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Abstract—This study presents a deep learning (DL) neural
network hybrid data-driven method that is able to predict tur-
bulence flow velocity field. Recently many studies have reported
the application of recurrent neural network (RNN) methods,
particularly the Long short-term memory (LSTM) for sequential
data. The airflow around the objects and wind speed are the most
presented with different hybrid architecture. In some of them,
the data series is used with the known equation, and the data is
firstly generated. Data series extracted from Computational Fluid
Dynamics (CFD) have been used in many cases. This work aimed
to determine a method with raw data that could be measured
with devices in the airflow, wind tunnel, water flow in the river,
wind speed and industry application to process in the DL model
and predict the next time steps. This method suggests spatial-
temporal data in time series, which matches the Lagrangian
framework in fluid dynamics. Gated Recurrent Unit (GRU), the
next generation of LSTM, has been employed to create a DL
model and forecasting. Time series data source is from turbulence
flow has been generated in a laboratory and extracted via 2D
Lagrangian Particle Tracking (LPT). This data has been used for
the training model and to validate the prediction in the suggested
approach. The achievement via this method dictates a significant
result and could be developed.

Index Terms—Recurrent Neural Network, Unsteady Flow,
Deep Learning

I. INTRODUCTION

Turbulence is observed in the most natural and artificial
phenomena [1] [2]. Water in the waterfall, airflow in the wind,
smoke from a chimney, and airflow around the objects are
examples from the environment [1]. The industry cases are the
flow in the engine mixing chamber; two working flows inside
the heat exchanger, and airflow around the airplane and car [1]
[3] [4] [5]. In large-scale turbulence, solar flare, oceanic and
atmospheric flow are other giant emanations that influence our
lives [2]. The turbulence flow almost everywhere [1]. Turbu-
lence flow is chaotic, nonrepeatable, and random, and it is well
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addressed that the statistics aspect of the flow is applicable
[1]. On the other hand, Computational Fluid Dynamics (CFD)
is a leading traditional numerical approach to dealing with
nonlinear fluid dynamics phenomena such as turbulence flow.
Direct Numerical Method (DNS) and Large Eddy Simulation
(LES) are two capable and accurate methods to resolve the
turbulent flow problems. But, from the computational cost,
they are costly. High-performance computation (HPC) is an
essential factor for all solutions in DNS and LES. Simulation
for many types of turbulence problems is almost impossible on
the actual scale because of the limitation in the computation.
Scientists have efforts to create similar scale problems to
natural phenomena. However, we are still far from solving
problems with extensive size. In many CFD applications, it
is required to validate the solution with empirical data, is an
another limitation. These constraints illustrate a reliable tool
is necessary to overcome the above-called obstacles. Machine
learning (ML) based on Artificial Intelligence (AI) has become
an important key to encountering nonlinear phenomena. Deep
learning (DL) is a capable approach in ML and is able
to extract the hidden features from complex and nonlinear
dynamic systems [6] [7]. Recurrent neural network (RNN) is
a type of neural network especially appropriate for sequential
data such as time series [6]. An RNN is a neural network
composed of an individual hidden layer with a feedback loop
in which the hidden layer output with the current input is
returned to the hidden layer [6]. RNN network defines the
temporal relationship because of sequential input data, and
three weight matrices and two biases characterize it. RNNs
can almost not train sequence data with long-range temporal
dependencies because the vanishing gradients problem exists
[6]. Long short-term memory (LSTM) network was developed
and suggested in 1995 [8]. LSTM applies a gating structure to
control the transients of the recurrent connectors and can deal
with the vanishing gradient issue. Moreover, it is able to model
longer temporal dependencies rather than standard RNNs [6].
Recently, LSTM has been employed in many studies in order
to model time series prediction. The interest in this method has



also increased in the fluid dynamics area. Vinuesa et al. [6]
have used LSTM to predict the turbulence shear flow. Veisi et
al. [7] used LSTM hybrid model prediction for unsteady flows.
LSTM Potential has been led to hybrid models such as convo-
lutional neural network (CNN)–LSTM, Autoencoders–LSTM,
and LSTM/RNN [9]. Gated recurrent unit (GRU) [10] is a
variant of LSTM which has fewer parameters than LSTM,
and the training rate is faster [9]. In GRU, the forget gate
and input gate in LSTM are replaced with only one update
gate [9]. GRU is required fewer data to train the model,
therefore gaining a similar performance in multiple tasks with
less computation [9]. Recently GRU has been employed to
forecast wind speed and predicts electricity demand [10] [11]
[12]. Most fluid flow studies that were applied ML/DL are
composed of data extracted from CFD studies’ known equa-
tions. On the other hand, many works included preliminary
steps to do autoencoder to extract the main features, such as,
proper orthogonal decomposition (POD), dynamic mode de-
composition (DMD), and well-known reduced order methods
(ROMs) [7] [13] [14] [15]. In the ML/DL context, there is a
capability to determine a training method with raw data from
the Lagrangian framework velocity field involving spatial and
temporal features. In many applications of industry, research
and experiment, it is possible to measure the velocity field
directly or indirectly via devices such as constant temperature
anemometer (CTA), flowmeter (and obtain the velocity), pitot
tube, laser doppler anemometry (LDA), and light detection
and ranging (LIDAR). This study introduces a method to use
time series data consisting of velocity components and position
in 2D coordinate to train the GRU model and evaluate the
prediction in future time. Hence, this paper is organized as
follows. The applied theory is presented in Section II . In
Section III , the method is introduced. Section IV discusses
the result, and the conclusions are presented in Section V .

II. THEORY

A. Lagrangian Framework in fluid dynamics

Lagrangian framework is a description of the motion fluid,
involves keeping track of the position vector and velocity
vector of each point of flow which it is called fluid particle
[1] [16]. A fluid particle is a point that moves with the local
fluid velocity, therefor it specifies the position at time t of fluid
particle [16]. The definition of fluid particle mathematically is
[1]:

xi = xi(t, xi,0) , i = 1, 2, 3 (1)

Ui = Ui(t, x1(t, x1,0), x2(t, x2,0), x3(t, x3,0)) , i = 1, 2, 3
(2)

Where (1) and (2) determines the fluid particle position
and velocity in 3D coordinates respectively. x is the position,
U is the velocity, t is the time and denote i specifies the
vector component. Based on the Lagrangian definition, for
fluid particle there is a time series data which specify a position
and velocity at particular time. Particularly in turbulence
flow which has not known equation and it is investigated in

statistics, these time series data available and appropriate to
use.

B. Gated Recurrent Unit (GRU)

From the DL method, it is well known that RNNs can
perform prediction for sequence data via Long Short Time
Memory (LSTM). Gated Recurrent Unit (GRU) [17] is a next-
generation defemination from LSTM with a bit distinction
in the model architecture. Literature reports that GRU is
comparable in performance is considerably faster to compute
than LSTM and has a streamlined model [18]. GRU cell
that is displayed in Fig. 1, is composed of a hidden state,
reset gate, and update gate. We can control how much of
the previously hidden state might be remembered from the
reset gate. On the other hand, via the update gate, we can
understand how much of the new hidden state is just a copy of
the old hidden state. This architecture in the GRU establishes
two significant features: the reset gate captures short-term
dependencies in sequences, and the update gate receives long-
term dependencies in sequences [17].

Fig. 1. Gated Recurrent Unit (GRU) cell

III. METHODOLOGY

A. Velocity time series data

This study has designed and applied a suggested hybrid
model based on time series vector data for velocity. The spatial
and temporal data extracted from 2D Lagrangian Particle
Tracking (LPT) have been recorded in the laboratory. The
flow is turbulence with straining deformation generated in
the experiment. Data is included time, velocity in x and y
directions, and position in x and y coordinates. Therefore, we
have corresponding velocity and position with a specific time
in this time series. In the suggested model, since the velocity
is with two components in the x and y direction, we carried
on the model for every component individually. Hence, the
model predicts the velocity component in both directions and
then could be developed in 3D time-series data. The used data
in this work, have been recorded during an empirical straining
turbulence deformation in 0.4 s.



B. GRU model

The proposed GPU model is created with data series involv-
ing two velocity components in x and y directions and two-
position coordinates x and y. Every fluid particle at a specified
time has a velocity component, and based on the Lagrangian
view; they are dependent on the time and position. Both
position vectors also function of time and primary position.
The input features are on different scales, and then it is
essential to scale the features. A function is defined to create
time-series data set. The data are split into 80% training and
20% test data set. The GRU model is created with one GRU
layer and one Dense layer, and the model is optimized with
an Adam optimizer. In order to evaluate the model, the mean
absolute error (MAE) and coefficient of determination (R2)
are measured.

IV. RESULT

The explained method in the study is based on the capability
of DL via GRU, which is able to store long-term dependencies.
Fig. 2 represents the result of this model that has been used
to predict the velocity components in the y-direction. In Fig.
Fig. 2, the actual data, hidden and covered by train data
and predicted data, dictates the suggested model could make
remarkable forecasting for a future time.

Fig. 2. GRU model for turbulence flow velocity in y direction with spatial
temporal features

For the conducted model, MAE and R2 were measured
equal to 0.002 and 0.98, respectively. These measurements
determine that the GRU model can establish a significant
prediction for time series with features that have relationships
analogous to described data in this work that could be seen in
many turbulence flow applications.

V. CONCLUSION

This work aimed to determine a method to use spatial-
temporal features of the Lagrangian framework data in a
turbulent flow to create a prediction model based on DL
authority. In this view, the velocity functions of the position
and time. On the other hand, the position is related to the
time and primary place. DL networks for sequential data have
been developed in subsets in RNNs such as LSTM and GRU.
Turbulence flow is a high dimensional phenomenon, and to

use a feature for LSTM/GRU model, it is essential to figure
out the main features among the high-dimensional data. This
study proposed a GRU model relying on velocity components
and the position of the fluid particles and exclusive of high
dimensionality. Moreover, GRU can predict a time series with
long-term dependencies based on the result presented and the
Lagrangian definition for the velocity field, storing long-term
dependencies is a crucial factor that led to this significant
prediction and matched the actual data in the test. On the
other hand, this method creates predictions for every velocity
component individually, making it applicable for 2D and 3D
fluid flow. The error measurement represented in the evaluation
of this method implies the capability of GRU in this kind of
application and could be developed for long-term forecasting
studies.
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