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MATHEMATICAL ANALYSIS OF A MODEL FOR CHRONIC
MYELOID LEUKEMIA

Fatima Zohra Elouchdi Derrar, Djamila Benmerzouk and
Bedr’Eddine Ainesba

Abstract. In this paper, a mathematical analysis of a model describ-
ing the evolution of chronic myeloid leukemic with effect of growth factors
is considered. The corresponding dynamics are represented by a system
of ordinary differential equations of dimension 5. This system described
the interactions between hematopoietic stem cells (H.S.C), hematopoietic
mature cells (M.C), cancer hematopoietic stem cells, cancer hematopoietic
mature cells and the associated growth factor concentration. Our research
is, henceforth, carried out on the existence and the uniqueness of the so-
lution of this system. The next substantive concern will be a discussion
on the local and global stability of the corresponding steady states. Three
scenarios, however, corresponding to different actions of hematopoiesis on
stem cells (differentiate cells or both cells) are considered.

1. Introduction

Chronic myeloid leukemia (CML) is a cancer of the bone marrow and
blood. It accounts about 15 percent of newly diagnosed cases in leukemia in
the world. Most of these are adults with an average of diagnosis in 64 years,
but rare are those cases in children. CML grows very slowly over years in the
sense that a patient may have it for long time before symptoms are noticed.
Common signs of CML are anemia, splenomegaly, tiredness, weight loss, dis-
comfort and goes through 3 phases: chronic phase, accelerated phase and
blast phase. It affects a specific type of white blood cells which are known as
the myelocytes. In fact, it is myelo-proliferative disorder originating from the
myeloid hematopoietic stem cell. In turn, this results from the clonal expan-
sion of pluripotent hematopoietic stem cells containing the active BCR-ABL
fusion gene produced by a reciprocal translocation of the ABL gene to the
BCR gene in chromosomes 22 and 9 (see [13, 17]). This new chromosome is
named Philadelphia chromosome [4]. Through mitosis or division, thanks of
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growth factor, the multiplication of healthy cells is abundant and cancerous
cells do not respect the cellular mechanisms in their proliferation. After being
stimulated by a physiological signal, stem cells at rest start their renewing
and differentiating. The balance between them is named Homeostasis. Thus
CML has become one of the most extensively studied human malignancy.
Even if many interesting studies on CML are given (see [10, 19, 22]), many
information are unknown about the dynamic of how cancer cells are prop-
agated. During the last decade, many several advances are mainly based,
particulary, on advances in scientific solutions to capture the dynamics of
CML, one of those promising dynamics approaches includes mathematical
modeling by identifying interactions between all types of cells playing rule in
propagation of leukemia and using estimate parameters based on experimen-
tal advances. CML mathematical models do not suggest an exact solution but
provide useful results. Therefore, it is still a great need to continue studying
and developing existing models in order to adapt biological discovers and re-
cent clinical results and associate therapies [15, 25]. Those models are often
represented by ordinary differential equations, partial differential equations or
delay differential equations that represent different states of stem cells. For
more details see for example [5–7,11,20,23,27,31,32].

The models given in [1, 2, 14, 26] describe particularly the dynamics of
H.S.C population. Dingli and Michor [15] assumed that the H.S.C cancer-
ous cells compete with normal H.S.C cells. In their model, the regeneration
of H.S.C is governed by homeostasis, which controls the process of dividing
according to the total number of H.S.C. They have developed model that in-
volve H.S.C cells and M.C mature cells, where proliferation and death rates
are introduced and interactions are also considered between x0, x1, y0 and y1.

The regeneration of (H.S.C) is generated by Homeostasis of x0 represented
by a function ϕ whereas that of y0 is represented by function ψ (see [27]).

Ainseba and Benosman have developed a model given in [3] and proposed
a structured model where the function ϕ depends on ε1(x0 + y0) + ε2(x1 + y1)
and such that the function ψ depends on ε1(x0 +αy0) + ε2(x1 +αy1) , where
α ∈]0, 1[ is a coefficient of competition [18] and ε1, ε2 ∈ {0, 1}.

They have considered the following model:

(1.1)



dx0

dt
= nΦ(ε1(x0 + y0) + ε2(x1 + y1))x0 − d0x0

dx1

dt
= rx0 − (d− d2)x1

dy0

dt
= mΨ(ε1(x0 + αy0) + ε2(x1 + αy1))y0 − g0y0

dy1

dt
= qy0 − (g − g2)y1
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where

(1.2) Φ(ε1(x0 + y0) + ε2(x1 + y1)) = 1 − ε1(x0+y0)+ε2(x1+y1)
K

Ψ(ε1(x0 + αy0) + ε2(x1 + αy1)) = 1 − ε1(x0+αy0)+ε2(x1+αy1)
K

x0(t) is the number of normal hematopoietic stem cells (H.S.C) at time t,
x1(t) is the number of normal mature stem cells (M.C) at time t,
y0(t) is the number of cancer hematopoietic stem cells (H.S.C) at time t,
y1(t) is the number of cancer mature stem cells (M.C) at time t.

The parameters used in (1.1) - (1.2) are given in Table 1 given bellow and
come from [9]. The value of K (the bone morrow receiving capacity) changes
in each scenario as we shall see after.

Parameter Explanation
n Proliferation rate of normal (H.S.C) x0
d2 Proliferation rate of normal (M.C) x1
r Differentiate rate of normal (H.S.C) x0
d0 Death rate of normal (H.S.C) x0
d Death rate of normal (M.C) x1
m Proliferation rate of cancer (H.S.C) y0
g0 Death rate of cancer (H.S.C) y0
q Differentiate rate of cancer (H.S.C) y0
g2 Proliferation rate of cancer (H.S.C) y0
g Death rate of cancer (M.C) y1
K Bone morrow receiving capacity
α 0 < α < 1
ε1 ε1 ∈ {0, 1}
ε2 ε2 ∈ {0, 1}

Table 1. Parameters used in (1.1) – (1.2)

In this paper, we propose an extension of this model taking into account
the influence of the growth factor E on leukemia disease. This factor is studied
particularly in [30] and plays an important rule in evolution of CML.

Our paper is organized as follows: In Section 2, the mathematical model
of leukemia is proposed in details and three possible scenarios are set:

• scenario 1 corresponds to ε1 = 1 and ε2 = 0 where homeostasis acts
only on stem cells x0 and y0.

• scenario 2 corresponds to ε1 = 0 and ε2 = 1 where homeostasis acts
only on differentiate cells x1 and y1.

• scenario 3 corresponds to ε1 = 1 and ε2 = 1 where homeostasis acts
on stem cells x0 and y0 and on differentiate cells x1 and y1.
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In Section 3, the existence and uniqueness of a positive local solution of our
model is proved for all scenarios, existence and uniqueness of a positive global
solution is proved for scenario 1 and 3. The existence of steady states for
the three scenarios is studied in Section 4 (trivial, blast, no pathologic and
chronic states). In Section 5, local stability analysis for those steady states
is developed followed in Section 6 by a global stability analysis. Biological
interpretation of the obtained results is proposed and some perspectives are
set in Section 7.

2. Mathematical Model

In this paper, we consider the following five-dimensional model which is
an extension of the one proposed in [3, 9]:

(2.1)



dx0

dt
= nΦ(ε1(x0 + y0) + ε2(x1 + y1))x0 − d0x0

dx1

dt
= rx0 − (d(E) − d2)x1

dy0

dt
= mΨ(ε1(x0 + αy0) + ε2(x1 + αy1))y0 − g0y0

dy1

dt
= qy0 − g1y1

dE

dt
= −K0E(t) + a

1 +K1x
r0
0

where safe (M.C) cells x1 proliferate at a rate d2 and are eliminated at a rate
d(E) such that d(E) − d2 > 0.

In fact, the growth factor concentration E follows the evolution equation
[32]

dE

dt
= −K0E(t) + f(x0(t)).

The function f acts as negative feedback of the non proliferating (H.S.C)
population on the production of growth factor.

We assume that f is positive and decreasing and according to [2]:

f(x0(t)) = a

1 +K1x
r0
0
.

The associated growth factor concentration is given by

(2.2) dE

dt
= −K0E(t) + a

1 +K1x
r0
0
.

The studied population is divided into two compartments: hematopoietic
stem cells (H.S.C) and differentiated cells (M.C).



MATHEMATICAL ANALYSIS OF A MODEL FOR CML 205

In model (2.3), the death rate of normal differentiated cells d(E) under-
goes a Hill function evolution and according to [2], d(E) is given by

(2.3) d(E) = 1 − K1

K2 + E
.

In addition to the Table 1, the Table 2 lists the parameters used in our model.
All those parameters are assumed to be positive.

Parameter Explanation
d(E) Death rate of norma(l M.C) x1
K0 Clearing rate of growth factors
K1 Rate of maximum saturation of growth factors
K2 Rate of half saturation of growth factors
r0 Oscillation rate
a Absorption rate of E by cells

Table 2. Parameters used in model (2.3)

Moreover, in all what follows, we assume that
d0 < n, g0 < m, c = 1 − K1

K2
− d2 is positive.

Remark 2.1. As d(E)−d2 = 1− K1
K2+E −d2, then d(E)−d2 ≥ 1−K1

K2
−d2.

So as c = 1 − K1
K2

− d2 is positive, then d(E) − d2 is positive also.

3. Basic properties of model (2.3)

3.1. Existence of a positively invariant attracting set.

Proposition 3.1. The system (2.3) is positively invariant in the follow-
ing cone:

D = {(x0, x1, y0, y1, E) ∈ R5;x0 ≥ 0, x1 ≥ 0, y0 ≥ 0, y1 ≥ 0, E ≥ 0}

Proof. One has

at (0, x1, y0, y1, E) : dx0

dt
= 0,

at (x0, 0, y0, y1, E) : dx1

dt
= rx0 ≥ 0,

at (x0, x1, 0, y1, E) : dy0

dt
= 0,

at (x0, x1, y0, 0, E) : dy1

dt
= qy0 ≥ 0,

at (x0, x1, y0, y1, 0) : dE
dt

= a

1 +K1x
r0
0

≥ 0.
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Then the vector field is pointing in the direction of D and does not leave it,
so according to [28], this system is positively invariant.

3.2. Existence and uniqueness of solution. The Cauchy problem associated to
the model (2.3) is given by

(3.1)
{

Ẋ = F (X)
X(t0) = X0

where X = (x0, x1, y0, y1, E)T is defined on the time interval J = [0, T ] for
some T > 0 fixed, under fixed initial conditions (x0(0), x1(0), y0(0), y1(0), E(0)),
F : D → R5

+, X 7→ F (X), where F (X) is defined by

F (X) :=


nΦ(ε1(x0 + y0) + ε2(x1 + y1))x0 − d0x0

rx0 − (d(E) − d2)x1
mΨ(ε1(x0 + αy0) + ε2(x1 + αy1))y0 − g0y0

qy0 − g1y1
−K0E(t) + a

1+K1x
r0
0


Proposition 3.2. A local solution of the Cauchy problem associated to

(2.3) exists and is unique in D.

Proof. Since the function F is of class C1, then a local solution of the
Cauchy problem associated to (2.3) exists and is unique in D. This is due to
Picart-Lindeloff theorem [24].

Now, let us prove the global existence of the solution of the Cauchy prob-
lem associated to (2.3) for scenarios 1 and 3. In fact, it is sufficient to prove
that the corresponding solution is bounded in a convenient set Γ of D. Here
we shall consider

Γ =
{

(x0, x1, y0, y1, E) : 0 < x0 ≤ m1, 0 ≤ x1 ≤ rm1

c
,

0 < y0 ≤ m2, 0 ≤ y1 ≤ qm2

g1
, 0 ≤ E ≤ a

K0

}
,

where m1 = max
(
x0(0), 1

K(1 − d0
n )

)
and m2 = max

(
y0(0), 1

K
α

(
1 − g0

m

)).

Proposition 3.3. The Cauchy problem associated to model (2.3) admits
a global and unique solution defined on Γ for scenarios 1 and 3.

Proof. The first and third equations of model (2.3) are given in scenario
1 by

dx0

dt
= n

(
1 − (x0 + y0)

K

)
x0 − d0x0(3.2)

dy0

dt
= m

(
1 − (x0 + αy0)

K

)
y0 − g0y0(3.3)
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and in scenario 3 by
dx0

dt
= n

(
1 − (x0 + y0) + (x1 + y1)

K

)
x0 − d0x0(3.4)

dy0

dt
= m

(
1 − (x0 + αy0) + (x1 + αy1)

K

)
y0 − g0y0(3.5)

For those two scenarios, one has those corresponding majorations
dx0

dt
≤ n

(
1 − x0

K

)
x0 − d0x0

dy0

dt
≤ m

(
1 − αy0

K

)
y0 − g0y0

The solution of (3.2) and (3.4) can be compared to the solution of the
following Bernoulli equation with the same initial condition

dx0

dt
= n

(
1 − x0

K

)
x0 − d0x0

which is
x0(t) = 1

K(1 − d0
n ) + l exp(−(n− d0)t)

,

where l = 1
x0(0) −K

(
1 − d0

n

)
and x0(0) is assumed to be different from 0.

According to the comparison Theorem [24], the solutions of (3.2) and
(3.4) satisfy for all t ≥ 0,

x0(t) ≤ 1
K
(
1 − d0

n

)
+ l exp(−(n− d0)t)

.

Hence,
lim sup
t→+∞

x0(t) ≤ m1.

The solutions of (3.3) and (3.5) can be compared to the solution of the
Bernoulli equation with the same initial condition

dy0

dt
= m

(
1 − αy0

K

)
y0 − g0y0,

which is
y0(t) = 1

K
α (1 − g0

m ) + l′ exp(−(m− g0)t)
,

where l
′

= 1
y0(0) − K

α

(
1 − g0

m

)
and y0(0) is assumed to be different from 0.

According to the comparison Theorem, the solutions of (3.3) and (3.5)
satisfy for all t ≥ 0,

y0(t) ≤ 1
K
α (1 − g0

m ) + l′ exp(−(m− g0)t)
.
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Hence,
lim sup
t→+∞

y0(t) ≤ m2.

The second equation of (2.3) for scenarios 1 and 3 is given by
dx1

dt
= rx0 −

(
1 − K1

K2 + E
− d2

)
x1(3.6)

dx1

dt
≤ rm1 −

(
1 − K1

K2
− d2

)
x1.

In this case, the solution of (3.6) can be compared to the solution of the
following differential equation with the same initial condition

dx1

dt
+
(

1 − K1

K2
− d2

)
x1 = rm1,

which is
x1(t) = rm1

c
+
(
x1(0) − rm1

c

)
exp(−ct).

According to the comparison theorem, the solution of (3.6) satisfies for all
t ≥ 0:

x1(t) ≤ rm1

c
+
(
x1(0) − rm1

c

)
exp(−ct).

Hence,
lim sup
t→+∞

x1(t) ≤ rm1

c
.

The forth equation of (2.3) for scenario 1 and 3 is given by
dy1

dt
= qy0 − g1y1(3.7)

dy1

dt
≤ qm2 − g1y1

In this case, the solution of (3.7) can be compared to that of the following
differential equation with the same initial condition

dy1

dt
+ g1y1 = qm2,

which is
y1(t) = qm2

g1
+
(
y1(0) − qm2

g1

)
exp(−g1t).

According to the comparison theorem, the solution of (3.7) satisfies for all
t ≥ 0

y1(t) ≤ qm2

g1
+
(
y1(0) − qm2

g1

)
exp(−g1t).

Hence,
lim sup
t→+∞

y1(t) ≤ qm2

g1
.
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The fifth equation of (2.3), for scenarios 1 and 3, is given by
dE

dt
= −K0E + a

1 +K1x
r0
0

(3.8)

dE

dt
≤ −K0E + a.

In this case, the solution of (3.8) can be compared to the solution of the
following differential equation with the same initial condition

dE

dt
= −K0E + a,

which is
E(t) = a

K0
+ (E(0) − a

K0
) exp(−K0t).

According also to the comparison Theorem, the solution of (3.8) satisfies for
all t ≥ 0

E(t) ≤ a

K0
+ (E(0) − a

K0
) exp(−K0t).

Hence,
lim sup
t→+∞

E(t) ≤ a

K0
.

Finally, for scenarios 1 and 3, any solution of (2.3) that starts in R5
+ is

confined in Γ and since Γ is compact and positively invariant for model (2.3),
according to [28], there exists an unique global solution of the Cauchy problem
associated to (2.3) in Γ (for scenarios 1 and 3).

4. Existence of steady states

The steady states of (2.3) are the following:
• The trivial steady state S0 = (0, 0, 0, 0, E0) corresponds to the extinc-

tion of cell population, where E0 = a

K0
> 0.

• The no pathologic steady state Snp = (x0,np, x1,np, 0, 0, Enp) corre-
sponds to presence of normal cells without leukemic cells, where
Enp = a

K0
(
1 +K1x

r0
0,p
) , x0,np = K(1 − d0

n
)

and x1,np = r

d(En,p) − d2
x0,np.

• The blast steady state Sb = (0, 0, y0,b, y1,b, Eb) corresponds to presence
of leukemic cells without normal cells, where
Eb = a

K0
, y0,b = K

α

(
1 − g0

m

)
and y1,b = q

g1
y0,b.

• The chronic steady state Sc = (x0,c, x1,c, y0,c, y1,c, Ec) corresponds to
simultaneous presence of normal cells and leukemic cells, where
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x0,c = K

1 − α

(
1 − α+ d0α

n
− g0

m

)
, x1,c = r

d(Ec) − d2
x0,c

y0,c = K

1 − α

(
−d0

n
+ g0

m

)
, y1,c = q

g1
y0,c, Ec = a

K0
(
1 +K1x

r0
0,c
) > 0.

Now, put T1 := d0m

g0n
and T2 := 1

α

(
1 − g0

m

1 − d0
n

)
.

Theorem 4.1. For all the three scenarios:
• The trivial steady state S0 always exists.
• If n > d0 then the no pathologic steady state Snp exists.
• If m > g0 then the blast steady state Sb exists.
• If T1 < 1 < T2 then chronic steady state Sc exists.

Proof. Scenario 1: ε1 = 1, ε2 = 0:
In this case, homeostasis functions are given by

Φ(x0 + y0) = 1 − x0 + y0

K

Ψ(x0 + y0) = 1 − x0 + αy0

K

where α ∈]0, 1[. Therefore,
• E0 = a

K0
then the trivial steady state S0 always exists.

• x0,np = K(1−d0

n
), x1,np = r

d(Enp) − d2
x0,np, Enp = a

K0
(
1 +K1x

r0
0,np

)
Since d(Enp) − d2 > 0 then x0,np > 0 and x1,np > 0 if n > d0.
Then the non pathologic steady state Snp exists if n > d0.

• y0,b = K

α

(
1 − g0

m

)
, y1,b = q

g1
y0,b, Eb = a

K0
y0,b > 0 and y1,b > 0 if m > g0.
Then the blast steady state Sb exists if m > g0.

• x0,c = K

1 − α

(
1 − α+ d0α

n
− g0

m

)
, x1,c = r

d(Ec) − d2
x0,c,

y0,c = K

1 − α

(
−d0

n
+ g0

m

)
, y1,c = q

g1
y0,c, Ec = a

K0
(
1 +K1x

r0
0,c
) .

Then the chronic steady state Sc exists if T1 < 1 < T2.

Scenario 2: ε1 = 0, ε2 = 1:
In this case, homeostasis functions are given by{

Φ(x1 + y1) = 1 − x1+y1
K

Ψ(x1 + y1) = 1 − x1+αy1
K

Therefore,
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• x0,t = x1,t = y0,t = y1,t = 0 and Et = a
K0

> 0.
Then the trivial steady state S0 always exists.

• x0,np = d(Enp)−d2
r x1,np, x1,np = K(1 − d0

n ), y0,np = y1,np = 0, Enp > 0.
Then the no pathologic steady state Snp exists if n > d0.

• x0,b = x1,b = 0, y0,b = g1
q y1,b, y1,b = K

α

(
1 − g0

m

)
, Eb = a

K0
> 0.

Then the blast steady state Sb exists if m > g0 .

• x1,c = K
1−α

(
1 − α+ d0α

n − g0
m

)
, x0,c = d(Ec)−d2

r x1,c, y1,c = K
1−α

(
−d0
n + g0

m

)
,

y0,c = g1
q y1,c and Ec = a

K0(1+K1x
r0
0,c) .

Then the chronic steady state Sc exists if T1 < 1 < T2 .
Scenario 3: ε1 = 1, ε2 = 1:
In this case, homeostasis functions are given by{

Φ(x0 + y0 + x1 + y1) = 1 − x0+y0+x1+y1
K ,

Ψ(x0 + αy0 + x1 + αy1) = 1 − x0+αy0+x1+αy1
K

Therefore,
• E0 = a

K0
> 0 then the trivial steady state S0 always exists .

• x0,np = K(d(Enp)−d2)(1− d0
n )

d(Enp)−d2+r , x1,np = r
d(Enp)−d2

x0,np , Enp > 0.
Then the no pathologic steady state Snp exists if n > d0.

• y0,b = g1q
α(g1+q) (1 − g0

m ), y1,b = Kq
α(g1+q) (1 − g0

m ), Eb = a
K0

> 0 .
y0,b > 0 and y1,b > 0 if m > g0 .
Then the blast steady state Sb exists if m > g0 .

• x0,c = K(1−α− g0
m +α d0

n )
(1−α)(1+ r

d(Ec)−d2
) , x1,c = r

d(Ec)−d2
x0,c , y0,c = K( g0

m − d0
n )

(1−α)(1+ q
g1

) ,
y1,c = q

g1
y0,c , Ec > 0.

Then the chronic steady state Sc exists if T1 < 1 < T2.

5. Local stability analysis
The Jacobian matrix J of system (2.3) is given by

J(X) =


n ∂Φ

∂x0
x0 + nΦ − d0 n ∂Φ

∂x1
x0 n ∂Φ

∂y0
x0 n ∂Φ

∂y1
x0 0

r −d + d2 0 0 − ∂d
∂E

x1
m ∂Ψ

∂x0
y0 m ∂Ψ

∂x1
y0 m ∂Ψ

∂y0
y0 + mΨ − g0 m ∂Ψ

∂y1
y0 0

0 0 q −g1 0
−aK1r0x

r0−1
0

(1+K1x
r0
0 )2 0 0 0 −K0


5.1. Scenario 1.

Proposition 5.1.
1. The trivial steady state is LAS if n < d0 and m < g0.
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2. The no pathologic steady state and the blast steady state are LAS if
T1 < 1 < T2 .

3. The blast steady state is the unique LAS state if T2 > 1 and T1 > 1.
4. The no pathologic steady state is the unique LAS state if T1 < 1 and

T2 < 1.
5. The chronic steady state is unstable.

Proof. In this case, J is rewritten (and denoted J1) for this scenario as

J1(X) =


nΦ − d0 − nx0

K 0 −nx0
K 0 0

r −d+ d2 0 0 − k1
(K2+E)2x1

−my0
K 0 mΨ − g0 − mα

K y0 −mα
K y0 0

0 0 q −g1 0
−aK1r0x

r0−1
0

(1+K1x
r0
0 )2 0 0 0 −K0


Denote by

A1 = nΦ − d0 − n
x0

K
,

B1 = −nx0

K
,

C1 = −d+ d2,

D1 = − k1

(K2 + E)2x1,

F1 = mΨ − g0 − mα

K
y0,

L1 = −my0

K
,

G1 = −aK1r0x
r0−1
0

(1 +K1x
r0
0 )2 ,

so

J1(X) =


A1 0 B1 0 0
r C1 0 0 D1
L1 0 F1 αL1 0
0 0 q −g1 0
G1 0 0 0 −K0

 .

The corresponding eigenvalues of J1(X) are:
λ1 = −g1 < 0, λ2 = −d + d2 < 0, λ3 = −K0 < 0 and λ4 and λ5 satisfy
λ4 + λ5 = A1 + F1, λ4λ5 = A1F1 − B1L1. Hence J1(X) has three negatives
eigenvalues λ1, λ2 and λ3 for all steady states.

• At the trivial steady state. One has
A1 = n− d0, C1 = −d+ d2, F1 = m− g0, B1 = D1 = L1 = G1 = 0,
λ4 = A1 = n− do and λ5 = F1 = m− g0.
Then the trivial steady state is LAS if n < d0 and m < g0.
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• At the no pathologic steady state. One has
A1 = B1 = −nx0,s

K , F1 = m
(
1 − x0,s

K

)
, C1 = −d+ d2, L1 = 0,

λ4 = A1 < 0 and λ5 = F1,
λ5 < 0 if F1 < 0 i.e. if T1 < 1.
Then, the no pathologic steady state is LAS if T1 < 1.

• At the blast steady state. One has
A1 = n

(
1 − y0,b

K

)
− d0, B1 = D1 = G1 = 0, F1L1 = −my0,b

K ,
λ4 = A1 and λ5 = F1 < 0. Hence λ4 < 0 if T2 > 1.
Then the blast steady state is LAS if T2 > 1.

• At the chronic steady state. One has
A1 = B1 = −nx0,c

K , C1 = −d+ d2, F1 = −my0,cα
K , L1 = −my0,c

K .
Then λ4 and λ5 satisfy
λ4λ5 = A1F1 −B1L1 = mn

x0,cy0,c

K (α− 1) < 0 since 0 < α < 1.
Then the chronic steady state is unstable.

5.2. Scenario 2.

Proposition 5.2.

1. The trivial steady state is LAS if n < d0 and m < g0.
2. The no pathologic steady state and the blast steady state are LAS if

T1 < 1 < T2 .
3. The blast steady state is the unique LAS state if T2 > 1 and T1 > 1.
4. The no pathologic steady state is the unique LAS state if T1 < 1 and

T2 < 1.
5. The chronic steady state is unstable.

Proof. The Jacobian matrix is rewritten (and denoted J2) for this sce-
nario as

J2(X) =


nΦ − d0 −nx0

K 0 −nx0
K 0

r −d+ d2 0 0 − K1
(K2+E)2x1

0 −my0
K mΨ − g0 −mα

K y0 0
0 0 q −g1 0

−aK1r0x
r0−1
0

(1+K1x
r0
0 )2 0 0 0 −K0


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Denote by
A2 = nΦ − d0

B2 = −nx0

K
C2 = −d+ d2

D2 = − K1

(K2 + E)2x1

F2 = mΨ − g0

L2 = −my0

K

G2 = −aK1r0x
r0−1
0

(1 +K1x
r0
0 )2 ,

so

J2(X) =


A2 B2 0 B2 0
r C2 0 0 D2
0 L2 F2 αL2 0
0 0 q −g1 0
G2 0 0 0 −K0


• At the trivial steady state. One has
A2 = n− d0, B2 = D2 = G2 = L2 = 0, C2 = −d+ d2, F2 = m− g0.
In this case, J2(X) has three negative eigenvalues: λ1 = −K0, λ2 =
−g1, λ3 = C2 and the two others are given by λ4 = A2 and λ5 = F2.
So the trivial steady state is LAS if A2 < 0 and F2 < 0 i.e.if n < d0
and m < g0.

• At the no pathologic steady state. One has
A2 = L2 = 0, B2 = −nx0

K , C2 = −d+ d2, D2 = − K1
(K2+E)2x1,

F2 = mΨ − g0, G2 = −aK1r0x
r0−1
0

(1+K1x
r0
0 )2 .

J2(X) has four negative eigenvalues as:
λ1 = −K0, λ2 = −g1, λ3 + λ4 = C2 < 0, λ3λ4 = −rB2 > 0
and λ5 = F2, λ5 < 0 if F2 < 0 i.e. T1 < 1.
Thus the no pathologic steady state is LAS if T1 < 1.

• At the blast steady state. One has
A2 = nΦ − d0, B2 = F2 = G2 = D2 = 0,
C2 = −d+ d2, L2 = −my0,b

K .
J2 has four negatives eigenvalues as:
λ1 = −K0, λ2 = C2 < 0 and λ3 and λ4 satisfy λ3 + λ4 = −g1 and
λ3λ4 = −qαH2 > 0 and as λ5 = A2, so λ5 < 0 if T2 > 1.
Then the blast steady point is LAS if T2 > 1 .

• At chronic steady state. One has
A2 = F2 = 0, C2 = −d+ d2, B2 = −ny0,c

K ,

L2 = −my0,c

K D2 = − K1
(K2+E)2x1, G2 = −aK1r0x

r0−1
0

(1+K1x
r0
0 )2 .
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The corresponding characteristic polynomial is given by
P (λ) = a5λ

5 + a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0

where

a5 = 1,
a4 = K0 − C2 − g1,

a3 = −K0C2 + −k0g1 − g1C2 − qαL2 − rB2,

a2 = −G2B2D2 −K0C2g1 −K0qαL2 + C2qαL2 −K0B2r − g1B2r,

a1 = −G2B2D2g1 +K0C2qαL2 −K0B2G1 + qαL2B2r −B2qrL2,

a0 = G2B2D2L2q(α− 1) −K0qrB2L2 < 0.

The associated Hurwitz matrix is given by

M =


a5 a3 a1 0 0
a4 a2 a0 0 0
b3 b4 0 0 0
c2 c1 0 0 0
d1 0 0 0 0
e0 0 0 0 0


where

a5 = 1, b3 = − 1
a4

(a2a5 − a3a4), b4 = − 1
a4

(a0a5 − a1a4),

c2 = − 1
b3

(a4b4 − a2b3), c1 = a0,

d1 = − 1
c2

(c1b3 − c2b4), e0 = a0 < 0 since α < 1.

So from Hurwitz criterion [21], as at least one element of the first
column of M (here e0) is negative then the chronic equilibrium state
is unstable.

5.3. Scenario 3.

Proposition 5.3.
1. The trivial steady state is LAS if n < d0 and m < g0.
2. The no pathologic steady state is unstable.
3. The blast steady state is LAS if T2 > 1 .
4. The chronic steady state is unstable.
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Proof. The Jacobian matrix is rewritten (and denoted J3) for this sce-
nario as

J3(X) =


−n x0

K
+ nΦ − d0 −n x0

K
−n x0

K
−n x0

K
0

r −d + d2 0 0 − K1
(K2+E)2 x1

−m y0
K

−m y0
K

mΨ − g0 − mα
K

y0 −αm y0
K

0
0 0 q −g1 0

−aK1r0x
r0−1
0

(1+K1x
r0
0 )2 0 0 0 −K0


Denote by

A3 = −nx0

K
+ nΦ − d0,

B3 = −nx0

K
,

C3 = −d+ d2,

D3 = − K1

(K2 + E)2x1,

F3 = mΨ − g0 − mα

K
y0,

L3 = −my0

K
,

G3 = −aK1r0x
r0−1
0

(1 +K1x
r0
0 )2 .

Then

J3(X) =


A3 B3 B3 B3 0
r C3 0 0 D3
L3 L3 F3 αL3 0
0 0 q −g1 0
G3 0 0 0 −K0


• At the trivial steady state. One has
J3(X) has three negatives eigenvalues:
λ1 = −g1, λ2 = −K0, λ3 = −d+ d2 and λ4 = n− d0, λ5 = m− g0 are
negative if n− d0 < 0 and m− g0 < 0.
So the trivial steady state is LAS if n− d0 < 0 and m− g0 < 0.

• At the no pathologic steady state.
The corresponding characteristic polynomial is given by
P (λ) = (F3−λ)(−g1−λ)(Q(λ) whereQ(λ) = −(a′

3λ
3+a′

2λ
2+a′

1λ
1+a′

0)
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where

a′
3 = 1,
a′

2 = K0 + d− d2 + nx0,s

K
> 0,

a′
1 = K0(d− d2) + nx0,s

K
(K0 + d− d2 + r) > 0,

a′
0 = nx0,s

K
(K0(d− d2) + r −G3) > 0.

The associated Hurwitz matrix M ′ is given by

M ′ =


a′

3 a′
1 0

a′
2 a′

0 0
b′

1 b′
2 0

c′
0 0 0


where a′

3 > 0, b′
2 = 0, c′

0 = −a′
0 < 0 and b′

1 = − 1
a′

2
(a′

0a
′
3 − a′

1a
′
2).

Then from the Hurwitz criterion since one of the first column of
M ′ is negative (here c′

0), the no pathologic steady state is unstable.
• At the blast steady state. One has
A3 = nΦ − d0, B3 = D3 = G3 = 0, C3 = −d+ d2,
L3 = −my0,b

K , F3 = αL3.
J3(X) has four negatives eigenvalues:
λ1 = −K0, λ2 = −d + d2 and λ3 + λ4 = −(αmy0

K + g1) < 0 and
λ3λ4 = αmy0q

K > 0, λ5 = nΦ − d0, λ5 < 0 if T2 > 1.
Then the blast steady state is L.A.S if T2 > 1.

• At the chronic steady state. One has
A3 = B3 = −nx0,s

K , C3 = −d+ d2, D3 = − K1
(K2+Es)2x1,s,

L3 = −my0,s

K , F3 = αL3, G3 = −aK1r0x
r0−1
0,s

(1+K1x
r0
0,s)2 .

The corresponding characteristic polynomial is given by

P (λ) = a′′
5λ

5 + a′′
4λ

4 + a′′
3λ

3 + a′′
2λ

2 + a′′
1λ+ a′′

0

where

a′′
5 = 1,

a′′
4 = −αL3 + A3 + C3 − K0 − g1,

a′′
3 = −qαL3 − A3L3 + (αL3 + K0 + g1)(A3 + C3) − αL3(K0 + g1) − A3(C3 − r) − K0g1,

a′′
2 = −G3D3A3 − A3L3(q + g1 + K0 + r − C3) + (qαL3 − K0g1)(A3 + C3) − qαL3K0

− (αL3 + K0 + g1)(C3 − r)A3,

a′′
1 = −G3D3A3(−g1 + αL3 − L3) − (q + g1)(K0 + r − C3)A3L3 + L3αk0(A3 + C3)(q − g1)

− A3[(C3 − r)qαL3 − L3k0 + (αL3 − 1)(K0 + g1)],
a′′

0 = [G3D3 + (r − C3)k0](q + g1)A3L3(α − 1).
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The associated Hurwitz matrix M ′′ is given by

M ′′ =


a′′

5 a′′
3 a′′

1 0 0
a′′

4 a′′
2 a′′

0 0 0
b′′

3 b′′
4 0 0 0

c′′
2 c′′

1 0 0 0
d′′

1 0 0 0 0
e′′

0 0 0 0 0


where

a′′
5 = 1,

b′′
3 = − 1

a′′
4

(a′′
2a

′′
5 − a′′

3a
′′
4),

b′′
4 = − 1

a′′
4

(a′′
0a

′′
5 − a′′

1a
′′
4),

c′′
2 = − 1

b′′
3

(a′′
4b

′′
4 − a′′

2b
′′
3),

c′′
1 = a′′

0 ,

d′′
1 = − 1

c′′
2

(c′′
1b

′′
3 − c′′

2b
′′
4),

e′′
0 = a′′

0 .

As that a′′
0 is negative since α < 1, A3 < 0, L3 < 0, C3 < 0, D3 <

0 and G3 < 0. So at least one element of the first column of M ′′

is negative(here e′′
0) then the chronic steady state is unstable(from

Hurwitz criterion ).

6. Global stability analysis

In this section, global stability analysis for steady states of model (2.3) is
proposed for scenarios 1 and 3 .

6.1. Study of global analysis of no pathologic and blast steady states for Sce-
nario 1. Recall that according to the theorem 4.1 given in section 4, the no
pathologic steady state exists for n > d0 and the blast steady state exists for
m > g0 .So, this is assumed in this section to deal with those two states.
To analyze the global stability of those steady states of system (2.3), we shall
use the following theorem given in[28].

Theorem 6.1. Consider the following uniformly bounded C1 system of
the form

(6.1)
{
Ẋ1 = f(X1)
Ẋ2 = g(X1, X2)
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where X1 ∈ Rn1 and X2 ∈ Rn2 with a steady state (X∗
1 , X

∗
2 ) such that f(X∗

1 ) =
0 and g(X∗

1 , X
∗
2 ) = 0.

If X∗
1 is globally asymptotically stable (GAS) for the subsystem Ẋ1 =

f(X1)
and (X∗

1 , X
∗
2 ) is GAS for the subsystem Ẋ2 = g(X1, X2), then (X∗

1 , X
∗
2 ) is

locally asymptotically stable( LAS) for the system (6.1). Moreover, if all the
trajectories of (6.1) are forward bounded then (X∗

1 , X
∗
2 ) is also GAS for the

system (6.1).

In order to apply this theorem, let us split our system (2.3) into two
subsystems: the first one is a subsystem in (x0, y0) and the second one in
(x1, y1, E)
So, first consider the following subsystem of (2.3) in (x0, y0) under initial
conditions x0(0), y0(0)

(6.2)
{

dx0
dt = n(1 − x0+y0

K )x0 − d0x0 = f1(x0, y0)
dy0
dt = m(1 − x0+αy0

K )y0 − g0y0 = f2(x0, y0)

From Proposition 3.3, one has that the solution of (6.2) satisfies x0(t) ≤ m1
and y0(t) ≤ m2 for all t ≥ 0.
According to this result, let us define the positively invariant compact set as

B = {(x0, y0) ∈ R2
+ : 0 ≤ x0 ≤ m1, 0 ≤ y0 ≤ m2}.

Lemma 6.2. The system (6.2) has no limit cycle in intB, where intB is
the interior of B.

Proof. Let us consider the following Dulac functional Θ given by
Θ(x0, y0) = 1

x0y0

ϑ(x0, y0) = ∂

∂x0
(Θf1) + ∂

∂y0
(Θf2) = −nx0 +mαy0

Kx0y0
.

Then ϑ(x0, y0) ≤ 0 for all (x0, y0) in intB. Applying Bendixon Dulac theorem
[16], it comes that intB doesn’t contain any limit cycle.

Lemma 6.3. The singular points (x0,np, y0,np) and (x0,b, y0,b) are GAS
for the subsystem (6.2).

Proof. As the subsystem (6.2) has no limit cycle in the bounded set
intB ⊂ R2

+, the GAS results are obtained from a direct application of the
Poincaré-Bendixon theorem [8] to this subsystem.

Now let us consider the second subsystem

(6.3)


dx1
dt = rx0 − (d− d2)x1
dy1
dt = qy0 − g1y1
dE
dt = −K0E + a

1+K1x
r0
0
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Using, the obtained results on L.A.S of no pathologic and blast steady
states in section 5 for system (2.3), we underline that those results are available
also for its subsystems (6.3).

Proposition 6.4. For any given initial conditions
(x0(0), y0(0), x1(0), y1(0), E(0)) in Γ,

a) the no pathologic steady state is GAS if T1 < 1 < T2,
b) the blast steady state is GAS if T1 > 1 and T2 > 1.

Proof. As it is proved in the previous lemma, (x0,np, y0,np) and
(x0,b, y0,b) are G.A.S for the subsystem (6.2). Moreover , one has that
If T1 < 1 < T2, then (x0,np, y0,np, x1,np, y1,np, Enp) is LAS for the subsystem
(6.3).
If T1 > 1 and T2 > 1, then (x0,b, y0,b, x1,b, y1,b, Eb) is LAS for the subsystem
(6.3).

Moreover, one can directly see that by direct integration of subsystem
(6.3) and majorations that (x0,np, y0,np, x1,np, y1,np, Enp) is G.A.S if T1 < 1 <
T2 and (x0,b, y0,b, x1,b, y1,b, Eb) is G.A.S if T1 > 1 and T2 > 1.

Hence according to Theorem 6.1, the non pathologic steady state is GAS
if T1 < 1 < T2 and the blast steady state is GAS if T2 > 1 and T2 > 1 for
model (2.3).

6.2. Study of global stability of the blast steady state for Scenario 3. In this
case, the model (2.3) is rewritten as

(6.4)



dx0
dt = (n− d0)x0 − ( nK )(x0 + y0 + x1 + y1)x0
dx1
dt = rx0 − (1 − K1

K2+E − d2)x1
dy0
dt = (m− g0)y0 − m

K (x0 + αy0 + x1 + αy1)y0
dy1
dt = qy0 − g1y1
dE
dt = −K0E(t) + a

1+K1x
r0
0

The components of the blast steady state are given by
x0,b = x1,b = 0, y0,b = g1q

α(g1+q) (1 − g0
m ), y1,b = Kq

α(g1+q) (1 − g0
m ), Eb = a

k0
.

Denote by y0,b + y1,b = K
α

(
1 − g0

m

)
and g1 = q

y0,b

y1,b
.

Then the system (6.4) is rewritten as
(6.5)

dx0
dt = [n− d0 − n

K ((y0,b + y1,b) + (x0 + x1) + (y0 − y0,b) + (y1 − y1,b)]x0
dx1
dt = rx0 − (d− d2)x1
dy0
dt = −m

K [(x0 + x1) + α(y0 − y0,b) + α(y1 − y1,b)]y0
dy1
dt = [y1(y0 − y0,b) − y0(y1 − y1,b)] q

y1,b
dE
dt = −K0(E − Eb) −K0Eb + a

1+K1x
r0
0

To prove the global stability of blast steady state, let us construct an ap-
propriate Lyapunov function and consider the following function V defined
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by

V (x0, x1, y0, y1, E) = α1x0 + α2

2 x2
1 + α3(y0 − y0,b − y0,b ln y0

y0,b
)(6.6)

+ α4(y1 − y1,b − y1,b ln y1

y1,b
) + α5(E − Eb − Eb ln E

Eb
)

where αi, i = 1, ..., 5 are positive constants (that we will choose later).
Knowing that

∀t > 0 ∀t0 > 0 : (t− t0) − t0 ln t

t0
> 0,

thus for all

(x0, x1, y0, y1, E) ∈ Γ : V (x0, x1, y0, y1, E) > 0

and also

V (x0, x1, y0, y1, E) = 0 ⇔ (x0, x1, y0, y1, E) = (x0,b, x1,b, y0,b, y1,b, Eb).

Moreover,

dV (x0, x1, y0, y1, E)
dt

= α1
dx0

dt
+ α2x1

dx1

dt
+ α3(y0 − y0,b

y0
)dy0

dt

+ α4(y1 − y1,b

y1
)dy1

dt
+ α5(E − Eb

E
)dE
dt

and so after replacing, one has

dV (x0, x1, y0, y1, E)
dt

< −α1n

K
x2

0 − α1n

K
x0x1

− α1n

K
(y0 − y0,b)x0 − α1n

K
(y1 − y1,b)x0

+ α2rx0x1 − α2(d− d2)x2
0 − α3m

K
(y0 − y0,b)x0

− α3m

K
(y1 − y1,b)x1 − mα3α

K
(y0 − y0,b)2

− mα3α

K
(y0 − y0,b)(y1 − y1,b) + α4q

y1,b
(y0 − y0,b)(y1 − y1,b)

− α4q

y1,by1
y0(y1 − y1,b)2 −K0α5(E − Eb)2

− α5

E
(a− a

1 +K1x
r0
0

)(E − Eb).

The coefficients αi where i = 1, 2, 3, 4, 5 will be chosen such that
α2r = α1n

K and α4q
y1,b

= mαα3
K .
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In this case,

dV (x0, x1, y0, y1, E)
dt

< −α1n

K
x2

0 − α2(d− d2)x2
0 − mα3α

K
(y0 − y0,b)2

− α4q

y1,by1
y0(y1 − y1,b)2 −K0α5(E − Eb)2

− (mα3 + nα1

K
)x0(y0 − y0,b) − α1n

K
(y1 − y1,b)x0

− α3m

K
(y1 − y1,b)x1 − α5a

Ex0
(E − Eb)x0

and so

dV (x0, x1, y0, y1, E)
dt

< −α1n

K
x2

0 − α2(d− d2)x2
0 − mα3α

K
(y0 − y0,b)2

− α4q

y1,by1
y0(y1 − y1,b)2 −K0α5(E − Eb)2

+ (mα3 + nα1

K
)x0|y0 − y0,b| + α1n

K
|y1 − y1,b|x0

+ α3m

K
|y1 − y1,b|x1 + α5a

Ex0
|E − Eb|x0

Denote by S = (x0, x1, |y0 − y0,b|, |y1 − y1,b|, |E − Eb|)T and consider the
following matrix:

Π =


−nα1 0 nα1+mα3

K
nα1
2K

aα5
2KEx0

0 −α2(d− d2) 0 mα3
K 0

nα1+mα3
K 0 −mαα3

K 0 0
nα1
2K

mα3
2K 0 −α4qy0

y1y1,b
0

aα5
2KEx0

0 0 0 −K0α5


Then

dV (x0, x1, y0, y1, E)
dt

< STΠS.

So finally, let us choose α1 = α3 = α5 = 2, nα1 = mα3, α2 = 2n
rK and

α4 = 2mαy1,b

K . Thus the matrix Π becomes

Π =


−2n 0 2n

K
n
K

a
Ex0

0 − 2n
rK (d− d2) 0 m

K 0
2n
K 0 − 2mα

K 0 0
n
K

m
K 0 − 2mα

Ky1
0

a
Ex0

0 0 0 −2K0


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and can be rewritten as Π = (RW +WTR), where

R =


1 0 0 0 0
0 n

rK 0 0 0
0 0 1 0 0
0 0 0 mαy1,b

qK 0
0 0 0 0 1


and

W =


−n 0 2nα

y1
αy0

a
Ex0

0 −(d− d2) 0 mr
n 0

0 0 −mα
k 0 0

0 0 0 − qy0
y1,b

0
0 0 0 0 −K0

 .

One obtains
−Π = R(−W ) + (−WT )R.

Since R is a diagonal matrix and (−W ) has all its eigenvalues negatives, thus
(−Π) is positive definite matrix and then Π is a negative definite matrix, this
implies that

dV (x0, x1, y0, y1, E)
dt

< 0.

Then, according to [29], the function V is a Lyapunov function for the system
(6.4) and the blast steady state is G.A.S for scenario 3.

7. Interpretation results and some perspectives

The main results of this study are resumed in this two tables:

Steady states Existence conditions Stability conditions
trivial steady state always exists n < d0 and m < g0

no pathologic steady state n > d0 T2 > 1
blast steady state m > g0 T1 < 1

chronic steady state T1 < 1 < T2 unstable

Table 3. Local and global stability in scenario 1 and local
stability in scenario 2

In this study, we have shown that for any positive initial conditions the
system (2.3) admits a unique global positive solution for scenarios 1 and 3.
The trivial steady state is LAS if n and m (the proliferation rates) are lower
than the mortality rates d0 and g0 respectively, however these conditions are
clinically impracticable then the trivial balance is unstable. Furthermore,
the chronic steady state being a saddle point, the coexistence of normal and
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Steady states Existence conditions Stability conditions
trivial steady state always exists n < d0 and m < g0

no pathologic steady state n > d0 unstable
blast steady state m > g0 T1 < 1

chronic steady state T1 < 1 < T2 unstable

Table 4. Local and global stability in scenario 3

cancer cells does not maintain for long time and this is realist with biological
observations.

The blast steady state in the third scenario is also a saddle point. Other-
wise the local and global stability of the blast and no pathologic steady states
is linked to coefficients T1 and T2:
If T1 > 1 and T2 > 1, the no pathologic steady state is the only stable state
in this case there is no leukemia where all types of cells are in no patho-
logical steady state therefore there is no cancer cells or their proliferation is
practically zero.

If T1 < 1 < T2, the blast and no pathologic steady states are both LAS. In
this case the state converges towards no pathologic steady where the number
of healthy cells is higher than that corresponding to cancer cells. There may
even be a conversion of cancerous cells into healthy ones or else the dynamics of
our model converge towards blast steady state and cancer cells are in majority
(if not all cells are diseased).

If T1 > 1 and T2 < 1, all steady states are unstable, it is corresponds to
the final phase of leukemia.

Note that the overall stability of the steady states has been demonstrated
in scenario 1 and scenario 3. The study of global stability in the scenario 2 is
not possible by considering mathematical classic tools. We let it in a future
work using simulations.

Biological interpretation of the results must be also developed. In parallel
and in the case where the blast and no pathological steady states are LAS at
the same time, a control could possibly be introduced on the growth factors
so that the system converges towards the no pathological steady state, this
will be also investigated in a future work.
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Matematicka analiza modela kronične mijeloične leukemije

Fatima Zohra Elouchdi Derrar, Djamila Benmerzouk i Bedr’Eddine Ainesba

Sažetak. U ovom članku razmatra se matematička ana-
liza modela koji opisuje evoluciju kronične mijeloične leukemije
s učinkom faktora rasta. Odgovarajuća dinamika predstavljena
je sustavom običnih diferencijalnih jednadžbi dimenzije 5. Ovaj
sustav opisuje interakcije izmedu hematopoetskih matičnih stan-
ica (H.S.C), hematopoetskih zrelih stanica (M.C), hematopoet-
skih matičnih stanica raka, zrelih hematopoetskih stanica raka i
povezane koncentracije faktora rasta. Naše istraživanje se bavi
postojanjem i jedinstvenošću rješenja ovog sustava. Sljedeća
suštinska tema bit će rasprava o lokalnoj i globalnoj stabilnosti
odgovarajućih stabilnih stanja. Razmatraju se tri scenarija koja
odgovaraju različitim djelovanjima hematopoeze na matične stan-
ice (diferencirane stanice ili obje stanice).
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