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A B S T R A C T   

Nearly four decades have elapsed since the first efforts to obtain a realistic narrow-banded model for extreme 
wave crests and heights were made, resulting in a couple dozen different exceeding probability distributions. 
These models reflect results of numerical simulations and storm records measured off of oil platforms, buoys and 
more recently satellite data. Nevertheless, no consensus has been achieved in either deterministic or operational 
approaches. Moreover, a minor issue with the established distributions is that they are not bounded by more than 
one physical limit while others are not bounded at all. Though the literature is rich in physical bounds for single 
waves, here we describe physical limits for the ensemble of waves that have not yet been addressed. As previous 
studies have shown, the exceeding probability distribution does not depend unequivocally on one sea state 
parameter, thus, this work supplies a combination of sea state parameters that provide guidance on the sea state 
influence on rogue wave occurrence. Based on specific bounds, we conjecture the dependence of the expected 
maximum of normalized wave heights (also known as abnormality index) and crests on the aforementioned sea- 
state parameters instead of the total number of waves in the wave record. Finally, we introduce a new dimen
sionless parameter that is capable of explaining the uneven distribution of rogue waves in the different storms 
pointed out by Stansell [74].   

1. Introduction 

Since the first attempt to give an expectation for the tallest waves in a 
narrow-banded sea by Longuet-Higgins [48], several other distributions 
have been proposed in an attempt to improve the prediction of extreme 
waves in rough seas (see Dysthe et al. [17], Pelinovsky and Kharif [65] 
for a review). The first articles on the topic were mainly descriptive [15, 
16,42,53], but starting with the precise measurement of the Draupner 
wave [34,35,87] the literature became more technical. The drive to 
develop better tools to predict the occurrence of extreme waves goes 
beyond the academic realm, since rogue waves are believed to be 
responsible for the majority of ship losses associated with unknown 
causes [19,85]. Moreover, offshore operations have relied on a statisti
cal description of the environmental conditions to characterize the 
operating envelope. In the years since, engineers and oceanographers 
have tried, with varying degrees of success, to predict extreme wave 
heights for a wide range of sea states [24,33,77]. Although the sea state 
can be well described by the hindcast of weather records, a proper study 
of long-term wave height and crest heights probabilities require 

integration over a distribution of sea states, which is not quite feasible. 
Nevertheless, the main features of the operating envelope (as specified 
by the design wave) are obtained from the Longuet-Higgins [48], which 
in turn is contrasted with wave spectra from ocean states that do not 
assume narrow-banded behavior, making the design wave incompatible 
with realistic sea states. One essential problem is the lack of a definition 
of a suitable sample size for the measurements of sea surface elevation. 
Typically, distributions found in the literature analyze a very large set of 
waves with large variations in sea-state parameters while neglecting 
homogeneous smaller samples. One possible consequence of this is the 
apparent disagreement between several studies regarding the prediction 
of rogue wave occurrence: some studies report less rogue wave heights 
(not to be confused with the number of wave records) [e.g. [11,13,14, 
24,27,30,33,47,67]] while others report more rogue waves [57,72,73] 
and super-rogue waves [46,63] or the same statistics [18,59,94] pre
dicted by Longuet-Higgins [48], sometimes a combination of the three in 
the very same study [9,52,74]. Therefore, this study focuses on the 
implementation of physical constraints for a target exceeding proba
bility of both wave heights and crest heights. 
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Intuitively, rogue waves are waves taller and steeper than expected 
by standard model predictions [41]. Unfortunately, this is a rather vague 
formulation of the phenomenon and there is no precise theoretical 
definition based on wave spectra or dynamical principles. Dean [12] was 
one of the first to propose a statistical definition for rogue waves as any 
wave that is at least twice as large as the significant wave height of the 
sea state in which it occurs. Despite the arbitrariness of the factor of two, 
such definition has been widely accepted [35] or slightly modified [66], 
and therefore, we shall adhere to it here. In order to separate the tar
geted group of tall waves from the ordinary, we define the normalized 
wave height α as, 

α ≡
H

H1/3
≡

Z c + Z t

H1/3
, (1)  

where H is any individual wave height, Z c and Z t are the crest height 
and trough depth, respectively, and H1/3 is the measured significant 
wave height, defined as the mean height among the 1/3 highest waves in 
the time series. H1/3 is distinct from the spectral counterpart, Hm0, that is 
obtained from the spectrum (see Appendix B and Fig. 1). The return 
period, N α, is defined as is the inverse of the exceeding probability, and 
the total number of rogue waves that can be observed in a series of N 
waves is the product of N and the exceeding probability. In terms of 
normalized wave heights, the exceeding probability proposed by 
Longuet-Higgins [48] for narrow-banded seas, e.g. the Rayleigh 

distribution (henceforth abbreviated as RD), is expressed as (see Cart
wright and Longuet-Higgins [8]): 

R α ≡ R
(
H >αH1/3

)
= e− 2α2

. (2)  

2. Observational data 

In this study we use data collected from three infrared laser altime
ters mounted on three corners of the North Alwyn oil platform. The 
platform is situated in the northern North Sea in a water depth of 
approximately 130 m. The logging system was configured with a 5 Hz 
logging frequency. Every 20 minutes, the logging apparatus calculated 
Hm0. If Hm0 exceeded 3 m all th 20-min sea surface records were saved to 
optical disk for further analysis. Table 1 summarizes the data. In this 
dataset a storm is defined as the period between the start of the first 
record and the end of the last of a contiguous sequence of 20-min records 
each satisfying Hm0 > 3 m. The raw data were stored as 2381 20-min 
records of surface elevation measurements. For ease of discussion, we 
divide waves in to the five groups listed in Table 2. This is inspired by the 
work of Liu and MacHutchon [46] who divided extreme waves into 
”typical” rogue waves when 2 < α < 4 and ”uncommon” rogue waves 
whenever α > 4 whilst Didenkulova and Anderson [13] suggested that 
the latter group should be classified as ”abnormal” rogue waves when 
α > 3. 

While most studies focus on the Longuet-Higgins’s prediction for 
α > 2, Table 1 surprisingly shows Longuet-Higgins’s imprecision for 
sub-rogue waves, producing hundreds of false positives (see more in
consistencies in Fig. 2). Moreover, the data shows that there are plenty 
of dangerously tall waves (H > 15 m) even among sub-rogue waves 
(Fig. 3). Interestingly, Table 1 shows the first four storms having rogue 
wave return period, N α=2, lower than that predicted by Longuet-Higgins 
[48] whereas the remaining storms show equal or longer return periods. 

Fig. 1. Scatter plot of H1/3 versus Hm0 (in meters). Each dot shows the height 
variables measured from each 20-min record of each storm of Stansell [74]. For 
the range H1/3 > 6m we find that the ratio among these two definitions obeys 
0.893 <H1/3/Hm0 < 1.033. 

Table 1 
Summary of the data from [74]. The numbers in the main largest section of the table are counts of numbers of waves for each storm. The storms are presented in 
ascending order of return period N α=2. ‖α‖ denotes a storm’s maximum observed normalized wave height. Numbers in bold font show Longuet-Higgins’s prediction for 
the total number of rogue waves, maximum α and return period.  

Storm ID α > 0 α > 1.75 α > 2 α > 2.25 α > 2.5 α > 3.0 ‖α‖ N α=2  

29 13,610 30 12 1 0 0 2.30 1134 
149 52,766 95 26 6 1 0 2.50 2029 
90 44,867 111 20 3 1 0 2.65 2243 
172 23,591 54 9 2 1 1 3.19 2621 
132 45,056 68 14 3 0 0 2.30 3218 
28 22,155 30 6 1 0 0 2.38 3693 
146 15,109 20 4 1 0 0 2.46 3777 
23 25,068 42 5 0 0 0 2.08 5014 
26 27,774 33 4 0 0 0 2.16 6944 
127 14,845 15 2 0 0 0 2.09 7423 
25 16,896 21 2 1 1 0 2.59 8448 
27 20,379 23 1 1 0 0 2.40 20,379 
124 21,737 30 0 0 0 0 1.97 — 
195 9875 9 0 0 0 0 1.95 — 

Total 353,728 581 105 19 4 1 3.19 3369 
Total× R α  — 774 119 14 1 0.005 2.58 2,981  

Table 2 
Alternative definitions for the upper, middle and lower tail of the distribution of 
ocean waves and the total counts and percentage of waves. While rogue waves 
can also be understood as the maximum wave within a storm regardless of the 
threshold α, in this study we refer to any wave that exceeds the above thresholds.   

Ordinary 
Wave 

Large 
Wave 

Sub-Rogue 
Wave 

Rogue 
Wave 

Super- 
Rogue Wave 

Definition α ∈ (0, 1] α ∈ (1, 
1.75] 

α ∈ (1.75, 
2] 

α ∈ (2, 3] α > 3 

Total 
Count 

304,371 
(86%) 

48,771 
(13.8%) 

480 
(0.14%) 

105 
(0.03%) 

1 
(0.0003%)  
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Combining all storms into a single dataset demonstrates that the pre
diction accuracy of R α quickly decreases (either underpredicting or 
overpredicting) away from its center at H > 2H1/3. The RD overpredicts 
the number of H > 1.5H1/3 waves by 25% while it underpredicts the 
number of H > 2.5H1/3 waves by 75%. Clearly, the inaccuracy grows 
faster for larger rogue wave heights. However, that is only if we consider 
the data set as a whole. Considering individual storms, the inaccuracy is 
even greater. For instance, for small clusters such as for one single storm, 
Longuet-Higgins [48] can either underpredict, overpredict or be equal to 
the observed number of waves with varying α. This inserts a bias into the 
conclusions of any study [26]. 

The main argument against the standard approach is that a large 
sample of waves can be drawn from storms with very different metocean 
conditions and therefore can cover an enormous variability in its sea- 
state parameters. Using this approach can lead to distributions that do 
not account for the combination of sea-state parameters. Therefore, 
conclusions based on this procedure on the rogue wave occurrence most 
likely leads to contradictory claims that Longuet-Higgins [48] over
predicts, underpredicts or accurately predicts it. Therefore, small data 
sets tend to show uneven rogue wave occurrence while it approaches an 
average as the number of waves, N, becomes very large. 

Unfortunately, most known distributions will also fail to explain 
single storm data due to their lack of flexibility with changing sea states, 
even with a small variability of sea-state parameters (see Table 3). 
Whilst a clear definition on the suitable time series length for accurate 
modelling is yet to be provided, it is not prudent to analyze only the full 
set of records while neglecting the distinctiveness of individual storms. 

3. Standard distributions 

Several authors have proposed models to address the shortcomings 
of R α in predicting the occurrence of rogue waves. One of the most 
common theoretical distributions used for the prediction of extreme 
waves was derived by Tayfun [77], who applied Stokes’s second-order 
theory for the water surface elevation to calculate the exceeding prob
ability as (see Appendix A and Appendix B): 

T α ≡ T
(
H > αH1/3

)
= exp

[

−
8
s2

(
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + αs

√
− 1
)

2
]

, (3)  

where s = 2πH1/3/λ1 is the significant steepness and λ1 is the wave
length obtained from the mean wave period as defined by eqs. (C.2) and 
(B.4). Naturally, as the Stokes model recovers the Airy solution for small 
steepness, the above distribution does recover RD in the limit of s→0. 
The steepness of individual waves is limited by the Miche limiting 
condition [32,56] 

Hi

λi
⩽

1
7

tanh
(

2πD
λi

)

, (4)  

where Hi is the i-th individual wave height and λi its wavelength. Taking 
Miche’s limit on steepness into account, which can be converted to its 
significant counterpart H1/3 ≤ λ1/7 [11,79], the probability should 
approach zero as s approaches 0.9 from below. Alas, T α breaks this 
limit by assigning a quite high probability of finding very steep waves 
(Fig. 4, red curve). This can be clearly observed by the fact that T α 
predicts that 1% of all waves in Table 1 will simultaneously exceed α > 2 
and s > 2π/7 (or equivalently ss , j > 22/105, see eq. (12)) which 
amounts to nearly 3500 rogue waves, however, there are no 20-min 
records with such a high significant steepness (see Fig. 14). Though 
presenting a theoretical improvement, T α is unable to produce 
sub-Rayleigh regime (i.e. probabilities lower than calculated by R α), 
hence not being capable of explaining the North Alwyn observations. 

Another widely used model is due to Haring et al. [33]. Unlike the 
previous one, it includes the water depth. Converted into crest-to-trough 
heights (to be consistent with eq. (3)), Haring et al. exceeding proba
bility is given by, 

H α = exp
[
− 2α2( 1 − 1.24 ϵα+ 1.09 ϵ2α2)] , ϵ ≡

H1/3

D
, (5)  

where D is the water depth and ϵ the significant height-to-depth parameter. 
The model is based on a previous version [36] that attempted to fit the 
data from Hurricane Camille in 1969. Given that the typical 
depth-limited breaking is of H ≤ 0.8D [32] and considering that 
‖H‖>H1/3, we conclude that the limit distribution should approach 
zero in the limit ϵ→0.8− . However, H α shows some degree of flexibility 

Fig. 2. Histogram of the number of waves in natural logarithm scale as a function of normalized wave height: we compare the observed number of waves for each 
threshold α (light green bars) and Longuet-Higgins’s prediction (dashed red lines) for the storms with greatest (finite) and least return periods on Table 1. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Scatter plot of normalized height against wave height in meters.  
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and varies around R α only for very high values of ϵ (Fig. 5) that are not 
allowed, such that H α can not explain the uneven spread of the North 
Alwyn dataset either. 

The last distribution that we consider here is a modification of a 
distribution originally obtained by Forristall [24], based on hurricane 
data in the Gulf of Mexico: 

F α ≡ F
(
H >αH1/3

)
= exp

[
− 2.263 α2.126]. (6)  

In common with R α, F α does not depend on any physical variable. 
Analyzing second-order numerical simulations that reproduced mea

surements and observations, Forristall [25] introduced a modified 
version that includes both depth and nonlinear effects for wave crests 
(converted to wave heights): 

F
∗
α = exp

[
−
(
α
/

2U0
)U1
]
≡ exp

[
− U00 αU1

]
, (7)  

with coefficients set to 

U0 = 0.3536 + 0.2568S1 + 0.08Ur,
U1 = 2 − 1.7912S1 − 0.5302Ur + 0.284Ur2,

(8)  

with S1 being the steepness and Ur the Ursell number (see Appendix B for 
the definitions of T1, k1 and λ1): 

S1 ≡
2πH1/3

gT2
1

=
H1/3

λ1
; Ur =

H1/3λ2
1

4π2D3 . (9)  

As shown in Fig. 6, both of Forristall’s distributions demonstrate a lack 
of flexibility in comparison to R α in deep water. Though F ∗

α generates 
higher variability than F α, it assigns high probabilities to waves past 
the breaking Miche’s limit. Moreover, these distributions are incapable 
of producing both sub-Rayleigh and super-Rayleigh regimes in deep 
water due to the very small variability in the coefficients U00 and U1, 
thus not being able to explain the North Alwyn data. Interestingly, 
Forristall [25] shows a complete different picture in shallow water (see 
Fig. 7): while the distribution can cross the Rayleigh regime, rogue 
waves become as likely as ordinary waves, e.g. the distribution asymp
totically becomes a step function with a very large Ursell number, with a 
rogue wave chance leaping from one in every 2980 waves (RD) to one in 
every 60 (S1 = 0.1,Ur = 10). This anomalous behavior (Fig. 7) is due to 
intrinsic model limitations [80], so that variables must obey the re
lations (see eq.()): 

S1 <
1
7
, Ur <

10 ̅̅̅̅̅̅m0
√

D
≈

5
2

ϵ. (10)  

Applying the bound of eq. (10) into the definitions in eq. (9) we find that 
F ∗

α is limited to λ1⩽π
̅̅̅̅̅̅
10

√
D ≈ 10D, thus not being a relevant model for 

shallow water waves either. This shortcoming highlights how the 
mathematical modelling of a narrow physical range can yield strange 
results if the limiting conditions of the sea state variables are not 
properly bounded. Nevertheless, [25] is regarded as one of the most 
useful distributions for design purposes. For instance, Gibson et al. [27] 
reports that the crest height version of eq. (7) is commonly employed in 
the industry, due to its dependency on variables that are readily avail
able from the hindcast of sea state parameters, as opposed to parameters 
that are only available by tracking the storm evolution in time. 

This brief review of distributions shows that the validity of proba
bility models with respect to the sea state parameters are as important as 

Table 3 
North Alwyn’s major sea state parameters (see Appendix B and Appendix C for nomenclature). The nonlinearity η1/3 is defined in eq. (11), the spectral bandwidth ν in 
eq. (B.2), λ1/3 and H1/3 are the wavelength and wave height of the 1/3 tallest waves in meters and Tz is the zero-crossing period in seconds.  

Storm ID H1/3 〈H1/3〉 〈Tz〉 λ1/3 〈λ1/3〉 η1/3 〈ν〉 S− 1
1  103 × Ur U00 U1 

29 5.07 5.85 8.06 147.9 157.8 1.234 0.740 27.02 1.302 1.855 1.933 
149 6.68 6.76 8.90 191.4 185.6 1.241 0.779 28.88 2.081 1.863 1.937 
90 4.91 5.85 8.02 141.3 150.9 1.245 0.626 24.18 1.190 1.840 1.925 
172 6.02 5.78 8.13 174.9 152.2 1.228 0.797 24.26 1.196 1.841 1.926 
132 4.51 4.70 7.43 147.8 143.4 1.151 0.874 32.50 0.864 1.879 1.944 
28 4.57 5.67 8.01 146.0 154.3 1.181 0.654 25.26 1.206 1.846 1.928 
146 4.01 4.01 7.07 167.1 154.8 1.109 0.936 36.55 0.859 1.891 1.951 
23 6.50 6.69 8.55 190.4 192.9 1.192 0.696 25.55 2.224 1.847 1.929 
26 3.70 3.77 6.75 139.3 126.6 1.119 0.847 32.46 0.540 1.879 1.945 
127 4.94 5.28 8.76 177.5 174.6 1.127 0.487 28.09 1.438 1.860 1.936 
25 5.57 5.68 7.82 166.0 165.9 1.167 0.770 26.97 1.397 1.855 1.933 
27 5.50 5.35 8.08 172.6 166.0 1.153 0.758 30.19 1.317 1.870 1.940 
124 7.97 7.53 9.56 214.3 198.7 1.178 0.466 23.08 2.656 1.832 1.921 
195 6.44 6.93 8.80 203.0 202.3 1.163 0.774 27.94 2.534 1.859 1.935 
mean 5.46 5.71 8.14 170.0 166.2 1.178 0.729 28.06 1.486 1.858 1.934  

Fig. 4. T α compared with R α for different values of α and s.  

Fig. 5. H α compared with R α for different values of α and ϵ.  
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the data fit. Furthermore, this exercise was meant to show which re
gimes some of the most important distributions are capable of repro
ducing, such that following this work we can present a model that cover 
the widest possible set of sea states. In this regard, the mathematical 
structures of Forristall [24, 25], Haring et al. [33], Tayfun [77] make it 
unfeasible to model both super and sub-Rayleigh regimes while also 
producing unrealistic physical scenarios, whether formulated for wave 
heights or crest heights. Except for the first two empirical ones [24,33], 
is not surprising that the latter distributions are unable to provide the 
Sub-Rayleigh regime, as they account only for second-order bound 
modes who increases the likelihood. Therefore, Forristall [25], Tayfun 
[77] were devised to be limited to a certain range, as most distributions 
in the field, such that our previous discussion does not imply an unex
pected deficiency. The same issue appears in several other distributions 
designed for deep water waves. For example, Fedele et al. [22] 
third-order model either exceeds or equals the likelihood assigned by 
Tayfun [77], thus not being able to produce sub-Rayleigh regimes 
(underprediction). On the other hand, The Boccotti [5, 6], Naess [62], 
Tayfun [78] distributions were devised to produce the Sub-Rayleigh 
regime and are identical in mathematical structure and occurrence 
probability [52,82], replacing the term 2α2 in eq. (2) by 4α2/(1 ± r(T)), 
where r(T) are slightly different ways to measure the autocorrelation 
function of the spectrum [39], thus being expectedly incapable of pro
ducing a distribution with Super-Rayleigh regime (overprediction) but 
recovering RD when r(T) = ±1. Moreover, Forristall [24] underpredicts 
rogue waves without the necessity of spectral shape and 
Longuet-Higgins [51] showed that a finite bandwidth correction is 
enough to display the same features, such that the autocorrelation 

dependent distributions have no theoretical or numerical advantage, in 
addition to not being more flexible than those presented in detail. 

4. Physical bounds for sea state parameters 

As discussed in the previous section, the major issue common to the 
distributions is the assignment of high finite probabilities to unrealistic 
physical scenarios. Although the limiting values of the major ratios in 
both infinite and finite depths are well established for individual waves, 
the analysis of sample averages and their respective ratios are not 
known. We aim to find empirical relations, as well as parameter limits 
for sea state variables that are capable of controlling the empirical 
exceeding probability distribution. We start by defining the effective 
steepness and the nonlinearity as, respectively (see Appendix B and 
Appendix C for the statistical notation): 

SEff , i =
Hi

〈〈λ2〉〉
, η1/3 ≡

(
〈Z c〉

〈Z t〉

)

H>H1/3

. (11)  

We define the j − th record significant steepness as: 

ss ,j ≡
2π 〈〈Hm0〉〉

g〈〈Tz〉〉
2 ≡

〈〈Hm0〉〉

〈〈λ2〉〉
. (12)  

The entire storm steepness can be written as: 

ss =
〈Hm0〉

〈λ2〉
, 〈ss〉 =

〈
〈〈Hm0〉〉

〈〈λ2〉〉

〉

, ε ≡

〈
H1/3

〉

〈
λ1/3
〉 . (13)  

4.1. Empirical findings 

Upon the thorough analysis of the fourteen storms of Table 1, a 
correlation between average of the skewness μ3 in eq. (C.4) and the 
nonlinearity η1/3 emerges (Fig. 8): 

η1/3 ≈ 1 + 〈μ3〉,
〈
η1/3
〉
≈ 1 + 〈〈μ3〉〉. (14)  

Then, another relation provides insights on the scaling between 
important maxima of a storm (see Fig. 9): 

‖ α ‖ ⋅〈ss〉 ≈ 0.96 ‖ Seff ‖. (15)  

In addition, the relationship between normalized effective steepness and 
wave heights reads (Fig. 10): 

SEff
〈
SEff
〉

1/3

≈
5
6

α ≡
5H
6H1/3

, (16)  

which suggests that that rogue waves are more ”effectively” steeper than 
the ordinary waves. If we measured the individual steepness instead of 

Fig. 6. F α and F ∗
α compared with R α for different values of α, S1 and Ur.  

Fig. 7. Shallow water regime for the Forristall [25] model (large Ursell).  

Fig. 8. Relation between nonlinearity and skewness. The correlation seems to 
be strong for both averagings 〈〈μ3〉〉 and 〈μ3〉. 
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its effective counterpart, the steepest waves are not necessarily rogue 
waves. On the other hand, as shown in Fig. 11, the normalized signifi
cant steepness does not grow with normalized heights and vice-versa, e. 
g. contrary to standard theories, rogue waves do not necessarily appear 
or are more likely to appear in very steep seas. Finally, a combination of 
eqs. (15–16) leads to the useful relation 〈SEff〉1/3 ≈ 1.14〈ss〉 (see Fig. 12). 

4.2. Wave breaking limits 

Focusing on variables reflecting the physics of 20-min records, an 
alternative formulation of Miche’s limit reads: 

7Hi

〈〈λ2〉〉
⩽tanh

(
2πD
〈〈λ2〉〉

)

∴
Hi

D
⩽
〈〈λ2〉〉

7D
tanh

(
2πD
〈〈λ2〉〉

)

. (17)  

Fig. 13 shows that such model fails to describe Stansell’s data. Instead, 
we have found that a numerical modification proposed by Weggel [92], 
which is able to recover Miche [56] in the shallow water limit, provides 
a superior fit for both 20-min records and for entire storms: 

Hi

D
≡ ϵα⩽‖ ϵα ‖∞ ≡

16π
55

[

1 +
4D
〈λ2〉

tanh
(

2πD
〈λ2〉

)]− 1

. (18)  

Notice that when the terms inside the bracket reach unity in shallow 
water (λ2 → ∞) we obtain H ≤ 0.91D as opposed to Miche’s asymptotic 
value of 0.90D. Though it bounds the vast majority of waves, the data 
analysis show that when converted to depth-limited breaking, the 
Miche-Stokes limit is not suitable to bound half a dozen rogue waves. 

In addition, Miche [56] is also breached in its original form given by 
eq. (4). Fig. 14 shows how several waves violate the standard 1/7 limit 
in deep water whereas the significant steepness is well below the 

threshold, noticing that only two rogue waves taller than 10 m exceeded 
Miche’s rule. The significant steepness is more stable vertically and 
horizontally compared to the individual steepness, providing a better 
assessment of the sea state than if we computed the average individual 
steepness. As attested by Fig. 11, the significant steepness does not in
crease with high normalized wave heights, implying that high ss does not 
necessarily produce high α, as seen in Fig. 14. Most notably, Fig. 14 
confirms that rogue waves are typically steeper than the average wave, 
but also how hundreds of waves become as steep or steeper than 
themselves, in agreement with similar observations found by Christou 
and Ewans [11]. On average, rogue waves are not more than 20% 
steeper than sub-rogue waves (providing another argument for creating 
this subdivision) but are typically twice as steep as waves with 
H ≤ 1.75H1/3. In fact, only about 40% of rogue waves were at least twice 
as steep as the overall storm average. Since Miche’s limit can not bound 
rogue waves either by individual or effective steepness, Fig. 15 provides 
motivation for the usage of the effective version of the individual 
steepness. Indeed, SEff diminishes the wild variations in water wave 
regime (deep or shallow). More importantly, it will also significantly 
lower the steepness of waves in very deep water: Stansell’s data shows 
that typically 1.5% of all waves have very small wavelengths and indi
vidual steepness of the order of 1, but because λ2 will not be so small the 
effective steepness is typically not higher than one seventh. 

4.3. Bounding the effective steepness 

Even though eq. (4) describes the limit for single waves, Miche’s 
version for the effective steepness is breached by a handful of waves. 
Thus, instead of trying to modify Miche [56] or [3], we rather conjecture 
a limit for the effective steepness. Accordingly, motivated by the 

Fig. 9. The relationship between maximum normalized wave heights, 
maximum effective steepness and average significant steepness. 

Fig. 10. The ratio SEff/〈SEff〉 as a function of the dimensionless height.  

Fig. 11. Normalized significant steepness plotted against normalized heights.  

Fig. 12. The comparison of the average effective steepness amongst the 1/3 
tallest waves and significant steepness of each averaging cluster. 
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expected bound on the significant steepness that is formulated in terms 
of λ1 in eq. (10), we start this task by writing the range for individual 
waves as: 

λi ≈ (1 ± 〈〈δ1〉〉)⋅〈〈λ1〉〉 ≡ 〈〈λ1〉〉 ± σ〈〈λ1〉〉. (19)  

Following eq. (10) and using Christou and Ewans’s conclusion that the 
average significant steepness also obeys Miche [56] almost exactly as 
the individual steepness for the vast majority of cases, we extend [56] in 

eq. (4): 

‖
Hi

λi
‖≈‖

H1/3

〈〈λ1〉〉
‖ ⩽

1
7

tanh
(

2πD
〈〈λ1〉〉

)

(20) 

Hence, for a given minimum i-th wavelength we can estimate: 

‖
Hi

λi
‖∼

Hi

minλi
⩽

1
7

tanh
(

2πD
〈〈λ1〉〉

)

(21)  

By means of eq. (19) is straightforward to arrive at the limit: 

Hi

〈〈λ1〉〉
⩽

1
7

[

1 − 〈〈δ1〉〉

]

tanh
(

2πD
〈〈λ1〉〉

)

(22)  

For practical purposes, however, it is more convenient to use the second 
moment. Thus, by means of eq. (11) and eq. (B.5), we obtain the bound: 

SEff⩽
22
105

[

1 − 〈〈δ2〉〉

]

tanh
(

30 πD
22〈〈λ2〉〉

)

. (23)  

Remarkably, the coefficient 22/105 seems more suitable for Fig. 15, 
showing that the naive modification of Miche [56] in eq. (17) is replaced 
by eq. (23) as the suitable limit. 

Fig. 13. The fitting of the depth-limited breaking limit: (top) scatter plot of 
observed height-to-depth ratio versus the theoretical maximum ratio and 
(bottom) models [56,92] versus data: blue dots are waves that exceed H1/3 
while red dots are rogue waves and red stars storm averages. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 14. Both (left) 20-min record significant steepness and (right) individual wave steepness versus water wave regime. For the first plot, 20-min records with or 
without rogue waves taller than 10 m are respectively denoted by red and blue dots, whereas the second plot has respectively red and black dots. The figure on the 
right has a range 0.125D ≤ λ ≤ 7.5D, accounting for nearly 300,000 waves. The dashed curve shows the asymptotics of the data and is expressed as 6s⩽(λ/D)− 0.86. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 15. Effective steepness of all waves taller than H1/3 (blue dots) and rogue 
waves (red dots) versus the adjusted Miche’s limit (dashed line) of eq. (17). As 
for the significant steepness in Fig. 14, the effective steepness provides a more 
homogeneous distribution of waves in regards of the water wave regime 
(whether deep or intermediate). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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5. Conjectured models for global maxima 

Given the lack of theoretical studies on the maximal normalized 
heights rogue waves can reach, we attempt to shed some light into this 
problem through statistical reasoning based on the empirical relations of 
the previous section. Further analysis of these relations suggests that 
combining eqs. (15) and (23) one might estimate the dimensionless 
height peak. Therefore, if one applies the expected maximum operator E 

into eq. (15) and uses the bound in eq. (23) for E(‖ Seff ‖), we obtain (see 
Appendix C and eq. (27) for nomenclature): 

E ( ‖ α ‖ ) ≡ α★

(

1 −
σλ

λ2

)

≈ α★

[

1 −
6
5

〈
σ〈〈λ〉〉

〈〈λ2〉〉

〉]

, (24)  

where the factor 1.2 comes from the fourteen storm mean ratio δ2/〈〈δ2〉〉 
and α⋆ denotes the pseudo maximum height α (steepness dependent), 
readily calculated for the North Alwyn data: 

α★ ≈
22

105〈ss〉
tanh

(
30 πD
22〈λ2〉

)

⋅(0.96 ± 0.07). (25)  

Consequently, the central task is to obtain the overall storm variance of 
wavelengths when the value of every single wavelength is unknown. 
Even if every single wavelength is known, it is a good exercise because it 
will lead to modelling the variance in terms of sea state parameters. 
However, this procedure must be done carefully, as the modelling will 
serve both the effective steepness bound and the normalized wave 
height bound. Towards this modelling, the selection of sea parameters is 
paramount for the pattern of the rogue wave occurrence. 

5.1. Rogue wave occurrence patterns 

Studies have shown that individually, rogue wave occurrence finds 
no correlation with sea state parameters [11,74]. It is less common to 
investigate correlation with a combination of parameters. For instance, 
Table 4 confirms that there is no indication of individual sea state 
parameter control over the storms return periods, and yet a remarkable 
qualitative coherence between the latter, N α, and the proposed 
dimensionless parameter is found (see Fig. 16): 

ℵ1 =

〈
λ1/3
〉

η1/3D
=

〈ϵ〉
ε η1/3

≡
1
ε ℵ2, ℵ2 =

〈
H1/3

〉

η1/3D
. (26)  

While the whole North Alwyn dataset has the mean value ℵ1 ≈ 1.1 and is 
associated with an average probability (Longuet-Higgins’s expected re
turn period), the four storms with lowest return period have ℵ1 ≈ 1.0, 
whereas the mean ratio for the seven storms with highest return periods 
is ℵ1 ≈ 1.2. The discrepancy is particularly extreme for storms 124 and 
195 with no rogue waves and ℵ1 > 1.3. Fig. 17 shows how the combined 
parameter ℵ1 follows the increase in return period of Table 1, where we 
assigned a return period for α = 2 higher than the total number of waves 
in storms 124 and 195, respectively of 30,000 and 40,000 waves, with 
the latter being much higher due to the fact that the sub-rogue wave 
return period for storm 195 was 50% higher than in storm 124. The 
correlation coefficient for ℵ1 of storm averages and their return period 
was found to be 0.704 whereas for ℵ1/η1/3 is 0.723 and for ℵ1η1/3 esti
mated as 0.629, suggesting that a combination of ℵ1 and η1/3 provides 
very little numerical improvement and no qualitative advantage over ℵ1 
alone. Besides, the term ℵ1η1/3 would be problematic in deep and 
shallow water, with a step-function occurring when λ1/3/D → 0 (e.g. 
similar to the extreme cases of Fig. 7) and the impossibility of rogue 
wave formation when λ1/3/D → ∞, thus, requiring the rejection of such 
parameter. 

In spite of this congruence, one can not be sure of the exact depen
dence of the return period on ℵ1 solely based on Table 4, as one might be 
inclined to notice a somewhat weaker correlation between the return 
period and the nonlinearity η1/3. Fig. 8 assures us that the nonlinearity 

factor can be obtained from the skewness of the surface elevation, which 
in turn might be extracted from spectral variables [1,80]. In fact, is very 
common to associate rogue wave occurrence with the skewness or 
kurtosis of the sea surface [20,37,58,60] in addition to calculating 
probabilities based on such coefficients [49,61,81]. Though Stansell 
[74] already ruled out any individual correlation between rogue wave 
occurrence and spectral bandwidth, significant steepness, skewness 
(hence, the nonlinearity η1/3) and kurtosis, this was done for individual 
waves and wave records, whereas any fair contrast to be drawn against 
ℵ1 must be done for storm averages. Consequently, we plotted in Fig. 18 
their possible relation to an increase in return period, thus extending 
Stansell’s conclusions to storm averages. In fact, the correlation coeffi
cient between the significant steepness 〈ss〉 and the return period was of 
-0.039 and for ε approximately -0.051, while for 〈ν〉 it measured -0.253 
and -0.247 for the nonlinearity η1/3. 

In addition, parameters that are not accurately obtained from the 
spectral shape are a clear disadvantage for prediction purposes [81], as 
the skewness or kurtosis are often modeled from the spectrum not as 
accurately as H1/3 or Tz (see for example Annenkov and Shrira [1], Mori 
et al. [60] for modelling). As Gibson et al. [27] pointed out, exceeding 
probabilities should be dependent on the sea state parameters available 
from hindcast (e.g. accurately from the spectral shape), but even if the 
nonlinearity η1/3 could not be obtained by hindcast, the new parameter 
ℵ1 mitigates the spectral shape modelling dependence to a minimum. 
Regarding the forecast of rogue waves and building a exceeding prob
ability (or complementary functions, such as the probability density) 
from hindcast coupled with HOSM models, see Bitner-Gregersen et al. 
[4]. 

The advantage of combining parameters into a single ℵ1 is twofold: 
for one it does not depend solely on the spectral shape modelling and 
secondly, it gives new insights about varying physical settings. For 
instance, this parameter points to the realization that it is easier to form 
rogue waves in deep water than in shallow water wave regime. In fact, 
the works of Barbariol et al. [2], Chien et al. [10], Didenkulova and 
Anderson [13], Didenkulova and Rodin [14] provide evidence that 
depth shoaling has negative effects on rogue wave statistics. However, it 
does not become problematic in shallow water, as η1/3 is expected to 
grow in this regime, weakening the growth of λ1/3/D. Therefore, guided 
by the empirical results, we shall discuss the pattern presented in Ta
bles 1 and 3 and build a framework for inserting physical parameters 
into eq. (24). 

5.2. Subsample variance 

In order to evaluate the bound for Seff we need to estimate 〈δ2〉 in eq. 
(23), thus, we write the storm variance of λ calculated from 20-min 

Table 4 
The summary of patterns of Table 1. We examine how large (qualitatively) the 
three variables 〈ϵ〉, ε and η1/3 are in comparison to their averages in Table 3 for 
every individual storm (first column). The colored boxes show the likelihood of 
finding a rogue wave compared to Longuet-Higgins’s prediction.  

Storm ID ε 〈ϵ〉 η1/3 ε η1/3/〈ϵ〉 ε η2
1/3/〈ϵ〉 N − 1

α  

29 High Ave. High Very High Very High Very High 
149 High Vhigh High Ave. High Very High 
90 High Ave. High Very High Very High Very High 
172 High Ave. High Very High Very High Very High 
132 Ave. Vlow Low High Ave. Ave. 
28 High Ave. Ave. High Ave. Low 
146 Vlow Vlow Vlow Very Low Very Low Low 
23 Ave. Vhigh Ave. Low Low Very Low 
26 Low Vlow Vlow Low Very Low Very Low 
127 Low Low Vlow Very Low Very Low Very Low 
25 Ave. Ave. Ave. Ave. Low Very Low 
27 Ave. Low Low Ave. Low Very Low 
124 High Vhigh Ave. Low Low Very Low 
195 Ave. Vhigh Ave. Very Low Very Low Very Low  
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record averaged wavelengths: 

σ2(〈λ〉) =
1
p

∑p

j=1

(

λj − 〈λ〉

)

2 ≡
1
p

∑p

j=1

(

〈〈λ〉〉j − 〈λ〉

)

2, (27)  

where p is the number of 20-min records. Our task is to obtain the exact 
value of each σ(〈〈λ〉〉) from the data, but since we are not calculating the 
exact value of the zero-crossing wavelengths of all waves, one can as
sume an even partition of the record variance so that we estimate (τ is an 
input coefficient): 

i
(
λij − λj

)
= ±τ σ(〈λ〉) ≡ ±τ σ〈λ〉. (28)  

Thus, we may write: 

Nj σ2
〈〈λ〉〉 =

∑Nj

i=1

(

λij − λj

)

2 = 2τ2
∑(Nj − 1)/2

i=1

σ2
〈λ〉

i2 ,

where Nj is the number of waves in the j-th 20-min record. Then, we can 
estimate for large N: 

Nj σ2
〈〈λ〉〉

2σ2
〈λ〉

̅→
N→+∞ ∑

+∞

i=1

τ2

i2 =
π2τ2

6
, (29)  

hence, on average, the 20-min record variance reads: 

〈
σ2
〈〈λ〉〉

〉
∼
∑p

j=1

Nj

N
σ2
〈〈λ〉〉 ≈

π2 τ2

3〈n〉
σ2
〈λ〉, p 〈n〉 = N . (30)  

Since the 20-min record average zero-crossing period is found through 
〈n〉〈Tz〉 ≈ 1200, we may write: 
〈

σ〈〈λ〉〉

〈〈λ2〉〉

〉

≈
πτ
60
〈Tz〉

1/2⋅
σ〈λ〉

〈λ2〉
. (31)  

5.3. Expected maximum dimensionless height 

After inferring what physical variables could appear in δ1 and 
obtaining an expression for the subsample variance, we are ready to 
construct a full model for eq. (24): 

E( ‖ α ‖ ) ≡ α★E†
α ≈ α★

[

1 −
πτ
50

〈Tz〉
1/2⋅

σ〈λ〉

〈λ2〉

]

. (32)  

Following the patterns of Table 4, we intend to model the deviation in 
the following manner: 

σ〈λ〉 ≈ A ηa
1/3 ℵ

b
1〈λ2〉. (33)  

Fig. 16. Graphic display of the probability dynamics shown in Table 4 with the same color gradient conveying the relative probability [48]. Green arrows depict the 
direction where the variables increase. 

Fig. 17. Strong correspondence between rogue wave return periods of Table 1 
and the scalings ℵ1 (blue dots), ℵ1/η1/3 (black stars) and ℵ1η1/3 (blue circles). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 18. Weak correspondence between rogue wave return periods of Table 1 
and spectral parameters 30〈ss〉 (blue circles), 〈ν〉 (red circles) and η1/3 (stars). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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The reason for the absence of second auxiliary parameter in the equation 
above is that ℵ2 < < ℵ1, which would make E†

α be always near to unity. 
Consequently, this would invalidate the model for expected maxima 
since the standard deviation of the storm averaged significant steepness 
within the data set is of the order of only 6.8% and can not explain the 
13.9% standard deviation of ‖ α ‖ in Table 1 alone. Hence, we can merge 
the equations (32) and (33) to obtain the general structure for: 

E
†

α , 0 = 1 −
A πτ
50

ηa− b
1/3

(〈λ1/3
〉

D

)b
〈Tz〉

1/2
. (34)  

Therefore, our task is to obtain a good model for (a, b,A ) so that it 
describes the observation of both 〈〈δ2〉〉 and ‖ α ‖ properly. On the other 
hand, the term T1/2

z can grow quickly for wind waves, with the possi
bility of producing an unrealistic scenario of E†

α⩽0. Therefore, we adjust 
equations (32–33) with: 

〈〈δ2〉〉
∗⟶

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ℵ3

1

2η7
1/3

⋅〈〈δ2〉〉

√

, (35)  

adjusting the physical implications of 〈δ2〉 and maintaining the fourteen 
storm average. The importance of this adjustment is twofold: Firstly, it 
makes the term (a − b) in eq. (34) become very negative, which is 
desirable as η1/3 grows in shallow water and it counters the growth of 
the ratio λ1/3/D. Secondly, we have better control of the zero-crossing 
period. Accordingly, we would obtain an adjusted version of eq. (34): 

E†
α = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅
6A πτ
500

√

η(a− b− 10)/2
1/3

(〈λ1/3
〉

D

)(3+b)/2
〈Tz〉

1/4
. (36)  

A different but crucial aspect of this optimization is the shallow water 
wave constraint. The structure of equation (24) shows that E†

α will ul
timately be inserted in the upper limit of the steepness, since E†

α contains 
1 − 〈δ2〉 to find the expected maximum and 1 + 〈δ2〉 for the upper bound. 
In view of the limit of large λ2/D, we would obtain a steepness 
approaching zero in accordance with Miche [56], thus, forcing one to 
obtain: 

lim
λ2/D→+∞

[

1 + 〈δ2〉

]

tanh
(

30πD
22〈λ2〉

)

≡ lim
λ2/D→+∞

W = 0 . (37)  

Therefore, having eq. (C.2) in mind, the limit is evaluated: 

lim
λ2/D→+∞

tanh
(

30πD
22〈λ2〉

)

tanh1/8
(

2πD
〈λ2〉

)
(〈λ2〉

D

)ρ
⩽1 , 2ρ = 3 + b . (38)  

In the shallow water limit we have tanh(ss/ϵ) ≈ ss/ϵ, hence: 

W (ρ) ∼ 30π
22⋅(2π)1/8⋅

(〈λ2〉

D

)ρ− 7/8
∼

7
2

(〈λ2〉

D

)ρ− 7/8
. (39)  

Accordingly, the limit of eq. (38) will be fulfilled whenever ρ < 7/8 (see 
Fig. 19), which requires the condition b < − 5/4. Then, the best model 
with the structure of eq. (33) that will provide a good fit for 〈δ2〉 and 
obey the constraint of eq. (37–38) sets (a = 0, b = − 2,A = 2 /7). A 
similar model that obeys eq. (34) and (38), now with b < 7/4, can be 
found, such that: 

〈δ2〉I =
2

7ℵ2
1
; 〈δ2〉

∗

I =

̅̅̅̅̅̅̅̅̅̅
ℵ1

7η7
1/3

√

; 〈δ2〉II =
η3

1/3

6ℵ1
. (40)  

The method in eq. (35) re-scales the scatter plot and diminishes the 
number of outliers while improving the correlation significantly, now 
reading 0.492. However, as discussed earlier, the physical interpretation 
is as important as the data fit in Fig. 20 and paramount for eq. (32). For 
instance, if we switch 〈λ1/3〉 by its median λ1/3, we find a correlation of 

0.503, but of no qualitative advantage (see Fig. 21). The model 〈δ2〉II 

produces similar correlation without the adjustment, but will likely 
overpredict the maximum normalized heights. Besides the fitting and 
the shallow water constraint, the model 〈δ2〉

∗
I also reverses the 

decreasing trend of 〈δ2〉 with return period, which will result in higher 
‖α‖ for storms with smaller return period due to eq. (32). Though it is 
expected that storms with higher rogue wave occurrence to produce 
higher ‖α‖, this is not always true, as seven storms with higher N α=2 
than storm 29 displayed ‖α‖, consequently, the growth of 〈δ2〉 with N α 
should not be monotonic or exponential, making of 〈δ2〉

∗
I a more suit

able model. 

5.3.1. Storm geometry and τ 
In the last section we learned how to constrain the structure for the 

expected maximum normalized height, obtaining a reasonable model for 
the wavelength deviation σ〈λ〉 = σ(〈λ2〉,ℵ1). The final part of the puzzle 
consists in estimating the parameter τ inserted in eq. (30). If τ is just a 
constant, we shall not see large variations for its value regardless of 
which 20-min records within any storm from Table 1 we choose. We 
report that the dimensionless deviation of all wavelengths δ2 is typically 
twice of 〈δ2〉, which for storm 29 (with 89 records) was of 1.96, whereas 
δ2/〈〈δ2〉〉 ≈ 1.18. Then, using eq. (30) we obtain: 

τ29⩾
1.96

1.18π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
458.76

√
≈ 11.22. (41) 

Fig. 19. Outcomes for the limit eq. (38) with varying ρ. The function reaches 
zero when ρ < 0.875 and otherwise can either become finite or diverge. 

Fig. 20. Observed deviation (vertical axis) modeled with (grey dots) and 
without (blue dots) the adjustment of eq. (35). (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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Nevertheless, such approach presents the same difficulty of modelling 
probabilities with skewness and kurtosis [81], as it depends on ratios not 
known a priori and the size of the sample, e.g. how large is 〈n〉. However, 
the latter is equivalent to an inverse dependence on the zero-crossing 
period, such that we want to model τ with sea state parameters and a 
calibrated ratio 〈〈δ2〉〉/〈δ2〉. A better approach would be calculating the 
storm parameter for all 20-min records and average them out over the 
whole storm. We combine eq. (30) with eq. (33) as in Fig. 20, obtaining: 

σ〈〈λ〉〉

〈〈λ2〉〉
≅

πτ
60

T1/2
z ⋅

σ〈λ〉

〈λ2〉
≈

πτ η2
1/3D2

210
⋅
〈〈T〉〉1/2

z
〈〈

λ1/3
〉〉2. (42)  

In Fig. 22 we see how the evolution of both significant wave height and 
λ1/3 affects eq. (42). A comparative analysis between Figs. 22 and 23 
suggest that τ is controlled by the variability of the H1/3 time series, with 
τ growing as the storm reaches its peak while decreasing afterwards. The 
correlation coefficients for the three intervals (pre-peak, peak, post- 
peak) of storm 29 were respectively of 0.766, 0.556 and -0.049, 
whereas for the combined interval of peak and post-peak was of 0.689. 
Therefore, it is not surprising to have a very low storm geometry 
parameter τ in storm 146 and a relatively high one for storm 29. 
Nonetheless, the previous equation is based on the asymptotic large N 
limit, such that the parameter τ might be a few percent smaller than its 
estimate. Fig. 24 shows how the mean τ estimate for is related to various 
variance measures of H1/3(t). Though a full expression is not available, 
these approximate measures show how the input τ is dependent on how 
large and quick are H1/3(t) variations. Qualitatively, Fig. 22 confirms the 
mean estimates in Table 5. 

5.3.2. Model comparison 
After all the constraints and algebra, we are able to finally find an 

expression for eqs. (24–25). We then use the model of Fig. 20 and eq. 
(32) to find: 

E ( ‖ α ‖ ) =
22

105〈ss〉

[

1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅
πτ〈λ2〉

180 D

√

⋅
〈Tz〉

1/4

η 4
1/3

]

tanh
(

30πD
22〈λ2〉

)

, (43)  

where one originally derived it in terms of λ1/3 with coefficient reading 
3πτ/875, from which we used the values of Table 3, but for the sake of 
consistency, we applied λ1/3 ≈ 1.6λ2 to obtain the previous equation. 
Notice that both the storm geometry parameter and the ratio among 
spectral periods TE, T1 and T2 will affect the expectancy model (see 
Appendix B), accomplishing the goal of predicting ocean wave statistics 
from sea state parameters that evolve from the ocean spectrum, as 
opposed to the number of waves in the record alone. The correlation 
between theory and observation vary wildly (Fig. 25): For the model in 
eq. (43) with constant τ we have a correlation of nearly 0.47, with 
maximum correlation (using error bars) of 0.88 whereas a varying τ 
changes it to 0.61 and 0.92 respectively. In contrast, the alternative 
model in the second figure had an average correlation of -0.34 (blue 
circles), Longuet-Higgins [48] of 0.30 and Forristall [24] of 0.31 (with 
the last two expectancy models derived in Appendix D). Then, Lon
guet-Higgins’s and Forristall’s models demonstrate that their lack of 
variability for the exceeding probability in Section 3 is naturally 
reproduced in the expected maximum height. Put into perspective, the 
difference between the estimated maximum α for the storm with the 
super-rogue wave (172) to the one with no rogue waves (195) was of 
64% ( ≈ 3.19/1.95). However, according to both Longuet-Higgins [48] 
and Forristall [24] we should expect this difference to be of only 8% 
(respectively estimating  ≈ 2.39/2.21 and  ≈ 2.14/1.99), whilst eq. (43) 
returns 47% ( ≈ 2.77/1.88). In fact, the models in equations (D.7) and 
(D.10) would make one believe that the expected maximum would be 
unusually high in large data sets with hundreds of millions of waves, 
however, Table 1 reports the exact opposite, that the largest rogue waves 
are not necessarily found in the largest data sets. Since Haring et al. [33], 
Tayfun [77] and Forristall [25] were derived for wave crests, we did not 
plot them in Fig. 25 as it would do an injustice to their predictive models. 
However, they will feature a slightly larger variability but not sufficient 
to explain the observed ‖ α ‖. In other words, any expectancy for the 
dimensionless heights that is constructed from distributions without 
physical variables will ultimately be unfit because it depends on the total 
number of waves in the storm alone. Even if a distribution depends on a 
physical variable, it may fail because it might not cover both 
super-Rayleigh and sub-Rayleigh regimes. 

5.4. Additional expected maxima 

In order to estimate the maximum effective steepness one shall apply 
the expectancy operator to eq. (16) and using the ratio in Fig. 12 while 
adding the error  ± 0.09 in Fig. 9: 

E
(
‖ SEff ‖

)

E( ‖ α ‖ )〈ss〉
=

0.93⋅(0.96 ± 0.07)
(0.88 ± 0.02)

≈ 1.02 ± 0.08, (44)  

hence, employing eq. (43) to eq. (44), one finds: 

E ( ‖ SEff‖ ) =
3
14

[

1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅
πτ〈λ2〉

180 D

√

⋅
〈Tz〉

1/4

η 4
1/3

]

tanh
(

30πD
22〈λ2〉

)

. (45)  

Fig. 26 shows the accuracy of it with error bars that follows the same 
methodology described in Fig. 25. Likewise, the reader might use the 
same approach from the previous sections to obtain the expected 
maximum of the significant height-to-depth ratio. Contrary to this idea, 
Fig. 27 shows the tendency of the significant height-to-depth ratio to 
drop for the bulk of waves as the dimensionless height increases. 

Fig. 21. The observed dimensionless deviation 〈δ2〉 plotted with increase of 
return period of all fourteen storms (as seen in Table 1): (top) solutions without 
adjustment shown in eq. (40) and (bottom) with the adjustment of eq. (35). 
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Fig. 22. Significant wave height time series of selected storms shown by red lines, whereas green lines depict the rogue wave threshold. Red dots are rogue waves 
and black dots otherwise. Storm parameters are estimated to be at a maximum 〈τ29〉 ≈ 15 and at a minimum 〈τ146〉 ≈ 6 (see Table 5). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 23. Storm29′s τ model of eq. (42) before the peak (blue dots), defined as 
〈〈λ2〉〉 > 〈λ1/3〉, during the peak (grey dots) and after the peak (green dots). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 24. Scatter plot among τ and two measures of for the evolution of H1/3(t). 
The dashed line shows the best fit between τ and σ〈H1/3〉/〈H1/3〉, whose corre
lation is of 0.812. The other two measures estimate the curvature by the ab
solute value of interval variations of H1/3: blue dots is calculated by splitting the 
entire storm into five intervals, whereas blue circles are calculated through (n −

1) intervals, with respective correlations of 0.926 and 0.433. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Therefore, there is little use in finding the maximum ϵ because the 
typical waves associated with such values are not rogue waves, precisely 
as eq. (18) describes it. 

Table 5 
Comparison between observed maximum dimensionless height and our model of (43) adjusted to each storm geometry parameter τ, estimated from the combination of 
the model of eq. (42) and a rough measure of significant wave height evolution σ〈H1/3〉/〈H1/3〉, as well as based on Longuet-Higgins [48] and Forristall [24], whose 
estimates are found in Appendix D. In addition, we explicitly estimate values for each one of the three upper bounds for the dimensionless heights, where Miche [56] 
limit is calculated by eq. (47) .  

Storm ID ‖α‖ E(‖ α ‖) E(R ‖α‖) E(F ‖α‖) 〈τ〉 σ〈H1/3〉

〈H1/3〉

∑4
k=1

|ΔH1/3|k
4  

α∞ ‖ ϵα ‖∞

〈ϵ〉
Miche’s 

29 (2.30) 2.36 ± 0.17 2.25 2.02 15 0.396 0.486 4.79 3.31 2.47 
149 (2.50) 2.59 ± 0.19 2.39 2.14 11 0.220 0.228 4.84 3.37 2.61 
90 (2.65) 2.53 ± 0.18 2.38 2.13 13 0.383 0.412 4.60 3.29 2.45 
172 (3.19) 2.57 ± 0.19 2.31 2.07 11 0.336 0.334 4.72 3.40 2.55 
132 (2.30) 2.48 ± 0.18 2.38 2.13 8 0.148 0.100 4.69 3.59 2.62 
28 (2.38) 2.34 ± 0.17 2.30 2.06 12 0.360 0.369 4.93 3.38 2.52 
146 (2.46) 2.56 ± 0.19 2.26 2.03 6 0.102 0.099 4.95 3.86 2.78 
23 (2.08) 2.13 ± 0.16 2.31 2.07 12 0.353 0.421 4.83 3.19 2.44 
26 (2.16) 2.40 ± 0.17 2.33 2.08 10 0.219 0.165 4.99 3.79 2.69 
127 (2.09) 2.38 ± 0.17 2.26 2.02 13 0.271 0.143 6.75 4.21 3.24 
25 (2.59) 2.09 ± 0.15 2.27 2.04 12 0.267 0.312 4.70 3.24 2.40 
27 (2.40) 2.53 ± 0.18 2.29 2.05 8 0.191 0.137 5.08 3.64 2.72 
124 (1.97) 2.06 ± 0.15 2.30 2.06 15 0.298 0.309 5.71 3.40 2.70 
195 (1.95) 2.03 ± 0.15 2.21 1.99 11 0.208 0.145 4.99 3.23 2.49  

Fig. 25. Theoretical expected maximum α (vertical axis) of eq. (43) versus the 
observation (horizontal) described in Table 1: (top) Blue dots represent the 
midpoints of eq. (43) and the bars come from the error in α⋆ with estimated τ 
for each storm (see Table 5) and (bottom) blue circles for the expectancy ac
cording to eq. (34) if our expression for the deviation was 〈δ2〉 ≈ η2

1/3 /6ℵ1 and τ 
= 11 (the average among all storms) and predictions by Longuet-Higgins [48] 
in blue stars and [24] in green stars (see Appendix D). Notice that besides a 
higher correlation, our model of eq. (43) follows an increasing trend while the 
Longuet-Higgins [48] and [24] models portray a rigid horizontal line. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 26. Theoretical expected maximum effective steepness versus observation. 
Blue dots and bars are obtained from eq.(45) with varying τ from Table 5 and 
combined error from α⋆ and eq. (44), becoming 0.08 × 22/105 ≈ ± 0.017, 
whereas blue circles are midpoints of the same model with τ = 11. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 27. The bulk of height-to-depth ratio with varying normalized heights.  
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5.5. Conjectured bounds 

Furthermore, one can estimate the greater upper bound for the 
dimensionless height in the tail (1 + 〈〈δ2〉〉) of the population: 

α∞ =
22

105〈ss〉

[

1+
̅̅̅̅̅̅̅̅̅̅̅̅̅
πτ〈λ2〉

180 D

√

⋅
〈Tz〉

1/4

η 4
1/3

]

tanh
(

30πD
22〈λ2〉

)

. (46)  

In order to estimate its evolution from deep water waves to shallow 
water, we need to isolate the λ2/D ratio from the zero-crossing period. 
Fig. 28 shows the mathematical limit in detail, demonstrating a clear 
tendency of optimal rogue wave formation in intermediate or near deep 
water wave regimes, e.g. shallow water regime has an exceeding typi
cally below the Rayleigh regime [3,40,54,95]. However, a higher 
steepness will likely diminished the chances of forming rogue waves, 
especially in shallow water. This framework provides fresh insights into 
rogue wave research: For one, it was already known that neither high 
individual steepness nor significant steepness is associated with rogue 
wave formation [11,74], however, its was not known that the significant 
steepness could have a negative effect on the rogue wave occurrence. 
Additionally, the bound eq. (46) flat out rejects the weakly nonlinear 
model as it does not depend on the number of waves. Nevertheless, as 
soon as the estimates derived in Section 4.1 and Appendix B lose val
idity, the accuracy of eq. (43) and eq. (46) will tend to diminish because 
their coefficients depend on the ocean spectrum and are not fixed. 

On the other hand, let us analyze other problematic consequences of 
Miche’s limit in the context of maximum normalized wave heights. One 
may be inclined to think that eq. (46) is a cumbersome approach and 
rewrite eq. (17) as: 

‖ α ‖M , ∞⩽
〈λ2〉

7
〈
H1/3

〉 tanh
(

2πD
〈λ2〉

)

(47)  

This simplified version for the maximum dimensionless height is the one 
used in Fig. 28. Such naive derivation, however, is the qualitative 
equivalent of eq. (46) and not the expected maximum, which means it 
would lead to even lower expected maxima when compared to eq. (47). 
As shown in Table 5, the average expected ‖ α ‖ for all storms in Table 1 
according to Miche [56] is of the order of 2.62 (with 〈ss〉 ≈ 0.0561), 
however, the Miche expectancy model fails for storms 90, 172 and 25. 
To the keen reader, it is already clear the difference between the upper 
bounds in Table 5: α∞ is the ceiling for rogue waves, whereas the other 
two are empirically derived, reproducing the physics of the data they 
were extracted from, thus, being vulnerable to unusual sea state con
ditions. Furthermore, an additional matter calls for attention: the upper 
bound α∞ reaches values lower than unity in shallow water wave regime 
in Fig. 28, which by definition can not happen because the maximum 

wave height can not be smaller than the average of the tallest wave 
heights H1/3. Therefore, is convenient to define an upper bound for the 
significant steepness, whose excess will prevent any rogue wave from 
being formed: 

〈ss〉∞ =
11
105

[

1+
̅̅̅̅̅̅̅̅̅̅̅̅̅
πτ〈λ2〉

180 D

√

⋅
〈Tz〉

1/4

η 4
1/3

]

tanh
(

30πD
22〈λ2〉

)

. (48)  

However, having the significant steepness smaller than its bound does 
not guarantee the formation of rogue waves. When dealing with shallow 
water wave regime in eqs. (46–48), the lack of knowledge on how the 
nonlinearity η1/3 is affected by finite depth induces a degree of uncer
tainty in the conjectured models when λ2/D → ∞, as it is expected to 
have an increased nonlinear behavior in shallow water. Accordingly, 
one should expect the tails in Figs. 28–29 (whose full finite depth 
expression is found in Appendix C) to be lowered by 20–30%. 

5.6. Discussion 

It is worth mentioning that this study was mainly observational and 
the dataset did not include information on the directionality, which can 
indeed affect the results obtained here. The reader is referred to the most 
important advancements in respect to experimental [64,86,91] and 
numerical [83,84] analysis of rogue wave statistics sensibility to direc
tionality and sea state parameters.In this regard, the validity of all 
equations, both empirical and conjectured, of Section 5 fulfilled the 
conditions ‖H1/3‖ ≤ 2〈H1/3〉 and ‖Tz‖ ≤ 2〈Tz〉. It is very unlikely that 
models such as the one described by eq. (43) will be valid for 
non-homogeneous wave records due to its strong sensibility to sea state 
parameters, while the empirical findings of Section 4.1 could be valid 
even when the conditions described above are not met. Is important to 
note that the discussion on the homogeneity of sea states and the effect 
of partitioning a storm into steady-state subgroups on the maximum 
(absolute) wave height and significant wave height is well-known in the 
literature [7,21,43,69,88]. However, there are two major distinctions 
between this approach and ours: First, the parameter τ is an extensive 
measure of ”homogeneity” and has no clear equivalent in these works, 
whereas Borgman [7] tries to estimate what effect the variations of sea 
state has on the Longuet-Higgins [48] distribution, e.g. the integration of 
the Rayleigh cumulative distribution over a time-varying sea state. 
Moreover, Borgman [7] does not ascribe any bound to the duration of 
the sea, e.g. how large the deviations can be so that accuracy is pre
served, whereas τ has an upper bound that defines what is considered 
”too heterogeneous” to create an accurate explanation of the ”uneven 
distribution” phenomena [74]. Therefore, we do not define homogene
ity in the same way, e.g. as a steady-state sea, rather as a particular low 
interval for τ (see Fig. 22), such that this work and Borgman [7] answer 

Fig. 28. Comparison between the models of eq. (46) and eq. (47) with fixed 
depth (D = 100m), nonlinearity (η1/3 = 1.2) and storm geometry (τ = 15). 

Fig. 29. Contrast between the models of eq. (48) and of eq. (17) as a function of 
τ and fixed depth (D = 100m) and nonlinearity (η1/3 = 1.2). 

S. Mendes et al.                                                                                                                                                                                                                                 



Applied Ocean Research 108 (2021) 102402

15

different questions. Furthermore, when the storm parameter is near 
τ ≈ 40 the model for normalized heights starts to violate the minimum 
allowed ‖α‖ ≥ 1. Further analysis is needed to check the correlation of 
an exact measure of the curvature of H1/3(t) and τ, but assuming a near 
linear relation between them, the τ ≈ 40 (twice the highest value of the 
North Alwyn data) estimated limit would imply the bound 
‖H1/3‖< 5〈H1/3〉 as the validity of our models and perhaps a rule for 
sampling partition. As seen in Fig. 22, a higher τ is generally associated 
with a higher variability in H1/3 over time, and according to our 
conjecture, higher variability will affect the predictive models nega
tively, that is because 〈〈δ2〉〉 will oscillate vigorously with τ extremes. 
However, a very low τ can also have undesirable effects, as it will in
crease the maximum Eα and decrease the bound α∞, thus making it 
possible in principle to breach the upper bound. For prediction purposes 
then, very low or very high τ can lead to either overpredicting or 
severely underpredicting rogue wave maximum normalized heights. 
Lastly, the comparison between Figs. 25 and 26 suggest that the relation 
in eq. (15), though on average precise, starts to decay in accuracy past 
the threshold α > 2.6, such that all conjectured bounds may need a small 
correction in a future work with data sets and numerical studies with a 
statistically significant amount of super-rogue waves. Finally, the reader 
might reach the conclusion that the values in Table 4 are on average (see 
Fig. 1) overestimated by 4% if α was normalized by the spectral signif
icant wave height Hm0 instead of H1/3. However, it can be proven that 
the ratio between the models and observation of Table 4 as well as the 
exceeding probabilities are left invariant under a corrected normaliza
tion (see D.2). Moreover, Massel [54] argues that when Hm0 differs from 
H1/3, it cannot be used directly to estimate wave height, which is the 
case of Fig. 1, hence validating our normalization choice. 

6. Rogue wave crests 

As discussed in the first part of this work devoted to wave heights, 
Haring et al. [33], Forristall [24] and Tayfun [77] among many others 
have extended Longuet-Higgins’s original work to more realistic sea 
states, some for wave heights and others for wave crests or wave 
troughs. Yet, there is no universal distribution that explains rogue wave 
occurrence for an arbitrary sea state, valid for wave heights and crest 
heights alike [39]. 

From very early on, it was apparent that RD often overpredicts rogue 
wave heights and yet severely underpredicts rogue wave crests, an effect 
that is qualitatively easy to ascribe to nonlinearity, but quantitatively 
hard to describe. Strikingly, except in the narrow-banded regime, most 
studies do not find a common structure for both distributions. Therefore, 
in addition to the challenges on prediction and characterization of 
storms by sea states in the first part, we also seek to address the 
discrepancy between crest and height statistics. Here, we build upon the 
approach described in eq. (1) (see Table 6): 

β =
Z c

H1/3

, (49)  

where Z c is the wave crest. A wave height H and a wave crest Z c will be 
considered rogue if the conditions below are satisfied: 

H > α0H1/3 , Z c > β(α0)H1/3 ≡ β0 H1/3 . (50)  

Where α0 is the standard rogue parameter introduced by Dean [12] and 
β0 is the rogue crest counterpart. According to Petrova et al. [66], the 
most widely used coefficients are respectively 2.00 and 1.25. Following 
Cartwright and Longuet-Higgins [8], Longuet-Higgins [48], the RD 
exceeding probability for narrow-banded seas (α = 2β) is expressed as, 

R β ≡ R

(
Z c > βH1/3

)
= e− 8β2

, (51)  

However, crest heights can reach the rogue threshold while the wave 
height may not at the same time and vice-versa, this being the main 
source of discrepancy between crest and wave height distributions. 
Similarly to what we did in Table 1, we lay down the most crucial sta
tistics of rogue wave crest occurrence for the North Alwyn data in 
Table 7. In fact, the underprediction of rogue wave crests based on 
Longuet-Higgins [48] is two orders of magnitude worse than for wave 
heights. Hence, one confronts the problem of explaining why the same 
distribution slightly overpredicts rogue wave heights but severely 
underpredicts wave crests. In this regard, nonlinear corrections and 
spatiotemporal effects have been analyzed in recent works and provide a 
good guidance on the subject Fedele et al. [23], Laface et al. [45], 
Romolo et al. [70], 71], Voermans et al. [90], however, a full expression 
relating α and β without absolute heights is not entirely known, see 
Wolfram et al. [93] for a model where the ratio β/α is a function of the 
significant wave height. Moreover, care should be taken when trying to 
explain time series data (such as in Table 1) with spatiotemporal dis
tributions [55]. 

6.1. Dimensionless heights conversion 

In this section we show how to relate two rogue parameters in 
accordance to the nomenclature in the introduction. Towards that end, 
we make use of the nonlinearity parameter defined in eq. (11), so that eq. 
(1) can be rewritten as follows: 
(

H
H1/3

)

H>0.74H1/3

≈

⎛

⎝
1 + η

1/3

η
1/3

⎞

⎠

(
Z c

H1/3

)

H>0.74H1/3

, (52)  

because Longuet-Higgins [48] expects the lowest normalized height of 
the 1/3 tallest waves to be (0.5ln 3)1/2 ≈ 0.74, suggesting that the 
dimensionless wave height can be converted into the dimensionless 
wave crest in the following manner: 

β(α) ̅→α >1

[
η

1/3

1 + η
1/3

+ O

(
η

1/3
, α
)
]

α. (53)  

This dependence of the ratio between wave crest and wave height on the 
nonlinearity may partially explain the disparity between Lon
guet-Higgins’s prediction for rogue wave heights and rogue wave crests. 
This is important because the equivalent alternative would be to fix the 
probability distribution and make the rogue wave threshold flexible, but 
this is of course unreasonable. Moreover, we see that for a typical 
η1/3 ≈ 1.25 we find β0/α0 ≈ 1.11, so that we choose β0 = 1.2 as the 
threshold closest to the most common definition that is consistent to the 
above relation. Up to first order, using the inverse transformation the 
normalized crest obeys the nonlinearity adjustment: 

R
∗
β ≈ exp

{

− 2β2

(
1 + η

1/3

η
1/3

)2}

. (54)  

Interestingly, Longuet-Higgins has been adjusted to the nonlinear 
behavior by including finite bandwidth effects [51], such that the 
adjusted distributions of Fig. 30 tend to oscillate around the original 
probability [48], but only the one adjusted by the nonlinearity can 

Table 6 
Proposed definition for a category of waves according to the approximation in 
eq. (53) and to the wave height definitions in Table 2.   

Ordinary 
Wave 

Large 
Wave 

Sub- 
Rogue 
Wave 

Rogue 
Wave 

Super- 
Rogue 
Wave 

Definition 
II 

β ∈ (0, 
0.6] 

β ∈ (0.6, 
1] 

β ∈ (1, 
1.2] 

β ∈ (1.2, 
1.8] 

β > 1.8 

Total 
Count II 

324,867 
(91.8%) 

27,742 
(7.8%) 

875 
(0.25%) 

236 
(0.07%) 

8 
(0.0022%)  
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increase the standard probability (see Fig. 30). On the other hand, the 
data shows that the first order term in eq. (53) will underestimate how 
the nonlinear character of the waves grows, as shown in Fig. 31. How
ever, for the average among tall waves the first order seems accurate: 
based on Table 3 we estimate that the fourteen-storm average is 
η1/3 ≈ 1.178, such that we would have β ≈ 0.541α, whereas observation 
showed that for all waves with α ≥ 1 it reads β ≈ 0.539α. The correction 
for higher normalized heights necessary to fit the observation is 
approximately described by: 

〈β
α

〉
≈

η
1/3

1 + η
1/3

[

1 +
2η

1/3

̅̅̅̅̅̅̅̅̅̅̅
α − 1

√

7 + 2
̅̅̅̅̅̅̅̅̅̅̅
α − 1

√

]

≡ Sβ , ∀α > 1 . (55)  

Taking into account the above correction, we rewrite the distribution, 
finding (the value of 1.5 is an anticipation to the iteration, e.g. the 
measured value in Fig. 31, since we can no longer use α = 2β in eq. (53)): 

R
★
β ≈ exp

{

− 2β2

(
1 + η

1/3

η
1/3

)2[

1 +
2η

1/3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1.5β − 1

√

7 + 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1.5β − 1

√

]− 2}

. (56)  

Notice that the ratio Sβ→η
1/3
/(1+η

1/3
) for α ≤ 1 (if we took the real part 

of Sβ for α ≤ 1, the typical value would be Sβ ≈ 1.05), or alternatively 
when β ≤ 2/3. The keen reader will observe that when η1/3 = 1 we 
recover the equivalency of eqs. (51) and (2), i.e. the perfectly narrow- 
banded sea has no vertical asymmetry. On the other hand, in the limit 
(α, β) → ∞ we reach the average Sβ→1. Notice, however, that some 
waves can reach β/α ≈ 1, which is not the same as the average of a large 
group of waves with Sβ = 1. Nonetheless, as demonstrated by eq. (46), 
this limit is not reachable because the maximum normalized height is 
finite and denoted by α∞, so that the approximate model in eq. (53) is 
mathematically bounded and at the same time avoids unrealistic 
scenarios. 

6.2. Physical bounds & rogue wave patterns 

Besides the significant underprediction of wave crests in the range 
β ≥ 1 by Longuet-Higgins [48], one outstanding distinction between 
Table 1 and Table 7 is highlighted: while a few storms displayed lower 
return period for rogue wave heights than predicted by RD and most 
storms had a higher return period, for wave crests all storms featured a 

Table 7 
Summary of the North Alwyn data [74] with storms ordered from lower (top) to higher (bottom) N β=1.2. The last column shows each storm maximum observed 
dimensionless crest height ‖β‖. Numbers in bold font show Longuet-Higgins’s prediction, including the nonlinearity-adjusted version in eq. (56), for the total number of 
rogue waves, maximum β and return period.  

Storm ID β > 0 β > 1 β > 1.2 β > 1.35 β > 1.5 β > 1.8 ‖β‖ N β=1.2  

172 23,591 112 35 17 5 1 2.46 674 
29 13,610 59 17 10 7 1 1.86 801 
90 44,867 207 55 27 13 2 2.11 816 
149 52,766 199 63 33 14 2 1.87 838 
28 22,155 57 15 5 3 2 2.03 1477 
23 25,068 76 12 2 0 0 1.42 2089 
146 15,109 33 6 2 0 0 1.42 2518 
132 45,056 126 17 4 0 0 1.47 2650 
25 16,896 44 6 2 0 0 1.46 2816 
26 27,774 53 8 3 0 0 1.40 3472 
127 14,845 29 3 1 0 0 1.36 4948 
27 20,379 45 4 2 1 0 1.56 5095 
195 9875 23 1 0 0 0 1.22 9875 
124 21,737 56 2 0 0 0 1.33 10,869 
Total 353,728 1119 244 108 43 8 2.46 1450 

Total× R β  - 119 4 0.16 0.005 0.000002 1.29 100,710 

Total× R ★
β  - 3,018 585 146 32 1 1.67 605  

Fig. 30. Comparison between the standard wave crest Rayleigh distribution of 
eq. (51), the one adjusted by the nonlinearity η1/3 and the bandwidth corrected 
due to [51]. The curve in purple shows the second-order correction to β/α in 
eqs. (53) and (55) for η1/3 = 1.4. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 31. How the ratio between crest height and wave height varies for all 
fourteen storms waves fulfilling the condition α ≥ 1. The lighter shade of blue 
denotes simultaneous rogue wave heights and crests, whereas the darker shade 
shows rogue wave crests that has α < 2 and black dots are the remaining waves. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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return period much lower than Longuet-Higgins [48]. However, as dis
cussed by Karmpadakis et al. [39], splitting wave data into ocean state 
homogeneous groups provides a better insight into the usefulness of 
distributions. To this extent, we plotted the empirical distributions ac
cording to the selected groups of Table 8. The rogue wave likelihood 
variability is much greater for wave crests (see Fig. 32). Interestingly, 
the selected groups start to display diametrical statistics in the sub-rogue 
wave zone β ≥ 1 and α ≥ 1.8, providing a stronger qualitative argument 
for the rogue wave thresholds than arbitrary statistical rarity alone [12], 
in addition to being the threshold where the RD considerably departs 
from observation. Following the proposed evolution of wave crest to 
wave height ratio in eq. (55), we can expect the approximate relation: 

〈 ‖ β ‖

/

‖ α ‖ 〉

(
η

1/3

1 + η
1/3

)[

1 +
2η

1/3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
‖ α ‖ − 1

√

7 + 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
‖ α ‖ − 1

√

]

(57)  

Such an approximation is in fact confirmed by observation, as shown in 
Fig. 33. Notice however, that the oscillation around the red curve rep
resenting eq. (57) is due to the oscillation in nonlinearity η1/3, as we have 
used the fourteen storm mean instead of each storm value, such that 
making a distinction between storms with highest and lowest nonline
arity shows the qualitative precision of eq. (57), e.g. higher η1/3 will 
increase the group average 〈‖β‖/‖α‖〉. In fact, as shown in Fig. 34, the 
average ratio for Group I was 〈‖β‖/‖α‖〉 ≈ 0.751 whereas the combined 
remaining storms had 0.666, whose predictions made by eq. (57) are 
respectively 0.732 and 0.686. 

Furthermore, using the definitions of the introduction and 
comparing with Section 4 we introduce the crest effective steepness: 

ZEff =
Z c , i

〈〈λ2〉〉
≡
(β

α

)
SEff . (58)  

Moreover, the main empirical finding for wave heights has its crest 
counterpart (see Fig. 35): 

‖ β ‖ ⋅〈ss〉 ≅ 0.96 ‖ ZEff ‖, (59)  

To be precise, the wave height result had 0.958 ± 0.061 while the above 
returns 0.960 ± 0.074. Without prior knowledge of eq. (53), it would not 
be possible to anticipate the crest equivalent of eq. (15), such that the 
previous relation is only completely intelligible from the perspective of 
Fig. 33 which assures us that eq. (53) applies to storm maxima. The 
relationship between normalized effective steepness and the former is 
(Fig. 36): 

ZEff〈
ZEff
〉

1/3

≈ 1.55 β, (60)  

confirming that wave crests, like wave heights, increase their effective 
steepness with higher normalized heights. 

6.3. Statistical theory 

The striking similarity between the relations in eq. (15–16) and its 
wave height counterparts is not the result of mere coincidence. In fact, 
the keen reader will notice that the last approximation comes from the 
fourteen storm average H1/3 ≈ 〈α /β〉Z c 1/3 ≈ 1.85, such that having full 

knowledge of eq. (53) would suffice to make an accurate prediction for 
the r.h.s of the above relation, becoming 1.85 × 0.836 ≈ 1.547. How
ever, while the origin of the 1.546 coefficient is understood, is not clear 
from a first look where the 0.836 comes from. Quantitatively, this is 
related to Longuet-Higgins’s estimate for the significant wave height. Let 
us first prove that the wave height counterpart of eq. (16) holds. We start 
with the basic statistical definition for the Longuet-Higgins’s probability 
density: 

fR (α) = dFR (α)
dα =

d
dα

[

1 − R (α)
]

= 4α e− 2α2
, (61)  

where FR (α) denotes the RD cumulative distribution. Hence, the mean 
normalized wave height of all waves above α ≥ 3/4 reads: 

〈α〉0 =

∫ +∞
3/4 4α2e− 2α2 dα
∫+∞

3/4 4αe− 2α2 dα
≈ 1.008, (62)  

where the subscript implies the measure is calculated for waves that 
consist in the 1/3 wave group, e.g. the set {H ; 〈H〉 = H1/3} normalized 
becomes {α ; 〈α〉 = 1}. The exact lower bound for the integral should 
have been α = 0.7397, confirming the estimate of eq.(52). However, 
another useful estimate is the average normalized height for the group 
α ≥ 1 appearing in the empirical relations (see Appendix E): 

〈α〉1/3 =

∫ +∞

1
4α2e− 2α2 dα

∫ +∞

1
4αe− 2α2

dα
= 1 + e2

̅̅̅
π
8

√

erfc
( ̅̅̅

2
√ )

,

≅ 1 +
5

6
̅̅̅̅̅
2π

√ ⋅
̅̅̅
π
8

√

≈ 1.208.

(63)  

Put into perspective, the above theoretical prediction is quite accurate, 
since for storm 29 this average was 1.203 and overall 1.197 ± 0.005. 
Therefore, we find the comparative relation: 

〈α〉1/3

〈α〉0
≡

〈H〉1/3

H1/3
≈

6
5
. (64) 

Consequently, one can easily show that the following holds: 

SEff〈
SEff
〉

1/3

=
H

〈H〉1/3
≈

5H
6H1/3

≡
5
6

α, (65)  

Thus, 

ZEff〈
ZEff
〉

1/3

=
ZEff ⋅

〈
SEff
〉

1/3
〈
SEff
〉

1/3⋅
〈
ZEff
〉

1/3

=

[
βSEff

α
〈
SEff
〉

1/3

]

⋅
〈H〉1/3

〈Z c〉1/3
,

≈
5
6

β⋅
〈α

β

〉

1/3
≈

5
(
1 + η1/3

)

6η1/3
β,

(66)  

which for the fourteen storm with η1/3 ≈ 1.178 becomes 1.541β. 
Nevertheless, the theoretical explanation for the empirical findings 
through Longuet-Higgins [48] statistics by no means indicates the val
idity of its distribution and expectancy models for the upper tail. Au 
contraire, the above rational confirms that the exceeding statistics of the 
RD model works perfectly for α = 1. Additionally, distributions such as 

Table 8 
North Alwyn data set main sea parameters arranged by groups of storms. Since we assumed narrow-banded sea for the conversion of crest to height distributions in eq. 
(11), for Forristall [25] the conversion to wave crests is U00 , β = 2U1 ⋅U00, such that F ∗

β = exp[ − U00 , β βU1 ].  

Storm Group N β=1.2  〈H1/3〉 〈Tz〉 〈λ1/3〉 η1/3 〈ν〉 S− 1
1  1000 Ur U00 U00 , β U1 ℵ1 

172-29-90-149      (I) 782 6.06 8.28 161.6 1.237 0.736 25.94 1.442 1.850 7.050 1.930 1.005 
14-Storm Mean    (II) 1450 5.71 8.14 166.2 1.178 0.729 28.06 1.486 1.859 7.103 1.934 1.085 
28-23-146-132     (III) 2184 5.29 7.77 161.2 1.158 0.790 29.23 1.288 1.866 7.150 1.938 1.071 
127-27-195-124   (IV) 7697 6.27 8.80 185.4 1.155 0.621 27.06 1.986 1.855 7.083 1.933 1.235  
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Tayfun [77] or Haring et al. [33], despite providing a much higher rogue 
wave likelihood than RD, will provide very similar 〈α〉 because their 
probability density deviation from Longuet-Higgins [48] is not large at 
α < 2 (see Fig. 37 and Table 9). Though not of any qualitative advantage, 
Longuet-Higgins [48] has a clear numerical advantage by dealing with 
less cumbersome error integrals. Furthermore, we can generalize the 
previous equation: 

Fig. 32. Empirical exceeding probabilities of storm groups I (blue dots), II (blue circles), III (green dots) and IV (red dots) of Table 8. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 33. Scatter plot between observed maximum wave crests and wave heights 
within a storm (blue dots) or within a 30-hour period (blue circles). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 34. Scatter plot between maximum wave crests and wave heights for 
Group I (blue circle and line) and the remaining storms combined (red). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 35. The relationship between maximum normalized crest heights, 
maximum effective steepness and average significant steepness. 

Fig. 36. Growth of relative effective crest steepness with normalized crest 
heights for all waves fulfilling both α > 1 and β > 0.5. 
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ZEff
〈
ZEff
〉

α>̃α
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√

7 + 2
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√

]− 1

. (67)  

Nonetheless, one may ask why choose the lower bound for the 
normalized wave height instead of the crest height. This is done because 
of the fluctuation in the ratio β/α for the thresholds. While we have used 
β0 = 0.6α0 for the thresholds in Table 6, this choice is slightly higher 
than predicted by eq. (53) and starts to slightly underpredict it for higher 
thresholds. In other words, while for the set {α ; 〈α〉 = 2} we have 
β ≈ 0.7α (17% higher than the chosen threshold β0 = 0.6α0 = 1.2), for 
the set {α ; 〈α〉 = 1} one finds β ≈ 0.54α and overall the relation β = 0.6α 
seems efficient, though suggesting that the rogue crest criteria should be 
β > 1.4, β > 2.2 for super-rogue waves and β > 0.5 for ordinary waves 
instead. Nevertheless, choosing the threshold with numerical accuracy 
does not change the predictive results of standard distributions, thus, the 
replacement of the fixed wave crest thresholds are not of uttermost 
importance provided they are good estimates for the α − β empirical 
relation. In fact, if we perform the integration of the RD crest density 
16βe− 8β2 for the bound β̃ = 0.42, equivalent of 57% of the wave height 
counterpart α̃ = 0.74, returns 〈β〉0.42 ≈ 0.539, which is exactly the ratio 
between crest and wave heights at α = 1. Therefore, for the rogue wave 
set and average nonlinearity of Group II, based on Longuet-Higgins [48] 
we anticipate (using the α = 1.5β as in eq. (56)): 

ZEff〈
ZEff
〉

α>2

≈
13
6π β ;

SEff〈
SEff
〉

α>2

≈
8
17

α. (68)  

Not surprisingly, the prediction has shown to be accurate up to a 3–6% 
deviation, as depicted by Figs. 38–39. However, a clear trend appears: 
when the exceeding probability strongly deviates from the empirical for 
rogue waves, the predicted effective steepness ratio error is much higher 
than 1%. For instance, for Group II rogue waves, we have that [48] is a 
better model than Haring et al. [33] or Tayfun [77], and their predicted 
effective ratios (calculated as 〈α〉α > 0.74/〈α〉α > 2 from Table 9) are 
respectively 3.5%, 4.4% and 5.2% higher than observed (Fig. 39). For 
rogue wave crests, however, the picture is inverted because Tayfun [77] 

has the upper hand among the three distributions, such that their 
effective ratios are now respectively 4.6%, 3.8% and 3.0% lower than 
the best fit observed (Fig. 38), estimated as 1.4653〈α〉α > 0.74/〈α〉α > 2. 
Notice also, in accordance with the ratio approach, a higher deviation 
from the empirical distribution in wave crests means a higher deviation 
from the best fit for the effective steepness ratio. Accordingly, these 
ratios for crest and wave heights might be an additional test for prob
ability distributions in addition to the expected maximum, so that is 
suggested that an ideal exceeding probability will maintain an error 
smaller than 1%. In addition, this statistical exercise has showed that is 
possible to predict exactly how much ”effectively” steeper the ensemble 
of rogue waves will be compared to any other ensemble of waves. 

6.4. Rogue wave patterns 

In Section 5 we discussed what combination or single sea state pa
rameters helped understand the occurrence likelihood of rogue wave 
heights. Here we perform a similar analysis (see Fig. 40) for wave crests. 
Table 8 highlights an increase in return period from groups I to IV, with a 
especially large gap between groups III and IV. The extensive sea pa
rameters 〈H1/3〉 and 〈Tz〉 show a negative correlation as it shows a 
decreasing trend, but the correlation is small because for Group IV it 
increases whereas it should have decreased even further in order to 
control the wave statistics. The significant wavelength 〈λ1/3〉, however, 
shows an oscillation, as it shows a constant change between increase and 
decrease. This oscillation pattern is also observed for the significant 

Fig. 37. Probability densities of the respective exceeding probability distribu
tions discussed in Section 3 with up close look at rogue waves. 

Table 9 
Major ensemble averages of normalized heights according to each probability 
density [33,48,77].   

〈α〉α > 0 〈α〉α > 0.74 〈α〉α > 1 〈α〉α > 2 〈α〉α > 3 

R (α) 0.627 1.000 1.211 2.118 3.081 
H (α) 0.641 1.018 1.229 2.139 3.102 
T (α) 0.656 1.036 1.249 2.159 3.122  

Fig. 38. Best fit (dashed line) versus the predicted relative effective steepness 
growth with normalized crests by Longuet-Higgins [48] with rogue crests 
highlighted (blue dots). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 39. Best fit (dashed line) versus the predicted relative effective steepness 
growth with normalized heights by Longuet-Higgins [48]. 
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steepness and the Ursell number. Thus, according to Table 8, only the 
parameters 〈η1/3〉 and ℵ1 = 〈λ1/3〉/η1/3D can explain the observation. 
However, Fig. 40 rules out the former mathematically, in addition to the 
undesirable feature of inducing a higher likelihood for rogue wave for
mation in shallow water where the nonlinearity is expected to grow. 

6.5. Conjectured bounds 

Since the building blocks towards the suggestion of the conjectured 
bounds have been confirmed for wave crests, especially the strong cor
relation between an increasing return period N β and ℵ1, we can repeat 
most steps of sections 4 and 5 by either applying the term Sα , β or a more 
iterative model depending on the same term. In fact, using eq. (57), we 
can write the lower bound: 

ZEff⩽
22
105

Sβ

[

1 − 〈〈δ2〉〉

]

tanh
(

30 πD
22〈〈λ2〉〉

)

. (69)  

Notice that the above lower bound, which applies as well for wave 
heights, is the equivalent of Miche [56] limit for individual steepness, as 
it covers nearly 99% of all waves and the expression for the expected 
maximum E(SEff) that varies from storm to storm is typically 2% higher 
than the lower bound for SEff. In fact, using eq. (53) we can estimate 
Miche’s limit for crests to be 1/12, whereas the full expression in eq. 
(69) is of the order of 22/105 ⋅ 3/5 ⋅ 2/3 ≈ 1/11.9 in deep water. 
Moreover, the above expression is problematic because both l.h.s and r. 
h.s depend on β and we want to model a limit for that. Therefore, to 
avoid recurrent iterations we integrate the comparative term, 
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1
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1/3
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,

with a 1–2% precision for a typical β⋆ ≈ 2.6 (this is related to the typical 
α⋆ ≈ 3α∞/4 ~ 3.5, see Table 5). The limit for the effective crest steepness 
becomes: 

ZEff <
22
105

(
1+

η1/3

6

)
(

η
1/3

1 + η
1/3

)

tanh
(

30 πD
22〈〈λ2〉〉

)

. (70) 

Applied to the North Alwyn dataset, it bounds the nonlinearity 
ZEff < 0.14. Fig. 41 shows that more crest rogue waves exceed Miche’s 
limit than for wave heights while being bounded by the above result, an 
indication of nonlinearity and a possible consequence from Lon
guet-Higgins’s severe crest underprediction. Nevertheless, the reader 
should have understood by now that the ZEff bound is a result of an 
iteration over β⋆, which differs from the wave height counterpart that 
has no such procedure. In other words, in the same manner that rogue 
wave crest empirical distribution is more ”volatile” than wave heights, 
so is their estimated bound for effective steepness. In addition, the 
previous equation is valid only for η1/3⩽

̅̅̅
6

√
, in order to not imply β ≥ α. 

Realistically, however, such level of nonlinearity is not achievable by the 
majority of ocean states. 

Naturally, the next step would consist of gathering all results in this 
section their counterparts for wave heights and work out the expected 
maximum model. Following the exact same steps and bearing in mind 
eqs. (55) and (70), as well as using β⋆ ≈ 3α⋆/4 in accordance with eq. 

Fig. 40. Scatter plot between the growing wave crest return period of Table 1 
and candidate sea parameters as in Section 5: the correlation coefficients be
tween N β and spectral parameters 30〈ss〉 (blue circles), 〈ν〉 (gray dots), η1/3 (red 
circles), ℵ1 (blue dots) are respectively -0.256, -0.386, -0.402 and 0.707. As for 
done earlier for wave heights the combined parameter ℵ1 shows the highest 
correlation and is slightly higher for wave crests. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 41. Effective crest steepness of all waves taller than 0.6H1/3 (black dots) 
and rogue crest waves (blue dots) versus the crest adjusted Miche’s limit (grey 
dashed line) and the North Alwyn estimated limit of 0.14 from eq. (70). Inner 
figure shows the accuracy of the approximation (red line) for I β integral (blue 
dots) computed numerically, with a deviation growing from 1.1% at 
narrow-banded seas (η1/3 = 1) to 1.5% at highly nonlinear seas (η1/3 = 1.5). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 42. Scatter plot between the β model for the expected maximum 
normalized height (blue dots and bars) versus the observed maxima in Table 1 
and the crest height predictions based on RD as grey circles, red circles for 
Tayfun [77] and blue ones for the nonlinearity-adjusted RD (see Appendix D). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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(55), we obtain: 

E( ‖ β ‖ ) ≡ Eβ ≅ Eα

(

1+
4η1/3

7Eα

)( η
1/3

1 + η
1/3

)

. (71) 

As it could have been anticipated by the combination of the trend in 
Fig. 31 and the wave height equivalent of Fig. 42, the expected 
maximum crest height follows the same trend as for heights, following 
the growing observed maximum β at lower values with a growing de
viation at much larger values bordering super-rogue waves, which again 
suggests the necessity of adding a higher-order term effective for this 
ensemble. However, the success of the previous equation, besides 
doubling the correlation coefficient of the discussed distributions, is its 
shape Eβ ∼

̅̅̅̅̅̅̅̅̅̅
‖ β ‖

√
, albeit not perfectly following Eβ = ‖ β ‖, consists of a 

much better regime than the typical straight line Eβ ∼ k ∈ R+ of Tayfun 
[77] and Longuet-Higgins [48]. In other words, the latter models have a 
mid-range correlation but of random origin, e.g. there is no causality 
behind some of its accurate predictions, because it assigns maxima to the 
number of waves in a storm. The higher-order term is even more needed 
in Fig. 43 when we use the results of Eα transformed to crests by the fixed 
Sβ = 0.6. At lower observed maximum β we see that the rogue wave 
definition fixed rate β = 0.6α works well (notice that this case is similar 
to set I β = 1) while dropping considerable accuracy for the five 
super-rogue wave crests. Interestingly, however, the accuracy of the β 
model is significantly higher for the super-rogue wave crest ensemble in 
comparison to wave heights, which points to the necessity of a term 
similar to I β as a function of the significant steepness for Eα. 

Though one could attempt to find the second-order missing term in 
Sβ, its more likely that a correction in 〈〈δ2〉〉 would fix the deviation for 
large super-rogue wave heights and crests at once, as they both seem to 
follow the same trend. Likewise, the same is expected for the effective 
crest steepness in comparison with the wave height counterpart. This is 
so because of the accuracy of Sβ. Likewise, for the effective steepness we 
have EZ = ESI β⋅η1/3/(1+η1/3), shown in Fig. 44. 

Lastly, we can compute the upper bound for the wave crests. How
ever, the term I β as in eq. (71) will rapidly increase in the vicinity of the 
shallow water wave regime, such that when plotting over a wide range 
of λ2/D we choose 6I β = 6+ η1/3. Plotted in Fig. 45, we see that con
trary to wave heights (green curves in the inner figure), there is an 
overlap between curves with varying nonlinearity, which goes back to 
the ”volatility” feature of wave crests in comparison with wave heights. 
Moreover, such behavior is likely the reason for the swapping of storm 
IDs in both order of lower return period and maximum observed crest heights. 

7. Conclusions 

For a long time, rogue waves have been described as waves with 
individual steepness much higher than ordinary ones, though it was not 
known how much steeper they could be. The data shows that in seas 
with very high significant steepness the steepest waves are not extreme. 
Rogue waves are found to be among the steepest waves, which include 
several hundreds of ordinary waves that are as steep or steeper, a feature 
described by Christou and Ewans [11]. Therefore, we conclude that 
waves with exceptionally high individual steepness will not necessarily 
become rogue waves. Surprisingly, however, waves with high effective 
steepness tend to have high normalized wave heights. Furthermore, the 
likelihood of appearance of rogue waves have not be found to depend 
individually on any of sea state parameters, also in agreement with the 
literature on the subject. Yet, according to Table 4, there seems to be a 
trend where rogue wave occurrence is related to a combination of the 
nonlinearity η1/3, the height-to-depth ratio 〈ϵ〉 and the significant 
steepness ε. The advantage of these variables is the possibility of 
extracting them from both hindcast and spectral shape, which is a 
desirable feature Gibson et al. [27]. 

The data has also pointed to the existence of several empirical rules 

Fig. 43. Scatter plot between the β model for the expected maximum 
normalized height (blue dots and bars) and the fixed Eβ = 0.6Eα (red circles) 
versus observation with deviation centered at Eβ = ‖ β ‖. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 44. Effective crest steepness equivalent of Fig. 44 with red circles denoting 
the typical relation Sβ = 0.6 of Table 2. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 45. Upper bound for wave crests with fixed steepness (〈ss〉 = 1/10), storm 
geometry (τ = 15) and depth (D = 100m). The Miche [56] limit is calculated 
with half the steepness and the inner figure shows the bound of wave heights 
adjusted by Sβ = 0.6. 
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that may come to aid rogue wave forecasting, establishing bounds for 
the sea state parameters and providing a framework to assess the val
idity of exceeding probability distributions. One of the main concerns for 
these distributions is the generation of finite probabilities for physical 
scenarios where sea state parameters breached their upper bounds. In 
fact, the distributions discussed in Section 3 have no mention of any 
range of validity for their variables. Based on the observed empirical 
rules and without the support of any exceeding probability distribution, 
we were able to assess and obtain expressions for the expected highest 
normalized wave height and effective steepness. Combining the empir
ical rules with the models for expected maxima, an upper bound for the 
normalized wave height was obtained. Unfortunately, the data analysis 
did not provide a clear bound for the nonlinearity η1/3, though it sup
plied a connection between the former and the storm averaged skew
ness, opening the possibility of obtaining η1/3 from the spectral shape 
[1]. 

In this reassessment of Stansell’s North Sea storm data we have 
further demonstrated the inability of Longuet-Higgins’s model to 
explain observation. Longuet-Higgins [48] deviates from the upper part 
of the bulk waves (1.5 < α ≤ 2) significantly. This is of particular interest 
because Stansell’s data demonstrates that sub-rogue waves of large ab
solute wave height appear as often as rogue waves of equivalent height. 
On the other hand, we confirmed that Longuet-Higgins [48] can provide 
good statistics for α < 1.5, especially if contianing a large number of 
waves. However, when dealing with wave records that are equivalent to 
a couple of days, it performs poorly with only 40% of entries in Table 1 
being predicted accurately. Using a weather analogy, Longuet-Higgins 
[48] can be a relatively good model for the climate while it is no 
longer useful for the daily forecast. On the other hand, some empirical 
distributions may perform well for the daily forecast, but not for a longer 
forecast, or a forecast with diametrical sea parameters. As another 
example, Christou and Ewans [11] concluded that Forristall [25] over
predicted rogue wave crests by 165%, whereas studies with smaller data 
sets have attested this model accuracy for wave crests [27,29,44]. This 
suggests that the manner one chooses the time series size or how one 
combines different wave records will affect the resulting return period. 
In this regard, the dimensionless sea state tracker ℵ1 can be used as a 
grouping criteria, as it showed relatively strong correlation with the 
return period of rogue waves. Moreover, we have found that the storm 
sea state evolution (somewhat related to τ) in time and its variability 
around its storm mean (or combination) could be related to robust 
overprediction or underprediction by most models such that the likely 
source of disagreement between several studies is that they analyzed the 
wave statistics of million of waves from several different locations, with 
diametrical sea state parameters and water depths, resulting in a 
”climate approach” statistics instead of one based on homogeneous 
storm records. When analyzed by homogeneity of sea states, we expect 
the return period to vary wildly in each group of wave records. This was 
confirmed by a new study based on an even larger data set analyzed 
accordingly [39], concluding that no unified probability model can 
explain the widest range of sea states properly. 

Regarding the maximum height in a storm, Longuet-Higgins [48] 
predicts expected values for α that necessarily grows with the number of 
waves within the storm record. Such standard model of extreme wave 
statistics has proven to be a double-sword that leads to a twofold defi
ciency: First, it requires a very large number of waves for super-rogue 
wave formation, challenging recent observations [63]. Secondly, it can 
greatly underpredict or overpredict the maximum normalized wave 
height by assigning an extreme value to a unique number of waves. The 
combination of the two issues jeopardizes the exceeding probability by 
not allowing it to increase the assigned likelihood of a specific rogue 
wave without increasing the storm maximum expected normalized wave 
height. In this matter, the expected maximum for the normalized wave 
height obtained from empirical relations was found to be a function of 
several sea state variables. Our model shows very good variability for 
the maxima while the narrow-band formulation features incredibly 

small degree of variation. Therefore, our expectancy model of extreme 
dimensionless heights also explains the observed uneven distribution 
among storms that couldn’t be understood in terms of Longuet-Higgins 
[48] or any second-order model. A possible setback, however, is the 
finite depth extension: the expressions that contain hyperbolic functions 
were obtained from deep and lower intermediate water regimes and 
they need to be validated for upper intermediate and shallow water 
wave regimes in a future work. Additionally, the spectral shape might 
change the ratio between mean wave period and the zero-crossing 
period, slightly changing the coefficients in equations (23), (43), 
(45–46). 

Regarding crest heights, it is well-known that exceeding probability 
distributions for wave heights are typically not reliable for wave crests 
and vice-versa, hence, authors typically analyze them separately. In 
view of this problem, we have found empirically how wave crests 
heights measure up to wave heights with growing α and observed that 
this relation is remarkably accurate even for the maximum of both 
heights and crest heights, a feature not expected at the end of the tail. 
The finding that the average of this ratio, denoted by Sβ, holds for both 
lower and maximum values of the normalized crests assures us of its own 
strong reliability in deep water, thus, explaining why Longuet-Higgins 
[48] prediction for wave crests are much worse than for wave heights. 
Accordingly, we applied such ratio to the most important results for 
wave heights and explained the origin of the ratio between rogue waves 
effective steepness and the remaining waves. It became clear that up to 
small deviation of a few percent, most distributions will be in agreement, 
however, the less successful the distribution in comparison to the 
empirical exceeding probability, the bigger the deviation from the 
observed ratio. This effect could be implemented as a third test for 
distributions, in addition to its comparison with the empirical distribu
tion and the calculation of expected maxima. Moreover, we have ob
tained further justification for the sub-rogue wave classification, which 
seems to be the threshold for the ”uneven distribution of rogue waves” 
among selected groups in Table 3. Therefore, a possible physical defi
nition of a rogue wave can be related to the minimum normalized height 
(and crest height) where the stratification of empirical distributions such 
as in Fig. 32 is triggered, e.g. when the sea state parameters grow its 
influence on the exceeding probability. Not surprisingly, we confirmed 
that most distributions, whether for wave heights or crest heights, have 
very small variability of their exceeding distributions, such that 
one-parameter distributions are most likely to fail at least one of the 
crest or wave height distributions and at their expected maximum. In 
fact, Tayfun’s predicted maxima were higher than Longuet-Higgins’s 
and yet far below observation and with nearly indistinguishable values 
for Eβ. Remarkably, the ratio Sβ has shown to be very valuable in 
extending the bounds conjectured for wave heights to wave crests, 
maintaining a high correlation with observation, of the order of 0.78, 
whereas Longuet-Higgins [48] displayed a smaller correlation of 0.38 
and Tayfun [77] of 0.40. Although the nonlinearity-adjusted RD shows 
much better agreement with observation, its variability is not sufficient 
to explain the ”uneven distribution of rogue waves” described in Stansell 
[74] due to the failure of Longuet-Higgins [48] for wave heights, 
implying that the success or failure of explaining wave height statistics 
are reflected in the crest statistics through Sβ. 

A possible direction for future work is the unknown effect of the 
significant wave height time evolution on the rogue wave occurrence 
and expected maximum height, as well as reshaping all formulas, con
straints and bounds obtained here in respect to directionality. As dis
cussed by Gibson et al. [27] and Tayfun and Alkhalidi [81], is 
undesirable to rely too much on the spectral shape modelling, so that we 
intend to find a way to relate τ and η1/3 to variables with higher accuracy 
when obtained by the spectral shape in a future work. Also, the con
jectured model for heights starts to flatten out at the very end of the 
scatter plot, e.g. the error becomes of the order of the standard deviation 
for very high normalized crests or wave heights (with better accuracy for 
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the former), which is attributed to a lack of a second-order term 〈〈δ2〉〉2 

in Eα. However, since the present data has very small variation in k2D, or 
conversely λ2/D, this is left for a future work with broader data. 
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Appendix A. Crest Height Distributions 

In order to convert crest height distributions to wave heights, we shall review the basics of statistics. Given the probability density fα of water waves 
in narrow-banded seas [54], we can obtain the exceeding probability as follows: 

P
(
H >αH1/3

)
=

∫ +∞

α
4α e− 2α2 dα = e− 2α2

. (A.1)  

The Tayfun [77] distribution is only one among several different variations of crest height distribution based on the Stokes second-order model [68]. 
For instance, Forristall [25] describes how Tung and Huang [89] differs from Tayfun [77] only on the definition of steepness and some coefficient, 
keeping the same structure of eq.(3). Following Tucker and Pitt [88], starting from the classical Stokes second-order expression for the water surface 
one can show that the probability density of the crest height is: 

f (ξ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2ξσk1

√
− 1

σk1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2ξσk1

√ exp

{

−

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2ξσk1

√
− 1
]2

2σ2k2
1

}

, (A.2)  

with ξ = Z c/
̅̅̅̅̅̅m0

√
≡ Z c/σ. Then, by means of eq. (A.1) we arrive the equivalent exceeding probability: 

P(Z c > ξσ) =
∫ +∞

ξ
f (ξ) dξ = exp

{

−

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2ξσk1

√
− 1
]2

2σ2k2
1

}

. (A.3)  

However, it is more convenient to write the exceeding probability in terms of significant wave height instead of the spectrum variance σ. Noting that 
the approximation H1/3 = 4 ̅̅̅̅̅̅m0

√ holds [54], we rewrite the above expression as: 

P
(
Z c > βH1/3

)
= exp

{

−

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 8βμ

√
− 1
]2

2μ2

}

, (A.4)  

where μ = σk1 = k1H1/3/4 is the significant steepness, matching the original crest height distribution in Fedele et al. [22], Tayfun [77]. Rewriting the 
significant steepness as k1H1/3 = s, we rewrite Tayfun’s distribution assuming a narrow-banded sea state (H ≈ 2Z c): 

P
(
2Z c > 2βH1/3

)
= exp

{

−

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 4⋅(2β)⋅(s/4)

√
− 1
]2

2(s/4)2

}

⟹P
(
H > αH1/3

)
≡ exp

{

−
8
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + αs
√

− 1
]2

s2

}

. (A.5)  

Appendix B. Ocean Spectra and Wave Ratios 

Since the available data does not contain information about the ocean spectrum [74,75], it is paramount to obtain theoretical and experimental 
relations among several different definitions of wave periods based on a given sea state. Given a spectrum S(ω), where ω is the wave frequency, the k-th 
moment is defined as [54,88] 

mk =

∫ ∞

0
ωk S(ω) dω, k ∈ Z. (B.1)  

Following Longuet-Higgins [50], we define the spectral bandwidth as follows: 

ν =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m0m2

m2
1

− 1
√

. (B.2)  

The spectral significant wave height is obtained from the total variance of the spectrum m0 [88]: 

Hm0 ≈ 4
̅̅̅̅̅̅
m0

√
, (B.3) 
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begin approximately equal to the in situ measured significant wave height Hm0 ≈ 1.04H1/3 [54]. The major periods are defined as [88]: 

TE :=
2πm− 1

m0
; T1 :=

2πm0

m1
; T2 := 2π

̅̅̅̅̅̅
m0

m2

√

, (B.4)  

being respectively known as the energy, mean and zero-crossing periods. As for the significant wave height, there is a distinction between their 
expected values based on the spectrum and the actual measurement. For the zero-crossing period, storm 29 showed that T2 ≈ 0.9Tz during the peak of 
the storm and almost perfect equivalency otherwise. Though the absence of any theoretical connection, the energy period shows remarkable cor
respondence with T1/3 (the mean period of the tallest 1/3 waves), with an average TE ≈ 1.01T1/3 in storm 29. The analysis of the spectral moments of 
all storms leads to the average relation: 

T2
1 ≈

22
15

T2
2 ∴ S1 ≈

15
22

〈ss〉. (B.5)  

Lastly, is of great importance to know how the 1/3 tallest waves period compares to the zero-crossing one. From the spectral moments one reaches 
T2

E ≈ 2T2
2 , whereas observation has T2

1/3 ≈ 1.6T2
z . Using the above relation, we can alternatively calculate the Ursell number from the significant 

steepness: 

Ur =
〈
H1/3

〉
⋅15

7 〈λ2〉
2

4π2D3 ≈

〈
H1/3

〉3

2π2D3〈ss〉
2. (B.6)  

Appendix C. Statistical Notation 

Following the nomenclature where p is the number of 20-min records within a storm containing N waves and n is the number of waves within a 
given 20-min record so that 〈n〉p = N, the averaging is described as:   

Xi  X measured at the i-th wave  
Xij  Xi measured at the j-th 20-min record  
Xj  X measured at the j-th 20-min record  
〈〈X〉〉 20-min record average: 

∑n
i=1

Xi

n  
〈X〉

Average of 20-min record averages: 
∑p

j=1
〈〈X〉〉j

p  
X  Storm mean: 

∑N
i=1

Xi

N  
‖ X ‖ Storm maximum of variable X   

Such distinction is necessary as some variables can only be defined for ensembles, such as H1/3. As for the functions of averages, we have one 
example of distinction: 

〈
η1/3
〉
:=

〈
〈〈Z c〉〉

〈〈Z t〉〉

〉

α>1
∕= η1/3. (C.1)  

Likewise, wavelengths, which are a function of every Ti , ℓ are calculated as (ℓ is the type of spectrum derived period): 

λi , ℓ :=
gT2

i , ℓ

2π tanh
(

2πD
λi , ℓ

)

̅̅̅̅→
λℓ/D→0

〈λℓ〉 =
g

2π〈Tℓ〉
2
, (C.2)  

with the associated wave number ki , ℓ = 2π/λi , ℓ. Given the above definition and λ1/3 ≈ 8λ2/5, the conjectured models of Section 5 can be fully 
converted to a finite depth model: 

α∞

α★
= 1 +

(
2π
g

)1/8(24πτ
4375

)1/2(〈λ2〉

D

)5/8 D1/8

η 4
1/3 tanh1/8

(
2πD
〈λ2〉

) ≈ 1 +
19
153

(〈λ2〉

D

)5/8 D1/8 ̅̅̅
τ

√

η 4
1/3 tanh1/8

(
2πD
〈λ2〉

). (C.3)  

Moreover, the unbiased skewness [38] in eq. (14) of the surface elevation Hi is measured as: 

〈〈μ3〉〉 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n(n − 1)

√

(n − 2)

[

1
n

∑n
i=1(Hi − 〈〈H〉〉)

3

]

[

1
n

∑n
i=1(Hi − 〈〈H〉〉)

2

]3/2 . (C.4)  

Since the fourteen storm average of 〈n〉 is of the order of 120 waves per 20-min record, the unbiased skewness is 1.3% higher than the biased skewness 
(e.g. the central moment approach). 
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Appendix D. Gumbel’s Extreme Value Theory 

In order to compute the maximum height of a narrow-banded sea we need to find the mode of the distribution and the intensity function. According 
to Gumbel et al. [31], one can obtain the latter in following manner: 

μ̃N =
fα

1 − Fα
≡ −

1
Pα

dPα

dα =

(
4αe− 2α2

e− 2α2

)

α=̃αN

= 4α̃N , (D.1)  

With ̃αN being the mode and N the total number of waves anf Fα = 1 − Pα is the cumulative probability distribution. The mode is found by solving the 
equation below [31]: 

F
(

α̃N

)

= 1 −
1
N

∴ N⋅Pα̃N
= 1. (D.2)  

Then, Gumbel et al.’s generalized formula for the maximum is: 

Eα = α̃N +
γE

μ̃N
≈ α̃N +

̅̅̅
3

√

3μ̃N
, (D.3)  

where γ
E 

is the Euler-Mascheroni constant. Applied to Longuet-Higgins’s narrow-banded sea distribution, Gumbel et al.’s expected maximum 
dimensionless height reads: 

Eα =

̅̅̅̅̅̅̅̅
lnN

2

√

+

̅̅̅
3

√

12
̅̅̅̅̅
lnN

2

√ =

̅̅̅̅̅̅̅̅
lnN
2

√ [

1+
̅̅̅
3

√

6lnN

]

. (D.4)  

Following the same rationale for crest heights, one can obtain: 

μ̃N = −
1

Pβ

dPβ

dβ
=

(
16βe− 8β2

e− 8β2

)

β=̃βN

= 16β̃N , (D.5)  

With β̃N being the mode and N the total number of waves. The mode is found by solving the equation below [31]: 

N⋅P
β̃N

= 1, (D.6)  

such that applied to Longuet-Higgins’s narrow-banded sea distribution, Gumbel et al.’s expected maximum dimensionless height reads: 

Eβ = β̃N

⎡

⎣1+
̅̅̅
3

√

48β̃
2
N

⎤

⎦ =

̅̅̅̅̅̅̅̅
lnN
8

√ [

1+
̅̅̅
3

√

6lnN

]

. (D.7)  

For the Forristall [24] model, however, we apply the same procedure and find its intensity: 

μ̃N = −
1

Pα

dPα

dα = 4.811α̃1.126
N , (D.8)  

while the mode reads: 

N = e2.263 α̃
2.126
N ∴ α̃N ≈ (0.44lnN)

0.47
. (D.9)  

Hence, combining the two last equations, we calculate Forristall’s expected maximum normalized wave height: 

Eα , F = (0.44lnN)
0.47

+

̅̅̅
3

√

3⋅4.811⋅(0.44lnN)
0.53 ≈ (0.44lnN)

0.47
[

1+
3

11lnN

]

. (D.10)   

D1. Tayfun’s expected maximum 

We start with the full expression for the Tayfun [77] distribution: 

P
(
Z c > βH1/3

)
≡ exp

{

−
8
s2

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2βs

√
− 1
]2
}

, (11)  
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whose mode can be found through, 

N = exp
{

8
s2

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 2β̃Ns

√

− 1
]2}

, (12)  

leading to the relation: 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 2β̃Ns

√

= 1 + s β̃0, β̃0 =

̅̅̅̅̅̅̅̅
lnN
8

√

, (13)  

and solution, 

β̃N = β̃0

(

1+
s β̃0

2

)

. (14)  

On the other hand, the intensity reads: 

μ̃N =

16
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 2β̃Ns

√

− 1
)

s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 2β̃Ns

√ ≡
16 β̃0(

1 + β̃0s

). (15)  

In the same manner that Tayfun [77] recovers Longuet-Higgins [48] in the limit s→0, likewise, the mode and intensity of Tayfun’s distribution shall 
recover the mode and intensity of the previous section, satisfied by the above expressions. Therefore, it is straightforward to arrive at: 

Eβ =

̅̅̅̅̅̅̅̅
lnN
8

√ [

1+
̅̅̅
3

√

6lnN
+ s

̅̅̅̅̅̅̅̅
lnN

8

√ (
1
2
+

̅̅̅
3

√

6lnN

)]

, (16)  

which can be approximated by up to 1% error as (ln N ~ 10): 

Eβ , T ≈

̅̅̅̅̅̅̅̅
lnN

8

√ [

1+
̅̅̅
3

√

6lnN

](

1+
4s

7

)

≈

̅̅̅̅̅̅̅̅
lnN
8

√ [

1+
̅̅̅
3

√

6lnN

](

1+
22
9
〈ss〉

)

. (17)  

4.2. normalization through Hm0 

In order to prove the assertion that the normalization whether through Hm0 or H1/3 leaves the accuracy of eq. (43) relative to the observed ‖α‖
invariant, let us define α∗ = H/Hm0, so that according to Fig. 1 we have on average α = 1.04α∗. The Rayleigh distribution (RD) would read instead: 

R α∗ ≡ R
(
H >α∗H1/3

)
= e− 2.1632α∗ 2

. (18)  

Without loss of generality, the intensity now looks instead: 

μ∗
N =

(
4.32α∗e− 2.1632α∗ 2

e− 2.1632α∗ 2

)

α=̃αN

= 4.3264α∗
N , (19)  

whereas the mode has: 

α∗
N =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
lnN

2.1632

√

=
1

1.04

̅̅̅̅̅̅̅̅
lnN

2

√

=
α̃N

1.04
, (20)  

such that we find: 

μ∗
N = 4.3264 ×

α̃N

1.04
= 4.16α̃N = 1.04μ̃N . (21)  

Accordingly, the maximum expected normalized height through Hm0 instead of H1/3 is: 

E∗
α = α∗

N +

̅̅̅
3

√

3μ∗
N
=

α̃N

1.04
+

̅̅̅
3

√

3 × 1.04μ̃N
=

Eα

1.04
, (22)  

ultimately leading to the conclusion of the proof: 

E ( ‖ α ‖ )

‖ α ‖
=

1.04 × E ( ‖ α∗ ‖ )

1.04× ‖ α∗‖
=

E ( ‖ α∗ ‖ )

‖ α∗‖
. (23) 
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Likewise, the discrepancy between observed statistics and R α will not change when we use R α∗ , as the observed statistics will also change due to the 
redefinition in Table 1. 
4.3. Nonlinearity-adjusted Higgins (1952) 

Following Eqs. (–D.3), the adjusted Longuet-Higgins’s distribution in eq. (56) will lead to the following intensity (using the approximation of eq. 
(70) for I β): 

μ̃N = 4β̃N

(
η

1/3

1 + η
1/3

)− 2(
1 +

η
1/3

6

)− 2
, (24)  

and respective mode: 

β̃N =

(
η

1/3

1 + η
1/3

)(

1 +
η

1/3

6

) ̅̅̅̅̅̅̅̅
lnN
2

√

. (25)  

Ultimately, the expected maximum becomes: 

Eβ,★ ≈

̅̅̅̅̅̅̅̅
lnN
8

√ [

1+
̅̅̅
3

√

6lnN

]( 2η
1/3

1 + η
1/3

)(

1 +
η

1/3

6

)

. (26)  

5. Error Function 

While evaluating average heights and crest heights for the RD, one integral is of particular interest: 

G̃
+

0 (x) =
2̅
̅̅
π

√

∫ +∞

x
e− t2 dt := erfc(x) ≡ 1 − erf (x) . (E.1)  

Obviously, we have G̃
+

0 (0) = erfc(0) = 1. Integration by parts leads to [28]: 

G̃
+

0 (x) =
e− x2

x
̅̅̅
π

√
∑+∞

k=0
( − 1)k(2k − 1)!!

(2x2)
k ∼

e− x2

x
̅̅̅
π

√ , x > 1 . (E.2)  

In fact, up to a 5% deviation, we have that erfc(1) ≈ 1/6. In the vicinity of x = 1 the leading order term is, then: 

erfc(x) ∼
5e− x2

6x
̅̅̅
π

√ . (E.3)  

6. Bandwidth adjusted Rayleigh Distribution in (0þ1) dimensions 

[48] described the following Rayleigh distribution generalization: 

P(Z c > u) = e− u2/a2
, (F.1)  

where a is the rms amplitude of the sea surface [54]. For narrow-banded seas the rms amplite reads a =
̅̅̅̅̅̅̅̅̅̅̅̅̅
2m000

√
, such that the ratio becomes (u/a)2 

=

β2H1/3/2m000. Since H1/3 ≈ 4 ̅̅̅̅̅̅̅̅̅̅m000
√ [54], we find (u/a)2

= 8β2. Longuet-Higgins [51] showed that given a finite spectral bandwidth ν, the rms 
amplitude can be rewritten as: 

a2 ≈ 2m000

(

1 −
11ν2

15

)

≡
2m000

ν★
=

H2
1/3

8ν★
. (F.2)  

Therefore, one finds the corrected crest height probability: 

R
(
Z c > βH1/3

)
= e

− β2H2
1/3

/
a2

= e− 8ν★β2
≡ R β , ν. (F.3)  
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