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Figure 1: Honeycomb plots (b) combine (a) scatter plots and (c) heat maps using per-tile densities. Through shading, ambient occlusion,
and an implicit point-distribution encoding, the observer can explore data features that cannot be captured by either of the techniques alone.

Abstract
Aggregation through binning is a commonly used technique for visualizing large, dense, and overplotted two-dimensional data
sets. However, aggregation can hide nuanced data-distribution features and complicates the display of multiple data-dependent
variables, since color mapping is the primary means of encoding. In this paper, we present novel techniques for enhancing
hexplots with spatialization cues while avoiding common disadvantages of three-dimensional visualizations. In particular, we
focus on techniques relying on preattentive features that exploit shading and shape cues to emphasize relative value differences.
Furthermore, we introduce a novel visual encoding that conveys information about the data distributions or trends within
individual tiles. Based on multiple usage examples from different domains and real-world scenarios, we generate expressive
visualizations that increase the information content of classic hexplots and validate their effectiveness in a user study.

CCS Concepts
• Human-centered computing → Visualization techniques; Visualization theory, concepts and paradigms;

1. Introduction

Hexplots represent a form of spatial aggregation usually applied to
a large number of two-dimensional points, making them resistant
to overplotting. They rely on a subdivision of the plane by a regular
space-filling grid of hexagonal polygons. However, Cleveland and
McGill [CM85] emphasize that the visual system may fail to detect
quantitative information from geometric aspects of a visualization.
For example, aggregation comes at the expense of the perceptibility
of individual points, making outliers invisible [Dow14], and poten-
tially obscures trends or clusters. Additionally, being able to distin-
guish between tile colors with at least a just-noticeable difference
(JND) can be essential, especially when color describes quantita-
tive data properties [Sto12; SAS14]. We, therefore, assessed po-

tential disadvantages of current techniques by applying algebraic
visualization design (AVD) [KS14]. Our strategy was inspired by
McNutt [McN21], who highlights the advantages of this human
operable and interpretable systematic framework. AVD analyzes
how data changes affect the resulting visualization. Input for hon-
eycomb plots are tabular 2D point coordinates. If the same data
is displayed differently, this is referred to as a hallucinator. When
changes in the data remain invisible, this is referred to as a confuser.
Although both flaws cannot be avoided completely, they should be
minimized. Therefore, we initially noted the following confusers:
C1: Point-data visualizations often assume equal density ranges.

The underlying points are either sparse (scatter plots) or dense
(density estimations and aggregations), making techniques
reach their limits when data exhibit both simultaneously.
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C2: Color-coded tiles containing a similar number of points may
be perceived as equally dense, which would falsely corre-
spond to the same visualization of actually different data.

C3: Heat maps only encode the quantity of aggregated points, so
that uniform distributions within tiles cannot be distinguished
from clusters or trends if their numbers of points match.

C4: Heat maps prevent the analysis of sparse features or outliers,
allowing their position or arrangement to change although the
aggregation, i.e., tile color, remains the same.

These confusers highlight the need for (C1) a novel hybrid visual-
ization technique that preserves features of highly uneven distribu-
tions. Our goal was (C2) a visual encoding that overcomes prob-
lems with color coding of the first moment of statistics, i.e., the
mean value describing average density as color, but also to (C3)
capture statistical moments of higher order describing shape pa-
rameters, while (C4) strengthening the embedding of underlying
points. Our contribution can be summarized as follows:

• An interpretation of hexagonal tiles as relief mosaic where am-
bient occlusion serves as a subtle aid to perceive nuanced color
differences between neighboring discrete tiles.

• An extension of the visually encoded information content by in-
corporating the regression plane of the underlying densities per
bin in the form of a per-tile diamond cut.

• A hybrid approach that blends point data with colored hexagonal
tiles corresponding to an amber inclusions metaphor, enabling an
exploration of trends and clusters also in sparse regions.

• A quantitative user study consisting of four typical hexplot tasks
in which we compare our encodings to classic heat maps.

In addition to the listed contributions, we developed an efficient
hexagonal aggregation algorithm for two-dimensional data points,
based on arbitrary grid sizes, in real time on the GPU.

2. Related Work

Hexagonal binning as an aggregation technique was first introduced
by Carr et al. [CLNL87] in 1987. They suggest the use of glyphs in
the shape of hexagons whose size encodes the total number of data
points within. Another technique called sunflower plots [CM84]
uses flower-like glyphs in which petals represent aggregated points.
A hybrid approach that visualizes individual data points as well as
density estimations through binning are variable resolution bivari-
ate plots, so-called varebi plots [HMS97]. Over the years, a variety
of related techniques spread under similar names: hexagon plots or
hexplots, hexbins, hexagonal binning plots, hexagonal tiles, hexbin
maps, hexagonal gridded maps, and hexagonal heatmaps.

For statistical summaries in cartography, Carr et al. [COW92]
emphasize the advantages of hexagon mosaic maps, i.e., hexagon
grid-cell choropleth maps, extendable by information layers
[PMAM16]. Battersby et al. [BSF16] investigate projection dis-
tortions of such grid structures resulting in either differently sized
geographic areas as the basis for binning, or bin grid overlays of
varying size. Example scenarios for spatio-temporal cartographic
data contain the analysis of criminal activity [RRM15] or visitor
flows in amusement parks when solving the VAST 2015 Mini-
Challenge (MC1) [CGH*15]. Another recent approach [WK20]

focuses on multivariate game metrics using hexbin maps, Wur-
man dots [PW66], and arrowheads as direction indicators. To ex-
plore data attributes at specific (geospatial) locations, so-called at-
tribute blocks [Mil07], i.e., dynamically configurable regular ar-
rays of "screen door" lenses, can be used. Possible alternatives are
hexagonal cells as windows or magic lenses enabling the compara-
tive visualization of multiple data sets [MHG10]. Other techniques
[HKIH07] evaluate blending and weaving to encode multivariate
information by color. Established guidelines derived from explor-
ing the visual design space of multi-class point data [HCSG18]
and different representations using similar approaches [JVDF19]
evaluate blending, weaving, majority-based coloring, embedding
of pie charts or bar charts as glyphs, etc. Furthermore, user stud-
ies analyzing user performance when comparing multiple heat
maps [KAB*20] show that juxtaposed 2D heat maps work best
for overview tasks, whereas stacked 3D heat maps (explored us-
ing stereo vision) are superior when reading and comparing single
values. Although the two-dimensionality of honeycomb plots pre-
vents occlusions and perceptual distortions, our spatialization cues
could also be mapped to 3D geometry or digitally fabricated.

3. Honeycomb Plots

Hexplots, in contrast to choropleth maps [Dup26], enable a fairer
spatial comparison of aggregated values since differently sized
landmasses do not affect their interpretation. Although well suited
for this, hexplots also limit the parameter space for additional vi-
sual encodings since position, area, color, orientation, and shape,
as discussed by Munzner [Mun15], are already occupied. We,
therefore, investigated potential spatialization cues, i.e., three-
dimensional shape cues, applicable to 2D visualizations, prevent-
ing disadvantages of 3D visualizations such as viewpoint choice
and view-dependent occlusion. Spatialization cues have a long tra-
dition, for example, cushion treemaps [vWvdW99] and shaded
Voronoi diagrams [TW01], enridged contour maps [vWT01],
sunspot plots [TBSB20], and line weaver [TB21]. In all cases, lu-
minance from shading expands the design space.

Perception studies analyze lightness constancy, i.e., if color and
shadow can be separated by the human visual system. Szafir et
al. [SSG16] analyze molecular visualizations and confirm that users
can assign shadowed colors to corresponding unshadowed colors.
Langer and Bülthoff [LB01] highlight that viewers assume light
from top left and that a (convex) object is likely observed from
above. Irani et al. [ISS04; ISS06] also showed that users prefer
shaded visualizations which help them understand structures.

3.1. Relief Mosaic

Hexplots are well suited to spatially aggregate data points. How-
ever, in cases where minimal color differences are not merely at-
tributable to falling within a margin of error, discrepancies between
adjacent tiles are difficult to see. Inspired by locally adjusting heat
maps [ZZW*21], we apply ambient occlusion (AO), i.e., encoding
accessibility of a surface point [ZIK98], to spatial density which is
represented by the tile height. We exploit the advantages of a regu-
lar hexagonal grid and calculate AO analytically which is, in such
a well-defined scenario, most precise and interactive in real time.
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As known from literature [Dut21; AMGA12], the AO integral of a
surface point x occluded by a rectangle Q, defined by four corner
points q1,2,3,4, is calculated as follows:

AO(x,Q) =
1

2π

3

∑
i=1

(
cos−1 vi · vi+1

∥ vi ∥ · ∥ vi+1 ∥

)(
vi × vi+1

∥ vi × vi+1 ∥
·N

)
(1)

where vi = qi −x corresponds to vectors pointing from x to the cor-
ner points of Q, and N is the surface normal of x. According to
Quilez [Qui21], the double integral of the occluding surface can be
reduced to a line integral of its perimeter, whose individual sides
projected on the unit hemisphere correspond to the angle of the arc
itself, which can be computed as the inverse cosine of two con-
secutive corner points. The contribution of the occlusion is then
calculated as dot product between the surface normal at the point
of occlusion and the normal of the triangle connecting the two cor-
ner points to the surface point. Unlike shadow mapping [Wil78],
where a light source casts shadows, AO emphasizes the accessibil-
ity of a tile to its immediate neighbors. A point x can, therefore,
only be occluded by a maximum of six rectangles corresponding to
the adjacent side walls of potentially higher tiles. The total AO can,
hence, be calculated as the sum of six individual occlusions:

AO(x,Q =
{

Q1,··· ,6
}
) =

6

∑
j=1

AO(x,Q j) (2)

The summarized AO factor can then be used as per-pixel dark-
ening factor when coloring tiles. Figure 2 shows how AO can help
understanding the spatial interpretation of scalars as a height field.

a b

Figure 2: Illustrations of how AO emphasizes structures using a
viewpoint from (a) top-down and (b) "the side", including two red
rectangular side walls that cause such an exemplary tile darkening.

Figure 4(a-c) shows a synthetic example of a density increase
from left to right, observable in (a) the scatter plot and (b) the heat
map. The vertical trend in the center, however, can only be empha-
sized by (c) AO. Such an augmentation can be beneficial in two
ways: first, to highlight color differences in continuous heat maps,
and second, to visually distinguish more nuances than the number
of colors that is available in a discrete heat map. For example, car-
tographers rarely use more than seven colors on choropleth maps
[HB03]. Using a relief mosaic also shows that explaining the se-
mantics of a heat map, i.e., which colors correspond to the max-
imum/minimum density, is now preattentive as it can be derived
from the topological structure. Since darkening, however, might not
always distort colors favorably, we conducted a user study (see Sec-
tion 7) to evaluate its impact. We chose viridis as the heat map for

all our visualizations, as it corresponds to the default in many stan-
dard tools and scientific environments, such as the python package
matplotlib or R for statistical computing and graphics. It is per-
ceptually uniform even when printed in black-and-white and was
developed to improve readability for users with color deficiency or
color blindness. Since none of our techniques focuses on absolute
numbers, the color legend is only visible in the teaser Figure 1.

3.2. Diamond Cut

Classic hexplots rely on flat tiles, leading to the intuitive assump-
tions that densities within tiles are either uniform or neglectable.
However, non-uniformly distributed points may form trends that
are relevant for analysis. Inspired by hexagonally shaped glyphs
[CLNL87] and Phoenixmaps [ZLG*21] as an abstraction of data
points, we introduce a diamond cut metaphor. Similar to how a
rough diamond is cut into a brilliant, we cut hexagonal pyramids
so that their cut surface corresponds to the regression plane of the
contained points, i.e., a fit plane that best approximates the under-
lying density distribution. This requires the computation of six in-
tersections, one of which called p′ can be calculated as follows:

p′ = l0 + l
(p0 − l0) ·N

l ·N with l =
l0 − pi

∥ l0 − pi ∥
(3)

wherein l0 is the pyramid top, p0 is the center point of a tile at the
height of the average density, N is the normal, i.e., the regression
plane orientation, and l is the normalized direction pointing from
one of the six hexagonal grid corner points pi to the pyramid top
l0. An illustration of this calculation is shown in Figure 3.

Figure 3: Pyramid intersections with planes (tilted to the left/right
and horizontally) that best approximate the underlying density.

These slopes can be interpreted as diamonds pointing towards
the steepest descent. The smaller and narrower a glyph gets and the
more it is attracted to one side of the hexagon, i.e., the more it is
repelled from another side, the steeper and more extreme the trend.
An illustration of this is shown in Figure 5. Alternatively, invert-
ing the pyramids, i.e., using concave cavities rather than convex
spikes, without changing the orientation of the regression planes
would instead produce glyphs reminiscent of radar charts where
the attraction in one direction points towards the steepest ascent.

Figure 4(d-f) shows a data set containing three regions with dif-
ferent densities visible using (e) a heat map, but not in (d) the scatter
plot. Using (f) a diamond cut, the regression plane within the tile
can be inferred from the shape, shading, and outline of the trun-
cated pyramid. To evaluate whether users understand this concept
within 15-20 minutes, we conducted a user study (see Section 7).
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Figure 4: Overview of three scenarios comparing scatter plots and heat maps to our techniques: scenario one (a-c) shows the applicability
of the relief mosaic, scenario two (d-f) highlights advantages of the diamond cut, and scenario three (g-i) illustrates amber inclusions.

Figure 5: Comparison of four neighboring tiles aggregating points
viewed from "the side". The heat map (blue line) corresponds to the
average density, whereas the diamond cut (red line) provides per-
tile density distributions. When viewed "top down" as usual, tile
(1) shows two possible decreases from right to left (a,b) and tile (2)
exemplifies two feasible, almost uniform, distributions (c,d).

3.3. Amber Inclusions

Regression planes are insightful but, unfortunately, cannot capture
outliers. Similar to how Novotny and Hauser [NH06] preserved
outliers in parallel coordinate plots (PCP), points within sparse re-
gions could be analyzed as in scatter plots. Therefore, we follow ap-
proaches like sunspot plots [TBSB20] or Splatterplots [MG13] and
combine hexplots with the underlying points based on the relative
densities of tiles. We employ a per-tile opacity modulation mapping
the transparency of a tile (encoding a relief mosaic and a diamond
cut) to the interval [0, density of the densest tile]. This results in a
metaphor where flat and transparent amber shows enclosed insects
rather than thick cloudy amber. We use the Porter-Duff [PD84] over
operator which defines A over B as:

C =
αAA+(1−αA)αBB

αA +(1−αA)αB
(4)

wherein C is the final pixel color, A the hexplot, B the scatter plot,
αA the normalized density/opacity, and αB the scatter plot opac-
ity. Figure 6 shows tiles with different densities using (a) amber
inclusions, (b) their combination with diamond cut spatialization

a b c

Figure 6: (a) Blended tiles with (b) diamond cuts and (c) contours.

cues, and (c) additional 2D contour polygons emphasizing the cut
surface. Figure 4(g-i) shows a synthetic data set with particularly
distinctive sparse features in the form of letters from A to P, which
can be clearly seen in (g) the scatter plot. The (h) heat map cap-
tures the density increase in the center but obscures the distinctive
letters. Using (i) amber inclusions, however, both the sparse fea-
tures and the dense data characteristics are preserved. We, again,
evaluated whether blending complicates the interpretation of the
other encodings as part of our user study (see Section 7).

4. Usage Examples

In this section, we demonstrate the benefits of honeycomb plots
using real-world usage examples. In each one, we show how classic
hexplots can be enhanced to increase their information content.

4.1. US Tornadoes (1950 - 2019)

The NOAA’s National Weather Service - Storm Prediction Center
has been collecting tornado data [NOA21] since 1950. Figure 7
shows a honeycomb plot aggregating points corresponding to the
starting position of a tornado between 1950 and 2019. In the cen-
ter of the US, there is the so-called "Tornado Alley". The visual-
ization, furthermore, reveals that most of Florida’s tornadoes form
along the west coast between Tampa Bay and Forth Myers. Nev-
ertheless, there is a large number of tornadoes visible as continu-
ous black dotted line along the east coast. This phenomenon de-
scribes so-called "waterspouts", which are extraordinary tornadoes
forming over water. Additional indicators for this are the diamond
cuts along the coast pointing towards the open sea, illustrating the
highly decreasing number of tornadoes from this direction.
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Figure 7: Honeycomb plot of US tornadoes between 1950 and 2019.

Figure 8: Juxtaposition of (a) a heat map and (b) a honeycomb plot of the aggregated locations of houses originating from the 1990
US census. Both visualizations show agglomerated metropolitan areas along the west coast. Heat maps (a) alone, however, do not show
underlying data points and the detection of minimal color differences depends on the user or hardware. Using (b) honeycomb plots, both are
visualized as shown in the two enlarged very dense as well as sparse regions using an updated zoom-dependent heat map.

4.2. California Housing Data (1990)

A well-known machine-learning data set is the California Hous-
ing data [Tor21] containing the longitude and latitude of houses,
their age, the number of rooms, etc., collected during the 1990
US census. Figure 8 shows a hexagonal aggregation of their loca-
tions, where one point corresponds to the geographical position of
a house. As highlighted by the heat map, the four largest metropoli-
tan areas are located along the west coast: Los Angeles (4 M), San
Diego (1.4 M), San Jose (1 M), and San Francisco (0.9 M). A heat
map without blended points, however, fails to encode how houses
are arranged, such as in San Francisco along the San Francisco
Bay, and may lack emphasis on regions where density only varies
slightly corresponding to minor changes in colors, such as in Red-
ding (0.09 M), still being the largest city in California north of
Sacramento. Using honeycomb plots, however, both data proper-
ties relevant for analysis and exploration are subtly highlighted.

4.3. Gender Equality Index EU-28 (2020)

This example illustrates a relief mosaic of data without underly-
ing points. In many domains, e.g., cartography [dSL18; PMAM16;
BSF16; COW92], it is common practice to rely on discretization.
Figure 9 shows a simplified map of Europe with equally sized
hexagonal countries, which supports a comparison regardless of
landmasses. The color of each tile corresponds to the gender equal-
ity index, except purple countries which only provide geographical

context. Additionally, each hexagon contains a picture of the prime
minister (as of August 2021). The resulting visualization highlights
a north-south disparity, as well as a west-east divide within Europe.
Due to the coloring, countries like Sweden (SE), Denmark (DK),
the Netherlands (NL), and France (FR) stand out. Unfortunately,
when using the heat map alone, no difference can be seen between
Estonia (EE), Latvia (LV), Lithuania (LT), Poland (PL), Czech Re-
public (CZ), Slovakia (SK), Hungary (HU), Romania (RO) and
Croatia (HR). They appear to form a light-blue plateau of equal
gender indices although they vary between 60.7 (EE) and 53.0
(HU), approximately 10 percentage points. Using a relief mosaic,
three groups can be differentiated: Estonia and Latvia; Lithuania,
Poland, Czech Republic, and Slovakia; and Hungary and Romania.

a b

Figure 9: Juxtaposition of (a) a heat map and (b) a relief mosaic
visualizing a pseudo-spatially arranged hexbin map of Europe.
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We focused primarily on hexagonal grids, as these are among the
most common types. A relief mosaic is, nevertheless, not limited to
hexagons. Other shapes would equally be possible, e.g., deltoids,
trapezoids, parallelograms, rectangles, triangles, etc.

5. Implementation

Our approach was implemented in C++ and OpenGL, and all cal-
culations were performed in parallel on the GPU. Using ImGui
[Cor21], all user-dependent parameters can be adjusted in real time.
The five implementation steps necessary for honeycomb plots are
listed below.

Scatter Plot: First, we create a scatter plot by rendering all
points as semitransparent disks with additive blending. To prevent
aliasing, the opacity of points decreases from their centers and their
color as well as their radii can be modified using a GUI.

Kernel Density Estimation: Second, the density of the data
set is calculated using kernel density estimation (KDE). As pre-
viously, we render points additively as disks, but now evaluate a
two-dimensional Gaussian bell function centered at each sample
point. This time, however, the point disks are enlarged to cover the
Gaussian bell curves until their contributions are considered to be
zero. Again, the GUI can be used to change the sigma of the Gaus-
sian function depending on the granularity of the analysis.

Hexagonal Aggregation: Third, we aggregate all points by ren-
dering them into a texture whose dimensions correspond to the
number of rows and columns of the hexagon grid. After determin-
ing the tile in which a data point falls, a counter in the associated
texture texel is increased using additive blending. The grid layout is
adjustable using a GUI slider allowing for various grid resolutions.

Regression Plane: Fourth, using the central difference of per-
pixel densities within each tile, originating from the KDE, we re-
construct per-pixel normals and sum them up in per-tile shader
storage buffer objects (SSBO). Their normalized sum then corre-
sponds to the regression-plane normal. Similarly, we average per-
pixel densities as they define the height of a tile pyramid.

Compositing: Fifth, depending on the total number of points per
tile, a heat map color is assigned. Next, optionally, the AO is calcu-
lated according to Equations 1 and 2 using the density, i.e., height,
of neighboring tiles. If enabled, the diamond cut is calculated ac-
cording to Equation 3 using the regression plane normal and the
average density. Finally, the initial scatter plot is blended with the
honeycomb plot using the over operator from Equation 4.

The source code of honeycomb plots is available on GitHub:
https://github.com/TTrautner/HoneycombPlots.git

6. Performance

The performance measurements listed in Table 1 were con-
ducted on a desktop computer with an Intel Core i7-8700K CPU
(3.7 GHz), 16 GB RAM, an NVIDIA GeForce RTX 2080 graphics
card with 8 GB of texture memory, and a Windows 10 Home 64-bit
operating system. Our analysis was based on the seven data sets
used as paper figures ranging between 1,831 and 68,306 sample
points aggregated into 36 to 1,242 hexagonal tiles. They correspond

Figure
Points/
Tiles RM DC AI

FPS
1280× 720

FPS
1920× 1080

1
68,306/
1,242 80.1180.29

77.66 26.2926.40
25.05

4c
2,024/

38 629.24643.37
603.80 433.79435.68

429.22

4f
3,244/

36 414.99417.94
412.62 220.72222.26

218.78

4i
2,244/

38 406.59407.78
401.27 219.68220.35

216.23

7
66,388/

329 36.7937.25
33.48 18.7319.14

15.35

8
20,640/

637 493.32497.22
483.75 250.72251.28

247.38

9b
1,831/

44 641.34649.28
625.18 298.61303.63

296.84

Table 1: Performance analysis of all seven visualized data sets.

to four synthetically generated data sets and three real-world data
sets. Table 1 additionally shows which of our techniques were en-
abled: relief mosaic (RM), diamond cut (DC), and amber inclusions
(AI), indicated by check marks. Our focus was on the analysis of
achieved frames per second (FPS) and has shown that all data sets
can be rendered as well as interacted with in real time.

7. User Study

A major concern about honeycomb plots is their interpretability and
the required learning effort. We, therefore, conducted a user study
and compared standard heat maps (HM) to our three contributions,
i.e., relief mosaic (RM), diamond cut (DC), and amber inclusions
(AI), all exemplified in Figure 10. The website of the online survey
as well as the collected results are included in the supplemental
material. We investigated the following hypotheses:

H1: Relief Mosaic (RM) - ambient occlusion improves perfor-
mance, i.e., correctness, in value estimation tasks.

H2: Diamond Cut (DC) - regression planes improve performance,
i.e., correctness, in slope estimation tasks.

H3: Amber Inclusions (AI) - blending of points with tiles does not
negatively affect other encodings, i.e., RM and DC.

a b c d

Figure 10: Image collage comparing the four stimuli of a sample
question used in our study. From left to right, the techniques expand
on the previous stimuli: (a) HM, (b) RM, (c) DC, and (d) AI.

7.1. Experiment Design and Questions

Our study, evaluating whether honeycomb plots can be understood
within a short time, took 15 to 20 minutes. We chose a between-
subject design and randomly assigned visualization techniques.
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Stimuli: HM vs. RM HM vs. DC HM vs. AI RM vs. DC RM vs. AI DC vs. AI
Participants: 21 (11, 10) 20 (11, 9) 23 (11, 12) 19 (10, 9) 22 (10, 12) 21 (9,12)

Q1: χ2 = 8.10
p < .05∗

χ2 = 0.31
p = .57

χ2 = 5.09
p < .05∗

χ2 = 3.25
p = .07

χ2 = 0.20
p = .65

χ2 = 1.93
p = .16

Q2: χ2 = 0.42
p = .51

χ2 = 15.55
p < .05∗

χ2 = 19.90
p < .05∗

χ2 = 14.48
p < .05∗

χ2 = 19.14
p < .05∗

χ2 = 1.33
p = .24

Q3: χ2 = 3.03
p = .08

χ2 = 0.06
p = .80

χ2 = 0.11
p = .73

χ2 = 2.35
p = .12

χ2 = 1.74
p = .18

χ2 = 0.01
p = .91

Q4: χ2 = 1.16
p = .28

χ2 = 17.27
p < .05∗

χ2 = 19.84
p < .05∗

χ2 = 15.78
p < .05∗

χ2 = 18.40
p < .05∗

χ2 = 0.75
p = .38

Table 2: Pairwise comparisons using a Kruskal-Wallis test with superior stimuli in bold and marked (*) significant p-values.

Q1: Q2: Q3: Q4:
mean error histogram mean error histogram mean error histogram mean error histogram

HM: m̄ = 39.3% m̄ = 72.7% m̄ = 9.0% m̄ = 93.9%
RM: m̄ = 6.6% m̄ = 66.6% m̄ = 0.0% m̄ = 86.6%
DC: m̄ = 33.3% m̄ = 3.7% m̄ = 7.4% m̄ = 0.0%
AI: m̄ = 13.8% m̄ = 0.0% m̄ = 13.8% m̄ = 2.7%

Table 3: Overview of the mean errors and corresponding histograms with bins of 0, 1, 2, or 3 mistakes (from left to right).

Inspired by Padilla et al. [PQMC17] and Kraus et al. [KAB*20],
we chose Brehmer and Munzner’s [BM13] visualization-tasks ty-
pology as basis for four questions:

Q1: "Which tile has the highest/lowest density value within the
highlighted box?"

Q2: "Which tile has the steepest/flattest change in density within
the highlighted box?"

Q3: "Which tile has the highest/lowest density value, adjacent to
the tile with the red asterisk (∗), within the highlighted box?"

Q4: "Which tile has the steepest/flattest change in density, adja-
cent to the tile with the red asterisk (∗), within the highlighted
box?"

We avoided asking questions about overall patterns in the data, as
our techniques primarily improve the perception of individual tiles.
Questions Q1 and Q2 focus on a global level, i.e., a larger high-
lighted region whose size varies. Questions Q3 and Q4 correspond
to a local level, i.e., within the immediate vicinity of the tile with
the red asterisk. Furthermore, two questions relate to density value
estimations (Q1, Q3) and two to trends or density distributions
(Q2, Q4). To answer the questions, participants may proceed dif-
ferently, which then in turn corresponds to different tasks according
to Brehmer and Munzner [BM13]. If, for question Q1, a participant
first interprets the heat map and then searches for the correspond-
ing value within the visualization, this represents a locate (target
known, location unknown) and identify task. If the visualization is
first examined and only afterwards compared to the heat map, this
corresponds to an explore (target unknown, location unknown) and
identify task. Since question Q2 requires a diamond glyph inter-
pretation, it corresponds to an explore and identify task. Both Q3
and Q4 specify the location using a red asterisk. Again, Q3 may
correspond to a lookup (target known, location known) or browse
(target unknown, location known) and compare task, and Q4 again
to a browse and compare task. Each question had to be answered
using three different synthetic data sets, created by us, with varying
difficulty, i.e., 4× 3 = 12 questions. Finally, we evaluated binarily
whether the correct tile was found or not.

7.2. Participants and Procedure

The online user study included 42 participants (11 HM, 10 RM, 9
DC, and 12 AI). Participants (32 male, 10 female) were aged from
16 to 69 (m̃age = 32 years) and stated whether they were wearing
glasses (19 yes, 23 no) or suffered from color vision deficiencies (1
with, 40 without, and 1 that did not know). They rated their famil-
iarity with scatter plots (m̃sp = 4), density estimations (m̃de = 2),
and heat maps (m̃hm = 4) on a scale from 1 = not familiar to 5 =
very familiar. At the beginning, the assigned visualization type was
introduced, followed by a technical explanation of the survey. Sub-
sequently, participants had to work through the 12 questions and
finally answer general questions about themselves, were allowed to
leave comments, and asked to rate from 1 = strongly disagree to
5 = strongly agree how aesthetically pleasing they found their as-
signed technique (m̄sp = 3.23, m̄hm = 4.09, m̄rm = 4.7, m̄dc = 4.55,
m̄ai = 4.5).

7.3. Study Results

In the beginning, we evaluated whether the collected results
were normally distributed, which was rejected by a Kolmogorov-
Smirnov test at a 5% significance level. We, therefore, conducted
pairwise comparisons of all techniques per question, shown in Ta-
ble 2, using Kruskal-Wallis tests. Furthermore, Table 3 shows the
mean error made by participants, including histograms (with bins
from left to right for 0, 1, 2, or 3 mistakes) showing the number
of errors made. Although we also measured times, these varied
widely, which is why we did not analyze them further. For H1,
we observed that the error rates for value estimation were generally
low for RM, DC, and AI. On a global level (Q1), RM (6.6%) and
AI (13.8%) were significantly lower in comparison to HM (39.3%).
We also see that for question Q3, where a much smaller neighbor-
hood had to be considered (comparing a tile to its six neighbors),
there are no significant differences between the techniques, provid-
ing support for the assumption that color encoding alone is suffi-
cient. In the case of DC (33.3%), the results were not significant.
We suspect that this could be rooted in the fact that the introduc-
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tion of a visual encoding that did not have any benefit for the task
at hand may have confused some participants. For H2, we found
strong evidence that our diamond cut metaphor is effective in fa-
cilitating slope encoding tasks, as both DC and AI performed sig-
nificantly better than HM and RM on a global (Q2) as well as a
local (Q4) level. In both cases, the participants were able to solve
the corresponding tasks with very low error rates (DC: 3.7% for Q2
and 0.0% for Q4, AI: 0.0% for Q2 and 2.7% for Q4). With respect
to H3, there were no significant differences between DC and AI in
any of the questions (Q1-Q4), which supports our hypothesis that
additional point encoding does not introduce negative side effects.

These findings demonstrate that while AO can provide substan-
tial benefits for value estimation tasks, care must be taken when
mixing it with other encodings that are not relevant to the task at
hand. The results also suggest that participants were generally able
to understand our diamond cuts based on the explanation in the
study. We believe that this initial study provides support for the
beneficial effects of incorporating spatialization cues into binning
plots, while also demonstrating the clear need for particular care
when combining multiple encodings based on the task at hand.

8. Discussion and Limitations

The focus of a relief mosaic is emphasizing color differences, mak-
ing it unsuitable if these are unimportant or within a margin of error.
Using a diamond cut for shape parameters also requires caution, es-
pecially if a grid layout is not implicitly defined since features may
change if the grid is scaled, shifted, or rotated. Additionally, while
we found it intuitive to adjust AO with a slider, future work could
focus on automatic selections depending on, e.g., data variety. It
would also be interesting to investigate to what extent AO alone can
encode quantitative data. Future studies could examine if the sign
of quantitative data, comparable to the neutral point of a classic
heat map, can be encoded using AO or the pyramid geometry, i.e.,
tiles could have a convex or concave shape. We, furthermore, have
not tested the effectiveness of amber inclusions but rather analyzed
whether they negatively impact other encodings. Future research
could quantitatively evaluate the analysis of outliers.

All our plots use the classic over operator, wherein the aggre-
gated density influences the blending. Although this is well suited
to highlighting sparse features, we have also experimented with
other influence factors, e.g., point discrepancy. This would render
tiles opaque when contained points are nearly evenly distributed,
whereas tiles containing points close to each other or large empty
areas are rendered transparently. In this work, we augmented hex-
plots with spatialization cues leading to 2 1

2 D visualizations. We are,
nevertheless, confident that honeycomb plots would also be well
suited for 3D physicalization such as digital fabrication. It would
be interesting to explore how tasks that are usually performed on
hexagonal aggregation plots could be carried out by visually im-
paired or blind people using 3D prints of honeycomb plots.

9. Conclusion

In this work, we have presented novel visualization techniques for
hexagonal binning plots. We proposed a relief mosaic that exploits

ambient occlusion highlighting differences between similarly col-
ored tiles, introduced a regression plane as a diamond cut that
reveals point distributions, and emphasized trends or clusters in
sparse regions using amber inclusions. We showed that our tech-
niques can be implemented in real time on the GPU. Based on three
usage examples, we generated expressive visualizations that in-
crease the information content of hexplots, and showed, supported
by a user study, that honeycomb plots can be understood and inter-
preted in short time.
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