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Abstract

This thesis addresses, from a computational perspective, several open questions in rela-
tivistic atomic structure theory, which is the theoretical description of atoms based on the
Dirac equation and quantum electrodynamics (QED).

The first part of this thesis investigates several fundamental problems of the Dirac equa-
tion with the help of a novel numerical solver based on the one-dimensional finite element
(FEM) basis set. Significant effort is made to validate and benchmark the solver, which is
reliably able to converge to accurate results at numerical floating-point precision, including
when nuclear potentials derived from nuclear models with finite spacial extent (as opposed
to a point nucleus) are used. The solver is then applied to the Dirac equation in the chal-
lenging high nuclear charge regime where the Dirac equation exhibits several mathematical
difficulties. In particular, the problem of the 1s bound state diving into the sea of negative
energy continuum states is studied and the diving resonance state is numerically traced and
analysed. As a type of workaround, a modified version of the Dirac equation where the
negative energy plane-wave states are projected out of the Hilbert space is also solved and
studied in the high nuclear charge regime.

The second part of the thesis involves expanding the QED self-energy treatment in the
atomic structure software GRASP. The configuration interaction (CI) portion of the code
is significantly refactored to allow for the implementation of new additional effective opera-
tors that provide a more modern multi-electron treatment of QED self-energy effects. The
implementation is tested by evaluating the QED and other post-Dirac-Coulomb corrections
for the ground states of the beryllium-like isoelectronic sequence, which was also discovered
to exhibit an interesting ground state configuration transition at high nuclear charge.
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Chapter 1

Introduction

An atom seems like one of the simplest systems in physics: a positively charged atomic nucleus
in the middle with a flock of electrons surrounding it. Physics students solve it with quantum
theory in an undergraduate course. Job done. Right? No?

The problem, if it can be called that, is precision. The advances in the atomic spectroscopy of
neutral atoms and charged ions allow for extremely accurate measurements of transitions energies,
intensities, and other associated properties. This precision means that atomic systems are useful
tools for other areas of physics, from helping to determine the atmospheric composition of stars
and exoplanets and understanding the behaviour of plasma in astrophysics or fusion reactors [1]
to testing fundamental physics theories [2, 3, 4].

It is also important for theory to keep up with this progress. And, by and large, it has.
Atomic structure theory has come a long way since its early days in the form of highly empirical
formulae for hydrogen spectral lines proposed by Balmer and Rydberg in the late 1880s. Via early
developments in quantum theory in the form of Bohr’s atomic model and then non-relativistic
Schrödinger equation, to the relativistic generalization by Dirac, the theoretical understanding of
atoms, and elementary particle more generally, has arrived at quantum field theories (QFT). It
was the desire to properly describe atoms that spurred Feynman, Schwinger, Dyson, and many
others to develop quantum electrodynamics (QED), the first fully relativistic and quantized
theory of electrons and their electromagnetic interactions. As new particles were discovered or
proposed — quarks, neutrinos, the Higgs boson — the same methods were then applied to those,
leading to the Standard Model of Particle Physics, a quantum field theory of all elementary
particles.

As a theory, the Standard Model is very stringently tested, and QED in particular allows for
extremely precise theoretical predictions — already in 1985, Feynman himself called QED the
“jewel of physics”1. As an example, the QED contributions to the electron magnetic moment
g − 2, and hence the fine structure constant, has been determined to ten significant figures by
summing over twelve thousand tenth order Feynman diagrams [6], with experiments achieving
similar precision [7]. Much of the work nowadays is to experimentally put bounds of various
extensions or generalizations of the Standard Model (e.g. string theory, supersymmetry, grand
unified theories).

Nevertheless, all that progress does not mean that there are no challenges remaining. Even
the basic mathematical formalism of QFT has plenty of significant open questions, such as the
divergences that make it difficult to arrive at finite results in quantum field theory. While for most
practical purposes these divergences can be resolved via renormalization group theory and by

1 “So far we have found nothing wrong with QED. It is, therefore, the jewel of physics — our proudest
possession.” in “QED: The Strange Theory of Light and Matter” [5].
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treating existing quantum field theoretic models as effective low-energy theories [8, Chapter III.1],
that does not actually remove the divergences from the underlying mathematical model. How
to fundamentally get rid of the divergences has not been solved in the general case [9, Preface &
Chapter 8]. In a similar vein, Haag’s theorem [10] and its generalization show that the interaction
picture, which forms the very basis of the perturbative treatment of quantum field theories, is
inconsistent, and in fact the current axiomatic approaches to QFT are inconsistent with quantum
field theories involving interacting fields [9, Chapter 8].

In relativistic quantum theory, the non-field theoretic single-particle Dirac equation has open
questions, especially in the high nuclear charge regime. It is well-known that, for a point nucleus,
the solutions of the Dirac equation break down at Z = α−1 ≈ 137, evident from the Sommerfeld
formula for the bound state energies

Enκ(Z) = mc2

1 +
(Zα)2[

n− |κ|+
√
κ2 − (Zα)2

]2


−1/2

predicting imaginary energies if Z > α−1, and is related to the Dirac operator losing its self-
adjointness in that regime [11]. Back in the day, Feynman stated that “137 is one of the greatest
damn mysteries of physics: a magic number that comes to us with no understanding” and
believed that nuclear charges beyond this number do not make sense physically [12]. While we
know that for a more physical nuclear model with a finite extent where the charge is smeared
over a small but finitely sized volume this is no longer an issue, the fact that the Dirac equation
exhibits negative continuum states nevertheless causes problems. At a high enough nuclear
charge, bound states will dive into the negative continuum, leaving the physical interpretation
unclear.

These issues with the single-particle Dirac equation also have practical and interpretational
implications for QED and many-electron theory. In the Furry picture of bound-state quantum
electrodynamics, the reference states are exactly the solutions to the single-particle Dirac equa-
tion with a nuclear potential. Therefore, if the reference solutions break down, so does the whole
procedure. Similarly, numerical solvers of the single-particle equations of single- or multiconfig-
urational Dirac-Hartree-Fock procedures generally break down when the energies of the states
drop below −mc2. In both cases, in order to perform calculations in those regimes, it is impor-
tant to understand how to properly treat those states. While solutions, such as tightening up the
boundary conditions [13, 14] or treating the system in a rigged Hilbert space formalism, leading
to Gamow states [15], have been proposed, the correct treatment of such diving states is still up
for debate.

A problem of a more practical nature has to do with the computational complexity of large
quantum systems. The quantum entanglement, or correlation, of particles means that in general
there is a combinatorial explosion with increasing number of particles as to how much information
a system can contain, and therefore how much memory and computational time is required for its
study. This is further exacerbated if full interacting QED is taken into account where particles
can also be created and annihilated. There are methods, such as configuration interaction, many-
body perturbation theory or even density functional theory, that allow us to get very good results
for even relatively large atomic systems, such as the super-heavy elements, but these methods do
not allow for a full QED treatment of the systems. On the other hand, a full QED treatment of a
many-electron system is extremely expensive computationally, and even performing calculations
with four electrons (a Be-like system) is considered to be a significant achievement [16, 17].
However, it is possible to extend the aforementioned methods to approximately account for
QED with effective potentials [18, 19, 20], where the error from treating QED approximately is
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expected to be less than the error arising from the inability to fully account for the many-electron
correlation.

Overview of the thesis

This thesis is concerned with the quantum electrodynamics (QED) sector of the Standard Model.
The goal is to advance the methods for highly accurate theoretical studies of atoms, especially in
the challenging high nuclear charge region, where even the relatively simple Dirac equation runs
into trouble. The error made by disregarding QED when studying electronic systems is relatively
small, but it is still significant and experimentally resolvable. The error from disregarding QED
also increases with increasing nuclear charge [21], and so it is important to consider QED when
studying heavy and super-heavy elements.

With those challenges in mind, the work in this thesis makes two main contributions. First,
is the numerical study of the Dirac equation in the high nuclear charge regime using the finite
element method, with the goal of systematically benchmarking the method and exploring this
challenging regime. The second major part is the implementation of additional QED operators
in the configuration interaction framework of the GRASP software [22], which also involves
significant changes to the CI program, in order to properly test the implementation and make
future maintenance easier. This lays the groundwork for accurate computations of multi-electron
(including open-shell) systems that can accurately include QED contribution with the GRASP
software.

The core chapters of the thesis are laid out as follows:

• Chapter 2 gives a concise overview of the theoretical basis necessary for understanding
this thesis. The aim is to introduce all the terminology from the ground up. The starting
point is the Standard Model of particle physics which is then simplified and reduced to the
models and equations used in practical calculations.

• Chapter 3 focuses on demonstrating how, based on a finite element basis set, it is possible to
build a simple numerical solver that can be used to probe the relativistic Dirac equation in
the high-Z regime, where its proper treatment becomes unclear. The solver can, to machine
precision, solve the Dirac equation and makes it easy to interpret the solutions in various
ways. It can also be extended very easily to solve related cases, which is demonstrated by
the study of the energy-projected Dirac equation.

• Chapter 4 focuses on the treatment of QED effects in many-electron methods, specifically
in the multiconfigurational Dirac-Hartree-Fock and configuration interaction (CI) method
implemented in the GRASP software. In particular, the focus is on how to extend GRASP
with additional QED self-energy operators, and then the implementation is tested on a
Be-like isoelectronic sequence.

• Finally, Chapter 5 makes a few concluding remarks, discussing the work in a wider con-
text and laying out a few avenues for future work. In addition, the thesis contains three
appendices, with Appendix A and Appendix B functioning as a reference for a few basic
mathematical results relevant for this work, and Appendix C containing a few extra figures
for Chapter 3.
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Units and notation

Most expressions, unless stated otherwise, are given in the “particle physics” natural units,
where the reduced Planck constant h̄, the electron mass me, the speed of light c, and the vacuum
permittivity ε0 are set to unity, i.e.

h̄ = me = c = ε0 = 1

That said, sometimes it is still convenient to ignore that those quantities are formally unity and
still say e.g. that “energy is mc2”, rather than “energy is 1”, for the sake of clarity.

However, another set of natural units that is occasionally used (mostly in Chapter 4, but also
briefly discussed in Section 2.6) are the Hartree atomic units, where in addition to me and h̄ it
is the elementary charge e and Coulomb’s constant ke = 1

4πε0
that are set to unity

h̄ = me = e = ke = 1

In this system, distances are measured in Bohr radii a0, and energies are measured in Hartrees
Eh. In this system, the speed of light is c = 1/α ≈ 137, where α is the dimensionless fine
structure constant [23]

α =
1

4πε0

e2

h̄c
= 0.0072973525693(11)

Consequently, the rest mass of the electron is mec
2 ≈ 18778 Eh.

Finally, Appendix A functions as a repository for various conventions and mathematical
notation that is used throughout this thesis.



Chapter 2

Elements of atomic theory

While the core parts of this thesis do not directly deal with quantum field theories (QFTs), it is
important to recognize that all the underlying theory can, in principle, be derived from a single
mathematical expression: the Lagrangian of the Standard Model of Particle Physics. This is
worth pointing out, as the two main concepts that are focussed on in this thesis — the single-
particle Dirac equation and relativistic many-body theory — are often treated in a self-contained
way in the literature, without directly referring to the underlying quantum field theory.

This section gives a concise overview of the necessary theoretical background and notation.
Rather than following the history chronologically, or being too concerned about pedagogical
clarity and simplicity1, it is organized in a top-down fashion, starting from the aforementioned
Standard Model, and then, step by step, zooming into the corner of the theory that we are
actually interested in. This allows the complexity to be systematically reduced, with a reasonably
rigorous justification for each step. The chapter does not contain any original research per se,
other than perhaps some interpretational points, and lays the groundwork for the subsequent
chapters instead.

2.1 The Standard Model

As of now, the Standard Model of Particle Physics is currently the most precise and experi-
mentally verified description of interacting microscopic elementary particles. In principle, every
calculation performed in atomic physics is derived from that theory, even if this is not immedi-
ately apparent when dealing with standard relativistic quantum mechanics. It is all a matter of
making reasonable approximations of the complete Standard Model Lagrangian to make calcu-
lations more tractable.

Particles

As a quantum field theory, the Standard Model describes particles as quantum fields, which can
mathematically be defined as operator-valued functions over space and time. All the fields and
their interactions are combined into a single mathematical object: the Lagrangian density L2.
This mathematical expression, analogous to the Lagrangian of a classical system, contains all
the physics of the theory. One thing to note here is that this does not mean that there is a

1For the latter, there are many excellent textbooks and lecture series available, some of which will be mentioned
in future footnotes.

2Giving the exact mathematic expression for L would not serve much purpose here as in its full glory, it is
quite lengthy, would require a deeper discussion, and can be found anyway in standard textbooks [24, 8, 25].
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Figure 2.1: The “periodic table” of both the matter and interaction particles in the Standard
Model, illustrating how they can be grouped in various ways. For each particle, their three most
fundamental properties are listed — mass, charge, and spin. Attribution: Cush / Wikimedia
Commons / Public Domain, with masses updated to the latest PDG values [26].

quantum field for each particle in the classical sense. Rather each type of particle (e.g. electron
or photon) is described by a field, and individual particles in the classical sense would essentially
be different excited states of the quantum field with different particle numbers. The Standard
Model is also inherently relativistic, meaning that it takes into account the symmetries of special
relativity, which is manifested in the Lorentz invariance of the Lagrangian density.

The particles, or fields, included in the Standard Model can be organized into a type of “pe-
riodic table”, as visualized in Figure 2.1. According to their inherent behaviour under rotational
symmetry transformations, quantified by the spin quantum number, they split into two cate-
gories: (1) fermionic matter particles with half-integer spin of 1/2, obeying the Pauli principle,
and (2) the bosonic interaction fields with integer spin.3 The spin 1/2 of fermions, which can

3When studying the statistical mechanics of many microscopic particles, then this difference in the fundamen-
tal quantum properties of the particles leads to different statistical distribution, referred to as the Fermi-Dirac
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be interpreted as taking two full rotations of space to return a fermion back into its original
state, has the consequence of not allowing two particles (in the classical sense) to occupy the
same state. The interaction bosons mostly are spin-1 vector particles, essentially behaving like
a standard three-vector under spacial rotations, except for the Higgs boson, which is a spin-0
scalar particle.

Fermionic matter particles can further be split into three “generations” — essentially the
same particle with respect to most physics attributes, but with increasing masses. Only the first
generation is what we deal with in most day-to-day, even in atomic physics, with the II and
III generations being unstable and requiring high-energy processes to be created. On the other
hand, the fermions split into two groups: quarks (fractionally charged particles, first generation
of which make up the nuclei of atoms) and leptons (containing the charged electron and its
higher-generation counterparts, and the almost interactionless, chargeless and almost massless
neutrinos).

Interactions

As was mentioned, the Standard Model particles are either fermionic matter particles or vector
bosons that mediate interactions. The classical example, specifically relevant to atomic physics,
is the electromagnetic interaction, mediated by the photon, influencing charged matter particles
like the electron and the muon.

The mathematical description of the interactions in quantum field theories brings in another
key concept — the gauge symmetry. That is, each interaction can be associated with a unitary
group, and the full theory (i.e. the Lagrangian density) is expected to be invariant under that
group action. The conserved density associated with the gauge symmetry transformation is the
charge of the interaction, such as the electric charge or the weak charge. In terse mathematical
notation, the Standard Model is therefore often summarized as a

SU(3) × SU(2) × U(1)

gauge theory. The different terms correspond to the different interactions present: U(1) for
electromagnetic, SU(2) for the weak interaction, and SU(3) for the strong interaction.

Limitations of the Standard Model

While the Standard Model is extremely good at describing elementary particles, we should not
shy away from mentioning its shortcomings. In addition to philosophical criticisms of the model
being fine-tuned and containing too many parameters, for example, it is also by no means a
theory of everything. [27, 28] The following lists a few examples where the Standard Model either
does not even attempt to explain some observed physics, or gets it wrong.

Gravity. A glaring omission in the Standard Model is the lack of gravity. Heuristically, this
is not a problem, as the weakness of the gravitational interaction relative to the strong, weak
and electromagnetic interactions means that it can pretty much be ignored on the level of ele-
mentary particles4 However, there is no well-accepted approach to even describe gravity together
with the quantum description of elementary particles, as all attempts to consistently include the
gravitational force in the Standard Model are riddled with theoretical and mathematical prob-
lems [29, 30]. In fact, in 2011 it was noted by Sushkov et al. that “It is remarkable that two of

statistics and Bose-Einstein statistics for fermions and bosons, respectively.
4The ratio of the electromagnetic vs. the gravitational force between the two charged particles electron and

proton is e2/Gmemp = 2.26881776× 1039.
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the greatest successes of 20th-century physics, general relativity and the standard model, appear
to be fundamentally incompatible” [31].

Neutrino masses. A crucial property of a neutrino is that only the left-handed component
interacts with other particles via the weak interaction, with the right-handed component remain-
ing inactive. In order to incorporate this into the Standard Model in a Lorentz-covariant way,
while still requiring the neutrinos to be Dirac fermions, it is possible to assume the neutrinos to
be massless. However, the observation of neutrino oscillations — that neutrinos, as they propa-
gate through space and time, can change their flavour, e.g. transition from electron neutrino to
a muon neutrino — is at odds with this. To explain these oscillations, it is necessary to include
neutrino masses and mixing angles in the model, such that their mass eigenstates become slightly
rotated relative to the flavour eigenstates. As such, the exact theoretical nature and even the
absolute hierarchy of masses of the neutrinos is still unknown. [32]

Dark matter. Astrophysical and cosmological observations of galaxies, galaxy clusters and
the structure of the universe at large have long implied the existence of unexplained mass in
the universe, required to explain how various structures have formed, and the motion of stars
and galaxies. Explanations supposing that this may be due to hard-to-detect matter, such as
brown dwarfs, neutron stars, black holes, or unassociated planets, have to large degree been
ruled out by astrophysical surveys. While there are models attempting to explain dark matter
via modifications to the gravitational interactions, arguably the most widely held assumption
is that this dark matter is due to some unknown, very weakly interacting particles that, often
referred to as WIMPs (Weakly Interacting Massive Particles). [33, 34]

Dark energy. The cosmological constant in Einstein’s field equations in the general theory of
relativity can be interpreted as the energy that drives the accelerating expansion of the universe.
It has been suggested that dark energy could be explained as the energy density of vacuum
fluctuations of the quantum fields, but back of the envelope estimates of such fluctuations are
hundreds of orders of magnitude larger than the observed dark energy density. [35, 36] As such,
the Standard Model currently does not provide a solid explanation for dark energy.

Anomalous magnetic moment of the muon. A long-standing discrepancy between experi-
ments and theoretical calculations based on the Standard Model is in the value of the anomalous
magnetic moment aµ =

gµ−2
2 for the muon. When considering only the Dirac equation, the

expected value for the magnetic moment of a lepton is exactly g = 2. But as has been seen in
experiments, and can be shown theoretically by considering the full Standard Model, including
contributions from the strong and weak interactions, the value actually deviates from 2, leading
to a non-zero value for aµ [37]. However, as of 2021, with a significant 4.2σ deviation, state-
of-the-art theoretical calculations are still not able to reproduce the experimental value latest
experimental results [38]. While it can not be ruled out with absolute certainty that future im-
provements to either theoretical calculations or to experiments will not resolve this discrepancy,
it may also be an indicator of undiscovered physics not included in the Standard Model.

2.2 The fields of Quantum Electrodynamics

Not all parts of the Standard Model are important when the intent is to describe the behaviour
of electrons in atoms and molecules to a certain accuracy. Rather, it is sufficient to focus on
what is commonly referred to as the quantum electrodynamics or QED sector of the Standard
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Model. Compared to the full theory, only electrons5, photons, and their interactions are retained.
Atomic nuclei are usually reduced to an effective charge distribution, as the fact that they are
actually dynamical systems made up of strongly interacting quarks can be, to a very good
approximation, ignored. Additional corrections, arising from the interactions with the other
particles of the Standard Model such as the weak bosons, can always be included back in the
model, possibly also in some approximate way [39].

As a historic note, the QED sector of the Standard Model is really the original quantum
field theory, developed in the 1930s and 1940s. [40, 41, 42] It arose out from the need to extend
the relativistic description of electrons (i.e. the Dirac equation) by also including the quantized
nature of the electromagnetic interaction. One of the original experimental motivations was the
Lamb shift [43], where it became clear there is an unexplained energy splitting in the spectra of
the hydrogen which is not explained by the Dirac equation, even if vacuum polarization is taken
into account [44, 45].

Particles, fields and Lagrangians

The Lagrangian density of QED contains only two fields: the 4-component spin-1/2 fermionic
charged lepton field ψ, simultaneously describing electrons and positrons, and the electromagnetic
field Aµ describing photons. The other fields of the Standard Model are removed and what is
left is the expression

L = −1

4
FµνFµν + iψ̄(∂µγ

µ −m)ψ − eψ̄γµψAµ + jµextAµ

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor and ψ̄ = ψ†γ0 the Dirac adjoint.6

The different terms in the Lagrangian density can be given physical interpretations as well:

• − 1
4F

µνFµν describes the dynamics of free photons or, equivalently, the quantized electro-
magnetic field;

• iψ̄(∂µγ
µ−m)ψ describes free electrons and positrons (or, more generally, a charged lepton

with mass m);

• −eψ̄γµψAµ is an interaction term between the two fields, and describes how photons and
electrons affect each other, with the elementary charge e determining the strength of the
interaction;

• Lastly, jµextAµ is the interaction term of the quantized electromagnetic field with an external
charge distribution jµext(x). It is worth pointing out that we can also calculate the four-
current for the quantized electrons, with jµ = eψ̄γµψ, which makes it clear that the last
two terms have an identical mathematical structure.

In principle, the external charge-current density jµext
7, is not part of the Standard Model La-

grangian density. However, adding this into the QED one allows us to incorporate nuclear
charges and other sources of external EM fields into our models. As such, jµext depends on the
particular system under study, whereas the rest of the Lagrangian density is universal.

5In some cases, the other charged leptons, usually muons, may also be included. Mathematically, their
description is the same as for the electron, requiring a spin-1/2 Dirac field, just with a higher mass.

6For the definition of the four-by-four Dirac gamma matrices, see Appendix A.
7The time- and space-like components of a charge-density four-current are the charge density ρ and the vector

3-current j, respectively, i.e. jµ = (ρ, j). All of them are fields over space and time.
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If it is necessary to add other leptons, such as the muon, to the model, it is simply a matter
of defining an additional Dirac field, and adding the corresponding free-particle term with the
appropriate mass together with an interaction term for that new Dirac field into the Lagrangian
density. It should be noted that calculations with muons are very relevant, as due to their heavy
mass they stay much closer to the nucleus, are therefore very useful for probing the size and
shape of nuclei [46].

Quantum field theory and Fock spaces

Simply writing down the Lagrangian density of a theory is not enough to get quantitative results.
Now, especially for time-dependent processes, the path integral formulation of quantum field
theories can be very elegant and convenient [47, 42, 8]. However, as we are interested in bound
states in atomic systems, it will be easier to follow the more common and traditional so-called
second quantization formulation [24], which leads to the familiar Hamiltonian operator based
quantum mechanics.

The proper mathematical formulation of second quantization, which gives a more precise
definition for the field operators, relies on the concept of a Fock space8. [48] The construction of
a Fock space starts by considering a single-particle Hilbert space H of a field (or, equivalently, of
a particle species), which we further assume is spanned by some complete set of basis functions
{ψi(x)} ⊂ H. This Hilbert space is then generalized to a many-particle space.

For electrons-positrons, which are fermions and therefore anti-symmetric under particle in-
terchange, an N -particle space is constructed via an N -fold anti-symmetric tensor product of
the single-particle Hilbert space ∧N (H). The N -fold anti-symmetric tensor products of the basis
states of the Hilbert space ψi(x) form a basis for the N -particle space ∧N (H). Those spaces,
with a fixed number of particles, are then added together via an infinite direct sum

Ff(H) =

∞⊕
N=0

∧N (H)

to form the full fermion Fock space over the underlying Hilbert space. Physically, the elements
of this space represent wavefunctions with any number of particles and, in fact, states that are
superpositions of states with different numbers of particles.

In the case of bosons, such as when constructing the boson Fock space of photons, the logic is
similar, but one must instead employ the N -fold symmetric tensor product ⊗N

s when constructing
the N -particle subspaces. The direct sum

Fb(H) =

∞⊕
N=0

⊗N
s (H)

again leads to the full boson Fock space over the underlying Hilbert space.9

In the so-called second quantization notation, more familiar to readers of quantum mechanics
and quantum field theory literature, states in the N -particle space can be expressed with the help
of creation and annihilation operators. Specifically, we assume that each of the basis states ψi(x)
of H, which we also assume are orthogonal to each other, has a corresponding creation operator

8An excellent review of the mathematical underpinnings of Fock spaces can be found in Arai’s 2018 book on
the subject. [9]

9The symmetric and anti-symmetric tensor products can be defined as a subset of the standard, full N -fold
tensor product of the Hilbert space, i.e. ⊗N

s (HP ) ⊂ ⊗N (H) or ∧N (HP ) ⊂ ⊗N (H), of states with the desired
symmetry or anti-symmetry property. The fermion and boson spaces are disjoint subsets of the full tensor product
space. Section 2.9.4 in Arai’s book offers more detailed definitions [9].
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c†i and annihilation operator ci associated with it, with the former being the adjoint of the latter.
Respectively, they have the effect of adding or removing a particle in that particular state to
or from the many-particle state. To ensure the appropriate symmetry properties arising from
indistinguishability, the creation and annihilation operators obey the commutation relations

[ci, c
†
j ] = δij , [ci, cj ] = 0

in the case of bosons, and anti-commutation relations

{ci, c†j} = δij , {ci, cj} = 0

in the case of fermions.

The creation and annihilation operators are very much analogous to the ladder operators in
the single-particle quantum harmonic oscillator theory. For both fermions and bosons, trying
to remove a particle that does not exists in a state leads to the many-particle state being fully
annihilated (i.e. ci |Ψ⟩ = 0). However, for fermions, the anti-commutation relations further have
the effect that, when adding a particle to a state that already contains that single particle state,
the many-particle states again is fully annihilated (i.e. c† |Ψ⟩ = 0). This is not the case for
bosons, and in other words this inherently takes into account the Pauli principle, where multiple
particles can not be in the same state at once.

Physically interesting states are then constructed by adding particles to the vacuum state |0⟩
— the only element of the 0-particle space ∧0(H) = {|0⟩}.10 The element of the Fock space that
corresponds to a single-particle basis function ψi(x) can be written as

|i⟩ = c†i |0⟩

A basis for a full N particle space can be generated by considering the products on N creation
operators applied to the vacuum state

|i1i2 . . . iN ⟩ = c†(i1) · c†(i2) · · · c†(iN ) |0⟩

It is necessary to take into account that the indices in can not repeat and are chosen in a way
that the same combination does not appear twice. The latter can be achieved by requiring them
to be ordered such that i1 < i2 < · · · < iN .

Overall, given the Hilbert space He of the electron-positron field, and Hγ of the photon field,
the full QED Fock space is simply constructed as a tensor product of those space

Fb(Hγ) ⊗Ff(He)

In case there are additional fermions in the theory, such as muons, bringing their own Hilbert
space Hµ, the product expands to

Fb(Hγ) ⊗Ff(He) ⊗Ff(Hµ)

10Formally, as the vacuum state by definition contains no particles, it can also be defined as a state that gets
annihilated whenever a particle is removed, i.e.

∀k : ĉk |0⟩ = 0
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Field decomposition

In order to connect the Lagrangian of a theory to the Fock space formalism, it is necessary to
give a precise definition for the quantum field operator Ψ(x), which is an operator acting on
the Fock space. Given the basis states ψi(x) and the corresponding single-particle creation and

annihilation operators c†i and ci, the field operator can be written as

Ψ(x) =
∑
i

ψi(x)ci

where the sum runs over all the states. This actually represents a whole set of operators, a
different one for each point in space, and the argument x can be thought of as a label. Like the
annihilation operators it is made up from, such a field operator also has the effect of annihilating
a particle from a state.

Giving the field operator a precise definition like this enables quantitative calculations to be
performed within the Fock space formalism. At the same time, even though it is an operator,
the field operator can be used very much like a multi-variable function, allowing the Lagrangian
densities and Hamiltonians to be writted down in a more physical form with derivatives etc.

The only remaining question is the exact choice of basis states, and most often the field
decomposition is written down in terms of the free particle solutions of the field. For example,
for the electron field, the starting point would be the non-interacting, unbound free-electron part
of the QED Lagrangian density. From that, by applying the variational principle, it is possible
to derive the equations of motions for a free particle, which for the electron would be the free
particle Dirac equation. The solutions to those equations, which generally take the form of plane
waves and can usually be solved for via a simple application of the Fourier transform to the
partial differential equation, are then used in expanding the field operator. This procedure for
various fields is described in standard textbooks [24, 25, 49] and the following section just reviews
the Dirac field, as that is the only case directly relevant for the follow-up discussion.

Field decomposition of the Dirac field

The free particle portion of the QED Lagrangian density for the Dirac field is

L = iψ̄(∂µγ
µ −m)ψ

which leads to the free Dirac Hamiltonian

H =

∫
d3x ψ̄(x)(−iγ · ∇ +m)ψ(x) =

∫
d3x ψ†(x)(−iα · ∇ + βm)ψ(x) (2.1)

where using the form involving the matrices α = γ0γ and β = γ0 is common when working
in the Hamiltonian formalism. As detailed in Appendix B, solving the differential equation
corresponding to this Hamiltonian leads the four sets of solutions (for each three-momentum p)
— two with positive energy (E ≥ mc2) and two with negative energy (E ≤ mc2).

This set of solutions forms a complete basis of plane wave states and, naively11, each one can
be associated with a annihilation operator, with c̃(r,p) for the positive energy states, d̃(r,p) for
the negative energy states, and where r = 1, 2 runs over the two orthogonal solutions for each

11As will be discussed in a few short paragraphs, it will be necessary to redefine these creation and annihilation
operators to get the more physical field decomposition of the Dirac field. For that reason, the tildes distinguish
these coefficients from the real creation and annihilation operators that will come later.
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energy. Using the functions (B.4) and in appropriate normalization12, the field operator can be
decomposed as

ψa(x) =
∑
r

∫
d3p√
(2π)3

1√
2Ep

[
c̃(r,p)u(r)a (p) + d̃(r,−p)v(r)a (−p)

]
eip·x

where Ep =
√
p2 +m2 is the symbol for the positive energy corresponding to the three-

momentum and mass, and all the while keeping in mind that it is a four-component function,
i.e. a = 1, 2, 3, 4. It is the negative energy eigenvalue of the negative energy solutions that ne-
cessitates the minus signs for the momenta in this form, and alternatively the minus sign could
also go into the exponent (i.e. e−ip·x).

As electrons are fermions, the creation and annihilation operators obey the anti-commutation
relations

{c̃(p, r), c̃†(q, s)} = δrsδ(p− q) = {d̃(p, r), d̃†(q, s)}

{c̃(p, r), d̃†(q, s)} = 0 = {d̃(p, r), c̃†(q, s)}

which can be shown would lead to the anti-commutation relation

{ψa(x), ψ†
b(y)} = δabδ(x− y)

for the field operator. In this interpretation the operators c̃(p, r) and d̃(p, r) should annihilate
the corresponding particle from a state, and also destroy a vacuum state |0̃⟩, i.e.

c̃(p, r) |0̃⟩ = 0, c̃(p, r) |0̃⟩ = 0

The operators c̃†(p, r) and d̃†(p, r) would add the corresponding particle into a state.
As the states we use to expand the field operator are the eigenstates of the Hamiltonian (2.1),

it is possible to write down the Hamiltonian in terms of the creation and annihilation operators
as

H =
∑
r

∫
dp E(p)

[
c̃†(p, r)c̃(p, r) − d̃†(p, r)d̃(p, r)

]
(2.2)

where the symbol E(p) = +
√

p2 +m2 corresponds is the positive energy corresponding to the
three-momentum p, and the negative energy states have appropriately received a minus sign.
This Hamiltonian, however, has an obvious physical problem: if we keep adding particles that
correspond to the d̃†(p, r) operators, the energy of the state will become lower and lower. While
these are negative energy states, physically, the energy should always increase when particles get
added.

To resolve this conundrum, it is necessary to reinterpret the creation-annihilation operators
and the vacuum state. As the particles obey anti-commutation relations and therefore only up
to just one particle is allowed in any given state, there is not much difference (mathematically)
between the creation and annihilation operators. It is therefore possible to flip the annihilation
operator for the negative energy states into a creation operator (and vice versa for the creation
operator) by defining

c(p, r) = c̃(p, r), d(p, r) = d̃†(p, r) (2.3)

12The normalization factor 1/
√

2Ep comes from the requirement for the three-dimensional integrals to be
Lorentz invariant. This can also be linked to four-dimensional space-time integrals without any explicit normal-
ization factors, but which contain δ(p2 − m2) to constrain the four-momenta to the mass shell (see Section A.2
in the Appendix).
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While clearly nothing changes for c(p, r), the anti-commutation relation for the d(p, r), due to
the anti-commutator being symmetric, still holds

{d(p, r), d†(q, s)} = {d†(p, r), d(q, s)} = {d̃(p, r), d̃†(q, s)} = δrsδ(p− q)

However, what changes is that the new set of creation and annihilation operators define a new
vacuum state |0⟩

c(p, r) |0⟩ = 0, d(p, r) |0⟩ = 0

that corresponds to the physical vacuum with zero particles and zero energy.

To transform the Hamiltonian to the new operators, one can just plug the redefined opera-
tors (2.3) into the Hamiltonian (2.2). Using the anti-commutation relations, it is possible to get
rid of the minus sign in the second part of the Hamiltonian

− d̃†(q, s)d̃(p, r) = −d(q, s)d†(p, r) = d†(p, r)d(q, s) + δrrδ(p− p)

= d†(p, r)d(q, s) + ∞

Now, while the infinity is weird, it is not actually a problem — it is just a constant and we
can shift the total energy by any constant without changing any of the physics. If we now just
remove the infinity, the Hamiltonian becomes

Ĥ =
∑
r

∫
dp E(p)

[
c†(p, r)c(p, r) + d†(p, r)d(p, r)

]
(2.4)

The key property of this form of the Hamiltonian is that the creation of any particle will always
lead to an increase in energy, which makes much more sense physically.

Finally, for completeness, the field decomposition of the Dirac field in terms of the new
creation and annihilation operators is

ψa(x)

∫
d3p√
(2π)3

1√
2Ep

[
c(r,p)u(r)a (p) + d†(r,−p)v(r)a (−p)

]
eip·x (2.5)

Both c† and d† create particles, but they create different particles. After the reinterpretation,
it is much easier to accept that the particles associated with the negative energy solutions of the
free-particle Dirac equation are in fact simply positrons. The reinterpreted operator d† creates
particles that have positive energy, which is what one would expect from a massive particle with
kinetic energy. The field creation operator ψ†(x), therefore, creates an electron but annihilates
a positron. Similarly, the operator ψ(x) annihilates an electron and creates a positron.

However, what was wrong with the initial operators d̃ and d̃†, the and Hamiltonian (2.2)?
Actually, technically nothing. They simply do not have the physical interpretation one would
naively expect. Specifically, the positron operator d̃(p, r) = d†(p, r) was not a positron anni-
hilation operator, but a positron creation operator. But this, in turn, means that the original
vacuum state |0̃⟩ was already fully filled up with positrons — the so-called Dirac sea — as adding
any additional (physical) positrons would annihilate it. And so the dynamics predicted by the
negative energy solutions of the Dirac equation are, in fact, the dynamics of the absence of the
corresponding positron states (holes) in the so-called infinitely charged Dirac sea of positrons,
and not of physical positrons or electrons.
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Particle number and charge operators

Particularly useful operators that can be defined with the help of the creation and annihilation
operators are the particle number operators

Ne =
∑
r

∫
d3p c†(p, r)c(p, r), Np =

∑
r

∫
d3p d†(p, r)d(p, r)

where Ne counts the number of electrons and Np counts the number of positrons in a given state.
Of course, the sum of those operators

N = Ne +Np =
∑
r

∫
d3p

[
c†(p, r)c(p, r) + d†(p, r)d(p, r)

]
counts the total number of particles in a state.

However, as will be shown in Section 2.3, the electron-positron pair creation and annihilation
effect of the electromagnetic interaction means that the total number of particles is not a good
quantum number in QED. Instead, it is convenient to consider the conserved charged related
to the U(1) gauge symmetry of the Dirac field (and the elecromagnetic interaction), which from
the gauge transformation

ψ → eiαψ (2.6)

leads to a conserved charge four-current density

jµ = ψ̄γµψ

Integrating the time-like component gives the total electric charge of the system

Q = J0 =

∫
d3x j0(x) =

∫
d3x ψ†(x)ψ(x)

=
∑
r

∫
d3p

[
c†(r,p)c(r,p) + d(r,−p)d†(r,−p)

]
≃
∑
r

∫
d3p

[
c†(r,p)c(r,p) − d†(r,p)d(r,p)

]
(2.7)

where in the last step commuting the operators also leads to an infinity which has been dropped
from the expression. This is a conserved quantity in QED, and, crucially, it is clear from the
minus sign that electrons and positrons have the opposite charge.

2.3 Electromagnetic interaction in QED

The previous section did not address the interactions between the fields. The standard and
general way of introducing an interaction to a gauge field theory is to perform the minimal
substitution, that is replacing the derivatives with the gauge covariant derivative13. In QED, the
covariant derivative introducing the electromagnetic field Aµ is defined as

∂µ → Dµ = ∂µ + ieAµ

13“Covariance” here refers to the being covariant with respect to the gauge transformation under a symmetry
group. In the case of the electromagnetic interactions, this is the simple U(1) group transforming according
to (2.6), but this generalises to other interactions described by more complex symmetry groups, such as the
SU(2) for the weak interaction and SU(3) for the strong interaction.
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and leads to the following interaction terms

Lint = −eAµψ̄γ
µψ, Hint = e

∫
d3x ψ̄(x)γµψ(x)Aµ(x) (2.8)

in the Lagrangian and the Hamiltonian. The elementary charge e acts as the interaction coupling
constant14, determining the strength of the interaction. If we split the elecromagnetic field up
into its time- and space-like components Aµ = (ϕ,A) the corresponding interaction term in
Hamiltonian15 becomes

Hint = e

∫
d3x ψ̄(x)γ0ψ(x)ϕ(x) − e

∫
d3x ψ̄(x)γ ·A(x)ψ(x)

Interpretation of the interaction term

By plugging the field decomposition of the Dirac field (2.5) into interaction Hamiltonian (2.8), it
is possible to get a better physical sense of the effect the interaction term. In order to interpret
it, it is useful to remember that the Hamiltonian operator generates the time-evolution of a state.
In other words, given an initial state |Ψ(0)⟩, at time t the state |Ψ(t)⟩ can be calculated by

|Ψ(t)⟩ = exp (−iHt) |Ψ(0)⟩ =
[
1 − iHt+ O(t2)

]
|Ψ(0)⟩

where in the second part the exponential has been Taylor-expanded16. The expansion allows
reasoning about what happens to the initial state at very small (or even infinitesimal) time
scales. Initially, the state stays the same as it was at t = 0 due to the constant unity. However,
the −iHt part introduces a tiny rotation in the state generated by the Hamiltonian H, with its
magnitude proportional to the time step t. Because of this, it is sufficient to analyse the effect
of each term in the Hamiltonian H separately and still get a qualitative understanding of how
the system behaves.

In order to analyse the interaction term in the Dirac Hamiltonian, it is convenient to split
the Dirac field decomposition into two parts

ψ+(x) =

∫
d3p√
(2π)3

1√
2Ep

c(r,p)u(r)(p)eip·x (2.9)

ψ−(x) =

∫
d3p√
(2π)3

1√
2Ep

d†(r,p)v(r)(p)e−ip·x (2.10)

such that we can write the whole field down as

ψ(x) = ψ+(x) + ψ−(x)

14The sign in the covariant derivative differs between different sources, and depends on (1) the sign convention
in the Minkowski metric, (2) the sign convention of the electric charge, and (3) the sign convention in the
exponential of the gauge transformation. In this thesis, the elementary charge e is assumed to be a positive value,
but by convention the charge of the electron is negative qe = −e. This, together with the (+,−,−,−) metric
signature and the sign choice in (2.6), leads to the + sign in the covariant derivative. However, in other sources
the gauge covariant derivative may be defined as Dµ = ∂µ − iqAµ.

15Cf. pg. 123, eq. 4.129 in Peskin and Schroeder [24].
16Actually, it would be more correct to say that we have replaced the exponential with its definition in terms

of an infinite sum — functions of operators are generally defined by the Taylor series of their real or complex
function counterparts.
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This is convenient as ψ+(x) purely annihilates electrons, and ψ−(x) purely creates positrons.

Of course, correspondigly ψ†
+(x) and ψ†

−(x) create particles and annihilate antiparticles, respec-
tively. Keeping the x-dependence of all the fields (ψ, ψ±, Aµ) implicit for space reasons, the
interaction in the Hamiltonian can be expanded as

Hint = e

∫
d3x ψ̄γµψAµ = e

∫
d3x [ψ̄+γ

µψ+ + ψ̄+γ
µψ− + ψ̄−γ

µψ+ + ψ̄−γ
µψ−]Aµ (2.11)

leading to four distinct terms with slightly different effects.
The x-dependent products can be expanded and simplified further using the field decompo-

sitions (2.9) and (2.10) of the Dirac field, allowing for more precise interpretation. The terms
ψ̄+γ

µψ+ and ψ̄−γ
µψ− represent the standard effect that an electromagnetic field has on a charged

particle: it nudges them in some way. This can be seen from

ψ̄+γ
µψ+ =

∫
d3p√
(2π)3

∫
d3p′√
(2π)3

∑
r,r′

1√
2Ep

√
2Ep′

ū(r)(p)γµu(r
′)(p′)ei(p−p′)·xc†(r,p)c(r′,p′)

where the creation-annihilation structure c†kcl has the effect of removing a momentum state and
replacing it with another one. How the elecromagnetic field exactly influences the electron state
depends on the momentum-composition of the electromagntic field. This can be seen by adding
on the electromagnetic field and integrating over space, and swapping the order of integration

e

∫
d3x ψ̄+γ

µψ+Aµ = e

∫
d3p√
(2π)3

∫
d3p′√
(2π)3

∑
r,r′

1√
2Ep

√
2Ep′

ū(r)(p)γµu(r
′)(p′)

· c†(r,p)c(r′,p′)

∫
d3x Aµ(x)e−i(p−p′)·x

The
∫

d3x Aµ(x)e−i(p−p′)·x part is a Fourier transform over space of the electromagnetic field Aµ,
giving us the magnitude of each momentum component of the electromagnetic field. Similarly,
we can calculate term which nudges the antiparticles

ψ̄−γ
µψ− =

∫
d3p√
(2π)3

∫
d3p′√
(2π)3

∑
r,r′

1√
2Ep

√
2Ep′

v̄(r)(p)γµv(r
′)(p′)e−i(p−p′)·xd(r,p)d†(r′,p′)

=

∫
d3p√
(2π)3

∫
d3p′√
(2π)3

∑
r,r′

1√
2Ep

√
2Ep′

v̄(r)(p)γµv(r
′)(p′)e−i(p−p′)·xδr,r′δ

(3)(p− p′)

−
∫

d3p√
(2π)3

∫
d3p′√
(2π)3

∑
r,r′

1√
2Ep

√
2Ep′

v̄(r)(p)γµv(r
′)(p′)e−i(p−p′)·xd†(r′,p′)d(r,p)

=

∫
d3p√
(2π)3

∑
r

1

(2π)32Ep
v̄(r)(p)γµv(r)(p)

−
∫

d3p√
(2π)3

∫
d3p′√
(2π)3

∑
r,r′

1√
2Ep

√
2Ep′

v̄(r)(p)γµv(r
′)(p′)e−i(p−p′)·xd†(r′,p′)d(r,p)

except that commuting the creation-annihilation operators in order to achieve normal ordering
leads to a minus sign, indicating that the positrons are affected in the opposite way compared to
the electrons, consistent with their opposite charge. The other integral, arising from the delta
function, is just another constant infinity that has no effect on the physics and can be ignored
here.
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The other two terms in (2.11) are physically much more interesting. Writing them out in
terms of the creation and annihilation operators

ψ̄+γ
µψ− =

∫
d3p√
(2π)3

∫
d3p′√
(2π)3

∑
r,r′

1√
2Ep

√
2Ep′

ū(r)(p)γµv(r
′)(p′)ei(p+p′)·xc†(r,p)d†(r′,p′)

ψ̄−γ
µψ+ =

∫
d3p√
(2π)3

∫
d3p′√
(2π)3

∑
r,r′

1√
2Ep

√
2Ep′

v̄(r)(p)γµu(r
′)(p′)e−i(p+p′)·xd(r,p)c(r′,p′)

= −
∫

d3p√
(2π)3

∫
d3p′√
(2π)3

∑
r,r′

1√
2Ep

√
2Ep′

v̄(r)(p)γµu(r
′)(p′)e−i(p+p′)·xc(r′,p′)d(r,p)

show that the terms have the effect of creating (c†kd
†
l ) or annihilating (ckdl) an electron-positron

pair in the state. In other words, in the presence of an electromagnetic field, an initial state
with a known number of positrons and electrons (e.g. made up purely of a fixed number of
electrons) will, over time, accumulate trace amounts of components in the wavefunction with
different particle numbers.

In particular, given an initial (N,M)-particle state of N electrons and M positrons, after an
infinitesimal amount of time it will contain components with (N + 1,M + 1) and (N − 1,M − 1)
particles as well. As time goes on, those components can then connect to subspaces with other
particle numbers, as long as it is some number of electron-positron pairs away (e.g. (N+2,M+2)
or (N − 3,M − 3) particles). This is consistent with the conservation of charge mentioned at the
end of Section 2.2 — an electron-positron pair has zero total charge, and so as long as only pairs
are created or annihilated, the total charge of the system remains unchanged. However, what is
clear is that the total number of particles in a state is no longer a good quantum number.

Free Dirac field term. The preceding discussion focused on the interaction and did not touch
upon the free particle part of the Hamiltonian

Ĥ0 =
∑
r

∫
dp E(p)

[
c†(p, r)c(p, r) + d†(p, r)d(p, r)

]
In the plane wave representation like this, which clearly separates the electron and positron parts,
the effect of this term on a state is quite simple: each plane wave component gets a phase shift
proportional to its energy. Most crucially, however, this part of the term introduces no mixing
between the electron and positron parts of the wavefunction.

Interaction term and the photon field

It should not be forgotten that that in QED Aµ(x) is also a dynamical quantum field associated
with particles, the photons. As such, just as a non-zero photon field can affect the electron-
positron part of the wavefunction, so can a non-zero Dirac field affect the photon part. To
clearly see this, it is convenient to pack up all the Dirac parts of the Hamiltonian into the charge
four-current of the Dirac field

jµ(x) = ψ̄(x)γµψ(x)
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and then rewrite the interaction term in the Hamiltonian (2.8) as

Hint = e

∫
d3x jµ(t,x)Aµ(t,x)

=

∫
d3p

3∑
r=1

1√
Ep

(
ar,−pϵ

µ
r (−p)e−i|p|t + a†r,pϵ

µ∗
r (p)ei|p|t

)∫
d3x jµ(t,x)e−ip·x

where in the second part the photon field was expanded with the help of the field decomposition
of Aµ [24, Eq. (4.131)]. As can be seen, the mere presence of a non-zero charge density from
the Dirac field will cause photons to be created an annihilated in the wavefunction. In fact, if
one were to expand jµ as well, it would be clear that there are two distinct ways of creating
or annihilating photons: (1) by changing the momentum of electrons and positrons (or, more
generally, any electrically charged particle), and (2) by the creating or annhilating particle-
antiparticle pairs.

2.4 Classical external field and stationary states

One useful modification (or approximation, depending on the circumstances) is the introduction
of a classical external electromagnetic field Aµ

ext(x) to the equations. This can be achieved by
substituting

Aµ(x) → Aµ(x) +Aµ
ext(x) (2.12)

and keeping in mind that Aµ(x) is still a fully quantized field, whereas Aµ
ext(x) is an externally

defined (time-dependent) value. Crucially, while it will affect the dynamics of the electrons, it
itself will not be affected by the behaviour of the charged particles. This procedure is useful
because it is often not necessary to concern ourselves with all the quantum mechanical details of
the photon field. Practical examples of this procedure include replacing the atomic nuclei with
simple electrostatic potentials and the treatment of external laser fields in ionization studies.

It can also be useful to think of the external field as being generated by an external four-
current density jµext(x). This, for example, justifies the use of a potential derived from a nuclear
charge distribution. In this case, it is assumed that the external classical component of the
electromagnetic field is related to the charge four-current via Maxwell’s equations

∂ν∂
νAµ

ext(x) = µ0j
µ
ext(x)

assumed to be in Lorenz gauge ∂µA
µ
ext = 0. In fact, instead of ever introducing an external

electromagnetic field, it is possible to incorporate the external field into QED by substituting
the charge four-current

jµ(x) → jµ(x) + jµext(x)

of the Dirac field. This would lead to an interaction term between the quantized photons and
the external charge four-current

Hint,ext = e

∫
d3x jµext(t,x)Aµ(x)

Interestingly, while there is no interaction between photons and the external charge when sub-
stituting according to (2.12), these two approaches are actually physically equivalent [49, Chap-
ter 14][41].
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External field Dirac equation

Keeping the classical external electromagnetic field but dropping the quantized field leads to the
external field Dirac equation. Formally, this can be done simply by removing the photon field
from the QED Lagrangian, arriving at17

L = iψ̄(γµ∂µ −m)ψ − eψ̄γµψAext
µ

Further separating the time-like scalar potential and the space-like vector potential of the elec-
tromagnetic potential four-vector Aµ

ext(t,x) = (ϕext(t,x),Aext(t,x)) and applying a Legendre
transformation leads to the more familiar Hamiltonian form

H =

∫
d3x ψ̄

[
−iγ · ∇ +m+ eγ0ϕext(t,x) − eγ ·Aext(t,x)

]
ψ (2.13)

The part in the brackets, when γ0 is moved out of ψ̄, is the single-particle external field Dirac
equation

i
∂ψ

∂t
= ĥD,extψ, ĥD,ext = −iα · ∇ + eϕext(t,x) − eα ·Aext(t,x) + βm

where the gamma matrices have been replaced by α = γ0γ and β = γ0, which is the more
conventional representation in the Hamiltonian form, especially in electronic structure theory.

A particular special case of this equation relevant for this thesis is when the external field is
simply a time-independent potential Aµ

ext(t,x) = (V (x), 0), such as the one generated by some
stationary charge distribution, such as an atomic nucleus. This leads to the Hamiltonian

ĥD,ext = −iα · ∇ + βm+ eV (x) (2.14)

The single-particle Hamiltonian operator (2.14) has no explicit time-dependence and so its eigen-
states are the stationary states, approximating the states of a single-electron system. Assuming a
reasonable, unconfined18 potential V (x), such as one generated by a nuclear charge distribution
(see also Section 2.7), the spectra of the Hamiltonian generally has three sets of states: (1) a
positive continuum with energies E ≥ mc2, (2) a negative continuum with energies E ≤ −mc2,
and (3) a discrete set of bound states, with energies −mc2 < E < mc2. These bound states
correspond to the different energy levels an electron captured by the atom can be on.

Interpretation of the stationary states

There is an interpretational conundrum that rarely seems to be discussed in literature or text-
books. If QED and its pair creation-annihilation aspects are ignored, and just the basic single-
particle Dirac Hamiltonian of the form (2.14) is considered, it is generally assumed to represent
a theory where every state is an electron.

However, as was discussed in Section 2.3, an interaction term with the electromagnetic field
leads to pair creation and annihilation terms in the Hamiltonian. This also holds for the in-
teraction with a classical external electromagnetic field Aext

µ , which is clear as the interaction
term

Hext
int = e

∫
d3x ψ̄γµψAext

µ = e

∫
d3x [ψ̄+γ

µψ+ + ψ̄+γ
µψ− + ψ̄−γ

µψ+ + ψ̄−γ
µψ−]Aext

µ (2.15)

17In order to make the equations more readable, the ext label is liberally moved up or down depending on
where the four-vector index needs to go.

18It is interesting to note that confinement potentials lead to problems with the Dirac equation if introduced
in the potential term instead as a scalar potential added to the mass term [50].



2.4. CLASSICAL EXTERNAL FIELD AND STATIONARY STATES 21

is essentially identical to (2.11) and these matrix elements are indeed taken into account when
(2.14) is diagonalized. The implication is that an external field should therefore also couple
subspaces with different particle numbers, which are some number of electron-positron pairs
away. In fact, it should couple to subspaces with ever-increasing number of particles.

Herein lies the problem: the differential operator (2.14) should be equivalent to the many-
particle Hamiltonian (2.13) in the (1, 0)-particle case, i.e. with one electron and no positrons.
However, it is quite clear that can not be the case if the many-particle Hamiltonian is allowed to
couple spaces with different particle numbers together. A way to think about it is to consider the
number of degrees of freedom a many-particle state has when expanded in terms of all the many-
particle basis product states, and compare that to the expansion of a single-electron wavefunction
in terms of the single-particle states — the number of degrees of freedom in the former case is
much greater.

It is possible to reconcile this problem though. When the Dirac equation is generalized to a
many-particle QFT, there was one step that was not directly justified from the Euler-Lagrange
equations — the redefinition (2.3) of the creation and annihilation operators. This was to fix
the problem of negative energy solutions of the free-particle Dirac Hamiltonian, which do not
make sense physically, changing their interpretation. And as a consequence, it also lead to the
redefinition of the vacuum state. But there was actually mathematically nothing wrong with the
original choice of the creation and annihilation operators, and the redefinitions was largely just
an exercise in choosing a new symbol.

The original operators c̃(r,p) and d̃(r,p) correspond to the positive and negative energy states
of the Dirac equation, respectively. If we write the pair creation and pair annihilation parts of
the Hamiltonian (2.15) in terms of the original operators

ψ̄+γ
µψ− =

∫
d3p√
(2π)3

∫
d3p′√
(2π)3

∑
r,r′

1√
2Ep

√
2Ep′

ū(r)(p)γµv(r
′)(p′)ei(p+p′)·xc̃†(r,p)d̃(r′,p′)

ψ̄−γ
µψ+ =

∫
d3p√
(2π)3

∫
d3p′√
(2π)3

∑
r,r′

1√
2Ep

√
2Ep′

v̄(r)(p)γµu(r
′)(p′)e−i(p+p′)·xd̃†(r,p)c̃(r′,p′)

the terms no longer appear to mix particle particle number. Instead, it is clear that these terms
simply mix the positive and negative energy states together. Nothing very interesting happens
to the pure electron and pure positron terms ψ̄+γ

µψ+ and ψ̄−γ
µψ− — they simply keep nudging

their corresponding particles. Although it is also possible to interpret the latter as nudging the
negative energy states.

It is possible to give a physical interpretation to the original formulation that can explain
the apparent inconsistency of the pair creation and annihilation terms with the Dirac equation.
For this it is necessary to remember that the “vacuum” state |0̃⟩ corresponding to the operators
c̃(r,p) and d̃(r,p) is in fact physically (i.e. in the proper QED interpretation) non-empty and
filled with positrons — adding another one with d†(r,p) = d̃(r,p) would by definition annihilate
the state. Adding a positive energy state, i.e. c̃†(r,p) |0̃⟩, would create a state that physically
has an infinity of positrons and one electron, or in other words a (1,∞)-particle state. On the
other hand, adding a negative energy state, i.e. d̃†(r,p) |0̃⟩, annihilates one of the positrons and
leads to a (0,∞− 1)-particle state19. To construct physically interesting states of only electrons
(e.g. 1-electron/0-positron) it would be necessary to first annihilate all the positrons in the |0̃⟩
“vacuum”. But, in principle, it would be completely valid to generate the full Fock space this

19Alternatively, rather than counting the number of positrons down from infinity, it can be more convenient
to talk about “holes”. So this would be a “0-electron/1-positron-hole state”.
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way with the original naive creation and annihilation operators — the dynamics will be the same,
even if the positron labelling would look weird.

With all that in mind, it is worth contemplating the interpretation of a single particle state

|Ψ⟩ =
∑
r

∫
d3p

[
a(r,p)c̃†(r,p) + b(r,p)d̃†(s, q)

]
|0̃⟩ (2.16)

that is a superposition of both positive and negative energy states. The mixing between positive
and negative energy states introduced by the external potential in the external field Dirac equa-
tion (2.14) means that, for example, the usual single-particle bound state solutions are exactly
such superpositions. However, as these states are defined relative to the non-empty vacuum |0̃⟩,
such a states is in fact a superpositions of (1,∞)-particle state (i.e. a single electron in a filled
sea of positrons), and a (0,∞− 1)-particle state (annihilated positron hole in the filled sea).

Understanding the Dirac equation in this way also resolves the problem with the degrees of
freedom. As the pair creation and pair annihilation terms only allow for coupling between particle
number subspaces that are a “pair away”, the (1,∞)-particle (or positive energy) subspace can
only connect to the (0,∞−1)-particle subspace via pair annihilation, which is the negative energy
subspace. Conversely, adding a pair to the negative energy subspace takes us into the positive
energy subspace. Further annihilating a pair from the negative energy subspace is not possible
as there are no more electrons to annihilate. Similarly, it is not possible to add a pair to the
positive energy subspace because the positron component is already full. In other words, with |0̃⟩
as the reference vacuum, the Hamiltonian is inherently restricted to what look like single-particle
states in terms of degrees of freedom.

It also gives a physically consistent interpretation to the energies of the negative energy states
and why they are more and more negative as the momentum increases. As those states, relative
to the vacuum |0̃⟩, correspond to the removal of a positron with some mass and kinetic energy,
the energy must be lower than −mc2. The higher the momentum (i.e. kinetic energy) of the state
is, the more the energy is reduced. One thing that should be clarified is that this applies to the
free-particle states — an interaction with the electromagnetic potential can lower the energies
further.

An open question, however, is why the Dirac equation (2.14), while seemingly physically
nonsensical, still yields very reasonable results. One likely reason is that, while the bound states
do mix in the negative energy subspace, they do so relatively little (e.g. when measured as
overlaps with the negative energy subspace), and the filled “positron sea” form a homogeneous
background charge distribution which does not affect dynamics. Another thing to consider is
that a pure negative energy state (a positron hole) is also negatively charged, which can be seen
if the charge operator (2.7) is written in terms of c̃(r,p) and d̃(r,p)

Q ≃
∑
r

∫
d3p

[
c̃†(r,p)c̃(r,p) + d̃†(r,p)d̃(r,p)

]
and so should resemble an electron dynamically.

2.5 Effective Hamiltonians and other approximations

The goal of theoretical atomic physics is to explain the interactions of the particles in atoms
and to determine their electronic wavefunctions to predict atomic properties. Based on their
theoretical treatment, there are broadly speaking two classes of problems that are solved in
atomic physics:
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1. Time-dependent processes, where we are looking at the evolution of the system over time.
Physical examples include the scattering of particles or the ionization of electrons with
laser pulses. Essentially, it is assumed that the system starts in some known configuration
and then evolves in time, with theory used to predict how that evolution occurs.

2. Stationary states, where the Hamiltonian is diagonalized and the system is studied through
its eigenstates, which are the stationary states of the system. The examples of this would
be predicting energy levels and bound state wavefunctions.

There is also overlap between those two broad categories. For example, the stationary states
of a time-dependent Hamiltonian at every time step are often a crucial part in time-dependent
calculations. On the other hand, an argument can be made that every process in physics ulti-
mately is a time-dependent process, with the eigenstates of the Hamiltonian just being a method
of gaining insight into the underlying mathematical structure of the system.

However, performing some sort of “full QED” calculations in either of these categories is
highly problematic. A naive numerical approach would involve iterating over combinations of
single-particle states in some form, which is especially problematic for quantized photons. In large
part due to their massless nature, the number of photons in a system is very fluid — each photon
can be split up into more photons of less energy, and new photons would be constantly generated
by the interaction term. When attempting to represent the precise photon wavefunction in some
basis, the number of degrees of freedom would make the problem computationally intractable. [51,
52]

While not as pronounced, the fermionic matter sector of the theory suffers from similar
issues. As electrons and positrons are massive, generating more and more particles comes with
a severe energy penalty, but the pair-creation nature of the interaction term still means that
basis determinants with higher and higher numbers of particles would have to be taken into
account. Even if the particle number is fixed completely, as is usually done in most many-
electron approaches, a good numerical description of a many-electron quantum state is difficult
due to the combinatorial expansion of the basis and the entanglement, or correlation, between
all the particles. However, generally speaking, it is possible to treat the fermionic wavefunction
accurately, for low enough numbers of particles.

In summary, while solving the “full QED” problem is not necessarily feasible, there are various
approaches and approximations that can lead to approximate but still precise and useful results
for atomic systems.

Perturbation theory

A very common approach in QED is to employ perturbation theory, where the solutions being
sought are written down as an infinite series, which ideally converges to the exact full QED
answer. Each term of the series by itself is easier to calculate than the full solution, but the
series usually has to be truncated somewhere, hoping that the partial sum leads to an accurate
enough result, making the approach approximate.20

Most treatments of this topic present two types of perturbation theory:

1. Time-dependent perturbation theory which, as the name suggests, is used for time-dependent
processes, such as the calculation of transition amplitudes.

2. Time-independent or stationary state perturbation theory, which is used to calculate the
eigenvalues and eigenstates of a system.

20Most QED and QFT textbooks focus on perturbative approaches, especially the ones targeted at particle
physicists. The main book used as a basis for this thesis was the one by Peskin and Schröder. [24]
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This work primarily deals with stationary bound states, which implies that time-independent
perturbation theory should be used. However, it turns out that in relativistic quantum field
theory, there is a strong connection between the two formalisms.

General formalism

The common starting point for perturbation theory is to split the Hamiltonian21 into two parts:
the unperturbed part Ĥ0 and the perturbation ĤI, such that the total Hamiltonian is written as

Ĥ = Ĥ0 + ĤI

Often these two parts correspond to the non-interacting free particles and interparticle interac-
tions and are therefore called “free” and “interaction” parts, respectively,

The eigenstates and eigenvalues of Ĥ0 need to be determined using without perturbation
theory, such as solving the differential equation analytically if possible. The solutions can be
something as simple as the analytically known plane-wave solutions of free non-interacting parti-
cles, but can also be more complex, such as bound states with a non-standard potential, requiring
a numerical approach. Once the solutions to the free part are known, the contribution of the
interaction term to the full problem under study can be calculated term by term.

In fact, formally, it is convenient to introduce a parameter λ which can be used to turn the
interaction on or off such that

Ĥ = Ĥ0 + λĤI

If λ = 0, the solution to the problem will just be the solutions to Ĥ0, which we assume we know,
and λ = 1 represents the solution to the full problem. However, in principle, we can also solve the
problem for any intermediate λ, and so we can assume that any quantity O(λ) we are interested
in will be a continuous function of λ. We can then expand the solution in a power series of λ

O(λ) = O(0) +O(1)λ+O(2)λ2 + · · · =
∑
n

O(n)λn (2.17)

The trick is just to have an efficient scheme to calculate the series coefficients O(n).
One thing worth mentioning, however, is that in QED the perturbative series of the form

(2.17) is an asymptotic expansion and the series does not formally converge [53]. While this
often does not matter in practice as the asymptotic expansion generally replicates experiments
extremely well up to high order in the expansion, it does mean that perturbation theory for
relativistic QFTs is fundamentally incomplete.

Time-dependent perturbation theory and the S-matrix

In the case of time-dependent perturbation theory, we are interested in calculating the probability
of observing the system in a final state |f⟩ at time t, given that the system started in an initial
state |i⟩ at time t0. In quantum mechanics, we can connect initial and final states of a system
with the unitary time-evolution operator U(t, t0), such that the state of the system |Ψ(t0)⟩ at
time t0 propagating forward in time is

|Ψ(t)⟩ = U(t, t0) |Ψ(t0)⟩

21Or the Lagrangian. It goes beyond the scope of this text, but it is also possible to formulate QFT and per-
turbation theory in the path integral formalism, where the core quantities under consideration are the Lagrangian
and the action. [8]
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Assuming that the time-evolution is generated by a general time-dependent Hamiltonian H(t),
it is possible to write down the time-evolution operator as the infinite series

U(t, t0) = 1 − i

∫ t

t0

H(t1) dt1 + (−i)2
∫ t

t0

∫ t1

t0

H(t1)H(t2) dt2 dt1 + · · ·

=

∞∑
n=0

(−i)n
∫ t

t0

∫ t1

t0

· · ·
∫ tn−1

t0

H(t1) · · ·H(tn) dtn · · · dt1
(2.18)

which is commonly referred to as the Dyson series [54]. In the special case of a time-independent
Hamiltonian, the Dyson series is equal to the well-known exponential form of the time-evolution
operator

U(t, t0) = exp
[
−iH(t− t0)

]
It is formally possible to recover the exponential form in the case of a general time-dependent
Hamiltonian as well, and the general time-evolution operator can be written as

U(t, t0) = T exp

(
−i
∫ t

t0

H(τ) dτ

)
=

∞∑
n=0

(−i)n

n!

∫ t

t0

· · ·
∫ t

t0

T
[
H(t1) · · ·H(tn)

]
dtn · · · dt1

where the time-ordering meta-operator T ensures that the time coordinates in the product of the
Hamiltonians are always in decreasing order, permuting them around as necessary. The second
step, where the exponential has been expanded in its Taylor series and the time-ordering moved
into the integrand, is formally the definition of the time-ordering of an exponential operator.
Crucially, compared to (2.18), there is no more dependence on the integration variables in the
integration bounds. This form is useful because a time-independent Hamiltonian (i.e. physically
time-independent, or in other words, lacking explicit time dependence in the Schrödinger picture)
acquires a time-dependence in the Heisenberg and interaction pictures of quantum mechanics,
and perturbation theory is usually formulated in terms of the latter.

Finally, in perturbative problems, the initial and final times are usually formally allowed
to approach infinity. This leads to the scattering matrix Sfi, which is simply the transition
amplitude from the initial state to the final state over an infinite time interval

Sfi = lim
t→+∞
t0→−∞

⟨f |U(t, t0)|i⟩ = ⟨f | T exp

(
−i
∫ ∞

−∞
H(τ) dτ

)
|i⟩ (2.19)

and is the quantity that is commonly used in perturbative calculations.

Feynman diagrams

When the Dyson series (2.18) is inserted into the expression (2.19) for the scattering matrix, it
becomes clear that the scattering matrix can be evaluated as an infinite series, which constitutes
the perturbative expansion.

In order to separate out the time-evolution of the non-interacting “easy” part, and the “hard”
interaction parts, the calculation is generally done in the so-called interaction picture of quantum
mechanics, where the time-evolution generated by the free part of the Hamiltonian moved from
states to operators

|Ψ⟩I = eiH0t |Ψ⟩ , AI(t) = eiH0tA(t)e−iH0t

where |Ψ⟩I and AI(t) are the states and operators in the interaction picture. The practical
consequence is that the Hamiltonian in the Dyson series expansion reduces to just the interaction
part ĤI of the Hamiltonian.
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[a] [b] [c]

Figure 2.2: The building blocks of QED Feynman diagrams: (a) the photon propagator, (b)
the electron-positron propagator and (c) the QED interaction vertex.

In the interaction picture, the integrals for each of the terms in the perturbative expansion
can be constructed with the help of Feynman diagrams, which are a type of graph. Each vertex of
such a graph corresponds to an interaction term, with the number of vertices giving the order of
the diagram. Generally, each interaction term brings some coupling constant which, if small, can
be used to argue for the convergence of the series expansion — higher-order terms have a higher-
order coupling constant, hopefully leading the series to converge. The edges of the Feynman
diagrams are called propagators and are related to the time-evolution of the free particle states
under the free part of the Hamiltonian. The propagators can be thought of as either Green’s
function of the free part of the Hamiltonian, or as certain vacuum expectation values of the field
operators [24].

The three basic building blocks of free particle QED diagrams are shown in figure 2.2. In QED
there is only one interaction vertex with a coupling coefficient α, the fine-structure constant. The
diagrams are then classified according to the number of vertices or, equivalently, in powers of α,
with higher-order diagrams (∼ αn) usually contributing less to whichever process one happens
to study.

Energy shifts of stationary states

This thesis focuses on stationary bound states, rather than time-dependent or scattering pro-
cesses. As such, it would be more natural to employ time-independent perturbation theory,
which would lead to a series expansion similar to Eq. (2.17), where the terms are calculated via
matrix elements of the interaction operator in the basis of free-particle solutions [55]. However,
it turns out that the methods of time-dependent perturbation theory are very much applicable
in the relativistic case too.

It was shown by Gell-Mann and Low in 1951 (the Gell-Mann-Low theorem) [56, 57] that the
formal perturbative solution for the ground state of an interacting system |Ψ0⟩

N |Ψ0⟩ = [1 + (H0 − ϵ0)−1(1 − |0⟩ ⟨0|)(HI(0) − E0 + ϵ0)]−1 |Φ⟩

given relative to the vacuum state |0⟩ acting as the ground state of the free part of the Hamiltonian
H0, can be written down in terms of the time-evolution operator U(t, t0) such that

N |Ψ0⟩ =
U−1(±∞, 0) |0⟩

⟨0|U−1(±∞, 0)|0⟩

Here N is a normalization constant that would have to be determined separately. This, in turn,
leads to the expression for the energy shift of an arbitrary eigenstate |n⟩ of the free-particle
Hamiltonian

∆En = lim
ε→0
λ→1

⟨n|U(∞, 0)[H0 + λHε
I (0) − En]U(0,−∞)|n⟩

⟨n|U(∞,−∞)|n⟩
= lim

ε→0
λ→1

iελ

2

∂
∂λS

ε
nn

Sε
nn
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Figure 2.3: The bound state electron propagator is conventionally represented by a double
line. It can be further be split up as a sum in orders of Zα, where each “interaction” with the
nuclear potential is marked by a dashed line and a cross. It should be emphasized here that the
dashed line does not represent a propagator and that the expansion in terms of Zα only works
if Zα≪ 1.

which can also be written down in terms of the S-matrix. The additional ε parameter is from
the formal use of an adiabatically damped interaction Hamiltonian Hε

I (t) = e−ε|t|HI(t), which
allows certain infinities in the perturbative expansion to be correctly cancelled out. [58, 59]

Hence, the energy shifts due to the QED interaction, which is a time-independent problem,
can be evaluated with the help of the scattering matrix. As a consequence, it is possible to apply
the methods of time-dependent perturbation theory, such as Feynman diagrams, to the problem
of bound state energy shifts.

Furry picture for bound states

While it is definitely possible to use non-interacting plane wave states as the reference states in
perturbative bound-state calculations (i.e. using the free-particle Hamiltonian as H0) [60], it can
be advantageous, for convergence reasons, to include the electromagnetic scalar potential V (x),
such as the one generated by the nucleus, in the unperturbed part as well, i.e.

H0 = hD + V (x)

where hD would be the free-particle Dirac Hamiltonian. This avoids the need to solve the bound-
state problem perturbatively, which is good since the bound states are qualitatively very different
from the plane-wave states. This leads to the Furry picture of perturbative bound state QED. [61]

In practice, this means that the reference “free” states are in fact the bound states solutions
of the external field Dirac equation. The effect of the potential on the time-evolution is incor-
porated into the propagator, and such propagators are commonly depicted with double lines.
As illustrated in Figure 2.3, the bound state propagators can be further expanded such that
they become a product of the potential and the free electron propagators in various orders [49,
Eq (14-70) and (14-71)]. In the case of a potential generated by a nucleus22, each term in this
expansion has a factor of (Zα)n, and so the Feynman diagrams can be classified first in orders of
α (due to the electromagnetic interaction terms) and then in orders of (Zα) (due to the nuclear
potential). Often simply considering the diagrams in lowest order of (Zα), is sufficient, but it
does break down in the regime where Zα ∼ 1, which is the case e.g. for the super-heavy elements.

Effective Hamiltonians

A way to avoid having to treat a fully quantized photon field is to replace it with some effective
operators that approximate the interaction as accurately as possible.

22The fine-structure constant α is related to the elementary charge by α ∝ e2. Hence, the nuclear potential of
a nucleus with charge Q = Ze will be proportional to V ∝ eQ = Ze2 ∝ Zα.
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Figure 2.4: Feynman diagram of the one-photon exchange that leads to the Breit interaction
correction of the electron-electron interaction.

Electron-electron interactions

Most significant of such replacements is the introduction of a two-electron interaction, to describe
the effect one electron has on another via the photon field (or a positron on a positron, or an
electron on a positron). It should be pointed out that the full QED Hamiltonian does not
contain any terms for direct interaction between electrons, and the interaction is mediated by
the photon component of the wavefunction instead. The closest one gets is the electromagnetic
interaction term which contains three (as opposed to four, of a standard two-particle interaction
term) creation-annihilation operators and couples the photon field to individual electrons and
positrons, or the creation of annihilation of their pairs.

A formal way to derive such an effective operator from QED is to derive the kernel g(R;ω)
of the matrix element of the one-photon exchange from perturbation theory, with the diagram
illustrated in Figure 2.4. [62, Section 4.9] In the Coulomb gauge, this leads to the kernel

g(R;ω) =
1

R
+ gT(R;ω)

where non-Coulomb part is given by the transverse photon kernel

gT(R;ω) = −α1 ·α2
eiωR/c

R
− (α1 · ∇)(α2 · ∇)

eiωR/c − 1

ω2R
(2.20)

As can be seen, if the transverse photon part is removed, it reduces to the well-known in-
stantaneous Coulomb interaction kernel. The operator (2.20) is sometimes referred to as the
frequency-dependent Breit interaction. In the long wavelength limit, where ω → 0, it reduces
down to the more well-known Breit interaction

gB(R;ω) = lim
ω→0

gT(R;ω) =
1

2R

(
α1 ·α2 + (α1 · R̂)(α2 · R̂)

)
(2.21)

where R̂ = R/R is a unit vector. The “frequency-independent Breit” interaction was originally
derived using a more classical, non-QED approach by considering two moving charges within a
relativistic framework [63].

As a final point, it should be pointed out that depending on the choice of gauge, the one-
photon exchange diagram in Figure 2.4 can lead to different effective Hamiltonian. Specifically,
in the Feynman gauge, the matrix element kernel becomes

gM;ω = (1 −α1 ·α2)
eiωR/c

R

which is known as the Møller interaction. In the long-wavelength limit ω → 0 it reduces to

lim
ω→0

gM =
1 −α1 ·α2

R
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Figure 2.5: Furry picture Feynman diagrams for vacuum polarization and self-energy in first-
order in α.

where the first term is again the non-relativistic Coulomb interaction and the second term

gG =
−α1 ·α2

R

is known as the Gaunt interaction [64], which contains spin-other-orbit interactions and is com-
monly used as a correction to the Coulomb interaction in relativistic electronic structure calcu-
lations of molecules.

Vacuum polarization

Another correction QED gives rise to has to do with the creation of electron-positron pairs by
the electromagnetic field generated by the nucleus. This leads to an induced charge distribution
near the nucleus or, in other words, the nucleus polarizes the vacuum. This is directly related to
the pair creation and annihilation in the term that couples the external electromagnetic field to
the quantized Dirac field, as was discussed in Section 2.4.

The charge distribution resulting from vacuum polarization can be calculated in perturbation
theory from the vacuum expectation value of the current operator

jµ = e ⟨0|ψ̄γµψ|0⟩

Only the time-like component (i.e. the charge distribution) ρvp is non-zero. The induced charge
will then, in turn, induce an electric potential which will modify the Coulomb potential of the
nucleus. If the charge distribution is known, the corresponding potential can, with relative ease,
be determined from the Poisson equation

∇2φvp(x) = ρvp(x)

This potential can then be incorporated into electronic structure calculations simply as a modi-
fication of the nuclear potential.

The Feynman diagram corresponding to the lowest order vacuum polarization in the Furry
picture can be seen in Figure 2.5. Both in practice and historically, that contribution is discussed
in two parts, which can be linked to the (Zα) expansion of the diagram, illustrated in Figure 2.6.
The first term of the (Zα) expansion leads to the Uehling contribution, originally considered by
Uehling in the 1930s, way before QED was invented [65]. The other terms, in orders (Zα)3+,
were calculated much later in the 1950s by Wichmann and Kroll [66].

The vacuum polarization also has higher-order contributions. Källén and Sabry considered
the contribution of vacuum polarization in second order23 in α [60]. In terms of the Furry

23The relevant paper is called “Fourth Order Vacuum Polarization”, which refers to the fact that second order
in α corresponds to fourth order in the elementary charge e, as α ∝ e2.



30 CHAPTER 2. ELEMENTS OF ATOMIC THEORY

= + +...

Figure 2.6: Expansion of the VP diagrams in orders of Zα. Note that the dashed lines are not
really propagators but part of a single vertex, each corresponding to an order Zα. Note that
Furry’s theorem only gives odd couplings to the external potential (dashed lines).

picture, the expressions derived by Källén and Sabry are only in first order in Zα [59], which is
due to the zeroth-order Hamiltonian being the free-particle Hamiltonian in Källén’s formulation
of perturbative QED [67]. In that sense it is similar to the Uehling term in the first-order vacuum
polarization.

Self-energy

Another important effect introduced by QED is that an electron can, essentially, interact with
itself. Physically one can think of this as an electron emitting a photon at a point in time and
then reabsorbing it later, which leads to an energy shift called the self-energy.

Historically, the self-energy was important in explaining the Lamb shift — the experimental
energy splitting in single-electron states with the same principal quantum number n and total
angular momentum j, observed by Lamb and Retherford in the 1940s. [43] According to the
Dirac equation these states should be energetically degenerate, and the vaccuum polarization
contribution, while significant at higher nuclear charge, is too small and has the wrong sign,
and hence can not explain the shift either. Self-energy as an explanation for this shift was
first considered by Bethe in 1947 [44], although for non-relativistic electrons, with relativistic
arguments only used to argue for a cutoff value in the energy of the photon propagator. In 1949,
this was generalized to full relativistic theory by Kroll and Lamb [45], but in either case it showed
very good agreement with the experiment, indicating that the Lamb shift can be explained by
considering the electron’s self-interaction interaction via the radiation field.

In the Furry picture, the self-energy correction can be considered in the lowest order of the
electromagnetic coupling α via the diagram shown in Figure 2.5. A way to calculate the self-
energy integral without performing a series expansion in Zα was shown by Mohr in 1974 [68],
effectively summing the Zα expansion analytically across all terms. He then went on to evaluate
this integral numerically for the 1s1/2 state of the neutral Z = 10, 20, . . . , 110 atoms in the
follow-up article [69]. Furthermore, in [70] he discusses the generalization of his approach to all
principal quantum number n = 2 states and published a table of numerically evaluated energy
shifts for Z = 10, . . . , 40 for all the n = 1, 2 states in [71]. Finally, in [72], the self-energy
calculations were once again extended to all n ≤ 5, j = 1

2 ,
3
2 states, and the shifts were evaluated

for Z = 10, . . . , 110.
Mohr’s approach only determines the energy shifts and just for hydrogenic-like systems. By

replacing the nuclear charge Z by some screened effective charge Zeff in multi-electron sys-
tems, these can be used to perturbatively estimate the self-energy correction for a many-electron
system. However, an operator form, similar to the Breit interaction or vacuum polarization
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potential, would be preferred. As such, over the years, various effective operators [18, 19, 20]
and other approaches [73, 74] have been proposed. Incorporating self-energy corrections into
many-electron calculations of large systems is tricky, and the focus of the work in Chapter 4.
That also includes a review of the aforementioned effective operators.

Higher-order corrections

The effects described in the preceding sections by no means comprehensively describe the effect
of the fully quantized photon field. It would also be possible to consider higher-order vacuum
polarization and self-energy terms. However, the corrections arising from including these addi-
tional diagrams are generally assumed to be small and only required in extremely high-precision
calculations of few-electron systems. They are briefly reviewed in the 1998 review by Mohr,
Plunien and Soff [59].

2.6 Spherical symmetry and radial external-field Dirac equation

Atoms, consisting of electrons captured by a single atomic nucleus, are to a very good approxi-
mation spherically symmetric systems.24 The charge distributions of the atomic nuclei (see also
Section 2.7) do not experience any forces that would break spherical symmetry, and consequently
neither do the electron clouds. This can be taken advantage of to considerably reduce the number
of variables and degrees of freedom when analysing these systems.

In practice, this generally means that after reformulating the problem in spherical coordinates,
the angular part can be separated out and solved analytically. The non-trivial radial part will
become a one-dimensional problem on the r ∈ [0,∞) axis. It also leads to conserved quantities
and quantum numbers in the form of angular momenta that are useful in labelling atomic states.
This section briefly discusses general angular momentum theory and how this is applied when
reducing the single-particle Dirac equation to reduce to a radial equation, while the application
of spherical symmetry to the many-electron problem is discussed in Section 4.1.

Angular momentum theory

Spherical symmetry means that the system (i.e. the Hamiltonian) is invariant under rotation
in three dimensional space around a point. This is true for an atom as long as the nucleus is
centered at the origin of the coordinate system. An extremely useful way of describing spherical
symmetry and angular momentum in quantum mechanics is to connect the description to the
group theory of rotation in three dimensions, with the group elements corresponding to angular
momentum operators.25

In the abstract group theoretical language, the operators R(n̂, ϕ), effecting a rotation of angle
ϕ around an axis described by the unit vector n̂, form a (continuous) group.26 It is possible to

24While the electromagnetic interaction in QED does not break spherical symmetry, the parity-violating weak
interaction does. This means that even if all the external forces are perfectly spherical, atomic systems fundamen-
tally do not obey spherical symmetry fully, and even an isolated electron has, in principle, a tiny electric dipole
moment. However in practice, the parity violation effects of the weak interaction are extremely small and can be
neglected or treated perturbatively.

25The books by Edmonds and Rose are excellent brief, concise overviews of angular momentum theory. [75,
76] If something more substantial is needed, the book by Varshalovich, Moskalev & Khersonskĭı is an excellent
reference. [77]

26In the more general mathematical abstraction such continuous transformation form a Lie group and the
generalization of the commutation relations of the generators is known as a Lie algebra. In particular, spin
and rotational angular momentum are related to the representation of the two-dimensional special unitary group
SU(2) ⊂ GL(2,C) which in turn contains the three-dimensional real special orthogonal group SO(3) ⊂ GL(3,R)
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define the corresponding infinitesimal generator of rotations around the n̂-axis as

J(n̂) = ih̄
∂R(n̂, ϕ)

∂ϕ

∣∣∣∣
ϕ=0

(2.22)

where h̄ is introduced to give the quantity the appropriate physical units. It makes sense to think
of the set of generators J(n̂) as living on an unit sphere in the three dimensional space, and so,
while somewhat of an abuse of notation, it is convenient to think of this set J being represented
by a single three-vector operator, which can be projected down to a particular axis n̂ via the
scalar product

J(n̂) = n̂ · J

By effectively inverting (2.22), the rotation operator can be written down in an exponential
notation in terms of the generators as

R(n̂, ϕ) = exp

(
− iϕ
h̄
n̂ · J

)
(2.23)

Commonly, there is an implicit or explicit orthogonal coordinate system and it is convenient to
just consider the generators along the x, y and z axes

J = (Jx, Jy, Jz)

which form a basis for representing the general generators as

J(n̂) = n̂ · J =
∑
i

n̂iJi

These angular momentum operators in an orthogonal coordinate system obey commutation re-
lations with each other

[Ji, Jk] = ih̄
∑
k

εijkJk (2.24)

when written in terms of the three-dimensional Levi-Civita symbol εijk.
A key insight from the commutator in Eq. (2.24) is that the three operators along the or-

thogonal axes do not form a commuting set and therefore can not be used to label states by
their eigenvalues even if the system has a well-defined angular momentum. Instead it is useful
to consider the square of the total angular momentum27

J2 = J2
x + J2

y + J2
z

which commutes with every angular momentum operator

[J2, Ji] = 0

Its eigenvalue together with the eigenvalue of one of the angular momentum operators, conven-
tionally Jz, can then be used to label states. The eigenvalues are defined by

J2 |Ψ⟩ = j(j + 1) |Ψ⟩ , Jz |Ψ⟩ = m |Ψ⟩

describing spacial rotations. For a more general introduction to how the mathematical theory of groups is applied
in science, Ludwig & Falter is a very accessible resource. [78]

27In the Lie group language, this is the unique the Casimir invariant of the SO(3) group.
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and it can be shown, purely from the algebra, that they only take certain discrete values. The
total angular momentum of a state can only adopt positive integer or half-integer values

j = 0, 1/2, 1, 3/2, . . .

and for a given total angular momentum j, the m quantum number can only take the 2j + 1
distinct values

m = j, j − 1, j − 2, . . . ,−j + 1,−j

changing in integer steps between j and −j. For a half-integer total angular momentum, m = 0
is not a valid quantum number.

Rotational invariance

Mathematically, spherical symmetry can be defined as rotational invariance, i.e. that an object
or a system does not change under a rotation. For an operator A, such as the Hamiltonian of a
system, and with the help of the rotation operator (2.23), this condition can be written as

∀ϕ : exp(−iϕ · J)A exp(iϕ · J) = A

where ϕ = ϕn̂ is a rotation of angle ϕ around n̂. This is equivalent to requiring the operator
to commute with the angular momentum operators, and consequently with the total angular
momentum operator J2

[A, Jk] = 0, [A,J2] = 0

The eigenstates of the system can then be labelled using the angular momentum quantum num-
bers. Another way to think about it is that the operator can be block-diagonalized into angular
momentum subspaces.

Physical sources of angular momentum

In a physical system, there can be many separate sources of angular momentum.

• The most significant is simply the rotational angular momentum L of a particle, which
corresponds to the actual physical rotation of the system or particle around the origin of
the coordinate system. In a multi-particle system, every particle brings its own rotational
angular momentum and corresponding operators, which all add up to a total angular
momentum. However, it should be noted that in a quantum field theory picture, particles
of the same species can be thought of as excitations of a single underlying field, and as
such we would be talking about the angular momentum of a field. However, there would
still be a angular momentum operator for each separate field.

• Elementary particles also carry inherent, internal angular momenta: their spin S. As such,
fermionic particles such as electrons and quarks, have an additional internal spin angular
momentum of 1/2. Similarly, vector bosons such as photons or the Z- or W-bosons, are
spin-1 particles, and the hypothetical gravitons would be spin-2. The Higgs boson, on the
other hand, is a massive spin-0 scalar particle and does not carry any inherent spin.

• In atomic physics it is also common to talk about the total spin of the atomic nucleus:
the nuclear spin I, which we generally assume to be a known, given quantity. However, it
should be pointed out that, in principle, the nuclear spin itself is made up of the rotational
and internal angular momenta of the constituent particles (the quarks and the gluons).28

28The question of how spin arises in protons and neutrons is still hotly debated [79].
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All the different sources of angular momenta add up. For atoms, in most cases, we are only
concerned with the total angular momenta of the electrons

J = L + S (2.25)

made up of their rotational and spin angular momenta. In the case where we are also interested
in the effect the nucleus has on the electronic structure, we add the nuclear spin

F = J + I = L + S + I

to get the total angular momentum of the whole atom F .

Coupling of angular momenta

It would be tempting to think that, if we combine the angular momenta from two sources, say
L and S, and the state is an eigenstate of L2, Lz, S2 and Sz, that it would then also be an
eigenstate |ℓ,mℓ, s,ms⟩ of the corresponding operators J2 and Jz of the total angular momentum
J = L + S. However, in general, that is not the case. While the m quantum number does add
to mj = mℓ +ms, this does not hold for the total angular momentum quantum number.

Instead, it is necessary to consider the whole subspace spanned by all the mℓ and ms quantum
numbers for given ℓ and s. Then, via certain superpositions, it is possible to construct states
that are also eigenstates of Jz

|ℓ, s; j,mj⟩ =
∑

mℓ,ms

C(j, ℓ, s;mj ,mℓ,ms) |ℓ,mℓ, s,ms⟩ (2.26)

with valid j values limited to j = |ℓ + s|, |ℓ + s|−1, . . . , |ℓ − s|+1, |ℓ − s|. The coefficients
C(J, j1, j2;M,m1,m2) are known as the Clebsch-Gordan coefficients and are the same for all
physical systems, as they can be derived directly from the abstract algebraic properties of the
angular momentum operators. The coefficients also exhibit various symmetries, such as the
requirement that M = m1 + m2, which can be interpreted as a symmetry where the coefficient
is zero if that condition is not met.

The states resulting from Eq. (2.26) are now eigenstates of all three angular momentum op-
erators J2, L2 and S2. However, while an eigenstate of Jz, those states are no longer eigenstates
of Lz nor Sz. An important point here is that this coupling can be thought of as an basis
transformation within each ℓ and s subspace.

κ quantum number

When coupling the orbital and spin angular momenta into total angular momentum in line with
Eq. (2.25), the total angular momentum quantum number j is no longer sufficient to uniquely
identify the coupled states and we have to keep track of both ℓ and j quantum numbers. This
is because for each integer orbital angular momenta we get two states with j = ℓ ± 1/2, which
means that for each valid half-integer j value, we always have two states with the same total
angular momentum, e.g. s1/2 and p1/2, or or p3/2 and d3/2.

As such, in relativistic theory it is convenient to use the κ quantum number, which can
encode the orbital and total angular momentum labels as a single integer value. The relationship
between the three quantum numbers can be summarised as

κ = ∓
(
j +

1

2

)
, for j = ℓ± 1

2



2.6. SPHERICAL SYMMETRY AND RADIAL EXTERNAL-FIELD DIRAC EQUATION 35

and it essentially just assigns either a positive or a negative integer for distinguishing the two
orthogonal functions with the same total angular momentum. This is similar to how the ℓ
quantum number can distinguish between two different coupled states in non-relativistic theory
where the total angular momentum eigenstates are constructed by explicitly coupling orbital
and spin angular momentum eigenstates. In fact, the ℓ-value based nomenclature is still used in
relativistic theory, but the difference here is that the Dirac states are not actually eigenstates of
the orbital angular momentum.

The κ quantum number can also be defined as the eigenvalue of the “spin-orbit operator”

K = −β(2S ·L + 1) = β

(
L2 − J2 − 1

4

)
Some angular momentum eigenstates |nκm⟩ would therefore have eigenvalues

J2 |nκm⟩ = j(j + 1) |nκm⟩ , Jz |nκm⟩ = m |nκm⟩ , K |nκm⟩ = κ |nκm⟩

The operators Ĵ and K̂ commute with each other, and with the Dirac-Couloumb Hamiltonian.29

Radial Dirac equation

A special form of the Dirac equation, corresponding to the external field Dirac Hamiltonian (2.14)
with a scalar time-like time-independent radially symmetric central potential V (r) such that
Aµ(x) = (V (r),0) is [

iγµ∂µ −m+ eγ0V (r)
]
ψ(x) = 0 (2.27)

With a spherically symmetric external potential, the single-particle eigenstates will simulta-
neously be total angular momentum eigenstates too. Following the convention30 in Grant’s
book [62], the radial orbitals can be written as

ψ(x) =
1

r

(
P (r)χκm(θ, φ)
iQ(r)χ−κm(θ, φ)

)
(2.28)

where P (r) and Q(r) are single variable complex functions on r ∈ [0,∞) and χκm(θ, φ) are
the spin-spherical harmonics (see Appendix A). The Dirac equation then transforms into a set
of two coupled first-order differential equations, which, in full SI units, can be written as a
two-component matrix differential equationmc2 + eV (r) h̄c

(
− d

dr + κ
r

)
h̄c
(

d
dr + κ

r

)
−mc2 + eV (r)

(P (r)
Q(r)

)
= E

(
P (r)
Q(r)

)
(2.29)

Especially when implementing a numerical solver, it is very useful to further simplify the equation
by choosing an appropriate set of natural units. In Hartree atomic units (h̄ = e = a0 = me = 1,
c = α−1) the equation becomesmα−2 + V (r) α−1

(
− d

dr + κ
r

)
α−1

(
d
dr + κ

r

)
−mα−2 + V (r)

(P (r)
Q(r)

)
= E

(
P (r)
Q(r)

)
(2.30)

29A more detailed exposé of the exact definition and relationship of rotation and the Dirac spinors can be
found in Chapter 4.6 of Thaller’s book on the Dirac equation [11].

30Different authors use different sign conventions, especially for the Q(r) function, so care must be taken when
comparing expressions from different sources.
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where the mass is still kept as a separate parameter, but will be given in units of electron mass.
However, from both a mathematical and numerical point of view, a more convenient system

of units are the particle physics natural units (h̄ = me = c = ϵ0 = 1) where the fine-structure
constant is directly related to the elementary charge via e =

√
4πα. If the nuclear potential is

written in terms of a “normalized” potential Φ(r) as

V (r) =
eZ

4πϵ0
Φ(r) (2.31)

then the Dirac equation can be written as(
m+ (Zα)Φ(r) − d

dr + κ
r

d
dr + κ

r −m+ (Zα)Φ(r)

)(
P (r)
Q(r)

)
= E

(
P (r)
Q(r)

)
(2.32)

In this form it becomes very clear that Zα can be seen as a coupling constant between a nor-
malized (corresponding to a unit charge) nuclear charge density and the electrons.

Atomic units: an uncertain choice

There is a very pragmatic reason to choose the particle physics natural units over the atomic
units when working with the Dirac equation. It atomic units, the scale of the energy will be
proportional to α−2, where α is the fine-structure constant, with the value [23]

α = 7.2973525693(11) × 10−3

What is important here is that the value of the fine-structure constant is experimentally derived
and therefore has an experimental uncertainty attached to it, which currently is on the order of
u(α) ∼ 10−12. As the energy scale in atomic units is proportional to α−2 (i.e. E ∼ α−2 Ha),
this leads to an inherent uncertainty of

u(E) ∼ 2α−3u(α) ∼ 10−5 Ha

of the energy. Any numerical result reported today that is reported in atomic units will inherently
be limited by this uncertainty. It should also be noted that as the energy scale is 104 Ha and the
machine precision of double precision is 10−16, we would expect that we can achieve a numerical
precision of 10−12 Ha, much lower than the one imposed by the fine-structure constant.

It should also be noted that this issue not theoretical, but actually arose when working on
Chapter 3. At one stage a slight inconsistency of δα = 2.9 × 10−12 in the value of α — one
part of the code was using the CODATA 2014 [80], whereas the other part of the code had been
updated to use the CODATA 2018 [23] value — lead to a systematic discrepancy in the energies
of exactly δE = 2α−3 · δα = 1.49 × 10−5. This error would have been avoided if the code and
the intermediate values would have been using natural units.

Mass scaling

It is possible to simplify the Equation (2.32) even further by eliminating the mass from the
equation. For that, the radial coordinate needs to be rescaled via x = rm and the normalized
potential must have a specific scaling behaviour

Φ(x/m) = mΦ(x)

This clearly holds for the Coulomb potential Φ(r) = 1/r, but will actually hold for any reasonable
charge distribution. This can be argued for through dimensional analysis: the dimension of Φ
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is L−1 (inverse length). As long as all the parameters of the potential that have the dimension
of length L (or some function thereof, e.g. RMS of the charge distribution) are also scaled
appropriately, and the potential is dimensionally consistent, this general property will hold.

Substituting r = x/m into (2.32), m can be factored out from all the matrix elements and
moved to the right side of the equation, effectively scaling the energy values(

1 + ZαΦ(x) − d
dx + κ

x
d
dx + κ

x −1 + ZαΦ(x)

)(
P (x)
Q(x)

)
=
E

m

(
P (x)
Q(x)

)
The eigenvalues of the equation are measured in mc2 and the radial coordinate in h̄

mc , where it
should be stressed that m is the mass of the particle under consideration and in general different
from the electron mass me. In other words, these quantities are no longer in natural units.

This form of the equation has multiple benefits. First, the fine-structure constant α, which
is an experimentally measured value and therefore is not exact, only shows up as in the coupling
of the nuclear potential. Hence, a numerical solver could simply take Zα instead of Z as an
argument, and so the output values would no longer have any inherent experimental uncertainty
attached to them. It will be explicitly up to the user to correctly convert between their physical
Z value and the Zα parameter.

Secondly, it is no longer necessary to treat the mass of the particle m as an independent
parameter. Instead, to solve the equation for a different mass value, the nuclear potential could
be scaled appropriately instead. Or vice versa, the mass could be scaled when the size of the
nucleus is changing. As a specific example, for a cut-off coulomb potential

Φc.o.(r;R) =

{
1/R, 0 ≤ r ≤ R

1/r, r > R

it holds that Φc.o.(x/m;R) = mΦc.o.(x;Rm). In other words, rather than changing the mass,
the replacement R→ Rm yields the same solution, with appropriate scalings on r and E. More
generally, if scaling the parameters of the potential does not quite work, any potential could be
scaled according to

Φ̃(x) =
1

m
Φ(x/m)

2.7 Nuclear charge distributions and potentials

So far, in the context of an external field Dirac equation (2.14) (including its radial counter-
part (2.30) in Section 2.6), the potential V (r) has been a generic function. And the potential,
in fact, can take on many forms, depending on the application. For example, it may be an
effective potential generated by the electrons close to the atomic nuclei, representing a pseu-
dopotential [81], or exhibit an infinite potential wall when modelling confinement [82].

The most common case, though, is simply a pure Coulomb potential generated by a nuclear
charge distribution. However, nuclei themselves are complicated quantum objects and there are
various models that attempt to approximate the shape of a nucleus. This section reviews the
various nuclear charge distribution models and their resulting potentials that are relevant in this
thesis. For the various models, we follow the conventions from the very comprehensive paper by
Andrae, which provides an excellent review of the different nuclear models. [83]

Nuclear potential

For the purposes of this section, we assume that the nuclear potential is generated by a spherically
symmetric nuclear charge distribution ρ(r) centred at the origin. For each nuclear model, the
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charge distribution will be normalized to the nuclear charge Z such that∫
dx ρ(|x|) = 4π

∫ ∞

0

dr r2ρ(r) = Z

This is convenient for the purposes of separating the shape of the nuclear potential from the
particular nucleus, allowing us to easily parametrize calculations in terms of Z.

The potential V (r), which is also radially symmetric if the charge distribution is, can formally
be derived from the charge distribution by solving the radial Poisson equation

1

r

d2

dr2
[
rV (r)

]
= 4πρ(r) (2.33)

with the boundary condition limr→∞ V (r) = 0. According to equation (22) in [83], the potential
can be calculated by integrating the density in the following manner

V (r) = −4π

r

[∫ r

0

s2ρ(s) ds+ r

∫ ∞

r

sρ(s) ds

]
This expression can be obtained by using the Green’s function method to solve equation (2.33).

Nuclear models

Each nuclear charge distribution model is characterized by zero or more parameters that deter-
mine its shape. It is desirable to keep the nuclear models physically comparable, which can be
done by requiring the root-mean-square (RMS) radius

Rrms =
√
⟨r2⟩ =

√
4π

Z

∫ ∞

0

dr rk+2ρ(r)

of the charge distribution to be the same for all nuclear models for the same nuclear charge.
In general, when performing calculations that have a direct experimental connection, the exact

value for the isotope under study would ideally also be determined empirically from experiment,
such as the values tabulated in [84]. However, an experimental value is not always available, and
so a very common fallback in the atomic physics community is to use the empirical fit derived
Johnson and Soff in 1985 [85]: given a nuclear isotope, defined by the nuclear charge Z and
nuclear mass number A, the RMS value is approximated by

Rrms = (0.836A1/3 + 0.570) ± 0.05 fm (2.34)

It is worth pointing out that, due to the cube root behaviour, the RMS value of the nucleus does
not change too much, qualitatively speaking. As an illustration, going from hydrogen, where
Rrms(

1H) = (1.41 ± 0.05) fm = (2.66 ± 0.09) × 10−5a0, to oganesson, where Rrms(
294Og) =

(6.13 ± 0.05) fm = (11.58 ± 0.09) × 10−5a0, the change in the RMS value, as predicted by
Eq. (2.34), is less than an order of magnitude. This in turn implies that qualitatively and from
a methods perspective, the results for one particular nuclear radius can be generalized for the
whole range of physical nuclei.

The particular nuclear models used in this work are

• Point-like charge distribution. This is the standard point nucleus

ρ(r) =
Z

4πr2
δ(r)
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and leads to the potential

V (r) = −Z/r

The root mean square radius here, of course, is always zero and there are no parameters
to control the size or the shape of the nucleus.

• Hollow nucleus.31 The defining parameter is the radius R of the shell where all the
charge is located

ρ(r) =
Z

4πr2
δ(r −R)

The charge distribution leads to the potential

V (r) =

{
−Z/R, 0 ≤ r ≤ R

−Z/r, r > R

and root-mean-square radius Rrms = R.

• Homogeneous or uniformly charged sphere. The defining parameter is again the
radius of the sphere R, with constant charge density within the sphere

ρ(r) =


3Z

4πR3
, 0 ≤ r ≤ R

0, r > R

which leads to a quadratic potential within the sphere

V (r) =


− Z

2R

[
3 −

(
r

R

)2
]
, 0 ≤ r ≤ R

−Z
r
, r > R

The root mean square radius is Rrms =
√

3/5R.

• Gaussian charge distribution. The parameter R that we use to define the Gaussian
distribution normalizes the exponent to a dimensionless number x = r/R in the distribution
ρ(r) ∝ exp(−x2). The precise charge distribution is given by

ρ(r) =
Z

R3
√
π3

exp

[
−
(
r

R

)2
]

and the related potential can be expressed via the error function erf(x) as

V (r) = −Z
r

erf

(
r

R

)
The root mean square radius can be obtained from R with Rrms =

√
3/2R.

31Also referred to as the “uniformly charged spherical shell” or “top-slice” model.
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• Two-parameter Fermi distribution. This is a widely used model that depends on the
two parameters a and c

ρ(r) =
Z

1 + e(r−c)/a

In the limit a → 0, this model becomes identical with the spherical nucleus with R = c.
As ρ(c) = Z/2, c is sometimes referred to as the half-density radius.

A reason why this model is often preferred is because it does not have a sharp cutoff and
can describe the “skin” of a nucleus — a region of finite thickness on the surface of the
nucleus where the charge density falls to zero.32

There is no simple closed-form solution for the potential, and the RMS value is similarly
complicated. However, the 1992 paper by Parpia and Mohanty describes a practical way
of evaluating the potential [86]. An interesting point here is that, with two independent
parameters, specifying just the RMS value is not sufficient to uniquely fix the parameters
of the model. In the atomic physics community, a skin thickness t = 2.30 fm, chosen by
Parpia and Mohanty in their paper without any particular motivation, has largely become
the standard value used to fix that ambiguity.

32The skin thickness t, which is defined as the distance over which the nuclear charge density drops from 90%
to 10% (i.e. ρ(c − t/2) = 0.9Z and ρ(c + t/2) = 0.1Z), is related to the parameters of the two-parameter Fermi
distribution via

t ≈ 4 ln(3) · a
which holds well when a ≪ c, i.e. the skin is relatively thin [83, Eq. (185) in 2.4.7, pg. 465].



Chapter 3

The Dirac equation: a numerical odyssey

As discussed in Section 2.6, the single-particle radial Dirac equation with a generic external
potential poses various challenges. There are no analytical solutions available for a general
potential, and the analytical approaches that do exist are tailored for particular potentials [83].
Furthermore, when treating the many-electron problems in atomic physics, for example, either in
the Dirac-Hartree-Fock or a perturbative formalism, solving the single-particle equation is often
a key piece of the whole approach.

This chapter explores the challenges and opportunities of numerically solving the one-particle
Dirac equation for a bound state using a finite basis set. In this approach, parameters can be
varied and potentials swapped out with relative ease, meaning it is very easy to study various
edge cases. Although some very early prototyping was done with a B-spline basis [87], the final
implementation uses the one-dimensional finite element method (FEM) basis implemented in the
HelFEM program [88]. This is by no means the only numerical scheme we could have employed.
For example, in atomic physics and quantum chemistry, B-splines basis sets [89, 90, 91, 92,
93], as well as ones based on exponential functions1 [94] and Gaussians [95, 96, 97] are heavily
used. Outside of basis sets, one can also simply represent orbitals on a radial grid and use a
shooting method [98] or, for example, approximate a basis set with the FEM-adjacent FE-DVR2

method [99].

The choice of FEM in particular was a pragmatic one. Unlike the other methods, the HelFEM
program provided a well-structured C++ codebase implementing the basis set and the necessary
functions for evaluating the operator matrix elements in that basis set. After some testing, it was
also clear that the implementation and the method were very reliable and did not lead to any
significant numerical difficulties. The latter contrasts with the earlier experiments with B-splines
that led to various numerical issues (although it is unclear if those were due to the method or,
more likely, due to the particular implementation used).

In order to systematically build up a FEM-based solver for the Dirac equation for physically
interesting problems, the work proceeded in the following phases:

1. As discussed in Section 2.7, in relativistic theory the bare 1/r-potential is often no longer
good enough, as the error this approximation introduces is comparable to the relativistic
correction itself, especially for the heavier nuclei. As such, it was necessary to extend
HelFEM to support discretizing finite nuclear models, which brought its own set of chal-
lenges. In order to clearly separate problems arising from using realistic nuclear charge

1More commonly known as “Slater-type orbitals” or STOs, which have a radial part that looks like rne−ξr.
2FE-DVR stands for “finite element, discrete variable representation”.
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distributions from the issues arising from the relativistic equation, this part of the work
implements the non-relativistic equations.

2. The second step was to solve the standard external-potential Dirac equation for various
potentials, showing that it leads to good results, but also to some challenges.

3. Finally, the same method is applied to a Dirac equation where the negative energy states
have been removed via projection, showing how technically simple it is to expand this
approach to more complex problems.

What resulted from this work was a Julia-language [100, 101] based solver for the Dirac equation
that uses the HelFEM library underneath, used to demonstrate the performance of the FEM basis
set for this problem. This high-level language implementation is easily be expanded to investigate
physically and mathematically interesting edge cases of the Dirac problem, as demonstrated by
the investigations of the projected Dirac equation and the diving problem.

3.1 Discretizing a differential equation

The primary task in this chapter is to determine the eigenfunctions and eigenvalues of a linear
differential operator L. For the most part, it will be the Hamiltonian H of the physical system
(or some approximations of the system), and in that case the eigenstates and eigenvalues are the
stationary states and their energies, respectively. As the finite element method will be applied to
several different equations, it is useful to, very briefly, establish some basic, consistent notation,
which in fact would work with any finite basis.

Differential operators, functions and domains

The linear operator L acts on a set of functions ψ : X → Y with some domain X and co-
domain Y . In quantum mechanics, the co-domain is generally the set of complex numbers,
but the wavefunction can have multiple components (e.g. spin components in non-relativistic
quantum mechanics, or the four components of a Dirac field), and therefore the co-domain will
be Y = Cm for an m-component function. The components ψα of the wavefunction are assumed
to be arranged in a column vector

ψ =


ψ1

ψ2

...
ψm


The linear operator L acting on a multi-component function ψ can mix the components, and so
the operators will, in general, be a matrix of linear operators Lαβ acting on complex functions
on the domain X

L =


L11 L12 · · · L1m

L21 L22 · · · L2m

...
...

. . .
...

Lm1 Lm2 · · · Lmm

 (3.1)

The exact definition of the domain X can vary substantially. The underlying physical equations
generally assume the three-dimensional space as the domain (i.e. X = R3), but this can often
be reduced. With the help of symmetries, the problem can often be solved independently and
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analytically along some of the coordinates, with the numerical basis set only necessary for a
subset of the coordinates (e.g. the radial coordinate in the case of an atomic system).

Each domain also comes with an inner product for calculating overlaps between quantum
states, which can be written as the integral

⟨fα|gβ⟩ =

∫
x∈X

f∗α(x)gβ(x)w(x) dX

where w(x) is a weight function specific to the domain which can scale different parts of the
domain differently. It is often the trivial w(x) = 1, but can be something non-trivial when for
example coordinate transformations are involved (e.g. in spherical coordinates). In the case of
multiple components, the inner product reduces to a dot product of the components multiplied
by the weight function, i.e.

⟨f |g⟩ =

∫
x∈X

f†(x) · g(x)w(x) dX =
∑
α

∫
x∈X

f∗α(x)gα(x)w(x) dX

A few examples of domains X, co-domains Y , and weight functions that are relevant for this
chapter are

1. 1D particle in a box. In this case, the wavefunction is generally assumed to be a simple
complex function, and the particle to be constrained in a one-dimensional interval between
a and b.

X = [a, b], Y = C, w(x) = 1

2. Non-relativistic Schrödinger equation for electrons. In this case, the wavefunction goes
over all of space, and the wavefunction has two components — one of each of the spin-1/2
components.

X = R3, Y = C2, w(x) = 1

3. Dirac equation. The Dirac equation also has the whole three-dimensional space as its
domain but has four independent components.

X = R3, Y = C4, w(x) = 1

4. Radial Dirac equation. The radial Dirac equation is an example of applying symmetries
where, by going into spherical coordinates, the angular part can be solved analytically and
only the function along the r coordinate is non-trivial. This also reduces the number of
components down to two from four.

X = [0,∞), Y = C2, w(r) = r2

The non-trivial weight function comes from the Jacobian of the change of variables into
spherical coordinates. However, it is common to define the radial functions as 1

rP (r)
instead, in which case the weight function is again w(x) = 1, because the 1

r factor will
cancel out the Jacobian.

In addition to just defining the linear operator, it is also necessary to define certain constraints
on the functions ψ, such as normalizability and boundary conditions, with the latter usually
requiring the function to be zero on the boundary of the domain. In all cases, they reduce the
space in which the solutions are being sought.

Something else to note is that, in practice, the domain of the function may be further reduced.
For example, instead of solving the problem on r ∈ [0,∞), it might be restricted to r ∈ [0, rmax),
which can be necessary when e.g. the method used can not be extended all the way to infinity
with a finite number of basis functions.
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Discretizing with basis sets

Discretizing an eigenvalue problem with a basis set, which is by no means the only approach,
has the appeal of being conceptually very straightforward. A functional eigenvalue problem
becomes a simpler matrix eigenvalue problem, which, in turn, is easy to solve using standard
linear algebra techniques.3 In principle, with a good basis set, systematically increasing the basis
size should bring you closer and closer to the exact functional solution, for both the energy and
the wavefunction.

In the most general notation, each component ψα is assumed to have a separate basis set of
explicitly defined functions {bαi (x)} on the domain X (i.e. bαi : X → C; although in practice,
most often, the co-domain of the basis functions will be real numbers, so bαi : X → R). Each
component can then be expanded as a superposition

ψα(x) =
∑
i

cαi b
α
i (x)

where cαi ∈ C. Of course, a finite basis set can not be used to represent arbitrary functions
perfectly accurately, it it is assumed that there is a systematic way to increase the size of the
basis set, leading to greater and greater accuracy. While often the basis set will be the same
for all components, that is not always the case. For example, when using B-splines for the
relativistic Dirac equation, it is necessary to use different orders of polynomials for the large and
small components to avoid numerical problems [102, 103].

In order to combine the separate basis sets into a single basis of a multi-component function, it
is handy to introduce the vectors ξα, which are simple column vectors where the α-th component
is set to unity and the rest are zero (i.e. ξαβ = δαβ). With their help, a multi-component function
ψ is expanded as

ψ(x) =
∑
α

∑
i

cαi b
α
i (x)ξα

The products bαi (x)ξα act as multi-component basis functions and the index i can run over the
different sets of basis functions for the different components.

Bra-ket notation

When the precise functional nature of the functions and operators is not important, it is conve-
nient to use the bra-ket notation4 to represent the functions, inner products etc. For example, a
basis function could then just become

|αi⟩ = bαi (x)ξα

and when it is not necessary to differentiate between the components, there could be just a single
label for the basis vectors (i.e. |i⟩).

Matrix elements

Given a linear operator A, made up of linear operators acting on individual components as in
equation 3.1, the matrix elements are calculated as

Aαβ
ij = ⟨αi|A|βj⟩ =

∫
x∈X

bα∗i (x) Aαβ b
β
j (x) w(x) dX

3Conceptually speaking, that is. In practice, the matrices often get large and it is always possible to run into
numerical problems. Diagonalizing large matrices and matrices with special structures is its own field of study in
applied mathematics.

4Explicitly proposed as a notation for quantum mechanics by Paul Dirac to have a more natural way of
working with states in a Hilbert space [104]. It is hence also often referred to as the Dirac bra-ket notation.
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While mostly Aαβ
ij should be interpreted as elements of a matrix with indices (α, i) and (β, j), it

is also useful to remember its block matrix structure

A =


A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

Am1 Am2 · · · Amm


where Aαβ are block matrices corresponding to different components of the multi-component
function.

Working in non-orthonormal bases

In practice, most basis sets used to represent functions, whether in FEM or otherwise, are not
orthonormal, meaning that some operations require a bit more care. Since quantum theory is
mostly taught assuming orthonormal bases, it is not always obvious where this might become an
issue.

If V is a vector space and a finite, linearly independent (but not necessarily orthonormal)
basis set {|i⟩} spans it or a subspace of it, then any vector will have a unique expansion

|Ψ⟩ =
∑
i

ci |i⟩

with coefficients ci. Similarly, linear operators T̂ : V → V can be represented using a matrix of
coefficients

T̂ =
∑
ij

Tij |i⟩ ⟨j|

Now, in an orthonormal basis, the expansion coefficients for both vectors and operators can
be calculated by employing the inner product

ci = ⟨i|c⟩ , Tij = ⟨i|T̂ |j⟩

The expression ⟨i|T̂ |j⟩ is the matrix element of the operator between the basis states |i⟩ and |j⟩.
However, in a non-orthonormal basis, things are not quite as simple. In this case, the overlap
matrix S, defined as

Sij = ⟨i|j⟩ ≠ δij

is not the identity matrix and therefore the explicitly calculated overlaps and matrix elements
c̃i ≡ ⟨i|c⟩ and T̃ij ≡ ⟨i|T̂ |j⟩ are not, in general, equal to the expansion coefficients. Instead, they
can be related by using the overlap matrix S. For the vector expansion coefficients

c̃i ≡ ⟨i|c⟩ =
∑
j

⟨i|j⟩ cj =
∑
j

Sijcj = (Sc)i ̸= ci

and for the matrix elements

T̃ij ≡ ⟨i|T̂ |j⟩ =
∑
kl

Sijcj = (Sc)i ̸= ci

As the overlap matrix S is just a matrix of different inner products, it is positive-definite and
therefore invertible. With that in mind, we can always invert the previously derived relations
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Figure 3.1: Illustrative example of a polynomial basis used within each element in the FEM
method. In this case, these are the four Lagrange interpolating polynomials defined by four
Gauss-Lobatto nodes on the domain x ∈ [−1, 1].

and recover the inherent expansion coefficients from the explicitly calculated matrix elements
and overlaps

c̃ = Sc ⇐⇒ c = S−1c̃, T̃ = STS ⇐⇒ T = S−1T̃ S−1

These relationships do not have any real physical significance but are important when imple-
menting methods, e.g. to make sure that functions are re-constructed correctly.

3.2 Finite Element Method

The finite element method (FEM), while better known in the context of multivariable partial
differential equations and its applications in engineering [105], can also be used to elegantly solve
one-dimensional problems and applied to quantum theory [106]. It was picked for this work as it
has been shown to be reliable and performant for atomic systems, and there exists a well-written
implementation in the form of the HelFEM software [88].

In the one-dimensional FEM the domain X = [a, b] is divided up into sub-intervals (elements;
with element boundaries r0 = a < r1 < · · · < rN = b for N elements). The idea is not to cover
the whole domain with increasingly complicated functions, but instead rely on a set of simple
functions — the local basis polynomials {pk(x)} — on some sub-interval and repeat them until
the whole domain is covered. To form the basis functions {bi(r)}, those local basis functions
pk(x), conventionally defined on the domain x ∈ [−1, 1], are essentially just repeated in each
element by appropriately scaling the argument of the function to change the domain from [−1, 1]
to [ri, ri+1]. To impose boundary conditions, some functions are removed from the first and the
last elements, and also functions that have non-zero values on the element boundary are joined
into a single basis function spanning two elements. In principle, the intervals, defined by a grid
of interval boundaries on the domain, can be chosen arbitrarily, and by making the grid finer and
finer, it should be possible to achieve convergence and a better representation of the solutions of
the differential equations. However, a good choice of the grid significantly improves the rate of
convergence.

While HelEFM implements several options for the local functions, this work exclusively uses
the Lagrange interpolating polynomials (LIPs) with Gauss-Lobatto nodes, as those were deter-
mined to be the best-performing ones for atomic systems [88]. The exact definitions for the LIPs
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Figure 3.2: An example of a FEM basis with three unevenly distributed elements on the domain
r ∈ [0, 10]. The vertical dashed lines represent element boundaries. The polynomials within each
elements are the same as in Figure 3.1, with the x-axis linearly scaled as appropriate. The basis
functions on the left-most and right-most boundary have been removed to impose boundary
conditions f(0) = 0 and f(10) = 0. Note that the basis functions have non-zero values only
in each element (illustrated using the colors), except the ones that have non-zero values on the
boundaries (black lines) — these ones are constructed by joining the edge-most functions in each
element together to form a single basis function that spans two elements.

can be found in the literature, Figure 3.1 illustrates what they generally look like. An illustration
of a fully constructed one-dimensional FEM basis can be seen in Figure 3.2.

As all the basis functions are all only defined on a finite subsection, the basis can not, with
a finite number of basis functions, be extended all the way to infinity. Therefore it is necessary
to pick a finite domain for the calculations, which in the case of radial atomic problems means
solving the equations on r ∈ [0, rmax] (corresponding to a three-dimensional ball), instead of the
full domain r ∈ [0,∞). This can be interpreted as an artificial, non-physical boundary condition
Ψ(rmax) = 0 at the outer boundary and leads to a form of confinement [107]. However, for
bound states, if rmax is large enough, this will not affect the energies and the states, since the
wavefunctions effectively become zero far from the origin due to an exponential decay at large
r. But it does introduce another parameter that needs to be checked for convergence when
performing such calculations.

Matrix elements

The purpose of defining a basis set is to calculate the matrix elements of arbitrary linear operators
in this basis. For an operator A acting on functions on the domain X = [0, rmax] of radial
functions, the matrix elements are given by the integral

Aij =

∫ rmax

0

dr b∗i (r)Abj(r)

HelFEM provides routines for two generic types of operators. First, it is possible to calculate
the matrix element of an arbitrary function f(r)

⟨bi|f(r)|bj⟩ =

∫ rmax

0

dr b∗i (r)f(r)bj(r) (3.2)
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Secondly, it provides a routine for evaluating the matrix elements of rk, possibly also by calcu-
lating it with the first derivatives of the basis functions

⟨∂mbi|rk|∂nbj⟩ =

∫ rmax

0

dr
∂mb∗i (r)

∂rm
rk
∂nbj(r)

∂rn
(3.3)

where m,n ∈ {0, 1} and k ∈ Z.

While HelFEM does not provide an explicit routine for evaluating the matrix elements of the
second derivative, the fact that the basis functions have non-zero values only on a finite interval
means that it can be evaluated from the first derivatives. By noting that for any pair of basis
functions bi(r) and bj(r) there exists an interval [rp, rq] outside of which the product of the basis
functions is zero (i.e. bi(rp) = 0 = ϕi(rq)), it can be shown with the help of partial intergration
that

⟨bi|∂2|bj⟩ =

∫ rmax

0

dr b∗i (r)
∂2

∂r2
bj(r)

= b∗i (r)
∂bj(r)

∂r

∣∣∣∣rmax

0

−
∫ rmax

0

dr
∂b∗i (r)

∂r

∂bj(r)

∂r
= −⟨∂bi|∂bj⟩

In other words, evaluating the matrix elements of the second derivative operator reduces to
appropriately evaluating (3.3).

Calculating the matrix elements of the Hamiltonian of the system is simply a matter of adding
together the matrix elements of all the basic building block operators, with (3.2) and (3.3)
covering everything needed in most atomic physics calculations. The eigenvalue problem to
determine the stationary states and eigenenergies of the system can then be solved by feeding
the Hamiltonian matrix to any matrix diagonaliser. However, what needs to be kept in mind is
that the basis is not orthonormal, so one has to solve a generalized eigenvalue problem

Hϕ = ESϕ

where S is the overlap matrix Sij =
∫ rmax

0
dr b∗i (r)bj(r). While linear algebra libraries usually do

have generalized eigenvalue solvers available, here the basis was first effectively orthogonalizing
with Löwdin orthogonalization [108], consistent with the original HelFEM paper. That is, the
Hamiltonian matrix was transformed as

H ′ = S1/2HS−1/2

and it was the matrix H ′, representing the operator in an orthonormal basis, that was passed
on to a standard matrix diagonaliser. To reconstruct the state vectors ϕ in the original basis,
the eigenstates ϕ′ or H ′ can be rotated back the original non-orthonormal basis by the matrix
multiplication

ϕ = S−1/2ϕ′

Whether using a generalized eigenvalue solver or the Löwdin orthogonalization, it obviously
does not lead to an exact result, as the eigenvalues are determined using a finite basis set.
However, the eigenvalues and eigenfunctions are expected to converge to the exact values in the
limits of increasing either the polynomial order or by dividing the elements further and in the
limit rmax → ∞.
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Numerical quadrature

In HelFEM, the integrals (3.2) and (3.3) are evaluated numerically with the Gauss-Chebyshev
quadrature. That is, the matrix elements Aij of the operator A are approximated by summing
up the values Nquad points within an element located at rn

Aij =

∫ rmax

0

dr b∗i (r)Abj(r) ≈
Nquad∑
n=1

wn(b†i Âbj)(rn)

with each associated with a weight wn. This offers more numerical stability than the analytical
formulae, mostly due to the numerical instabilities introduced by the scaling, which happens when
the polynomials are translated to the elements, and it makes is trivial to implement integrals of
arbitrary functions. However, it does introduce another parameter — the number of quadrature
points — that needs to be chosen carefully. It is important to have enough quadrature points
for the integrals to be accurate, but adding extra points will have an associated computational
cost.

3.3 Finite nuclear charge distributions and FEM

This section explores the challenges of incorporating finite nuclear models into finite element
calculations, with the aim to converge the energies and wavefunctions to floating point precision5.
Even though finite nuclear corrections are usually not relevant in non-relativistic calculations,
the benchmarking calculations here were performed with the non-relativistic atomic Hamiltonian
in order to avoid any technical hurdles the Dirac equation might introduce.

Physical model

Mathematically, the goal is to determine the eigenstates Ψ(x) and eigenvalues E of the non-
relativistic time-independent single-particle Schrödinger equation in a central potential V (r),
which is SI units looks like [

− h̄2

2me
∇2 + V (|x|)

]
Ψ(x) = EΨ(x)

where x ∈ R3 and me is the mass of the electron. The implementation of the equation is
in natural units, so h̄ = me = 1. As the potential V (r), being generated from a spherically
symmetric charge distribution such as the ones described in Section 2.7, is spherically symmetric,
the equation reduces to a one-dimensional radial equation in spherical coordinates. A convenient
way to represent the wavefunctions is via the radial function P (r) defined by

Ψ(x) =
1

r
P (r)Yℓm(θ, φ)

where Yℓm are the spherical harmonics (see also Appendix A), corresponding to the azimuthal
and magnetic angular momentum quantum numbers ℓ and m. The corresponding eigenvalue
equation for P (r) is [

−1

2

d2

dr2
+
ℓ(ℓ+ 1)

2r2
+ V (r)

]
P (r) = EP (r)

5All calculation were performed with 64-bit floating point numbers,
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and must be solved for each angular momentum subspace separately.
As options for the potential V (r), HelFEM currently has an implementation for four of the

nuclear models discussed in Section 2.7. Each of the implemented potentials was used in the
benchmark calculations, and each served a particular purpose:

1. 1/r potential of a point nucleus: As this potential was already implemented and
tested for [88], it serves as a known working reference case for the new code, including the
relativistic implementation. However, it is important to keep in mind for this potential
that it is singular at the origin.

2. Hollow nucleus of radius R: This is the simplest potential that would describe a nucleus
that is not a point and does not have a singularity at the origin. It is possible to determine
the eigenvalues almost analytically, only requiring a numerical root-finding procedure [83],
which makes this model excellent for testing the implementation for nuclei with finite
extent. However, it does exhibit a point at the cutoff radius where higher derivatives do
not exist (a type of singular point), which, as we shall see, will require special treatment.

3. Homogeneous uniformly charged sphere with radius R: This potential has a slightly
smoother shape than the hollow nucleus but still exhibits a singular point at the point that
corresponds to the surface of the nucleus. It allows us to double check our results for the
hollow nucleus, including how we deal with the singular point in the FEM framework.

4. Gaussian nucleus: This potential is smooth at all points and, therefore, does not require
special treatment at any point. It is also very common in relativistic Gaussian basis set
based quantum chemistry and atomic calculations. As such, it would be the perfect test
case for a finite nuclear model. However, unfortunately, there is no easy way calculate
reference eigenvalues for this potential, and so we need the other singular potential to test
the implementation before using this potential.

The two-parameter Fermi nuclear model is currently not implemented, as evaluating the potential
is somewhat non-trivial. As the potential is extensively used in atomic physics when modelling
nuclei in relativistic calculations, it would be useful to make it available to users of HelFEM and
have it benchmarked as part of future work. However, as the model qualitatively lies between a
Gaussian and spherical nucleus, the results and insights from this sections also carry over to the
Fermi nuclear model.

Numerical quadrature

As was mentioned in Section 3.2, HelFEM uses numerical quadrature to evaluate the matrix
elements of operators. This means that the matrix elements are approximate but converge with
the increasing number of quadrature points Nquad. As the goal is to achieve very high accuracy,
ideally converged to machine precision, it is important to make sure that the matrix elements
are evaluated with enough quadrature points such that they themselves are converged.

If (Ak)ij is a matrix element of the operator evaluated with k quadrature points in each
element, then the approximate error from the converged result can numerically be calculated
with

ϵk = max
i,j

∣∣(Ak)ij − (AN )ij
∣∣

where N is the case with the largest number of quadrature points that was calculated. In all the
following calculations, the chosen value was N = 500 which is well within the converged region
where floating-point error dominates for all the cases that were considered. This is the maximum
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Figure 3.3: Convergence of the overlap matrices when increasing the number of numerical
quadrature points, with the y-axis showing the maximum norm of the difference from the case
with the highest number of quadrature points (500). Each line corresponds to a different radial
basis set, defined by the (order of polynomial, number of elements) tuple. A simple exponential
grid with z = 2 and rmax = 40 is used for the element boundaries. Naturally, the calculation was
performed only at integer x values, and the non-integer cases are simply interpolated.

norm of the matrix difference and is useful because it is the most extreme of the matrix norms
— a convergence problem in a single matrix element will already stand out.

Figure 3.3 shows, on a log-log scale and for a few different basis sets, the convergence of
the overlap matrix, which can also be thought of as the simplest possible operator: the identity
operator. Qualitatively, the figure shows a systematic convergence, where starting from a certain
number of quadrature points (different for different the polynomial orders), the error enters a
clear power-law region, after which it hits the floating-point precision at around 10−15. The
convergence is slightly slower the higher the order of polynomials is, which is expected, since
higher-order polynomials mean finer details in the basis functions. Changing the number of
elements does not have a substantive effect on convergence.

Figure 3.4 demonstrates the convergence behaviour of the 1/r potential and kinetic energy
operators compared to the overlap matrix. The 1/r operator converges essentially as fast as the
overlap matrix. The kinetic energy, which is calculated as the integral of the derivatives of the
basis elements, shows the same convergence behaviour as the other operators, but the resulting
numerical noise is a few orders of magnitude larger.

Figure 3.5 shows the convergence of the operators corresponding to the finite nuclear models.
What is immediately clear is that the integrals for nuclear models with non-smooth potentials
converge very slowly, which is because the singular point of the potential usually falls in the
middle of an element. The matrix elements for the Gaussian nuclear model do not converge quite
as fast as the other operators either, although it is not as pathological as the potentials with
singularities. This is due to the relatively few (10) elements used in this benchmark calculation,
and therefore the first element boundary with this particular grid will be relatively far from the
non-trivial region of the potential (at about 10−2 a0 vs the RMS radius of 10−4 a0). Increasing the
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Figure 3.4: Convergence of the overlap matrix and the kinetic and 1/r potential operators as a
function of the number of quadrature points. Axes as in Figure 3.3. The basis set is generated
from an expotential grid with 10 elements and using 6th order polynomials for each element.
Like in Figure 3.3, the calculation was performed only at integer x values, and the non-integer
cases are simply interpolated.

Figure 3.5: Convergence of the potential operators for the different nuclear models under
consideration (point, hollow, spherical, Gaussian). Axes as in Figure 3.3. The basis set is
generated from an exponential grid with 10 elements and using 6th order polynomials for each
element, with no extra boundaries. Like in Figure 3.3, the calculation was performed only at
integer x values, and the non-integer cases are simply interpolated.
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Figure 3.6: Comparison of the convergence of the potential operators for the different nuclear
models depending on whether the basis has an extra boundary (solid blue lines) or not (dotted
red lines). Axes as in Figure 3.3 and the basis set is generated from an exponential grid with 10 or
11 elements and using 6th order polynomials for each element. Like in Figure 3.3, the calculation
was performed only at integer x values, and the non-integer cases are simply interpolated.

number of elements brings the Gaussian nucleus in line with the other nuclear models, whereas
it has no effect on the convergence of the potentials with singularities, hinting that having extra
elements close to the nucleus is probably helpful when working with finite nuclear models.

The convergence problems with the non-smooth potentials can be resolved by inserting an
extra element boundary at exactly the singular point, splitting the problematic element in two.
The effect of the extra boundary on the convergence can be seen in Figure 3.6 which compares
the two such radial grids — one with an extra boundary and one without. An extra boundary at
the singular point indeed fixed the convergence behaviour of the non-smooth potentials, whereas
the smooth potentials are essentially unaffected by the extra boundary.

Something else that should be noted is that in the original HelFEM implementation, the de-
fault value for the number of quadrature points is five times the order of the polynomial. However,
this benchmarking shows that this does not lead to machine precision, and, especially for finite
nuclear models, more quadrature points are needed. Based on the benchmarks, 200 quadrature
points seems sufficient to guarantee convergence to machine precision (if extra boundaries are
introduced for non-smooth potentials). Alternatively, it might also be worth investigating dy-
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Figure 3.7: An illustration of exponential grid boundaries distributed according to Eq. (3.4)
on a logarithmic r axis with increasing z parameter (vertically; z = 2, 5, 7) for N = 5 (left)
and N = 20 (right) elements. In a FEM basis, there is a full set of polynomials between each
consecutive pair of boundaries, as explained in Section 3.2. For these examples, rmax = 40 a0.

namically determining the necessary number of quadrature points, or minimally at least running
a simple convergence check to ensure that the operators are converged to some pre-determined
accuracy.

Choice of grid

In principle, simply increasing the number of elements or the order of polynomials should lead
to convergence, independent of how the elements themselves are distributed. However, it is also
important to have an implementation that is efficient, i.e. having the same level of accuracy but
with the lowest number of elements. For this reason, the choice of grid boundaries should also
be double-checked.

As the goal is to study finite nuclear models, the most significant part of the radial axis is
the part close to the nucleus. Out of the different grid choices implemented in HelFEM, it is,
therefore, the exponential grid that should be the most suitable and efficient grid as it already
concentrates elements close to the origin. Such a grid also describes more accurately the strong
oscillations in the core region for higher principal quantum number wavefunctions and was shown
to be the most efficient grid for non-relativistic multi-electron calculations with a point nucleus
in the original HelFEM paper [88].

An exponential grid of N elements is defined by the N + 1 element boundaries

ri = (1 + rmax)q(i) − 1, q(i) =

(
i

N

)z

, i = 0, . . . , N (3.4)

where rmax and z are parameters of the grid.6 Whereas rmax simply determines the last, outer
elements boundary (rN = rmax), the z parameter controls how the boundaries are distributed
within the interval — the larger the z value is, the closer the element boundaries are to the

6The notation here for the parameters is slightly different when compared to the original paper in order to
align more closely with the HelFEM C++ code.



3.3. FINITE NUCLEAR CHARGE DISTRIBUTIONS AND FEM 55

Figure 3.8: Convergence of the 1s energy as a function of the z parameter of the exponential
grid for the hollow (top row) and Gaussian (bottom row) nuclei with Z = 1 (left) and Z = 160
(right). The calculations were performed with order 6 polynomials, rmax = 40 a0 and for nuclear
models with Rrms = 10−4 a0. The convergence measure is defined as the (absolute) change in
energy as the number of elements is doubled (as indicated in the legend).

origin. A few example exponential grids are shown in Figure 3.7, also illustrating the effect of
changing the z parameter of the grid.

Replicating the scans of the z parameter from the HelFEM paper [88], presented in Figure 3.8
(with more figures in Appendix C), was the easiest option to assess whether the value of z = 2.0
recommended in the paper needs to be updated. To visualize convergence without referring to
independent (e.g. analytical) reference values, the figures use the change in energy as the number
of elements is doubled as the quantitative estimate for the convergence speed. A smaller value
for a particular basis is assumed to indicate faster convergence, as the basis is likely closer to
being converged if, for example, going from 80 to 160 elements leads to a smaller improvement.
By visually inspecting the figures, it is clear that, especially at higher Z values, a z parameter
larger than the recommended z = 2 is desired, if the goal is to have something that would
universally work at both high and low nuclear charges. Recommending z = 3 for finite nuclei
seems reasonable, and this will be used in all the following calculations with finite nuclei.

Convergence

As mentioned, the numerical approach involves a whole set of parameters that define the basis set,
all of which should be checked to make sure that the eigenstates and eigenvalues have converged
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Figure 3.9: Convergence of the non-relativistic 1s energy with increasing number of elements
for a few basis sets and nuclear charges Z with the hollow nuclear model. The y-axis shows the
change in energy as another element is added (with the domain kept the same). The colours
indicate whether the change in energy was positive or negative (red and blue, respectively).

to the true solution. However, verifying convergence is tricky as there are no known values to
compare against necessarily. Furthermore, any rules of thumb for choosing the basis parameters
that could be devised will only be valid for some range of physical parameters and it can be hard
to know when they become invalid. As such, it was necessary to develop a generic procedure to
reliably calculate fully converged energies.

Figure 3.9 illustrates how the energy converges as the number of elements is increased. Similar
to the previous subsection, as there are no reliable reference values to compare to, the y-axes show
the change in the energy between two points on the x-axis, rather than the absolute energy. There
is a clear power-law behaviour visible at first as the value gets smaller and smaller, consistent
with the variational principle. At one point, the machine precision is reached and the value starts
oscillating (which can be seen by the changing colours) around some constant value, assumed to
be the converged energy. As expected, using higher-order polynomials leads to faster convergence.

The numerical noise for greater nuclear charges appears to be larger, but this can be explained
by noting that the absolute value of the energy also scales with Z: the scaling of the energy is
roughly Z2, implying a 104 difference in energies, which is broadly consistent with the figure.
As a final observation, the numerical noise in the converged region is smallest right at the point
where numerical noise takes over and then increases with the number of elements.

Algorithmic estimation of the converged energy

Having a qualitative feeling for the behaviour of the energy as it converges with an increasing
number of FEM elements, it is possible to devise a simple algorithm to reliably estimate the
converged energy.

Conceptually, the idea is to plot the energy as a function of the number of elements and then
run a sliding fixed-width window across the x-axis, calculating an estimate for the energy in each
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Figure 3.10: Convergence of the energy for high and low Z values (Z = 1 and Z = 160,
respectively), as a function of the number of elements. On the y-axis we plot the difference
from the converged estimate, which is calculated as the mean of the energy values in the gray
region, with color indicating if the particular energy is lower (blue) or higher (red) than the
estimate. The range of 20 element values used for the estimate, illustrated using the gray span,
is determined using the sliding minimum variance approach as described in the text.

Figure 3.11: Same as Figure 3.10, but showing the difference in convergence when employing
different orders of polynomials (6 and 10, respectively).

window via an average. The final estimate can then be picked by choosing the window that has
the lowest variance. This works because the regions where the energy is still converging, the
change in energy is large (relative to numerical precision) and mostly in one direction, which
both will push up the variance. In the converged region, the energy will just oscillate around the
converged value, but the amplitude of the numerical noise increases with more elements. The
region with the lowest variance minimizes the numerical error of the estimate.

The width of the window was chosen to be 20 points on the x-axis, based on what seemed to
work best after some trial and error. Using too few points means running the risk of accidentally
picking spurious “stable” regions (i.e. where the energy happens to not change much due to ran-
dom chance), whereas too many points mean the accuracy starts dropping due to the increasing
numerical noise from including too many elements.

Figure 3.10 shows the algorithm in action. Like in Figure 3.9, the convergence for lower Z
values is faster than for the higher ones. Z = 1 needs only about 10 elements to converge to
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Figure 3.12: Energy estimates of the hydrogenic 1s energy with different basis sets for the
hollow nuclear model (Rrms = 10−4 a0) for two different Z values, illustrating the consistency
of converged energy estimates. To sample different basis sets, each data point is determined
with a slightly different grid of elements, with the order of polynomials varied for the values in
the figures on the left (and fixed z = 2.0), and the z parameter of the exponential grid varied
for the figures on the right (with polynomial order fixed to 10). The dashed line is the inverse-
variance weighted arithmetic mean of the data points and the ticks on the y-axis are in the units
of standard deviation of the weighted mean, with the exact values for both given in the figure
titles.

numerical precision, whereas Z = 160 requires about 50–60. Either way, the algorithm finds
the most optimal region to estimate the energy from. Figure 3.11 compares different orders of
polynomials — the lower the order, the slower the convergence. It also shows that with 6th
order polynomials, it converges very close to the maximum number of elements chosen for the
calculation, which is a problematic edge case that one needs to be mindful of as the algorithm is
not able to detect it automatically.

As an improvement to this procedure, it might be worth trying to quantify whether the
energy in the chosen window is indeed oscillating around a converged value or is still converging
to something. The correlation of energy vs. the number of elements could potentially be used to
quantify this — the converged region should exhibit near-zero correlation.

While the speed of convergence may vary between different basis sets (e.g. when changing the
distribution of elements or the order of the polynomials), they should all converge to the same
energy in the end. This is demonstrated by Figures 3.12 and 3.13, where the algorithm gives
stable results across basis a range of basis parameters.
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Figure 3.13: Same as Figure 3.12, but for the Gaussian nuclear model. Compared to Figure 3.12,
it is not showing the z = 1.5 case, because it actually has not converged.

Figure 3.14: Disagreement of the tabulated energies in the Andrae reference [83] and the energies
calculated with FEM (linear and logarithmic scales on the left and right, respectively). The y-
axis is the energy difference from the converged FEM results. The label “tabulated” refers to the
values presented in Table 4 of the reference, whereas “analytic” refers to solving the equations
analytically with the approach described in the paper.
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Figure 3.15: Same as Figure 3.14, but with a values relative to the estimated value of the finite
nuclear correction.

Single particle benchmarks

With the algorithm in hand, it is now possible to benchmark our approach against reference
values tabulated in the literature [83]. However, as can be seen on Figures 3.14 and 3.15, the
values tabulated by Andrae disagree with the ones obtained from the FEM calculations. While
the disagreement is very small relative to the already small finite nucleus correction (on the order
of 10−6 − 10−4 as a fraction of the finite nucleus correction), it is systematic and much larger
than the numerical noise from the FEM approach. The initial suspects were (1) non-convergence
with respect to the finite element basis, or (2) non-convergence with respect to the artificial outer
boundary rmax. These were quickly ruled out — the former by the algorithm itself and the latter
by manual verification7.

Having established that the FEM results appear to be consistent, precise and correct, and
assuming that the same applies for the reference values from the literature, it appears that there
is an inconsistency in the setup of the physical problem being solved. The only parameter that
is not clearly defined in the reference is the RMS value, which in turn defines the parameters
of the nuclear models, with the paper only stating that it is obtained from Equation 2.34. It
is possible that in the calculations for the reference paper the RMS value was, for example,
rounded, whereas the FEM implementation uses this equation directly. The fact that the shift in
energy appears to be consistent between the different nuclear models further substantiates this
hypothesis.

To check this, we re-implemented the analytic matching approach described and used for the
values in [83], which should yield exact results without any numerical parameters. As can be seen
in Figures 3.14 and 3.15, the re-evaluated analytical results for the hollow nuclear model match
the FEM results very well (within numerical noise). This shows that it is possible to achieve

7It should be noted here that rmax = 40 a.u. is sufficiently large for n = 1 states for all Z, but at low Z values
and for higher n values a larger value must be used, since the higher n orbitals do extend farther out.
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Table 3.1: Energies of the hollow nuclear model as calculated with FEM and compared with
the tabulated values from [83]. All energies given in Hartrees.

Z Estimate Reference ∆ z-score
1 4.7063(26) × 10−10 4.706072e-10 2.542030e-14 0.096874

20 4.46969192(47) × 10−4 4.469691e-04 8.685338e-11 1.831710
40 1.129572709(15) × 10−2 1.129573e-02 1.679865e-09 11.024559
60 7.435875869(22) × 10−2 7.435875e-02 1.075293e-08 48.737161
80 2.8840949115(43) × 10−1 2.884094e-01 4.118825e-08 96.891117

100 8.0968916849(86) × 10−1 8.096891e-01 1.156258e-07 133.672155
120 1.9174333291(11) × 100 1.917433e+00 2.727292e-07 244.117624
137 3.5727881542(14) × 100 3.572788e+00 5.068474e-07 367.588934
140 3.9550555805(15) × 100 3.955055e+00 5.607843e-07 380.453919
160 7.4200401291(21) × 100 7.420039e+00 1.048215e-06 503.520894

Table 3.2: Energies of the Gaussian nuclear model as calculated with FEM and compared with
tabulated values from [83]. All energies given in Hartrees.

Z Estimate Reference ∆ z-score
1 4.7075(24) × 10−10 4.700000e-10 7.457202e-13 3.067855

20 4.46890013(49) × 10−4 4.468880e-04 2.013109e-09 40.904158
40 1.129069158(44) × 10−2 1.129069e-02 3.580371e-09 8.125451
60 7.430213389(99) × 10−2 7.430214e-02 -6.112159e-09 -6.187455
80 2.880855998(14) × 10−1 2.880856e-01 1.983463e-08 14.235654

100 8.084723759(17) × 10−1 8.084722e-01 1.458602e-07 86.928602
120 1.9137452012(21) × 100 1.913745e+00 3.011955e-07 145.418463
137 3.5645856426(30) × 100 3.564585e+00 4.825563e-07 161.807867
140 3.9457096903(23) × 100 3.945709e+00 7.402734e-07 322.916540
160 7.3990721532(26) × 100 7.399071e+00 1.053165e-06 408.224957

very good accuracy with the FEM-based approach and it indeed reproduces the exact energies
if the basis is large enough. As the analytical approach only works for certain nuclear models
(e.g. there are no known analytical solutions for the Gaussian nucleus) and require re-derivation
for each new model, this demonstrates the power of the approach taken in this thesis, which is
more generic and should work for any nuclear model, yet still yields machine-precision accuracy.

For completeness, Tables 3.1 and 3.2 tabulate the numerical values for the energies and
how they compare to the tabulated reference values. Table 3.3 shows the comparison with the
analytical energies for the hollow nucleus. It should also be noted that, as the analytic approach
was re-implemented, this allows the calculation of reference values for other n and ℓ values, and
so the table includes a comparison with the n = 2 values as well. As expected, the results are
consistent between the analytic and FEM approaches.
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Table 3.3: Energies of the hollow nuclear model as calculated with FEM and compared with
directly calculated analytical energies for n = 1 (top table) and n = 2 (bottom table). All
energies given in Hartrees.

Z Estimate Reference ∆ z-score
1 4.7063(26) × 10−10 4.705996e-10 3.308465e-14 0.126082

20 4.46969192(47) × 10−4 4.469692e-04 1.904255e-11 0.401601
40 1.129572709(15) × 10−2 1.129573e-02 6.468781e-11 0.424531
60 7.435875869(22) × 10−2 7.435876e-02 7.480594e-11 0.339054
80 2.8840949115(43) × 10−1 2.884095e-01 3.228706e-11 0.075952

100 8.0968916849(86) × 10−1 8.096892e-01 8.640200e-11 0.099887
120 1.9174333291(11) × 100 1.917433e+00 -1.282388e-10 -0.114785
137 3.5727881542(14) × 100 3.572788e+00 -1.491571e-10 -0.108176
140 3.9550555805(15) × 100 3.955056e+00 -4.583853e-10 -0.310983
160 7.4200401291(21) × 100 7.420040e+00 -4.347385e-10 -0.208831

Z Estimate Reference ∆ z-score
1 5.9378(22) × 10−11 5.882900e-11 5.493106e-13 24.730782

20 5.58711891(77) × 10−5 5.587119e-05 -4.476419e-13 -0.058366
40 1.411972805(19) × 10−3 1.411973e-03 9.350742e-12 0.499625
60 9.294978097(39) × 10−3 9.294978e-03 1.205080e-11 0.310169
80 3.6052313945(60) × 10−2 3.605231e-02 2.614797e-11 0.433689

100 1.01216832650(87) × 10−1 1.012168e-01 8.526513e-11 0.976146
120 2.3970130852(16) × 10−1 2.397013e-01 -2.660272e-11 -0.166148
137 4.4665749415(19) × 10−1 4.466575e-01 -1.364242e-11 -0.073067
140 4.9445115194(24) × 10−1 4.944512e-01 9.640644e-11 0.397063
160 9.2769148153(27) × 10−1 9.276915e-01 1.432454e-10 0.530625
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3.4 Dirac equation with FEM

This section presents an accurate, reliable and extensible way of solving the radial Dirac equation
using the finite element method, with a solver built on top of the HelFEM codebase [88]. While
the focus is on the single-particle equation with an arbitrary nuclear potential, the method also
generalizes to the many-particle mean-field case as well.

The aim is to determine, to machine precision, the eigenstates and eigenvalues of the radial
Dirac equation (2.30)mc2 + V (r) c

(
− d

dr + κ
r

)
c
(

d
dr + κ

r

)
−mc2 + V (r)

(P (r)
Q(r)

)
= E

(
P (r)
Q(r)

)

which in this and in the following sections will be in atomic units, where m is the mass of the
particle in units of electron mass, distances are measured in Bohr radii a0, energies in Hartrees,
and c = α−1. The radial functions P (r) and Q(r) are related to the four-component orbitals
according to Equation (2.28)

ψ(x) =
1

r

(
P (r)χκm(θ, ϕ)
iQ(r)χ−κm(θ, ϕ)

)
which is a useful way of defining the orbitals because as the factor 1/r ensures that the solutions
must obey the boundary conditions P (0) = 0 = Q(0) at the origin. This can be imposed on the
basis set level by excluding the left-most basis function that is non-zero at the origin.

As was mentioned in Section 3.2, the FEM basis also introduces another non-physical bound-
ary condition at rmax where P (rmax) = 0 = Q(rmax). Like in the non-relativistic case, ideally
rmax = ∞, but this would either require some sort of special treatment or a different kind of basis
set (such as Slater or Gaussian functions). However, again, this should not become an issue as
the bound orbitals fall off exponentially far away from the origin, and therefore the eigenvalues
and eigenstates should convergence well with increasing rmax. But it is something that needs to
be checked explicitly to make sure that the rmax is large enough for a given calculation.

FEM representation of the Dirac equation

As discussed in Section 3.2, the finite element method provides a set of functions on the domain
r ∈ [0, rmax], to be used as a basis set for representing the orbitals. The solver for the Dirac
equation was written in a way that it would be possible to use different basis sets for the compo-
nents P (r) and Q(r).8 As such, formally, there are two separate basis sets {bLi | i = 1, . . . , NL}
and {bSi | i = 1, . . . , NS} for the large and small component P (r) and Q(r), respectively, which
in general can have different numbers of basis functions (NL, NS). The two components are then
represented as superpositions

P (r) =

NL∑
i

cLi b
L
i (r), Q(r) =

NS∑
i

cSi b
S
i (r)

A general operator A acting on the two-component functions, consisting of parts that both act
solely on the large and small component subspaces separately, but also of the parts that mix the

8While in the end it turned out to be unnecessary in this case, the ability to use different basis sets can be
useful. For example, with a B-spline basis set, it appears to be necessary to use different orders of polynomials
for the two components to ensure numerical stability [103, 102].
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subspaces, can be represented as a (NL + NS) × (NL + NS) block matrix. It can be arranged
according to the large and small component subspaces as

A =

(
ALL ASL

ALS ASS

)
and the elements of the submatrices AXY are calculated according to

(AXY )ij =

∫ rmax

0

dr
[
bXi (r)

]∗
AXY bYj (r) (3.5)

where X,Y ∈ {L,S}. The overlap matrix S is slightly special in that it is necessary to explicitly
define that there is no overlap between the two subspaces, i.e.

S =

(
SLL 0

0 SSS

)
with (SXX)ij =

∫ rmax

0

dr
[
bXi (r)

]∗
bXj (r) (3.6)

From Equation 2.30, the corresponding operator components of the radial Dirac Hamiltonian are

HLL = mc2 + V (r), HLS = c

(
− d

dr
+
κ

r

)

HSL = c

(
d

dr
+
κ

r

)
, HSS = −mc2 + V (r)

It is helpful to decompose these operators down further by defining a few generic operators

DXY =
d

dr
, R

(n)
XY = rn, ΦXY =

V (r)

Zα
(3.7)

acting on any combination of subspaces, with the matrix elements calculated according to (3.5).
ΦXY represents the normalized nuclear potential Φ(r) corresponding to V (r) defined by (2.31),
although in atomic units the relationship becomes

V (r) = ZαΦ(r)

By fully shifting into atomic units by replacing the speed of light constant, the matrix for the
Hamiltonian in the FEM basis can be constructed as

H =

(
mα−2SLL + (Zα)ΦLL −α−1DSL + κα−1R

(−1)
SL

α−1DLS + κα−1R
(−1)
LS −mα−2SSS + (Zα)ΦSS

)
(3.8)

This form of the Dirac Hamiltonian is useful because the matrix elements of the component
operators (3.7) can be calculated in advance, independently of the various physical properties
of the system (such as the nuclear charge). Computing the eigenvalues for a whole range of
parameters, say when scanning in Z, is now just a matter of summing up the constituent matrices
with the correct coefficients. The only exception for that is the matrix for the normalized
potential ΦXY , which may have to be recomputed often as the shape of the nuclear charge
distribution and therefore the potential varies with the nuclear charge.

At this point, the Hamiltonian matrix (3.8) and the overlap matrix (3.6), could be passed
to a generalized eigenvalue solver to determine the eigenvalues and eigenvectors. However, the
implementation again uses Löwdin orthogonalization [108] instead. For that, we need to calculate
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the half-inverse of the overlap matrix which, since the overlap matrix is block-diagonal, reduces
to the half-inverses of the component overlap matrices

S−1/2 =

(
S
−1/2
LL 0

0 S
−1/2
SS

)

As was mentioned in Section 3.2, this effectively transforms the basis into an orthonormal basis
and the transformed Hamiltonian matrix

H̃ = S1/2HS−1/2

can be diagonalized normally without having to worry about a generalized eigenvalue problem.
The eigenvectors ψ in the original basis can be recovered from the eigenvectors in the orthonor-
malized basis ψ̃ via

ψ = S−1/2ψ̃

which is necessary for graphing the orbitals, for example.

Choice of grid

Before embarking on the journey of trying to get relativistic energies and orbitals to converge, it is
important to determine the most optimal grid for solving the relativistic one-particle problem. In
general, relativistic orbitals are more concentrated near the origin relative to their non-relativistic
counterparts. Therefore the exponential grid, which allocates elements closest to the origin,
should still be the most suitable one. However, it might be beneficial to distribute the element
boundaries closer to the origin because of the relativistic shift of the orbitals.

Like when benchmarking the method for the non-relativistic finite nucleus case, the energy
shift when doubling the number of elements will be used as the convergence measure. As before,
the goal is to find a region where the energy appears to be most converged with the fewest
number of elements.

Point nucleus

Figure 3.16 shows the convergence measure for the point nucleus, with smaller values indicating
faster convergence. At very low nuclear charge, low values of the z parameter achieve good
convergence. However, already in the Z = 30−50 range, it becomes clear that the non-relativistic
recommendation of z = 2 is no longer suitable, and this issue becomes even more severe at higher
nuclear charge. Based on these figures, the recommendation when solving the Dirac equation
for a point nucleus would be to use an exponential grid with z = 6. This should guarantee
a similar convergence behaviour for all Z values, including close to the critical nuclear charge
Z = α−1 ≈ 137.

It should also be noted that achieving convergence becomes very difficult close to the critical
nuclear charge, as can be seen from the Z = 137 graph — even with 160 elements it is nowhere
near to being converged there. This is expected, as the orbitals approach the e−λr shape in the
limit of Z → α−1 ≈ 137, leading to a very sharp cusp near the origin. No basis set that imposes
the P (r) = 0 = Q(r) boundary condition at the origin fully describes that behaviour. However,
it can be concluded that the results for Z ≤ 120 are good and reliable. It would also be possible
to extend the range higher into Z with additional elements, but it would be necessary to carefully
make sure that the results actually converge.

In principle, it is technically possible to perform the numerical calculations for Z ≥ α−1 and
it would lead to some energies and orbitals. However, such calculations will not be particularly
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Figure 3.16: Convergence of the 1s energy of the Dirac equation for the point nucleus for various
Z values. The calculations were performed with 6th order polynomials and rmax = 40 a0. The
convergence measure is defined as the (absolute) change in energy as the number of elements is
doubled (as indicated in the legend).
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meaningful from a physical or mathematical point of view, as the singularity in the 1/r operator,
which causes the Dirac equation to break down at Z = α−1, can not be exactly represented by a
finite basis of the type we are using. This is evident from the convergence problems that become
more and more severe when approaching Z → α−1 ≈ 137 from below.

Finite nuclei

The grid benchmarks for finite nuclear models are less dramatic, with the scans of the z parameter
showing in Figure 3.17 for the hollow nuclear model. The initial behaviour at lower nuclear
charges is similar to the point nucleus, except that it does not seem necessary to make z as high
as for the point nucleus — the convergence rate appears to more or less flatten out at around
z = 3−4. However, unlike in the point nucleus case, it is also possible to converge high Z values,
such as Z = 137. This, of course, is not unexpected, as the finite nuclear models do not have the
problematic singular nature of the 1/r potential.

Additional convergence graphs (for additional nuclear models and Z values) are presented in
Appendix C, and the same insights to hold for all finite nuclear models. With that in mind, the
recommendation is to use z = 3 as the grid when performing calculations with physical finite
nuclear models.

Energies

Having determined a reliable grid for the relativistic problem, the next step is to determine if it
is possible to consistently converge the energies. The algorithm for determining the converged
energies will be the same as in the non-relativistic finite nucleus case described in Section 3.3. In
a nutshell, the energies for all element values are calculated and then a sliding window of a fixed
width (20 points, like in Section 3.3) is run over the number of elements, and the range where
the variance of the energy is the smallest is picked.

Figure 3.18 illustrates how the energy converges with an increasing number of elements by
plotting the change in energy as the number of elements is increased. The energy quite systemat-
ically converges to floating-point precision, which in this case is approximately 10−10 Ha. This is
consistent with the use of 64-bit floating-point numbers where the approximately 10−14 − 10−15

relative floating-point precision if taken relative to mc2 ≈ 1.8 × 104 — the energy scale of the
Dirac problem in atomic units — comes out to roughly that order of magnitude. The seemingly
discontinuous jumps in the energy convergence are caused by the element boundaries crossing
the extra boundary added for discontinuous nuclear potentials (to accurately represent the dis-
continuity; see Section 3.3).

The energies determined by the algorithm are shown in Figures 3.19, 3.20, and 3.21. In
each case, the order of the polynomials and the z parameter of the exponential grid is varied
to show that the method reliably achieves consistent converged results independent of the basis
parameters for both finite and point nuclei. The graphs for all cases are available in Appendix C.

Figure 3.20 confirms that for the point nucleus and near the critical charge Z = α−1 ≈ 137, it
is difficult to achieve convergence. The determined uncertainty in this case is on the order of 1 Ha,
whereas for converged cases it is on the order of 10−10 Ha. On the other hand, Figure 3.21 shows
that the critical charge is not a problem in the finite nuclear case. But picking a z parameter
that is too high, which would concentrate the elements very close to the origin, is not a good
idea for the finite nuclear case.



68 CHAPTER 3. THE DIRAC EQUATION: A NUMERICAL ODYSSEY

Figure 3.17: Same as Figure 3.16, but for the hollow nuclear model.
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Figure 3.18: Examples of the convergence behaviour of the 1s energy for finite nuclei for different
Z values and basis polynomial orders as the number of basis elements increases. The different
colours indicate whether the change in energy is positive or negative (red or blue, respectively).
The vertical grey dashed lines show where an element boundary from the exponential grid crosses
over the manually inserted extra boundary as the element boundaries get pushed towards the
origin as additional elements are added.

Figure 3.19: Consistency of energy values for the point nuclear model for Z = 60. Left column
is consistency between runs with different basis polynomial orders and right columns is varying
the x parameter of the exponential grid, leading to a different grid of element boundaries.
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Figure 3.20: Same as Figure 3.19, but for Z = 137, showing the failure of convergence for the
point nucleus near the critical charge (note the extremely high uncertainty on the scale of 1 Ha).

Figure 3.21: Same as Figure 3.19, but for the hollow nuclear model at Z = 137.

3.5 Diving into the negative energy continuum

While having a way to calculate the eigenenergies and eigenstates of the Dirac equation to high
accuracy is excellent, the true test of the finite element method is to see whether it can be used to
explore the various edge cases of the Dirac equation as well. The first application of the method
is trying to describe what happens to the bound-state solutions once the energy of the 1s state
drops below −mc2 and becomes degenerate with the negative energy states (or “dives into the
sea of negative energy continuum states”).

It should be pointed out that the discussion of “diving” only makes sense in the context
of a finite nucleus, as for a point nucleus (i.e. a bare 1/r potential) the Dirac equation breaks
down at Z ≥ α−1 ≈ 137, where the energy becomes zero is nowhere near the negative energy
continuum yet. In the case of a finite nucleus, however, there is no singularity at the origin and
the equation can be solved without any problems even as the energy falls below zero. But the
correct treatment of the state when it becomes degenerate with the continuum is unclear, and
the goal here is to see if it is possible to recover a reasonable bound state from the continuum in
the numerical FEM approach.
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Figure 3.22: Graphs showing the density of states for s1/2 states as a function of energy, for
different Gaussian widths (using the Z = 150 case as an example). The graph on the left shows
the absolute density, whereas the graphs on the right shows the difference relative to the free
particle case (Z = 0; i.e. illustrating how the density has shifted due to the introduction of an
attractive central potential). The ticks below either graphs indicate where the discrete energies
that we are smoothing are located. The y-axes have been scaled to make the different cases
visually comparable.

Gaussian smoothing of the density of states

As the numerical calculations are always performed with a finite basis set, and also formally
the radial coordinate has been cut off, imposing a confinement-like boundary condition at some
finite radius, the spectra obtained from the finite element calculations will always be made up
of discrete points and do not exhibit any continua. However, the method is able to recover
an approximation to the positive and negative energy continua (above mc2 and below −mc2,
respectively), where the density of states is much greater than in the intermediate bound state
region at −mc2 < E < mc2. This is visible on the bottom parts of Figure 3.22, where each
vertical tick represents one discrete eigenstate of the discretized Hamiltonian.

As visually interpreting the discrete points is difficult, it would be useful to have a way to
visualize the changes in the distribution of states, for both the continua and the true discrete
bound states. An option for that is to smudge the discrete states by replacing each of them, which
all can formally be thought of as a delta distribution, with a narrow Gaussian distribution that
has a finite width. In other words, given a set of discrete eigenenergies {Ei}, the corresponding
Gaussian-smoothed probability density g(E) is defined to be

g(E) =
∑
i

1√
2πσ2

exp

[
−1

2

(
E − Ei

σ

)2
]

where σ is the chosen width (in units of energy) of each of the Gaussian distributions applied to
each point. Technically, the value of this function measures the number of states per unit energy
and has a total integral equal to the number of discrete data points (which in turn is equal to
the number of basis functions).

Figure 3.22, plotting the smoothed densities for various widths, illustrates what Gaussian
smoothing achieves. It provides a useful way to visualize the density of the states, including
the contrast between the bound states and continuum states. What can also be seen on those
figures is that having a width σ that is too small (i.e. Gaussians that are too narrow) will lead
to wiggles in the continuum, as the width will be smaller than the distance between the discrete
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Figure 3.23: A heatmap of the Gaussian-smoothed density of states from the numerical FEM
calculation as a function of Z. There is no visible change with respect to the nuclear charge since
the changes in the density are, relatively speaking, very small.

points. On the other hand, Gaussians that are too wide will smooth out all the detail, especially
the bound states.

What Figure 3.22 also shows is that the absolute density is not particularly illuminating, as
what is mostly visible there is a large density near ±mc2, that rapidly drops off. This particular
distribution of the states is a consequence of solving a particle-in-a-box problem and using a
finite basis set, with less oscillatory continuum states with lower (absolute) energy being easier
to represent with the basis set. Most importantly, however, the bound states are essentially
invisible, although very tiny bumps can be seen between the two continua if one looks very
closely.

However, the density of the continua should not change that dramatically when the central
potential changes, and this is demonstrated in Figure 3.23. Therefore, rather than plotting the
absolute value of the density, it turns out to be advantageous to look at the change in the density
of states relative to the pure-continuum case (Z = 0) instead. That is, if g(E;Z) is the density
for the nuclear charge Z, then it is more useful to plot

δg(E;Z) = g(E;Z) − g(E; 0)

instead, shown on the right in Figure 3.22. What is immediately clear is that the bound states
show up much more clearly. There are also some shifts in the continuum: the upper continuum
is slightly pulled downwards, which is intuitive as the bound states mostly consist of positive-
energy continuum states. However, the negative continuum is also slightly affected, with the
density slightly reduced overall and pushed downwards, deeper into the negative energies. Most
of the states that appear to affect the bound states are the low energy continuum states (i.e. near
±mc2).

We can use these insights to visualize how the density of states changes with the nuclear
charge. First, Figure 3.24 shows the density of states differences for a few different Z values.
What shows up very clearly are the bound states, moving down in energy with the increasing Z,
hitting the negative continuum, and then continuing towards negative infinity. This is even more
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Figure 3.24: Changes in the density of states relative to the pure continuum case (Z = 0) for
various Z values.

Figure 3.25: A heatmap of the change in the Gaussian-smoothed density of states relative to
the pure continuum (Z = 0) case for a numerical s1/2 calculation. The dark areas are where
the density is reduced, the red is where it is unchanged, and the yellow parts are where the
density has increased. The diving of the 1s1/2, 2s1/2, and 3s1/2 can clearly be seen as distinct
lighter-colored curves.
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clearly visible in Figure 3.25, where the spectra have been calculated for a dense grid of Z values.
These numerical results suggest that after the 1s1/2 state has dived into the negative continuum,
it continues moving downward and is a distinct additional state on top of a continuum that has
not been disturbed that much.

Tracing bound states in the negative energy continuum

Technically, the calculations with a finite basis set simply yield a list of eigenenergies and eigen-
vectors. As such, while it visually appears that it would be easy trace a bound state in the
spectrum of the Dirac operator, including after it has dived into the negative energy continuum,
it is actually anything but. It happens that, for lower Z values before the diving, the number
states in the negative continuum is equal to NS — the number of basis functions used to describe
the small component. This means that the few lowest bound states can very easily be picked out
from the spectrum by simply discarding the NS lowest energies in our spectrum. However, this
obviously is not the case anymore once the energy of the 1s1/2 state goes below −mc2 and the
bound state becomes degenerate with the states in the negative energy continuum. At that point,
there is no immediately obvious way to distinguish the bound state from the other continuum
states, and it is necessary to figure out a strategy for identifying the bound states once they are
located in the continuum.

What follows stems from the hypothesis that, the character of the bound state should remain
consistent and change smoothly with the increasing Z value, both qualitatively and quantita-
tively. If this is true, vector overlaps between the states from calculations with different Z values
can be used to determine the correspondences between the states. To be more quantitative, let
{|k;Z⟩} denote the set of all the eigenstates of a Hamiltonian with nuclear charge Z in some
basis. k is an arbitrary index for labelling the different eigenstates for a particular nuclear charge.
Further, let k0 be the index of the 1s1/2 state for some nuclear charge Z0 in the pre-diving re-
gion (i.e. Z0 < Zcr, where Zcr is the critical Z at which diving occurs; as discussed above, in
this region we can easily identify the index of the state). The strategy for finding the state in
the continuum that corresponds to the pre-diving state, therefore, would involve looking at the
probabilities ∣∣⟨k;Z|k0;Z0⟩

∣∣2 (3.9)

However, finding a reliable strategy turned out to be trickier than initially thought, and for that
reason it is worth discussing a few of the unsuccessful strategies as well, before describing the
one that actually worked.

Step-by-step strategy

The immediate concern with a naive strategy of using the maximum overlap probability (3.9)
directly is that the character of the 1s1/2 state changes significantly as Z increases, and so the
overlap with a reference state far away in Z is no longer helpful. This issue is even more severe
due to the diving, as the reference state will always be from the pre-diving region, and one
would expect that, in the post-diving region, the (near) degeneracies with the negative energy
continuum states would considerably affect the character of the bound state.

The simplest way to work around that issue was to try to simply step, one point at a time,
from the reference state on a reasonably fine grid in Z. At each point Zn, the state with the
maximum overlap probability with the previously determined bound state at Zn−1 is declared
to be the bound state. However, as can be seen in Figure 3.26, this does not work particularly
well. The trace, once it gets deep enough into the negative continuum, starts following one of
the continuum states instead. The reason for that can be seen in on the right panel of the same
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Figure 3.26: Figures showing the tracing of the 1s1/2 state by using the overlap with the state
found for the previous Z value (or averaged overlap of previous five states for the dashed line) on
a fine Z grid. Once the state dives deep enough, the trace fails to follow the correct path due to
the trace following an avoided level crossing (shown on the right, where the energy axis has been
zoomed in close to where the tracing fails; the points show the exact eigenenergies; black points
are the ones used in the tracing, but the blue lines were calculated to get a finer grid between
the points to better illustrate the avoided crossing).

figure: there are avoided crossings between the negative continuum states and the diving 1s1/2
state, likely due to the finite r cutoff. Of course, in the case of an avoided crossing, the state will
change character from the 1s1/2 bound state into a continuum state but will do so continuously
in terms of the Z value. This means, perhaps counter-intuitively, that making the grid in Z finer
when trying to trace the state will actually make it harder to follow the true 1s1/2 state.

One could hope that perhaps averaging over the states from several previous points in Z
would help. It usually does, a little, as illustrated by the dashed line in Figure 3.26, but this
does not scale: as the bound state falls deeper and deeper into the continuum, the avoided
crossings get more and more severe, and so the strategy will fail eventually, independent of how
many previous points are included in the algorithm.

Single-reference strategy

While, as was just said, the most naive strategy of using a single reference state at a fixed Z value
would likely not work, it is interesting to see how it fails. As can be seen in Figure 3.27, this
approach actually usually fails before even entering the diving regime. The reason for the failure
can be seen in Figure 3.28, which shows the overlap probabilities that were used to determine
the 1s1/2 state at another Z value. It confirms the suspicion that the character of the 1s1/2
state, as Z increases, changes so significantly that it is no longer comparable to the reference
state. While for Z = 100 the 1s1/2 state (dot with the lowest energy between the two continua)
has the highest probability and would therefore be picked up by the algorithm, that is no longer
the case for Z = 140. Once Z becomes large enough, the reference 1s1/2 will actually have a
greater overlap with the 2s1/2 state than with the 1s1/2 of the lower Z value, and so the trace
would jump to the n = 2 line. This is not wholly unexpected — as Z increases, the bound states
contract significantly, making the higher n states look more like the reference state in terms of
the spacial distribution of the orbital.

The overlaps on the right in Figure 3.28, specifically the Z = 170 case where the 1s1/2 has
dived into the continuum, show another interesting feature. As the bound state dives and be-
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Figure 3.27: An example of the failure of the single pre-critical reference tracing strategy — the
trace starts at Z = 70, and initially follows the 1s1/2, but then jumps to follow the 2s1/2 and
eventually the 3s1/2 state.

Figure 3.28: Related to Figure 3.27, showing the the overlap probability |⟨k0, Z0|k, Z⟩ |2 between
the reference 1s1/2 state for Z = 70 and all the states in the given energy range for other Z values.
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Figure 3.29: A successful tracing of the 1s1/2 state into the negative continuum. The tracing
was done by looking at the overlap with the 1s1/2 for Z = 1, but by always discarding all the
eigenstates with energy greater than the last found energy.

comes degenerate with the negative continuum states (at least, approximately, since numerically
the states are still discrete), it appears to spread across multiple continuum states. From the
perspective of the state tracing algorithm, this is quite problematic since it reduces the absolute
value of the overlap by spreading it across multiple states. It is, therefore, very likely that simply
trying to search for the maximal overlap value will lead to spurious matches with undived bound
states and other states.

Single-reference strategy with energy filtering

While a strategy that uses a pre-diving reference state does not work well at all, it can be observed
that when it does fail, it is because it starts spuriously matching a bound state with higher
energy (e.g. 2s1/2 or higher). That, together with the fact that the energy of the bound state
gets monotonically lower and lower with increasing Z, leads to an idea for a slight modification of
the algorithm: what if all the states with an energy higher than the last found are just discarded
immediately?

Figure 3.29 shows the result. As the algorithm is not allowed to jump into the 2s1/2 and
higher states, it manages to perfectly trace the diving of the 1s1/2 state. While the graph only
shows the diving down to −5mc2 and Z = 200, the algorithm works well also beyond that point,
and its performance does not appear to be affected by the choice of the basis.

It should be noted, however, that it does not work that well for states with higher n quantum
number (e.g. tracing 2s1/2). In those cases, the trace will eventually jump down to the lower
energy bound states (i.e. the trace for 2s1/2 will start following the 1s1/2 instead). One potential
way around that might be to assign a weight to the energy difference from the previous match
so that large jumps away from the already found trace would be penalized.
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Figure 3.30: Convergence of the trace of the energy of the 1s1/2 state near diving, as we
systematically increase the rmax value of the basis set by adding in extra elements at the end on
the same exponential grid. The graph on the left shows the absolute energy for various numbers
of elements, where as the graph on the right shows the energy difference from the case with the
highest number of elements (and therefore, correspondingly, the largest rmax value).

Convergence of the traced energy

Now that it is possible to trace the 1s1/2 state into the negative energy continuum, it is necessary
to make sure that this is actually physically meaningful by checking if the trace is stable and
converges systematically with increasing basis and box sizes.

Figure 3.30 shows the trace for various rmax values, which impose the boundary condition
at large but not infinite r. To check this systematically, rather than just stretching the same
basis out over a larger range of r values, the domain was extended by adding new elements to
the end of the basis, essentially by evaluating the exponential grid Eq. (3.4) at i > N . The
original element boundaries (and also the primitive polynomial basis) are kept constant, so the
only thing we gain is the ability to represent states farther out on the r-axis. What can be seen
from the figure, especially the one on the right, is that the trace essentially does not change with
increasing box size, with the difference attributable to numerical noise.

Figure 3.31, where the box is kept the same, but the basis is improved by making the grid
denser, paints a slightly different picture, however. In the pre-diving region, while with 50
elements the energies have not quite converged, with more elements they do converge to machine
precision. However, in the post-diving region, we get a relatively large noise, on the order of
10−3 mc2. However, it does look like this is noise and not a lack of convergence as such, as the
energy fluctuates around some central value. It appears to be caused by the level crossings with
the (numerical) continuum states and due to the smearing of the state across multiple continuum
states. The energy differences between the continuum states are consistent with the magnitude
of the numerical noise.

Orbitals in the continuum

Finally, in a numerical approach, it is extremely easy to reconstruct the P and the Q components
of the orbitals as functions on r. Figure 3.32 shows two example cases of the 1s1/2 state, one
before the diving and one after, and illustrates the general behaviour of the orbitals. In the
pre-diving region the orbital is a clean bound state, and if one would look at how it changes as
a function of Z, it starts out on the right and then smoothly contracts towards the left end of
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Figure 3.31: Convergence of the trace of the energy of the 1s1/2 state near diving, as we
increase the basis size by adding elements, but keeping the rmax value constant (i.e. improving
the representation of the orbitals). The graph on the left shows the absolute energy for various
numbers of elements, where as the graph on the right shows the energy difference from the case
with the highest number of elements.

Figure 3.32: Examples of wavefunctions of the 1s1/2 eigenstates as calculated with FEM, in
pre-critical (Z = 150; on the left) and post-critical (Z = 180; on the right) nuclear charge
regions. Pre-critical orbitals are pure bound states with clean graphs, whereas after diving into
the negative continuum the states start mixing in continuum oscillations. The graph on the
bottom indicates which state on the trace is being plotted. For clarity, the right-most flat end
of the right figure is also part of the numerical solution, just with a tiny amplitude.



80 CHAPTER 3. THE DIRAC EQUATION: A NUMERICAL ODYSSEY

the graph (towards the origin).

However, once in the continuum, the bound state starts mixing in the continuum solutions.
This is expected, since the calculations are purely numerical, and there is no attempt to im-
pose any particular character on the states, such as exponential decay. So degenerate states end
up being mixed with rather arbitrary weights. It is also consistent with the avoided crossings
observed earlier in the energies, which are likely due to numerics rather than physics. These
crossings exacerbate the problem since it means that we get mixing not just when a true de-
generacy occurs but even when the states have slightly different energies. All in all, though, an
important observation here is that, while the state contains oscillations, it also retains a clear
bound state component to it, and the energy as a function of Z remains relatively smooth.

3.6 Energy-projected Dirac equation

This section shows how the finite element method can be applied to a to a modified version of
the single-particle Dirac Hamiltonian: the so-called no-pair external field Dirac Hamiltonian

h+ = Λ+(hD + Vext)Λ+ (3.10)

where Λ+ is the projection operator to the free-particle positive energy subspace of the free-
particle Dirac Hamiltonian hD. The motivation for such an equation is simple: a way to avoid
the problem of the bound states diving into the negative energy continuum at high Z values (when
solving the Dirac equation with a finite nuclear model) is to just remove the offending negative
continuum. Effectively the projection operator restricts the Hilbert space to the subspace defined
by the positive energy continuum states, leading to different eigenvalues and eigenstates compared
to the original Hamiltonian.

As long as the Hamiltonian h does not have any zero eigenvalues, a projection operator to
positive or negative energy subspaces can formally be written as

Λ± =
1

2

[
1 ± h

|h|

]
The eigenvalues of the free-particle Dirac Hamiltonian hD are |E|≥ mc2 [11], so it is possible to
apply it in this case. However, evaluating the projection operator directly in real space is tricky.
Instead, it is more convenient to write the operator in momentum space, where the free-particle
Dirac Hamiltonian becomes a p-dependent matrix multiplication operator ĥD(p) = α · p +mβ.

As |ĥD(p)|=
√
m2c4 + p2, the projection operator in momentum space can be written as

Λ±(p) =
1

2

[
1 ± cα · p + βmc2

E(p)

]

where E(p) = +
√
m2c4 + p2. [109] Since the operators in real and momentum space are related

by a Fourier transform Λ± = F−1Λ±(p)F , it is now possible to represent the projection operator
with the real-space operator kernel

Λ±(x,y) =
1

(2π)
3
2

F−1[Λ±(p)](x− y) =
1

2

1

(2π)3

∫ [
1 ± cα · p + βmc2

E(p)

]
eip·(x−y) d3p

which could be integrated to formally obtain the full real-space operator.



3.6. ENERGY-PROJECTED DIRAC EQUATION 81

This projected Dirac Hamiltonian (3.10) can be traced back all the way to Bethe and
Salpeter [109], and is therefore sometimes referred to as the Bethe-Salpeter operator [110]. How-
ever, the more illustrative no-pair terminology [111] references the fact that the projection oper-
ators effectively remove the pair creation and annihilation terms from the Dirac Hamiltonian.9

Intuitively one would expect that the various mathematical problems of the Dirac equation
might disappear if the negative energy continuum states are removed. However, if the external
field Vext is the simple 1/r potential, corresponding to a point nucleus, ĥ+ also has a critical
charge at which the operator becomes w, just like the standard Dirac equation. The critical
charge

Zcr =

(
2

π
+
π

2

)
α−1 ≈ 124.16

is, however, lower in the projected case [114, 110].10 This reinforces the idea that the issues
related to the non-self-adjointness of the standard Dirac equation are related to the singular
character of the 1/r potential, rather than the physical nature of the Dirac equation itself.

Unlike the Dirac equation, the no-pair operator has a lower bound in the sub-critical region,
which is expected, as the negative continuum has been removed. That result was then further
refined by Tix, showing that the operator’s eigenvalues are in fact strictly positive [115, 116].
In general, however, the lowest eigenvalue is expected to be lower than the corresponding 1s1/2
bound state energy of the standard Dirac equation.

While there have been studies of the projected equation with a 1/r potential, the finite
nucleus case seems to be unexplored so far. Like in the case of the standard Dirac equation, a
singularity-free nuclear potential from a finite nucleus should remove the problem of non-self-
adjointness and the critical charge. Futhermore, since the operator has no negative continuum,
there should be no Z value where it becomes difficult to describe the bound states, as they never
become degenerate with other states, and it should always be possible to obtain reasonable states
and energies for any nuclear charge value, not unlike the non-relativistic Schrödinger equation.

Numerical implementation

When implementing the Hamiltonian (3.10) with FEM, it is not actually necessary to explicitly
implement the projection operators. To explain this, let |E(p),p, r⟩ and |−E(p),p, r⟩ be the
positive and negative energy continuum plane wave states of the free-particle Dirac Hamiltonian
hD, respectively. In other words, they obey

hD |±E(p),p, r⟩ = ±E(p) |±E(p),p, r⟩

Using those states, it is possible to formally construct a projection operator that restricts the
Hilbert space to just the positive energy space with

Λ+ =
∑
r

∫
dp |E(p),p, r⟩ ⟨E(p),p, r|

9It should be pointed out that this Hamiltonian, while similar to, is not the same as the the no-pair Hamiltonian
often used in relativistic quantum chemistry to avoid the continuum dissolution (also known as the Brown-
Ravenhall disease) when electron-electron interaction operators (e.g. the Coulomb or Breit interaction operators)
are introduced. In that case, the projection operator is usually constructed from the positive energy eigenstates
of the full external field Dirac Hamiltonian, and so does not span quite the same space as the one based on
the free-particle states. Furthermore, it is also dependent on the nuclear charge Z and the shape of the nuclear
potential. [112, 113]

10It is also worth mentioning that the Dirac equation with a 1/r potential has another special nuclear charge
value at Z∗ = (

√
3/2)α−1 ≈ 118.68, where the operator loses self-adjointness if only normalizability is imposed as

a boundary condition (due to a second solution to the equation becoming normalizable). The projected equation
also exhibits the same special value, except at Z∗ = (3/4)α−1 ≈ 102.78 [114, Eq. (2.9)].
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Similarly, it would be possible to construct a projection operator for the negative energy subspace

Λ− =
∑
r

∫
dp |−E(p),p, r⟩ ⟨−E(p),p, r|

Either way, to restrict the Hamiltonian to one of the energy subspaces, it is only necessary
construct the Hamiltonian (3.10) in the particular subspace as

h± =
∑
r,r′

∫ ∫
dp dp′ ⟨±E(p),p, r|hD + Vext|±E(p′),p′, r′⟩ |±E(p),p, r⟩ ⟨±E(p′),p′, r′|

While it would be possible to try to use the analytical free-particle solutions, in a basis-set ap-
proach, such as the finite element method, this would lead to linear-dependencies in the projected
basis. Technically the projection operator should remove approximately half the basis functions,
but when an analytical version is applied on a numerical basis, it does not actually remove any
states.

FEM implementation

In the finite basis set approach, it is easy to approximate the projection operator by simply
replacing all the states and operators with vectors and matrices. To obtain the (approximate)
free-particle states numerically, the full Dirac equation can always be just diagonalized with
Vext = 0, which yields a clear spectrum of positive and negative energy continuum states. The
N+ eigenstates that have positive eigenvalues (E ≥ mc2), could then be used to construct the
approximate (N,N+) matrix for Λ+. This can then be used to construct the (N+, N+) matrix
for the Hamiltonian (3.10).

The particular implementation in the code expands on the approach described in Section 3.4,
and also solves the radial Dirac equation. As for the full equations, the projected Hamilto-
nian is also solved in each angular momentum subspace (labelled with the κ quantum number)
separately, with the projection operator assumed to apply to each angular momentum block
separately. In explaining the formalism, the first step is to split the full radial Dirac Hamiltonian
matrix (3.8) in two, into first the free-particle part

T =

(
mα−2SLL −α−1DSL + κα−1R

(−1)
SL

α−1DLS + κα−1R
(−1)
LS −mα−2SSS

)

and then also the normalized nuclear potential part

Φ =

(
ΦLL 0

0 ΦSS

)
The full matrix (3.8) can, of course, then be constructed by

H = T + ZαΦ

To determine the free particle states (in each angular momentum subspace), it is necessary
to orthogonalize the T matrix via a Löwdin transformation T̃ = S1/2TS−1/2, and then to
diagonalize the orthogonalized matrix to obtain the states and energies

T̃ ϕ̃0i = E0
i ϕ̃

0
i (3.11)
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Figure 3.33: Numerical 1s ground state energy of the no-pair (projected) Dirac Hamiltonian
for the point nucleus with a few different basis sets, differing by the number of elements. The
figure on the left shows the absolute energy, whereas on the right we show the difference from the
standard point-nucleus Dirac eigenenergy. The sudden turn in the curves is due to a non-physical
numerical issue.

which approximately correspond to the free-particle plane wave states.11 With those eigenstates,
which clearly split into two distinct sets with E0

i ≥ mc2 or E0
i ≤ −mc2, is is possible to construct

the projection operator corresponding to Λ+

P̃+
:,i = ϕ̃0i for i such that E0

i ≥ mc2

where “:” indicates that the columns will be filled by the vectors corresponding to the eigenstates.
It should be noted that this will not be a square matrix, and instead will usually have about half
the columns, depending on the basis sets picked for the large and the small components. This
matrix can then be applied on the Löwdin-orthogonalized Hamiltonian matrix H̃ = S−1/2HS−1/2

H+ = P̃ †H̃P̃

to obtain the projected Hamiltonian matrix, corresponding to the projected operator h+ of
Equation (3.10). Diagonalizing H+ yields the eigenstates and eigenenergies of the projected
equation

H+ϕ̄+i = E+
i ϕ̄

+
i

The matrix elements ofH+, and therefore the eigenstates ϕ̄+i , are not in the Löwdin-orthogonalized
basis, but in the basis of the free-particle eigenstates of the T matrix. But the states can easily
be transformed into the original FEM basis representation

ϕ+i = S− 1
2 P̃ ϕ̄+i

which can then be used to plot the orbitals and so forth.

Point nucleus

While the point nucleus case, where the potential is simply

V̂ext = −Z
r

,

11Technically, this can simply be done by setting Z = 0 in the solver of the Dirac equation of Section 3.4.
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Figure 3.34: Same data as in Figure 3.33, but plotted on the same axes as FIG 1 of [114],
showing qualitative agreement between the results, as long as the FEM approach does not run
into numerical difficulties. The y- and x-axes are given by ϵ(γ) = (E −m)/γ2m and γ = Zα,
respectively.

is known to be problematic with a critical charge at Zcr ≈ 124 for the projected operator, it is
still interesting to see how the method behaves. As can be seen in Figure 3.33, at smaller Z
values, the method produces stable results. Generally, we see that the calculated energy is below
the energy of the standard Dirac bound state energy, which is consistent with earlier results
in the literature (e.g. when comparing Hardekopf’s and Sucher’s results [111] to Figure 3.34).
However, at higher nuclear charge values, close to the critical charge, the numerical approach
runs into issues. What is even more disturbing is that these numerical issues become worse as
the basis is improved, which seems to imply that trying to converge by making the basis bigger
and bigger seems to be problematic at any Z value.

Figure 3.35 shows that the issue is caused by a spurious state falling down through the
spectrum, eventually becoming the lowest energy state. It should be emphasized that this appears
to be a numerical error caused by the finite basis approach used, rather than a physical or a
mathematical feature to the underlying equation. The plots on the left in Figures 3.36 and 3.37
illustrate the character of this spurious state. First, rather than having a clean, smooth bound
state character, the state is highly oscillatory and, most importantly, has collapsed nearly to the
origin. The only reason it has not collapsed completely into the origin is that the element closest
to the origin has a finite size, and so there are limits to what states can be represented in that
basis. This is clear from comparing the right plots between Figures 3.36 and 3.37 — the spurious
state will always fill just the left-most element, and so is directly dependent on the choice of the
element grid. Furthermore, visible on the bottom graphs of the same figures is that, in terms
of the numerical free-particle basis, the spurious state is made up of the highest energy, most
oscillatory free-particle solutions. This seems to imply that for a well-described bound state we
need a balance, and the issue is that we run out of basis states to balance out the collapse into
the centre.

To understand the balancing issue from a slightly different perspective, it is helpful to look at
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Figure 3.35: Low-lying states in the spectrum of the no-pair Hamiltonian for different Z values
for a given basis. A spurious state falling through the spectrum is clearly visible.

Figure 3.36: The FEM-based solutions for the 1s orbital of the no-pair Hamiltonian for a point
nucleus at two different Z values (100 on the left, 124 on the right) for a relatively small basis (20
elements), illustrating the diving problem the numerical approach faces. The top graph shows
the P (r) and Q(r) components of the orbitals. The bottom graphs show the magnitude squared
of the coefficients in terms of the free-particle positive energy states used as a basis. Higher index
implies a higher energy of the free-particle state.
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Figure 3.37: Same as Figure 3.36, but showing the orbitals and coefficients for different number
of basis elements (10 on the left, 150 on the right) at Z = 118.

Figure 3.38: Bounds of the potential and free particle operators as a function of the number of
elements in the FEM basis. The elements are distributed according to an exponential grid with
an extra boundary at 10−4 a.u., corresponding to the radius of the hollow nuclear model, used to
model the finite nucleus. The blue and orange lines are the absolute values of the lower bounds
of the nuclear potentials for point (PNC) and finite (FNC) nuclei, respectively, with the dashed
line scaled by α−1, to represent the potential near the critical charge regions. The green line
is the upper bound of the free-particle Dirac operator, with the kinks being caused by the grid
boundaries from the exponential grid passing over the extra finite element boundary introduced
for the hollow nuclear model.
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Figure 3.39: 1s energies for finite nuclear models in both the projected (solid) and unprojected
(dashed) approach. The energies of the unprojected 1s1/2 states in the diving regime below −mc2
are traced with the “Single-reference with energy filtering” strategy described in Section 3.5. The
solid gray line represents the analytic Dirac 1s energy for a point nucleus.

how the bounds of the discretized operators change as the basis becomes bigger. This is shown in
Figure 3.38, and it is very clear that the shape of the lower bound of the point nuclear potential
and the upper bound of the free-particle operator are very similar, although the nuclear potential
has a much smaller magnitude. However, the magnitudes become comparable near the critical
charge, which is shown with a dashed line. This could be interpreted as a sort of a “tug-of-war”
between the operators, with the free-particle Hamiltonian evidently losing out near the critical
charge, but this needs further study, including in the non-relativistic limit.

Now, the full 1/r operator (i.e. when not represented in a finite basis) is, of course, unbounded.
However, the mathematical analysis of the projected Hamiltonian shows that, before the critical
charge, it is bounded from below but becomes unbounded after [110]. It looks as if the finite
basis case is an approximate version of the issue that causes the full projected operator to break
down. This does suggest a potential workaround though: it might be possible to bias our basis
in a way to slightly prefer the free-particle operator so that the introduction of the spurious state
could be avoided. However, in any case, in the case of the finite nucleus, the operator has a lower
bound that is independent of the size of the basis, so that case should not run into these kinds
of issues, and would hopefully converge well when the basis is enlargened.

Finite nucleus

As has already been mentioned, in the numerical FEM approach switching out the potential is
trivial. The only thing that needs to be kept in mind is to make sure that any necessary extra
element boundaries are in place at the discontinuities of the potential.

Figure 3.39 shows the calculated energies for the cutoff nucleus with various RMS values as
a function of the nuclear charge Z. Like in the case of the point nucleus, the energy in the
no-pair approach is always lower than the corresponding full Dirac energy. However, otherwise,
the qualitative behaviour of the energy is very similar (e.g. larger nucleus leading to a higher
energy).
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Figure 3.40: The s orbitals for a cutoff Coulomb potential (rrms = 10−4 a.u.) for a set of n
(1–3, vertically) and Z (1, 100, 250; horizontally) values. The colors represent the P (r) and Q(r)
functions, respectively.

One important thing to point out is that the method produces a smooth curve at energies
lower than −mc2. This does make sense since the negative energy states have been projected
out and, therefore, there are no issues with degeneracies or resonances with the states of the
negative energy continuum. Also, as was shown by Figure 3.38, the FNC potential operator is
bounded from below and so does not introduce the numerical problems seen in the point nuclear
case. Similarly, Figure 3.40 shows the s1/2 orbitals for various n and Z values, and they are all
smooth and behave as expected.

Another observation is that as Z gets larger, the small component Q(r) becomes more and
more significant, relative to the total density, visualized in Figure 3.41. It looks like that, roughly
at the critical charge (i.e. when the energy becomes lower than −mc2), there is kind of a transition
from a predominantly large component regime to one where the small and large components have
more or less the same density. This is to be expected if one considers the eigenstates of the V (r)
operator, which have symmetry between the P and Q component, so one would expect them to
have exactly the same magnitude (this can be argued analytically from the form of the operator,
but also has been verified numerically).

Finally, it is also important to show that the numerical results are actually reliable by checking
the convergence of the energies. This is visualized in Figure 3.42, and it is clear that the method
easily achieves systematic convergence to machine precision. Although, at higher Z values the
required basis does get relatively large.
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Figure 3.41: The fractions of large (solid) and small (dashed) components in the ns orbitals for
n = 1, 2, 3, calculated as the density of the component (i.e.

∫
|P (r)|2dr and

∫
|Q(r)|2dr).

Figure 3.42: Convergence of the energy to the result of what we presume are the most accurate
calculations with 160 elements. The graph on the left shows the absolute energy, which scales
slightly with Z and the value on the right graph is relative to the energy E −mc2.
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Table 3.4: Comparison with experimental values (in eV) for the 1s ionization potential and a
few transition energies of U91+. The rows correspond to the standard hydrogenic Dirac equation
with a point nucleus (PNC), finite nucleus with a hollow nuclear model (FNC), and the projected
Dirac equation with the same finite nuclear model. The experimental values are taken from the
2019 review by Indelicato, by picking the values with the lowest uncertainty [2].

Ionization potential 1s1/2 → 2p1/2 1s1/2 → 2p3/2
E ∆Eexp E ∆Eexp E ∆Eexp

Dirac / PNC 132, 279.93 454.83 98, 064.45 458.84 102, 630.10 451.98
Dirac / FNC 132, 083.55 258.45 97, 872.42 266.81 102, 433.71 255.59

Projected / FNC 140, 474.30 8, 649.20 105, 686.10 8, 080.49 110, 767.33 8, 589.21
Experimental 131, 825.10 ± 4.20 97, 605.61 ± 16.00 102, 178.12 ± 4.33

Experimental comparison: U91+

What is clear so far is that the method seems to perform reliably for the projected calculations, at
least for the finite nuclei. However, it would now be interesting to see how the theoretical results
compare to the standard Dirac energies when pitted against experimental values. A good system
for this is U91+, which has been extensively studied both theoretically and experimentally [2] to
test QED, and to calculate a few observables for it.

Table 3.4 compares the theoretical estimates (without any QED corrections) to experimental
values. It is clear that using a finite nucleus noticeably improves the prediction from the Dirac
equation. However, the predictions from the projected calculations are significantly worse than
from the standard Dirac equation — with error increasing by more than an order of magnitude.
This, unfortunately, does imply that, from a physical point of view, the projected Dirac Hamilto-
nian appears to be a worse starting point than the standard Dirac equation for further refinement
of the states, such as with perturbation theory. That being said, it should nevertheless still be
possible to use the projected states as the zeroth-order states in e.g. perturbative QED.

Interpretationally, however, these results lead to a bit of a conundrum. As discussed in
Section 2.4 and further relying on the discussion in Sections 2.2 and 2.3, the eigenstates of the
standard one-particle external field Dirac equation lead to superpositions of positive and negative
energy free particle states. In the proper QED interpretation, which stems from the redefinition
of the creation and annihilation operators of the negative energy states (to link them to positive-
energy positrons) and therefore the vacuum state, the eigenstates of the Dirac equation are
superpositions of one-electron and one-hole states. The projected Hamiltonian (3.10) disallows
such superpositions by construction, and therefore the resulting states are the seemingly more
physical, pure-electron states. Naively, one could expect that the resulting energies would also
correspond more closely, or at least as closely, to the experimental energies. As evident from the
numerical results though, that is not the case.

When thinking about the Dirac Hamiltonian with an interaction term (2.15) in the full Fock
space QED picture, the projection operators have the effect of removing the pair creation and
annihilation terms. Reintroducing them should therefore recover the predictions of the Dirac
equation. However, what needs to be remembered is that when linking the single-particle picture
to the Fock space picture, there are two choices for the reference vacuum states: (1) the non-
empty Dirac sea vacuum |0̃⟩ filled with positronic states, and (2) and the true vacuum |0⟩ void
of all particles. For the projected Hamiltonian, which only acts on the one-electron subspace,
there is no difference, but the choice matters when the pair creation and annihilation operators
are reintroduced. If ci and di are the annihilation operators corresponding to the discretized free
particle states from Equation (3.11), then the solutions of the standard Dirac equation are given
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by the superposition

|Ψ⟩ =
∑
i

Ψ
(1,∞)
i c†i |0̃⟩ +

∑
i

Ψ
(0,∞−1)
i di |0̃⟩ (3.12)

coefficients Ψ(n,m) represent the expansion coefficients in the (n,m)-particle subspace, which in
the case of the |0̃⟩ vacuum state has an infinite number of positrons. However, in the proper
QED reinterpretation of the operators, the solution of the full Hamiltonian with the creation
and annihilation operators would become an infinite sum

|Ψ⟩ =
∑
i

Ψ
(1,0)
i c†i |0⟩ +

∑
ijk

Ψ
(2,1)
ijk c†i c

†
jd

†
k |0⟩ + . . . (3.13)

mixing in all the (n,m)-particle subspaces that have the same total electric charge.12 It should
be noted that the higher particle number states come with a severe energy penalty, as each
additional electron-positron pair brings +2mc2 of mass energy.

The cases (3.12) and (3.13) are unlikely to be equivalent, and hence can not yield the identical
results. But it is expected that including the extra determinants in (3.13) should reduce the
discrepancies in the observables shown in Table 3.4. One thing that should be noted is that, in
the latter case, the Hamiltonian is bound from below and, therefore, the variational principle
would apply: increasing the size of the vector space would lower absolute energies. While this
would mean that the absolute energies, which are already lower for the projected case, would move
even farther from the standard Dirac equation solutions, this does not mean that the differences
in energies, which are the observable quantities, could not improve. Relatedly, the zero-charge
ground state, which in the free case is just the vacuum |0⟩, would also be a superposition of
states with various particle numbers

|Ψ⟩ = Ψ
(0,0)
i |0⟩ +

∑
ik

Ψ
(1,1)
ik c†id

†
k |0⟩ +

∑
ijkl

Ψ
(2,2)
ijkl c

†
i c

†
jd

†
kd

†
l |0⟩ + . . . (3.14)

This also has the implication that its energy would be lower than zero, which in turn would have
implications for the calculation of e.g. ionizations potentials. In the FEM approach, it would be
relatively straightforward to implement a numerical solver to determine the wavefunction (3.13)
up to a certain order, and it would be interesting to see the resulting energies and how they
compare to the experiment.

3.7 Implementation & code

The equations described in this chapter were all solved using a finite element basis set for the
radial components of the single-particle functions [88]. Fortunately, it was not necessary to
reimplement the basis set, as the code underlying the referred paper was well-organized and
published on GitHub under an open-source license. However, in order to make the development
easier and more efficient, the goal was to be able to implement the physical equations in the
Julia programming language [100, 101]. This was desirable because it was clear that the work
will be very exploratory in nature, meaning that the implementation would continuously have to
be modified. As such, using a dynamic language with a REPL-type workflow helps considerably,
while Julia allows the code to still to compile to machine code and run as fast as possible. This
section briefly describes some of the technical details underlying the programming part of this
work.

12For completeness, it should be noted that not all the index combinations for the coefficients Ψ(n,m) are
allowed, as one has to take into account the Pauli principle.
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Reorganizing the HelFEM C++ code

In order to utilize the existing HelFEM code in Julia, it was necessary to partially reorganize the
code. While the code was already organized in a logical, modular way, an issue with the original
implementation was that it was oriented towards compiling executables from the same source
code. The code also had external dependencies, some relatively heavy and not necessary for the
finite element method part.

As part of this work, many of the C++ classes and functions were moved into a separate
libhelfem library. This included the code necessary to represent the polynomial bases, the
radial bases and to evaluate the matrix elements of operators, including of the various nuclear
models. This part of the code now compiles separately into a static library and only depends on
the Armadillo and GSL libraries. All the modifications have been upstreamed into the official
HelFEM Git repository13.

In the future, it would be beneficial to continue refactoring the code in this vein. It would
be ideal to have a high-quality C or C++ library available that can evaluate the finite element
basis functions and matrix elements, with bindings to other languages such as Fortran, Python,
and, of course, Julia.

Julia interface for HelFEM

The Julia interface to the HelFEM C++ code is via a Julia package, HelFEM.jl.14 The package
exposes the various features of the HelFEM code as Julia types

PolynomialBasis Wraps the corresponding PolynomialBasis class from the C++ code, and
represents a set of polynomials on an interval [−1, 1].

RadialBasis Takes a PolynomialBasis as an argument and constructs the corresponding RadialBasis

object, which represents a full finite element on some set of elements.

FEMBasis Similar to RadialBasis, except this offers a pure-Julia implementation of the part
that generalized a PolynomialBasis to a finite element basis across many elements. The
reimplementation was done to improve on a convention chosen in RadialBasis. Unlike
RadialBasis, this object can actually be used to represent basis sets on any interval [a, b],
whereas RadialBasis only supports [0, rmax].

Each of these types can be interacted with the help of various functions and methods defined in
the package. For full documentation, see the developer documentation of HelFEM.jl.15

In order to expose the existing HelFEM C++ classes and methods to Julia, it was necessary
to wrap it using the CxxWrap.jl package16. This exposes the necessary Julia bindings as a
shared library, which is distributed as a binary artefact available via the generated HelFEM_jll

wrapper package.

Implementation of physical equations

The implementation of the physical Schrödinger and Dirac equations are not currently organized
into a package. However, the implementation on top of a FEMBasis object follows almost directly

13Available on GitHub: https://github.com/susilehtola/HelFEM
14Currently unregistered and only available via the GitHub repository: https://github.com/mortenpi/

HelFEM.jl
15Available at http://mortenpi.eu/HelFEM.jl/dev/
16Available via the Julia package manager and the source code at https://github.com/JuliaInterop/CxxWrap.

jl.

https://github.com/susilehtola/HelFEM
https://github.com/mortenpi/HelFEM.jl
https://github.com/mortenpi/HelFEM.jl
http://mortenpi.eu/HelFEM.jl/dev/
https://github.com/JuliaInterop/CxxWrap.jl
https://github.com/JuliaInterop/CxxWrap.jl
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the formalism described in each of the sections of this chapter. The code provides the necessary
methods to evaluate the matrix elements of all component operators, which are then simply
added together to form the Hamiltonian. The Hamiltonian is then diagonalized with Julia’s
built-in eigenvalue solver.

A future plan of development is to generalize the implementation of physical operators to
use basis sets implemented using the ContinuumArrays interface. It provides a general basis-
agnostic way of describing physical or mathematical problems and would allow other basis sets
to be used, such as the ones implemented in CompactBases.17 On the other hand, implementing
the ContinuumArrays interface to HelFEM.jl would also allow HelFEM to be easily used in other
existing projects that are built upon the general framework.

17Both packages are available via the Julia package manager, with the source code hosted on GitHub at
https://github.com/JuliaApproximation/ContinuumArrays.jl and https://github.com/JuliaApproximation/

CompactBases.jl.

https://github.com/JuliaApproximation/ContinuumArrays.jl
https://github.com/JuliaApproximation/CompactBases.jl
https://github.com/JuliaApproximation/CompactBases.jl




Chapter 4

Relativistic many-particle theory and
QED

While Chapter 3 dealt with the single-particle Dirac equation, the focus in this chapter is on the
many-electron case. As discussed in Section 2.5, accounting for the QED effects in many-particle
systems is a non-trivial matter, especially for large systems (i.e. the tail end of the periodic
table). This chapter describes the work that went into expanding the treatment of QED effects
in the 2018 version of the GRASP software [22].

GRASP — which stands for General Relativistic Atomic Structure Package — has a long
history in atomic physics, going all the way back to 1970s [117, 98, 118, 119, 120, 121, 22]. It is
a software package written in the Fortran programming language for relativistic many-electron
atomic calculations. At its core, it uses the multiconfigurational Dirac-Hartree-Fock (MCDHF)
approach to determine the energies and many-electron wavefunctions of the electrons in atoms.
Those results can then be further improved and elaborated upon via additional configuration
interaction (CI) calculations and by running additional programs that are able to calculate
various other properties, such as multipole transition properties, spectral line widths, isotope
shifts [122] or the hyperfine energy splittings due to the Zeeman effect [123, 124].

GRASP already contains an implementation of the QED self-energy and vacuum polarization
corrections in the CI portion of the software. However, the self-energy contribution specifically
is implemented in a very simplistic manner, as a perturbative corrective energy shift derived
from tabulated values computed for hydrogen-like orbitals. Since the original implementation in
GRASP, various effective operators have been proposed as alternatives for including self-energy
in a many-electron calculation [18, 19, 20, 73], some of which have already been implemented
and employed in many-electron calculations with other versions of GRASP [125]. The core goal
of this work, therefore, is to expand and generalize the QED self-energy implementation with
the new effective operators, so that users of GRASP could estimate QED effects more reliably
at the correlated level.

Finally, a note on the literature. While the following sections do give a concise overview of
the necessary theory to understand the implementation of the QED operators, there are other
resources out there that offer a more comprehensive exposition.

• The 2007 book by Ian Grant could in many ways be considered to be the theory manual
for the GRASP software, focussing specifically on the relativistic theory and covering more
or less every aspect of the theory [62].

• The non-relativistic multiconfigurational Hartree-Fock (MCHF) method is presented in the
1997 book by Fischer, Brage, and Jönsson [126]. A 2016 review by the same authors also
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concisely covers the background, including relativistic methods [127].

• Also, while not directly relevant for this work, the 2007 book by Dyall and Faegri is an
excellent reference on relativistic quantum chemistry, including the various transformations
of the Dirac Hamiltonian to two-component forms [113].

4.1 Many-particle atomic structure theory

When formulating wavefunction-centric approaches1, such as the MCDHF and CI methods cen-
tral to GRASP, it is necessary to have a precise definition of how such wavefunctions are repre-
sented. While it definitely is possible to represent N -particle wavefunctions with, for example, a
3N -variable function Ψ(x1, . . . ,xN ), the most general and convenient approach is still to start
from a Fock-space formalism2, briefly summarized in Section 2.2. This is even more true when it
becomes necessary to take into account the symmetries of the wavefunction due to the inherent
indistinguishability property of elementary particles of the same species.3 Furthermore, as it is
not really possible to numerically represent full QED wavefunctions (neither the photon com-
ponent nor pair creation; see Section 2.5), such wavefunctions only contain the (multi-)electron
component, and interactions beyond the electronic component are taken into account via effective
operators.

Many-particle basis and configuration state functions

In the Fock-space formalism, defining many-particle states depends on having single-particle
basis states that are then used to construct the many-particle states via tensor products. As
an atomic Hamiltonian usually has rotational symmetry and therefore commutes with the total
angular momentum operators J = L + S, it makes sense to take advantage of that. The single-
particle states, usually referred to as orbitals, are therefore generally assumed to be eigenstates
of total angular momentum (see also Section 2.6).

In GRASP, the orbitals |nκm⟩ are defined in the same way as they were defined in Eq. (2.28)
when analysing the radial Dirac equation, i.e.

|nκm⟩ = ψ(r, θ, φ) =
1

r

(
Pnκ(r)χκm(θ, φ)
iQnκ(r)χ−κm(θ, φ)

)
(4.1)

where Pnκ(r) and Qnκ(r) are some radial functions, and χκm(Ω) are the spin-spherical harmonics.
Each of these orbitals is then labelled first by their angular momentum quantum numbers κ (or,

1As opposed to methods that focus on calculating observables or eigenvalues directly, sidestepping the wave-
functions themselves, such as perturbation theory. That said, in such methods, the underlying theory is still
based on a Fock-space formalism, and it is just not as important to explicitly think about that. Rather, one often
operates on a higher level of abstraction, such as considering Feynman diagrams and writing down the necessary
integrals directly from those.

2Interestingly, in a formalism where wavefunctions are just multivariable functions, there would technically be
a separate, distinct mathematical model and Hamiltonian for each particle number, as the function space and the
number of terms in the Hamiltonian are different in each case. Furthermore, it is not clear how one would create
superpositions of states with differing particle numbers, in the circumstances where that might be necessary. This
is in strong contrast to the Fock-space approach, where states with any number of particles can be described
within the same mathematical model.

3According to the spin-statistics theorem, many-fermion wavefunctions are anti-symmetric under the inter-
change of particle coordinates, whereas many-boson wavefunction are symmetric. As a more concrete example,
for a two-particle wavefunction, the possible wavefunctions are constrained by Ψ(x1,x2) = ±Ψ(x2,x1), with +
or − for bosons or fermions, respectively.
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equivalently, ℓ and j), and then by their principal quantum number n within each angular
momentum block.

As the orbitals simply form as a basis, then, in principle, there is no one specific prescription
for choosing the radial function Pnκ(r) and Qnκ(r). They might be something as simple as
the radial solutions of the radial Dirac equation (2.30) with a given potential (e.g. 1/r). Or
they could be defined via another basis set for the radial functions themselves as was done in
Chapter 3. In GRASP, the orbitals are recalculated over and over again in a multiconfiguration
Dirac-Hartree-Fock procedure [98, 127, 62, 126]. In a nutshell, it solves the radial Dirac equation,
but the equation also includes an effective average Coulomb potential from all the electrons of
the system, providing a mean-field approximation to the inter-electron interaction.

Something that should be mentioned is that such orbitals would, in general, mix electron and
hole states, in the sense discussed in Section 2.4. While this may create interpretational questions
regarding the many-electron wavefunction, this does not create any inherent mathematical issues,
and the methods do produce good, reliable results when compared to experimental data.

Many-electron basis

Each of the aforementioned orbitals is associated with a creation operator c†i and annihilation
operator ci. These can be used to write down the many-particle product basis states

|i1i2 . . . iN ⟩ = c†(i1)c†(i2) · · · c†(iN ) |0⟩

In principle, by iterating over all the combinations of the single-particle states, all the while
taking into account the Pauli principle, it is possible to generate a complete N -particle basis
corresponding to this particular single-particle basis. In case it is necessary to convert to a
multi-variable function representation of the fermionic N -particle states, each of basis states
|Ψ⟩ = c†1c

†
2 · · · c

†
N |0⟩ can be written as a determinant

Ψ(x1, . . . ,xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) · · · ψN (x1)
ψ1(x2) ψ2(x2) · · · ψN (x2)

...
...

. . .
...

ψ1(xN ) ψ2(xN ) · · · ψN (xN )

∣∣∣∣∣∣∣∣∣∣
and it is the matrix determinant that ensures the anti-symmetry of the resulting multivariable
function.4 These functions are known as Slater determinants [128], and it is common to use that
term interchangeably when discussing fermionic many-particle product states.

It should be emphasised here that the coordinate vector x can formally consist of more than
just the standard 3-vector coordinates of space. It would also include any additional coordinates
and labels of the single-particle wavefunction would have, such as the label of the component of
a 4-component Dirac wavefunction.

Configuration state functions

It would be possible to represent the many-electron wavefunctions as superpositions of Slater
determinants, and some many-electron programs do opt for that [129, 103, 93]. However, this
has two major disadvantages: (1) the combinatorial explosion means that the basis becomes
very large very quickly, and (2) the Slater determinants, even though products of orbitals that

4There is a bosonic equivalent for the Slater determinant as well, which can be written as a matrix permanent
of a similarly organised matrix of single-particle functions.
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are angular momentum eigenstates themselves (i.e. eigenstates of J2 and Jz), are not usually
eigenstates of total angular momentum J2. Using configuration state functions (CSFs) that have
been symmetrised for angular momentum can be used to work around both of these issues. Con-
ceptually, this is very similar to constructing total angular momentum eigenstates of products
of two angular momentum eigenstates via Clebsch-Gordan coefficients (see Section 2.6), essen-
tially finding a unitary transformation of the full set of Slater determinants into a set where all
the states are angular momentum eigenstates. As this is a unitary transformation, the set still
spans the exact same space as the original set of Slater determinants and forms an orthonormal
basis, so diagonalising the Hamiltonian leads to the exact same answer, simply in a different
representation.

The benefit of CSFs is that it is only necessary to consider a subset of them that have the
desired total angular momentum and parity, as a rotationally invariant Hamiltonian is block
diagonal in terms of total angular momentum J , the M quantum number, and parity. As the
angular momentum of the target state is generally known, most of the CSFs can be ignored.
This is in contrast to Slater determinants, where it is necessary to consider a much larger set of
objects, as they can also be coupled into states with other total angular momenta. Overall, this
leads to a large reduction in the number of many-particle basis elements. In addition, it also has
the effect of forcing the resulting state to have the correct angular momentum in the numerical
procedure, which can be useful in variational procedures like Hartree-Fock.

For a more precise definition of a CSF, it is first necessary to define two other terms:

Subshell A set of orbitals with fixed principal quantum number n and total angular momentum
quantum number κ. It is a set of 2j + 1 states, with all the different possible values of the
m quantum number, e.g. a 2s1/2 or 5f5/2 subshell.

Configuration A collection of orbitals is described by a list of subshells and their occupation
numbers — the latter meaning how many times each subshell is represented. The m quan-
tum numbers are not specified, and rather it represents a set of all such Slater determinants
that correspond to the given subshells and occupation numbers, e.g. a 1s21/22s21/22p11/2 con-
figuration.

A CSF is the superposition

|C; J,M, γ⟩ =
∑
m

C(C, J,M, γ;m) |C;m⟩

of the Slater determinants |C;m⟩ of a configuration C, where m represents the m quantum
numbers of all the orbitals. The coefficients C(C, J,M, γ;m) are analogous to the Clebsch-
Gordan coefficients and are fully determined by the angular momentum algebra, and hence
completely independent of the radial parts of the orbitals.

The additional label γ is necessary to distinguish between states that have the same total
angular momentum quantum numbers but are actually different states. This is something that
becomes an issue when coupling more than two states together. For the most part, in practice,
it means that one has to specify the order in which subshells are coupled together, leading to
a coupling tree, but it is also an issue within subshells with more particles. In the latter case,
states are systematically often distinguished using Racah’s seniority quantum number, although
this scheme also breaks at higher j-values and numbers of particles [130, 131, 132, 133, 134].

Determining the angular coefficients C(C, J,M, γ;m), however, is a non-trivial problem. A
further complication, due to the anti-symmetry requirements of the product states, is that cer-
tain product states are not allowed when coupling states with the same n and κ values (i.e. when
putting multiple electrons on the same orbital). It has the practical effect that not all total
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angular momentum values J satisfying the triangle relation, familiar from the Clebsch-Gordan
coefficients, are allowed. In principle, it is possible to numerically diagonalize the J2 opera-
tor [135]. However, more sophisticated approaches exist to do this more efficiently, such as the
methods of fractional parentage and grandparentage [76, 136]. In GRASP, a substantial amount
of work has gone into making this procedure as efficient as possible [137, 138, 139].

Operators

In the Fock-space formalism, operators such as the Hamiltonian of the physical system can be
represented in terms of sums of products of creation an annihilation operators. The coefficients
of these expansions are the matrix elements of these operators.5 When working in the effective
Hamiltonian approach, there are two general classes of operators of interest.

Single-particle operators. These operators act on the different particles individually, such
as the free Dirac operators or a nuclear potential, and can be written as

T =
∑
ij

Tij c
†
i cj

In an orthonormal basis, the matrix elements Tij can be calculated via

Tij = ⟨i|T |j⟩ = ⟨0|ciTc†j |0⟩ =

∫
dx ψ†

i (x)T̂ψj(x)

where T̂ is the equivalent operator acting in the function representation. In the functional
representation, such operators act on just one set of coordinates.

Two-particle operators. These operators represent interactions between particles and can
be represented as

V =
∑

i<j,k<l

Vijkl c
†
i c

†
jckcl

Examples such operators are the effective electron-electron interaction operators, e.g. the Coulomb
or Breit interaction. Due to the fermionic symmetry, the matrix elements have restrictions, and
one way to take that into account is simply to disallow certain indices. Alternatively, one can
also simply impose

Vijkl = −Vjikl = −Vijlk = Vjilk

which also leads to any matrix elements having repeating ij or kl pairs to be zero. In that case,
the expansion can be summed over all possible index combinations

V =
1

4

∑
ijkl

Vijkl c
†
i c

†
jckcl

The matrix elements can be calculated via double integrals

Vijkl = ⟨ij|B|kl⟩ = ⟨0|cicjV c†kc
†
l |0⟩ =

∫ ∫
dx1 dx2 ψ

†
i (x1)ψ†

j (x2)V̂ ψk(x1)ψl(x2)

as long as the single-particle states form an orthonormal basis.

5It should also be noted that, arguably in a more physical way, the operators can also be written directly in
terms of field operators.
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It is interesting to note here that the total angular momentum operator J2, when thinking in
this many-particle Fock-space representation, is not a pure one-particle operator but also contains
a two-particle component. This insight is generally lost when angular momentum operators are
discussed solely in the context of single-particle states.

Determining stationary states

The central task of a software like GRASP is to determine the multi-electron wavefunctions of
the stationary states of an atom. Or, in other words, the eigenstates and their corresponding
eigenvalues of the Hamiltonian H. The eigenstates are assumed to be superpositions of the
previously defined CSFs

|Ψ; J,M⟩ =
∑
C,γ

Ψn |C; J,M, γ⟩ (4.2)

where the sum runs over all possible configurations C and couplings γ within those configura-
tions. In principle, once the eigenstates have been determined, it is relatively straightforward to
calculate any additional observables or other quantities that might be of interest.

There are a few well-known options for solving many-electron systems in this framework, and
each come with their own pros and cons:

Exact diagonalisation Exact diagonalisation would be the most naive way of determining
the eigenstates in this approach. Given a large enough set of single-particle states, one
can generate the corresponding set of multi-electron states (Slater determinants or CSFs),
calculate all the matrix elements of the Hamiltonian, and then simply diagonalise the
Hamiltonian matrix in this basis. This would yield a good answer, but the computational
cost here is far too large, once the system has more than a handful of electrons. As such,
it is necessary to employ some approximate scheme.6

Another issue with this approach is that there is no a priori obvious way to pick a good
set of orbitals. In general, it is necessary to span the single-particle space, which usually
means a large set of orbitals, in turn exacerbating the computational cost problem.

Mean-field or Hartree-Fock method In this case, a single configuration is picked and is used
to construct the corresponding CSF or Slater determinant |Ψ⟩. Then, rather than working
with the expansion coefficients of the wave function expansion, the goal is to optimise the
radial parts of the orbitals such that the energy expectation value of the Hamiltonian

⟨Ψ|H|Ψ⟩

is minimised. While it is possible to use more sophisticated optimisation algorithms, often
the orbitals are updated in a simple iterative manner, by starting from a guess for the
orbitals, diagonalising the Hamiltonian and repeating, with each iteration then stepping
closer and closer to a converged state.

One key drawback of the Hartree-Fock approach is that the resulting wavefunction will,
by definition, always be described by a single determinant or CSF. This omits the static
and dynamic correlation contribution, a form of quantum entanglement of the electrons,
arising from the extra degrees of freedom that are introduced when including additional
configurations.

6In principle, there are methods for performing exact diagonalisation of large systems via stochastic methods,
such as the Full CI Quantum Monte Carlo (FCIQMC) approach [140].
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Configuration interaction (CI) A way to improve on the mean-field approach is to, essen-
tially, step towards exact diagonalisation in a step-by-step fashion, systematically including
more and more additional CSFs in your calculation.7 In CI, this is done as a separate cal-
culation after Hartree-Fock, where the Hartree-Fock optimised orbitals, used as the basis
for the single-particle space, are kept fixed.

This approach works in many cases because many of the expansion coefficients of the CSFs
in expansion (4.2) will have very small or even negligible magnitudes. This is helped along
by having Hartree-Fock optimised orbitals as the single-particle space, which helps to bias
the magnitudes of the coefficients towards certain CSFs. As such, many of the additional
CSFs can be omitted without introducing large errors, and there are schemes to help choose
the most approriate CSFs. However, like the exact diagonalisation approach, the many-
particle space still becomes very large very quickly, and so it is often not feasible to achieve
numerical convergence.

Multiconfigurational Hartree-Fock (MCHF) and multireference CI (MRCI) It is pos-
sible to extend both Hartee-Fock and CI by using multiple reference determinants or CSFs.
The multiconfiguration Dirac-Hartree-Fock (MCDHF; i.e. relativistic MCHF) method im-
plemented in GRASP does just that, where it is possible to optimise a superposition of
multiple CSFs by both varying the orbitals and also the coefficients of the superposition.
This allows a large part of the static correlation to be taken into account in the variational
step, which helps a lot in open-shell systems, for example.

Optimising the orbitals for superpositions of large sets of determinants or CSFs is com-
putationally expensive, however. Therefore it is still necessary to employ a CI method
to further refine the wavefunction, but in this case the CI space will be generated from
multiple reference states.

The Hamiltonians in GRASP

The core part of the GRASP implements the relativistic version of the MCHF method based on
the Dirac equation (multiconfigurational Dirac-Hartree-Fock, or MCDHF). In the MCDHF step,
GRASP variationally optimises the orbitals under the Dirac-Coulomb Hamiltonian

HMCDHF = hDirac + VCoulomb

where hDirac is the singe-particle Dirac Hamiltonian with a nuclear potential and VCoulomb refers
to the 1/r Coulomb interaction between the electrons. For the nuclear potential, GRASP sup-
ports the standard 1/r potential from a point nucleus, but more commonly the two-parameter
Fermi model is used with parameters that reproduce the physical RMS of the isotope under
study.

Once the orbitals have been optimised in the MCDHF step, the many-electron wavefunctions
can be further refined in a relativistic multireference CI procedure. A major benefit of the
follow-up CI step is that it allows for the many-particle space (i.e. the list of CSFs included
in the calculations) to be expanded considerably. This is because optimizing the orbitals in
the MCDHF step is a much more expensive operation, compared to just the relatively simple
construction and diagonalization of a many-particle Hamiltonian matrix performed in CI. That

7This process is generally referred to as substitution. The resulting CSFs are usually classified by the number
of electrons that have been moved relative to the reference CSFs. Single (S) and double (D) substitutions are
generally sufficient to describe most of the correlation in a system. This can also be justified through Z-dependent
perturbation theory [126].
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said, generally, this means that the many-particle space gets expanded to be as large as possible,
so it is still an expensive step, comparable to the MCDHF calculation itself.

In GRASP, the radial components Pnκ(r) and Qnκ(r) of the orbitals are represented on a
numerical grid, as opposed to using an analytical basis set. Hence the Dirac-Hartree-Fock equa-
tions are solved for each orbital separately using numerical integration, with what is essentially
the shooting method [98]. However, unlike in a diagonalisation with a basis set, this does not
leave “leftover” orbitals that can be used as virtual orbitals, that are necessary for generating
the many-particle configurations via substitution. Instead, the procedure for generating virtual
orbitals involves adding in new configurations that occupy the desired orbitals and then re-run
the MCDHF calculation. In practice, this is done in a so-called layer-by-layer fashion, where
only the orbitals with the next highest principal quantum number n are optimised at once, with
the already optimised orbitals kept fixed [127]. This is mainly due to the difficulties GRASP has
when converging the orbitals when too many are allowed to be varied simultaneously.

The CI program in GRASP implements additional physical corrections which can be included
as extra terms in the Hamiltonian:

Breit interaction. Breit is the most significant of the corrections in terms of its effect on, for
example, the energy eigenvalues. GRASP, in fact, implements the frequency-dependent
version of Breit, of the form (2.20) [117]. However, there are interpretational difficulties
with this, specifically the correct choice for the ω frequency, especially in the case of virtual
orbitals [141]. A damping factor is added to the frequency component, which can be used
to turn it into the standard Breit interaction (2.21).

QED self-energy and vacuum polarization. Both of these contributions reduce to single-
particle operators that can be toggled on separately. As they form the core of this work,
they are discussed in more detail in Section 4.2.

Normal and special mass shifts. GRASP allows including lowest-order nuclear motional cor-
rections [142] in the CI Hamiltonian. Physically, these corrections originate from relaxing
the implicit assumption that the nucleus is infinitely heavy and therefore can not move
away from the origin. Instead, a nucleus actually has a finite mass M , which can be taken
into account with the following operators

HNMS =
cα · p + c2(β − 1)

M
, HSMS =

p1 · p2

M

which are referred to as the normal mass shift (NMS) and special mass shift (SMS), re-
spectively. They are also one-particle and two-particle operators, respectively.

Including Breit in the variational part of GRASP has been long discussed in the GRASP commu-
nity, and there are other MCDHF programs that do that [93]. The challenge is largely technical
— the MCDHF part of GRASP would require significant refactoring for this to happen. The
same applies to the other corrections as well, even though expanding the MCDHF part with a
single-particle operator like a QED correction would likely be easier.

4.2 QED corrections in the GRASP software

This section deals with the mathematical details of the QED implementation into the GRASP
program package, including the general framework of incorporating new operators into the CI
code. It aims to aid in understanding the code implementation, discussed in more detail in
Section 4.4.
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Theoretical framework

The implementation of the various terms of the Hamiltonian in the CI step of GRASP reduces
to computing many-particle matrix elements given the single- or two-particle matrix elements
of the operators used. Both the effective self-energy operators used in this thesis and the vac-
uum polarization potentials are single-particle operators which can be represented (in the single
particle subspace spanned by |nκm⟩; see Eq. (4.1)) as

A =
∑

n,κ,m
n′,κ′,m′

A(n, κ,m;n′, κ′,m′) |nκm⟩ ⟨n′κ′m′| (4.3)

where only the matrix elements A(n, κ,m;n′, κ′,m′) need to be known to include such an operator
in the calculation of the full many-particle matrix elements of the Hamiltonian.

If it is further assumed that the operator A is invariant under total angular rotation generated
by J , and hence forms an irreducible tensor of rank 0, then the Wigner-Eckart theorem allows the
number of matrix elements to be reduced further. An irreducible tensor can be written in terms
of m-independent reduced matrix elements ⟨nκ||A||n′κ′⟩ and the Clebsch-Gordan coefficients8 as

⟨nκm|A|n′κ′m′⟩ = C(j, 0, j′;m, 0,m′)δκκ′ ⟨nκ||A||n′κ′⟩

That, together with the properties of the Clebsch-Gordan coefficients9, can be used to show that
the matrix elements of A are independent of m and diagonal in both m and κ, and so can be
written in terms of the reduced elements A(n, n′;κ) as

A(n, κ,m;n′, κ′,m′) = A(n, n′;κ)δκκ′δmm′

The summation in Equation 4.3 therefore reduces to

A =
∑

n,n′,κ

A(n, n′;κ)
∑
m

|nκm⟩ ⟨n′κm|

The one-particle matrix elements can then be used to calculate the many-particle matrix elements
of the operators between two CSFs |Ψa⟩ and |Ψb⟩

⟨Ψa|A|Ψb⟩ =
∑

n,n′,κ

c(a, b;n, n′, κ)A(n, n′, κ) (4.4)

where the coefficients c(a, b;n, n′, κ) are determined by the occupations and couplings of the
CSFs. The routines for calculating these coefficients have long existed in GRASP and hence the
rather complicated details of how such coefficients are calculated [137, 138, 139] are not relevant
here. For the implementation of the QED operators, it is simply sufficient to determine the
corresponding single-particle matrix elements and combine them with the values provided by the
existing GRASP routines.

First-order perturbation theory

A new feature of the updated GRASP implementation is that if a particular QED term is not
added to the CI matrix, its contribution can still be evaluated perturbatively to first-order. After

8See e.g. [76] equation (5.1) and (5.5) for the definition of irreducible tensors — setting L = 0,M = 0 yields
the invariance condition. The Wigner-Eckart theorem is discussed in Chapter 5.19.

9Specifically that a Clebsch-Gordan coefficient C(j1, j2, j;m1,m2,m) is zero unless |j1 − j2|≤ j ≤ j1 + j2 and
m1 +m2 = m.
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the many-electron wavefunction for each state |n⟩ has been determined, given as the expansion

|n⟩ =
∑
a

Cn
a |Ψa⟩

in terms of the coefficients Cn
a , the perturbative correction can be evaluated as an expectation

value of the corresponding operator

⟨n|Â|n⟩ =
∑
a,b

Cn∗
a Cn

b ⟨Ψa|A|Ψb⟩

with the help of the operator’s many-particle matrix elements ⟨Ψa|A|Ψb⟩.

Effective operators for QED self-energy

Unlike for the vacuum polarization, there is no immediately obvious way to convert QED per-
turbative self-energy diagrams into an effective operator that could be incorporated as a contri-
bution in the Hamiltonian into multi-electron calculations. In the 2018 version of GRASP, the
self-energy contribution is incorporated as a perturbative shift, using values tabulated for the
F (Zα) function [68], related to the energy shift of hydrogenic orbitals as

∆EH
SE =

αmc2

π

(Zα)4

n3
F (Zα)

and which have been calculated to high accuracy for the hydrogenic orbitals from first principles
in perturbative QED [71, 143]. These hydrogenic values for each orbital EH

SE are then scaled10

to obtain the energy shifts ESE of GRASP orbitals according to

∆ESE =
⟨ψ|ψ⟩r<R0

⟨ψH|ψH⟩r<R0

∆EH
SE

where |ψ⟩ is the GRASP orbital, |ψH⟩ the corresponding hydrogenic orbital, and the notation

r<R0
implies that the overlap integral only runs up to R0 = 0.0219 a0. Those contributions for

each of the orbitals are simply then added up based on the occupation number of the orbital in
the given many-electron state.

As part of this work, new effective self-energy operators were incorporated into the CI program
of GRASP. The operators are all treated the same way in terms of being represented by their
single-particle matrix elements for a given set of GRASP orbitals. Adding a new operator is
simply a matter of figuring out how to evaluate the matrix elements for the GRASP orbitals
represented on the underlying radial grid.

Self-energy correction from hydrogenic shifts

This is a modified version of the self-energy contribution described above, existing in GRASP
since its very early days, originally as a perturbation to the MCDHF solutions. Newer GRASP
versions have included an additional option that allows for the energy shifts to be included in
the CI matrix, where they are added to the diagonal elements of the CI matrix. The version
developed in this work effectively replicates that behaviour, where the energy shift for each

10Various ways of scaling the hydrogenic self-energy values have been reviewed in the 2013 paper by Lowe,
Chantler, and Grant [73]. Equation (A.3) is the method used in the 2018 version of GRASP.
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orbital ESE
nκ is simply used to populate the diagonal of the one-particle matrix of the self-energy

contribution
HSE

nκ,n′κ′ = ESE
nκδnn′δκκ′ (4.5)

and the off-diagonal elements are kept zero. If the self-energy contribution is evaluated in first-
order perturbation theory, it corresponds to the old standard implementation where it is evalu-
ated perturbatively.

Gaussian potential due to Pyykkö and Zhao

In 2003, Pyykkö and Zhao [18] proposed an effective local Gaussian potential for the self-energy
of the form

ΦSE(r) = B(Z) exp
[
−β(Z) r2

]
where B and β are fitted to quadratic polynomials B(Z) = b0 + b1Z + b2Z

2 and β(Z) =
β0 +β1Z+β2Z

2. The coefficients bn and βn were fitted such that the potential would reproduce
the shifts due to self-energy in hydrogenic and lithium-like systems that had been determined
by more accurate calculations in earlier works. The numerical values of the coefficients are given
in Table 2 of their article. The evaluation of the matrix elements of the operator reduces to an
integral over the potential

HSE
nκ,n′κ′ = δκκ′

∫ ∞

0

dr ΦSE(r)
[
P ∗
nκ(r)Pn′κ′(r) +Q∗

nκ(r)Qn′κ′(r)
]

Potential due to Flambaum and Ginges

A more sophisticated approach to an effective self-energy potential was propsed in 2005 by
Flambaum and Ginges [19]. While this also involves a fit to self-energy energy shifts of hydrogen-
like systems tabulated in the literature from perturbative calculations, parts of the operator are
derived more directly from QED [144]. The potential is split into three parts,

ΦSE(r) = Φg(r) + Φf (r) + Φl(r)

where the Φg, Φf and Φl terms are referred to as the magnetic form factor, the electric form
factor and the low energy contribution, respectively. The magnetic and electric form factor terms
are dependent on the nuclear potential V (r) and are given by

Φg(r) =
iα

4πm
γ · ∇

V (r)

(∫ ∞

1

e−2trm

t2
√
t2 − 1

dt− 1

) (4.6)

Φf (r) = −A(Z, r)V (r)
α

π

∫ ∞

1

1√
t2 − 1

×


(

1 − 1

2t2

)[
ln(t2 − 1) + 4 ln

(
1

Zα
+

1

2

)]
− 3

2
+

1

t2

 e−2trm dt

for the electric form factor contribution, where

A(Z, r) = (1.071 − 1.976x2 − 2.128x3 + 0.169x4)
mr

mr + 0.07Z2α2
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and x = (Z − 80)α. Finally, the low energy contribution is given by

Φl(r) = −B(Z)

e
Z4α5mc2e−Zr/aB

where B(Z) = 0.074 + 0.35Zα. The coefficients of A(Z, r) and B(Z) were determined by fitting
the self-energy shifts to earlier calculations of radiative shifts for hydrogenic atoms to improve
the results for the high principal quantum number energy levels [72, 125].

The evaluation of the matrix elements for the electric form factor and low energy contribution
is the same as for the Pyykkö & Zhao potential, as it is a simple local radial potential

HSE,i
nκ,n′κ′ = δκκ′

∫ ∞

0

dr Φi(r)
[
P ∗
nκ(r)Pn′κ′(r) +Q∗

nκ(r)Qn′κ′(r)
]
, i = f, l

The integration of the magnetic form factor is slightly different. By combining everything under
the gradient in (4.6) into a single function

f(r) =
α

4πm
V (r)

(∫ ∞

1

e−2trm

t2
√
t2 − 1

dt− 1

)

and noting that ∇f(r) = f ′(r)r̂, the magnetic form factor can be written as

Ψg(x) = iγ · ∇f(r) = iγ · r̂f ′(r)

where it becomes more clear that this is an odd operator [62, Section 6.2]. The integral for the
matrix element becomes

HSE,g
nκ,n′κ′ = δκκ′

∫ ∞

0

dr f ′(r)

[
P ∗
nκ(r) ·Qn′κ′(r) +Q∗

nκ(r) · Pn′κ′(r)

]
where instead of the f it is necessary to evaluate its derivative

f ′(r) =
α

4πm

V ′(r)

(∫ ∞

1

e−2trm

t2
√
t2 − 1

dt− 1

)
− 2mV (r)

∫ ∞

1

e−2trm

t
√
t2 − 1

dt


instead. It also needs the derivative of the nuclear potential V ′(r) to be available, and the
inner integrals have to be evaluated for each r grid point. The total matrix element for this
potential becomes then simply a matter of summing up the matrix elements for the individual
contributions

HSE
nκ,n′κ′ = HSE,g

nκ,n′κ′ +HSE,f
nκ,n′κ′ +HSE,l

nκ,n′κ′

Self-energy model operator due to Shabaev and Yerokhin

In 2013, Shabaev et.al. [20] proposed the following non-local operator based on the spectral
representation of the SE operator for modelling the self-energy contribution

ĥSE =
∑
κ

Vκ(r)P̂κ +
∑
i,j

|ϕi⟩Bij ⟨ϕj |

where Vκ(r) = Aκ exp
(
−rmc/h̄

)
, P̂κ is the projection operator onto the κ angular momentum

subspace, and the states |ϕi⟩ are a particular model basis proposed in the paper. The constants
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Aκ are determined by requiring the Vκ(r) to reproduce the self-energy shift of the lowest hydro-
genic state of the specified angular momentum. Bij are calculated from the exact hydrogenic
overlaps. This local operator significantly improves the results over a pure spectral represen-
tation explored by Dyall with little success as the chosen orbitals did not span a large enough
space [145].

While more complex than a simple local potential, this operator can quite easily be included in
many-electron calculations. The authors have published a set of Fortran routines under the name
QEDMOD [146, 147] which contain all the necessary code to evaluate this operator. Specifically,
the code allows the large and small components Pnκ(r) and Qnκ(r) to be transferred onto its
own numerical grid and to evaluate the effect of the operator on those orbitals. The output is
another large-small component pair P ′

nκ(r) and Q′
nκ(r), formally defined as

1

r

(
P ′
nκ(r)χκm(Ω)

−iQ′
nκ(r)χ−κm(Ω)

)
= ĥSE

[
1

r

(
Pnκ(r)χκm(Ω)

−iQnκ(r)χ−κm(Ω)

)]
The authors do use a different sign convention for the small component compared to the GRASP
convention of Equation (4.1), which needs to be taken into account when transferring GRASP
orbitals into QEDMOD and back. To evaluate the single-particle matrix elements, it is simply
necessary to evaluate the overlap integral between the left-hand state and the transformed right-
hand state

HSE
nκ,n′κ′ = ⟨nκ|ĥSE|n′κ′⟩ = δκκ′

∫ ∞

0

dr
[
P ∗
nκ(r)P ′

n′κ′(r) +Q∗
nκ(r)Q′

n′κ′(r)
]

Vacuum polarization potentials

While the vacuum polarization was not updated in terms of adding any higher-order contri-
butions, it was significantly refactored. Hence, it is useful to document here the underlying
mathematical expressions. As discussed in Section 2.5, vacuum polarization reduces to a po-
tential Vvp(x), which if the nuclear charge distribution is radially symmetric, also becomes a
radially symmetric function (and hence a rank-0 tensor). The evaluation of the matrix elements
becomes a simple radial integral over the potential with the orbitals

HVP
nκ,n′κ′ = δκκ′

∫ ∞

0

dr Vvp(r)
[
P ∗
nκ(r)Pn′κ′(r) +Q∗

nκ(r)Qn′κ′(r)
]

Uehling contribution

Vacuum polarization in first-order in both α and Zα was originally derived by Uehling in
1935 [65], and actually predates QED. A convenient explicit expression for the Uehling po-
tential given an arbitrary nuclear charge distribution ρ(x) [148] is

VU(x) = −2

3

Zαe2

π

∫
d3x′ ρ(x′)

|x− x′|
K1

(
2

λ̄e

∣∣x− x′∣∣) (4.7)

where λ̄e = h̄
mec

= α · a0 is the reduced electron Compton wavelength and K1(x) is defined as

K1(x) =

∫ ∞

1

dt e−xt

(
1

t2
+

1

2t4

)√
t2 − 1

In the case of a point nucleus, the potential (4.7) the outer integral disappears and the potential
becomes

VU(x) = −2

3

Zαe2

π|x|
K1

(
2|x|
λ̄e

)
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Källén-Sabry contribution

Källén and Sabry considered the contribution of vacuum polarization in the order α2, but first
order in Zα. [60] The derivation of the potential form of the contribution was first done in [149]
for a point nuclear charge. The expressions used in GRASP, which have been generalized to
arbitrary spherically symmetric charge distributions [148], are

VKS(x) = −e
2α2

π2

∫
d3x′ ρ(x)

|x− x′|
L1

(
2

λe

∣∣x− x′∣∣)
where L1 is

L1(x) =

∫ ∞

1

dt e−xt

(− 13

54t2
− 7

108t4
− 2

9t6

)√
t2 − 1

+

(
44

9t
− 2

3t3
− 5

4t5
− 2

9t7

)
ln(t+

√
t2 − 1) +

(
− 4

3t2
− 2

3t4

)√
t2 − 1 ln(8t3 − 8t)

+

(
8

3t
− 2

3t5

)∫ ∞

t

dy

(
3y2 − 1

y(y2 − 1)
ln(y +

√
y2 − 1) − ln(8y3 − 8y)√

y2 − 1

)
Vacuum polarization in higher orders of Zα

The evaluation of the (Zα)3+ terms for the first order vacuum polarization (i.e. full (Zα) contri-
bution on the Uehling level) was done by Wichmann and Kroll in the 1950s [66]. The equations
3–5 in [150] put their work into a form that is relatively straightforward to evaluate. However,
as of now, this contribution has not been incorporated into GRASP yet.

4.3 Implementation benchmark: Be-like system

To verify that the refactored rci program of GRASP and the new QED operators work cor-
rectly and produce both numerically and physically reasonable results, the updated code was
systematically tested on the Be-like isoelectronic sequence (i.e. ions with four electrons). This
particular system is convenient for the following reasons:

1. The system is simple, as it only has four electrons, and so it is computationally easy to
include all the correlation in a full CI calculations.

2. The ground state of the system (1s22s2) has a closed 2s shell (as opposed to the 3-electron
Li-like isoelectronic sequence), leading to a J = 0 ground state.

3. Detailed results with a slightly older version of GRASP were reported by Fischer et.al. for
a few specific nuclear charges [127], making it easy to at least qualitatively compare with
known reference values.

Essentially, the Be-like isoelectronic sequence should be complicated enough in terms of correla-
tion that any issues that are due to the integration of the QED single-particle operators into a
MCDHF procedure would show up. At the same time, it is simple enough computationally that
there is no need to worry about the computational cost.
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Computational procedure

The goal was to compute the Be-like isoelectronic sequence for 4 ≤ Z ≤ 118. Compared to the
reference values by Fischer et.al., where only three different elements were computed and U88+

(Z = 92) being the heaviest, the benchmark involves a full scan in Z, all the way up to oganesson
with Z = 118 — the heaviest experimentally discovered nucleus [151].

The ground state for most Be-like ions is 1s22s2 1S0 and it would, therefore, make sense to
use the single J = 0 CSF generated from the 1s22s2 configuration as the multireference space.
However, it turns out that, at higher nuclear charges, this no longer yields a good description
of the ground state, and so most of the calculations were performed with a multireference space
that contains all substitutions from 1s22s2 into 2p (a total of 8 CSFs).

When optimizing the orbitals, GRASP is only able to variationally optimize the orbitals for
the Dirac-Coulomb Hamiltonian (i.e. Breit or QED operators are not included in this step).
Following the standard GRASP procedure, the correlation orbitals are generated in a layer-by-
layer fashion, where after the n = 1 and n = 2 multireference orbitals have been optimized, the
rest are generated and optimized one n-shell at a time, with orbitals with lower n values frozen.
Each new layer of orbitals will be orthogonal to all the existing, frozen orbitals. The CSFs for
electron correlation are generated by performing a maximum number of substitutions (4) from
the multireference configuration into the whole correlation space, generating a complete basis for
a given angular momentum and parity (up to a set of orbitals). No restrictions are applied on
the angular momentum of the orbitals.

In the following discussion and figures, the configuration state list (CSL) used for a calculation
will be referred to by the multiref and cas-nN shorthands. The former refers to the relevant
multireference space, whereas cas-nN refers to the spaces that include all the substitutions into
the correlations orbitals with principal quantum number n ≤ N (i.e. the full CI complete active
space, with orbitals up to n = N).

QED corrections

The contributions that go beyond the Dirac-Coulomb Hamiltonian (including Breit and QED)
were calculated with the CI program rci that had been modified as part of this work. While
this can be thought of as an extra CI step, the calculations use the same space as the variational
calculations (as the space is already complete), and therefore this step does not actually include
any additional correlation. Conceptually, these calculations are a simple re-diagonalization of
the full many-particle Hamiltonian matrix with some or all of the terms in the Hamiltonian

H = HD +HC +HB +HVP +HSE +HMS

enabled. The different terms correspond to (1) free Dirac + nuclear potential, (2) 2-particle
Coulomb interaction, (3) 2-particle Breit interaction, (4) QED vacuum polarization (Uehling and
Källén-Sabry), (5) effective QED self-energy operators, and (6) normal and special mass shifts,
respectively. To see the effect of each term and to also compare with reference values reported
by Fischer et.al. [127], the calculation is run multiple times with different terms enabled in each
case. In particular, the following Hamiltonians were used

1. HD +HC

2. HD +HC +HB

3. HD +HC +HB +HVP

4. HD +HC +HB +HVP +HSE
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Figure 4.1: Illustration of which CSL and Z combinations successfully managed to optimize
the orbitals with RMCHDF, for both the 1s22s2 (left) and the full n = 2 (right) multireference
spaces. The black triangles indicate successful optimisations. The red diamonds are the cases
where RMCDHF apparently succeeded but produced nonsensical results and so were removed
by hand. Missing points indicate cases where RMCDHF failed with an error.

A contribution from the extra term is defined as the difference between the calculation with and
without the extra term. In each case, all the omitted terms can also be evaluated using first
order perturbation theory. The mass shift terms were not evaluated as the routines for those
were unchanged.

Nuclear models

The atomic nuclear charge distributions were modelled with the standard two-parameter Fermi
model, which takes into account the finite extent of the physical nucleus extremely well [152].
The exact parameters, which get stored in the isodata files, are determined with GRASP’s
rnucleus program using a reference RMS value and the fixed value of t = 2.3 fm for one of the
parameters of the Fermi model. The RMS values are mostly sourced from the tables by Angeli
and Marinova [84], but for the nuclei that do not have tabulated values, including for all Z ≥ 97,
GRASP falls back to the empirical formula (2.34) derived by Johnson and Soff [85].

Manual data cleanup

The rmchdf program in GRASP regularly has problems converging the orbitals, either by exiting
with an error code or more often silently failing and producing nonsensical results (e.g. containing
NaNs). Because of the latter, the RMCHDF optimisation results were further cleaned by hand by
removing the problematic CSL and Z combinations. No significant effort was made to fix these
particular optimisations, since there are simply too many cases that result in an error. It does,
however, indicate that GRASP would greatly benefit from work addressing the reliability of the
optimisation routines in the rmcdhf program.

The result of the filtering is illustrated in Figure 4.1. Generally, at higher Z values, it becomes
more and more difficult to converge orbitals with a higher n quantum number. This is consistent
with the results presented in Table 8 in the reference paper by Fischer et.al. [127], where it can
be seen that the maximum n attained is 8, 6 and 5, for Z = 20, 54, 92, respectively.
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Figure 4.2: Correlation energy of the Be-like isoelectronic sequence assuming a single-
determinant 1s22s2 multireference space at the Dirac-Coulomb level for as a functions of nuclear
charge Z. The figure on the left shows it on an absolute scale (in Hartrees), whereas the figure on
the right shows it relative to the multireference energy. The different colors indicate the number
of correlation orbitals included.

Correlation in Be-like systems

After some preliminary calculations, it became clear that the correlation behavior of the Be-like
isoelectronic sequence at high Z values Z ≥ 100 is more complicated than anticipated. For that
reason, before going into the QED benchmarks themselves, it is necessary to give a detailed
description of the issues and workarounds regarding electron correlation. This is important for
understanding certain artefacts that appear in the QED corrections at those high nuclear charges.

The problems caused by the correlation behaviour are illustrated in Figure 4.2, which shows
the correlation energy as a function of Z when using 1s22s2 for the multireference space. Starting
from the low Z values, we see that, relative to the multireference energy, the correlation energy
decreases with increasing nuclear charge. This is intuitively expected, as with a deepening nuclear
potential well, the orbital splittings become larger, and hence electron correlation becomes less
important. However, what is also clearly visible is that at high nuclear charges the correlation
energy suddenly increases. This, in turn, will introduce artefacts into the Z-behaviour of the
QED corrections, and therefore it is important to understand how to mitigate this.

It is clear that most of the correlation comes from including the additional n = 2 orbitals,
which is seen from the fact that the correlation values in Figure 4.3 are about an order of
magnitude lower than in Figure 4.2. However, as it was impossible to converge any correlation
orbitals at the higher nuclear charges, it is uncertain from that how this affects the bend in the
correlation energy. On the other hand, Figure 4.4 does show that the correlation contribution
from the n = 2 orbitals significantly reduces the ground state energy in the Z ≥ 110 region.

It turns out that the reason for this correlation effect is that the ground state configuration
changes at very high Z. This is illustrated by Figure 4.5, which shows the mixing probabilities
(|ci|2 of the mixing coefficients) of the dominant CSFs in the ground state. Slightly above
Z = 120 the ground state configuration changes from 1s21/22s21/2 to 1s21/22p21/2. However, already

earlier the 1s21/22s21/2 configuration starts mixing in more strongly, creating a noticeable shift in
the correlation energy at a lower Z value.

This change in the ground state configuration is related to the energy of the 2p1/2 orbital
falling below the energy of the 2s1/2 orbital. This can be seen in Figure 4.6, which shows the
orbital energies optimized for the ground state with a full n = 2 multireference, i.e. with the
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Figure 4.3: Same as Figure 4.2, but using the all n = 2 configurations multireference. This
leads to a correlation contribution that is about an order of magnitude smaller as most of it is
taken into account by the multireference space already.

Figure 4.4: Change in Be-like ground state energy by adding in another layer of orbitals for
extra correlation. The figure on the left shows the change on an absolute scale, whereas the
figure on the right shows the energy relative to the multireference energy.

2p1/2 and 2p3/2 orbitals and related configurations included in the multireference space.

Interestingly, it is the finite extent of the nuclear model that leads to this. In a hydrogenic
system for a point nucleus, with QED and other extra effects neglected, the 2s1/2 and 2p1/2 are
exactly degenerate. The introduction of interactions via the mean-field approach in multi-electron
calculations breaks that degeneracy, leading to a slightly higher energy of 2p1/2 relative to 2s1/2,
illustrated by Figure 4.7. This is consistent with the interpretation where 2p1/2 experiences more
screening of the nuclear potential than 2s1/2. On the other hand, in the interaction- and therefore
correlation-free hydrogenic picture of orbitals, introducing a nucleus with a finite extent leads to
a splitting in the opposite direction, with 2p1/2 lying lower than 2s1/2. This can be understood
in terms of the finite nucleus pushing the orbital energies up, relative to the point nucleus case,
due the nuclear potential well not being as deep, with orbitals that are closer to the origin being
pushed up more on average.

This is all illustrated in Figure 4.8, showing how at high enough Z value the 2p1/2 energy
starts dropping (black line), just as in the hydrogenic case with a finite nucleus (green line). These
two effects are essentially competing with each other, with the multi-electron effect dominating
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Figure 4.5: Mixing probabilities of the dominant CSFs for the Be-like isoelectronic sequence,
obtained from a full n = 2 multireference calculation.

Figure 4.6: Orbital energies for the Be-like isoelectronic sequence, obtained from a multireference
calculation with the full n = 2 multireference. The figure on the left shows absolute energies,
and the figure on the right shows the energies of 2p1/2 and 2p3/2 orbitals relative to the 2s1/2
orbital.
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Figure 4.7: CSF mixing probabilities (left) and 2p1/2 and 2p3/2 orbital energies (relative to 2s1/2;
right) for a point nucleus in the Be-like isoelectronic sequence with a full n = 2 multireference
space.

Figure 4.8: Difference in orbital energies for the 2p1/2 (solid) and 2p3/2 (dashed) orbitals with
respect to 2s1/2 orbital. The black lines with data points represent the most physical multi-
electron and finite nucleus case, showing how the energy of 2p1/2 eventually falls below 2s1/2.
For comparison, the blue line shows the multi-electron energy but with a point nucleus, the
orange line the hydrogenic point nucleus energy (where the two orbitals are degenerate), and
the green line shows the hydrogenic energy with a point nucleus (where 2p1/2 is always lower
in energy than 2s1/2). The hydrogenic energies are for a uniform shell nucleus using the same
constant RMS values for all nuclei (the RMS values of Z = 118), which is not the same nuclear
model as for the multi-electron case (Fermi nucleus with a Z-dependent RMS), but this is fine as
the relatively minor difference in the nuclear potential does not lead to any qualitative difference
in the energies. The 2p3/2 energies are shown as dashed lines, where the multi-electron case has
a slightly higher energy, but whether it is a finite or a point nucleus does not make a visible
difference to the 2p3/2-2s1/2 energy splitting in neither the multi-electron nor the hydrogenic
case.
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Table 4.1: Dirac-Hartee-Fock energies for the Be-like cases, compared with the reference values
by Fischer et.al. [127] for the cases where such values are available. All energies are given in
Hartrees.

Z This work Fischer 2016 Difference Difference (fraction)
20 -471.959 -471.959 -0.000154836 3.28071e-7
54 -3716.46 -3716.45 0.0084631 -2.27719e-6
92 -12039.7 -12040.1 -0.449982 3.7375e-5

at the lowest Z values that are usually of interest, but the finite nuclear splitting taking over at
high nuclear charges. Effectively, a strong enough single-particle Coulomb potential eventually
achieves dominance over the many-body mean-field and electron correlation.

Breit and QED contributions to Be-like energies

The focus of this work is on the implementation of additional ways of estimating the effect of
the QED self-energy on the energies and states. In order to add new self-energy operators, it
was necessary to significantly reorganise the CI program rci, where all the additional terms
that go beyond the Dirac-Coulomb Hamiltonian are implemented. As GRASP has no unit or
integration tests that could automatically check that the reorganisation does not introduce any
bugs or errors into the code, it was necessary to verify this manually. This section, therefore,
verifies that the existing terms are still yielding the same results as before and also that the
new self-energy approaches yield sensical results. This is done by looking at the behaviour of
the operators in detail for the Be-like isoelectronic sequence, including keeping an eye on any
edge cases where the operators or their implementation may run into problems. To verify the
existing contributions (Breit, vacuum polarization and hydrogenic self-energy), the results from
the updated program are compared to the results by Fischer et.al. [127].

Dirac-Hartree-Fock DC energies

Table 4.1 shows a small, but consistent difference between the multireference energies calculated
with the updated program and the reference values by Fischer et.al. [127]. It should be noted that
for Z = 54 the sign of the difference is opposite, and it is not immediately obvious where these
differences come from. It is always possible that this is simply due to a different convergence
criterium. Or, alternatively, it could be due to differences in the exact parametrisation of the
nuclear models, which may be likely as the reference data for nuclear models was updated
between the GRASP2k version (used for the reference values) and the 2018 GRASP version
(used in this work). Most likely, though, it is a combination of multiple factors contributing to
these discrepancies.

Electron correlation energy

Figure 4.9 shows the electron correlation energy for the Be-like isoelectronic sequence, depending
on the number of correlation orbital shells included in the calculation. The curve is smooth and
agrees very well with the reference values, indicating the orbital optimisation reported in the
reference paper has been successfully replicated. The bend at very high Z is related to change
in the ground state, as discussed in the previous subsection.
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Figure 4.9: Correlation contribution at the DC level for the Be-like isoelectronic sequence with
different number of correlation orbital shells. The black dots correspond to the values by Fischer
et.al. [127].

Figure 4.10: Non-variational contributions from rci at the n = 2 correlation level. The figure
on the left shows absolute energies, whereas the value on the right figure are relative to the DHF
DC energy. The black dots correspond to the values by Fischer et.al. [127].
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Figure 4.11: Breit (left) and vacuum polarization (right) contributions at various correlation
levels in the Be-like isoelectronic sequence. The black dots correspond to the values by Fischer
et.al. [127].

Existing contributions

Figure 4.10 shows the electron correlation and all post-Dirac-Coulomb contributions for the Be-
like isoelectronic sequence. As the energy scales with Z, it is helpful to look at the energy
relative to the MR energy, as is done in that figure on the right. This makes the behaviour
and agreement with the reference data more evident also at low Z values, although only at the
n = 2 CAS correlation level as that is the only case where reference data is available for all
three nuclei calculated in the reference article. The figures show a very good agreement with
the reference values by Fischer et.al. [127], including for the hydrogenic self-energy. Relatedly,
Figure 4.11 shows the Breit and vacuum polarization contributions separately for all correlation
levels, demonstrating that the contributions are to quite high precision already determined at
multireference level, with very little change due to electron correlation.

New self-energy implementations

As could be seen in Figure 4.10, the different self-energy implementations exhibit noticeable
differences at higher Z values. Generally, the Flambaum-Ginges and QEDMOD approaches
are consistent and very slightly divergent from the original hydrogenic approach. The simpler
Pyykkö-Zhao operator, however, diverges significantly, with especially non-physical behavior
at low Z values (including a sign-change). Figure 4.12 shows, as for the Breit and vacuum
polarization, the self-energy contributions are also relatively independent of electron correlation
and mostly captured already at the multireference level. It also confirms what can be observed
in Figure 4.10: the hydrogenic values calculated with the updated code agree very well with the
reference values, as one would expect, whereas the new methods show very slight disagreement.
The disagreement with the hydrogenic reference values is noticeably worse for the Pyykkö-Zhao
operator.

Electron correlation effects

Looking at absolute contributions does not clearly demonstrate the effect of electron correlation
on the contributions, as the change due to electron correlation is extremely small relative to the
absolute value. Instead, it is helpful to see much the different contributions change when a new
layer of correlation orbitals (i.e. all orbitals with a particular principal quantum number n) is



118 CHAPTER 4. RELATIVISTIC MANY-PARTICLE THEORY AND QED

Figure 4.12: QED self-energy contributions for the different implementations at various corre-
lation levels in the Be-like isoelectronic sequence. The black dots correspond to the values by
Fischer et.al. [127].

introduced. More precisely, given two different correlation models S1 and S2, it is useful to look
at the difference

δ(S2, S1;H2, H1) = ∆(S2;H2, H1) − ∆(S1;H2, H1)

In the following figures, cas-n2 refers to the difference between n = 2 and the multireference
values, whereas all the other ones refer to differences between layers with consecutive n quantum
numbers.

The figures will also include the reference values by Fischer et.al. [127]. Something to note
about the reference values, though, is that as the values for the multireference and some n-
layers were omitted from the table, it is not possible to have reference values for all the cases.
Furthermore, in some cases, the reference values for different layers are identical due to the limited
number of digits reported in the table in the reference paper, which in turn means that it is not
possible to plot those points either as the figures are on a logarithmic scale. For these reasons,
the figures also show the uncertainty in the reference values, determined from the number of
digits reported in the paper.

Figure 4.13 shows this for the correlation energy, and demonstrated excellent agreement with
the reference values even at very high n values. Similarly, the Breit and vacuum polarization
contribution (in Figure 4.14) also agree quite well, broadly speaking. However, especially for the
vacuum polarization, but also at higher n values for Breit, the reference values are limited by
the number of digits, making it unclear how reliable this conclusion is. As a specific example,



4.3. IMPLEMENTATION BENCHMARK: BE-LIKE SYSTEM 119

Figure 4.13: Change in the correlation contribution with additional correlation orbital layers
of the ground state in the Be-like isoelectronic sequence. The black dots correspond to the
values by Fischer et.al. [127]. The grey area bounded by the dashed line indicates the numerical
uncertainty of the reference values by Fischer et.al., as determined from the number of digits
reported in the paper.

Figure 4.14: Change in the Breit (left) and QED vacuum polarization (right) contributions with
additional correlation orbital layers of the ground state in the Be-like isoelectronic sequence. The
black dots correspond to the values by Fischer et.al. [127]. The grey area bounded by the dashed
line indicates the numerical uncertainty of the reference values by Fischer et.al., as determined
from the number of digits reported in the paper.
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Figure 4.15: Change in the QED self-energy contributions for the different methods with
additional correlation orbital layers of the ground state in the Be-like isoelectronic sequence.
The black dots correspond to the values by Fischer et.al. [127].

the reference values for Z = 20 are completely missing for vacuum polarization, as they are
reported to be identical for all correlation layers within the number of digits reported. However,
it should be pointed out that this is consistent with the results from this work, with the change
in contribution at low Z being far below the number of digits reported in the reference paper.

What can also be seen from the calculations is that at higher n layers the values for the change
in contribution become quite noisy, consistent with the optimisation becoming more difficult and
unreliable in that regime. However, with this data, it is not possible to say whether this due to
optimisation inaccuracies or due to the numerical implementation of the operators introducing
that numerical noise at that level of precision, and this should be further investigated.

Finally, Figure 4.15 shows the same information, but for the self-energy contributions. It
is clear that the different operators lead to somewhat different results, although the QEDMOD
and Flambaum-Ginges operators are qualitatively similar. It is also encouraging to see good
agreement in the hydrogenic self-energy case on the cas-n3 line, even though it is a regime
where the uncertainty of the reference values starts becoming significant. The strange behaviour
at around Z = 20 for Pyykkö-Zhao is due to the sign of the contribution changing, but it should
also be pointed out that at high Z values the behaviour of this operator is quite similar to
Flambaum-Ginges and QEDMOD.

One thing that should be noted is that the two reference points around 10−2 Ha, are actually
for layers with larger n values, i.e. the change in the reference self-energy is bigger at higher n.
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Figure 4.16: Difference in first-order perturbation theory results from the exact contributions,
as a fraction of the latter, for Breit (left) and vacuum polarization (right) at different electron
correlation levels. The zeroth order Hamiltonian here is DC and DCB, for the Breit and vaccuum
polarization, respectively.

This indicates that the hydrogenic self-energy implementation in GRASP2k was not very reliable
for high n orbitals. But this is also true for the refactored implementation in GRASP, as the
new calculations with values for n ≥ 6 are highly problematic, indicating that it is very much
necessary to restrict the hydrogenic self-energy to only low-n orbitals.

First-order perturbation theory

Finally, as the rci-qed.pt program implements first-order perturbation theory estimates for the
Hamiltonian terms that are excluded from the CI calculation, it is also important to check that
the results are reasonable. This is done by looking at the error introduced by the perturbation
theory relative to the CI calculation with the same correlation model.

Figure 4.16 shows the error using first-order perturbation theory introduces to the Breit
(calculated using a DC wavefunction) and vacuum polarization (calculated using a DCB wave-
function) contributions. The error is relatively small, only a few per cent for Breit, and even
less for the vacuum polarization. At the multireference level, the error is exactly zero, since the
multireference space in this case only contains a single CSF, and therefore the exact result is
identical to the perturbative result.

However, with increasing nuclear charge, the error for Breit term becomes larger and larger.
Similarly, increasing the size of the many-body space increases the error. This strongly suggests
that including the Breit term in the CI matrix is highly desirable. One would also expect that
in systems with more electrons and a larger CI space, the error would also be larger. The error
for vacuum polarization, on the other hand, is relatively unaffected by correlation.

Figure 4.17 shows the perturbative error for the different self-energy implementations, and
the order of the error is roughly the same as for Breit and vacuum polarization. Interestingly,
QEDMOD seems to be slightly less amenable to perturbative treatment, with a roughly quadratic
behaviour in the relative error, whereas the Flambam-Ginges and Pyykkö-Zhao potentials have
a linear behaviour in Z. Finally, the hydrogenic estimates are almost unaffected by the per-
turbation theory, which is consistent with it effectively being a shift on the diagonal of the CI
matrix.
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Figure 4.17: Difference in first-order perturbation theory results from the exact contributions,
as a fraction of the latter, for the self-energy implementations at different correlation levels.

4.4 Implementation

The Fortran code GRASP has a long history, starting with the MCDF program package by
Grant and co-workers in the middle of 1970s [153], and has gone through many iterations and
versions over the decades [98, 118, 119, 120, 121, 22]. The core contribution of the work in this
chapter was modifying the CI part of the code — the rci program — to improve the treatment
of QED effects within a correlated framework. The starting point of the coding work was the
MPI version of the rci program from the 2018 version of GRASP [22].11

Working on the GRASP code has presented quite a few challenges. It is an old code that has
grown substantially since the 1980s, but has not been significantly refactored. While the 2018
GRASP is written in the Fortran 90 (F90) dialect12 — all the older versions were Fortran 77

11Technically, as the 2018 version of GRASP was only released after the work described in this thesis started,
much of the initial implementation of the QED routines was done with a modified Malmö University version of the
GRASP2k package [120, 121] — the official version of GRASP preceding the 2018 version. However, transferring
the routines from GRASP2k to GRASP2018 was a relatively straightforward process, as the general structure of
the code had not changed.

12One huge downside of Fortran in the modern programming environment is the lack of resources for construc-
tive advice on the internet relative to other programming languages. As an example, while there definitely are
Fortran questions and answers on StackOverflow, there are far fewer of them compared to other more popular lan-
guages in use, such as JavaScript, Python, C or C++. As such, it is worth mentioning the book “Modern Fortran
Explained” by Metcalf, Reid and Cohen [154] which offers an excellent review of modern Fortran programming
practices, and discusses features of the language all the way to the Fortran 2008 dialect.
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(F77), and the translation from F77 to F90 was the major contribution of the 2018 release —
technically, the code is still very much in the style and spirit of Fortran 77. For a codebase the
size and complexity of GRASP, this is a major drawback.

A case in point: the routines in the main GRASP codebase are not very organized. Each
routine, even a tiny trivial one, lives in its own separate file. Actually, as a consequence of the
automatic translation, the routines usually each come with two files — the routine, written in
F77 style, and an automatically generated interface file, such that the routine could be included
in other code via a use statement. Furthermore, the only organizational units in the code are the
programs and a few “libraries” — really just collections of reused routines — and neither offer
much in terms of logically organizing the code. Furthermore, the routines within each library
and program simply form a flat hierarchy without any explicit structure.

Another drawback of the current codebase is the extensive use of global state, which comes
from the widespread use of deprecated common blocks in Fortran 77 programs. The 2018 version
of GRASP technically no longer uses common blocks but, in practice, they are still there: all the
global variables of the original F77 code now live in *_C modules, the only purpose of which
is to collect those variables. While having the variables in a module does mean that making
it is no longer necessary to manually check that each routine declares the global variables in a
consistent way — this is taken care of by the .mod file — that is actually not the main problem
with the architecture. Rather, it leads to hard-to-read and hard-to-maintain code which is
brittle and difficult to use, as each routine called can have unknown side effects. Unless one
knows exactly how each routine interacts with every other routine via the global state, which is
essentially impossible for a code the size and complexity of GRASP, and definitely not possible
for someone just trying to modify one small corner of it, it becomes very hard to reason about
the behaviour of the code when modifying or extending GRASP. This is also exacerbated by
the lack of documentation of the routines — it is generally necessary to read all the code, and
all the routines called by that code to understand what a particular part of the code is actually
doing.

Both of these issues can be alleviated with judicious use of modules, a feature of Fortran added
in F90. Routines should be logically organized into modules, grouped by their functionality.
Global state should generally be avoided and, for any complex data, derived types should be
used instead, which could be instantiated with the necessary values. The routines should then
accept the data as arguments rather than storing it as global state. As a stepping stone in a
gradual refactoring of the whole codebase, it may make sense to move the global state around
into modules that also contain the routines that access and modify the associated global state
— while not ideal, it would reduce the cognitive load of figuring out the side effects each routine
causes.

While it was out of scope to rewrite the whole RCI program, where possible the existing code,
and also the new code, was organized into such modules, to ease maintainability. This section,
therefore, functions as a brief review and documentation for the new and modified code.

Open code and collaborative development

One major step forward for the GRASP codebase that happened, partially as part of this work,
was the shift to a more open collaboration model. The authoritative version of the 2018 version of
GRASP is now tracked with version control in a Git repository hosted on GitHub.13 Rather than
sending patches and tarballs around via email, changes by the collaborators are now integrated
into the code on that platform via Pull Requests, which allow for much easier code review and
makes the process more transparent for all collaborators. Similarly, the Issue Tracker is being

13As of now, the code is hosted at https://github.com/compas/grasp

https://github.com/compas/grasp


124 CHAPTER 4. RELATIVISTIC MANY-PARTICLE THEORY AND QED

used to keep track of bugs, ideas for improvements, and offers a single, public place for discussions
on the code.

Hosting the code on a modern code collaboration platform also allows for Continuous In-
tegration to be used, via which each and every revision of the code gets automatically tested
to make sure it compiles, and also passes the limited set of automated tests. Also, as part of
that process, the documentation for the codebase, generated by the Doxygen tool, gets deployed
online automatically on every change, almost immediately available to collaborators and users.

Nevertheless, while the use of modern tools like that does help to maintain the code more
efficiently, it ultimately boils down to the number of human hours available for it. GRASP is a
complex piece of software and valuable to a large community, but there are very few resources
to properly maintain it. Similarly, there are many other software packages that are adjacent
to GRASP, and rather than treating them as “competitors”, there should be a strong push to
merge these efforts on an international level to produce a product that would be superior to any
one in particular. All that requires dedicated effort, however, and there should be more focus on
funding software development and code maintenance — the field of atomic physics would surely
benefit from that.

Refactoring of the RCI program

The QED corrections in GRASP happen at the CI step, which is performed by the rci and
rci_mpi programs. Most of the code between the two programs is actually duplicated — the
primary difference between them is that one implements multiprocessing via MPI and the other
is the original serial version of the code.

As the modifications to the rci code are extensive, they were implemented in a separate
repository that just focuses on refactoring and extending the rci program.14 The code was
organized in a way that it is easy to compile it together with the core GRASP 2018 program, as
it does use the library routines from there.

Obviously, trying to develop and maintain two almost identical codebases in parallel is a
code maintenance nightmare. Because of that, the modifications were incorporated into the MPI
version of the code, i.e. the 2018 GRASP version of rci_mpi was used as the starting point.
Preferring the MPI version over the serial version was easy — the MPI implementation in the CI
program is very valuable, offering a large speed boost for larger systems when running on a multi-
core computer. However, it can be desirable to have the serial version of the code available as
well, and as part of future work, a good solution for this would be to compile both versions from
the same code by guarding all the MPI-specific parts of the code with a preprocessor directive.

The first most obvious code update relative to the original version of rci_mpi is that the
routines have been organized into groups. The src/ directory contains the following files and
directories:

rci-qed.f90 This contains the main Fortran program that runs the CI calculation, corresponding
to the old executable. It gets compiled into a rci-qed executable.

pt.f90 This gets compiled into the rci-qed.pt executable and can run a follow-up calculation
to the CI calculation. In addition to the standard input files, it also tries to find the
TOML file, which contains all the settings the user picked in the CI calculation, in order
to correctly calculate and organize the corrections.

breit Contains all the routines related to the Breit interaction.

14All the code, and also the development history, is available on GitHub: https://github.com/compas/

grasp-rci-qed

https://github.com/compas/grasp-rci-qed
https://github.com/compas/grasp-rci-qed
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libgrasp Contains various generic helper routines that are used across the program, such as the
ones handling command line input, or reading-writing the various GRASP files. In the
future, these will hopefully become part of the core GRASP libraries, as this would also be
useful to the other GRASP programs.

mass shifts Routines that evaluate the normal and special mass shifts.

matrixelements Refactored code for calculating the many-particle matrix elements that are
shared by the main rci-qed program and the rci-qed.pt program.

qed Routines related to the QED corrections, including both the new code (e.g. new self-energy
operators and related machinery) and the old routines (e.g. vacuum polarization).

rci Most of the old routines of the rci-qed program that are not shared with any other program.

toml An MIT-licensed C library for reading and writing TOML files 15, and the necessary
Fortran wrapper module that can be used to call the library from Fortran code.

While the a more hierarchical structure was created for the files, most of the routines them-
selves were not modified. However, the different directories do form libraries that are relatively
independent from each other, with clearly defined dependency relationships. This is further en-
sured by compiling them as separate static libraries in the CMake build configuration. All the
libraries, except for the TOML modules, also depend on the 9290 and other libraries from the
main GRASP package.

Unit and integration tests. The top-level test/ directory contains a set of test programs
and scripts that verify the behaviour of the different routines. The tests were mostly only added
to the routines that were significantly modified as part of the refactoring and development. Much
of the reference data was calculated with the routines themselves, so it does not strictly check
correctness, but it does make sure that changes to other parts of the code do not introduce
unexpected changes in the outputs. As such, the coverage is not comprehensive, but it is a
major step forward from the original status quo of having no tests. The tests are also being run
on GitHub on every commit using a GitHub Actions setup.

Implementation of QED contributions

At the highest level, the construction of the CI matrix is managed by the MATRIX subroutine,
under rci/. This, via GENMAT, call SETHAM, which adds all the enabled contributions to ma-
trix elements. The actual evaluation of matrix elements for each of the contributions is per-
formed by the newly developed routines in the grasp_rciqed_cimatrixelements module under
matrixelements/, and also includes summing up the one- and two-particle matrix elements
together with the relevant many-particle coefficients essentially evaluating Eq. 4.4. The pertur-
bative program rci-qed.pt calls the grasp_rciqed_cimatrixelements routines directly.

For the QED self-energy matrix elements of all the different contributions, there is only a
single routine qed_se, which takes a matrix of one-particle elements as an argument. The QED
one-particle matrix elements are generated by the routines in grasp_rciqed_qed under qed/.
Some of the QED routines also require initialization of some global state, which is taken care of
by the qedse routine that populates the single-particle matrix.

15Available from GitHub at: https://github.com/skystrife/cpptoml

https://github.com/skystrife/cpptoml
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Estimate self-energy?

> y

Choose the method for QED self-energy estimation:

1 -- Scaled hydrogenic (default)

2 -- QEDMOD (Shabaev et al., 2015)

3 -- Flambaum & Ginges, 2005

4 -- Pyykkö & Zhao, 2003

> 1

Largest n quantum number for including self-energy for orbital

n should be less or equal 8

> 4

Figure 4.18: The command-line user interface with questions and answers for the self-energy in
the updated rci-qed program of GRASP.

Changes to the user interface. The user interacts with the CI program via a questions-and-
answers based command-line interface, which was not considerably changed with this implemen-
tation. The only difference is that the program now asks for the user to specify the method to
be used for the self-energy estimation, as illustrated in Figure 4.18. The first-order perturbation
theory program rci-qed.pt does not ask for any interactive user input but rather requires the
user to specify the name of the input file on the command line.

Hydrogenic self-energy

The implementation of the self-energy correction based on hydrogenic shifts still relies strongly
on the old routines, which are now stored under qed/legacy/. The main entry point is the
QED_SLFEN routine, which populates an array with the self-energy corresponding to the currently
loaded orbitals. The qedse routine then takes that array and populates the array in accordance
with Eq. (4.5).

Effective potentials

The implementations for both of the effective potentials due to Pyykkö & Zhao (grasp_rciqed_qed_pyykkoe
module) and Flambaum & Ginges (grasp_rciqed_qed_flambaum module), populate an array
with the potential and orbitals, and then integrate it with GRASP’s QUAD routine, yielding the
matrix element. The implementation of these routines are derived from earlier work by Christian
Thierfelder and Peter Schwerdtfeger [125].

The implementation of the Flambaum & Ginges potential also includes separate numerical
integrations for the inner integrals for each of the grid points. The derivative of the nuclear
potential is evaluated analytically for both nuclear models currently implemented in GRASP,
and therefore if any new nuclear models are implemented in the future, this part of the could
would also need to be modified.

QEDMOD integration

The integration of the QEDMOD operator was technically the most complicated. It includes
the code published by the authors [146, 147] and licenced under the Apache license. However,
the original implementation was structured as a set of programs and was not suitable for use as
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a library. Hence, the code had to undergo significant refactoring to remove the need to output
temporary intermediate files etc. QEDMOD also implements its own radial grid and nuclear
models, and so it was necessary to make sure that those match up with the ones implemented
in GRASP, including performing an interpolation onto and from the QEDMOD grid.

Unfortunately, the QEDMOD code is also written in Fortran 77 style, which means it makes
heavy use of common blocks. Those had to be renamed to make sure that they do not clash with
anything in GRASP, and the GRASP code now includes a module grasp_rciqed_qed_qedmod_common
which an interface for all the common block variables and QEDMOD routines.

All the necessary code to evaluate the matrix elements, including the initialization of the
QEDMOD global state, is contained in the routines in the grasp_rciqed_qed_qedmod module.

Refactoring of vacuum polarization routines

While this did not change any of the numerical output of GRASP, the routines to calculate
vacuum polarization contributions were also significantly refactored. The updated routines are
organized very similarly to the self-energy routines, where the role of the routines that deal
with specific vacuum polarization contribution types is just to provide the single-particle matrix
elements of the operator. The code that incorporates it into the CI matrix is generic and shared
between the different routines. The aim was to make it easy to systematically extend this part
of the code with higher-order vacuum polarization contributions, such as the Wichmann-Kroll
contribution. In the new structure, the different contributions can be evaluated individually,
which allows the first-order perturbation theory program rci-qed.pt to evaluate each of the
contributions separately.

Julia interface

Additional code that was developed as part of this work, in order to facilitate running calcula-
tions and working with the GRASP input and output files, was GRASP.jl16 — a Julia package
for working with GRASP. As it stands, it currently offers Julia functions for reading in GRASP
orbital and mixing files, and also implements a basic parser for reading in the GRASP configura-
tion state function list (CSL; *.c) files. It also heavily relies on the published AtomicLevels.jl

package17, which provides various types for representing atomic physics concepts and functions
to work with them.

16Available as an unregistered Julia package on GitHub: https://github.com/mortenpi/GRASP.jl
17Available from the Julia package manager, with code hosted at: https://github.com/JuliaAtoms/

AtomicLevels.jl/

https://github.com/mortenpi/GRASP.jl
https://github.com/JuliaAtoms/AtomicLevels.jl/
https://github.com/JuliaAtoms/AtomicLevels.jl/




Chapter 5

Epilogue

Even now, after more than a hundred years of development, atomic structure theory still offers
major challenges. Both the constantly improving accuracy of experiments, requiring an increas-
ingly thorough treatment of the theory, and the desire to have a better understanding of the
various fundamental problems within the current theoretical framework spur the development of
novel methods and ideas to face those challenges.

The focus of this work has been on the technical and numerical aspects of computing the
electronic structure and properties of atoms and making predictions from relativistic quantum
electrodynamics. Chapter 3 discusses the implementation of the one-dimensional finite element
method to the relativistic Dirac equation. Taking advantage of the existing well-organized
HelFEM C++ code [88], it was quite straightforward to expose it as a library in the Julia
programming language and implement a simple numerical solver for the equation.

The combination of a high-level programming language (Julia [101]) and a conceptually simple
basis set framework means that it is quite easy to implement various eigenvalue equations and
their modifications, and then run the respective calculations and compare the results. As an
example, Chapter 3 shows the ease of swapping out the nuclear potential and incorporating
projection operators into the equations to eliminate the free-particle negative energy states.

While it is necessary to carefully verify convergence and make sure that everything is nu-
merically stable, it is ultimately relatively easy to achieve results at essentially floating point
precision. The size of the basis can systematically be increased, both by increasing the number
of elements and by increasing the order of the primitive polynomials in each element. This leads
to fully converged results, up to the point where the numerical noise from floating-point rounding
errors take over.1 The only regime where convergence was an issue was when approaching the
critical charges for point nuclei (approximately Z ≈ 137 for the full Dirac equation and Z ≈ 123
for the projected equation).

It is worth emphasizing the numerical stability of the FEM method for the Dirac equation,
especially when compared to B-splines, a widely used basis set in relativistic and non-relativistic
atomic theory alike. As has been reported in the literature, it appears that it is necessary
to use different orders of polynomials as the basis for the large and small components in the
Dirac equation in order to obtain numerically stable results [89]. This is confirmed by anecdotal
evidence from this work, as the very first attempt to write a numerical solver for the Dirac
equation as part of this work was based on B-splines and led to a number of numerical difficulties.
Ultimately, it was easier to switch to a different basis set rather than trying to sort out the issues
themselves.

1To address the latter point, it would be interesting to provide an implementation of the basis which would
use operators with arbitrary precision floating-point numbers, or would use interval or ball arithmetic.

129



130 CHAPTER 5. EPILOGUE

While the code for the FEM method, including both the underlying HelFEM C++ library and
the Julia interface, is publicly available under an open-source license, the same does not currently
hold for the part of the code that actually constructs and solves the physical equations. In its
current experimental proof-of-concept form, the code would be of limited use to others, and it
would need to be refactored and documented before publishing. One major improvement over the
current implementation would be to employ the ContinuumArrays framework for representing
linear operators and basis sets. Using the general interface would make both HelFEM available as
a basis set for other Julia projects and, similarly, it would allow other basis sets to be used directly
with the existing Dirac solver code. On a related note, it would also be helpful to separate the
one-dimensional FEM parts of HelFEM out of the HelFEM codebase into a separate library, that
would be fully documented and designed in a way that would make it easy to provide bindings
to languages like Julia or Python.

As for the physical and mathematical problems related to the Dirac equation and QED that
should be explored in the future, the next major milestone would be applying the FEM method
to multi-electron cases. HelFEM already implements non-relativistic Hartree-Fock and density
functional theory, but preliminary attempts to use finite nuclei ran into convergence difficulties.
However, this should be a technical issue and will hopefully be fixed in the future. In the future,
HelFEM could also be expanded to solve the relativistic equations, and in parallel to that it would
be great to include the HelFEM-powered FEM basis in the Atoms.jl framework2 developed by
Stefanos Carlström, which uses a slightly different formalism for performing multi-electron self-
consistent field calculations in pure Julia.

Applying FEM to the Dirac equation in the high nuclear charge regime clearly shows how the
bound states dive into and become degenerate and resonant with the negative energy continuum
states. However, these results are purely numerical and quite qualitative, and it would be far
better to find a more systematic way to isolate and quantify such bound states that are embedded
in the continuum, including clearly linking them to Gamow states [15] and the work by Kuleshov
and others [13, 14]. Furthermore, it would be interesting to study how those numerical resonance
states could be used in multi-electron calculations.

Finally, on the topic of multi-particle calculations, it would be extremely interesting to gen-
eralize the projection operator approach. In the proper QED interpretation of the positive and
negative energy states (discussed in Section 2.2), the negative energy states become associated
with positive-energy positrons, and the parts of the nuclear potential operator that mix the
positive and negative energy states become pair-creation and pair-annihilation terms. In the
single-particle projection operator approach we are effectively removing those pair-creation and
pair-annihilation terms, and so can fix the particle number. In the numerical FEM framework, it
would not be too difficult to re-enable those terms and allow mixing of subspaces with different
particle numbers (but known total charge), via the implementation of Fock space product states.
While, in principle, this would connect us to Fock spaces with an unlimited number of particles,
the energy penalty from the mass ultimately means that cutting off at relatively few particles
will probably be sufficient. It would be interesting to see how this would affect the discrepancy
in the predictions of the Dirac equation described in Section 3.6. An interesting special case
would be solving the zero-charge case, which should lead to a form of vacuum polarization.

Chapter 4 deals with improving the treatment of QED effects in the multiconfigurational
Dirac-Hartree-Fock and configuration interaction software GRASP. In order to implement the
more modern approaches for multi-electron QED self-energy corrections into the CI part of
GRASP, it was necessary to significantly refactor this part of the code. The implementation is
tested in a multi-electron context with a four-electron Be-like system. As an incidental observa-

2A development version available from: https://github.com/JuliaAtoms/Atoms.jl/

https://github.com/JuliaAtoms/Atoms.jl/
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tion from this testing was that the Be-like isoelectronic sequence exhibits a configuration change
in the ground state at high nuclear charges due to the competing effects from the electron-electron
interaction and finite nuclear models on the orbital energies.

In the future, and this has been discussed in the GRASP community for a long time, it would
be very useful to include the additional contributions that go beyond the current Dirac-Coulomb
Hamiltonian directly in the variational MCDHF part of the code. For many systems, this is
necessary in order to achieve greater accuracy [20]. And while the Breit interaction would be
the major contribution, QED effects such as self-energy and vacuum polarization sometimes also
need to be taken into account in the variational procedure, as was demonstrated by the study of
QED effects on the 2P1/2 — 2P3/2 transition in flourine-like systems [155, 156, 157].

More broadly, and as briefly discussed in Section 4.4, GRASP would greatly benefit from
systematic maintenance work from people who have the vision and desire to implement modern
software development practices. The structure of the code should be reorganized considerably,
in a way that would allow for future development and maintenance to be performed more easily.
It would also greatly benefit the community if the code was organized in a more accessible and
hackable way, including bindings to higher-level languages such as Julia or Python, which would
make exploratory coding far easier. In its current form, GRASP is quite good at doing what
it does, but it is essentially impossible to improve and expand upon without an unreasonable
amount of effort.

Finally, the new QED operators need to be battle-tested with interesting systems, such as
various heavy and super-heavy elements. As part of this work, an attempt was made to apply
the updated GRASP code on the Ni-Pd-Pt-Ds column of the periodic table, in order to predict
the properties of darmstadtium (Ds). However, this project stalled because of the difficulties
with the correct description of the few first low-lying states of nickel (Ni), which turned out to
be a notoriously difficult problem [158, 159, 160, 161] and is still unresolved. The treatment of
dense electronic spectra remains a major challenge to electronic structure theory as even large-
scale multireference CI calculations and density matrix renormalization group approaches by
other research groups (unpublished), performed in parallel to this work, were not able to get this
spectrum right. Funnily, the spacing between the levels in palladium (Pd) and higher is actually
greater, and those systems do not have this issue, so it would have been perhaps better to start
from palladium instead of the lightest element in that group [162].
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Appendix A

Mathematical notation

This appendix documents some of the notation and conventions used in this thesis. It primarily
functions as a reference such that there would be no ambiguity in how to interpret the various
mathematical expressions presented in this thesis.

A.1 Tensors and the Minkowski space

The two-dimensional Kroenecker delta δij and the three-dimensional Levi-Civita symbol εijk,
useful when writing down various mathematical expressions in index notation, are defined as
follows

δij =

{
1 if i = j

0 otherwise

εijk =


1 if (i, j, k) is an even permutation

−1 if (i, j, k) is an odd permutation

0 if there are any repetitions in (i, j, k)

In relativistic theory, the various quantities such as space-time points or energy-momentum
values are represented as four-dimensional vectors. Such four-vectors are denoted by standard
font, e.g. x, or xµ or xµ if the contra- and covariant components, respectively, are required to
be denoted. Often, a four-vector is split up into its time-like and space-like components (in a
particular frame of reference), in which case the space-like part will be a bold 3-vector

xµ = (x0,x)

Often the zeroth component has a special meaning, e.g. time for a space-time point, or energy
in the case of four-momentum, and is denoted with the appropriate symbol, e.g.

xµ = (t,x), pµ = (E,p)

The Minkowski metric is assumed to be in the so-called “particle physics” sign convention

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
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A.2 Delta function

The (one-dimensional) Dirac delta “function” is a distribution δ defined via the relationship∫
dx f(x)δ(x− y) = f(y)

A property of the delta function that is particularly useful when working with plane-wave func-
tions is its relation to what is essentially the Fourier transform of the identity function∫

dnx eip·x = (2π)nδ(n)(p)

with the three-dimensional special case being of particular use in this work∫
d3x eip·x = (2π)3δ(3)(p)

Mass shell, Lorentz invariance, and normalization. Another particularly useful relation-
ship that comes up in relativistic quantum field theory is when the delta function is being used
to constrain the four-momentum of the particle to the mass shell (i.e. p2 = m2). In that case,
the integral over the four-dimensional momentum space can be reduced to two integrals over the
three-momentum space via∫

d4p f(p)δ(p2 −m2) =

∫
d3p

1

2Ep

[
f(Ep,p) + f(−Ep,−p)

]
where p = (E,p) and f(p) is a four variable function f(p) = f(E,p). Such an integral is
Lorenz-invariant, and this relationship is the reason why the 1

2Ep
factor often appears in rela-

tivistic quantum field theory when it is expressed in terms of space-like quantities. To prove the
relationship, one can start by∫

d4p f(p)δ(p2 −m2) =

∫
d3p

∫ ∞

−∞
dE f(E,p)δ(E2 − p2 −m2)

=

∫
d3p

[∫ 0

−∞
dE f(E,p)δ(E2 − p2 −m2) +

∫ ∞

0

dE f(E,p)δ(E2 − p2 −m2)

]

=

∫
d3p

∫ ∞

0

dE
[
f(E,p) − f(−E,p)

]
δ(E2 − p2 −m2)

where in the last step it is also necessary to take into account that dE → −dE when E → −E,
leading to the minus sign. Then, with the help of the variable substitution

y(E) = E2 − p2 −m2 = E2 − E2
p ⇐⇒ E(y) = ±

√
E2

p + y, dE =
dy

2E(y)

which leads to the integration bounds changing as y(∞) = ∞, y(0) = −p2 −m2 = −E2
p ≤ 0,

with the delta functions setting y = 0 which leads to E(0) = Ep, it can be shown that∫
d4p f(p)δ(p2 −m2) =

∫
d3p

∫ ∞

−Ep

dy

2E(y)

[
f(E(y),p) − f(−E(y),p)

]
δ(y)

=

∫
d3p

1

2Ep

[
f(Ep,p) − f(−Ep,p)

]
=

∫
d3p

1

2Ep

[
f(Ep,p) + f(−Ep,−p)

]
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A.3 Dirac gamma matrices

The four-by-four gamma matrices γµ are defined by the anti-commutation relation

{γµ, γν} = 2gµν

and therefore do not have a unique representation. Unless stated otherwise, they are assumed
to be in the Dirac (or standard) representation

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
where σi are the two-by-two Pauli matrices and 1 the corresponding unit matrix.

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
It is also common to combine these into three-vectors γ = (γ1, γ2, γ3) and σ = (σ1, σ2, σ3). The
gamma matrices are also linked to the α and β matrices via

α = γ0γ =

(
0 σ
σ 0

)
, β = γ0 =

(
1 0
0 −1

)

A.4 Spherical harmonics

For spherically symmetric systems, in radial coordinates, the angular parts of the orbitals can
generally be solved analytically and represented in terms of spherical harmonics Y m

ℓ (ϑ, ϕ). Fol-
lowing the conventions of the ISO 80000-2 standard “Quantities and units — Part 2: Mathemat-
ical signs and symbols to be used in the natural sciences and technology” [163], where ϕ ∈ [0, 2π]
and ϑ ∈ [0, π] are the angular coordinates in the standard right-handed spherical coordinate
system, the spherical harmonics are the solutions so the partial differential equation

1

sinϑ

∂

∂ϑ

(
sinϑ

∂Y m
ℓ

∂ϑ

)
+

1

sin2 ϑ

∂2Y m
ℓ

∂ϕ2
+ ℓ(ℓ+ 1)Y m

ℓ = 0

and can be written as

Y m
ℓ (ϑ, ϕ) =

√
2ℓ+ 1

4π

(ℓ− |m|)!
(ℓ+ |m|)!

P
|m|
ℓ (cosϑ)eimϕ

where Pm
n (z) are the associated Legendre functions and solutions y(z) = Pm

n (z) to the second-
order differential equation

(1 − z2)y′′ − 2zy′ +

[
n(n+ 1) − m2

1 − z2

]
y = 0

for m,n ∈ N,m ≤ n. They can be written as

Pm
n (z) = (−1)m(1 − z2)m/2 dm

dzm
Pn(z)

where in turn for n ∈ N
Pn(z) =

1

2nn!

dm

dzm

(
z2 − 1

)n
are the solutions to

(1 − z2)
d2Pn

dz2
− 2z

dPn

dz
+ n(n+ 1)Pn = 0
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Spin-spherical harmonics

When working with states that are eigenstates of total angular momentum

J = L + S

i.e. the sum of orbital and spin angular momenta, as is generally the case in relativistic atomic
physics, the orbitals can usually be written in terms of the two-components spin-spherical har-
monics χκm(ϑ, ϕ). Such angular functions can be constructed from the usual spherical harmonics
with the use of Clebsch-Gordan coefficients

χκm(ϑ, ϕ) =
∑
σ

C(j, ℓ, 1/2;m,m− σ, σ)Y m−σ
ℓ (ϑ, ϕ)ϕσ

where ϕ1 are the two spin-1/2 eigenstates of Sz

ϕ1 =

(
1
0

)
, ϕ2 =

(
0
1

)
The j and κ quantum numbers (see also Section 2.6) are related by

κ = ∓
(
j +

1

2

)
, for j = ℓ± 1

2



Appendix B

Solutions of the Dirac equation

The Dirac equation for a single spin-1/2 particle in a central radial potential V (r) (Eq. (2.27) in
Section 2.6) can be written as [

iγµ∂µ −m+ eγ0V (r)
]
ψ(x) = 0 (B.1)

where γµ are the Dirac gamma matrices and ψ are 4-component complex functions on R3.

B.1 Free-particle solutions

The free-particle special case of the equation (B.1) without any external fields (see also Eq. 2.14
in Section 2.4) is (

iγµ∂µ −m
)
ψ(x) = 0

Following the derivation in Grant’s book [62], this equation has plane-wave solutions of the form

ψ(x) = u(p)e−ix·p

where xµ = (t,x) and pµ = (E,p) are four-vectors. The time-dependency can be further split
off into an exponential

ψ(t,x) = u(E,p)eix·pe−iEp

and if the Dirac equation is applied to this expression, it leads to a four-by-four matrix equation
for u(p) (

γµp
µ −m

)
u(p) = 0 (B.2)

which therefore should have four independent solutions.
Multiplying Eq. (B.2) with (γµp

µ+m) on the left leads to the constraint pµpµ = E2−p2 = m2

on the valid four-momenta that the solution can have, restricting them onto the so-called “mass
shell”. The three-momentum p can be arbitrary, and leads to energies p0 = E = ±E(p) for each

three-momentum, where E(p) =
√
m2 − p2 is the positive energy square root of the relativistic

energy. This shows how the solutions of the free-particle Dirac equation split into two distinct
subsets: the positive energy continuum with E ≥ mc2 and the negative energy continuum with
E ≤ −mc2.

u(p) is a four-component value which can be split up into the upper and lower component
pairs

u(p) =

(
u1(p)
u2(p)

)
149
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and equation (B.2) implies a relationship between u1(p) and u2(p)

u2(p) =
σ · p
p0 +m

u1(p) ⇔ u1(p) =
σ · p
p0 −m

u2(p) (B.3)

However, that is the only constraint and so it is possible to pick e.g. u1 completely freely, and
that then fixes u2 (or vice verse). As u1 (or u2) is just a two-component complex vector, there
are two linearly independent choices, e.g.

ϕ1 =

(
1
0

)
, ϕ2 =

(
0
1

)
To avoid the p0 = m singularity in the denominators in (B.3), the convention is to fix the upper
component to ϕr if p0 > 0 and the lower component when p0 < 0. Altogether, for each p, there
are four linearly independent u(p) values, and to write them down more compactly it is helpful
to defined the symbol

Γ(p) =
σ · p

E(p) +m

For p0 = E(p) > 0 there therefore are the two solutions

u(p) = u(r)(p) ∝
(

ϕr
Γ(p)ϕr

)
, r = 1, 2

The other two solution when p0 = −E(p) < 0, in which case

u1(p) =
σ · p
p0 −m

u2(p) =
σ · p

−E(p) −m
u2(p) = − σ · p

E(p) +m
u2(p) = −Γ(p)u2(p)

can be written as

u(p) = v(r)(p) ∝
(
−Γ(p)ϕr

ϕr

)
, r = 1, 2

Normalization. The normalization for u(r) and v(r) is in terms of the inner product ψ̄ψ =
ψ†γ0ψ. It can be shown that

ū(r)(p)v(s)(p) = v̄(r)(p)u(s)(p) = 0, ū(r)(p)u(s)(p) ∝ δrs, v̄(r)(p)v(s)(p) ∝ δrs

The Lorentz invariant normalization condition is

ū(r)(p)u(s)(p) = δrs = v̄(r)(p)v(s)(p)

which leads to the following definition of u(r)(p) and v(r)(p)

u(r)(p) =

√
E(p) +m

2m

(
ϕr

Γ(p)ϕr

)
, r = 1, 2

v(r)(p) =

√
E(p) +m

2m

(
−Γ(p)ϕr

ϕr

)
, r = 1, 2

(B.4)

Finally, it can also be shown that u and v are also orthogonal in terms of the standard inner
product

u(r)†(p)u(s)(p) =
Ep

m
δrs, v(r)†(p)v(s)(p) = −Ep

m
δrs

u(r)†(p)v(s)(p) = 0 = v(r)†(p)u(s)(p)

albeit not normalized.
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B.2 Bound state solutions for point charge

A special case of the external-field Dirac equation (B.1) that can be solved analytically is if the
central potential is generated by a point nucleus, leading to a Coulomb potential centered on the
origin

V (r) = −Z/r (B.5)

The solutions are generally expressed in terms of spherical coordinates (see also Section 2.6)
where the orbitals are represented in terms of radial complex single variable functions P (r) and
Q(r) defined by Eq. (2.28)

ψ(x) =
1

r

(
P (r)χκm(θ, φ)
iQ(r)χ−κm(θ, φ)

)
where χκm(θ, φ) are the spin-spherical harmonics (see Appendix A), leading to the radial Dirac
equation  mc2 − Z

r h̄c
(
− d

dr + κ
r

)
h̄c
(

d
dr + κ

r

)
−mc2 − Z

r

(P (r)
Q(r)

)
= E

(
P (r)
Q(r)

)
(B.6)

which is a two-component matrix differential equation, and a special case of Equation (2.29) with
the potential (B.5).

The bound state solutions for a given angular momentum subspace labelled by the κ quantum
number to Eq. (B.6) can be written as [62, Eq. (3.3.22) and (3.3.23)]

P (r) = N
√
c+ E/c ργe−ρ/2[−nrM(−nr + 1, 2γ + 1; ρ) + (N − κ)M(−nr, 2γ + 1; ρ)]

Q(r) = N
√
c− E/c ργe−ρ/2[−nrM(−nr + 1, 2γ + 1; ρ) − (N − κ)M(−nr, 2γ + 1; ρ)]

where N is the normalization constant

N =

√
Zα

2N2(N − κ)

Γ(2γ + nr + 1)

nr[Γ(2γ + 1)]2

nr = n+|κ| is the inner quantum number, γ =
√
κ2 − (Zα)2 > 0, ρ = 2λr and λ = Z/N where

N is the apparent principal quantum number.

N =
√
n2 − 2nr(|κ| − γ) =

√
(nr + γ)2 + (Zα)2

The functions M(a, b; ρ) are the solutions to the Kummer’s confluent hypergeometric equa-
tion [62, Eq. (A.3.14) and (A.3.15)].





Appendix C

Additional FEM figures

This appendix contains additional figures for Chapter 3 with additional parameters showing that
the behaviours described are consistent across a range of parameter values. Specifically, there
are three groups of figures:

1. Additional examples of the non-relativistic grid checks with a range of nuclear charges Z and
nuclear models, complementing Figure 3.8. The figures show how well the non-relativistic
1s energy converges as a function of the z parameter of the exponential grid, defined by
Eq. (3.4). The parameter determines how close to the origin the element boundaries are dis-
tributed, with higher z placing the elements closer to the origin. (Figures C.1, C.2, C.3, C.4)

2. Additional examples of the relativistic grid checks, complementing Figures 3.16 and 3.17.
As in the non-relativistic case, they show the convergence of the relativistic 1s energy
as a function of the grid parameter z for various nuclear charges Z and nuclear models.
Figures C.5, C.7, C.8, C.9 show the convergence for different nuclear models with 6th order
polynomials, whereas Figure C.6 shows the point nucleus case with 10th order polynomials.

3. Additional examples of the consistency of relativistic 1s energy estimates with various prim-
itive basis polynomials orders and element distributions, complementing Figures 3.19, 3.20,
and 3.21 from Section 3.4 with additional nuclear charge Z values and nuclear models. The
values reported on the bottom of each plot is the finite nuclear correction values, i.e. the
1s energy difference from the analytical point nucleus energy. The energies and their un-
certainties were determined using the algorithm described in Section 3.3. In some cases,
especially when the grid points are distributed and at higher Z values, it is not always pos-
sible to achieve good convergence with different z values. The estimate 284±1.6 Ha on the
bottom-left plots in Figure C.10 shows that near the critical charge Z ≈ 137 it very difficult
to achieve convergence in the case of a point nucleus. (Figures C.10, C.11, C.12, C.13)
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Figure C.1: Convergence of the non-relativistic 1s energy as a function of the z parameter of
the exponential grid for the point nucleus for various nuclear charge Z values ranging from 1
to 160. The calculations were performed with order 6 polynomials, rmax = 40 a0 and for nuclear
models with Rrms = 10−4 a0. The convergence measure is defined as the (absolute) change in
energy as the number of elements is doubled (as indicated in the legend).
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Figure C.2: Convergence of the non-relativistic 1s energy as a function of the z parameter of
the exponential grid for the hollow nucleus for various nuclear charge Z values ranging from 1
to 160. The calculations were performed with order 6 polynomials, rmax = 40 a0 and for nuclear
models with Rrms = 10−4 a0. The convergence measure is defined as the (absolute) change in
energy as the number of elements is doubled (as indicated in the legend).
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Figure C.3: Convergence of the non-relativistic 1s energy as a function of the z parameter of the
exponential grid for the spherical nucleus for various nuclear charge Z values ranging from 1
to 160. The calculations were performed with order 6 polynomials, rmax = 40 a0 and for nuclear
models with Rrms = 10−4 a0. The convergence measure is defined as the (absolute) change in
energy as the number of elements is doubled (as indicated in the legend).
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Figure C.4: Convergence of the non-relativistic 1s energy as a function of the z parameter of the
exponential grid for the Gaussian nucleus for various nuclear charge Z values ranging from 1
to 160. The calculations were performed with order 6 polynomials, rmax = 40 a0 and for nuclear
models with Rrms = 10−4 a0. The convergence measure is defined as the (absolute) change in
energy as the number of elements is doubled (as indicated in the legend).
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Figure C.5: Convergence of the relativistic 1s energy as a function of the z parameter of the
exponential grid for the point nucleus for various nuclear charge Z values ranging from 1 to
160. The calculations were performed with order 6 polynomials, rmax = 40 a0 and for nuclear
models with Rrms = 10−4 a0. The convergence measure is defined as the (absolute) change in
energy as the number of elements is doubled (as indicated in the legend).
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Figure C.6: Convergence of the relativistic 1s energy as a function of the z parameter of the
exponential grid for the point nucleus for various nuclear charge Z values ranging from 1 to
160. The calculations were performed with order 10 polynomials, rmax = 40 a0 and for nuclear
models with Rrms = 10−4 a0. The convergence measure is defined as the (absolute) change in
energy as the number of elements is doubled (as indicated in the legend).
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Figure C.7: Convergence of the relativistic 1s energy as a function of the z parameter of the
exponential grid for the hollow nucleus for various nuclear charge Z values ranging from 1 to
160. The calculations were performed with order 6 polynomials, rmax = 40 a0 and for nuclear
models with Rrms = 10−4 a0. The convergence measure is defined as the (absolute) change in
energy as the number of elements is doubled (as indicated in the legend).
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Figure C.8: Convergence of the relativistic 1s energy as a function of the z parameter of the
exponential grid for the spherical nucleus for various nuclear charge Z values ranging from 1
to 160. The calculations were performed with order 6 polynomials, rmax = 40 a0 and for nuclear
models with Rrms = 10−4 a0. The convergence measure is defined as the (absolute) change in
energy as the number of elements is doubled (as indicated in the legend).
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Figure C.9: Convergence of the relativistic 1s energy as a function of the z parameter of the
exponential grid for the Gaussian nucleus for various nuclear charge Z values ranging from 1
to 160. The calculations were performed with order 6 polynomials, rmax = 40 a0 and for nuclear
models with Rrms = 10−4 a0. The convergence measure is defined as the (absolute) change in
energy as the number of elements is doubled (as indicated in the legend).
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Figure C.10: Consistency of the estimates of the relativistic 1s energy values, together with
their uncertainties for the point nucleus. The left column is consistency between runs with
different basis polynomial orders and the right column is with different z parameter values of the
exponential grid. The values on the y-axis are relative to the mean µ and uncertainty σ of the
FNC correction (reported below each graph in Hartrees) of all the data points.
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Figure C.11: Consistency of the estimates of the relativistic 1s energy values, together with
their uncertainties for the hollow nucleus. The left column is consistency between runs with
different basis polynomial orders and the right column is with different z parameter values of the
exponential grid. The values on the y-axis are relative to the mean µ and uncertainty σ of the
FNC correction (reported below each graph in Hartrees) of all the data points.
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Figure C.12: Consistency of the estimates of the relativistic 1s energy values, together with
their uncertainties for the spherical nucleus. The left column is consistency between runs with
different basis polynomial orders and the right column is with different z parameter values of the
exponential grid. The values on the y-axis are relative to the mean µ and uncertainty σ of the
FNC correction (reported below each graph in Hartrees) of all the data points.
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Figure C.13: Consistency of the estimates of the relativistic 1s energy values, together with
their uncertainties for the Gaussian nucleus. The left column is consistency between runs with
different basis polynomial orders and the right column is with different z parameter values of the
exponential grid. The values on the y-axis are relative to the mean µ and uncertainty σ of the
FNC correction (reported below each graph in Hartrees) of all the data points.
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