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EQUISEGMENTARY LINES OF A TRIANGLE IN THE
ISOTROPIC PLANE

Ružica Kolar–Šuper

Abstract. In this paper we introduce the concept of equisegmentary
lines in the isotropic plane. We derive the equations of equisegmentary lines
for a standard triangle and prove that the angle between them is equal to
the Brocard angle of a standard triangle. We study the dual Brocard circle,
the circle whose tangents are equisegmentary lines, as well as the inertial
axis and the Steiner axis. Some interesting properties of this circle are also
investigated.

1. Introduction

The isotropic plane is a projective–metric plane, where the absolute con-
sists of a line, the absolute line ω, and a point on that line, the absolute
point Ω. Lines through the point Ω are isotropic lines and points on the line
ω are isotropic points.

The distance between two points Pi = (xi, yi) (i = 1, 2) in the isotropic
plane is defined by d(P1, P2) = x2−x1 and if x1 = x2 we say that P1 and P2 are
parallel. For two parallel points P1, P2 we define their span by s(P1, P2) =
y2 − y1. The angle of two lines with equations y = kix + li (i = 1, 2) is
k2 − k1 and if k1 = k2 we say that they are parallel. Any isotropic line is
perpendicular to any non-isotropic line. Facts about the isotropic plane can
be found in [11,12].

We say that a triangle is allowable if none of its sides is isotropic. If we
choose the coordinate system in such a way the circumscribed circle of an
allowable triangle ABC has the equation y = x2 and therefore its vertices
are the points A = (a, a2), B = (b, b2), and C = (c, c2), while a + b + c =
0, we say that the triangle ABC is in standard position or shorter triangle
ABC is a standard triangle. Its sides BC, CA, and AB have equations
y = −ax− bc, y = −bx− ca, and y = −cx−ab. In order to prove geometric
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facts for any allowable triangle, it suffices to prove it for a standard triangle
[7].

Denoting p = abc and q = bc + ca + ab, the authors proved a number
of useful equalities in [7], e.g. a2 + b2 + c2 = −2q, (b − c)2 = −(q + 3bc),
a2 = bc− q, (c− a)(a− b) = 2q − 3bc. We proved also the following identities

p1 = 1
3(bc2 + ca2 + ab2), p2 = 1

3(b2c+ c2a+ a2b),

p1 + p2 = 1
3 ((b+ c)(c+ a)(a+ b) − 2abc) = 1

3(−abc− 2abc) = −p,
i.e.

p+ p1 + p2 = 0,

p1 − p2 = 1
3(bc2 + ca2 + ab2 − b2c− c2a− a2b) = 1

3(b− c)(c− a)(a− b) = −qω

and

p2
1 + p1p2 + p2

2 = −q3

9 , p2 + pp1 + p2
1 = −q3

9 , p2 + pp2 + p2
2 = −q3

9 .

In the isotropic plane we have the following formula for Brocard angle of
standard triangle: ω = − 1

3q (b− c)(c− a)(a− b) (see [3]).

2. Equisegmentary lines of a triangle

The motivation for this consideration are two Ocagne’s papers [9, p. 131],
and [10, p. 265]. In this section we consider the equisegmentary lines of a
standard triangle ABC. According to [7], standard triangle ABC has the
centroid G =

(
0,− 2

3q
)

and the inertial axis with the equation y = − 2
3q.

Theorem 2.1. Let D1, E1, F1 and D2, E2, F2 be points on the lines
BC,CA, and AB such that
d(D1, C) = d(E1, A) = d(F1, B) = d(B,D2) = d(C,E2) = d(A,F2) = u.

For variable u the centroids G1 and G2 of the triangles D1E1F1 and D2E2F2
lie on the inertial axis of the triangle ABC. The points G1 and G2 are sym-
metric with respect to the centroid G of that triangle (Figure 1).

Proof. Points D1 and D2 have abscissae c − u and b + u respectively.
As they lie on the line BC with the equation y = −ax − bc, their ordinates
are

−a(c− u) − bc = c2 + au,

−a(b+ u) − bc = b2 − au.

Because of that we have
(2.1) D1 = (c− u, c2 + au), E1 = (a− u, a2 + bu), F1 = (b− u, b2 + cu),

(2.2) D2 = (b+ u, b2 − au), E2 = (c+ u, c2 − bu), F2 = (a+ u, a2 − cu).
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The triangles D1E1F1 and D2E2F2 have centroids

G1 =
(

−u,−2
3q
)

and G2 =
(
u,−2

3q
)
,

which lie on the inertial axis with equation y = − 2
3q and its midpoint is the

point G =
(
0,− 2

3q
)
.

y

F1

GG1

D1

E1

G2

F2

E2

D2

G

x

A

C

B

Figure 1. Visualization of the statement of Theorem 2.1.

Theorem 2.2. The points D1, E1, F1 and respectively D2, E2, F2 from
Theorem 2.1, lie on one of the lines P1 and P2 if and only if u = ω, where ω
is the Brocard angle of the triangle ABC (Figure 2).

Proof. The required conditions for collinearity of points (2.1) and (2.2)
are

0 =
c− u c2 + au 1
a− u a2 + bu 1
b− u b2 + cu 1

=
c c2 1
a a2 1
b b2 1

+ u ·
c a 1
a b 1
b c 1

= (b− c)(c− a)(a− b) + u(bc+ ca+ ab− a2 − b2 − c2)
= −3qω + u · 3q = 3q(u− ω),
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and

0 =
b+ u b2 − au 1
c+ u c2 − bu 1
a+ u a2 − cu 1

=
b b2 1
c c2 1
a a2 1

− u ·
b a 1
c b 1
a c 1

= (b− c)(c− a)(a− b) − u(a2 + b2 + c2 − bc− ca− ab)
= −3qω − u · (−3q) = 3q(u− ω),

respectively, i.e. u = ω.

Corollary 2.3. Let D1, E1, F1 and D2, E2, F2 be points on the lines
BC,CA, and AB such that

d(D1, C) = d(E1, A) = d(F1, B) = d(B,D2) = d(C,E2) = d(A,F2) = ω,

where ω is the Brocard angle of the triangle ABC. The points D1, E1, F1
and D2, E2, F2 respectively, lie on one of the lines P1 and P2. If ABC is a
standard triangle, then

(2.3) D1 = (c−ω, c2 + aω), E1 = (a−ω, a2 + bω), F1 = (b−ω, b2 + cω),

(2.4) D2 = (b+ω, b2 − aω), E2 = (c+ω, c2 − bω), F2 = (a+ω, a2 − cω).
The triples D1, E1, F1 and D2, E2, F2 have the centroids

(2.5) G1 =
(

−ω,−2
3q
)

and G2 =
(
ω,−2

3q
)
.

We say that lines P1 and P2 from Corollary 2.3 are equisegmentary lines
of the triangle ABC. These lines are reciprocal with respect to the triangle
ABC.

In [9] and [10] d’Ocagne considered the equisegmentary lines in Euclidean
geometry and obtained two pairs of reciprocal equisegmentary lines.

Theorem 2.4. Equisegmentary lines P1 and P2 of a standard triangle
ABC have equations

P1 · · · y = p1 − p

q
x− 7

9q − 3p2
1

q2 ,(2.6a)

P2 · · · y = p2 − p

q
x− 7

9q − 3p2
2

q2 .(2.6b)

Proof. From (2.3) and (2.4) for the slopes of lines E1F1 and E2F2 we
get
b2 − a2 + cω − bω

b− a
= a+ b+ b− c

a− b
ω = −c− 1

3q (b− c)2(c− a)

= −c+ c− a

3q (q + 3bc) = −c+ 1
3(c− a) + 1

q
bc(c− a)
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and

a2 − c2 − cω + bω

a− c
= a+ c− b− c

c− a
ω = −b+ 1

3q (b− c)2(a− b)

= −b− a− b

3q (q + 3bc) = −b− 1
3(a− b) − 1

q
bc(a− b)

respectively, and analogously lines F1D1, D1E1 and F2D2, D2E2 have slopes

−a+ 1
3(a− b) + 1

q
ca(a− b), −b+ 1

3(b− c) + 1
q
ab(b− c)

and

−c− 1
3(b− c) − 1

q
ca(b− c), −a− 1

3(c− a) − 1
q
ab(c− a)

respectively. After adding and dividing by 3 we get the slopes k1 and k2 of
lines P1 and P2

k1 = 1
3q [bc(c− a) + ca(a− b) + ab(b− c)] = 1

3q (bc2 + ca2 + ab2 − 3abc)

= 1
3q (3p1 − 3p) = p1 − p

q
,

k2 = − 1
3q [bc(a− b) + ca(b− c) + ab(c− a)] = 1

3q (b2c+ c2a+ a2b− 3abc)

= 1
3q (3p2 − 3p) = p2 − p

q
.

It remains to prove that lines P1 and P2 with equations (2.6a) and (2.6b) pass
through the points G1 and G2 from (2.5). For the point G1 and line P1 we
get

−p1 − p

q
ω − 7

9q − 3p2
1

q2 + 2
3q = (2p1 + p2)(p1 − p2)

q2 − 3p2
1

q2 − q

9

= − 1
q2 (p2

1 + p1p2 + p2
2) − q

9 = 1
q2 · q

3

9 − q

9 = 0.

The proof for the point G2 and line P2 is obtained by switching the indices 1
and 2.
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Figure 2. Equisegmentary lines of the triangle ABC.

Theorem 2.5. The intersection of lines P1 and P2 from Theorem 2.4 is
the point

(2.7) P =
(

−3p
q
,

6p2

q2 − 4
9q
)

and the angle between P1 and P2 is equal to the Brocard angle of the triangle
ABC (Figure 3).

Proof. The point P from (2.7) lies on the line P1 with equation (2.6a)
because

p1 − p

q

(
−3p
q

)
−7

9q−
3p2

1
q2 −6p2

q2 +4
9q = − 3

q2 (p2+pp1+p2
1)− q

3 = 3
q2 · q

3

9 − q

3 = 0

and similarly for the line P2.
The angle of lines P1 and P2 equals

∠(P1,P2) = p2 − p

q
− p1 − p

q
= p2 − p1

q
= ω.
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Theorem 2.6. Using the notation from Corollary 2.3 the lines E1F2, F1D2,
and D1E2 have equations

E1F2 . . . y = a

2x+ a2

2 + ω

2 (b− c)(2.8a)

F1D2 . . . y = b

2x+ b2

2 + ω

2 (c− a)(2.8b)

D1E2 . . . y = c

2x+ c2

2 + ω

2 (a− b)(2.8c)

and determine the triangle with vertices D′
1 = F1D2 ∩ D1E2, E′

1 = D1E2 ∩
E1F2, and F ′

1 = E1F2 ∩ F1D2 (Figure 3) given by

D′
1 =

(
3p
q

− a,
bc

2 − 2
3q
)
,

E′
1 =

(
3p
q

− b,
ca

2 − 2
3q
)
,(2.9)

F ′
1 =

(
3p
q

− c,
ab

2 − 2
3q
)
.

Proof. The points E1 and F2 from (2.3) and (2.4) lie on the line (2.8a)
because

a

2 (a− ω) + a2

2 + ω

2 (b− c) = a2 + ω

2 (b− c− a) = a2 + bω,

a

2 (a+ ω) + a2

2 + ω

2 (b− c) = a2 + ω

2 (a+ b− c) = a2 − cω,

and this is the line E1F2, and analogously for lines F1D2 and D1E2. For the
abscissa x of the intersection F1D2 and D1E2, from (2.8b) and (2.8c), after
multiplication by 2, we obtain the equation (b−c)x+b2 −c2 +ω(b+c−2a) = 0
with the solution

x = −(b+ c) + 3aω
b− c

= a− a

q
(c− a)(a− b) = a− a

q
(2q − 3bc) = 3p

q
− a,

and by (2.8b) this x gives

y = b

2

(
3p
q

− a

)
+ b2

2 + ω

2 (c− a)

= bc

2 − b

2(c+ a− b) + 3
2q ca · b2 − 1

6q (c− a)2(a− b)(b− c)

= bc

2 + b2 + 1
6q
(
9ca(ca− q) + (q + 3ca)(2q − 3ca)

)
= bc

2 + ca− q + 1
6q (2q2 − 6caq) = bc

2 − 2
3q,

and this intersection is the point D′
1 from (2.9).
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Theorem 2.7. The triangle D′
1E

′
1F

′
1 from Theorem 2.6 is homologous to

the triangle ABC. The center of homology is the point

(2.10) P ′
1 =

(
6p
q
,−5

6q
)
,

and the axis of homology is the line P ′
1 with equation

(2.11) P ′
1 . . . y = 3p

q
x− 3p2

q2 − q

9 .

Proof. The line with equation

y = − q

6ax+ bc− 5
6q

passes through the point A = (a, a2) and the point D′
1 from (2.9) because

−q

6 + bc− 5
6q = bc− q = a2,

− q

6a

(
3p
q

− a

)
+ bc− 5

6q = −bc

2 + q

6 + bc− 5
6q = bc

2 − 2
3q,

and it is the line AD′
1. This line passes also through the point P ′

1 from (2.10)
because

− q

6a · 6p
q

+ bc− 5
6q = −5

6q,

and the same is also valid for lines BE′
1 and CF ′

1. For the abscissa of the
intersection of lines E1F2, with equation (2.8a), and BC, given by y = −ax−
bc, we get the equation

3
2ax+ a2

2 + bc+ ω

2 (b− c) = 0

with the solution

x = − 1
3a
(
a2 + 2bc+ ω(b− c)

)
= − 1

3a
(
3bc− q − 1

3q (b− c)2(c− a)(a− b)
)

= − 1
9aq

(
3q(3bc− q) + (q + 3bc)(2q − 3bc)

)
= 1

9aq (q2 − 12bcq + 9b2c2),

and for the abscissa of the intersection of the line BC with the line P ′
1 given

by (2.11) we get the equation(
a+ 3p

q

)
x = 3p2

q2 + q

9 − bc
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whose solution is

x = q

aq + 3p · 1
9q2

(
q3 − 9bcq2 + 27b2c2(bc− q)

)
= 1

9aq(q + 3bc) (q3 − 9bcq2 − 27b2c2q + 27b3c3)

= 1
9aq (q2 − 12bcq + 9b2c2).

The equality of these two abscissae means that the point E1F2 ∩ BC lies on
the line P ′

1, and the same is also valid for points F1D2 ∩CA and D1E2 ∩AB.

A

B

C

P

P2

P1

E2

G2
G

G1

D2

D1

F2

E1
F1

x

y

E'1

D'1

F'1
P'1

P'1

Figure 3. Visualization of the statements of Theorems 2.6
and 2.7.

According to [5] the bisectors of angles A,B, and C determine the triangle
AsBsCs, the so called symmetral triangle of the triangle ABC, with vertices

As =
(
a,−bc

2

)
, Bs =

(
b,−ca

2

)
, Cs =

(
c,−ab

2

)
,

and by [4] the triangle ABC has the symmedian center K =
(

3p
2q ,−

q
3

)
. Com-

paring with the equalities (2.9) we directly get As+D′
1 = 2K, Bs+E′

1 = 2K,
Cs + F ′

1 = 2K, hence the point K is the midpoint of AsD′
1, BsE′

1, CsF ′
1, i.e.

we have:
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Corollary 2.8. The triangle D′
1E

′
1F

′
1 from Theorem 2.6 is symmetrical

to the symmetral triangle AsBsCs of the triangle ABC with respect to its
symmedian center K (Figure 4).

A

B

D1

D2

F2

P1

P2
x

y

F1E1

C
E2

K

F'1

D'1

E'1
AS

CS

BS

Figure 4. Visualization of the statement of Corollary 2.8.

Theorem 2.9. Using the notations from Corollary 2.3 the lines E2F1,
F2D1, and D2E1 meet the lines BC, CA, and AB at three points D′

2, E′
2,

and F ′
2, which lie on the line P ′

2 (Figure 5) given by

(2.12) P ′
2 . . . y = −3p

2q x− 3p2

2q2 − 8
9q.

Proof. Let D′
2 = (x, y), given by (a − c)E2 + (a − b)F1 = 3aD′

2, be a
point on line E2F1. From (2.3) and (2.4) we obtain

3ax = (a− c)(c+ ω) + (a− b)(b− ω) = ca− b2 + ab− c2 + (b− c)ω

= 2q − 1
3q (b− c)2(c− a)(a− b) = 1

3q [6q2 + (q + 3bc)(2q − 3bc)]

= 1
3q (8q2 + 3bcq − 9b2c2),
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3ay = (a− c)(c2 − bω) + (a− b)(b2 + cω) = a(b2 + c2) − (b3 + c3) − a(b− c)ω

= a(−q − bc) − (b+ c)(b2 − bc+ c2) + a

3q (b− c)2(c− a)(a− b)

= −a(q + bc) + a(−q − 2bc) − a

3q (q + 3bc)(2q − 3bc)

= − a

3q [3q(2q + 3bc) + (q + 3bc)(2q − 3bc)] = − a

3q (8q2 + 12bcq − 9b2c2),

i.e.

x = 1
9aq (8q2 + 3bcq − 9b2c2), y = − 1

9q (8q2 + 12bcq − 9b2c2).

This implies y + ax = −bc, so this point lies on the line BC, i.e. we have
D′

2 = E2F1 ∩ BC. However, this point also lies on the line P ′
2 from (2.12)

because

− 1
9q (8q2 + 12bcq − 9b2c2) + 3p

2q · 1
9aq (8q2 + 3bcq − 9b2c2) + 3p2

2q2 + 8
9q

= −8
9q + bc

3q (3bc− 4q) + bc

6q2 (8q2 + 3bcq − 9b2c2) + 3p2

2q2 + 8
9q

= bc

6q2 (9bcq − 9b2c2) + 3p2

2q2 = 3b2c2

2q2 (q − bc+ a2) = 0.

The same is also valid for points E′
2 = F2D1 ∩CA and F ′

2 = D2E1 ∩AB.

A

C

B

E1

F1

D1

E2

F2

D2

E'2

D'2

F'2

P1

P2

P'2

x

y

Figure 5. Visualization of the statement of Theorem 2.9.



182 R. KOLAR–ŠUPER

The equality (a− c)E2 + (a− b)F1 = 3aD′
2 can be written as (a− c)(E2 −

D′
2) = (b − a)(F1 − D′

2), i.e. d(C,A) · d(D′
2, E2) = d(A,B) · d(D′

2, F1) or
d(D′

2, E2) : d(D′
2, F1) = d(A,B) : d(C,A), because 3a = a− c+ a− b. So we

have:

Corollary 2.10. The points D′
2, E′

2 and F ′
2 in Theorem 2.9 divide

the segments E2F1, F2D1, and D2E1 in ratios d(A,B) : d(C,A), d(B,C) :
d(A,B) and d(C,A) : d(B,C) respectively.

Theorem 2.11. Equisegmentary lines and the inertial axis of an allowable
triangle ABC, and its Steiner axis touch a circle (Figure 6), which in the case
of a standard triangle ABC has the equation

(2.13) y = 1
8x

2 − 3p
4q x+ 9p2

8q2 − 2
3q.

Proof. According to [7], the inertial axis has the equation y = − 2
3q, and

this equation and (2.13) imply

1
8

(
x2 − 6p

q
x+ 9p2

q2

)
= 0

with double solution x = 3p
q , and inertial axis touches the circle (2.13) at the

point G′ =
(

3p
q ,−

2
3q
)

. By [14] the Steiner axis S has the equation

(2.14) y = −3p
2q x− 2

3q,

and from (2.13) and (2.14) we get the equation

1
8

(
x2 + 6p

q
x+ 9p2

q2

)
= 0

with double solution x = − 3p
q . For this x, from (2.14) we obtain y = 9p2

2q2 − 2
3q.

Therefore the line S touches the circle (2.13) at the point

(2.15) G′′ =
(

−3p
q
,

9p2

2q2 − 2
3q
)
.

Equation (2.6a) of the equisegmentary line P1 and equation (2.13) give the
following equation for the abscissa x

1
8x

2 − 3p
4q x+ 9p2

8q2 − 2
3q = p1 − p

q
x− 7

9q − 3p2
1

q2 ,

which, because of
p− p1

q
− 3p

4q = p− 4p1

4q = −5p1 + p2

4q ,
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q

9 + 9p2

8q2 + 3p2
1

q2 = − 1
q2 (p2

1 + p1p2 + p2
2) + 9

8q2 (p1 + p2)2 + 3p2
1

q2

= 1
8q2 (25p2

1 + 10p1p2 + p2
2) = (5p1 + p2)2

8q2 ,

after multiplication by 8, gets the form

x2 − 2
q

(5p1 + p2)x+ 1
q2 (5p1 + p2)2 = 0

having the double solution x = 1
q (5p1 + p2). For this x from (2.6a) we get

y = p1 − p

q
· 4p1 − p

q
− 7

9q − 3p2
1

q2

= 1
q2 (p1 − p)(4p1 − p) − 3p2

1
q2 + 7

q2 (p2 + pp1 + p2
1)

= 1
q2 (8p2 + 2pp1 + 8p2

1).

Hence the circle (2.13) touches the line P1 at the first of two analogous points

P1 =
(

5p1 + p2

q
,

1
q2 (8p2 + 2pp1 + 8p2

1)
)
,

P2 =
(
p1 + 5p2

q
,

1
q2 (8p2 + 2pp2 + 8p2

2)
)
,

(2.16)

while the other point is the point of tangency of this circle with the line P2.

According to [2] and [14], Gergonne and Steiner points of a standard
triangle ABC are the points

Γ =
(

−3p
q
,−4

3q
)
, S =

(
−3p
q
,

9p2

q2

)
and its midpoint is the point G′′ from (2.15). The centroid G =

(
0,− 2

3q
)

of
the triangle ABC and the point G′ from previous proof have the midpoint(

3p
2q ,−

2
3q
)

. It lies on the inertial axis and the Brocard diameter of the triangle
ABC, which by [4], has the equation x = 3p

2q . The midpoint of P1 and P2
from (2.16) has coordinates

x = 1
2q (6p1 + 6p2) = −3p

q
,

y = 1
q2 (8p2 + pp1 + pp2 + 4p2

1 + 4p2
2) = 1

q2

(
7p2 + 4(p2

1 + p1p2 + p2
2) − 4p1p2

)
= 1
q2

(
7p2 − 4

9q
3 − 4

(
p2 + q3

9

))
= 3p2

q2 − 8
9q,
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and it is the point

P0 =
(

−3p
q
,

3p2

q2 − 8
9q
)
,

which lies on the same isotropic line with points Γ, S, and G′′. We just proved:

Theorem 2.12. The circle from Theorem 2.11 touches the inertial axis of
triangle ABC at the point symmetrical to its centroid with respect to the inter-
section of this inertial axis with the Brocard diameter of triangle ABC. This
circle touches Steiner axis of this triangle at the midpoint of its Gergonne and
its Steiner point. The isotropic line through the last three points is the bisector
of the points of tangency of the considered circle with the equisegmentary lines
of the triangle ABC (Figure 6).

A

B

D1

C
E2

D2

F1

F2

S

P0

S

E1
G'

G''P1

P2

T

T'

G

B y

x

G

P1

K i K c

K'b

P2

Figure 6. Centroid G, Steiner point S, Gergonne point Γ,
inertial axis G, Steiner axis S, equisegmentary lines P1 and
P2, Brocard diameter B, circumscribed circle Kc, inscribed
circle Ki and the dual Brocard circle K′

b of the triangle ABC
(Visualization of the statements of Theorems 2.11, 2.12 and
2.13.)
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Equisegmentary lines of a triangle are dual to the concept of Crelle-
Brocard points of that triangle considered in [13], and the circle from The-
orems 2.11 and 2.12 is then dual to the Brocard circle of the triangle ABC
from [6]. And for this reason we call the circle from Theorems 2.11 and 2.12
the dual Brocard circle of triangle ABC.

Theorem 2.13. Dual Brocard circle of an allowable triangle ABC is the
image of its inscribed circle by homothety (Γ, 2), where Γ is the Gergonne
point of that triangle (Figure 6).

Proof. Let T ′ = (x′, y′) be the midpoint of Γ =
(

− 3p
q ,−

4
3q
)

and T =
(x, y). If the point T ′ = (x2 − 3p

2q ,
y
2 − 2

3q) lies on the inscribed circle of triangle
ABC, then by [1] we get y′ = 1

4x
′2−q, and then, because of previous equalities

we obtain
y

2 − 2
3q = 1

4

(
x

2 − 3p
2q

)2
− q,

which by multiplication by 2 and rearranging gets the form (2.13).

At the end we will mention one more interesting property of equisegmen-
tary lines.

Theorem 2.14. Equisegmentary lines of an allowable triangle ABC meet
at the point on the line BC if and only if d(B,C)2 + d(C,A) · d(A,B) = 0.

Proof. The point P from (2.7) lies on the line BC under the condition

6p2

q2 − 4
9q = 3ap

q
− bc,

which after multiplication by 9q2 becomes

54b2c2(bc− q) − 4q3 = 27bcq(bc− q) − 9bcq2,

and after rearrangement gets the form 4q3 − 36bcq2 + 81b2c2q − 54b3c3 = 0,
or finally (2q − 3bc)2(q − 6bc) = 0. As 2q − 3bc = (c− a)(a− b) ̸= 0, the final
condition is q − 6bc = 0. On the other hand we have

d(B,C)2 + d(C,A) · d(A,B) = (b− c)2 + (c− a)(a− b)
= −(q + 3bc) + 2q − 3bc = q − 6bc.
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Ekvisegmentarni pravci trokuta u izotropnoj ravnini

Ružica Kolar–Šuper

Sažetak. U ovom radu uvodi se pojam ekvisegmentarnih
pravaca u izotropnoj ravnini. Izvode se jednadžbe ekvisegmen-
tarnih pravaca za standardni trokut i dokazuje da je kut izmedu
njih jednak Brocardovom kutu standardnog trokuta. Proučava
se dualna Brocardova kružnica, kružnica čije su tangente ekviseg-
mentarni pravci, kao i inercijalna os i Steinerova os. Istražuju se
i neka zanimljiva svojstva ove kružnice.
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