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Abstract Cyanobacterial harmful algal blooms

(CyanoHABs) are an increasingly common feature

of large, eutrophic lakes. Non-N2-fixing CyanoHABs

(e.g.,Microcystis) appear to be proliferating relative to

N2-fixing CyanoHABs in systems receiving increasing

nutrient loads. This shift reflects increasing external

nitrogen (N) inputs, and a[ 50-year legacy of exces-

sive phosphorus (P) and N loading. Phosphorus is

effectively retained in legacy-impacted systems, while

N may be retained or lost to the atmosphere in gaseous

forms (e.g., N2, NH3, N2O). Biological control on N

inputs versus outputs, or the balance between N2

fixation versus denitrification, favors the latter, espe-

cially in lakes undergoing accelerating eutrophication,

although denitrification removal efficiency is inhibited

by increasing external N loads. Phytoplankton in

eutrophic lakes have become more responsive to N

inputs relative to P, despite sustained increases in N

loading. From a nutrient management perspective, this

suggests a need to change the freshwater nutrient

limitation and input reduction paradigms; a shift from

an exclusive focus on P limitation to a dual N and P co-

limitation and management strategy. The recent
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Cronberg, 1982; Little Mere and Rosthern Mere,

England; Jeppesen et al., 2005).

Research and management efforts on CyanoHABs

in the lakes mentioned above were mostly aimed at

reducing blooms of nitrogen (N2)-fixing genera,

including Anabaena (recently renamed Dolichosper-

mum), Aphanizomenon, Cylindrospermopsis, and No-

dularia, because they presumably could supplement

their N needs by N2 fixation (Fogg, 1969; Table 1) and

bring ecosystem-scale balance between N and P

(Schindler 1977). The conventional wisdom was that

reducing N inputs would have no effect on reducing

their growth, which led to a strong and largely

exclusive focus on P controls (c.f., Likens, 1972;

Schindler & Fee, 1974; Smith et al., 1984). In recent

decades, and despite previous improvements, lakes

Erie and Balaton, and many other systems worldwide,

have experienced resurgent blooms of toxic, non-N2-

fixing CyanoHABs that have vastly exceeded histor-

ical CyanoHABs in terms of bloom severity and

Table 1 Commonly observed cyanobacteria in large lake

ecosystems and the toxins they may produce (Adapted from

Paerl, 2018)

Genus Potential toxin(s) Characteristic

Anabaena ATX, CYN, MC, STX B,P,D,F

Anabaenopsis MC P,D,F

Aphanizomenon ATX, CYN, STX P,D,F

Cylindrospermopsis ATX, CYN, STX P,D,F

Cylindrospermum ATX, MC B,D,F

Dolichospermum ATX, CYN, MC, STX P,D,F

Fischerella MC B,D,F

Haplosiphon MC B,D,F

Lyngbya CYN, LYN, STX B,F

Microcystis MC P,C

Nostoc ATX, MC B,D,F

Oscillatoria ATX, CYN, MC, STX B/P,D,F

Phormidium ATX, MC B,D, F

Planktothrix ATX, MC P, D, F

Raphidiopsis ATX, CYN, MC P,F

Scytonema MC, STX B,D,F

Umezakia CYN, MC P,D,F

Toxin abbreviations: ATX Anatoxin-a, CYN
Cylindrospermopsin, LYN Lyngbyatoxin, MC Microcystin,

NOD Nodularin, STX Saxitoxin

Characteristics abbreviations: B Benthic, C Coccoid,

D Diazotrophic, F Filamentous, P Planktonic

proliferation of toxic non-N2-fixing CyanoHABs, and 
ever-increasing N and P legacy stores, argues for such 
a strategy if we are to mitigate eutrophication and 
CyanoHAB expansion globally.

Keywords Harmful algal blooms � Toxins � 
Management � Pollution

Introduction

Nutrient-driven eutrophication, accompanied by the 
proliferation of harmful cyanobacterial blooms (Cya-
noHABs), continues to be a principal threat to the 
integrity and sustainability of large lake ecosystems 
(Paerl & Otten, 2013a). Although there are some 
examples of improved water quality following several 
decades of efforts to reverse this growing threat 
(Jeppesen et al., 2005), there are few examples of 
improvement for large lake ecosystems.

The link between nutrient over-enrichment and 
accelerating eutrophication has been recognized for 
well over a century (Forel, 1901; Birge & Juday, 1911; 
Wetzel, 2001). Early studies concluded that primary 
production in large lakes was largely limited by the 
supply of phosphorus (P) (c.f. Vollenweider, 1968; 
Schindler & Fee, 1974), which led to a management 
focus on reducing anthropogenically derived, point 
source P inputs (Likens, 1972). There were some early 
success stories in response to P input reductions, 
including Lake Washington (USA; Edmondson & 
Lehman, 1981) and Lake Erie (Canada/USA; Scavia 
et al., 2014) in North America, Lake Constance 
(Germany–Switzerland; Schindler, 2012), and Lake 
Balaton (Hungary; Istvánovics et al., 2007). In the 
watersheds of these lakes, wastewater point source 
diversions and steps to reduce non-point sources (best 
land management practices, construction of bordering 
riparian buffers and wetlands) resulted in reduced P 
inputs and led to significant, albeit temporary in some 
cases (e.g., Lake Erie), declines in phytoplankton 
biomass and increased water clarity. Nitrogen (N) in-
puts were also likely reduced (c.f., Hamilton et al., 
2016), but not quantified, as a result of these efforts. 
Reductions of point and non-point source nutrient 
inputs have achieved similar benefits in smaller lakes 
and reservoirs (e.g., Lake Trummen, Sweden;



societal impacts (e.g., Steffen et al., 2014; Gobler

et al., 2016).

In particular, blooms of toxic Microcystis and

Planktothrix, and other non-N2-fixing genera (Buller-

jahn et al., 2016; Harke et al., 2016), have become

increasingly common and dominant in large lakes that

provide multiple ecosystem services (drinking and

irrigation water, fisheries, recreational use, and esthet-

ics; Otten & Paerl, 2015; Table 1). This trend is

reflected in the recent literature on freshwater

CyanoHABs (Fig. 1). Dominance by these taxa in

contemporary blooms signals a need for stricter

Fig. 1 Number of publications from 1990 to 2018 resulting

from a series of Google Scholar searches for ‘‘lake’’ ? ’’algal

bloom’’ or ‘‘lake’’ ? ’’algal bloom’’ ? specific taxa (Aphani-
zomenon, Cylindrospermopsis, Planktothrix, Microcystis,

Anabaena, or Dolichospermum). Results for each taxa are

shown as (A) a percentage of the total number of results with no

taxa specified to correct for an increase in publications overall

and (B) the total number of publications for each search result.



fixers, such as Microcystis (Harke & Gobler, 2015)

and Planktothrix (Chaffin et al., 2018), the eco-

physiological reason for microcystin production

remains a subject of considerable speculation and

research (c.f., Paerl & Otten, 2013b; Huisman et al.,

2018).

We are left with persistent questions:Why has there

been such limited success in combating eutrophication

and CyanoHABs—and especially non-N2-fixing gen-

era? What are the underlying factors that are hindering

eutrophication mitigation and preventing large lake

restoration? Lastly, what can be done to accelerate

CyanoHAB abatement? In this contribution, we delve

into several case studies to better understand why

P-only reduction strategies have sometimes been

ineffective (e.g., lakes Erie and Okeechobee). We

also review and evaluate biogeochemical and ecolog-

ical mechanisms that provide the rationale for the

increasingly common utilization of dual (N and P)

nutrient reduction strategies for combating the global

expansion of CyanoHABs. We also offer several

broadly applicable strategies aimed at mitigating this

expansion.

The phosphorus and nitrogen ‘‘legacy’’ problem

One of the major factors impeding the long-term

cessation of CyanoHABs in eutrophic lakes is the

presence of legacy nutrients in their sediments and

watersheds (Jarvie et al., 2013; Sharpley et al., 2013).

Once added to a landscape or water body, phosphorus

is lost very slowly because it is highly particle-reactive

and is only lost via physical export since it lacks a

gaseous phase. For example, the Lake Okeechobee

(Florida, USA) watershed contains an immense supply

of legacy P that provides inputs to the lake after major

rain events, and it is estimated to be so large that it

could maintain currently high P inputs for over

50 years—even if contemporary sources are reduced

to zero (Reddy et al., 2011). The lake itself has

sufficient P in surficial sediments such that recycling

into the water column and desorption of phosphate

from sediment particles is sufficient to prevent a

decline in P concentration in the water column for up

to 75 years (James & Pollman, 2011). Lakes that are

rich in P and located in temperate to tropical regions

are ideal for the formation of Microcystis blooms and

other non-N2-fixing CyanoHABs, as long as there is an

control of N inputs, in addition to P (Lewis & 
Wurtsbaugh, 2008; Lewis et al., 2011; Paerl et al., 
2016a). Here, we examine the evolution of a new 
paradigm, namely the need for dual nutrient (N & P) 
controls to mitigate CyanoHABs in large lakes, based 
on data from several large lakes experiencing domi-

nance and persistence of toxic, non-N2-fixing taxa.
This paradigm shift is based on the biological 

mechanism that productive lakes become increasingly 
N-limited because N is lost through denitrification 
(Scott et al., 2019), and the empirical evidence that 
decades-long efforts to reverse eutrophication solely 
by reducing P loading have not always produced 
positive improvements (Paerl et al., 2016a). For 
example, the phytoplankton community of Lake Erie 
has been dominated by potentially toxic cyanobacte-
ria—especially Anabaena, Aphanizomenon, and, more 
recently, Microcystis—in the central and western 
basins since the 1960s (Davis, 1964; Rosa & Burns, 
1987; Makarewicz, 1993; Allinger & Reavie, 2013; 
Steffen et al., 2014). Initially, the intensity and 
frequency of cyanobacterial blooms waned during 
the 1970s and 1980s with the implementation of P load 
reductions (Nichols & Hopkins, 1993; Fahnenstiel 
et al., 1989); however, by the mid-1990s, CyanoHABs 
dominated by the non-N2-fixers Microcystis and 
Planktothrix returned to Lake Erie (Brittain et al., 
2000; Scavia et al., 2014; Newell et al., 2019).

Similarly, in Lake Okeechobee (Florida, USA), 
pelagic blooms were once dominated by N2-fixing 
Anabaena (now termed Dolichospermum) (Jones, 
1987), and the eutrophication management program 
was focused on reducing P inputs to meet legally 
mandated minimal loading requirements (Havens & 
Walker, 2002). However, there have been recurrent 
lake-wide blooms of Microcystis in 2005, 2010, 2016, 
and most recently, in 2018, and those blooms have 
seeded intense blooms in the downstream rivers and 
estuaries (Kramer et al., 2018). These cases highlight 
the urgent need to revisit nutrient reduction strategies 
and to consider the inputs of N, which is required in 
large amounts to support both biomass and toxin 
production in non-N-fixing taxa (van de Waal et al., 
2014, Davis et al., 2015; Gobler et al., 2016). 
Microcystin-LR (C49H74N10O12), a common variant 
of the most common cyanotoxin, contains ten atoms of 
N per molecule—but no P. Interestingly, while 
microcystin production tends to increase in response 
to a variety of N forms (NH4

?, NO3
-, urea) in non-N2-



adequate supply of dissolved organic or inorganic N.

Nitrogen inputs often come from agricultural, indus-

trial, or domestic runoff, as well as from biomass

decomposition and subsequent release of NH4
? from

vegetation and sediment organic material, or from

displaced legacy N mobilized by large storm events in

the watershed (Boyer et al., 2002; van Egmond et al.,

2002; Van Meter et al., 2016).

Because of the traditional emphasis on P control in

lakes, there has also been a focus on identifying P

sources in polluted watersheds, especially those sub-

ject to intensive agricultural nutrient loading from

fertilizer and animal waste (Sharpley &Menzel, 1987;

Sharpley et al., 2006). However, recent work showed

that watersheds with intensive agriculture also contain

large stores of legacy N in their soils and that this N

can be mobilized and carried downstream to lakes,

rivers, and estuaries following large precipitation and

snowmelt events (VanMeter et al., 2016) andmay also

chronically pollute groundwater (Sanford & Pope,

2013). Legacy N in the Mississippi River Basin (USA)

contributes a substantial amount of the total N load to

the Gulf of Mexico (Alexander et al., 2008), and the

142 Tg of N that has accumulated in the basin over the

last 30 years as soil organic N could continue to load

the river with N for 35 years, even with complete

cessation of agricultural activities (Van Meter et al.,

2016). Watersheds dominated by animal agriculture

can retain significant legacy N that is exemplified by

high nitrate concentrations during river base flow

conditions (Grantz et al., 2014; Stelzer & Scott, 2018).

Legacy N has not been quantified in the watershed

of Lake Okeechobee, where toxicMicrocystis blooms

have occurred, often after hurricane-related, historic

rain events in 2005, 2010, 2016, and 2018. The

phytoplankton of many lakes can become severely

N-limited in summer (Scott et al., 2008, 2009; Kramer

et al., 2018), and intense rainfall and runoff events,

combined with internal recycling of previous N

loading, deliver the necessary dissolved N to fuel or

sustain blooms in those ecosystems. This scenario

could explain recent conditions in Lake Okeechobee,

where intense rainfall and runoff after Hurricane Irma

in 2017 led to large increases in dissolved inorganic N

and soluble reactive P (Fig. 2).

Research is needed to determine whether or not

watershed best management practices (BMPs), occur-

ring at the parcel and sub-basin scale and designed to

control P, can also be effective at reducing N inputs

(Hamilton et al., 2016). Further, research needs to

determine whether agricultural, residential, and urban

BMPs that help reduce N efflux from anthropogenic

sources are overwhelmed and rendered ineffective

after intense rain events. This inefficiency could be the

result of a dependence on long residence times to

allow for denitrification, or that the capacity of the

system is exceeded, thereby allowing untreated runoff

to enter surface waters.

Fig. 2 Dissolved inorganic

N (DIN) (dashed line) and

soluble reactive P (SRP)

(solid line) concentrations in

lake water at the northern

end of Lake Okeechobee,

near the main river inflow.

Heavy rainfall and runoff

happened for weeks after

Hurricane Irma passed to the

west of the lake on

September 15, 2017.



Recognizing and addressing the role of N

in modulating freshwater eutrophication
and CO2 simultaneously, and cyanobacterial N2-fixers

require substantial energy derived from photosynthe-

sis (Oliver et al., 2012). The capacity to fix N2 gives

these cyanobacteria a competitive advantage over

other phytoplankton when N concentrations are low

(Smith, 1983). However, N2-fixers preferentially uti-

lize reactive inorganic N when it is available due to the

high energetic costs of N2 fixation (Flores & Herrero,

2005; Moisander et al., 2012). Interestingly, N2-fixers

can also leak substantial amounts of N from their cells,

which can fuel photosynthesis by other non-N2-fixing

phytoplankton (Mulholland et al., 2006). However,

fixed N is eventually exported from the photic zone of

lakes and must be recycled to efficiently fuel subse-

quent primary production.

Recycling of recently fixed N can happen effec-

tively within a single growing season in the water

column and sediments of shallow lakes (Paerl et al.,

2011; McCarthy et al., 2013, 2016; Hampel et al.,

2018, 2019) (Fig. 3). Recent work by Hampel et al.,

(2019) in Sandusky Bay/Lake Erie highlighted the

importance of internal NH4
? recycling in fueling

cyanobacterial blooms during N-deplete periods. Over

three summer months, the internal water column

NH4
? recycling was equivalent to * 77% of the

annual, external total N (TN) load. The importance of

internal NH4
? turnover increased throughout the

bloom season, with NH4
? regeneration rates 2–5

times higher than the Sandusky River TN load in June,

increasing up to[ 1000 times greater than the river

TN load by the end of August (Fig. 3). While the TN

load decreased in summer, the proportion of chemi-

cally reduced N (both organic N and NH4
?) to TN in

Sandusky River loading increased from 13.2% at the

beginning of June to 91.9% by the end of August,

corresponding with the increased importance of inter-

nal NH4
? dynamics and highlighting the importance

of considering N forms and potential bioavailability in

external loading. A similar pattern was observed for

western Lake Erie, with the proportion of TN loading

comprised of chemically reduced N significantly

associated with CyanoHAB biomass and toxicity

(Chaffin et al., 2019; Newell et al., 2019).

Winter sampling (e.g., Nov–April) is one of the

largest data gaps in limnology (Hampton et al., 2017).

Historically, field sampling in temperate lakes has

focused on the ‘growing season’ from May through

October, given the emphasis on summer CyanoHABs

and the many logistical issues that inhibit sample

Some lakes are typically dominated by potential N2-

fixers (Paerl, 1990; Scott & Marcarelli, 2012), which 
tend to grow and fix N2 in summer, when waters are 
warm and water column inorganic N has been 
sequestered into phytoplankton biomass or sediments 
(Scott et al., 2009). Nitrogen-fixing cyanobacteria can 
increase reactive N concentrations in lakes; however, 
they can also alter the resilience of low-nutrient 
ecosystems by facilitating a shift to a higher-nutrient, 
turbid water state (Cottingham et al., 2015). Thus, N2-

fixing cyanobacteria may couple the biogeochemical 
cycles of N and P and modify nutrient availability. 
However, this idea is not supported by the results of a 
long-term, whole-lake experiment in which Lake 227 
of the Experimental Lakes Area in Canada was 
initially fertilized with N and P, then only P for the 
last 29 years, resulting in consistent and recurring 
summer blooms dominated by N2-fixing cyanobacte-
ria (Schindler et al., 2008). The total N pool of Lake 
227 decreased in parallel during this time (Scott & 
McCarthy, 2010; Paterson et al., 2011), even though 
N2 fixation rates increased (Paterson et al., 2011; 
Higgins et al., 2018). If N2 fixation adds reactive N to 
an ecosystem proportionally to P availability, as 
indicated by Schindler et al., (2008) and the Cotting-
ham et al., (2015) model, then the N pool in Lake 227 
should have maintained an equilibrium with fertilizer 
P inputs (Scott & McCarthy, 2010, 2011). The long-
term and consistent decrease in the N pool in Lake 227 
indicates the following: (1) N2 fixation in natural 
systems is controlled by numerous factors beyond P 
availability, including light, turbulence and vertical 
mixing, dissolved oxygen, organic matter, trace met-

als, and selective grazing (Paerl et al., 2016a, b; 
Wurtsbaugh et al., 2019); and (2) denitrification rates 
can exceed N2 fixation rates on seasonal and annual 
scales (Paerl et al., 2016a, b; Scott et al., 2019).

The temporal and spatial scaling of N2 fixation 
efficiency as an ecosystem process may also help 
explain the inability of N fixation to completely 
compensate for reduced external N loads (Levin, 
1992; Currie, 2011; Scott et al., 2019). As only a very 
limited number of organisms can carry out N2 fixation, 
its immediate effect is at the organismal scale, but may 
ultimately have influence at the community scale. 
Individual cyanobacterial cells uptake atmospheric N2



collection in winter and transitional seasons (spring

and fall). However, winter N cycling (e.g., under-ice

NO3
- production and loss) is likely linked to spring

and summer blooms (Twiss et al., 2012; Wilhelm

et al., 2014). NO3
- accumulation via nitrification

occurs during the winter under-ice period (Powers

et al., 2017a, b), and winter nitrification and N

turnover may drive NO3
- accumulation and higher

N:P ratios (Hampton et al., 2017; Powers et al.,

2017b). A low NH4
?:NO3

- in spring promotes diatom

growth (Glibert et al., 2016; McCarthy et al., 2009)

and N removal from the system via denitrification.

However, global climate change is leading to shorter

winters with less ice cover and less NO3
- accumula-

tion (Powers et al., 2017a; Reavie et al., 2016). More

NH4
? and urea (rather than NO3

-) favors cyanobac-

teria over diatoms (Glibert et al., 2016; McCarthy

et al., 2009), and high DIN concentrations promote

highly toxic cyanobacteria (Gobler et al., 2016; Scott

et al., 2013). New research constraining the effects of

winter and under-ice N cycling, and the effects of

climate change on this cycling, is needed to construct

annual N budgets and accurately develop and validate

ecosystem models used for informing policy

decisions.

Grazers and heterotrophic bacteria further influence

the rate and stoichiometry of nutrient recycling (Cherif

& Loreau, 2009). Thermal stratification in lakes may

slow the sinking of organic matter sufficiently enough

to accelerate fixed N recycling in the upper mixed

layer (Scott & Grantz, 2013), and many cyanobacteria

can control their own buoyancy (Paerl, 2012), which

can help minimize N losses from the euphotic zone. A

community shift from diatoms to cyanobacteria also

promotes recycling in the water column and may

disrupt benthic–pelagic coupling in lakes (Gardner

and Lee 1995). These recycling processes decrease the

demand for continued N2 fixation, while maintaining

recently fixed N as a primary resource fueling primary

production. Presumably, fixed N recycling could

continue across years if fixed N effectively accumu-

lated in lake sediments and was periodically resus-

pended into the water column as internal N load

(Schindler, 2012). Given sufficient time (tens to

hundreds years), fixed N could alleviate any long-

lasting N limitations to primary production at the

ecosystem scale if N2 fixation exceeded denitrification

and other N loss mechanisms (Vitousek et al., 2010).

However, a recent continental-scale analysis of US

lakes indicated that ecosystem-scale denitrification

exceeds ecosystem-scale N2 fixation on an annual

basis in most lakes (Scott et al., 2019). This finding

indicates that N loss to denitrification may represent a

positive feedback to initiate and maintain N-depletion

Fig. 3 External N loading

from the Sandusky River

(grey) compared to internal

water column NH4
?

regeneration (black) in

summer 2017. (Data from

Hampel et al., 2018)



eutrophication and CyanoHABs (Lewis & Wurts-

baugh, 2008; Sterner, 2008). However, this paradigm

is the result of past conditions and, perhaps, misinter-

pretation of data (e.g., see Scott & McCarthy,

2010, 2011; Paerl et al., 2016a, b) and cannot be

applied without consideration of loading sources and

individual lake characteristics.

Need to effectively reduce non-point source

nutrient inputs

Rapidly expanding urban, agricultural, and industrial

development in large lake watersheds has greatly

accelerated the production and delivery of nutrients to

nutrient-sensitive waters. In most watersheds, the bulk

of anthropogenic and natural sources of N and P are

delivered by (1) surface water discharge from creeks

and rivers, (2) subsurface discharge from groundwa-

ter, and (3) atmospheric deposition. The proportions of

these nutrient sources vary geographically and demo-

graphically. In rural, agriculturally- dominated

regions, approximately 50 to 75% of N and P input

originates from diffuse, non-point sources (NPS) such

as surface runoff, rainfall, atmospheric deposition, and

groundwater (Paerl, 1997; U.S. EPA, 2011; Hamilton

et al., 2016). Point sources (PS), including wastewater,

industrial, and municipal discharges, account for the

rest. In contrast, N and P loading in urban watersheds

are dominated ([ 50%) by PS, while watersheds

encompassing both urban centers and intensive agri-

culture exhibit a more even distribution of these

nutrient sources (Castro et al., 2003).

In recognition of a growing eutrophication problem

for many large lakes, aggressive reductions in PS

nutrient inputs have been undertaken, primarily in

developed regions. The focus on PS is based on the

fact that these sources are identifiable, accessible, and

technologically feasible to reduce. However, as noted

above, NPS often dominate and are logistically,

economically, and politically more challenging to

address (Smith, 2003; Sharpley et al., 2006). NPS are

also the most rapidly increasing nutrient sources,

especially in watersheds experiencing agricultural

expansion (both row crops and animal-based opera-

tions). The use of chemical fertilizers, including

various forms of N (nitrate, ammonium, urea) and P

(largely as phosphate) has grown exponentially

(Sharpley et al., 2006; Glibert & Burford, 2017). In

in eutrophic lakes. Indeed, this large-scale biological 
mechanism explains why N fixation has not balanced 
the N supply in long-term experiments like Lake 227 
(Scott & McCarthy, 2010; Higgins et al., 2017).

Quantifying the long-term balance between N2 

fixation and denitrification has meaningful implica-

tions for environmental science and policy regarding 
eutrophication management and water quality. If fixed 
N effectively accumulates in lake ecosystems, then 
managing anthropogenic N inputs to control eutroph-
ication is meaningless, as argued by Schindler et al.,
(2008), because reactive N should always be present in 
sufficient quantities relative to P. However, if multiple 
limitations or constraints on N2 fixation lead to 
perpetual N limitation of primary production in some 
lakes over seasonal to decadal scales, then controlling 
anthropogenic N inputs would be a useful tool to 
supplement the traditional P control measures (Lewis 
& Wurtsbaugh, 2008; Conley et al., 2009). For 
example, despite a 79% reduction in external P 
loading, P concentrations remained high for about 
20 years in Lake Müggelsee (Germany), likely due to 
the ‘‘legacy’’ effect. However, parallel N reductions 
(by 69%) led to a rapid decrease in N concentrations 
and improvement in water quality, without N2-fixing 
cyanobacteria compensating for the N requirements of 
primary production in the lake (Shatwell & Köhler, 
2019).

Changes in rainfall and runoff driven by climate 
change will increase riverine N loading by an 
estimated 19% in the USA (Ballard et al., 2019), with 
similar impacts expected for freshwaters in India, 
China, and Southeast Asia (Sinha et al., 2017). This 
situation presents a major concern for lake ecosystem 
services because species that require dissolved inor-
ganic N (non-N-fixers) now are predominant, and they 
will likely be further fueled by greater N inputs in 
upcoming decades. Increased N loading also inhibits 
the ability of aquatic systems to efficiently remove N 
via denitrification (Mulholland et al., 2008; Gardner & 
McCarthy, 2009), further exacerbating internal N 
recycling and availability to CyanoHABs. A global N 
pollution crisis in the twenty-first century is evident 
and will require comprehensive management 
approaches to mitigate its effects (Galloway et al., 
2002; Erisman et al., 2015). From a scientific stand-
point, this paradigm shift is challenging, because 
eutrophication management is deeply rooted in the 
presumption that P control is the solution to



urban and agricultural regions, air pollution is a

significant additional NPS, accounting for as much as

30% of external N inputs alone (Paerl et al., 2002;

Castro et al., 2003; US EPA, 2011; Erisman et al.,

2013; 2015). In the USA, reductions in atmospheric N

emissions from fossil fuel combustion through the US

EPA Clean Air Act (US EPA, 2011) led to significant

reductions in N deposition (Eshleman et al., 2013);

although, in agricultural regions, NH4
? emissions

have continued to rise (Aneja et al., 2007). Realisti-

cally, without aggressive NPS reductions, large lake

eutrophication will continue unabated in many

regions. While it is beyond the scope of this study to

formulate and recommend specific and effective NPS

reduction strategies, these have been articulated in

numerous publications relative to lake ecosystems

(Lowrance et al., 1984; Swackhamer et al., 2004;

Simpson et al., 2008; Hamilton et al., 2016).

Addressing dual nutrient input reductions

in rapidly developing regions: The Lake Taihu,

China, experience

Lake Taihu is the third largest freshwater lake in

China. About 40 million people live in cities and

towns within the Taihu watershed. With recent

economic growth, urbanization, and continuing pop-

ulation increases, nutrient loadings and eutrophication

of Taihu have rapidly accelerated (Guo, 2007; Qin

et al., 2007). Since the mid-1980s, blooms of toxin-

producing Microcystis spp. have occurred annually

(Qin et al., 2007), leading to two highly publicized

disruptions in domestic and industrial water usage in

1990 and 2007 (Shen, 1992; Qin et al., 2010).

Results from mesocosm and microcosm bioassays

(Xu et al., 2010; Paerl et al., 2011) indicated that

phytoplankton production was controlled mainly by P

availability in winter–spring, while N availability

became a more important controlling factor from

summer through fall, when CyanoHABs are most

severe (Xu et al., 2010; Paerl et al., 2011) (Fig. 4).

Highest biomass yields and greatest potential for

bloom formation occurred when both N and P were

added, indicating that this hypertrophic lake, like

many others (c.f., Elser et al., 2007; Paerl et al.,

2016a, b), exhibits varying responses to N and P

depending on season and other factors (Paerl et al.,

2011; 2014a, b; 2015).

Nutrient dilution and enrichment bioassays indi-

cated that DIN and SRP concentration threshold

targets should be set below 0.40 mg N l-1 and

0.03 mg P l-1, respectively, to limit intrinsic growth

rates of Microcystis dominated blooms (Fig. 5). In

1960, Taihu was categorized as oligotrophic because

total inorganic N (TIN) in the lake was only

0.05 mg N l-1, and SRP was 0.02 mg P l-1. By

1981, TIN had increased to 0.89 mg N l-1, and SRP

remained stable (Sun & Huang, 1993). In 1988, TIN

and TN concentrations were 1.12 and 1.84 mg N l-1,

respectively, and TP was 0.032 mg P l-1 (Sun &

Huang, 1993). By 1998, TIN and TN concentrations

had increased to 1.58 and 2.34 mg N l-1, respec-

tively, whereas TP was 0.085 mg P l-1 (Qin et al.,

2007). The 0.89 mg l-1 TIN in 1981 can be regarded

as a threshold, above which large-scale cyanobacterial

blooms regularly occur. During the summer and fall in

Taihu, available N levels are below the threshold N

concentration, suggesting that further increases in

available N load would enhance CyanoHABs in

Taihu. CyanoHABs are now even common in Taihu

during the winter and spring (Ma et al., 2014). Since

Microcystis spp. are non-N2-fixers, controlling N

inputs should be effective in reducing the bloom

potential for this organism. Although P load reduc-

tions remain important, N load reduction is also

critical for controlling the severity, spatial extent, and

duration of Taihu’s cyanobacterial blooms.

Accounting and compensating for climatic change

Recent studies (Paerl & Scott, 2010; Paerl et al.,

2011; Havens & Paerl, 2015; Burford et al., 2019;

Shi et al., 2019) have pointed to the need to

recognize and accommodate climatic changes taking

place when developing and modifying watershed

nutrient and sediment management strategies aimed

at controlling eutrophication and CyanoHABs.

Specific symptoms of climatic changes taking place

include warming—especially at higher latitudes;

increased precipitation, as well as more protracted

droughts in various regions of the globe; and

increased frequency and intensity of major storm

events, including tropical and extra-tropical

cyclones, thunderstorms, and other major frontal

passages (Trenberth, 2005; Seneviratne et al., 2012;



et al., 2019), as well as major hydrologic perturba-

tions and shifts. These shifts include changes in

water flow and residence time, which, alone or in

Fig. 4 Phytoplankton biomass (chlorophyll a) responses in

Lake Taihu, China, bioassays conducted in spring (May–June),

summer (July–August), fall (September–October), and winter

(December) between 2008 and 2012). Water used in these

bioassays was obtained from Meiliang Bay. Initial chlorophyll

a concentrations are shown. Responses are shown for 3-day

incubations in spring, summer, and fall in 2018, with 6-day

incubations in winter 2008, and 2-day incubations in spring,

summer, and fall 2009–2012. Error bars represent ± 1SD of

triplicate samples. Differences between treatments are shown

based on ANOVA post hoc tests (a[ b[ c; P\ 0.05)

for bioassays was collected from the surface of highly eutrophic

Meiliang Bay, on the northern side of the lake (Xu et al., 2010).

Error bars represent ± 1SD of triplicate samples.

Fig. 5 Growth kinetics of Lake Taihu natural phytoplankton 
assemblages in response to a range of (A) daily supplied P 
concentrations and (B) daily supplied N concentrations during 
summer 2013. Curves were fitted by nonlinear regression. Water

Wuebbles et al., 2014). More severe storms and
droughts have led to increased nutrient-laden fresh-
water discharges to receiving waters (e.g., Ballard



combination, affect the initiation, magnitude, toxic-

ity, and duration of bloom events (Zhu et al., 2014;

Paerl et al., 2016a, b; Havens et al., 2016).

In addition to more severe storms, climate change

influences the El Niño Southern Oscillation (ENSO),

which impacts large lakes around the world. For

example, a major reduction in ice cover on Lake

Superior during a warm El Niño winter in 1997–1998

led to a ‘regime shift,’ with greater summer evaporation

andwater temperature and less ice in subsequentwinters

(Van Cleave et al., 2014). In Lake Kivu (Africa),

phytoplankton biomass is highly correlated with the

condition of the ENSO (Darchambeau et al., 2013).

Watershed nutrient and sediment management

efforts must adapt and adjust to climate change. These

climate change events increase hydrologic variability,

such as more extreme wet and dry periods leading to

more episodic discharges, capture and transport of

nutrients, and rapid pulses of elevated nutrient

enrichment. Excessive rainfall and runoff, followed

by lengthy droughts with increasing hydraulic resi-

dence times, provide a perfect growth scenario for

CyanoHABs. If these conditions are accompanied by

warming (i.e., spring to summer transition), Cyano-

HABs can continue to proliferate, since they exhibit

maximum growth rates at high temperatures (Butter-

wick et al., 2005; Paerl & Paul, 2012; Guo et al., 2018).

Our ability to manage eutrophication and CyanoHABs

will depend in part on our capacity to forecast future

weather conditions (Hall, 2014). These conditions in

turn will affect stratification patterns, dissolved oxy-

gen levels, and nutrient inputs and dynamics, such as

internal nutrient recycling and N removal via denitri-

fication (Grantz et al., 2012, 2014; Bruesewitz et al.,

2013), all of which may lead to altered food web

dynamics.

These physical and biogeochemical changes pre-

sent a challenge to resource managers aiming to

control eutrophication and CyanoHABs in a future

favoring their occurrence. A research program that

focuses on how extant strategies will be influenced by

global warming is needed to support effective large

lake CyanoHAB control programs. Specific areas of

priority research identified in this study include the

following:

(1) Determine how changes in precipitation (inten-

sity and temporal dynamics) resulting from

climate change will affect atmospheric N

deposition onto inland and coastal waters and

watersheds.

(2) Develop new approaches to incorporate this

information into ecosystem models and nutrient

control strategies that suppress CyanoHABs.

(3) Evaluate effectiveness of existing physical,

chemical, and biological control measures with

continued changes in hydrology, stratification,

and nutrient dynamics caused by climate

change.

(4) Evaluate the importance of internal N loading,

including legacy N, in fueling CyanoHAB

biomass and toxicity, as well as the capacity of

denitrification to mitigate excess N loading.

(5) Continue efforts to understand the opposing

roles of N2 fixation and denitrification on annual

N budgets and the form and amount of bioavail-

able N.

(6) Constrain winter N and P dynamics influencing

phytoplankton community composition and

CyanoHAB biomass and toxicity.

(7) Determine the extent to which existing P

loading reduction measures also reduce external

N loading and any effects on the N form within

those loads.
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