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SMALL-DEGREE PARAMETRIC SOLUTIONS FOR DEGREE
6 AND 7 IDEAL MULTIGRADES

ALLAN J. MACLEOD

ABSTRACT. We derive parametric solutions for 6 and 7 term ideal
multigrades. These are of significantly smaller degree than previous solu-
tions, such as those of Chernick.

1. INTRODUCTION
A multigrade of degree N is an integer solution to
(1.1) Xi+Xe4 . + Xy =Y +Yi+.. +Yi, i=1,2,...,N

where the sets { X1, Xo,..., Xp} # {V1,Ys,..., Yy} If they are just permu-
tations, we call this a trivial solution. The book by Gloden [3] is the standard
reference, though out-of-print for decades.

We write this as

) )

X1, X0 Xt X VLY, .. Y.

An old theorem of Bastien states that a solution only exists when M > N.
An “ideal” solution satisfies M = N + 1, and we will concentrate on this type
of solution.

Numerical ideal solutions are known for degrees N =1,...,9 and degree
N = 11, see the web-site of Chen Shuwen [7]. Parametric solutions are only
known for degrees N = 1,...,7, see Chernick [1]. In fact, for degree N = 8,
only 2 numerical solutions are known! For degree N =9, there are an infinite
number of solutions parameterized by points on an elliptic curve, see Smyth
8]

The parametric solutions quoted by Chernick are small for degrees 1 — 5,
for example the following is a degree 5 solution

(1.2) Ay, Ay, Ay, — Ay, — Ay, —As = By, By, Bs, — By, — By, —Bs,
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where
Ay = =5t +4t -3 Ay = —3t24+6t+5 Ag = —t2 —10t —1,
By = —5t> + 6t +3 By = —3t2—4t -5 By = —t> +10t -1,
with ¢ € Q.

For degree 6 and 7, the parametric solutions have much larger degree.
In fact, he does not give these latter forms explicitly. These are the only
parametric solutions quoted in Chen Shuwen’s web-site [7]. Recently, Ajai
Choudhry [2] presented a very nice method which produces simpler solutions.

The purpose of this note is to develop much simpler degree 6 — 7 forms,
by different methods, in the hope that they might suggest forms for degree 8
and higher.

2. DEGREE 6 PARAMETRIC FORMS

We follow the basic method used by Chernick. Consider the relation
(2.1)
U17 U27 U37 U4a 7‘/17 7‘/2a 7V37 7‘/4 g 7U17 7U27 7U3; 7U43 Vla ‘/27 V37 ‘/4 )

which automatically satisfies the degree 2,4, 6 relations. For odd degree, we
have

(22)  UTHUS+UP+UP=VP+ VP + VP + VP n=1,3,5.
Define
U =-X1+X+ X3 Uy = X1 — Xo+ X3,
Us=X1+Xo— X3 Up=—-X1—Xo— X3,
Vi=-Y1+Ye+Y3 Vo=Y) - Y2 + V3,
Va=Y1+Y-Y;3 Vi=-Y1-Yo Y3,

Then the n = 1 identity of (2.2) is satisfied, and we have the following
from the n =3 and n =5

(23) X1 XpX3=Y1YaV3 XP+ X3+ X5 =Y +Y7 + Y],
Chernick sets U; = 0 to give an ideal multigrade of degree 6, which

corresponds to the constraint X; = X5 + X3. He also defines the variable
t = X5/Y1, giving (2.3) as the two equations

(2.4) (262 = 1)Y? +2X3 +2X3Vit — Y3 — Y2 =0,
and
(2.5) X2t 4+ X3Y1t? — YaY3 = 0.

The latter equation gives 2X3 + 2X3Y1t = 2Y2Y3/t so (2.4) is
Y2262 — 1) — Y3 +2Ya Y3/t —Y§ =0,
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and this quadric can be parameterized in the usual way. One possibility is

(2.6) Y = k*(2t* — 1) + 2kt + 1
(2.7) Yo = k2(t — 1)(2t% — 1) + 2k(2t* — 1) +t + 1
(2.8) Yy = t(1 - k*(2t? = 1)),

where k is a rational parameter.

Substituting these in (2.5) gives a quadratic equation for X3 which we
want to have rational solutions. Thus, the discriminant must be a rational
square, so

(2.9) O=(t—2)%(2t> — 1)%k" +-4(2t> — 1)(£* — 4> + 2)k>+

2(4t* — 982 + )k +4(t> + 42 — 2)k + (t +2)2.

It is essentially at this point where we diverge from Chernick’s method.
He, basically, completes the square of the quartic with a method known since
the time of Fermat. Straightforward algebra shows that the right hand side
of (2.9) can be written f(k,t)? + g(k,t) where
2083 —4t2 +2) 216 — 25¢* + 28¢% — 16t + 8

T T TG TERSET B

fk,t) = (t—2)(2t> — 1)k* +

wnd 6k(t6 — 9t 2t2 — 4
16k(t° — 9t* + 12t —4)(2t — 1
olh.0) =25 (t—2)4 (22 — 1;( -
16(° — 9t + 12¢2 — 4)(2t5 — 10t* + 15¢3 — 7% — 4t + 3)
(t—2)5(2t2 — 1)2
Setting g(k,t) = 0 gives a solution to (2.9), which is given by

(13 —3t2 + 1) (2t2 — 4t + 3)
(t—2)%2(2t — 1)(2t2 — 1)

Putting this value of &k into the above formulae results in a degree 6 ideal
multigrade with the U; and V; terms being polynomials in ¢ of degree 10 and
11.

The quartic (in k) clearly has a rational point (0, (t 4 2)), and so is bira-

tionally equivalent to an elliptic curve. Using the method described in Mordell
[5] we find this curve (with || # 1) to be

(2.11) v =u(u+ (E+ D22+ 2t —2)(u+ (t — 1)%(t? — 2t — 2)),
with

zZ.

(2.10) k=

(2 —t)Fu(t® — 4> +2) +t7 — 95 + 123 — 4t
u(t —2)2 416 —9t4 1122 — 4 '
There are 3 clear finite points of order 2, and numerical experiments
suggest that the torsion subgroup is isomorphic to Z/2Z & Z/27Z, but this is,

(2.12) k=
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of course, nowhere near a proof. This can be verified using some Magma code
very kindly supplied by the referee.

These same numerical experiments also suggested that the rank was at
least 2 except when ¢t = 2 which has rank 1. To find elements of the group of
rational points, we first used the Pari-GP function ellratpoints to find smallish
height rational points for specified ¢.

The most obvious result was that v = 9/4 always gave such a point
for each t, namely v = 43(2t? + 4t — 1)(2t? — 4¢)/8. It is very unusual (in
the author’s experience) for u constant to always give a rational point. The
positive v gives a fairly horrid value of k£, but the negative value gives

2% + 4t + 3
2(t+2)(1—2t2)°
which leads to the following elements of the right-hand-side of (2.1) with
U; = 0. The left-hand-side elements are just the negatives.

k=

TABLE 1. Parametric Solution for Degree 6

i Term
1 12t3 + 30t% + 6t — 3
2 4t 4 413 — 18t2 — 22t — 4
3 —4t* — 1683 — 12t> — 8t — 5
4 A5 4 12t* — 4¢3 — 22t2 — 3t + 4
5
6
7

45 + 1614 + 12¢% — 1662 — 7t
—A4t> — 12t* + 483 + 28t + 15t + 5
—4t5 — 16t* — 1263 + 10t + 19t + 3

It might be thought that u = 9/4 was bound to give a generator. It
should be noted that elliptic curves with at least one torsion point of order 2
lead to a doubling formula resulting in a u-value which is a rational square.
9/4 is a rational square and it is standard algebra to show that it is double a
rational point and thus not a generator.

We find this rational point to be

(7 = 1%, £(t* = 1)*(2¢* - 1)),

which gives
k= 3 k= -1 ,
213 — 412 — 5t + 4 t
from the positive and negative values respectively.
The first leads to the same parametric form as before, whilst the second
leads to a trivial solution U; = V.
As we stated before the numerical solutions suggest the rank is at least

2. We found that the following point
(12—, 2t(t> —1)(2t2 — 1)),
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was often a second generator. Proving this would be difficult. The point gave

2t — 2
k=0 k= 75—
3 —3t2+1"
with Magma showing that this point and the previous one are linearly inde-

pendent.
The second formula for k gives the following parametric ideal solution.

TABLE 2. Parametric Solution for Degree 6

i Term
1 4 — 3 —3t2 + 2t
2 A3 22t —1
3 —2t* 4583 — 22 — 2t + 1
4 o — 314 +3t2 — ¢
5 o — At 4583 — ¢t
6 P43t -3 -2 —t+1
T P At — A2+t —1

3. DEGREE 7 PARAMETRIC FORMS
We, again, follow Chernick by assuming the relationship
{(£X1, X5, £ X5, £X4} = {27, £Vs, £V3, £V, },
with X; # Yj.
Thus, we have
(3.1) X'+ X3+ X3+ X =Y"+Y +Y+ Y] n=246.
In 1913 Crussol gave a method for this equations which the present author

discussed in [4]. Included in that paper is the following table for a parametric
solution.

TABLE 3. Parametric solution for X;,Y;

X; Y;

1 i

1 455 — 457 — 1352 + 1552 + 45 + 4 45° — 851 — 1355 — 3257 + 45
2 45° 4 85 — 1353 + 3252 + 45 455 4 454 — 1353 — 1552 + 45 — 4
3 45% —325° — 1352 -85 +4 45° + 45* + 1553 — 1352 — 45 + 4
4 455 — 454 + 1553 + 1352 — 45 — 4 454 43252 — 1352 4+ 85 + 4

In the current work, we use the form suggested by Piezas. Piezas uses 3b
everywhere instead of b, but this only makes one condition slightly simpler.
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TABLE 4. Identities for X;,Y;

L Yi
zy+axr+by—c xy+br+ay—-c
zy—axr—by—c xy—br—ay—-c
zy+ay—br+c zy+ar—>by+c
zy—ay+br+c xy—axr+by+c

= N |

With this form (3.1) is identically true for n = 2. For n = 4, we have
16zy(z + y)(z — y)(a + b)(a — b)(ab—3c) =0,

and we force a solution by setting ¢ = ab/3.
For n = 6, we have

92%(10y* — a? — b%) — 9y*(a® + b?) + 10a%V* = 0,
Since we want rational solutions for x,y, we must have
(9y%(a® + b%) — 10a°6%)(90y> — 10a® — 10b%)) = 0.

Piezas claims this is an elliptic curve, but such a quartic is only equivalent
to an elliptic curve if there is at least one rational solution. We have (dividing
by 9)

(3.2)  O=90(a® +b*)y* — (9a* 4 118a*b* + 9*)y? + 10a%b*(a® + b?),
and it is not too hard to find y = —a gives a right-hand-side of a?(3a+b)?(3a—
b)2.

Proceeding along standard lines [5], we eventually find the equivalent

elliptic curve to be

(3.3) v* =u(u+ (a+3b)*(3a+b)?) (u+ (a—3b)*(3a —b)?),
with

_a(v+u(a® + 116?) 4 (a + 3b)*(a — 3b)*(3a + b)(3a — b))
~ —v —u(19a2 + 9b2) + (a + 3b)2(a — 3b)2(3a + b)(3a — b) ’

and, thus, 9a% — b? # 0 and a? — 96 # 0 must hold.

Numerical experiments suggested that the torsion subgroup was isomor-
phic to Z/27Z & Z/47 and that the rank was at least 1, though often exactly
1 for some a,b. We find the following points of order 4

((a+3b)(a—3b)(3a+0b)(3a—b),+6(a+3b)(a—3b)(a*+b*)(3a+b)(3a—1b)),
(—(a+3b)(a —3b)(3a + b)(3a — b) , £20ab(a + 3b)(a — 3b)(3a + b)(3a — b)),

These numerical experiments also suggest that the point

(3.5) (—(3a+b)%*(a — 3b)*, 12ab(3a + b)*(a — 3b)?),

(3.4)
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is a point of infinite order and often a generator. This gives
b(3a? + 5b° b(13a? — 5b°

(3.6) p = BT+ 5b) y = 23" = 5b)
5a2 — 13b2 3(5a? + 3b?)

which leads eventually to the parametric forms

TABLE 5. Parametric solution for X;,Y;

X1 2(5a® + 26a’b + 38a%b? — 36a2b + 21ab® + 100°

)
X, (b — a)(35a* + 48a3b + T4ab? — 48ab> — 45b*)
X3 (a + b)(45a* — 48a3b — T4ab? + 48ab> — 35b*)
Xy —2(10a® — 21a*b — 36a3b* — 38a%b3 + 26ab* — 5b°)
Y1 2(10a° 4 21a*b — 36a3b? + 38a%b> + 26ab* + 5b°)
Yo (b — a)(45a* + 48ab — T4a?b* — 48ab> — 35b%)
Y3 (a + b)(35a* — 48a3b + T4ab? + 48ab> — 45b*)

)

Yy —2(5a® — 26a*b + 38a3b? + 36a2b + 21ab* — 100°

4. PIEZAS’ RESULTANT METHOD

Later on, in the section on sixth powers with 8 terms, Piezas describes a
simple-looking method. He sets, similar to the previous section

(41) {X17X2,X37X4}:{a+bh,c+dh,6+fh,g+h}
{Y17Y27Y33Y21} = {afbh,cfdhaef fhvg - h},

and forces

(42) X'+ X3+XP+Xy=Y"+Y+Ys'+Y) n=124,6.

For an ideal multigrade with 8 terms, he does not require the n = 1
condition. Without it, however, we do not get as much simplification as we
need to get an answer.

For n = 1,2, we have the simple identities

f=-1-b—-d g=—ab—cd—ef,

reducing the number of parameters to 6.
The conditions for n = 4,6 reduce to two equations for h

Pyoh? + Pyy =0 Pysh* + Pyoh? + Py =0,

where the P;; are complicated functions of a, b, c, d, e.

The resultant of these equations is of the form F(a,b,c,d,e)? = 0. It is
very surprising that F' factors into the product of 3 reasonable linear terms
and a cubic term. The linear expressions are

(at+ab—c+cd—be—de) (—a+ab+c+cd—be—de) (a+ab+c+cd—2e—be—de).
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We consider the third of these factors, with the other two using the same
methodology. We have
d+1)—e(d+2
(4.3) p—ateld+l) —e(d+2)

€—a

which we substitute into the quadratic equation for h.
This has solutions

_ *(a—e) o e_(a+c)(c(d+1)—a(d—2))

o d+1 N - a(d+4)+c(2—d) ’
with the first 3 solutions leading to trivial multigrades. The final one does
not.

Substituting the formula for e into the quartic, we find that it factorises
into 2 linear terms in h and a quadratic of the form Q2h? — Q29, where
Q22, Qo0 are functions of a,c,d. Solving for h in the linear terms just gives
trivial solutions, so we concentrate on the quadratic.

For h € Q we must have 0= (Q22Q20. This latter expression is of degree
8 in a and ¢, but a quartic in d. The leading term is 9a%c?(a — ¢)?(2a + ¢)?,
so the quartic is birationally equivalent to an elliptic curve.

After some standard, but lengthy, calculations, we find the elliptic curve
to be
(4.4)

v? = u(u?+(9(a*+c*)—160ac(a®+c?)—418a*c*)u+1600a*c? (a+2¢)? (2a-+c)?)

with

_ 3v— (41a® + 98ac + 41¢?)u + 800ac(a + 2¢)?(2a + ¢)?

B 2ac(c — a)(400(a + 2¢)2(2a + ¢)? — u) ’
These curves are singular if a = 4¢, which we now assume does not

happen. Numerical experiments on the curves, for simple integer a, ¢ values,

suggest that the torsion subgroup is isomorphic to Z/47Z with points of order

4 given by

(40ac(a + 2¢)(2a + ¢) , £120ac(a + ¢)(a — ¢)(a + 2¢)(2a +¢) ),

with none of the torsion points leading to non-trivial solutions.

These numerical experiments also suggested that the rank of the curves
is at least 2, except when a = 2,¢ = 1, when the rank is only 1. We used
the Pari-GP code ellratpoints to find rational points and then try to infer an
algebraic form.

We found 2 simple points that seem to often give generators

(16ac(a + 2¢)(2a + ¢) , 48ac(a + 2¢)(2a + ¢)(a® + dac + c?)),

(4.5) d

and
(64ac(a + 2¢)(2a + ¢) , 192ac(a + 2¢)(2a + ¢)(a® + ac + ¢*)) .

From the first point we find the following parametric form
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TABLE 6. Parametric solution for X;,Y;

X1 —(30a® + 116a*c + 598a°c® + 1179a%c® + 823ac? + 170c)
Xs  170a® 4 933a%c 4 2080a3c? + 2221a%¢® + 1017ac* + 140c°
X3 110a® + 763a*c + 1863a3c? + 1756423 + 581ac* + 30¢°
X, —140a® — 569a’c — 821a3c?® — 274a’c® + 236ac* + 110c°
Y, 140a® + 1017a*c + 2221a3c? + 2080a2c3 + 933ac* + 170c°
Yo  —(170a° + 823a'c 4+ 1179a®c? + 598a%c? + 116ac* + 30c°)
Y3 30a® + 581a’c + 1756a3c? 4 1863a2c® + 763ac* + 110c°
Y, 110a® + 236a*c — 274a3¢? — 821a2%¢® — 569ac* — 140c°

whilst, from the second point

TABLE 7. Parametric solution for X;,Y;

X1 1040a® + 3732a*c + 7438a3¢? + 8479a>c3 + 4266ac* + 560c°
Xy —(560a® 4 2746a*c + 5361a3c® + 4321a%c3 + 614act + 480c)
X3 1520a° + 4574a*c + 3533a3¢? — 2069a%¢® — 3602ac* — 1040c°
X4 —480a® — 922a%c + 625a3c? + 4146a%¢® + 4588ac* + 1520¢°
Yy 480a® — 614a*c — 4321a3c? — 5361a2c® — 2746ac* — 560c°
Y, 560a° + 4266ac + 8479a3¢? + 7438a%c3 + 3732ac* + 1040c°
Ys  —1040a® — 3602a*c — 2069a%c? + 3533a2¢® + 4574ac* 4+ 15206°
Y, 1520a® + 4588a%c + 4146a3¢? + 625a%¢® — 922ac* — 480¢°
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Parametarska rjesenja malog stupnja za idealne multigradove
stupnja 61 7

Allan J. Macleod

SAZETAK. Izvodimo parametarska rjesenja za 6 i 7 idealne
multigradove. Ova rjesenja su znatno manjeg stupnja od prethod-
nih rjesenja, poput onih Chernickovih.
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