LES to complex three-
dimensional (3-D) geometries where nonuniform grids are
usually employed. We shall elaborate on this particular
point at the end of this communication.

We return to Eq. (5), which shows that the depen-
dence of the resolved rate of strain statistics on the grid
geometry must be canceled through an appropriate expres-
sion for L(A) in order to generate the correct, grid inde-
pendent {¢€). Next, the right-hand side (rhs) of Eq. (5) is
approximated in terms of second-order moments as follows

(€)=~ [ L(A) 12({2S;,5,))%> (6)

This assumption neglects intermittency effects, which will
be considered in more detail in future work. Presently, we
proceed by utilizing second-order information only. The
evaluation of (S;;S;;) is in principle straightforward if the
energy spectral tensor Q;;(k) is prescribed. Assuming that
all lengths A; of the grid belong to the inertial range, we
have

1 kik;
Q,;(k) =1 (aij )E(k), (N

where E(k)=Cye?*k~3. As in Lilly,> Schumann,’ etc.,
we assume that the variables resolved at the grid scale are
the physical variables convolved with a spatial filter F(x)
with characteristic scales in each direction equal to A;. It
follows that

~ - C
(S’US,-j)_—GZ/Z‘ZI; f |F(k) %> dk. (8)
Substitution into Eq. (6) yields

© 1993 American Institute of Physics 2306



—3/4

L(A)_—_(%f |F(k)|2k—5/3dk\) . (9)

The correspondence between the filter type (e.g., cutoff,
top hat, etc.) and the actual LES numerical method em-
ployed (spectral, finite differences, etc.) is not precise.
Since the approach is thus of an approximate nature, the
cutoff' filter is employed, for which the calculations are
done most easily. This filter is defined in Fourier space as
the indicator function of the region B

B={|ki| <w/B, |k| <m/Bs, k3| <m/A3}.  (10)

For definiteness, we now select the largest edge of the
grid (or filter) to be A, ,=max{A;,A;,A;} and define
a1=A/ A =40 /AL,, as the aspect ratios of the
other two sides of the filter. Also the angles
Bi=arctan(a/a,), PBr=arctan(a,/a;) will be employed.

It is then convenient to work in spherical coordinates,
where the elevation angle 0 is measured from the axis
aligned with the direction of Ay, . Performing all integra-
tions that can be done analytically one obtains

473 B
f k=5 dk = 6(; ) (L' q1($)d¢

B
2(d)dd |, 11
+ fo 0($) ¢) (11)
where

g{(¢) =3({1+(a;cos ¢) ~2}°—1)

/2

: ~1/3
+W f [sin ¢]~1/3 dé.

arctan[1/(a;cos ¢) ]
(12)

The behavior of highly anisotropic grids is as follows. The
case of pencil-like grids with A;~A,~A . <A . (while
maintaining the Kolmogorov scale 71<€A;) corresponds to
Bi~B~(7/4); a;~a,<€1. Thus the integral diverges
like (A i/ Amax) ~>. From Eq. (9) we obtain

L~Aax (Byin/ D) V4~ A a7 12,

(13)
In the case of a sheetlike grid A=A, ;,€A,~A_,, the
integral approaches a constant. This results because in
Fourier-space one integrates X~ over a long but approx-
imately one-dimensional (1-D) domain, and this yields in-
tegrals that do not diverge at high &. In other words, the
two-dimensional filtering effectively dampens most of the
fine scales in the third direction as well. Therefore, L tends
to a constant, namely 0.0844 A, =0.0844 A a7,
where we have assumed the Kolmogorov constant to be
Cp=1.6. Therefore, Eg. (3) underestimates the Smagorin-
sky constant for meshes with small aspect ratios.

We conclude that in general the Smagorinsky-
Deardorff model should be corrected by introducing a
function f(a;,a,), according to

Tij=_2[cSAeqf(al’a2)]2 [2§mn§mn]l/2 §ij~ (14)
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In such a formulation, the grid anisotropy is properly iso-
lated from the model constant through A,, and the correc-
tion function f(a;,a,) which has the property that f(1,1)
=1.

Next, the function f(a,,4,) is computed by evaluating
Eq. (11) numerically (using a mixed Gauss—Gauss—
Kronrod rule) and by substitution into Eq. (9):

flap,a)=(aa) " '* [L(A)/L(AAM]T,  (15)

In Fig. 1 we show f(ay,a,) for 107*<a,,a,< 1. For in-
stance, it can be seen that f(a;,a,) becomes larger than 1.3
(an error of 30% in Deardorff’s formula) for aspect ratios
smaller than about 1/5. We also point out that when
a,=a,=1, the numerical result for L(A) is L=0.13A,
which implies that ¢,;=0.13. This value is slightly smaller
than the value obtained by Lilly2 (¢3=20.16) due to the fact
that the latter is obtained integrating in the sphere in-
scribed in B only.

To permit easier evaluation of the function f(a;,a,) an
empirical formula is developed that reproduces its behavior
over a wide range of values of @; and a,, as well as the
proper asymptotics. It is obtained by expanding the inte-
grand in (11) in Taylor series and performing the inner
integral analytically. Further approximation of the remain-
ing integrals with polynomials by means of curvilinear re-
gression (keeping three terms only) yields the formula

f(ahaz)
=1.736(aa,) _1/3[41)1(/31)(1_1/3-{-0 222P,(B1)a}”?
+0.077P;(B1)a}® =3B, +4P (By)a;

+0.222P,(3,) a3 +0.0TTP;(By)a}* — 38,1 =34,
(16)

where the polynomials P; are defined as follows:
Pi(2) =2.5P,(z) — 1.5(cos z)*3 sin z,
P5(2) =0.9862z+0.07322 —0.4182° +0.120z%,

P;(z) = +0.976240.1882% — 1.1692° +0.7552* — 0.1512°.
(17)

The maximum error of this approximation is smaller than
4% over the entire range of a; and a,.

Next, we wish to gain a better understanding of the
behavior of f(a;,a,) near the isotropic limit a;=a,=1.
This is best accomplished by using an ellipsoidal domain
B” in Fourier space, instead of the rectangular one which
led to Eqgs. (11) and (12). In spherical coordinates, we
write

2w T k,
J- k53 ke f f f * k3 sin 0 dk d6 de,
B 0 0 0

Here k, is the distance from the origin to the surface of an
ellipsoid with major axes 7/Ap,, (in the axial direction
0=0), m/a,A.x and 7/aA .,

T
kb=A (cos? 0+a? cos? ¢ sin? O+ a3 sin® ¢ sin? 9) ~1/2,
max

Brief Communications 2307



3

=\
102-/4’;-\\“\\\ \\\\ 75

/gx \

&

N\

'j/_\ .25
//A\
10 /\\\

) L

1 10

I

FIG. 1. Numerically computed contour plots of the grid-anisotropy cor-
rection function f(a,,q;). Contours are values of logiy f(a,,a,), sepa-
rated by 0.05 starting from 0 at the origin (a2;,a;) =(1,1).

Performing the radial integration, substituting into Egs.
(9), and comparing with Eq. (14) one recognizes that

f(a1 ,(12) —4/3= ( 1/277) (a102)4/9
2T 7/2
xf f (cos? 6+a} cos® ¢ sin® @
0 0

+a%'sin? ¢ sin® ) =2 sin 0 d6 d.

Also, for this choice of limits, ¢,= (3C,/2) ~**7r~1=0.16,
the spherically symmetric value. The expression for
fl(ay,a;) is easy to expand in Taylor series around
a;=a,==1, and it is most instructive to do this, with respect
to the logarithmic variables In a; and In a,. Up to second
order in these variables one can write

f=1+%[(Ina;)?—Ina; In a,+ (In a,)?]. (18)

The fact that there are no linear terms can be viewed as
forther justification for the Deardorff approximation for
moderate anisotropies.
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FIG. 2. Comparison between different expressions for the correction
function f(a;,a,). Solid line: exact (numerical) value for a,=1; dashed
line; exact (numerical) value for o,=a,. Approximation using Eq. (16),
for @,=1 (circles) and for a,=a, (squares). Diamonds: simple fit using
the cosh function of Eq. (19) (same curve is obtained for a,=1 and
ay;=a,).
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Returning to the question of finding practically useful
fits for f(a;,a,), we recall that the asymptotic limits were
f~ar P if ay=1, and f~a; 2 if a;=a,. Therefore, by

wrltmg

f=cosh ‘l% [(In a;)*—1n a; In a,+ (In a,)?], (19)

one simultaneously obtains the small anisotropy limit of
Eq. (18), and an asymptotic power law with exponent
equal to — 3 at large anisotropies. Although this expo-
nent is the same in the different directions of the (a,,a,)
plane, its value is between the two exact exponents of —3
and —. Therefore, the expression (19) provides a reason-
able ayyxuzuxuauuu even at xarge amsmropies r‘lgulc 2
shows a comparison between the different expressions for
f(ay,ay), along the lines a,=1 and a;=a,. The series ex-
pansions of Eq. (16) can be used if good approximations
are needed at very high anisotropies, but it is evident that
Eq. (19) provides sufficient accuracy over most practically
relevant ranges of anisotropy.

Finally, we elaborate on this formulation in conjunc-
tion with the dynamic model of Germano et al.® There, the
assumption is made that the Smagorinsky model is valid
with the same model constant at the grid scale, as well as
at the scale of the test filter. This is not entirely consistent
with present results if the anisotropy of the grid at the scale
of the test filter is different from that of the fundamental
grid. This is easily remedied by rewriting the proposed
generalized Smagorinsky model of Eq. (14) using the func-
tion f(ay,a,) at both the grid- and test-filter levels. Then
the dynamic model is used to find the model constant c;,
independently of grid anisotropy.
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