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Dynamic Smagorinsky model on anisotropic grids

By A� Scotti�� C� Meneveau� AND M� Fatica�

Large Eddy Simulation �LES� of complex�geometry �ows often involves highly
anisotropic meshes� To examine the performance of the dynamic Smagorinsky
model in a controlled fashion on such grids� simulations of forced isotropic turbu�
lence are performed using highly anisotropic discretizations� The resulting model
coe�cients are compared with a theoretical prediction �Scotti et al�� 	

��� Two
extreme cases are considered� pancake�like grids� for which two directions are poorly
resolved compared to the third� and pencil�like grids� where one direction is poorly
resolved when compared to the other two� For pancake�like grids the dynamic model
yields the results expected from the theory �increasing coe�cient with increasing as�
pect ratio�� whereas for pencil�like grids the dynamic model does not agree with the
theoretical prediction �with detrimental e
ects only on smallest resolved scales�� A
possible explanation of the departure is attempted� and it is shown that the problem
may be circumvented by using an isotropic test��lter at larger scales�
Overall� all models considered give good large�scale results� con�rming the gen�

eral robustness of the dynamic and eddy�viscosity models� But in all cases� the
predictions were poor for scales smaller than that of the worst resolved direction�

�� Introduction

Since its introduction in the 	
���s� a goal of LES has been to simulate complex
turbulent �ows� A complex �ow is� by de�nition� characterized by regions were the
physics of turbulence change� e�g�� from homogeneous turbulence far from bound�
aries to near wall turbulence� etc� To capture the full gamut with a simple subgrid
model without having to adjust constants in an ad hoc manner every time was a
serious problem until recently� The introduction of the dynamic model �Germano et
al�� 	

	� to dynamically calculate the parameter�s� of the modeled sub�grid stress
was a signi�cant step towards making LES of complex �ows possible without ad hoc

adjustments� This model is able to self�adjust to the large scale �ow in the correct
fashion� for instance� shutting itself down near walls or in regions where the �ow
relaminarizes�

As a result� it has become possible to apply LES to study �ows of increasing
complexity �e�g� Akselvoll and Moin 	

� or see in this same volume Chan and
Mittal� and Haworth and Jansen�� which in turn requires the use of complex grids�
either structured or unstructured� Complicated grid geometries in conjunction with
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the dynamic model raise several questions� Consider� as an example� the �ow past
a ��D blu
 body� near the object� one needs to re�ne the grid in the spanwise direc�
tions� For a structured mesh� far downstream� the grid may be greatly expanded in
the streamwise direction� Therefore� the grid can be strongly anisotropic� with the
elements of the grid looking like sheets or pencils� depending on the kind of re�ne�
ment imposed upstream� Hence� in the far�wake region one may have a situation
where the turbulence is nearly isotropic� whereas the computational grid is highly
anisotropic�
In LES� the grid �lter is dictated by the computational mesh used to solve the

equations �although� for methods other than spectral� it is di�cult to give a precise
de�nition of the �ltering operator associated with a given discretization�� Since
classical eddy�viscosity models need as input a length�scale which is usually associ�
ated with the scale at which the �lter operates� the problem arises in de�ning this
length when� as a result of the anisotropy of the grid� the �lter is de�ned by more
than one length scale� For the Smagorinsky model� this problem was considered
�rst by Deardo
 �	
��� and later by Schumann �	
���� Lilly �	
��� and Scotti et
al� �	

��� although the last two papers were only theoretical treatments�
On the other hand� other models such as the dynamic model do not in principle

require a length scale to be speci�ed� The question then arises whether the dynamic
model is able to correctly simulate isotropic turbulence on anisotropic grids� The
main goal of this work is to examine this question�
This issue is also of theoretical interest since� from the point of view of interaction

among modes� local triadic interactions at small scales are fully available only to a
limited amount of modes� Thus the small scales are exposed to a dynamic which
is not the one typical of ��D turbulence� It is natural then to expect that the SGS
stress tensor should incorporate a correction originating only from the anisotropy
of the grid�
The paper is organized as follows� in section � we brie�y summarize the main

result of Scotti et al� �	

�� and set the notation that will be used throughout
the paper� in Section � we discuss the simulations and how the results of di
erent
models will be compared� In showing the results� we have considered two categories
of grids� pancake�like� when one direction is much better resolved than the other
two� and pencil�like� when two directions are much better resolved than the third�
Section � presents the results� Finally� in Section � a summary and discussion of
the results is given�

�� Smagorinsky model on anisotropic grids

In this section� the results of Scotti et al� �	

�� are brie�y recalled� They are
based on the assumption that the turbulence is isotropic and homogeneous� and
that the largest and smallest scales at which the �lter operates still lie within the
inertial range� One begins by writing the Smagorinsky model as

�ij � ���L�����������
��� �S�lm���� �Sij � �	�

Here ����� and �� are the dimensions of the computational cell� For notational
convenience and without lack of generality� let us assume �� � �� � ��� The



LES on anisotropic grids ���

equivalent �lter� via a collocation rule� is assumed to be a sharp cut�o
 �lter in
Fourier space� which corresponds to setting to zero all the modes outside the region
B � fjk�j � ����� jk�j � ����� jk�j � ����g� leaving the others unmodi�ed�

By invoking an argument used �rst by Lilly �	
��� an expression for L����������
was derived by requiring that

� � � � �ij �Sij ��

replacing �ij with the model and computing moments of the strain�rate tensor�
assuming that the velocity �eld is characterized by a Kolmogorov isotropic spectrum
on all resolved modes�

Introducing �eq � ������������ L���������� can then be written as

L���������� � Cs�eqf�a�� a��� ���

where a� � ����� and a� � ����� are the two aspect ratios of the grid� and f � 	
is a function equal to one if both ratios are equal to unity� Cs is the traditional
Smagorinsky coe�cient� which depends on the value of the Kolmogorov constant�

After evaluating the function f � a compact approximation for the result was given
by Scotti et al� �	

��

f�a�� a�� � cosh
p
������log a��� � log a� log a� � �log a����� ���

Incidentally� we remark that the fact that f � 	 for aspect ratios close to unity
justi�es the practice introduced by Deardo
 �	
��� of using �eq as length scale�
at least for aspect ratios close to unity� In the dynamic version of this model�
with grid �ltering denoted by tilde and test �ltering by an overbar� the length�scale
L� ���� ���� ���� is computed according to

��L� ���� ���� �����
� �

� LijMij �

� MijMij �
� ���

where

Lij � �uj�ui � �ui�uj � ��a�

and

Mij �

�
��� �S�lm���� �Sij �

�
�eq

��eq

f�a�� a��

f��a�� �a��

��

�� �S
�

lm���� �Sij

�
� � ��b�

where we have made use of Eq� ���� If both test and grid �lter have the same aspect
ratios then Eq� ��� is closed� otherwise we can use Eq� ��� to compute f and check
a posteriori its consistency�
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	� Approach and validation

We run LES of isotropic turbulence in a box of side �� with periodic boundary
conditions� Turbulence is maintained by a forcing f that forces the largest modes
�k � �� with an intensity such that the energy injection rate f � u is �xed at a
constant value � � 	��� The numerical scheme is the same as in Vincent and
Meneguzzi �	

	� and Briscolini and Santangelo �	

��� It uses Adam�Bashforth
� for time advancing� with �t � ����	� The nonlinear terms� written in rotational
form� are evaluated pseudospectrally� Appendix A examines dealiasing for the AB�
scheme� The grids have mesh sides ����������� with �� � maxf�����g� and
aspect ratios a� � ������ a� � ����� ranging from 	 to 	�	�� Grid �ltering
was performed with a sharp spectral cut�o
 setting to zero the modes outside the
ellipsoid B � fk � R� j �k����� � �k����� � �k����� � ��
��g� which has the
advantage of partially removing aliasing errors �see appendix A�� Test �ltering was
done at a scale twice as large in all directions�

For comparison� computations were performed using the classical non�dynamic
Smagorinsky model with the Deardo
 length scale and C�

s � ������ as well as with
the Smagorinsky model corrected after Scotti at al� �	

�� including f�a�� a�� as
evaluated from Eq� ���� In all cases the initial condition is assumed to be a random
Gaussian �eld with k���� spectrum� random phase� and total kinetic energy equal
to unity�
We wish to compare both large scale properties� such as total kinetic energy�

derivative skewness in the worst resolved direction� and small scale properties� such
as energy spectra near cut�o
 scale and the skewness in the best resolved direction
�which is sensitive to the details of the small scales��
For isotropic turbulence we know that the spectral tensor in the inertial range is

given by
Qij �k� �� ui�k�uj��k� �� ������CK�

���k�����Pij�k�� ���

where � is the average dissipation� CK is the Kolmogorov constant� and Pij�k� is
the projector on the space orthogonal to k� Also� we know that the skewness of the
derivative is O������ although for LES the value attained is typically smaller due
to the incomplete resolution of the small scales� We will compute the skewness in
the 	�direction� de�ned as S� �� �
�u��
x��� � � � �
�u��
x��� �����

Due to the anisotropy of the grid� it is better to study 	�D premultiplied spectra�
de�ned as

C�k�� �

R
B �������k����Qii�k�dk�dk�R

B
dk�dk�

�

For ideal Kolmogorov turbulence� where the spectral tensor is given by Eq� ����
C�k�� is a constant equal to the Kolmogorov constant CK � 	���


� Results

To obtain a self�consistent estimate for the Smagorinsky constant Cs� we �rst run
LES with the dynamic model with isotropic spherical test and grid �lter on a ���

grid� After an initial transient the value stabilizes at C�
s � ����� � ��� Next� we
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perform LES on anisotropic grids characterized by aspect ratios a� and a�� The
results are cast in terms of f�a�� a��� by writing

fdyn�a�� a�� �

s
� LijMij �

� � MijMij �

���������

�eq
�

Figure 	a shows the time evolution of fdyn�a�� a�� for three cases� an isotropic grid
on ��� modes� a pancake�like grid using a ���� 	�� 	� grid� and a pencil�like grid
using 	��� 	��� 	� modes�
In the same way we have computed the time averages of fdyn for aspect ratios

varying from 	�� to 	�	�� They are plotted in Figure 	b together with the value
obtained from Eq� ���� We see that the dynamic model reproduces the correct trend
for pancake�like grids� but fails with pencil�like grids� To examine the simulations
more closely� we now focus on two extreme cases� a ��� � 	� � 	� grid �pancake�
and a 	��� 	��� 	� grid �pencil�� For each case� we compare the dynamic model
with predictions of the non�dynamic Smagorinsky model and with the non�dynamic
model but including the correction of Eq� ����


�� Pancake�like

Figure � shows the total kinetic energy versus time for the three models consid�
ered� We see that the three models agree quite well� Also� the skewness in the least
resolved direction does not show marked di
erences� We conclude that at the large�
scale level� there is no impact on the model variations even at this high level of grid
anisotropy� Next� we consider the behavior near the grid scale� The premultiplied
	�D spectrum is shown in Fig� �� The traditional Smagorinsky�Deardo
 case shows
a strong peak at wavenumber k� 	 	�� The modi�ed Smagorinsky case remains
constant at small wavenumbers and dies out at high wavenumbers without showing
any pile�up� The dynamic model falls somewhere in between� but the value is higher
than the expected value of CK � All models show a rapid decay at wavenumbers
above 	��
The fact that all three models decay for k� � 	� means that those modes that

cannot have access to all the local triadic interactions experience a high drain of en�
ergy so that they do not display a Kolmogorov scaling� It appears unlikely that any
modi�cation of a scalar eddy�viscosity model could compensate for this behavior�
The analysis of the derivative skewness in the well�resolved direction shows no

real di
erence�


�� Pencil�like

As already mentioned� the dynamic model gives a value for fdyn which is smaller
than one� in contrast with the theoretical expression� which implies that f must be
bigger than one� If we look at the large�scale parameters of the �ow� energy and
skewness in the least resolved direction �Fig� �� we see that the three models again
give similar answers� note the small value of the skewness in the worst resolved
direction� But if we consider parameters that are more sensitive to the small scale
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behavior� we notice marked di
erences� For the dynamic model the Kolmogorov
constant is too large� about twice as much as expected �Fig� ��� Therefore� the
 underestimation! of f brings consequences that cannot be ignored at the scales
near the least resolved direction� Again� scales between the least and best resolved
directions are much less energetic than the Kolmogorov spectrum� as is clear from
the rapid drop of the premultiplied spectrum above k� � 	�� On the other hand� the
modi�ed Smagorinsky model gives too small a value� probably due to overdamped
modes near k 	 �

��

� Finally� the skewness in the best resolved direction is consistent
with these di
erences� the smaller the skewness is in magnitude� the more the energy
piles up�


�	 Discussion

The strongest discrepancy between the theoretically and dynamically determined
f�a�� a�� was observed for the case of highly pencil�like grids� For this case� the
premultiplied spectrum of the dynamic model case showed considerable pile�up� as
evidenced by much higher values of C�k��� In order to understand the causes of this
behavior� we recall that the dynamic model computes L by sampling the turbulence
between grid and test �lter� It could be argued that for pencil�like grids these modes
behave essentially as �D turbulence� with the vorticity aligned in the x� direction
and a concomitant change in the dynamics� To focus on the relevant scales� we
have analyzed the vorticity band�pass �ltered between test and grid �lter �i�e� the
statistics of �� � �� � ��� We �nd that the variances are not isotropic� and that
���� ��

��
� 	 ���� ��

��
� 	 ����� i�e� the �ow is not quite ��D but not ��D either� More

directly related to the small value of L or fdyn obtained from the dynamic model� in
Fig� � we show the PDF of LijMij �solid line�� The curve is almost symmetrically
distributed around the origin� and the average value� while positive� is very small
�� LijMij �� ������ LijMij can be regarded as a measure of energy transfer from
large to small scales� with negative values meaning energy backscatter� If we now
compute the same PDF but using an isotropic test �lter at a scale ��� in all three
directions� we see that the shape of the PDF changes� being now skewed to the
right �symbols in Fig� ��� The mean value is now � LijMij �� �	���� Therefore�
by sampling larger scales that are more isotropic� the dynamics of the energy transfer
changes noticeably�
This observation suggests that in order to improve the performance of the dy�

namic model in such extreme cases of grid anisotropy� it may be advisable to use a
test �lter which is isotropic� with a length scale twice as large as the worst resolved
scale� In this case� the grid and test anisotropies di
er� and this must be taken
into account explicitly in the dynamic model formulation� We now implement the
dynamic model with Eq� ��b� for Mij � using the expression given in Eq� ��� for
f�a�� a�� and f��a�� �a��� Using this formulation on a 	���	���	� simulation yields
the result shown in Fig� �� The time trace of f �Fig� �� shows that it oscillates
around an average value of 	��� � ����� much closer to the expected value of 	���
than the value of ��� obtained with pencil�like test �ltering� At large scales the
di
erence between this run and the previous one is small� On the other end� at
small scales the situation changes as now the premultiplied spectrum �Fig� �� lies



LES on anisotropic grids ���

C
�k
�
�

k�

�a�

S
�
�t
�



��
 A� Scotti et al�

�at at 	�� for k� � 	�� very close to the expected value for CK � The skewness in
the best resolved direction agrees well with the one calculated from the modi�ed
Smagorinsky model�

�� Conclusions

We have run several LES of forced isotropic turbulence on anisotropic grids� us�
ing three di
erent Smagorinsky models� All three models are able to satisfactorily
reproduce the very large scales of the �ow� This result con�rms the general ro�
bustness of the dynamic model even for the extreme cases considered in this work
�see Jim"enez �	

�� for further observations on the dynamic model�s robustness��
However� none of the models considered is able to give a correct representation
of the scales smaller than the worst resolved direction� where spectra are strongly
damped below Kolmogorov values� This is probably due to the fact that the trans�
fer of energy at very small scales is a
ected by the lack of similar modes in one
or more directions� For a related study on the e
ect of grid anisotropy on velocity
components and stress anisotropy� see Kaltenbach �	

���

For the model performance at scales near the cut�o
 in the worst resolved direc�
tion� we need to distinguish between pancake grids and pencil grids� For pancake�
like grids� the non�dynamical Smagorinsky model modi�ed after Scotti et al� �	

��
and the dynamic model give reasonably good results� while the conventional Smagorin�
sky model using the Deardo
 prescription for �eq shows excessive pile up of energy
at scales close to the largest mesh size� The anisotropy factor computed from the
dynamic model shows an increasing trend with anisotropy in accord with the theo�
retical prediction� although the numerical value is somewhat smaller� For pencil�like
grids� the Smagorinsky�Deardo
 model as well as the modi�ed version give good
results� with the modi�ed version yielding slightly better results� On the other
hand� the dynamic model exhibits insu�cient dissipation of energy� as shown by
the fact that the anisotropy factor fdyn becomes smaller than one� and re�ected in
that small scales have excessive energy as compared to the Kolmogorov value�

It would appear that in this particular case the strength of the dynamic model
becomes its weak point� The dynamic model computes the unknown factor from
information derived from the smallest resolved scales� But in the case of highly
anisotropic grids� these scales experience a dynamic which is di
erent from the
usual one due to the missing modes at large wavenumbers� This in turn a
ects the
resolved non�linear interactions embodied in the term LijMij � which is what the
dynamic model samples� Speci�cally� the number of events during which energy
is transferred forward is decreased� which could actually be explained by a partial
��dimensionalization of the �ow at these scales�

A proposed improvement is to move the test �lter towards larger scales� where
the combination of more energetic modes and more realistic triadic coupling allows
a more faithful representation of how energy is exchanged� Indeed� simulations done
with an isotropic test �lter at twice the worst resolved scale show improved results�
Perhaps not surprisingly� this conclusion is similar to one reached by others in the
context of dynamic LES using non�spectral numerical methods� such as low�order
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�nite di
erences� There� it has been found advisable to  pre�lter! the results and
shift the test �lter to larger scales �Ferziger 	

�� Lund 	

�� so that the dynamic
model is not strongly a
ected by numerical errors occurring near the grid scale�
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Appendix A

We assume that the computational domain is covered by N��N��N� points and
i� j and l are unit vectors in the x� y� and z directions� It is well known �see Canuto
et al� �	
���� that the pseudospectral treatment of a ��D convolution productP
m�n�k a�m�b�n� introduces an error� If we denote with wk the true convolution

product and with Wk the calculated one� the following relation holds�

Wk � wk �
�X

j��

Wj

where the seven extra terms have the form

Wj �
X

m�n�k�ej

a�m�b�n�

and
e� � �N�i� e� � �N�j� e� � �N�l�

e	 � �N�i �N�j� e� � �N�i �N�l� e
 � �N�l �N�j�

e� � �N�i �N�j�N�l�

The last four terms� �double and triple aliased� can be set to zero if we adopt an
elliptical truncation� i�e� � if we set to zero all the modes such that�

k�
N�

	
�

�
k�
N�

	
�

�
k�
N�

	
�

�



�

The proof is by inspection�
To remove the single aliased terms we can resort to phase shift� If we premultiply

all the modes by a factor eik��� 
 � ��� ������� ������� ���� compute the convolution
sum and multiply the result by e�ik��� the aliased terms now are e�i�jNjWj � j �
	� �� �� i�e� we have shifted their phase by an amount �
jNj � If we do the same
thing one more time� but this time 
 
 
����N�� ��N�� ��N�� and take the average
of the results� the aliased terms� being out of phase� will cancel exactly� However�
this requires doubling the number of FFT�s required for each term to be dealiased�
Rogallo �	
��� showed that for a multistep scheme such as even�order Runge�Kutta�
it is possible to control the growth of aliasing essentially at no extra cost� Indeed�
let us consider the typical step of a �nd order Runge�Kutta�

un�� � un �
�t

�
�F� � F��

with Fi�s being the non�linear terms evaluated recursively� It is important to notice
that to �th order in �t they are identical� Therefore� if F� is evaluated with a shift 

and F� with shift 
����N�� ��N�� ��N��� their sum to �th order is dealiased� leaving
possibly a contribution to �rst order� Therefore� the global e
ect of aliasing is
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pushed to second order� Choosing 
 randomly at each time step further ensures that
the error does not accumulate over time� Nevertheless the RK�� method requires
doubling the FFT�s for each time step�
In our computation we have used an AB� scheme� which schematically can be

written as

un�� � un �
�t

�
��Fn � Fn���

with obvious meaning of the symbols� Although to �th order the alias terms are
identical in Fn and Fn��� it is clear that there is no way in which a combination
of phase shifts can cancel them exactly� since the equation

�ei�N � ei�N � �

does not have solutions for 	� � � ��� ����
However� by successive phase�shifts it is still possible to ensure that the error

does not accumulate� If n is even� the shift is chosen randomly� if n is odd� the shift
is chosen to be the shift of the previous time step plus ���N�� ��N�� ��N��� After
m time steps� the solution can be written as

un�m � un �
�t

�
���Fn � Fn�� � Fn�� � � � �� Fn�m�

� �Fn�� � Fn � Fn�� � � � �� Fn�m�����

In the two bracketed sums� to the lowest order� all but a few aliased terms �typically
the �rst and�or the last� cancel out� This proves that the error does not accumulate�
and that after m steps the aliasing is still O��t�� no matter how big m is� Again�
the randomness prevents accumulation at higher orders� We have compared results
obtained with this dealiasing technique with results obtained by zero padding ���rule
in the worst resolved direction� without �nding any noticeable di
erence�
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