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ON A VARIANT AND EXTENSION OF GABLER
INEQUALITY

SADIA CHANAN, ASIF R. KHAN AND INAM ULLAH KHAN

ABSTRACT. We propose a Jensen-Mercer type variant and a Niezgoda
type extension of Gabler inequality along with applications.

1. INTRODUCTION AND PRELIMINARIES

It would not be an exaggeration if we say that “Jensen inequality is
among the most celebrated inequalities of all time”. That is why most of
the researcher are continuously working on this inequality for long time.
In recent past we can find number of different variants, extensions, gen-
eralizations and refinements of this renowned inequality, for reference see
[1-3,8-11,14,15,17-19,22,31-34] and the references given therein. We also
adduce to [25] and [29] for detailed discussion on Jensen’s inequality and for
some remarks on literature and history of the topic. Throughout the article
we assume that J is an interval in R and for weights w1, ..., w, we define the
notation

W; = ij, i€{l,...,n} andclearly W, = ij.

Jj=1 j=1
Now we start with Jensen’s inequality [29].

PROPOSITION 1.1. Let x be an n-tuple with x; € J fori € {1,...,n} and
let w be a nonnegative n-tuple with W, > 0, then for a convex function f on
J following inequality holds

I I

The following variant of the Jensen’s inequality was introduced by Mercer
in [24], which is usually referred as “Jensen-Mercer inequality”.
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PROPOSITION 1.2. Let all the assumptions of Proposition 1.1 be true.
Then the following inequality holds

(1.2) f(a—kb—Zwle) < fla) + ——sz (i),

where
:m {mz} and bzmg)}{xi}.

Before going on to our next preliminary, let us recall a prerequisite concept
of majorization from [23].

Let x = (z1,...,2m) and y = (y1,...,Ym) denote two m-tuples and
T =2 Ty, Y] =000 = Ypm), be their ordered components.

DErFINITION 1.3. For x,y € R™,
k k

Zx[i]§2ym , ke{l,...,m—1},

x<y if i=1 i=1
th] - Zy[z

when x <y, x is said to be majorlzed by y ory majorizes x.

This notion and notation of majorization was first introduced by Hardy
et al. in [13]. In the same book [13] we find a very powerfull result, namely
majorization theorem (see also [23]).

THEOREM 1.4. Let x, y € R™. Then following inequality is true for all
continuous convex functions f : R — R,

n

Zf(xi) <Y i),

if and only if x <y.
We now state Niezgoda’s inequality which is actually an extension of (1.2)
by Niezgoda [27].

PROPOSITION 1.5. Suppose that a be an m-tuple such that a; € J and let
X = (x5) = (x45), n x m be a matriz with x;; € J for alli € {1,...,n} and

je{l,...,m}.
If a majorizes each row of X, that is,

X = (Ti1, -, Tim) < (a1,...,am) = @ for each i € {1,...,n},
then for a continuous convex function f on J following inequality holds:

n
Z (1)

m—1 n

13) £ a— WL DO wimiy | <Y flay) -
j=1 Jj=1

=1 i=1

3
3
”M'
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with w; > 0.

In [12] Gabler defined a special case of convex functions namely sequen-
tially convex functions by employing the following double index function.

DEFINITION 1.6. For x = (z1,...,x,) € J" and a real-valued function
f:J =R, define

L) =)= X (et

k/ 1<ij<---<ig<n

Gabler termed this double index function as an arithmetic mean of all
possible convex functions generated by arithmetic means of any k values cho-
sen from (z1,...,x,). Gabler then defined sequentially convex functions as
follows:

DEFINITION 1.7. Let f : J — R and let fi,, be defined as in (1.4), then
f is said to be sequentially convex if (frn) is a convex sequence in k for all
n>2andall z1,...,2, € J.

While investigating sequentially convex functions Gabler also made the
following important observation which we shall call as Gabler inequality.

PROPOSITION 1.8. For a sequentially convex function f of type (1.4) the
following inequality holds where k € {1,...,n — 1}

(15) fk,’n > fk-‘rl,n-

Through the proof in [12] it is interesting to notice that (1.5) is also true
for midconvex functions see [26, 30].

It was 1994 when Pecari¢ upgraded the double index function (1.4) and
came up with the following weighted version (see [28]).

DEFINITION 1.9. For x = (x1,...,2,) € J" and a real-valued function
f:J =R, define

(16> fk:,n = fk,n<x7w) =

1 ,L , .. . Z
el Y (wi1+...+wik)f<wla:“+ +wzkxk>
(k—l)W'fL 1<y < <ip<n Wy, 4+ .4 Wi,

where w;’s are positive weights for i € {1,...,n}.

In the same article the Gabler result was further strengthen by defining
it for convex functions in the following way.

PROPOSITION 1.10. For a convex function f of type (1.6) the following
inequality holds where k € {1,...,n— 1}

(17) fk,n > fk+1,n-
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Furthermore, it was proved that the inequality (1.7) is an interpolating
inequality for Jensen’s inequality, i.e.,
(1.8)

1 <« 1 —
f (VVn ;w%) =fon< < orin<fin< < fin= W;wzf(l‘z)

n

For recent work on Gabler inequality we refer the reader to [6].

In the present article a variant of Gabler inequality in terms of Jensen-
Mercer inequality and its extension via Niezgoda’s inequality will be stated
along with some refinements similar to (1.8).

This article is organized in the following manner. The first section states
preliminaries and introduction. In second section we give a variant of Gabler
inequality through Jensen-Mercer inequality. Third section is devoted to an
extension of Gabler inequality via Niezgoda’s inequality. While the forth sec-
tion is devoted to applications of our obtained results in terms of generalized
means.

Throughout this article we follow techniques provided in [28].

2. JENSEN-MERCER TYPE VARIANT OF GABLER INEQUALITY

THEOREM 2.1. Under the assumptions of Proposition 1.2, if we define
(2.1)
fk,n = fk,n(xa w, a, b) =

(”11)1/[/ Z (wi1+---+wik)f(a+b—
k—1

" 1<ig<<ip<n

Wiy Tiy + -+ Wiy, Ty,
wil + e + wik ’
then the inequality (1.7) holds.

PROOF. By using the definition of convex functions and rearrangements,
we have

Wiy Tiy + - +wik+1xik+1>

i i b—
(w1+ +wk+1)f<a+ wi1+"'+wik+1

1
= (wi; + - +w; f
(w ) [ ) TR

k41
Wiy Tiy + o0+ Wi Tipy — Wi T
X E (wi1—|—~~+w¢k+1—wil) a+b—
— Wiy + -+ Wiy, — Wy,
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1
( 1 k+1) Alk:-&-ll (wil + ot wi, — 'LUiL)

o Wiy, Tiy; + +w x W;, T
ipLig T ipy1lin1 — Wiy
X g (wil—i—---—&—wikH—wil)f(a—i—b— )
1=1

Wiy + -0+ Wiy — Wy

k+1
1 b Wiy Ty + 00+ Wig g Ty — Wiy Ty
- Wiy + ot wiy, —wiy) flatb— .
k Wiy + Wi, — Wy

1

=

In order to use above result we consider

1 Wiy Ty + Wiy L T
Totrn = oy - Z (wil +"'+wik+1) f <a+b_ = ;1. +...+;;k-+1 “#1)
( k )Wn 1<ig < <igy1<n i1 i1

k+1

SW Z Z(wi1+"'+wik+1_wiz)

k " 1<iy < <igy1<n =1

Wiy Tiy + o+ Wiy Ty — Wiy Ty
xfla+b— me L
Wiy + -+ Wiy, — Wy

1 Wiy i + v+ + w;, x5
= Z (wil +~-'+wik)f(a+b— T ‘k Z’“) = frm

Wiy + W
(k—l) n 1<iy < <ip<n 1 k

which concludes our proof. 0
COROLLARY 2.2. Under the assumptions of Theorem 2.1, we have
f a—&—b—izn:w-x- = f
Wn s g — Jn,n
© o fiin € fin S S o < @) 4 TO) S ()
= S Jk+in S Jekn S S Jin > JQ W, £ W; J\T5).

Proor. For k = n, double index function (2.1) yields to

w1x1+~~+wn:vn)

1
= ——————— N h—
fa, n—1 (wi+-Fw )f(a+ Wi+ -+ wy,

() Wn

1 n
f a—l—b——Zwixi
W i=1
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Similarly for k¥ = 1, double index function (2.1) and Lemma 1.3 of [24] gives
us

f’n _ wllf (a+b wufEu>
R > v

n’Lll

1
= —Zwif(a—kb—xi).
Wni:l

IN

1 n
W, 4 Zw [f(a) + f(b) — f(z:)]

>t

nil

= fla)+

Above calculations in accordance to inequality (1.7) concludes our proof. O

3. NIEZGODA TYPE EXTENSION OF GABLER INEQUALITY

THEOREM 3.1. Under the assumptions of Proposition 1.5, if we define

fk,n == fk,n(xa a, w)

(3.1)
1 m m—1 w;, T, 4+ o+ wikxik
= 2L (it tw) f| Y e - - tuw,
(kfl)W" 1<iy < <ix<n j=1 Jj=1 Wiy + + Wi

then the inequality (1.7) holds.

PRrROOF. By using the definition of convex functions and rearrangements
we have

m m—1
Wiy Tiyg + -+ Wip Tig g5
IR Y | u
- - i1 i1

1=1 (wil R wik+1 - wil)

m m—
Wiy Tiyj + o0+ wlk+1$1k 115 — Wi Taigg
x E (wiy + -+ wiy,, —wiy) g g :
— — wiy +---+ Wipyq — Wi

1
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1
< (wll + -+’U],k+1) PN
=1 (wil +o Wi, - wil)
k+1 m m—1
Wiy Tigj + o+ Wip  Tig g5 — Wiy Tigj
x (wi1+"'+wik+1_wiz)f aj —
Wiy + et Wiy — Wy
=1 j=1 =1
k+1 m m—1
1 ) ) ) Wiy Tiyj + o+ Wig g Tig g5 — Wiy Tigj
Tk (wiy 4 wi gy —wi) f aj : : .
Wiy +"‘+wzk+1 — Wy
—1 =1 j=1

In order to use the above result we consider

1
fryin = W Z (’LUil N +wik+1)

k M 1<ip < <ig1<n
m m—1
Wiy Tigj + -+ Wi 1 Tigy1j
><f a; —
Wiy + -+ Wiy
j=1 j=1

k+1

" 1<ip < <ip g <n =1

3

Wiy + -+ Wi,y — Wy,

m _
wilxilj +eee Wip 1 Lip 15 — Wiy Tigg
x f 4 —
J
j=1 j=1

m—1

m
1 wllxm—s- C Wi T
B E (wiy + - +wi,) f E aj — et
( )Wn . . - : Wiy + -+ Wi,
k—1 1<ig1 < <ip<n Jj=1 j=1
= fk,nv
which concludes our proof. 0

COROLLARY 3.2. Under the assumptions of Theorem 3.1, we have

U 1
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Proor. For k = n, double index function (3.1) yields to

1 “ Wiz 4 W
fn,n = f(w1+’-~+wn)f Za]‘—z J J
()W j=1 o Wit
m 1 m—1 n
= (T T
j=1 =1 i=1

Now by using similar technique for majorization theorem as in Theorem 2.1
of [27] and double index function (3.1) for k = 1, we have

1 n m m—1 W T s
fin = wif D4y Y
n (?_%)Wn ilzﬂ 11 ]:21 J ]; w;,
1 n m m—1
= szzf Zaj—z.%'”
=1 j=1 j=1
m 1 m—1 n
< Zf(aj) W Zwlf(xlj)
=1 " =1 i=1

Above calculations in accordance to inequality (1.7) concludes our proof. O

REMARK 3.3. If we set k = m = 2, a1 = a, ag = b and x;; = x; for
i € {1,...,n}, then Theorem 2.1 and related results will become special
cases of Theorem 3.1.

4. APPLICATIONS

4.1. For Jensen-Mercer type variant of Gabler inequality. For [a,b] C J, 0 <
a < b and positive weights w; for i € {1,...,a} where a € {1,...,n}, we
define the following (modified) arithmetic, geometric and harmonic means
along with power mean of order r € R for all x; € [a, b]:

1 (e
A1, o Ta; Wy e We) :a—&-b——Zwixi,
Wa i=1
ab

G(x1,..., TaiwW,. .., Wo) = ———————,
(H?fl ) We
«

-1
1 1
) [, -1, -1 _
H(xl,...,xa,wl,...,wa)<a +0b Wai§1w1$i> )

3=

1
M[T](xl,...,xa;wl,...,wa): (ar—’_br_WiaZ?:lwixlT) , 1#0,
G(z1,...,Ta;w1,...,Ws), T =0.
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Also for i € {1,...,n} and p € {1,...
‘Ap’n:‘/4(‘Ti1,...7
Gp,n:G(xilv---;
Hpm:H(Iil,...,
MI[,flL:M[T] (24, -

For :I:ip»—>(1 Z) ar— (1-—

=A(l —zyy,...
=Gl —xzy,...,
= (1—(,62‘17...
Clearly for n = p,
Ann—a—i—b——waZ
i=1
b
Gmn: a :Gna

(IT=y =)™
_ -1 -1
H»,Ln = (a + b — W Z

ap, = (oo - L
A{n,n = (1 - a‘)

ﬁ‘H

(H?:1 (1 —a)™)
H,’L7n: <(1—a) +(1-0)"

We now introduce mixed symmetric

w2

k—1 . .
M[s,r] o 1<ip < <ig<n
kn T

s

SION OF GABLER INEQUALITY

k,k+1...,n} we define
wip;wila'“uwip)v
xip;wi17"'7wip)7
Iip;wiu"'vwip))
..,xip;wil,...,wip).

) and b +— (1 —b) we put

7]- _xip;wilv"'vwip)a
]. —mip;wil,...,wip)7
=2 swiy, . wg,).
:Ana
—1
n
1 1
wi; = H,,
n 4 i
1
r\"
1 wzxz> ) r 7& 07 — M[n]’
Gnny r=0,

(1-b) _fzwl )= A,

l
means as follows:

(Zw) (a7)" s

T hwn
II M 7

1<ip<--<ixg<n

—1
i) -

99
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Under the assumptions of Theorem 2.1 here we state a couple of applica-
tions starting with the following refinement series of the arithmetic-geometric
and Ky Fan inequalities (see [7] and reference therein).

THEOREM 4.1.

(4)

Ay <o < II Ak Ve

1<iy < <igp1<n

< H (AkJL)Wik

1<iy < <ip<n

S

S
"
IA

H <A;c+1 n)WikH) (") wn

A
1<ip < <ip41<n k+1n

< I (j;,nyik) G)wn

1<iy < o<ip<n N

where Wi, . = w;, + - +w;, .

PROOF.

(i) By applying convex function f(x) = — In(z), to Corollary 2.2 we obtain
required result.

(ii) For z € (0, 3], applying convex function f(z) = In (£=%) to the Corol-
lary 2.2 we get

l—a—b+ o= >0 w
hl( W,,,Zz_l )S

1 n
CL‘i’bf aniZI W;T;

1 K2
W Z WikJrl ln a+b7 n k+lz:k+1

n 1<i1 < <ipp1<n
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1 k
1—Cl—b+ WZZ:lwinil

1
S, 2,

1 k .
=1/ 1< < <in<n a+b-— Wi, 2121 Wi, T4,

1 & l—a—b+x;
<< ;In [ ——— 7
- 7Wn;w n( a+b—ux; )

l1-a 1-0 1 « 1—ay
Sln( . )+ln(b )W,n;wiln( z >

1
—1
k )”n,

Consequently,

A, Ay e |
ln<An)§~~§ln H (>

A
1<ig g <e<ig<n NRHL

n

A Wiy, (z:i)W"
|G

1<ip<-<ir<n VK

Finally, by taking exponential, we deduced our result. |

The refinements series of the variant of arithmetic-geometric inequality is
given as:

THEOREM 4.2.

Gn 1 Gk+1 n
_n s = Wiy J
Gn + G;l — — (n—l)W Z k+ (Gk+1,n + G;c-‘rl,n)

n 1<i1 < <ipp1<n

1 Gk,n
S A (M)

E—1)"1 1< <o <ip<n

1 & Gin
<< i| =————— | < A,,
= 7Wn A:w <G1n+G/7 >

where Wi, . = w;, + - +w;, .

PRrOOF. By applying the convex function f(z) = to Corollary 2.2

1
l+expx
and replacing a by In :L_Ta, b by In %b and z;, by In "% e obtain the result.

.’L‘il
|
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Now, we present refinement series of the arithmetic and harmonic mean
as follow:

THEOREM 4.3.

(4)

1 1 1
AT 2 e ()
W,

n 1<ii < <ip41<n

| (-)
N i
(k—})Wn 1§il<Z'<ik§n i Ak’,'n.
1

S~

n 1§i1<"‘<ik+1§n

1 1
A i
(k—i)W" 1§11<Z~:<ik§n A Ag@”)

where Wi, ., = wi, + -+ +wi,, -

PROOF.

(i) By applying convex function f(z) = - to Corollary 2.2 we obtain
required result.

(ii) By applying convex function f(z) = 2=,z € (0, 3] to Corollary 2.2
we obtain required result. 0

In the following theorem we establish a refinement series of the difference
of the arithmetic and harmonic mean.

THEOREM 4.4.

11 1 1 :
s X e ()

/
M 1<iy < <igp1<n k+1,n

1 1 1
‘T Z L ()

k—1)""1 1< << <n
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where Wi, . = w;, + - +w;, .

PROOF. By applying convex function f(z) = %f 2 € (0,1] to Corol-
lary 2.2 we obtain required result. O
We now prove some results in terms of mixed symmetric means.

THEOREM 4.5. Let r,s € R such that s < r. Then we have

@1 MU =M< <) <Ml <<l < Mt

(42)  ME<MP << <Myl <<l = .

PROOF. Let r,s # 0. By applying the function f (z) = 2+, in the Corol-
lary 2.2 and replacing a,b and x;, by a”,b" and (z;,)" respectively, and then
raising the power 1, we get (4.2). Similarly, using the function f (z) =+ in
the Corollary 2.2 and replacing a,b and z;, by a®,b° and (z;,)® respectively
then raising the power %, we get (4.1). For s = 0 or r = 0, we obtain the

required result by taking limit. 0

Let ¢,1 : J — R be continuous strictly monotonic functions. We define
the quasi-arithmetic means with respect to Theorem 2.1, as follow:

. . 1 k
e (= T o o)

k—1 ™ 1<ip<-<ip<n \l=1
k
_ Zl:l wizw (wu)>‘|
)

oY) ¢ (a b
x (¢ )( (a) + 1 (b) S

where ¢ o 1! is convex function.

COROLLARY 4.6. If we define a continuous and strictly monotonic func-
tion ¢ : J - R as

Nrlel = 1

pla) +p(b) - V;Zwisom)] ,
" i=1

then the following monotonicity of generalized quasi-arithmetic means holds

(4.4) M9l > Ml[‘f’ﬁ’b] > > MIL‘?:“ > M}E‘Tf}n > > ML@?#’] — vl

PROOF. Setting f + ¢ ot ~! and replacing a,b and z;, by 1 (a),v (b)
and v (z;,) respectively in Corollary 2.2 and then applying ¢!, we get (4.4).
0
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4.2. For Niezgoda type extension of Gabler inequality. For [a,b] C J, 0 < a <
b and positive weights w; for i € {1,...,a}, where a € {1,...,n}, we define
the following (generalized) arithmetic, geometric and harmonic means along
with power mean of the order r € R for all z;; € [a,b], j € {1,...,m}:

@
E W;Tij,

A(xlj,...,xaj;wl,...,wa) = E Clj—iw
: [eY

~ H;n:1 aj

G(x1jy . Tajs Wi,y .., Wo) = —,

—1

G 1

] . _ -1

H(z1j,. .. Zaji Wi, ..., W) = E a; — g w; ,
; : Lij

Rl

m r m—1 [eY r
mtrl ($1j7---7waj;w17---,wa){ (Zj:l(aj) ~Wa 2 Zl:lwi(xij)) > T#O

G(z1j,. - Taj; Wi, ..., Wa), T =0.

Also fori e {l,...,ntand pe {l,...k+1,k...,n}, we define

Ap,n = A xi1j7 e a-ripj;wila e 7wip)7
ép’n :é(xi1j7...,ac,»pj;wil,...,wip),
~p,n: N(:Cilj,.-~,$ipj§wi17~--,wip)a
MZ[;:’]H = M[r] (xhja ce ,xipj;wil, e ,U}ip) .

For z; ; — (1 — x;,;) and a; — (1 — a;) we define following means

Nl f— A . . .
Ap,n = A(]. —$i1j7...71 —xipj,w“,...,wlp),
=, ~ )

Gp,n = G(l 71’7;1]',...,1 —xipj,wil,...,wip),
. ~ .

HI)JL ZH(l _xi1j7~-~71 —xipj,wil,...,wip).
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Clearly for n = p,

m m—1 n
~ 1 ~
Anp = Zaj - Wn z Zwixij =A,,
J=1 Jj=1 i=1
. "a .
Gn,n = Hj_l ! M} = Gn7
-1 w; | Wn
(]._.[;nzl H?:l ng )
—1
B m 1 m—1 n 1 _
L D
j=1 no o T
1
m r m—1 n r\"
]\er[fll = (ijl(aj) - Win Zj:l 21:1 w;(5) ) , T#0,
) nmy T =U,
IO
m 1 m—1 n
A=) (1-q) YD wil—wy) = A,
j=1 W j=1 i=1
G — H;'n:1(1 a;) _ &
n,mn 1 n’
m—1 n w; \ Wn
(H]=1 ie (1= 2i5) )
-1
m 1 m—1 1 1
5 A N & ) 7
= (S0 - S s R
Jj=1 j=1 i=1

We now introduce mixed symmetric means as follows:

e S (Sw)@)) e

~r[s.7] 1<i <-<ig<n \I=1
k,n

H M,Er]n , s=0.

1<ip < <ip<n

Under the assumptions of Theorem 3.1, here we state a couple of applica-
tions starting with the following refinement series of the arithmetic-geometric
and Ky Fan inequalities.
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THEOREM 4.7.

(i)

IN
IN

An - H (Ak+l,n)Wik+l

1<ip < <ig41<n

< H (Ak,n>Wik

1<ip < <ip<n

(i)

A, 1k+1
Ln S S H k:-‘rl n
A 1<iy <+ <ipp1<n Ap1, ”
Wi
AI k
< om ()
1<ii<-- <7.k<'n,
n A Wi ﬁ cr
<I]{== <,
i=1 Al,n Gn
where Wy, ., = wy, + -+ +wj, ;-
ProoOF.

(i) By applying convex function f(x) = —In(z) to Corollary 3.2, we obtain
required result.

(ii) For = € (0, 2] and a; < 1 for all j € {1,...,m}, applying convex
function f(x) =1In (1 x) and adopting the technlque of Theorem 4.1, we get
the proof. 0

The refinements series of the variant of arithmetic-geometric inequality is
given as:
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THEOREM 4.8.

1 ~kn
< Wil 5=—=—

E—1/" 1 1< < <ig<n

Jr
<...< 1 w; | =—— Gl’"N < A,,
W, “ 10 + G

where Wi, ., = w;, + -+ +w;, .,

1 .
m with aj <1 for
1

ProoF. By applying the convex function f(x) =

all j € {1,...,m}, to Corollary 3.2 and replacing a; by In

In %, we obtain the result. 0
i3

—aj o
o and z;,; by

Now, we present refinement series of the arithmetic and harmonic mean
as follow:

THEOREM 4.9.

(0)

1 1 1
— <o < — Wi, I a—
An B B (n_l)W Z o <Ak+1,n)

n 1<ii < <ip41<n

1 1
< Wi, (=
<o 2 w5

" 1<ip<<ig<n

IA

:m‘ —

s~

1 1
R — Z W; =
= 1 Th+1
(nk )Wn 1Si1<"'<i)¢,+1§n (A;C+17n>
W,

1 1
< i | x
(zj)Wn 1§i1<Z:<ik§n ' Afm>

where Wy, = ws + - +wj .

PROOF.
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(i) By applying convex function f(z) = 1 to Corollary 3.2 we obtain

required result.
(ii) By applying convex function f(z) = 2= with z € (0, 1] and a; < 1
for all j € {1,...,m}, to Corollary 3.2 we obtain required result. ]

In the following theorem we establish a refinement series of the difference
of the arithmetic and harmonic mean.

THEOREM 4.10.

1 1 1 1 1
e U . — w; _ — =
P e LA k“QMmA >

/
k " 1<ip < <ig41<n k+1,n

1 1 1
< —— ; = — —=
— (n—l)W Z Wzk <Ak N A;(:’n>

k—1/""1N 1< < <ip<n ,

SO Y B T D R
W, = "'\A4, 4., H, @

n

where Wy, ., = wy, + - +wi, ., -

PROOF. By applying convex function f(z) = 1 — = with z € (0, 1] and

T 1—x

a; < 1forall j € {1,...,m}, to Corollary 3.2 we obtain required result. 0

We now prove some results in terms of mixed symmetric means:
THEOREM 4.11. Let r,s € R such that s < r. Then we have
(45) MU=l << <Y << < b,

(a6) MW <P <<t <n) << il = i,

PROOF. Let r,5 # 0. By applying the function f () = =+, in the Corol-
lary 3.2 and replacing a; and z;,; by (a;)" and (x;,;)" respectively, and then
raising the power %, we get (4.6). Similarly, using the function f (z) = z* in
the Corollary 3.2 and replacing a; and z;,; by (a;)° and (x;,;)° respectively
then raising the power %, we get (4.5). For s = 0 or 7 = 0, we obtain the
required result by taking limit. 0

Let ¢,v : J — R be continuous strictly monotonic functions. We define
the quasi-arithmetic means with respect to Theorem 3.1, as follow:

k
NP = 7t | . ( w; )
. (R Wa 1§i1<Z~<ik§n ; L

_ - Z"L:_ll Zf:l wnw (mizj)
x (ov) (v (Y a | -
( ) ]2::1 ’ Zf:l Wy,
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where ¢ o 1~ ! is convex function.

COROLLARY 4.12. If we define a continuous and strictly monotonic func-
tion ¢ : J - R as

m m—1 n
MWl =7t e Zaj - WL Z sz’@(xij) ;
j=1 =1 i=1

then following monotonicity of generalized quasi-arithmetic means holds

(4.7) Nl > Ml[if’r;’/’] > ... > Ml[jf] > Mlg‘i“f’]n > > ]\2[7[1%/’] — prtl
PROOF. Setting f +— ¢ o' and replacing a; and x;,; by 1 (a;) and
1 (z;,;) respectively in Corollary 3.2 and then applying ¢—' we get (4.7). O
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ON A VARIANT AND EXTENSION OF GABLER INEQUALITY
O varijanti i prosirenju Gablerove nejednakosti

Sadia Chanan, Asif R. Khan i Inam Ullah Khan

SAZETAK. U ovom c¢lanku predlaZemo varijantu Jensen-
Mercerovog tipa i prosirenje Niezgodinog tipa za Gablerovu ne-
jednakost te dajemo neke primjene.
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