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Abstract—Spatio-temporal modelling is an emerging research
area due to the increasing availability of sensor data collected
across space and time. The models are build either with a model-
driven or data-driven approach. The former often results in
complex monolith models that are not suitable for lightweight
Edge deployment. The latter requires a vast amount of data and
may not provide an overall good performance. Consequently, the
data-driven approach is being used to substitute only parts of
model-driven outputs, by creating micromodels that tackle spe-
cific scenarios. The main contribution of this paper is a definition
and demonstration of the process for finding such scenarios for
which a spatio-temporal model could be improved or replaced by
a micromodel and deployed on Edge. The process is demonstrated
on an example of a Numerical Weather Prediction model (NWP),
namely its outputs of temperature and precipitation. NWP is
evaluated using black-box testing considering the specificity of
spatial and temporal components, in both normal and extreme
conditions. The novelty of this process is its ability to highlight
weaknesses of the existing expert models and suggest scenarios
in which the models can be improved and deployed on the Edge.

Index Terms—Model validation, data-driven approach, ex-
treme events, Numerical Weather Prediction (NWP), Machine
learning (ML).

I. INTRODUCTION

IN the era of huge automatic data collection using variety
of sensors, spatio-temporal data is gaining more attention

[1] [2]. The specificity of such data comprises both spatial
and temporal attributes. Spatio-temporal data is the base
for many applications, such as transportation, climate, Earth
science, etc. Related models represent the temporal change
of spatial objects or phenomena over time [3], making them
excellent candidates for the Edge computing [4] paradigm.
Consequently, the data collected at certain locations can be
analysed, modelled, and used at the same location without
sending a vast amount of data to the Cloud and back.

There are two approaches when creating the models: a
model-driven and data-driven approach [5]. The model-driven
approach (also called a knowledge-based or physical models)
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the Research Department of Ericsson Nikola Tesla, Croatia (e-mail:
ivana.nizetic.kosovic@ericsson.com). D. Sokol is with the Faculty of Science,
Split, Croatia.

Digital Object Identifier (DOI): 10.24138/jcomss-2022-0092

is based on domain knowledge. The model simulates the
behaviour describing the laws of the domain (e.g. kinematics,
dynamics, thermodynamics, etc.). The data-driven approach,
enabled by machine learning [6] [7], exploits data to automat-
ically learn the patterns that occur in a system or a process.

A. Problem Statement

The model-driven approach relies on a deep understanding
of a system or a process. This leads to the creation of complex
monolith models with high modelling and execution costs.
Such models commonly cannot leverage the advantages of
the Edge paradigm. Data-driven models are easier to build
and use. Although data-driven models need a vast amount of
data to learn variations in data, they can easily be divided
into smaller models, referred to as micromodels [8]. This is
especially applicable considering the spatio-temporal nature of
the data. Such micromodels are specialized for a particular task
or a particular piece of data [8]. They might not perform well
on general problems, but can be very effective when solving
specific problems. Finally, micromodels can be small enough
to run on Edge devices.

To find the potential scenarios for micromodels, the original
model should be properly evaluated in chosen scenarios, con-
sidering both the spatial and temporal properties of the model.
Moreover, the model should be additionally evaluated for
extreme events. Extreme events are one of the major concerns
in Earth sciences [9] which highly utilize spatio-temporal data.
Internal mechanisms of the system, described by model-driven
models, are known. Accordingly, it is common that model-
driven models are evaluated using white-box testing (similar to
verification) [10]. Such an approach is well suited for detecting
defects in the internal structure of the model. However, it might
not be good in revealing scenarios where micromodels could
be applied to improve performance.

B. Related Work

At the 2021 Artificial Intelligence Summit in New York, the
presentation on machine learning challenges with micromod-
elling broke the myth that having more data is always better
[11]. In many cases, modelling specific task on small amounts
of data can yield better results. Lately, many companies have
embraced the concept of micromodelling. Microsoft [12] is
finding micromodels scalable for model training and training
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them in parallel. Companies claim that micromodels ease their
businesses and produce better predictions [8] [13] [14]. In [15]
the idea is to move away from big comprehensive models to
multiple micromodels trained to solve only a fragment of a
complex system in the software engineering process.

An example of a micromodel use is [16], in which the
authors built the task-specific models for mental health. In
[12] authors present a set of simpler models for optimizing
big data workloads. There are many other examples of using
micromodels that replace part of the complex domain expert
system. One of the examples is the replacement of a pyranome-
ter (which is the important part of the smart building managing
systems) with the low-cost set of sensors and software [17].
Another example is an early estimation of seawater quality,
replacing a complex microbiological analysis of the seawater
sample [18]. In many cases, they are not called “micromodels”
explicitly, but the concept remains the same.

In the above mentioned research, the scenarios in which
micromodels are deployed are already known, recognized by
the domain expert. In cases where there is no prior knowledge
on potential scenarios for micromodels, the model itself should
be evaluated. In that way, one will be able to pinpoint the task
candidates for micromodels.

In the examples of Numerical Weather Prediction (NWP)
reports [19] [20], the models are evaluated using white-box
testing. In [19] the verification is performed by presenting the
model change over the years. The model is compared to other
weather forecast models, against various model configurations.
Similarly, in [20] the authors evaluate the ALADIN model.
They claim that the ALADIN model forecasts highly depend
on the resolution of the model, data used by the model, and
initial parameters of the model. They also suggest that the
model is not suitable for weather events characteristics typical
for Croatia. They do not provide the error for forecasting
parameters considering the spatial or temporal variability,
which may reveal niches where micromodels could be applied.

Although pointing out model weaknesses, these reports aim
to enhance the internal structure of such monolith models.
Such models still may continue to fail in certain scenarios and
still may not be suitable for the forthcoming Edge deployment.

C. Contributions of the Paper

Our approach is to use black-box testing [10] for model
evaluation. Unlike white-box testing, black-box testing pre-
tends that the internal mechanisms of the system are unknown.
Accordingly, the model-driven spatio-temporal model is thus
evaluated considering the specificity of spatial and temporal
components, rather than its internals. The model is evaluated in
both normal and extreme conditions. Following this approach,
we can find scenarios in which the original complex spatio-
temporal models could be improved, preferably replaced by a
micromodel, and deployed on Edge.

To demonstrate this process, the Numerical Weather Pre-
diction (NWP) model is taken as a use case, representing the
model-driven spatio-temporal model. The great potential of
deep learning and machine learning models has been recently
recognized as the aid to the weather prediction process [21]

[22]. These models have the ability to discover hidden patterns
that are not part of the traditional NWPs [23]. Furthermore,
data-driven models could be useful in scenarios in which the
existing model fails to model the phenomena well. These
scenarios are the perfect candidates for micromodels. The
process of finding such scenarios is demonstrated on the NWP
model outputs of two parameters: temperature and precipita-
tion. The outputs are available on the webpage of the public
service (Croatian Meteorological and Hydrological Service -
DHMZ [24]). They are compared with the measurements from
standard meteorological stations taken as the ground truth. The
measurements are available on the webpage of the Reliable
Prognosis service [25]. The analysis is performed on the 19
months data for six locations (cities) in Croatia.

Accordingly, the contributions of this paper include:
• the definition of the approach of searching for scenarios

in which the original spatio-temporal model could be
improved.

• the demonstration of the above approach on the NWP
model.

D. Structure of the Paper

The rest of the paper is organized as follows. In the next
section, the overview of weather forecasting models is given.
Section III consists of the descriptions and insights into the
datasets used in the analysis. The explanation of our analysis
approach is given in Section IV. The Section V presents
the results of the analysis. This section is divided into three
subsections. The first subsection shows the behaviour of the
NWP model compared to the baseline models. The second
subsection demonstrates the analysis considering different time
and space aggregations. The third subsection shows the anal-
ysis of forecasting considering extreme weather conditions.
Finally, the discussion section summarizes the results and the
conclusion section proposes future research directions.

II. BACKGROUND

Three meteorological expert models are evaluated in this
study. The first is the Numerical Weather Prediction (NWP)
model which serves as the main model being examined while
searching for potential micromodels. Two baseline models
serve for evaluating the performance of NWP, which are
also used to indicate scenarios where micromodels may be
beneficial.

A. Numerical Weather Prediction

The most common approach to forecasting future weather
(e.g., upper and surface air pressure, temperature, wind speed,
relative humidity, etc.) is NWP modelling. The concept of
NWP is to solve a set of partial differential equations that
simulate physical laws of atmosphere variables [26]. To solve
the equations, initial and boundary conditions are used. For
initial conditions (the estimation of the present state of the
atmosphere), weather observations from standard meteoro-
logical stations, atmospheric soundings, and remote sensors
(satellites) are used. Boundary conditions, which define the
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atmosphere’s state and the domains’ edges, depend on the
region which is being simulated. For example, the whole Earth
will be taken in global models, the continent or part of the
continent for regional models, etc.

The data used for initial conditions are transformed to form
grid-shaped data. Global models have a typical horizontal
resolution of around 100 km and vertical resolution of 25–50
hectopascal [27]. The prediction values are not taken solely
by running NWP, rather the data are additionally processed
during the phases of data assimilation and post-processing. It
can be seen that the NWP models become better and better
through the years [19]. Modern NWPs exploit an ensemble of
forecasts built on slightly different initial conditions and take
ensemble mean to produce a single forecast [23] [27].

Croatian Meteorological and Hydrological Service (DHMZ)
provides forecast outputs based on two NWP models: the
regional Aire Limitée Adaptation dynamique Développement
InterNational (ALADIN) [28] and the global European Centre
for Medium-Range Weather Forecasts (ECMWF) [29]. AL-
ADIN model produces forecasts four times per day (00 UTC,
06 UTC, 12 UTC, and 18 UTC) up to 72 hours ahead. The
horizontal resolution of this regional model is 8 km with
narrowed areas in Croatia where dynamic adaptation enables
forecasts with a horizontal resolution of 2 km. This model has
been continuously developed by the experts [30]. ECMWF’s
model, as a global model, is developed and executed in
ECMWF headquarters in Reading, UK. Their forecasts and
other data are directly available to their Member and Co-
operating States [31]. This model produces forecasts on a wide
temporal range: from medium (up to 15 days), extended (up to
42 days) to long range (up to several months). For the purposes
of this article, we focus on ECMWF’s medium-range forecasts
that are available twice a day (00 UTC and 12 UTC) up to 7
days ahead, with a horizontal resolution of 16 km [29].

In this paper, the aim is to evaluate the final outputs of
the NWP model, which are available to the public, Therefore,
the complexity of decisions being taken during the process is
neglected during our evaluation.

B. Baseline Models

For the sake of comparison, two simple models are also
evaluated: the persistence model and the model based on cli-
matology. They are considered important baselines in weather
forecasting. They are often used as a reference for determining
the performance of the observed model, in our case the NWP
model [32].

On the one hand, the persistence model assumes that the
next forecast value is the same as the current value. In terms
of the weather forecast, the persistence model will predict
the same values for all future timestamps. On the other
hand, climatology refers to the average values of observed
phenomena for a certain space and time over a certain cli-
mate period (usually 30 years). Usually, averaged values in
climatology are based on a daily or monthly time scale. In
this paper, to be able to fairly compare the NWP model with
climatology, we constructed the model based on climatology.
It works as follows: the average of 15 years of data values

for certain phenomena is taken for each 3-hour periods. The
model based on climatology will predict the values for the
timestamps ahead as the average value of past years. This is
done regardless of the year at the time of of forecasting.

III. MATERIALS

Two datasets are used to conduct this study. One is the
dataset based on the Croatian Meteorological and Hydrological
Service (DHMZ) weather forecasts, and the other one includes
the actual meteorological measurements acquired from the
Reliable Prognosis webpage [25]. The datasets are combined,
filtered, and prepared for analysis as described in more detail
at the end of this section.

A. Forecasts Dataset

The dataset for 7-day forecasts contains the data from 4th
February 2020 to 21st September 2021 for 85 locations in
Croatia. The final forecast outputs that comprise two models:
ALADIN [20] (from the 1st to the 3rd day of forecast) and
ECMWF [33] (from the 4th to the 7th day of forecast).
The forecasted values are given in the steps of three hours.
This output is updated by the DHMZ multiple times in a
day, producing multiple outputs for the same forecasted time.
We took only the first run of the forecast while discarding
the updates. The original dataset contains several weather
parameters. We chose temperature and precipitation for further
analysis.

The dataset contains the following information:
• forecast time (date and time - CET)
• location for which the forecast is made (city name)
• predicted precipitation (in mm/3h)
• predicted temperature (in degrees Celsius)
• time when the forecast was generated by the model (date

and time - CET)
• model run (hour of the day - 00, 06, 12 or 18 UTC)
Date and time data are converted from CET to UTC, with

regards to daylight savings. As forecasts are given for every
three hours, this produces forecast times of 00:00, 03:00,
06:00, etc.

The last day of the forecast (the 7th day) has forecast times
every six hours. Since the exact hours vary, the 7th day is
removed from the analysis for all locations.

There are around 3.8% of missing forecasts, mostly in May
2020. Consequently, some of the timestamps have too few
forecast values. Timestamps with less than 50 % of forecast
values are removed from the dataset.

B. Measurements Dataset

The actual measurements of temperature and precipitation
for 100 locations in Croatia are downloaded from the archive
of the Reliable Prognosis webpage [25] for the period from
1st January 2005 to 31st December 2021. The dataset is used
twofold: to produce the model based on climatology (from
the year 2005 to 2019) and to evaluate the NWP and baseline
models (from the year 2020 to 2021). The dataset includes
more variables than the forecast dataset from III-A.
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Fig. 1. Locations in Croatia selected for the analysis

For further analysis, only those needed for the paper are
selected:

• local time (UTC + 1h)
• temperature (in degrees Celsius)
• precipitation (in mm/6h and mm/12h)
Precipitation was given in millimeters per different time

intervals; mainly during the last 6 and 12 hours. As these time
intervals were almost always regularly exchanged one after
another, it was possible to deduce the amount of precipitation
every 6 hours for all precipitation records. To match the three-
hourly forecasts, the precipitation amounts were then averaged
and divided into 3-hour bins. Several precipitation outliers
were removed as they were larger than the other precipitation
values by two orders of magnitude. This produced a loss of
only 7 data points, mainly in 2009.

C. Analysis Datasets

The analysis is performed on two continuous variables:
temperature and precipitation. Out of all locations, six cities
(Dubrovnik, Split, Zadar, Rijeka, Zagreb, and Osijek - see
Figure 1) have been considered for two reasons. First, they
are the largest cities in different regions of Croatia. Therefore,
they cover a variety of climates. Four of them are coastal
cities (Dubrovnik, Split, Zadar, Rijeka) and two are continental
cities (Zagreb, Osijek). The other reason is that there is a large
volume of historical weather data available for these cities.

Due to the missing data, there is some discrepancy between
the number of timestamps that are preserved for each location.
To be able to fairly compare locations, those timestamps that
are present for each location are preserved. The final dataset
consists of 4081 forecast timestamps of a certain parameter
for each of the six locations. Characteristics of the selected
dataset by locations are depicted in Figure 2, along with the
climatology data.

Figure 2a) depicts temperatures and Figure 2b) depicts
precipitation. The evaluation dataset is represented in orange
and the climatology dataset in blue. Wide boxes represent 50%
of data. Thin vertical lines at the beginning and at the end
of the boxes are the minimal and the maximal values. The

medians are marked with thick vertical lines. The precipitation
values for measurements with precipitation higher than zero
(”no precipitation” values) are excluded from the right hand
side of Figure 2b). Most of the measurements have a small
amount of precipitation (below 1mm/3h as can be seen from
the right hand side of the graph). Therefore, the values are
presented on a logarithmic scale of the original values. The
percentage of values taken on the right-hand side of the graph
is presented on the left-hand side. Around 75% to 82% data
are with the precipitation value zero, meaning there is no
precipitation.

IV. METHODS

In this study, we utilize the black-box evaluation approach,
by examining model outcome errors considering spatial and
temporal variability. Consequently, the evaluation metric used
across the evaluation process in this paper is the root mean
squared error (RMSE) [34] given by the formula:

RMSE =

√√√√ n∑
i=1

(vi − v̂i)2

n

where vi is an actual measurement value and v̂i is the
forecasting value for i-th observation.

The errors of the model are shown as a function of the
forecast lead time with a 3-hour resolution. This means that
the errors depict the forecast 3, 6, 9, 12, .., 144 hours ahead
(see Figure 3 - a row represents a future timestamp, and a
column represents a lead time).

In our search for micromodels, we perform three groups
of evaluation tests, each of which consists of several sub-
evaluations, namely:

A. Model comparison. This analysis aims to compare differ-
ent weather prediction models.

1. Comparison of NWP with baseline models. NWP
model is compared with two baseline models: the
persistence model and the model based on climatology.
The evaluation is presented considering a change of
RMSE when changing lead time for all locations
together. Residuals for each model are analyzed for
each location separately.

2. Comparison of NWP model runs. Different NWP mod-
els (models with different runs) are compared to each
other, for each location separately.

B. NWP model performance considering space and time
differences. This analysis answers how the NWP model
differs considering different subsets of data regarding
space and time.

1. Location differences. Forecasts for each location are
considered separately.

2. Seasonal differences. Seasonal forecasts (winter,
spring, summer, and autumn) are compared for each
location.

3. Differences in time of the day. Forecasts for day and
night are compared for each location.
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(a) Temperature (b) Precipitation

Fig. 2. Descriptive analysis for (a) temperature and (b) precipitation for six locations in Croatia for a 15-years climatology and evaluation dataset.

Fig. 3. Example of NWP predictions for one location for one day considering
time lags.

C. NWP model performance for extreme conditions. This
analysis aims to compare the model results on a subset
of extreme conditions, for each location separately.
Two types of anomalies are considered in the analysis:
value anomalies and delta anomalies. Value anomalies are
a type of extreme conditions which describe deviations
from the expected values (above or below a certain per-
centile). Delta anomalies are a type of extreme conditions
which describe high changes in values (below or above
a certain percentile).

Results of the evaluation of the NWP model are presented in
the next section (Results). The enumeration in the next section
follows the enumeration introduced here. The suggestions of
the scenarios in which the micromodels could be deployed are
given at the end of the subsections.

V. RESULTS

A. Model Comparison

In this section, we compare the NWP model with baseline
models (both the persistence model and the model based on
climatology) and we compare different NWP models (models
with different runs).

1) Comparison of NWP Model with Baseline Models: The
comparison of the baseline models and the NWP model for
temperature forecast for all six locations in Croatia is given in
Figure 4a. The error for the NWP model (red) increases as the
leap time increases (as expected) from around 2°C for 3 hours

ahead up to around 3°C for 6 days ahead. The model based
on climatology (blue) is constant - its ”forecast” is always the
same, regardless of the lead time. However, small alternation
can be seen in the Figure, due to the different underlying
subsets of the evaluation dataset. For example, the timestamp
at 15:00 UTC has forecasts of 3, 9, 15 hours, etc. lead time, but
no forecast of 6, 12, 18 hours, etc. lead time, since the forecast
is generated every six hours (see Figure 3). The model’s error
is around 3.8°C.

The persistence model (yellow) shows daily periodicity in
error, showing smaller errors every 24 hours. This is expected
since the model ”forecasts” the future values to be the same
as the present values. The temperature value for the next day
at the same time of the day is likely to be predicted with a
smaller error than the value for the other part of the day. The
error of the persistence model by lead time goes from 3°C to
7°C.

The comparison of the baseline models and the NWP model
for precipitation for all six locations in Croatia is given in
Figure 4b. The error for the NWP model (red) and the error
for the model based on climatology (blue) are quite similar
(around 2 mm/3h). The largest error is achieved for the
persistence model (yellow - around 2.5 mm/3h). The errors for
each of the models are similar regardless of the lead time. The
error is calculated for all timestamps in the evaluation dataset.
Around 80% of the data in the dataset are 0 mm, meaning
’No precipitation’ (as it is shown in section III-B). Most of
the precipitation values are below 1 mm/3h, with several events
of heavy rain (with a maximum value of 150 mm/3h).

An additional analysis is performed to compare residuals
of the forecasts for different locations and different models
(see Figure 5). The NWP model has the smallest spread,
while the persistence model has the largest spread. The NWP
tends to slightly underestimate locations: Dubrovnik, Split, and
Rijeka; and slightly overestimate Osijek. The model based on
climatology has the mean closest to zero.

A comparison of precipitation residuals of the forecasts for
different locations and different models is given in Figure 6.
The first subfigure 6a) illustrates how good the models are
in forecasting the precipitation as if it were a classification
problem (true - precipitation, false - no precipitation). Both
NWP and persistence models are good in predicting no precip-
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Fig. 5. Residual error spread for temperature, for each location and models:
NWP, climatology, and persistence.

itation (TN). For all locations except Rijeka, the best model for
predicting the presence of precipitation is the model based on
climatology. Rijeka is a location with high amounts of precip-
itation - see Figure 2. The best model for Rijeka in predicting
the presence of precipitation is NWP (TP). The model based
on climatology also tends to slightly underestimate the amount
of precipitation. Subfigure 6b) shows the spread of residuals
of models in forecasting the exact amount of precipitation,
in TP situations. The lowest spread is achieved by the model
based on climatology. The NWP and the persistence model
show almost the same behaviour. In subfigure 6c) the spread
of residuals of models in FN situations is shown. This includes
cases when models predicted no precipitation when the actual
precipitation was above zero. The lowest spread is achieved
by the NWP model. Finally, subfigure 6d) presents the spread
of residuals in FP situations. This includes cases when the
models predicted precipitation above zero when the actual
precipitation was zero. Significantly lower spread is achieved
by the model based on climatology.

2) Comparison of NWP Model Runs: The evaluation
dataset used in this paper consists of forecasts generated by

the NWP models four times per day (run = 00, 06, 12, and
18 UTC), as described in section III-A.

Both the temperature errors and precipitation errors by
model runs are shown in Figure 7 The error behaviour of each
run is periodical. For temperature (Figure 7a)), lower errors are
achieved for the middle-of-the-day forecasts. For example, a
temperature forecast with run 00 UTC will give the lowest
error 12 hours ahead, the one with run 12 UTC, 24 hours
ahead, etc. For precipitation (Figure 7b)), lower errors are
achieved for the afternoon forecasts. For example, precipitation
forecast with run 00 UTC will give the lowest error 18 hours
ahead, the one with run 12 UTC, 6 hours ahead, etc.

B. NWP Model Performance, considering Space and Time
Differences

In this section, we evaluate the NWP model considering
different subsets of data regarding space and time.

1) Location Differences: To check for potential location
differences, NWP model temperature error is shown separately
for each location in Figure 8a. The graph shows the behaviour
of forecast errors six days ahead by location. There is a
difference in forecast error behaviour for the first three days
compared to the next three days of the NWP forecast. This is
the consequence of different NWP models used to generate
forecasts: the first three days are forecasts from ALADIN
and the next three days are forecasts from the ECMWF’s
model. Furthermore, there are differences in errors regarding
locations. The behaviour most similar to the one in figures
4 and also the most expected behaviour is for location Split
(dark green) - the error slightly increases as the lead time
increases. The same behaviour for the first three days is shown
for Dubrovnik (dark blue), but its error unexpectedly increases
after the third day (from 2°C to 3°C). Even more unexpected
behaviour can be seen for the set of locations: Osijek, Zagreb,
Zadar, Dubrovnik, and Rijeka, for which the forecast error is
higher for the first three days than for the next three days. For
example, for Osijek, the forecast error increases up to even
3°C in the first three days and then decreases to around 2°C.
For some locations, an error for the first three days forecast
shows daily periodicity.

NWP model precipitation error is shown separately for
each location in Figure 8b. The largest error (4 mm/3h) is

(a) Temperature (b) Precipitation

Fig. 4. Error (RMSE) of NWP and baseline models for (a) temperature and (b) precipitation.
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(a) Precipitation classification error

(b) Precipitation error for TP (c) Precipitation error for FN (d) Precipitation error for FP

Fig. 6. Precipitation error spread considering true positives, false negatives, true negatives, and false positives. (a) Percentage of precipitation classification
errors; Residual error spread for precipitation (b) for true positives - TP, (c) for false negatives - FN, (d) for false positives - FP, for each location and model:
NWP, climatology, and persistence.

(a) Temperature (b) Precipitation

Fig. 7. Error (RMSE) of NWP model by runs (blue - run 00, red - run 06, green - run12, grey - run 18) for (a) temperature and (b) precipitation.
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(a) Temperature (b) Precipitation

Fig. 8. Error (RMSE) of NWP model for different locations for (a) temperature and (b) precipitation.

(a) Dubrovnik (b) Split (c) Zadar

(d) Rijeka (e) Zagreb (f) Osijek

Fig. 9. Temperature error for different locations by runs

(a) Dubrovnik (b) Split (c) Zadar

(d) Rijeka (e) Zagreb (f) Osijek

Fig. 10. Precipitation error for different locations by runs
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achieved for Rijeka, while the smallest error (1 mm/3h) is
achieved for Osijek. Rijeka has a significantly larger error than
other locations. Rijeka has the largest amounts of precipitation
(depicted in section III-B). This could be the reason for large
errors for that location.

Additionally, we also evaluate different NWP models (by
runs) for each location separately. As previously described,
the error behaviour of each run is periodical. This can be
seen for each location as well, both for temperature and the
precipitation (Figure 9 and Figure 10). The temperature graphs
(Figure 9) show the difference in the forecast error amplitude
for the first three and the next three days, which is not
consistent for each location. For example, errors in temperature
forecasts for Split and Dubrovnik are more stable in the first
three days than in the next three days. The opposite behaviour
is seen for Zagreb and Osijek, while Rijeka has the most stable
and Zadar has the most unstable error behaviour for all lead
times. The graphs of the precipitation error for each location
by model runs (Figure 10) show the most unstable results for
Rijeka. For Rijeka, the error varies from 2 mm/3h up to 5
mm/3h. The lowest errors are achieved for Zadar and Osijek
(around 1 mm/3h).

2) Seasonal Differences: The comparison of errors regard-
ing the season (winter, spring, summer, and autumn) is given
in Figure 11 for each location. The behaviour again differs
for different locations. For example, the temperature error for
Split is the smallest in the summer (1.5°C-2°C) and the largest
in the winter (2°C-2.5°C), in the first three days. In the next
three days, the behaviour is the opposite - the error is the
smallest for the winter and the autumn (1.5°C-2.5°C) and the
largest for the summer (2.5°C-3°C). For Zagreb, Rijeka, and
Osijek, the difference is present in the first three days, while
quite similar results are gained for each season for the next
three days. For Zagreb and Osijek, the largest errors in the
first days are achieved for the summer, while for Rijeka, the
largest errors are achieved for the winter. Dubrovnik has the
most stable results, although the jump in error after the third
day is visible for each season. The largest jump is shown for
autumn (almost 2°C difference between the first three days
and the next three days).

The comparison of precipitation errors in different seasons
(winter, spring, summer, and autumn) is given in Figure 12
for each location. The behaviour again differs for different
locations. Split, Dubrovnik and Zadar achieve the largest error
for the autumn (around 3 mm/3h, 4 mm/3h, and 4 mm/3h
respectively). These locations also achieved the lowest error
for the spring and the summer (around 1 mm/3h). Zagreb and
Osijek have more similar results for each season, although
slightly larger errors are achieved for the summer (around 2
mm/3h and 1 mm/3h respectively). The smallest errors are
achieved for Osijek for the summer (around 0.5 mm/3h).

3) Differences in Time of the Day: The comparison of
errors regarding the time of the day (day and night) is given
in Figure 13. The error is in general smaller for day values.
The exception is Split, which has a smaller error for the night
after the third day.

The comparison of precipitation errors regarding the time
of the day (day and night) is given in Figure 14. The error
is quite similar for day and night for all locations, except for
Rijeka.

C. NWP Model Performance for Extreme Conditions

In this section, the NWP model is evaluated only with regard
to extreme values, and the results are compared to the results
on the whole dataset. Two types of extremes are taken into
the analysis: value anomalies and delta anomalies.

To subset the value anomalies, the thresholds are taken from
the Climate Explorer [35] for each of the six locations (based
on 30 years of data from 1990 to 2019). The temperatures
above the 95th percentile of the maximum daily temperatures
and the values below the 5th percentile of the minimum daily
temperatures are considered as value extremes. Since we are
interested only in extremely high (not extremely low) precip-
itation, the precipitation above the 90th percentile of average
daily precipitation is considered as value extreme. Percentiles
are calculated based on climatology, and the evaluation is
performed on the same dataset as in the previous sections.

For delta anomalies, all consecutive changes in values in
the dataset consisting of 5 years of data (from 2015 to
2019 - from (III-B) are calculated. The 5th and the 95th
percentile are calculated for each location. Changes in the
evaluation dataset that are below the 5th or above the 95th
percentile are considered delta extremes for both temperature
and precipitation. The amount of both extreme types filtered
in this procedure is given in Table I.

Temperature extremes for each location are depicted in
Figure 15. The RMSE is higher for both conditions that belong
to anomalies than the RMSE on the whole dataset. In most
cases, worse results are achieved for value anomalies.

Precipitation extremes for each location are depicted in
Figure 16. For all locations, the RMSE is significantly higher
for events that belong to value anomalies. The largest error
is achieved for Rijeka (around 25mm/3h). Compared to the
results for temperatures, the NWP is worse in predicting
extreme precipitation.

VI. DISCUSSION

In the previous sections, the analysis indicates many op-
portunities for model improvement. When comparing models,

TABLE I
NUMBER OF VALUE ANOMALIES AND DELTA ANOMALIES ON EVALUATION

DATASET FOR TEMPERATURE

Temperature Precipitation

Location Nr. of value Nr. of delta Nr. of value Nr. of delta
anomalies anomalies anomalies anomalies

Dubrovnik 125 176 77 356

Split 151 175 89 291

Zadar 584 181 89 410

Rijeka 61 166 72 396

Zagreb 283 173 71 437

Osijek 88 173 67 410
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the baseline model based on climatology can yield forecasting
almost as accurate as the NWP model considering temperature
(Figure 5). There is room for improvement considering the
precipitation error, especially when the precipitation is present.
The model based on climatology shows better results when
predicting the presence of precipitation. The same model
shows the worst results when predicting no precipitation
(Figure 6). That indicates that the combination of those two
models can yield better overall accuracy. The benefit of using
the model based on climatology instead of the NWP model is
its speed and ease of deployment. The model with different
runs shows very different but regular forecasting errors (Figure
7), leaving room for improvement. Combining the forecasting
from different runs into one forecast could result in better
overall accuracy, for both temperature and precipitation. For
example, using run 06 for the first 6 hours, run 00 for the

next 6 hours, etc. for precipitation will yield higher overall
accuracy.

The analysis shows that the development of models for
specific locations could lead to higher accuracy (Figure 8).
This is especially visible in some locations. An example
is Dubrovnik which, compared to other locations, has an
extremely large temperature error from the third to the sixth
day of the forecast. Similarly, compared to other locations,
Rijeka has an extremely large precipitation error.

Considering seasonal differences, the improvement regard-
ing temperature could be achieved for Split in the summer and
Rijeka in the winter period (Figure 11). Spring and autumn
precipitation forecasts could be improved for Rijeka, as well
as for Split and Dubrovnik (Figure 12). Furthermore, the
difference in time of the day is also evident (Figure 13).
Improvement could be achieved for temperature forecasts, both

(a) Dubrovnik (b) Split (c) Zadar

(d) Rijeka (e) Zagreb (f) Osijek

Fig. 11. Temperature error for different locations by seasons

(a) Dubrovnik (b) Split (c) Zadar

(d) Rijeka (e) Zagreb (f) Osijek

Fig. 12. Precipitation error for different locations by seasons
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(a) Dubrovnik (b) Split (c) Zadar

(d) Rijeka (e) Zagreb (f) Osijek

Fig. 13. Temperature error for different locations by the time of a day

(a) Dubrovnik (b) Split (c) Zadar

(d) Rijeka (e) Zagreb (f) Osijek

Fig. 14. Precipitation error for different locations by the time of a day

for Dubrovnik nightly forecasts and Split daily forecasts after
the third day.

Finally, the evaluation of extremes shows that the extreme
temperatures could be better predicted. This is especially
visible considering the temperature in Split and Rijeka after
the third day of forecast (Figure 15). Precipitation extremes
could be predicted better for all the locations. This is especially
evident for Rijeka (Figure 16).

To summarize, there is a potential for improvement for each
location, time of the day, and season for both temperature
and precipitation. Precipitation is generally the parameter
that could be forecasted much better, especially considering
locations with heavy precipitation that occurs often.

VII. CONCLUSION

The paper has demonstrated the process of searching for
scenarios in which the spatio-temporal model could be im-
proved or replaced by a micromodel and deployed on Edge.
The process was performed on the use case of a Numerical
Weather Prediction model for temperature and precipitation.
Black-box testing is used for evaluation, without taking into
consideration the model structure. The dataset used for evalu-
ation consists of outputs of temperature and precipitation for
six locations in Croatia are measured and forecasted every
three hours for 19 months. NWP was compared to the baseline
models, namely model based on climatology and persistence
model. The evaluation is performed considering the specificity
of spatial and temporal components, in both normal and
extreme conditions.
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(a) Dubrovnik (b) Split (c) Zadar

(d) Rijeka (e) Zagreb (f) Osijek

Fig. 15. RMSE of NWP for extreme temperatures

(a) Dubrovnik (b) Split (c) Zadar

(d) Rijeka (e) Zagreb (f) Osijek

Fig. 16. RMSE of NWP for extreme precipitation

The results show that there is a room for the improvement
in many scenarios. The detected scenarios can be the starting
point for developing micromodels, which can be baseline mod-
els, machine learning models, etc. Pointing to the weaknesses
of the existing model, such micromodels could result in better
accuracy. Other benefits of using such models instead of the
existing expert model are their speed and ease of deployment.

The process presented in this paper applies to any other
spatio-temporal model and can mostly be performed regardless
of the domain.
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“Forecasting Weather in Croatia Using ALADIN Numerical Weather
Prediction Model,” Climate Change and Regional/Local Responses, may
2013. [Online]. Available: https://www.intechopen.com/chapters/42619

[21] C. Irrgang, N. Boers, M. Sonnewald, E. A. Barnes, C. Kadow,
J. Staneva, and J. Saynisch-Wagner, “Towards neural Earth system
modelling by integrating artificial intelligence in Earth system science,”
Nature Machine Intelligence 2021 3:8, vol. 3, no. 8, pp. 667–674,
aug 2021. [Online]. Available: https://www.nature.com/articles/s42256-
021-00374-3

[22] M. Bonavita, R. Arcucci, A. Carrassi, P. Dueben, A. J. Geer,
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