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Microsatellites; genotyping, mutation rate and effect on
disease

Snædís Kristmundsdóttir

June 2022

Abstract

Microsatellites are polymorphic tracts of short tandem repeats (STRs) with one to
six base-pair (bp) motifs and account for around 3% of the human genome. Just like
copying by hand a text where the same word occurs many times in a row, the replication
of microsatellites is error prone and frequently adds or removes one or more copies of
the repeat motif. As a result, microsatellites mutate several orders of magnitude faster
than unique genomic sequences and for a given microsatellite, a population can have
many possible length variations. The first objective of this study was to implement
a method to jointly determine the number of repeats present at each microsatellite
in the genome for a large number of samples. The second goal was to make the
determination of repeat numbers more computationally efficient while simultaneously
increasing the detection sensitivity of heavily expanded microsatellite alleles, known
as repeat expansions. Last, the software was run on two large sets of whole genome
sequenced individuals, one from Iceland and the other from the UK biobank. Using
the genealogy information available on the Icelandic set, de novo mutation events were
detected and the effects of parental sex, age and genotypes on the types and number
of mutations found in their offspring were estimated.

Keywords: Microsatellites, Genotyping, Mutations



Örtungl; Arfgerðarákvörðun, stökkbreytitíðni og áhrif á
sjúkdóma

Snædís Kristmundsdóttir

júní 2022

Útdráttur

Um það bil þrjú prósent af erfðamengi mannsins eru örtungl, en þau eru fjölbreyti-
legar raðir af stuttum samliggjandi endurtekningum þar sem endurtekna röðin er á
bilinu einn til sex basar á lengd. Líkt og við afritun á texta þar sem sama orðið er
endurtekið oft í röð, þá er villuhættan meiri við afritun örtunglaraða en við aðrar raðir
erfðamengisins og afleiðingin er að endurtekningu er bætt við eða hún tapast miðað
við upprunalega basaröð. Vegna þessa stökkbreytast örtungl nokkrum stærðargráðum
hraðar en aðrar raðir erfðamengisins og fyrir ákveðið örtungl getur hópur af fólki haft
margar mismunandi lengdarútgáfur. Fyrsta markmið verkefnisins var að hanna og
skrifa hugbúnað sem gæti ákvarðað fjölda endurtekninga fyrir öll örtungl í erfðameng-
inu hjá mörgun einstaklingum í einu. Næst, var reikniritinu hraðað en það jafnframt
gert næmara fyrir stórum útþenslu örtungla samsætum, sem geta valdið mörgum mis-
munandi heilkennum hjá þeim sem þær bera. Að lokum var hugbúnaðurinn notaður
til að meta arfgerð allra einstaklinga í tveimur stórum þýðum, frá Íslandi annars vegar
og Bretlandi hins vegar. Ættfræðiupplýsingar um íslenska þýðið voru notaðar til að
greina stökkbreytingar í afkvæmum sem ekki fundust í foreldrum og stökkbreytingarn-
ar notaðar til að meta hvernig aldur kyn og arfgerð foreldra hefur áhrif á tegund og
fjölda stökkbreytinga sem þeir arfleiða afkvæmi sín að.

Efnisorð: Örtungl, Arfgerðarákvörðun, Stökkbreytingar
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Chapter 1

Introduction

Here I will present relevant concepts and give an outline of the papers my thesis work
consists of.

1.1 Background

Microsatellites are polymorphic tandem repeats of DNA sequences, with repeat motif
lengths ranging from one to six base pairs (bp). They are abundant in the human
genome and have a higher mutation rate than the more standard types of genetic vari-
ation, single nucleotide polymorphisms (SNPs) and small insertion/deletions (indels).

Because of their repetitive nature, errors occur at microsatellites when DNA is
copied, allowing for mutations to occur from parent to offspring. These errors occur
frequently enough that microsatellites are typically highly polymorphic, i.e. different
individuals have different copy counts of the microsatellite repeat. Unfortunately, these
errors are also frequently introduced during sample preparation, causing complications
in determining the copy count carried by the individual.

The goal of my research can be split into distinct sub goals, each contributing to
incorporating microsatellite polymorphisms into genetic association studies - studies
which correlate the genetic differences of individuals with the diseases and human
conditions they exhibit. Genetic association studies are typically only performed for
SNPs and indels while microsatellites are often not used, due to their complicated
nature, despite the fact that they span 3% of the genome and have a high information
content.

ACACACACAC

Repeat removed during copying
ACACACAC

ACACAC ACACAC
Repeat added during copying

Figure 1.1: Copying microsatellite DNA sequences can result in both addition and
removal of repeat motifs.
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1.2 Subgoals and their respective papers
My first goal was to efficiently obtain reliable and consistent microsatellite repeat
counts across a large set of whole genome sequenced DNA samples. To this end I
developed mathematical models and algorithms, implemented in the microsatellite
genotyper popSTR. I showed that popSTR outperforms other available microsatellite
genotypers in terms of accuracy. I also showed that it is sufficiently efficient to be run on
large sample sets, where several petabytes of sequence data need to be analyzed. The
method and these results were published in the peer reviewed journal, Bioinformatics
in 2017 as "popSTR: population-scale detection of STR variants" which is included as
Chapter 2.

After establishing the applicability of the method at a population scale, I decided
to broaden the spectrum of popSTR’s utilization. To this end I collaborated with the
clinical sequencing team at deCODE genetics and created a pipeline for inspecting
known pathogenic repeat expansions microsatellites. During this work I also updated
the algorithm and software in several ways, both with respect to run time and geno-
typing quality. As a part of my effort to allow for microsatellites to be processed in
the same manner as other genetic variants in downstream association studies binSTR
was added to the software package. binSTR groups microsatellite alleles according to
user specified constraints to enable testing in an association study a group of alleles
against another group, as opposed to testing a single allele against all others. These
improvements, extensions and updates were also published in Bioinformatics in 2019 as
"popSTR2 enables clinical and population-scale genotyping of microsatellites" which
is included as Chapter 3.

My last sub goal was to run the software at scale and to estimate the polymorphism
and mutation rate of microsatellites. To this end I genotyped 53,026 Icelandic samples
and 150,119 samples from the UK biobank (UKB) at 5,401,401 tandem repeats. pop-
STR allowed for the calling of these sets, which are probably the world’s two largest
sets of microsatellites to date. The Icelandic set contained 6,082 parent offspring trios
from which I interpreted reliable Mendelian inheritance violations as microsatellite
de novo mutations (mDNMs) and used them to estimate the microsatellite mutation
rate. I further examined contributing factors to the mutation of microsatellites such
as genomic location, motif length, reference repeat tract length, base pair content and
age of transmitting parent at conception. These results demonstrated a previously
unknown increase in mDNMs with maternal age. Using the mDNM set, I defined
parental phenotypes for all parents in the trios quantifying the number of mDNMs
transmitted to their offspring and performed a genome wide association. The associa-
tion returned two genome wide significant variants, both located in coding regions of
DNA repair genes and both increasing the number of mDNMs transmitted from parent
to offspring. This is the first time that common genetic variants have been found that
influence mutation rate. This work has been submitted for review, see Chapter 4.

Results generated by the software this thesis centers around have been reported
in several other projects and has contributed to research performed by a number of
scientists at deCODE genetics. The list presented on page xv gives an overview of
these projects and others I have contributed to applying the expertise I have obtained
during my PhD studies.



Chapter 2

popSTR: population-scale detection of
STR variants



Sequence analysis

popSTR: population-scale detection

of STR variants

Snæd�ıs Kristmundsd�ottir1,*, Brynja D. Sigurp�alsd�ottir2, Birte Kehr1 and

Bjarni V. Halld�orsson1,2,*

1deCODE genetics/Amgen and 2School of Science and Engineering, Reykjav�ık University, Reykjav�ık, 101, Iceland

*To whom correspondence should be addressed.

Associate Editor: Gunnar Ratsch

Received on April 4, 2016; revised on June 1, 2016; accepted on August 26, 2016

Abstract

Motivation: Microsatellites, also known as short tandem repeats (STRs), are tracts of repetitive

DNA sequences containing motifs ranging from two to six bases. Microsatellites are one of the

most abundant type of variation in the human genome, after single nucleotide polymorphisms

(SNPs) and Indels. Microsatellite analysis has a wide range of applications, including medical gen-

etics, forensics and construction of genetic genealogy. However, microsatellite variations are rarely

considered in whole-genome sequencing studies, in large due to a lack of tools capable of analyz-

ing them.

Results: Here we present a microsatellite genotyper, optimized for Illumina WGS data, which is

both faster and more accurate than other methods previously presented. There are two main ingre-

dients to our improvements. First we reduce the amount of sequencing data necessary for creating

microsatellite profiles by using previously aligned sequencing data. Second, we use population in-

formation to train microsatellite and individual specific error profiles. By comparing our genotyp-

ing results to genotypes generated by capillary electrophoresis we show that our error rates are

50% lower than those of lobSTR, another program specifically developed to determine microsatel-

lite genotypes.

Availability and Implementation: Source code is available on Github: https://github.com/Decode

Genetics/popSTR

Contact: snaedis.kristmundsdottir@decode.is or bjarni.halldorsson@decode.is

1 Introduction

Microsatellites (a.k.a. short tandem repeats, STRs) are short DNA

sequences containing a repeated motif of length 2–6 base pairs. The

human reference genome contains approximately 1 million microsa-

tellites, covering almost 1% of the genome (Gymrek et al., 2016).

Microsatellites have a mutation rate estimated between 1 � 10–4

and 1 � 10–3 mutations per locus per generation (Sun et al., 2012),

much higher than the mutation rate estimated for SNPs (Kong et al.,

2012) of 1.2 � 10–8. Due to their high mutation rate, the alleles of a

microsatellite vary greatly between individuals (Sun et al., 2012).

Apart from identical twins, no pair of individuals alive today has the

same combination of alleles for all microsatellites (Cox and Mays,

2000). Using relatively few microsatellites, it is possible to create a

unique genetic profile for every individual (Cox and Mays, 2000),

making microsatellites appealing for applications such as forensic

analysis (Veselinovi�c, 2006).

Their high mutation rate made microsatellites particularly allur-

ing for genotyping during the linkage era (Gudbjartsson et al.,

2000). Despite their abundance and the increasing availability of

whole genome sequencing data, microsatellites are however often

neglected in GWAS studies (Gudbjartsson et al., 2015), in large due

to a lack of tools capable of analyzing them (Duitama et al., 2014).

The high mutation rate can be attributed to the repetitive struc-

ture of microsatellites, which causes a secondary DNA conform-

ation that makes replication slippage events more likely than in

other locations of the genome (Mirkin, 2007). Replication slippage

VC The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 4041

Bioinformatics, 33(24), 2017, 4041–4048

doi: 10.1093/bioinformatics/btw568

Advance Access Publication Date: 1 September 2016

Original Paper
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occurs during DNA replication when the copy strand being created

and the original template strand get shifted in their relative pos-

itions, causing a part of the template to either be copied twice or not

copied at all (cf. Fig. 1 ), resulting in either an increase or decrease in

the number of motif repeats (Brown, 2002).

Replication slippage can occur within individual cells, as well as

when the DNA sample is being analyzed. A slippage event that

occurs during replication of a sex cell results in a germline mutation

and may be passed on to an offspring, while slippage events within

other cells of the body lead to somatic mutations. Slippage events

also frequently occur in PCR amplification, a pre-processing step

often performed prior to sequencing, or during sequencing itself. As

a result, the sequence reads of an individual contain both reads from

its germline variants and reads resulting from slippage events, com-

plicating the genotyping of microsatellites.

The genotyping of microsatellites is further complicated by the

fact that their high mutation rate can make it difficult to align

microsatellite reads to the correct location on the genome; most

popular read-to-reference aligners trade-off between the tolerance of

insertions/deletions and running time. Yet another complication is

the length of the microsatellite, as aligners generally require a unique

match to the genome to seed their alignment, reads that are fully

contained within a microsatellite can often not be placed within the

genome. Further, reads that do not fully encompass the microsatel-

lite and only contain a portion of the microsatellite can only give a

lower bound on the number of repeats (Gymrek et al., 2012).

A number of methods have been developed to genotype micro-

satellites (Gelfand et al., 2014; Gymrek et al., 2012; Highnam et al.,

2013). We present popSTR, a method capable of studying microsat-

ellite (STR) variation within all individuals of a population simul-

taneously. Microsatellite mutation rates have been shown to vary

greatly between microsatellites as well as between individuals (Sun

et al., 2012). Consequently, our model allows for an error model

specific to each microsatellite and individual being studied.

Our results show that popSTR is both faster and more accurate

than lobSTR (Gymrek et al., 2012), a previously described method

for determining microsatellites. popSTR also finds more microsatellite

genotypes than the general purpose genotype caller GATK (McKenna

et al., 2010), with the ones found also being more reliable.

2 Methods

popSTR requires three inputs; a reference genome, a list of microsat-

ellite locations (markers) on the reference genome and sequencing

data of the set of individuals (population) being studied. We assume

that the sequencing data is Illumina whole genome paired-end

sequencing data, mapped to the reference genome and stored in

BAM-files, with one BAM file per individual. The output of popSTR

are for each marker the set of alleles occurring in at least one indi-

vidual in the population and the genotype likelihoods of all allele

pairs of the marker for each individual.

popSTR starts by determining a set of informative reads for each

marker/individual pair and computing various attributes for the

reads. Subsequently, an iterative algorithm is employed to train

error models and report genotypes.

2.1 Read selection and processing
The input to the read selection algorithm is a BAM-file, containing

the read pairs of a single individual, j, the reference genome and a

file containing a set, I, of microsatellite locations. The algorithm

outputs for each microsatellite i 2 I, a set Rij of reads aligned to the

microsatellite and for each read r 2 Rij a set of attributes computed

for r.

The algorithm iterates through the sequencing data and the

microsatellite location file in parallel and compares read coordinates

to microsatellite coordinates. For each microsatellite, i, we deter-

mine a set of candidate informative reads as those reads whose

alignment intersects the microsatellite location as well as unmapped

mates of reads that have been mapped near the microsatellite

(within a fixed distance, chosen by default as 1000 bp).

For each candidate informative read we first determine if the

read contains the repeat motif of the microsatellite. Those reads that

contain the repeat sequence are aligned to the sequences flanking the

microsatellite location. The read is split into three parts; the se-

quence before the microsatellite, the microsatellite repeat sequence

and the sequence after the microsatellite. Figure 2 shows how two

subsequences are constructed from the read, containing the repeat

and the flanking base pairs on either side. Both subsequences are

aligned to the reference genome using an overlap alignment and the

Needleman-Wunsch algorithm; the first sequence is aligned to the

bases preceding the repeat in the reference and the second is aligned

to the bases following the repeat in the reference. If the sum of the

alignment scores exceeds a minimum threshold the read is con-

sidered aligned. The user also specifies a minimum number of flank-

ing bases needed on each side of the repeat. Aligned reads that meet

this threshold are added to Rij.

To increase our sensitivity in identifying microsatellite contain-

ing reads we also process reads when there is a strong support for

the alignment on one side of the microsatellite, while only few bases

can be aligned at the other end. We also consider reads to be aligned

at both ends if at least four bases can be aligned on each side. Such

reads are added to Rij if the sum of the aligned flanking bases is

greater than or equal to twice the user specified minimum number

of flanking bases on each side.

Fig. 1. An extra repeat element added because of replication slippage (Brown,

2002)

Fig. 2. We split the read into two overlapping parts where the first part has

the repeat as a suffix and the second part has the repeat as a prefix. We then

align the first part to the reference sequence preceding the microsatellite and

the second part to the reference sequence after the microsatellite

4042 S.Kristmundsd�ottir et al.
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We estimate the length, li(r) of the microsatellite repeat in r as

the number of bases in r between the last base aligned to the se-

quence preceding i in the reference and the first base aligned to the

sequence following i in the reference. We represent alleles of a

microsatellite i with the number of times its repeat motif m(i) is re-

peated. We let jm(i)j represent the length of the repeat motif of

microsatellite i, the allele Ar reported by r can be computed as:

Ar ¼
liðrÞ
jmðiÞj (1)

Some microsatellite alleles are very long, at times longer than the

read length used for sequencing. Reads overlapping long microsatel-

lites can only give partial information on the length of the microsat-

ellite allele; the length of the microsatellite allele must be at least as

long as the overlap of the read with the microsatellite. To address

the challenge presented by reads only able to give a lower bound on

the number of repeats, we set a user-specified maximum length of al-

lele, ml. All alleles longer than ml are lumped together and reported

as the composite allele �ml. Reads that contain repeats that span

the entire length of the read or occur at either end of a read and the

base pair length of the repeat is at least ml are processed and the

number of repeats is reported as:

Ar ¼
ml

jmðiÞj (2)

For each read r 2 Rij we store a number of attributes relevant to

the alignment, summarized and defined in Table 1. These attributes

were chosen with the intent of revealing reads that are the result of

misclassification events, i.e. sequencing or mapping errors.

2.2 Iterative algorithm
There are multiple sources of error that need to be accounted for in

our model. Replication slippage is dependent on the marker being

considered as well as the individual. In addition, some of the reads

may be the results of sequencing or mapping errors.

Replication slippage has two forms; full motif slippage and stut-

ter noise. A full motif slippage is when the length of the slippage is

an integer multiple of the length of the repeat motif of the microsat-

ellite, all other slippages are referred to as stutter noise. Following

lobSTR (Gymrek et al., 2012) we model these two types of slippage

events separately. We assume a Poisson distribution for full motif

slippage events and a geometric distribution for stutter noise. In

what follows, we will refer to the rate of full motive slippage events

as slippage rate while we will refer to the rate of stutter noise as stut-

ter rate.

Sequencing and mapping errors are accounted for using logistic

regression classification of the reads for each microsatellite

separately. Based on the attributes computed above and the geno-

type of an individual at the microsatellite, the classifier assigns a

probability to each read of being an error read, i.e. the result of a

mapping or sequencing error.

We use an iterative approach to simultaneously train logistic re-

gression classifiers, estimate slippage and stutter rates for each

microsatellite and a slippage rate for each individual. We start by

describing the individual steps of our algorithm and then show how

these are combined into an algorithm.

2.2.1 Read classification

To identify reads resulting from sequencing or mapping errors we

train a logistic regression classifier (Hosmer and Lemeshow, 2004)

for each microsatellite using the reads of all individuals. At each iter-

ation of the algorithm, each individual has a currently estimated

genotype at the microsatellite. This currently estimated genotype

allows us to label reads as either TRUE or FALSE. Reads reporting

one of the two alleles in the current genotype are labelled as TRUE

and reads reporting other alleles that further cannot be explained

with a single slippage event, are labelled as FALSE. We use the attri-

butes computed in the read selection step (cf. Table 1) as control

variables for the logistic regression classifiers.

The resulting classifier allows us to assign a probability, pi(r), to

each read, r, representing the probability that r is correctly classified

as a read from microsatellite i. Reads classified as TRUE are believed

to represent the sequence of the individual at the marker being con-

sidered. Reads classified as FALSE are believed to be the result of a

mapping or a sequencing error.

2.2.2 Slippage rate estimation

The frequency of slippage events varies between microsatellites. To

account for this we estimate a marker specific slippage rate.

Assuming we know which reads are the results of a full motif

slippage event, we can estimate the slippage rate at microsatellite i

by dividing the number of reads resulting from full motif slippage by

the total number of reads aligned to the microsatellite. SM
i , the slip-

page rate at microsatellite i, could be estimated as:

SM
i ¼

n!
i

ni
(3)

where n!
i represents the number of reads aligned to microsatellite i

that do not support the current genotype and are considered to be

results of a full motif slippage and ni represents the total number of

reads aligned to microsatellite i.

The above expression however ignores the fact that individuals

may have different slippage rates. We assume that the slippage of

Table 1. The attributes used as control variables in the Logistic regression classification

Attribute Definition

Quality score Mapping quality score of the aligned read.

Microsatellite purity No of base pairs matching microsatellite repeat sequence/No of base pairs in microsatellite sequence

Repeat bases over 20 The number of base pairs with a PHRED-scaled quality over 20 in the microsatellite sequence.

Flanking bases on right over 20 The number of base pairs with a PHRED-scaled quality over 20 in flanking bases after the repeat.

Edit distance of mate Edit distance of aligned base pairs of the mate sequence to the reference.

Left side alignment score Alignment score of sequence before the microsatellite to the reference.

Right side alignment score Alignment score of sequence after the microsatellite to the reference.

Was unaligned Boolean value indicating if the read was unaligned by BWA.

Alignment shift Measures changes from original alignment during the realignment of flanking sequences.

Read length Total length of the read.

Population-scale detection of STR variants 4043
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marker i in individual j, Sij, is a composite of a marker specific slip-

page rate, SM
i , and an individual specific slippage rate SP

j .

Sij ¼ SM
i þ SP

j (4)

Given the current genotype of individual j at marker i we con-

struct the set R!
ij of those reads that do not agree with either of the

alleles of the current genotype and are considered to be the result of

full motif slippage events.

We can then estimate Sij as:

Sij ¼
P

r2R!
ij
piðrÞP

r2Rij
piðrÞ

(5)

Consequently, we can estimate SM
i and SP

j as

SM
i ¼

P
r2R!

ij
piðrÞP

r2Rij
piðrÞ

� SP
j (6)

SP
j ¼

P
r2R!

ij
piðrÞP

r2Rij
piðrÞ

� SM
i (7)

Giving us multiple estimates for each SM
i and SP

j . We weight these

estimates by the inverse variance of Sij and the number of correctly

classified reads at microsatellite i in individual j. The variance of Sij

is Sijð1� SijÞ, assuming Sij obeys a binomial distribution. The

weight, wij of microsatellite i in individual j is then:

wij ¼
P

r2Rij
piðrÞ

Sijð1� SijÞ
(8)

Allowing us to estimate SM
i and SP

j as:

SM
i ¼

X
j

wijP
jwij
�

P
r2R!

ij
piðrÞP

r2Rij
piðrÞ

� SP
j

 !
(9)

SP
j ¼

X
i

wijP
iwij
�
P

r2R!
ij
piðrÞP

r2Rij
piðrÞ

� SM
i

 !
(10)

2.2.3 Stutter rate estimation

Following the model presented in lobSTR (Gymrek et al., 2012), we

estimate a microsatellite specific parameter ti, for the geometric dis-

tribution assumed for stutter noise as:

ti ¼
1

1þ �xi
(11)

Where �xi is an estimate of the fraction of reads at microsatellite i

that are results of stutter noise events.

To estimate �xi we start by computing the absolute value of the

minimum base pair distance to the current genotype for all reads cov-

ering microsatellite i. A read from individual j, supporting either allele

of the individual’s current genotype (A,B) has a distance of zero but

reads not supporting the current genotype have a distance of:

distðrÞ ¼ minðjlðAÞ � liðrÞj; jlðBÞ � liðrÞjÞ (12)

where l(A) and l(B) represent the base pair length of alleles A and B,

respectively and li(r) represents the base pair length of the allele re-

ported by the read. We then estimate �xi as the average of this num-

ber modulo the length of the repeat motif at microsatellite i.

2.2.4 Computing genotype likelihoods

We focus our attention on determining the likelihood of a genotype,

gt. We are given a set R of reads, which we assume are independent

observations of the microsatellite i, allowing us conclude that:

LðRjgtÞ ¼
Y

r2R
LðrjgtÞ (13)

We now show how to compute LðrjgtÞ, adding terms for each

source of error successively to our model. We first consider the case

when the only sources of error are full motif slippage events and

read misclassification events. Recall, that Ar represents the number

times the repeat motif of i is repeated in r and that the alleles of a

genotype are represented with the number of times the repeat motif,

mi, is repeated. Given an allele, A, we compute xr(A) as the number

of slippage events needed to explain r with A as xrðAÞ ¼ jA�Arj.
We assume that the number of slippage events follows a Poisson dis-

tribution with k¼ Sij. This gives the following expression for a

homozygous genotype gt¼ (A,A).

LðrjA;AÞ ¼ piðrÞ � poisðxrðAÞ; SijÞ (14)

For a heterozygous genotype (A, B) we assume that each allele is

drawn with equal probability:

LðrjA;BÞ ¼

piðrÞ �
1

2
� poisðxrðAÞ; SijÞ þ

1

2
� poisðxrðBÞ; SijÞ

� �
(15)

The above expression assigns a very small likelihood for reads

that are not the results of slippage events. With probability 1� piðrÞ
the read being considered is an error read, in this case we assume

that each of the other reported alleles is equally likely. We let ni be

the number of alleles present in the population for microsatellite i

and refine our expression for L(rjA,B) as follows:

LðrjA;BÞ¼piðrÞ �
1

2
�poisðxrðAÞ;Sij

� �
þ1

2
�poisðxrðBÞ;SijÞÞþ

1�piðrÞ
ni

(16)

Slippage events are more likely to delete repeat units than insert.

To account for this, we further refine our model and add a param-

eter, pd, representing the probability that if a slippage event occurs,

this event results in a deletion of a motif. Given an allele A and a

read r we compute aA
r as pd if A� Ar � 0 and 1 � pd if A � Ar > 0.

Our refined model then becomes:

LðrjA;BÞ ¼ piðrÞ�
1

2
� poisðxrðAÞ; SijÞ � aA

r þ
1

2
� poisðxrðBÞ; SijÞ � aB

r

� �
þ 1� piðrÞ

ni

(17)

Finally, we account for stutter noise, for which we assume a geo-

metric distribution and use the marker specific tis estimated using

Equation (11). To reflect this in our model we split xr(A) and xr(B)

into their integer and decimal portions. We let xk
r ðAÞ denote the inte-

ger portion and xd
r ðAÞ the decimal portion of xr(A). Similarly we

split xr(B) into xk
r ðBÞ and xd

r ðBÞ and our final model becomes:

LðrjA;BÞ ¼ piðrÞ�
1

2
� poisðxk

r ðAÞ; SijÞ � geomðxd
r ðAÞ; ti

� �
� aA

r

þ1

2
� poisðxk

r ðBÞ; SijÞ � geomðxd
r ðBÞ; tiÞ � aB

r Þ

þ1� piðrÞ
ni

(18)

Given a set of reads Ri,j for a microsatellite i and individual j we

compute this genotype likelihood for all genotypes A, B present in

the population. The current genotype is the A, B with the highestQ
r2Ri;j

LðrjA;BÞ.
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2.2.5 Algorithm pseudocode

The algorithm can now be described with the following pseudocode:

• Select and process reads
• Initialize genotypes.
• Initialize all SM

i ; S
P
j ;pi; ti.

• While genotypes have not converged:
• Use SM

i ;pi; ti; S
P
j to compute genotypes.

• Update SP
j s using SM

i s,piS and tis.
• From the current genotypes determine the probability of each

read being TRUE and FALSE.
• Update piS using read classification.
• Update tis using current genotypes.
• Update SM

i s using current genotypes, SP
j s and piS.

• Compute genotype likelihoods and exit.

2.3 Kernelization of iterative algorithm
Our iterative algorithm can be too memory and time intensive for

large data sets. In order to make our time and memory requirements

more manageable we can kernelize our algorithm. We select a small

set of well behaving microsatellites and individuals with high quality

sequencing data for our initial training, a set we refer to as a kernel.

Within this kernel we apply the full algorithm described in section

2.2.5.

Once this kernel has been trained we estimate individual specific

slippage rates, SP
j s, using only the markers within the kernel, keeping

the marker slippage rates, SM
i s, the stutter rates, tis, and the marker

classification models (piðrÞs) fixed.

Once the SP
j s have been trained for all individuals, j, we train SM

i ,

ti and pi(r) for all markers i keeping the SP
j s fixed, allowing us to

compute a final set of genotype likelihoods.

3 Implementation

PopSTR was written in Cþþ using the sequence analysis library

SeqAn (Döring et al., 2008) which allows for easy reading and ma-

nipulation of data stored in BAM-files.

The implementation of popSTR has four steps. In the first step,

we identify the reads useful for genotyping, compute their attributes

and initialize genotypes. In the second step, we estimate SP
j s, SM

i s, tis

and pis on a kernel of markers. In the third step, we use results from

the kernelization to compute SP
j s. In the final step we train SM

i s, tis

and pis and finally perform genotyping.

3.1 Read selection and processing
We use the fact that the sequencing data has already been aligned (in

a BAM file), allowing us to limit the number of reads that we con-

sider. We can however not limit our search only to reads that have

been aligned to a microsatellite, as alignment to microsatellites by

general purpose aligners, such as BWA (Li and Durbin, 2009), is not

reliable. General purpose aligners trade accuracy and speed in their

implementation and do not account for the high mutation rate of

microsatellites. We limit our search to reads that have been aligned

to microsatellites and reads that are unaligned but have a mate that

is aligned near the microsatellite being considered. Sequences al-

ready aligned to non-microsatellite sequences are unlikely to be use-

ful while sequences that are unaligned may in fact contain a

microsatellite but have not been aligned because they are too differ-

ent from the reference.

When selecting reads and in order to perform the read classifica-

tion, we compute a number of attributes related to the reads’

alignment and their sequencing quality. As previously mentioned,

candidate microsatellite reads are processed by first identifying the

repeat sequence within the read. Subsequently, the sequences flank-

ing the repeat are aligned to the sequences flanking the microsatellite

in the reference genome. The quality of this alignment is one of the

attributes used as a control variable in the logistic regression classifi-

cation. We define purity of an alignment as the number matching

base pairs divided by the total number of base pairs in the alignment.

The purity of a microsatellite repeat sequence is the number of base

pairs matching the repeat divided by the total number of base pairs in

the repeat. The purity of the repeat sequence in the read is another

control variable. All attributes computed, used as control variables in

the logistic regression, are summarized in Table 1.

Further, some attributes are required to reach a minimum value

for the read to be used. The minimum microsatellite purity required

is relative to the purity of the microsatellite sequence in the reference

and also depends on the number of flanking bases available in the

read. Table 2 summarizes these filters used.

Finally, we do not consider low quality reads, i.e. the ones that

fail platform or vendor quality checks nor reads that are PCR or op-

tical duplicates.

3.2 Kernelization
Convergence has been reached in the kernelization when <0.5% of

the genotypes are updated between iterations.

We initialize the slippage rate for individual j, using the follow-

ing expression

SP
j ¼

n!
j

nj
(19)

where n!
j represents the number of reads from individual j not sup-

porting the initialized genotype and nj represents the total number

of reads from individual j.

3.3 Individual slippage rate computation
The marker slippage and stutter rates estimated (SM

i s and tis) and

the logistic regression classifiers (pi(r)s) trained during the kerneliza-

tion are used to directly estimate the individual specific slippage

rates (SP
j s). First, we compute the attributes of reads aligned to the

microsatellites in the kernel. Next, we assign misclassification prob-

abilities, pi(r)s to the reads using the logistic regression classifiers

from the kernel and we update the genotypes, with marker slippage

and stutter rates from the kernel using the expression given in

Equation (18) to determine the most likely genotype. Finally, we use

the expression given in Equation (10) to estimate an individual slip-

page rate, SP
j s. We iterate this process, keeping the marker specific

properties from the kernel constant, until the individual slippage

rates, (SP
j s), have reached convergence.

Table 2. Minimum numeric values when identifying useful reads

Name Condition Minimum value

Microsatellite purity both flanking 0.75*(ref. purity)

one sided flanking 0.8*(ref. purity)

no flanking 0.85*(ref. purity)

Alignment purity one sided flanking 0.7

No. repeats motiflength ¼ 2 4

motiflength ¼ 3 3

motiflength 2 4; 5; 6 2

Population-scale detection of STR variants 4045
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3.4 Marker slippage and stutter rate computation,

logistic regression and genotyping
We fix the probability of deletion Equation (18) as pd ¼ 0.85 and

consequently 1� pd ¼ 0:15. We iterate between updating genotypes

and updating the microsatellite slippage and stutter rates, (SM
i s and

tis), and logistic regression classifiers (pi(r)s), while keeping individ-

ual slippage rates, (SP
j s), constant, until convergence has been

reached.

4 Results

4.1 Data set
We analyzed microsatellites for 15 220 whole genome sequenced in-

dividuals, sequenced using Illumina sequencers. Sequencing reads

had previously been mapped to GRCh38 using BWA (Li and

Durbin, 2009).

We ran Tandem Repeat Finder on 1 Mb non-overlapping inter-

vals using the parameters and options suggested in (Willems et al.,

2014) to determine the microsatellite locations (Benson, 1999). We

filtered the output in order to include only repeats with motif-length

between 2 and 6 bp. We removed repeats with alignment scores

below thresholds suggested in (Willems et al., 2014), repeats closer

than 100 bp to each other and repeats longer that 100 bp. This re-

sulted in a set of 880 355 microsatellite locations found on GRCh38

autosomes after excluding microsatellites located in high coverage

regions.

We initially ran popSTR on a set of 8453 individuals and

880 355 microsatellites. We chose a kernel set of 703 individuals

with high-quality sequencing data and 8303 microsatellites on

chromosome 1, based on their imputation info (Gudbjartsson et al.,

2015) when imputed into the Icelandic population.

Our comparison set is based on the genotypes of 15 220 individ-

uals on 880 355 microsatellites. Out of these a total of 380 261

microsatellites were found to be polymorphic and were subsequently

imputed into the Icelandic population (Gudbjartsson et al., 2015).

For comparison purposes, we chose 141 markers where capillary

electrophoresis benchmark genotypes were available, sequenced as

parts of various disease association efforts at deCODE genetics (Sun

et al., 2012).

Comparisons to lobSTR were done by choosing 10 individuals

from the 15 220 sequenced individuals. The 10 individuals were

chosen to have a large number of electrophoresis genotypes

available.

The 15 220 samples were also genotyped using the GATK

(McKenna et al., 2010) genotype caller and imputed into the

Icelandic population. GATK is a general purpose genotype caller

that does not distinguish between indels and microsatellites. To fur-

ther investigate the quality of our genotypes we matched our micro-

satellites coordinates to output coordinates of indel alleles from the

GATK genotype caller where the indel allele matched the microsat-

ellite repeat motif. We then compared the imputation results into

the Icelandic population for markers where a match was found.

4.2 Comparison to lobSTR
We compared the popSTR and lobSTR genotypes to inhouse bench-

mark data obtained through capillary electrophoresis. The capillary

electrophoresis genotypes are represented as base pair distances

from a reference individual, while genotypes reported from sequenc-

ing (by popSTR or lobSTR) are presented as lengths of the microsat-

ellite alleles. As we did not have the length of the microsatellite

alleles of the reference individual, we considered the genotypes

reported from capillary electrophoresis and sequencing to agree if an

identical difference in lengths between the two alleles carried by the

individual was reported by the two methods.

Both lobSTR and popSTR can be expected to report more accur-

ate genotypes when more reads overlapping the microsatellite are

used in the genotyping. We therefore condition our results on the

number of reads used in the genotyping. The number of reads used

for genotyping at a particular location is upper bounded by the

sequencing coverage at the given location. Not all reads overlapping

the location can however be used as both algorithms require the

reads to fully overlap the microsatellite and sequences flanking the

microsatellite on both sides. Figure 3 shows the accuracy of lobSTR

and popSTR as a function of the number of reads used by lobSTR.

The figure clearly shows that, as expected, the accuracy of both

methods increases when more reads overlapping the microsatellite

are used. The figure also shows that popSTR consistently has higher

genotyping accuracy than lobSTR.

Table 3 summarizes the comparison between the two methods.

We observe that, when we restrict our analysis to microsatellites

and individuals where there are at least 10 reads overlapping the

microsatellite, popSTR has a 96% agreement with the capilllary

electrophoresis genotypes while lobSTR has a 92% agreement.

Consistently, over all coverage thresholds the number of genotypes

that are in disagreement with the capillary electrophoresis genotypes

is approximately two times higher for lobSTR than for popSTR, i.e.

the error rate of popSTR is 50% lower than that of lobSTR.

To further confirm the accuracy of our method we compared the

popSTR genotypes of 409 individuals to the benchmark genotypes,

considering the same 141 markers as in the comparison to lobSTR.

Figure 4 shows how the accuracy of popSTR increases with the

number of reads used in the genotyping.

We compared the running times of popSTR and lobSTR and

found an average speed-up provided by popSTR of 74.7%. The

average running time of lobSTR from start to finish was 39.2 h per

individual (SD 6.7 h). This includes the time of the alignment

(39.1 h) and allelotyping (0.1 h) step of lobSTR.

The running time for the steps of popSTR we ran jointly was div-

ided by the number of genotyped individuals (15 220) and then

added to the average running time of individually run steps.

Fig. 3. The accuracy of the lobSTR and popSTR genotypers as a function of

the number of reads used by lobSTR overlapping the microsatellite, binned

with bin size ¼ 3. Results are averages over 10 individuals and 141

microsatellites

4046 S.Kristmundsd�ottir et al.
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Summing up the running time of all steps of popSTR we get a total

of 9.9 hours per individual. Table 4 breaks the total running time of

popSTR into its components.

4.3 Comparisons to GATK
We use imputation info (Gudbjartsson et al., 2015) to compare the

quality of genotypes reported by GATK and popSTR. Imputation

info is a measure between 0 and 1, representing confidence in geno-

type assignment reported by the imputation software (Gudbjartsson

et al., 2015), with larger values of imputation info representing

higher confidence. We have previously determined imputation info

of greater than or equal to 0.9 as a threshold for which we believe

that the genotypes are highly reliable (Gudbjartsson et al., 2015).

GATK is a general purpose tool for determining genotypes and

does not have a specific model for microsatellites, but rather lumps

them in a category with indels. We compared the imputation info of

popSTR microsatellites to the imputation info of indel alleles from

GATK in cases where alleles reported by GATK were located within

a microsatellite sequence. At microsatellite locations, some of the

indels reported by GATK contain the microsatellite motif, while

others do not. We condition our comparison to GATK on whether

the microsatellite motif is found in the indel reported by GATK.

For a judicious comparison, we construct a single number for

each microsatellite by summing the info of each allele weighted by

frequency. This is shown in Equation (20) where iw represents the

weighted info value and fa and ia represent the frequency and imput-

ation info of allele a, respectively.

iw ¼
P

afa � iaP
afa

(20)

For a total of 152 152 microsatellites found by popSTR an indel

was reported by GATK within the microsatellite. We compared the

imputation info for these popSTR-microsatellite/GATK-indel pairs

in several different ways; these are summarized in Table 5

(Matching coordinates).

In 75 057 of the microsatellites found by popSTR the indel re-

ported by GATK contained the microsatellite motif. The same com-

parison was performed for these pairs as the previous ones and is

also summarized in Table 5 (Matching motifs).

5 Conclusion

Here we have shown that, by creating a microsatellite profile for an

individual using previously aligned data, it is possible to significantly

decrease the running time of microsatellite genotyping by consider-

ing only reads that are either aligned to a known microsatellite loca-

tion or not aligned at all. The filtering dismisses a large portion of

the data immediately while minimally effecting the microsatellite

profile. Our results also show that the genotyping accuracy of our

program is higher than for the general purpose genotype caller

GATK as well as lobSTR, a program specifically designed for calling

of microsatellites.

Several improvements could still be made to our model and

method. Our method does not consider reads where neither the read

nor its mate align to the reference genome. Our method also

assumes that the mate of the read containing the microsatellite is

correctly mapped. If the read pair were to be mapped to a graph ref-

erence (a reference genome containing all variants) it is possible that

a joint alignment of both the read containing the microsatellite and

its mate would reveal the correct location for the read pair. We do

not account for possible sampling biases, i.e. it may be more likely

that we observe reads that are similar to the reference than those

that are highly divergent from the reference. Similarly, there may

be biases introduced by our alignment algorithm or filtering

steps not accounted for in our model. Finally, our implementation is

Table 3. Genotyping accuracy of lobSTR and popSTR compared

with capilllary electrophoresis genotypes

Coverage filter lobSTR popSTR

�1 87.3% 93.5%

�5 89.5% 94.3%

�10 92.0% 96.0%

�15 93.5% 96.4%

�20 94.4% 97.2%

The results are thresholded on the number of reads available to lobSTR.

Fig. 4. The accuracy of the popSTR genotyper as a function of the number of

reads used by popSTR overlapping a microsatellite. Results are averages

over 409 individuals and 141 microsatellites

Table 5. Imputation info comparison of popSTR and GATK

Matching coordinates Matching motifs

Total 152 152 75,057

popSTR info > GATK info 107 104 (70.4%) 56 521 (75.3%)

GATK info > popSTR info 45 048 (29.6%) 18 536 (24.7%)

popSTR info > 0.9 120 317 62 962

GATK info > 0.9 92 854 49 684

Either info > 0.9 133 366 68 216

popSTR info > GATK info 99 787 (74.8%) 53 812 (78.9%)

GATK info > popSTR info 33 579 (25.2%) 14 404 (21.1%)

Mean popSTR info 0.95 (SD 0.16) 0.96 (SD 0.12)

Mean GATK info 0.90 (SD 0.16) 0.93 (SD 0.08)

Table 4. Running times of popSTR steps

Step Run individually Run jointly Time

Kernelization � 0.1 h

Read selection and processing � 9.2 h

Individual slippage estimation � 0.25 h

Genotyping � 0.35 h

Population-scale detection of STR variants 4047
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optimized for Illumina paired-end sequencing data. Although we be-

lieve that our algorithm could be used for other types of sequencing

data the method would need to be tuned to the error models of those

data.

Conflict of Interest: none declared.
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Abstract

Summary: popSTR2 is an update and augmentation of our previous work ‘popSTR: a population-based microsatel-
lite genotyper’. To make genotyping sensitive to inter-sample differences, we supply a kernel to estimate
sample-specific slippage rates. For clinical sequencing purposes, a panel of known pathogenic repeat expansions is
provided along with a script that scans and flags for manual inspection markers indicative of a pathogenic expan-
sion. Like its predecessor, popSTR2 allows for joint genotyping of samples at a population scale. We now provide a
binning method that makes the microsatellite genotypes more amenable to analysis within standard association
pipelines and can increase association power.

Availability and implementation: https://github.com/DecodeGenetics/popSTR.

Contact: snaedisk@decode.is or bjarni.halldorsson@decode.is

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microsatellites, a.k.a. short tandem repeats (STRs), are tandem
repeats with repeat motif lengths between one and six base pairs.
They are one of the most frequent types of variation in the human
genome, surpassed only by single nucleotide polymorphisms (SNPs)
and indels and have a mutation rate estimated to be three to five
orders of magnitude higher than for other types of genetic variation
(Jónsson et al., 2017; Sun et al., 2012). Genotyping microsatellites
from whole-genome sequence (WGS) data is challenging since they
are highly polymorphic and library preparation methods may mod-
ify the true number of repeats in the sequence (Gymrek et al., 2012).
WGS-based association and clinical analysis commonly do not con-
sider microsatellites, partially due to a lack of tools capable of ana-
lyzing them.

Tandem repeat expansions occur when microsatellites expand
beyond a certain length threshold, making them unstable and thus
more likely to expand further. A number of repeat expansions are
known to be disease-causing (Gatchel and Zoghbi, 2005) and an in-
crease in the use of WGS-technologies for genetic diagnostics has
created a need for fast estimation of the repeat number at disease-
associated loci.

Here, we present extensions to our previously published software
popSTR and improvements of its previous implementation, both
with respect to runtime and accuracy. We increased our expansion
detection sensitivity, updated our sample specific slippage estima-
tion kernel, reduced the dimensions of our logistic regression model
and updated external libraries to decrease I/O time and handle both

BAM and CRAM files. We further created a panel of known repeat
expansion markers and a pipeline to determine at each loci whether
read support for a pathogenic expansion is present. Last, we provide
a method to bin genotypes into user specified bins to increase power
of downstream association analysis. By combining this set of func-
tionalities, we hope to make popSTR2 applicable in a wide range of
situations. Both when analyzing large cohorts to make population
inferences and disease associations as well as analyzing small sets or
single samples in a clinical context.

2 Materials and methods

Figure 1 gives a high level description of the algorithm’s workflow,
a more detailed description is given in Supplementary Section S1.1
and a full description is given in Kristmundsdóttir et al. (2017). To
summarize, we start by computing various quality-indicating attrib-
utes for all reads encompassing each of the microsatellites being con-
sidered, i.e. overlapping its coordinates and containing repeats of
the relevant motif. We also look for repeats in unaligned reads with
mates aligned close to the repeat region. An update of our read selec-
tion step is to also look for repeats of the relevant motif in reads
aligned to longer repeats of the same motif in other locations of the
genome that have mates aligned close to the repeat region. This can
happen when a repeat has expanded considerably and the read
reporting it is thus highly divergent from the reference sequence.
After the set of informative reads has been created, the algorithm
iterates between genotyping and assigning to each read a probability

VC The Author(s) 2019. Published by Oxford University Press. 2269
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of reporting a true allele. Since this type of iterative parameter esti-
mation is time and resource intensive, we supply a kernel of reliable
markers to efficiently estimate these parameters. For details on ker-
nel construction see Supplementary Section S1.2. We replaced the
SeqAn BAM I/O module (Reinert et al., 2017) with the one from
htslib (Li et al., 2009; https://github.com/DecodeGenetics/
SeqAnHTS). The update provides CRAM file support, decreases I/O
demands and runtime. Algorithmic improvements reduced runtime
from 11.25 to 2.17 CPU hours/million markers per sample. See
Supplementary Table S1 for a breakdown of our runtime analysis.

2.1 Application to population-based genotyping
Useful reads and their attributes are used along with marker and
sample specific parameters to perform genotyping. The marker-
specific parameters can be estimated by popSTR2, but we also pro-
vide a default set of parameters. By default we require 20 samples
for the parameters to be estimated since estimation with fewer sam-
ples would not yield reliable results. The sample-specific slippage
parameter is estimated using a kernel of reliable markers described
above and supplied with the software. Our genotyping model
(Supplementary Equation S1 in Supplementary Material) computes
the likelihood of observing a read, r, given genotypes A and B and
selects the genotype pair that maximizes this likelihood over the set
of reads being considered. The model previously assumed constant
probabilities of adding and removing repeats across all markers, fix-
ing aA

r in Supplementary Equation S1 from Supplementary Material
to 0.85 if whole repeats were removed and consequently to 0.15 if
whole repeats were added. It has however been shown that microsa-
tellites have very different mutation profiles depending on their vari-
ous properties, e.g. repeat motif, repeat purity, reference allele
length, etc. (Brinkmann et al., 2002). To reflect this we have
replaced the hard coded values with marker-specific estimates, com-
puted as follows. Assuming that we know which reads result from
whole motif slippage events, we can estimate the fraction of slippage
events that added whole repeats at microsatellite i:

pu
i ¼

P
r2R!u

i
piðrÞ

P
r2R!

i
piðrÞ

(1)

where R!u
i is the set of reads at microsatellite i, considered to be

results of slippage events that add whole motifs and R!
i is the set of

all reads at microsatellite i reporting whole motif slippage events, re-
gardless of their direction. The probability of removing repeats is
then trivially computed as pd

i ¼ 1� pu
i .

Our previous version created one output file per sample and
computed nine attributes from each read used for genotyping.

Due to increased data quality and consistency we were able to re-
duce the number of attributes to six, which simplified and sped

up the logistic regression analysis. To make population scale
inferences and genotyping easier we now write one output file per
marker, i.e. all alleles discovered in a population accessible in the

same file.
Association pipelines commonly assume biallelic variants or

multi allelic variants where only a single allele is tested for associ-
ation with a phenotype, rather than associating a subset of the

alleles with it (Gudbjartsson et al., 2015; Purcell et al., 2007). This
is not optimal for microsatellites where alleles above or below a cer-
tain length threshold may be pathogenic (Lee and McMurray,

2014). In an effort to increase association power we provide
binSTR, a software for grouping alleles as a preprocessing step for
association analysis. To allow for various patterns of allele groups,

binSTR enables not only binarizing but also binning into a user
determined number of groups where each group is defined by a list

of allele indices passed as a parameter.

2.2 Application to clinical genetics
We have, through literature review, assembled a panel containing
31 STR markers, each associated with a disease or syndrome when
the number of repeats passes a certain threshold, hereafter referred

to as pathogenicity threshold. We provide a script which reports
which of these markers, if any, contain evidence of a repeat expan-
sion. The script runs the read selection step described above to

scan a given BAM file at all panel locations and extracts for each
of them all reads containing information on the number of repeats

present. Expanded alleles have often undergone a dramatic in-
crease in length, decreasing the odds of finding informative reads
supporting them. Genotyping models assuming equal probabilities

of drawing reads from each haplotype are thus not reliable in these
cases. To account for this, our script scans the informative reads

for any repeat tracts longer than the given threshold for each mark-
er and flags locations harboring such reads for further manual in-
spection. Since many of the pathogenicity thresholds exceed the

current read lengths by a considerable number of base pairs the
scripts also counts and reports all fully repetitive reads, i.e. reads

containing only repeats of the relevant motif. See Supplementary
Table S4 for a table summarizing the markers included in the panel
along with a pathogenicity threshold for each of them. As the set of

pathogenic variants and our understanding of them grows the
panel can easily be extended and thresholds for existing markers

updated.

Fig. 1. Results of read selection are passed into genotyping model along with sample and marker-specific parameters

2270 S.Kristmundsdottir et al.
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3 Experiments

We compared popSTR2 to HipSTR (Willems et al., 2017), a com-
monly used microsatellite genotyper on chr21 of the CEU trio con-
sisting of NA12878, NA12891 and NA12892 and on chr21 of 10
trios sequenced at deCODE genetics.

The runtime reduction was 40% for the CEU trio and 26% for
the deCODE trios. To compare the accuracy of these two methods
we extracted markers where both methods had high confidence gen-
otypes for all members of at least one trio and at least one trio mem-
ber had a non-homozygous-reference genotype and recorded the
number of trios where the offspring genotype did not match the par-
ental ones. The deCODE trios had slightly more accurate genotypes
from popSTR2 than HipSTR (99.8% versus 99.6%) but for the
CEU trio hipSTR had a single trio inconsistency in 250 markers
while popSTR had 2. For a more detailed comparison of these runs
see Supplementary Table S3. To examine the sensitivity of our ex-
pansion detection script we ran it on ten samples with a known
expanded allele in the 30-flanking region of the DMPK gene which
causes myotonic dystrophy 1 when exceeding 50 copies (Musova
et al., 2009) and ten healthy control samples. The expanded samples
were sequenced for clinical sequencing analysis at deCODE genetics
and the healthy ones as parts of various other projects, also at
deCODE genetics. The script flagged the DMPK locus in all
expanded individuals and none of the control samples.

Last, we genotyped 49 962 Icelandic samples to examine
the allelic spectrum of this repeat in the Icelandic population. The
resulting distribution was in concordance with ones previously
published for European populations with a bimodal distribution
consisting of a peak at 5 repeats and another one between 11 and 13
repeats (Dean et al., 2006; Maga~na et al., 2011) (see Supplementary
Fig. S1).

4 Conclusion

We updated the microsatellite genotyper popSTR to decrease run-
time and increase genotype quality and accuracy. This was done by
replacing external libraries, re-training the data provided with the
software and decreasing the number of variables in our logistic re-
gression analysis. To expand the application range we extended the
software to provide both a clinical sequencing analysis script for
quickly estimating expansion status at known disease loci and a bin-
ning software for grouping genotypes by allele length range before
performing disease association on them. It is our hope that these
updates and extensions will make popSTR2 applicable in a broader
spectrum of situations, i.e. for single sample clinical sequencing ana-
lysis as well as large scale association efforts. Analysis methods
(Dashnow et al., 2018; Dolzhenko et al., 2017; Tang et al., 2017;
Tankard et al., 2018) sensitive to detecting expanded repeats are not
explicitly intended for population scale analysis of STRs at a genome
wide scale. Conversely, other methods which aim at population and
genome scale analysis (Gymrek et al., 2012; Willems et al., 2017) do
not focus on and reporting of expanded repeats. GangSTR
(Mousavi et al., 2019) is, to our knowledge, the only method
intended to perform accurate genotyping of both short and

expanded microsatellites. It however does not mark known patho-
genic variants in its output nor flags those expansions passing patho-
genicity thresholds. By supplying a panel of known expansions
along with an easily executable and fast script to flag potentially
expanded repeats for further manual inspection we aim to direct
users to the correct putative expansion as quickly as possible.

Conflict of Interest: none declared.

References

Brinkmann,B. et al. (1998) Mutation rate in human microsatellites: influence

of the structure and length of the tandem repeat. Am. J. Hum. Genet., 62,

1408–1415.

Dashnow,H. et al. (2018) Stretch: detecting and discovering pathogenic short

tandem repeat expansions. Genome Biol., 19, 121.

Dean,N. et al. (2006) Transmission ratio distortion in the myotonic dystrophy

locus in human preimplantation embryos. Eur. J. Hum. Genet., 14,

299–306.

Dolzhenko,E. et al. (2017) Detection of long repeat expansions from PCR-free

whole-genome sequence data. Genome Res., 27, 1895–1903.

Gatchel,J.R. and Zoghbi,H.Y. (2005) Diseases of unstable repeat expansion:

mechanisms and common principles. Nat. Rev. Genet., 6, 743.

Gudbjartsson,D.F. et al. (2015) Large-scale whole-genome sequencing of the

Icelandic population. Nat. Genet., 47, 435.

Gymrek,M. et al. (2012) lobSTR: a short tandem repeat profiler for personal

genomes. Genome Res., 22, 1154.

Jónsson,H. et al. (2017) Parental influence on human germline de novo muta-

tions in 1,548 trios from Iceland. Nature, 549, 519.
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1 Supplementary materials

1.1 Algorithm

The algorithm takes a BAM/CRAM file and a list of microsatellite intervals
to determine a set of reads informative of a sample’s genotype. It considers
reads encompassing each interval and reads with mates close to the repeat
region that are either aligned to longer repeats of the same motif or could
not be aligned at all. These misaligned and unaligned reads are considered
to retrieve heavily contracted or expanded alleles that are highly divergent
from the reference, see Figure 1. For each chosen read, a set of attributes,
used to estimate read reliability, are computed and used as parameters
when training logistic regression models for each marker. After the read-
selection step, the algorithm iterates until convergence between genotyping
according to latest parameter estimations and updating parameters using
the latest genotypes. Since estimating parameters with few samples is not
likely to yield reliable results, by default, we require 20 samples for the
parameters to be estimated. A set of default parameters is supplied with the
software for analysis of smaller sample sets. Comparing an allele reported
by a read to a genotype, allows the algorithm to assign a label to the read.
These labels, along with the read attributes, enable training of a per marker
logistic regression model that assigns to each read, a probability pi(r) of
reporting a true germline allele. The observed sequence may differ from the
germline variant due to somatic mutations and sequencing problems which
cause the addition or removal of full and partial motifs. The labels allow us
to estimate marker-specific slippage and stutter rates Si, ti representing
the probability of adding or removing a full or a partial motif, respectively.
When determining the most likely genotype (A,B) given a read r, we use
i as a marker identifier and j as a sample identifier in the following model.

L(r|A,B) = pi(r)·
(
1

2
· pois(xkr (A);Sij) · geom(xdr(A); ti) · aAr

+
1

2
· pois(xkr (B);Sij) · geom(xdr(B); ti) · aBr

)
+

1− pi(r)
ni

(1)

We let ni be the number of alleles present in the population for
microsatellite i. With probability 1 − pi(r) the read being considered
is an error read, in which case we assume that each allele is equally likely.
We compute xr(A) as the number of slippage events needed to explain
r with A. To separate whole and partial motif slippage events, we split
xr(A) into its integer and decimal portions. We let xkr (A) denote the
integer portion which follows a Poisson distribution with λ = Sij , a
combination of the marker and sample-specific slippage rate estimates.
xdr(A) denotes the decimal portion of xr(A) which follows a geometric
distribution with parameter ti. We use Equation 1 in 2.1 of the main text to
estimate and represent the different probabilities at each marker of adding
and removing motifs. The result of this estimation is then used as aAr and
aBr in Equation 1. Last, we select the genotype pair that maximizes the
likelihood function in Equation 1 over the set of reads,R, being considered.
Figure 1 in the main text shows a schematic view of the workflow described
above.

1.2 Kernel construction

Our kernel was selected by genotyping all microsatellites on chr21 in a
set of 6086 trios and choosing markers with heterozygous transmission
rates between 30 and 70% and Mendelian error rates below 0.1% which
resulted in 8779 markers. To verify that this subset accurately represented
the entire marker set, we examined whether kernel markers were more
likely to have larger repeat units and found that this was not the case,

see Supplementary table 2. All our kernel training, parameter training and
development was performed using BAM files aligned with the BWA-MEM
aligner Li (2013) and generated using the sequencing processing pipeline
described in Jónsson et al. (2017).

1.3 Repeat list construction

We created our list of repeat coordinates by running the Tandem repeats
finder(trf) Benson (1999) on GRCh38 for each chromosome and retaining
resulting repeats with motif lengths between one and six base pairs,
(command: ./trf409.linux64 chr$num.fa 2 7 7 80 10 22 7 -d -h -ngs >
trf.$num).
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Table 1. Breakdown of runtime analysis comparison, all times are given per
sample.

popSTR popSTR2
samples 15,220 40,121
markers 880,355 5,401,401
polymorphic markers 380,261 1,636,021
Read selection 9.2 h 9.45 h
Sample slippage 0.25 h 0.065 h
Genotyping 0.35 h 2.19 h
CPU hours/1,000,000 markers 11.25 2.17

Table 2. Motif length distribution of kernel vs entire marker set

Motif length Fraction of kernel Fraction overall
1bp 48.2% 44.4%
2bp 23% 18.5%
3bp 4.5% 5.5%
4bp 12.8% 15.3%
5bp 6% 7.9%
6bp 5.5% 8.4%

Table 3. Comparison of hipSTR and popSTR2 on runtime and accuracy for
chr21.

CEU trio deCODE trios
hipSTR popSTR2 hipSTR popSTR2

Runtime 57.48m 34.75m 9.70h 7.15h
Accuracy 99.6% 99.2% 99.6% 99.8%
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Fig. 1. Distribution of repeat numbers in Icelandic population at DMPK locus. Peaks at five
repeats and 11-13 repeats match previously reported distributions in European populations.
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Table 4. Disease-associated markers in panel and corresponding pathogenicity
thresholds.

Location (HG38) Gene Disease Pathogenicity
threshold

OMIM
link

chr1:149390803-149390842 NBPF19 Neuronal intranuclear
inclusion disease

90 603472

chr2:176093058-176093099 HOXD13 Synpolydactyly 1 21 186000
chr2:190880873-190880920 GLS Global developmental delay,

progressive ataxia, and
elevated glutamine

90 618412

chr3:63912685-63912716 ATXN7 Spinocerebellar ataxia 7 37 164500
chr3:129172577-129172659 CNBP Myotonic dystrophy 2 50 602668
chr4:3074877-3074940 HTT Huntington disease 36 143100
chr4:41745976-41746022 PHOX2B Congenital central

hypoventilation
25 209880

chr5:146878728-146878759 PPP2R2B Spinocerebellar ataxia 12 55 604326
chr6:16327634-16327724 ATXN1 Spinocerebellar ataxia 1 39 164400
chr6:45422750-45422794 RUNX2 Cleidocranial dysplasia 27 119600
chr6:170561907-170562017 TBP Spinocerebellar ataxia 17 47 607136
chr7:27199680-27199729 HOXA13 Hand-foot-genital syndrome 18 140000
chr8:104588965-104588999 LRP12 Oculopharyngodistal

myopathy
93 164310

chr9:27573485-27573546 C9orf72 Amyotrophic lateral sclerosis 21 105550
chr9:69037285-69037304 FXN Friedreich ataxia 1 200 229300
chr10:79826377-79826404 LOC642361/

NUTM2B-
AS1

Oculopharyngeal myopathy with
leukoencephalopathy

- NatGen

chr12:6936717-6936775 ATN1 Dentatorubral pallidoluysian
atrophy

49 125370

chr12:111598950-111599019 ATXN2 Spinocerebellar ataxia 2 35 183090
chr13:70139384-70139429 ATXN8OS Spinocerebellar ataxia 8 111 608768
chr13:99985449-99985494 ZIC2 Holoprosencephaly-5 25 609637
chr14:23321472-23321492 PABPN1 Oculopharyngeal muscular

dystrophy
12 164300

chr14:92071011-92071052 ATXN3 Spinocerebellar ataxia 3 55 109150
chr16:87604283-87604329 JPH3 Huntington disease-like-2 50 606438
chr18:55586154-55586229 TCF4 Corneal dystrophy 40 613267
chr19:13207859-13207898 CACNA1A Spinocerebellar ataxia 6 20 183086
chr19:18786035-18786050 COMP Multiple epiphyseal dysplasia 6 132400
chr19:45770205-45770266 DMPK Myotonic dystrophy 1 50 160900
chr20:2652733-2652775 NOP56 Spinocerebellar ataxia 36 650 614153
chr21:43776445-43776479 CSTB Myoclonic epilepsy of Unverricht

and Lundborg
30 254800

chr22:45795355-45795424 ATXN10 Spinocerebellar ataxia 10 800 603516
chrX:67545318-67545383 AR Kennedy disease 37 313200
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Abstract  

Microsatellites are polymorphic tracts of short tandem repeats (STRs) with one to six 

base-pair (bp) motifs and are some of the most polymorphic markers in the genome. 

We describe microsatellites in 53,026 and 150,119 whole genome sequenced samples 

from Iceland and the UK Biobank (UKB), respectively. Using 6,084 Icelandic parent-

offspring trios we find 76,987 microsatellite de novo mutations (mDNMs) and estimate 

the germline mDNM rate as 4.95 · 10-5 (95% CI: 4.88-5.02 · 10-5) mutations per 

microsatellite per generation (MMG), corresponding to 63.7 (95% CI: 61.9-65.4) 

mDNMs per proband per generation. Paternal mDNMs account for 76.9% of the total 

and occur at longer repeats, while maternal mDNMs affect more bp. mDNMs increase 

by 0.97 (95% CI: 0.90–1.04) and 0.31 (95% CI: 0.25-0.37) per year of father‘s and 

mother‘s age, respectively. We found two independent variants correlating with 

increased number of transmitted mDNMs. A missense variant (1.9% allele frequency) in 

MSH2, a mismatch repair gene, correlates with an increase of mDNMs transmitted from 

both parents (effect: 13.1 paternal and 7.8 maternal mDNMs). A synonymous variant 

(20.3% allele frequency) in NEIL2, a DNA damage repair gene, correlates with an 

increase of paternally transmitted mDNMs (effect: 4.4 paternal mDNMs). Thus, the 

microsatellite mutation rate in humans is in part under genetic control. 

Introduction  

Mutations enable life to evolve and adapt. Accurate estimates of the rate of mutations 

and the processes behind them are therefore imperative for understanding evolution, 

making inferences about population history(1–6) and understanding the genetics of 

disease and other phenotypes(7–11). 

Around 3% of the human genome are short tandem repeats (STRs)(12), some of which 

are polymorphic, i.e. microsatellites, that mutate several orders of magnitude faster than 

unique sequences(13). Because of their high mutation rate and abundance in the 

human genome microsatellites have proven useful in a wide range of research(14). 

Genotyping microsatellites became standard practice when PCR-based methods 

23



emerged in the late eighties(14) and they were the main form of sequence variation 

studied until the advent of single nucleotide polymorphism (SNP) arrays(15).  

Hypermutability of microsatellites located within or close to genes can cause diseases 

and syndromes, collectively referred to as repeat expansion disorders, which are 

caused by a dramatic microsatellite expansion after the repeat length exceeds a stability 

threshold, specific to each microsatellite(16–19). These include fragile X syndrome 

(FRAXA)(20), myotonic dystrophy type 1 (DM1)(21), and spinocerebellar ataxias 

(SCAs)(22). 

The rate of mDNMs in humans has been shown to vary by microsatellite motif, motif 

length, allele length, GC content (23–25), parent of origin, and paternal(26) age, but 

researchers have to date been unable to detect a relationship with maternal age. 

mDNM rates for di- and tetranucleotide repeats were estimated as 1.0 · 10-3 and 2.73 · 

10-4 mutations per microsatellite per generation (MMG), respectively(1) using a set of 

microsatellites chosen because of their high mutability. An mDNM rate of 5.6 · 10-5 

MMG was reported in a recent study on the contribution of mDNMs to autism spectrum 

disorder(26) which considered tandem repeats with motif lengths between one and 

twenty bp. To date, datasets used to study mDNMs have for the most part been 

confined to small sets of well defined microsatellite or focused on specific diseases. 

mDNMs are believed to mostly occur through replication slippage caused by a failure in 

the processes responsible for sequence fidelity before, during, and after DNA 

replication. These processes are proofreading, which verifies the correct pairing of the 

most recently added bp, and mismatch/damage repair mechanisms, which detect and 

replace incorrectly paired or damaged DNA bases(27, 28). Loss of function mutations 

affecting genes responsible for mismatch/damage repair or proofreading are known to 

cause somatic microsatellite instability, which in turn can result in increased risk of 

colorectal, gastric, endometrial and other types of cancer(29). However, apart from 

handful of clinical cases(30, 31), no variants associated with the germline de novo 

mutation rate in humans have been reported. 
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Recombination, DNA damage repair and nonhomologous end joining (NHEJ) have also 

been implicated determinants of mDNMs(32, 33) and since the two germlines have 

different exposure to these processes it is logical to assume that the mDNM 

accumulation is different between the sexes. The recombination rate is higher in 

females(34) and oocytes wait in a largely dormant state from the parent‘s birth to 

reproduction, exposed to DNA damage to be repaired by NHEJ or homologous 

recombination(35). Spermatogonia undergo mitosis continuously, increasing the risk of 

replication slippage events. 

In addition to sex differences between the germlines, genetic factors responsible for 

genome integrity can be expected to play a role in DNM accumulation. Sequence 

variants that increase sDNM and mDNM rates are known in somatic tissues in 

humans(36). Sequence variants that increase the sDNM rate are known in animal and 

yeast models(37, 38), but the detection of germline mutators has been elusive.  

We identified and genotyped microsatellites in two large sequencing cohorts. Using 

these sets we estimated the mDNM rate and identified environmental and genetic 

determinants of mDNMs. 
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Fig. 1 | Overview of the analysis. We use WGS data from Iceland and UKB and 
genealogy data from Iceland. From the WGS data we generate microsatellite 
genotypes. Using trios in the genealogy and the genotypes we detect and phase 
mDNMs and count the number of mDNMs per trio. We associate the individual mDNM 
counts with genotypes of the parents in the trios. We compute population wide expected 
heterozygosity based on the genotypes and observe how it is affected by sequence 
context. From the phased mDNMs we also estimate age and sex effects on the mDNM 
rate and to create parental phenotypes based on number of mDNMs found in offspring 
from the phased mDNMs. 
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Results 

STR identification and genotyping 

We used popSTR(39) to call genotypes for 5,401,401 autosomal short tandem repeats 

(STRs), identified by Tandem repeats finder(40), in two large WGS datasets, 53,026 

Icelanders and 150,119 participants in the UKB, sequenced to an average coverage of 

39.2x (min: 19.7, max: 608.3) and 32.5x (min: 23.6, max: 128.1), respectively.  

Each STR has a repeat motif along with start and end positions in the reference and we 

refer to the sequence between these positions as the reference repeat tract (RRT) and 

its length as RRT length. We define repeat purity as the ratio between the number of 

times the STR‘s repeat motif is observed in its RRT and the maximum number of repeat 

motifs if the sequence contained no interruptions (where the highest possible repeat 

purity is 1). For motif lengths between one and three bp, we compare the behavior of 

motif equivalence classes where all members in a class are either a circular shift or a 

reverse complement of each other. For example, the members of the AAT motif 

equivalence class are: AAT, ATA, TAA, ATT, TAT and TTA (Table 1).  

Class representative Other members 

A T 

C G 

AC CA, GT, TG 

AG GA, CT, TC 

AT TA 

CG GC 

AAC ACA, CAA, GTT, TGT, TTG 

AAG AGA, GAA, CTT, TCT, TTC 

AAT ATA, TAA, ATT, TAT, TTA 

ACC CAC, CCA, GGT, GTG, TGG 

ACG CGA, GAC, CGT, TCG, GTC 

ACT CTA, TAC, AGT, TAG, GTA 

AGC GCA, CAG, GCT, TGC, CTG 

AGG GAG, GGA, CCT, CTC, TCC 

ATC TCA, CAT, GAT, TGA, ATG 

CCG CGC, GCC, CGG, GCG, GGC 

Table 1 : Motif equivalence classes and their members. 

We found 1,394,292 (25.8%) and 2,393,292 (44.3%) of the STRs to be polymorphic in 

the Icelandic and UK datasets, respectively and will refer to these polymorphic STRs as 

microsatellites. We describe microsatellite diversity through polymorphism rate (the 
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fraction of STRs that are polymorphic) and expected heterozygosity(41) (Fig. 4, Fig. 5, 

Table 3, Table 4, Table 5, Table 6). Our microsatellite genotyping is limited by read 

length (151 bp for most samples), resulting in a decrease in accuracy when detecting 

and determining genotypes of alleles with long RRTs. The average expected 

heterozygosity in our datasets decreases at RRT lengths exceeding 80 bp (Fig. 4, Fig. 

5), so we conclude that this is the length where the effect of the RRT length on the 

genotyping accuracy becomes pronounced. 

A number of STR properties correlate with the polymorphism rate and expected 

heterozygosity(41). Both the motif length and how many times the motif is repeated in 

its RRT (repeat number) affect the polymorphism rate and the expected heterozygosity. 

Almost all homopolymers are polymorphic and both the fraction of polymorphic STRs 

and expected heterozygosity decrease with motif length (linear regression P < 1 · 10-320 

for both datasets, Fig. 4, Fig. 5). For all motif lengths, an increase in repeat number 

results in both a higher polymorphism rate and expected heterozygosity (linear 

regression P < 1 · 10-320 for both datasets, Fig. 4, Fig. 5).  

The fraction of G/C bases in an STR‘s motif (motif GC content) is negatively correlated 

with polymorphism rate (Table 6) while negative correlation with expected 

heterozygosity is only observed for motif lengths above two bp (Table 5). 

Homopolymers from the C motif class have higher expected heterozygosity than A class 

homopolymers (Table 5) but account for only 0.8% of all homopolymers (Table 2). 

CpG microsatellites (CG motif class) also have higher expected heterozygosity on 

average than the other dinucleotide motif classes but account for only 0.4% of all 

dinucleotide repeats (Table 2, Table 5). Thus, although C class homopolymers and CG 

class dinucleotide microsatellites have higher expected heterozygosity values than 

other classes with equal motif lengths, their overall effect on microsatellite diversity is 

small since they are so rare. 

Enrichment of A motif class homopolymers in the human genome is thought to be a 

result of the microsatellite-like structure often found at 3‘ ends of reverse transcribed 

RNA sequences, i.e. poly-A tails(42, 43) and the high expected heterozygosity rate at 

CG class microsatellites is consistent with CpG sites acting as mutational hot spots(44). 

Negative correlation of GC content to polymorphism rates and expected heterozygosity 
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can likely be explained by the three hydrogen bonds between paired G/C bp, compared 

to two between A/T bp, making the slippage-causing disassociation from the template 

strand during replication less likely.  

Stratified on RRT length, all correlations between repeat purity and both expected 

heterozygosity and polymorphism rate were positive (Table 3, Table 4, Fig. 2, Fig. 3). 

This is consistent with(14, 45–47), reporting a positive correlation between repeat purity 

and mDNM rate. Interruptions of the repeat sequence decrease the number of locations 

where replication slippage can occur and thus the mDNM rate(24). 

Motif class Maternal  Paternal  Full marker set TRF output 

A 97.5% 97.7% 99.2% 99.2% 

C 2.5% 2.3% 0.8% 0.8% 

AC 67.6% 84.3% 49.1% 54.4% 

AG 8.9% 5.6% 19.9% 23.4% 

AT 23.2% 10.0% 30.5% 21.7% 

CG 0.4% 0.1% 0.4% 0.4% 

AAC 13.0% 13.3% 27.1% 20.8% 

AAG 3.8% 2.0% 15.0% 10.0% 

AAT 75.3% 77.6% 34.9% 32.9% 

ACC 0.8% 0.4% 4.0% 7.4% 

ACG 0.0% 0.0% 0.1% 0.1% 

ACT 1.2% 0.9% 0.9% 1.9% 

AGC 2.1% 1.2% 3.0% 7.8% 

AGG 0.8% 0.6% 7.5% 11.3% 

ATC 2.4% 3.9% 4.3% 6.1% 

CCG 0.6% 0.2% 3.1% 1.6% 

Table 2 Fraction of each motif equivalence class within homopolymers, di- and trinucleotide repeats split 

on maternal and paternal mDNMs, fraction of each motif equivalence class in full marker set and in the 

Tandem Repeats Finder (TRF) output. 
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Fig. 2 | Average repeat purity as a function of repeat number stratified on motif 

length for the Icelandic data set. Red marks polymorphic STRs (microsatellites) and 

blue non-polymorphic STRs. 

 

 

Fig. 3 | Average repeat purity as a function of repeat number stratified on motif 
length for the UKB data set. Red marks polymorphic STRs (microsatellites) and blue 
non-polymorphic STRs. 
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Fig. 4 | Average expected heterozygosity in UKB as a function of repeat number 
stratified on motif length. The drop in all motif lengths is most likely due our inability to 
reliably detect long alleles from short reads, causing underestimation of expected 
heterozygosity values at microsatellite with long reference alleles. 

 

Fig. 5 | Average expected heterozygosity in Icelandic data set as a function of 
repeat number stratified on motif length.  
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RRT length Purity effect (Ice/UKBB) P (Ice/UKBB) 

11-20 0.39/0.23 < 1.0 · 10-320/< 1.0 · 10-320 

21-30 0.71/0.67 < 1.0 · 10-320/< 1.0 · 10-320 

31-40 0.87/0.85 < 1.0 · 10-320/< 1.0 · 10-320 

41-50 1.17/1.15 < 1.0 · 10-320/< 1.0 · 10-320 

51-60 1.17/1.18 < 1.0 · 10-320/< 1.0 · 10-320 

61-70 1.10/1.13 < 1.0 · 10-320/< 1.0 · 10-320 

71-80 1.05/1.08 < 1.0 · 10-320/< 1.0 · 10-320 

81-90 0.96/1.07 3.9 · 10-141/6.8 · 10-183 

>90 0.76/0.83 5.4 · 10-56/6.1 · 10-57 

Table 3 Linear regression coefficients and p-values for the effect of repeat purity on expected 
heterozygosity within ten base pair bins of RRT length for both the Icelandic and UKB datasets. 

RRT length Purity effect (Ice/UKBB) P (Ice/UKBB) 

11-20 7.86/5.31 < 1.0 · 10-320/< 1.0 · 10-320 

21-30 7.84/6.09 < 1.0 · 10-320/< 1.0 · 10-320 

31-40 6.11/5.47 < 1.0 · 10-320/< 1.0 · 10-320 

41-50 5.94/4.96 < 1.0 · 10-320/< 1.0 · 10-320 

51-60 4.78/3.668 < 1.0 · 10-320/2.4 · 10-83 

61-70 4.42/2.72 2.8 · 10-164/6.0 · 10-17 

71-80 4.22/1.95 2.0 · 10-61/7.1 · 10-6 

81-90 4.03/-0.09 6.2 · 10-26/0.9 

>90 2.72/0.61 1.0 · 10-16/0.1 

Table 4 Logistic regression coefficients and p-values for the effect of repeat purity on polymorphism rate 
within ten base pair bins of RRT length for both the Icelandic and UKB datasets.  

Motif length  Effect (Ice/UKBB) P (Ice/UKBB) 

1 0.15/0.17 4.5 · 10-312/< 1.0 · 10-320 

2 0.14/0.10 < 1.0 · 10-320/< 1.0 · 10-320 

3 -0.12/-0.05 < 1.0 · 10-320/< 1.0 · 10-320 

4 -0.07/-0.04 1.1 · 10-155/< 1.0 · 10-320 

5 -0.06/-0.03 8.0 · 10-141/< 1.0 · 10-320 

6 -0.02/-0.01 3.9 · 10-18/1.52 · 10-95 

Table 5 Linear regression coefficients and p-values for the effect of GC motif content on expected 
heterozygosity within motif lengths for both the Icelandic and UKB datasets.  

Motif length  Effect (Ice/UKBB) P (Ice/UKBB) 

1 -0.20/-1.33 4.9 · 10-3/4.6 · 10-41 

2 -0.29/-0.21 1.3 · 10-79/1.6 · 10-15 

3 -0.79/-1.12 < 1.0 · 10-320/< 1.0 · 10-320 

4 -1.47/-1.97 < 1.0 · 10-320/< 1.0 · 10-320 

5 -2.02/-1.67 < 1.0 · 10-320/< 1.0 · 10-320 

6 -1.55/-1.34 < 1.0 · 10-320/< 1.0 · 10-320 

Table 6 Logistic regression coefficients and p-values for the effect of GC motif content on polymorphism 
rate within motif lengths for both the Icelandic and UKB datasets.  
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mDNM rate 

We detected 76,987 mDNMs in 6,084 Icelandic trios (mean: 12.7 mDNMs per trio) in 

634,406 high quality microsatellites for offspring genotypes that were inconsistent with 

the genotypes of the parents. Each trio had on average 256,066 microsatellites (40.4%) 

where all members‘ genotypes passed quality filters and we were able to test for 

mDNMs. 

To estimate the false positive rate of our method we used two methods; PacBio CCS 

sequence data, available for four of our trios, and mDNM sharing in nine Icelandic 

monozygotic twin pairs in our set. We used haplotype resolved assemblies of the 

PacBio data and were able to verify 26 out of the 27 mDNMs present in the PacBio 

sequenced trios, giving a false positive rate estimate of 3.7% (Table 7).  

Chrom Pos  Motif Ref. (No 
repeats) 

Offspring gt Father gt Mother gt Verified 

chr11 80254522 CTAT 15 15/15 11/16 15/15 yes 

chr12 100919737 TATC 15 15/18 15/17 15/17 yes 

chr2 199703012 GTTT 8 9/9 8/10 8/9 yes 

chr4 115864579 TG 11 11/13 11/12 11/11 no 

chr7 86946160 CA 16 14/18 16/18 15/18 yes 

chr11 43435069 AGAT 16 17/17 15/18 15/17 yes 

chr13 54157465 TA 20 16/19 18/21 16/22 yes 

chr14 82746964 AATA 8 8/10 8/9 8/9 yes 

chr17 54067449 TTTTA 7 7/8 7/7 7/7 yes 

chr18 3742950 CTTC 11 11/14 11/12 11/13 yes 

chr18 63468251 AAC 8 10/12 8/10 10/10 yes 

chr1 10498281 AAAAC 8 8/7 9/9 7/9 yes 

chr4 140179641 TGTTT 8 7/9 8/5 5/7 yes 

chr6 44850746 ATCT 13 16/16 15/15 10/16 yes 

chr16 69147179 AAT 15 14/16 15/15 15/14 yes 

chr1 180853627 AC 21 19/25 19/26 19/20 yes 

chr20 34877898 AGAT 12 15/16 13/16 16/16 yes 

chr3 85784531 TATC 13 13/12 10/14 11/12 yes 

chr4 169443052 TATC 13 12/15 14/14 13/12 yes 

chr6 38464486 TTTTC 6 6/5 6/7 6/7 yes 

chr7 29184144 AGAT 14 14/15 11/16 14/13 yes 

chr8 110980554 ATCT 10 12/12 11/11 12/13 yes 

chr11 22272303 CA 22 22/19 23/26 22/25 yes 

chr12 29413662 AC 15 16/20 14/16 14/19 yes 

chr13 80326450 TG 9 9/8 8/8 8/8 yes 

chr1 172791800 AT 7 7/14 7/7 7/13 yes 

chr8 19119757 TA 9 9/13 9/12 9/12 yes 

Table 7 mDNMs verified by haplotype resolved assemblies generated from pacBio HiFi sequencing data. 
We were unable to verify homopolymer mDNMs due to high error rates.  
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The monozygotic twin pairs shared 217 of the 230 mDNMs observed which gives a 

false positive rate estimate of 5.6%. We note that this is likely to be an overestimate, as 

some of the differences between the twin pairs could be due to result of post zygotic 

mutations, representing true differences between twins(48). 

Using haplotype sharing across 540 three-generation families (795 trios), we counted 

how many times an mDNM was transmitted from a proband to offspring and estimated 

the transmission rate. The expected value of the transmission rate is 0.50 and 

deviations from it quantify false positive mDNM detection rates. For example, if the 

observed mutations were somatic and thus false positive as mDNMs, we would not 

observe transmission from the probands to their offspring. We observe a transmission 

rate of 0.49 (N = 11,228, 95% CI: 0.48-0.50) which gives an estimated false positive 

rate of 2%, although transmission rates vary between motif lengths and thus the error 

rate estimates as well (Table 8). Notably, the transmission rate for homopolymers is 

only 0.4 while the other motif lengths have transmission rates much closer or equal to 

0.5. 

Motif length (bp) Transmission rate Error estimate  

1 0.40 (861/2,156)   20% 

2 0.50 (2,558/5,083) 0% 

3 0.51 (433/857) 2% 

4 0.53 (1,458/2,764) 6% 

5 0.55 (169/310) 10% 

6 0.47 (27/58) 6% 

Total 0.49 (5,506/11,228) 2% 

Table 8 Transmission rate by motif length and combined for all mDNMs phased using haplotype sharing 
in three-generation families.  

We estimated the average mDNM rate over all motif lengths as 4.95 · 10-5 MMG and 

observed an order of magnitude difference in mDNM rates between motif lengths, with 

rates ranging from 1.0 · 10-5 MMG for hexanucleotide repeats to 1.1 · 10-4 MMG for 

dinucleotide repeats (Table 9, Fig. 6).  

 

 

 

 

 

34



Motif (bp) mDNM rate (95% CI) #microsatellites #DNMs 

1 2.15 · 10-5 (2.11 · 10-5-2.19 · 10-5) 399,087 (62.9%) 17,194 (22.3%) 

2 1.07 · 10-4 (1.06 · 10-4-1.09 · 10-4) 93,653(14.8%) 33,025 (42.9%) 

3 4.92 · 10-5 (4.70 · 10-4-5.21 · 10-4) 29,869 (4.7%) 5,469 (7.1%) 

4 8.57 · 10-5 (8.28 · 10-4-8.86 · 10-4) 66,541 (10.5%) 18,795 (24.4%) 

5 2.58 · 10-5 (2.37 · 10-5-2.86 · 10-5) 29,992 (4.7%) 2,132 (2.8%) 

6 1.04 · 10-5 (9.07 · 10-6-1.23 · 10-5) 15,264 (2.4%) 372 (0.5%) 

Total  4.95 · 10-5 (4.88 · 10-5-5.02 · 10-5) 634,406 76,987 

Table 9: mDNM rate, number of microsatellites in high quality set and number of mDNMs, all by motif 
lengths. Dinucleotide repeats have the highest mDNM rate and represent almost 43% of our mDNMs. 
 

 

Fig. 6 | mDNM rate a) Histogram showing the number of mDNMs per microsatellite. 

Only microsatellites with at least one mDNM are shown and the counts are on a log-

scale. b) Histogram showing the number of trios available to check for mDNMs per 

microsatellite with at least one mDNM. c) mDNM rates of motif equivalence classes for 

motif lengths between one and three bp with error bars representing 95% confidence 

intervals. d) mDNM rate as function of RRT length stratified on motif length. The RRT 

length affects mDNM rates in a similar way for all motif lengths. e) mDNM rate as 

function of GC content in motif. f) mDNM rate as a function of repeat purity stratified on 

motif length. The mDNM rate increases with purity for all motif lengths. 
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Using motif length specific mutation rates and the average number of markers available 

at each trio to extrapolate to the full set of 1,394,292 microsatellites gives an expected 

number of 63.7 mDNMs (95% CI: 61.9-65.4) per proband per generation. This 

extrapolated number is comparable with the de novo mutational load of SNPs and 

indels accessible by short read sequencing(49, 50). 

Attributes known to correlate with polymorphism rate were also correlated with the 

mDNM rate. As the RRT length increased from ten to 100 bp the mDNM rate also 

increased for all motif lengths (Fig. 6), consistent with findings from previous studies(23, 

51–53) and, intuitively, the opportunities for errors during replication increase with a 

microsatellite‘s RRT length.  

Microsatellites with longer RRTs have been shown to be more likely to contract and 

shorter ones to expand(23, 54–59). We replicate this. For all RRT length thresholds, a 

higher fraction of mDNMs had a gain of repeat motifs below the threshold than above it, 

i.e., the microsatellite group with shorter overall RRTs were more likely to expand than 

the group with longer RRTs (Table 10). 

Length threshold (bp) percentage adding bp below  percentage adding bp above  

20 59.4% 52.1% 

30 59.6% 50.7% 

40 56.9% 49.5% 

50 54.2% 49.9% 

60 53.5% 51.2% 

70 53.5% 50.2% 

80 53.4% 46.2% 

90 53.4% 50.0% 

100 53.4% 42.9% 

Table 10 Fraction of mDNMs adding bp above and below different repeat tract length thresholds. The 
fraction of mDNMs adding bp is higher below the threshold in all cases.  

Our mDNM rate estimate is nominally lower than a previous estimate(26) of 5.6 · 10-5  

and lower than the two estimates of 10.0 · 10-4 and 2.7 · 10-4 for tetra- and  dinucleotide 

repeats, respectively(1). This apparent discrepancy could be a result of a more 

conservative filtering in our study, a younger set of parents, a generally healthier cohort 

and a different range of motif lengths considered. However, the most likely reason for 

the apparent discrepancy is the sample size difference between the studies. Our set 

contains 53,026 individuals while the set analyzed by Mitra et al. (26) contained 6,548 

individuals. Thus, our minimum detection frequency is 1/(2 ·53,026) = 9.0 · 10-6 

36



compared to the minimum detection frequency(26) of 1/(2 · 6,548) = 7.6 · 10-5 enforced 

by the smaller sample size. We recomputed our mutation rate estimate conditioning on 

microsatellite frequency (Table 11) and confirmed that at a detection frequency cutoff of 

7.6 · 10-5 our estimate becomes 5.6 · 10-5 and matches the one presented by Mitra et 

al.(26). Similarly, at a minimum frequency of 10% our estimate is comparable to the one 

from Sun et al.(1) Based on this we conclude that a mDNM rate estimate depends on 

the size of the sample set studied. 

Detection frequency DNM rate estimate 

9.0 · 10-6 5.0 · 10-5 

7.6 · 10-5 5.6 · 10-5 

1.0 · 10-2 8.1 · 10-5 

5.0 · 10-2 9.3 · 10-5 

0.1 1.0 · 10-4 

Table 11 Microsatellite mDNM rate estimates for different detection frequencies, the number of markers 
included in the analysis depends on the detection frequency defined by the sample size. 

The mDNM rate for homopolymers was positively correlated with the motif G/C content, 

while di-, tri-, tetra- and pentanucleotide repeats had a negative correlation with the 

mDNM rate and for hexanucleotide repeats we lacked power to detect a correlation with 

the mDNM rate (Fig. 6,Table 12). 

Motif  Repeat tract length  Purity GC content  Motif length 

All  0.10 (<1 · 10-320) 0.12(<1 · 10-320) 9.47 · 10-5(0.58) -0.15 (<1 · 10-320) 

1bp 0.16(<1 · 10-320) 0.28(<1 · 10-320) 0.02(<1 · 10-320)  X 

2 bp 0.10(<1 · 10-320) 0.17(<1 · 10-320) -0.01(8.6 · 10-87) X 

3 bp 0.12 (<1 · 10-320) 0.14 (<1 · 10-320) -0.03(3.0 · 10-235) X 

4 bp 0.10(<1 · 10-320) 0.10 (<1 · 10-320) -0.003(2.2 · 10-10) X 

5 bp 0.1 (<1 · 10-320) 0.05(4.4 · 10-121) -0.003(2.4 · 10-2) X 

6 bp 0.09(<1 · 10-320) 0.02(8.9 · 10-18) 7.5 · 10-4 (0.76) X 

Table 12 Poisson multiple regression coefficients and p-values for the effect on the mDNM rate by RRT 
length, repeat purity, GC content and motif length for all markers and stratified on motif length. Repeat 
tract length and repeat purity remain significant and consistent in their effect directionality across the full 
data set and all motif length subsets. GC-content is positively correlated to the mDNM rate for 
homopolymers but for di-, tri-, tetra-, and pentanucleotide repeats the motif GC-content has an inverse 
correlation to the mDNM rate.  

Repeat purity correlated positively with the mDNM rate for all motif lengths (effect = 

0.12, P < 1 · 10-320, Fig. 6, Table 12), consistent with previously published results(53). 

The correlation remained positive in most cases after conditioning on RRT lengths 

(Table 13). 
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Bp 1 bp motif (P) 2 bp motif (P) 3 bp motif (P) 4 bp motif (P) 5 bp motif (P) 6 bp motif (P) 

11-
20 

0.13(3.2 · 10-93) 0.04(1.2 · 10-9) 0.05(5.7 · 10-4) -0.005(0.36) -0.006(0.25) -0.01(0.17) 

21-
30 

0.21(< 1.0 · 10-

320) 
0.16(< 1.0 · 10-

320) 
0.13(3.4 · 10-

38) 
0.05(2.0· 10-35) -0.002(0.56) 0.002(0.65) 

31-
40 

0.20(2.0 · 10-36) 0.17(< 1.0 · 10-

320) 
0.18(7.3 · 10-

136) 
0.11(2.2 · 10-

211) 
0.06(1.1 · 10-

28) 
0.01(0.01) 

41-
50 

0.06(0.23) 0.16(< 1.0 · 10-

320) 
0.12(1.4 · 10-

95) 
0.09(1.3 · 10-

293) 
0.08(4.4 · 10-

40) 
0.03(1.0 · 10-6) 

51-
60 

-0.50(3.7 · 10-4) 0.15(3.0 · 10-252) 0.11(5.1 · 10-

40) 
0.07(5.8 · 10-

216) 
0.06(3.5 · 10-

24) 
0.06(1.1 · 10-

14) 

61-
70 

-1.13(5.9 · 10-5) 0.12(1.6 · 10-36) 0.12(1.8 · 10-

12) 
0.06(3.9 · 10-

115) 
0.06(1.4 · 10-

18) 
0.06(2.2 · 10-9) 

71-
80 

0.65(0.48) 0.14(9.3 · 10-10) 0.03(0.34) 0.04(4.4 · 10-

42) 
0.03(6.1 · 10-6) 0.02(0.15) 

81-
90 

X 0.05(0.58) 0.47(0.31) 0.04(7.6 · 10-

12) 
0.05(5.0 · 10-5) 0.06(0.06) 

>90 X X 5.43(1.00) 0.03(4.3 · 10-5) 0.008(0.42) 0.04(0.34) 

Table 13 Poisson regression coefficients and p-values for effect of repeat purity on mDNM rate split into 
ten bp RRT length bins stratified on motif length. Data for regression was not available for homopolymers 
above 80 bp and dinucleotide microsatellites above 90 bp.  

The mDNM rate is higher for C class homopolymers than for A class ones (Mann-

Whitney U test P < 1 · 10-230, Fig. 6), but C homopolymers are much rarer and represent 

only 0.8% of all homopolymers in our set (Table 2). The AC motif class has the highest 

mDNM rate of the dinucleotide microsatellites (Table 14, Fig. 6).  

Motif equivalence class Regression α and (P) for comparison with AC-class mDNM rate  

AG -1.20 (<1 · 10-320) 

AT -1.08 (<1 · 10-320) 

CG -0.43 (7.7 · 10-3) 

Table 14 Regression coefficients and p-values from a Poisson regression comparing the mDNM rate of 
the other motif equivalence classes to the AC class using available trios per marker as exposure but 
without correcting for RRT length. All motif classes have significantly lower mDNM rates. 

However, the average RRT length of the AC motif class is longest among dinucleotide 

classes. Including RRT length as a covariate the CG motif class has a higher mDNM 

rate than all other dinucleotide classes (Table 15), in line with the fact that CpG sites 

have been shown to act as mutational hot spots(44).  

Motif equivalence class Regression α and (P) for comparison with CG-class mDNM rate  

AC -0.81 (5.7 · 10-7) 

AG -1.48 (1.7 · 10-19) 

AT -1.18 (5.8 · 10-13) 

Table 15 Regression coefficients and p-values from a Poisson regression comparing the mDNM rate of 
the other motif equivalence classes to the CG class after correcting for RRT length and using available 
trios per marker as exposure. All motif classes have significantly lower mDNM rates.  
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The AAT motif class had a higher mDNM rate than eight of the other nine trinucleotide 

repeat motif classes. Only the rarest class (ACG) did not show a significantly different 

mDNM rate (Table 16). The AAT motif class accounts for 38.4% of all trinucleotide 

microsatellites and 79.0% of trinucleotide mDNMs and has an mDNM rate 1.5 times 

higher than the second highest class. 

Motif equivalence class Regression α (P) for comparison with AAT mDNM rate  

AAC -1.35 (2.7 · 10-217) 

AAG -1.67 (5.3 · 10-75) 

ACC -2.99 (5.6 · 10-29) 

ACG -0.06 (0.92) 

ACT -2.49 (3.3 · 10-88) 

AGC -1.8 (8.6 · 10-41) 

AGG -3.09(4.9 · 10-37) 

ATC -1.78 (1.2 · 10-120) 

CCG -1.14(1.7 · 10-11) 

Table 16 Regression coefficients and p-values from a Poisson regression comparing the mDNM rate of 
the other motif equivalence classes to the AAT class, correcting for RRT length and using available trios 
per marker as exposure. All motif classes expect for the rarest one (ACG) have significantly lower mDNM 
rates.  

A higher mDNM rate for AAT class motifs has been previously reported for other 

organisms(60, 61) but not, to our knowledge for, humans.  

Previous studies have reported increased efficiency of mismatch repair (MMR) in early-

replicating regions of the human genome(62). Our results are in line with this since we 

see 1.28 (95% CI: 1.25-1.31) fold depletion of mDNMs in early replicating regions of the 

genome(63). 

The mDNM rate is lower in exons than in other parts of the genome 

Exonic mDNMs are rarer than their intergenic and intronic counterparts. In 2,568,858 

transmissions of microsatellites intersecting exons by one or more bp, we observed 33 

mDNMs.  

We estimated the exonic mDNM rate as 1.3 · 10-5 MMG, which is 3.9 (95% CI: 2.8-5.6) 

times lower than the genome-wide estimate. mDNMs are further 1.7 (95% CI: 1.3-2.1), 

1.4 (95% CI: 1.3-1.5) and 4.2 (95% CI: 1.2-34.4)-fold depleted in 5‘UTR and 3‘UTR and 

splice regions, respectively. The 33 exonic mDNMs occurred at 21 unique 

microsatellites, of which 19 had motif lengths that were multiples of three and since 

amino acids are coded with three bp codons, mutations at microsatellites with multiple 
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of three motif lengths are unlikely to cause a frameshift but rather an in-frame alteration 

of a gene. Sixteen of the exonic mDNMs were trinucleotide microsatellites, three were 

hexanucleotide microsatellites and the remaining two were homopolymers.  

Tri- and hexanucleotide repeats were enriched in coding exons (chi squared test P < 1 · 

10-320) compared with the rest of genome. Microsatellites with motif lengths that are 

multiples of three accounted for 93.3% of exon intersecting microsatellites and 70.9% of 

all exon intersecting non polymorphic STRs (Table 17). In contrast, 12.3% of all 

microsatellites had motifs that are multiples of three (Table 17) and 44.5% of non-

polymorphic STRs. 

Motif length (bp) All 
microsatellites 

Microsatellites in coding 
exons 

Non polymorphic STRs in coding 
exons  

1 50.0% 1.8% 0.003% 

2 16.7% 0.5% 0.6% 

3 5.8% 76.2% 17.5% 

4 13.2% 3.0% 6.4% 

5 7.1% 1.5% 22.1% 

6 6.5% 17.1% 53.4% 

Table 17 Motif length composition for all microsatellites and exon intersecting microsatellites.  

The average purity of microsatellites was 0.94, while among microsatellites in exons the 

purity was notably lower (0.87, Mann-Whitney P = 1 · 10-153). Purity was positively 

correlated with the mDNM rate, so decreased purity in exons may decrease 

occurrences of possibly pathogenic mDNMs. This indicates that there is a possible 

positive selection for point mutations that reduce the purity of exonic microsatellites or a 

possible negative selection for point mutations that increase in their purity. The purity 

difference is largest for trinucleotide repeats, the most common motif length for exon 

intersecting microsatellites (Table 18). Non-polymorphic coding STRs do not have 

decreased purity compared to their intergenic counterparts, so point mutations are less 

likely to be the mechanism preventing mutations at these exonic STRs (Table 18). 

 

 

 

 

40



Motif length All microsatellites Coding 
microsatellites 

Non-polymorphic 
STRs 

Coding non-polymorphic 
STRs 

1 0.98 0.97 (0.25) 0.97 0.95 (0.05) 

2 0.95 0.96 (0.14) 0.93 0.97 (5.9 · 10-12) 

3 0.93 0.89 (9.0 · 10-66) 0.94 0.93 (1.3 · 10-8) 

4 0.89 0.88 (0.87) 0.93 0.96 (5.7 · 10-43) 

5 0.84 0.89 (3.0 · 10-4) 0.96 0.97 (2.3 · 10-26) 

6 0.81 0.80 (0.12) 0.94 0.94 (3.8 · 10-4) 

Overall 0.94 0.87 (1 · 10-153) 0.95 0.95 (9.6 · 10-14) 

Table 18 Average purity values per motif length for all microsatellites, coding microsatellites, all non-
polymorphic STRs and coding non-polymorphic STRs. Mann-Whitney U-test p-values for significant 
difference in purity values between exonic and non-exonic microsatellites in each motif length in brackets. 
  

Parent of origin effects 

To determine the sex differences in mDNMs formation, we assigned a parent of origin to 

46,171 (60.0%) of the mDNMs using a combination of three methods; read pair tracing, 

allele sharing and haplotype sharing in three-generation families. The concordance was 

above 93% between all three methods (Table 19, Table 20, Table 21). 

  Read pair tracing    

  Paternal Maternal  Total 

3 generation Paternal 2,199 70 2,269(75.5%) 

 Maternal  118 619 737(24.5%) 

 Total  2,317(77.1%) 689(22.9%)  

Table 19 Comparison of phasing results for mDNMs phased using both three generation and read pair 
phasing. The concordance between the methods is 93.7% and the ratio between maternal and paternal 
mDNMs is similar in both sets.  

  Allele based   

  Paternal Maternal  Total 

3 generation Paternal 2,390 39 2,429(78.2%) 

 Maternal  103 576 679(21.8%) 

 Total  2,493(80.2%) 615(19.8%)  

Table 20 Comparison of phasing results for mDNMs phased using both three generation and allele based 
phasing. The concordance between the methods is 95.4% and the ratio between maternal and paternal 
mDNMs is similar in both sets.  

  Read pair tracing    

  Paternal Maternal  Total 

Allele based  Paternal 8,865 9 8,874(79.6%) 

 Maternal  21 2,258 2,279(20.4%) 

 Total  8,886 (79.7%) 2,267(20.3%)  

Table 21 Comparison of phasing results for mDNMs phased using both read pair and allele based 
phasing. The concordance between the methods is 99.7%.  

We found mDNMs from fathers (N=35,501, 76.9%) to be 3.3 (95% CI: 3.2-3.4), chi 

squared test P < 1 · 10-320) times more common than from mothers (N=10,670, 23.1%) 

(Table 22).  
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Motif length (bp) Maternal  Paternal Maternal percentage  

1 2,962 5,141 36.6% 

2 4,119 17,388 19.2% 

3 887 2,663 25.0% 

4 2,365 9,184 20.5% 

5 343 977 26.0% 

6 62 148 29.5% 

Total 10,738 35,501 23.2% 

Table 22 Parental ratios of mDNMs stratified on motif length and on the full set.  

Maternal and paternal mDNMs occurred with different probabilities at different RRT 

lengths, motif lengths, and motif equivalence classes. First, while dinucleotide mDNMs 

were most common for both parents (Table 23), a higher fraction of maternal mDNMs 

occurred at homopolymers, tri-, penta-, and hexanucleotide microsatellites, while a 

larger fraction of paternal mDNMs occurred at di- and tetranucleotide microsatellites 

(Table 24, Fig. 7).  

Motif (bp) Paternal  Motifs affected  Maternal  Motifs affected Mann-Whitney P 

1 5,141(14.5%) 1.67  2,962(27.6%) 2.13  1.9 · 10-23 

2 17,388(49.0
%) 

1.38  4,119(38.4%) 1.71  6.0 · 10-13 

3 2,663(7.5%) 1.22 887(8.2%) 1.33  5.5 · 10-2 

4 9,184(25.9%) 1.06 2,365(22.0%) 1.12  9.6 · 10-5 

5 977(2.8%) 1.08 343(3.2%) 1.21  0.38 

6 148(0.4%) 0.95 62(0.6%) 0.77  0.26 

Table 23 Motif length composition of paternal and maternal mDNMs, mean number of motifs 
added/removed for each motif length in each parent and Mann-Whitney U test p-values for different step 
sizes between parents. Bold represents significant difference in step size between parents (p<0.05). 

Motif length (bp) Odds ratio maternal/paternal (95% CI) Fisher exact test P 

1 2.25 (2.14-2.37) 2.0 · 10-198 

2 0.65 (0.62-0.68) 6.3 · 10-84 

3 1.11 (1.03-1.20) 1.0 · 10-2 

4 0.81 (0.77-0.85) 4.2 · 10-16 

5 1.17 (1.03-1.32) 1.7 · 10-2 

6 1.39 (1.03-1.86) 3.0 · 10-2 

Motif length (> 1bp) Odds ratio maternal/paternal (95% CI) (no 1 bp)  Fisher exact test P (no 1 bp) 

2 0.84 (0.80-0.88) 1.0 · 10-11 

3 1.34 (1.24-1.45) 3.3 · 10-12 

4 1.01 (0.95-1.06) 0.78 

5 1.39 (1.22-1.57) 6.3 · 10-7 

6 1.64 (1.21-2.20) 1.9 · 10-3 

Table 24 Per motif length enrichment of mDNMs between maternally and paternally phased mDNMs. Top 
half shows enrichment including homopolymers and bottom half without them. Tri-, penta- and 
hexanucleotide repeats are enriched in maternal mDNMs while dinucleotide microsatellites are paternally 
enriched.  
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Fig. 7|Sex differences and age effects a) Relative frequencies of paternal and 

maternal mDNMs at different motif lengths. b) Relative frequencies of paternal and 

maternal mDNMs at different motif lengths without homopolymer mDNMs. c) Fraction of 

di- and tetranucleotide paternal mDNMs as a function of paternal age. The 

tetranucleotide fraction increases while the dinucleotide fraction decreases. d) The 

fraction of hexanucleotide maternal mDNMs increases with maternal age. e) Paternal 

and maternal age effect regression lines within our mDNM set. The age effect reported 

is interpolated to a genome-wide value using the fraction between average number of 

available microsatellites and total number of microsatellites. Fractions in c) and d) are 

computed after excluding homopolymers. 
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Second, the average number of bp affected by each mDNM was greater from mothers 

(3.4 bp, 95% CI: 3.3-3.4) than fathers (3.1 bp, 95% CI: 3.1-3.1) (Mann-Whitney U test P 

= 5.0 · 10-8, Table 25), consistent with previous results(26).  

Mutation size (In motifs) 

Motif  <-2 (p/m) -2 (p/m) -1 (p/m) 1 (p/m) 2 (p/m) >2 (p/m) 

1 312(168/144) 140(69/71) 2,782(1,671/1,111) 3,962(2,777/1,185) 214(121/93) 679(335/344) 

2 610(399/211) 2,482(2,101/381) 7,124(6,192/932) 8,933(6,936/1,997) 1,849(1,490/359) 474(270/204) 

3 90(52/38) 160(117/43) 1,516(1,053/463) 1,524(1,251/273) 228(171/57) 28(19/9) 

4 134(90/44) 237(170/67) 5,229(3,972/1,257) 5,798(4,861/937) 107(73/34) 33(18/15) 

5 14(11/3) 44(30/14) 583(392/191) 651(533/118) 13(7/6) 13(4/9) 

6 0(0/0) 4(3/1) 79(50/29) 117(90/27) 6(3/3) 2(2/0) 

Total 1,160(720/440) 3,067(2,490/577) 17,313(13,330/3,983) 20,985(16,448/4,573) 2,417(1,865/552) 1,229(648/576) 

Table 25: Counts of mutation sizes of phased mDNMs per motif length and for all motif lengths combined. 
Maternal and paternal counts are given in brackets. Maternal mDNMs affect on average more bp than 
paternal ones and we see the ratio of maternal mDNMs increases with their size.  

Stratifying by motif length revealed that maternal mDNMs affected more bp on average 

than paternal mDNMs at homopolymer, di- and tetranucleotide microsatellites (Table 

23). Overall, paternal mDNMs occurred at microsatellites with greater RRT lengths and 

stratifying by motif length, we observed significant RRT length differences between the 

sexes at di-, tetra-, penta- and hexanucleotide microsatellites (Table 26).  

Motif length (bp)  Mean RRT length(bp) (pat/mat) P 

1 17.0/16.9 0.12 

2 39.2/37.2 1.9 · 10-24  

3 40.8/40.4 0.72 

4 52.2/50.1 5.6 · 10-9 

5 54.7/51.1 1.6 · 10-3 

6 49.8/42.6 2.2 · 10-2 

Table 26 Mean RRT lengths for paternal and maternal mDNMs. The paternal mDNMs have longer RRT 
at di-, tetra-, penta- and hexanucleotide microsatellites. Bold represents significant difference in RRT 
length between paternal and maternal mDNMs (p<0.05).  

Because of potential inaccuracy in our homopolymer genotypes, we also computed the 

results above without homopolymer mDNMs, yielding similar results. A higher fraction of 

maternal mDNMs occur at tri-, penta- and hexanucleotide microsatellites while 

dinucleotide microsatellites represent a larger fraction of paternal mDNMs (Table 24, 

Fig. 7).  

The average number of bp involved without homopolymers is larger in maternal mDNMs 

than in paternal mDNMs (3.9 vs 3.4 bp, Mann-Whitney U test P = 2.6 · 10-23). 

Considering mDNMs with motif lengths above one, the number of repeats in the 
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reference is higher for paternal mDNMs (16.8 vs 15.7 repeats, Mann-Whitney U test P = 

2.8 · 10-51). 

For di- and trinucleotide microsatellites, the relative frequency of maternal and paternal 

mDNMs differed by the motif classes. The AG and AT motif classes were more 

commonly affected in maternal mDNMs, while the AC motif class was more commonly 

affected in paternal mDNMs (Table 27).  

Motif equivalence class  % of paternal % of maternal Odds ratio maternal/paternal (P) 

AAC 10.7% 7.6% 0.68[0.52;0.90] (7.6 · 10-3) 

AAG 2.1% 2.7% 1.28[0.77;2.05] (0.36) 

AAT  80.9% 84.2% 1.26[1.03;1.55] (0.02) 

ACC 0.3% 0.0% No maternal mDNMs. 

ACG 0.0% 0.0% No mDNMs 

ACT 1.6% 0.8% 0.49[0.20;1.04] (7.2 · 10-2) 

AGC 0.6% 1.4% 2.14[0.99;4.50] (5.1 · 10-2) 

AGG 0.2% 0.2% 1.56[0.19;8.48] (0.64)  

ATC 3.4% 2.1% 0.63[0.37;1.02] (7.2 · 10-2) 

CCG 0.3% 1.0% 3.39[1.28;9.20] (2.0 · 10-2) 

Motif equivalence class  % of paternal % of maternal Enrichment 

AC 88.7% 79.8% 0.50[0.46;0.55] (2.9 · 10-48) 

AG 4.6% 7.4% 1.65[1.43;1.88] (4.5 · 10-12) 

AT  6.6% 12.7% 2.05[1.84;2.29] (3.6 · 10-35) 

CG 0.04% 0.1% 3.04[0.88;9.76] (6.2 · 10-2) 

Table 27 Motif equivalence class odds ratios for di- and trinucleotide microsatellites. Maternal mDNMs are 
more common at AAT, CCG, AG and AT motif class microsatellites while paternal mDNMs are more 
common at AAC and AC motif class microsatellites. Bold represents significant enrichment (p<0.05).  

In trinucleotide repeats, the AAT and CCG motifs were enriched in maternal mDNMs 

and the AAC motif was enriched in paternal mDNMs (Table 27). The CCG enrichment 

in maternal events may be the result of the vulnerability of GC rich sequences to 

alkylation(64) or oxidative damage(65) and the long time oocytes spend in dictyate 

arrest before meiosis. Building on this, we considered all non-trinucleotide mDNMs in 

microsatellites whose motif contained only G or C and found a 2.3 (95% CI: 1.7-3.7) fold 

enrichment of maternal mDNMs.  

Because of a known trend towards paternal expansion at an ATTCT repeat associated 

with spinocerebellar ataxia 10 (SCA10)(66, 67), we looked at motifs from this class 

specifically to determine if the bias observed at SCA10 is present genome-wide. The 

maternal contribution at pentanucleotide mDNMs was 25.9% overall, but for the ATTCT 

motif equivalence class, the ratio was only 18.9% (chi squared test P = 0.037). On 

average, we see an addition of 0.3 bp in paternal mDNMs at microsatellites with ATTCT 
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motifs, compared to a loss of 3.2 bp in maternal mDNMs (Mann-Whitney U test P = 5.0 · 

10-4). This indicates that the kind of paternal expansion bias observed at the SCA10 

microsatellite also affects other ATTCT microsatellites in the genome.  

Parental age influences number of mDNMs 

The number of mDNMs transmitted to the offspring was affected by both paternal (P = 

5.4 · 10-176) and maternal (P = 7.2 · 10-24) age at birth of proband. The increase was 

0.97 mDNMs per year in fathers (95% CI: 0.90-1.04) and 0.31 mDNMs per year in 

mothers (95% CI: 0.25-0.37), resulting in an expected number of 51.2 (35.7 paternal 

and 15.5 maternal) mDNMs and 77.0 (55.1 paternal and 21.8 maternal) mDNMs 

extrapolated genome-wide in probands with 20- and 40-year-old parents, respectively. 

An increase of mDNMs with paternal age is consistent with previous studies(26), but, to 

our knowledge, this is the first demonstration that mDNMs also increase with maternal 

age.  

mDNMs at mono-, di-, tri- and tetranucleotide microsatellites increased significantly with 

paternal age and mDNMs at di-, tetra- and hexanucleotide repeats increase with 

maternal age (Table 28). An age effect is likely to be present for all motif lengths in both 

sexes but we lack power to detect it in the less frequent motif lengths.  

Data set Paternal age effect (95% CI)  Maternal age effect (95% CI)  #paternal/#maternal 

All markers 0.178(0.165-0.190) 0.058(0.047-0.069)  35,501/10,670 

Motif length 1 0.013(0.006-0.020) 0.007(-0.001-0.014) 5,141/2,948 

Motif length 2 0.078(0.069-0.087) 0.029(0.022-0.037) 17,388/4,084 

Motif length 3 0.011(0.008-0.014) 0.002(-0.001-0.004) 2,663/883 

Motif length 4 0.056(0.050-0.062) 0.013(0.008-0.017) 9,184/2,354 

Motif length 5 0.004(-0.003-0.011) -0.002(-0.007-0.003) 977/341 

Motif length 6 -0.008(-0.021-0.005) 0.016(0.003-0.029)  148/60 

Table 28: Maternal and paternal age effect for all motif lengths and conditioning on motif length. mDNMs 

at mono-, di-, tri- and tetranucleotide repeats increase with paternal age while mDNMs at di- and tetra- 

and hexanucleotide repeats increase with maternal age. Bold represents significant association (P < 

0.05). 

The mDNM fractions of each motif length changed with age, indicating that the increase 

of DNMs with parental age was stronger for some motif lengths. However, the motif 

lengths changing were not the same for paternal and maternal mDNMs. The fraction of 

homopolymers decreased with parental age for both sexes, dinucleotide paternal 
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mDNMs decreased while the fraction of tetranucleotides increased with paternal age 

(Fig. 7). The fraction of hexanucleotide maternal mDNMs increased with maternal age 

(Fig. 7). Excluding homopolymers resulted in similar results, tetranucleotide mDNMs 

increased their fraction with paternal age (Linear regression P = 1.5 · 10-6) and the 

fraction of di- and hexanucleotide mDNMs increases with maternal age. 

Parental genotypes associate with number of mDNMs in offspring 

We constructed parental phenotypes, using counts of mDNMs originating from each 

parent, and performed a genome-wide association study (GWAS). We considered the 

mDNM counts per parent with and without homopolymer mDNMs and corrected for age, 

sex, sequencing method and sample type. 

Three correlated SNPs rs4987188, rs112587140 and rs113983130 (Table 29) were 

associated with an increase in mDNMs for all motif lengths.  

Marker 1 Marker 2 Conditional P 1-2 Conditional P 2-1 R2 

chr2:47416318 chr2:47494068 8.9 · 10-2 5.1 · 10-2 0.74 

chr2:47416318 chr2:47491330:0 3.6 · 10-2 2.3 · 10-2 0.60 

chr2:47416318 chr2:47491330:1 3.6 · 10-2 2.3 · 10-2 0.60 

chr2:47494068 chr2:47491330:0 0.17 0.18 0.80 

chr2:47494068 chr2:47491330:1 0.17 0.18 0.80 

chr2:47491330:0 chr2:47491330:1 1.00 1.00 1.00 

Table 29 Conditional association p-values for markers significantly associating with increased mDNM rate 
(MSH2 missense marker in bold). All markers are correlated but a residual signal remains after 
conditioning the intergenic signal at chr2:47491330 for the missense marker  

Using sequence annotation weighted Bonferroni corrected significance(68), we selected 

rs4987188[A], a missense variant (p.Gly322Asp) with a 1.9% allele frequency in the 

MSH2 gene, a mismatch repair gene(69, 70), as the lead marker for the association 

(Fig. 8, Table 30). 
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Fig. 8|Genome-wide association a) Manhattan plot showing a missense variant in the 
MSH2 gene associating with an increased number of mDNMs transmitted to offspring. 
b) Region plot for the missense variant in MSH2. Two correlated markers also reach 
genome-wide significance. c) Manhattan plot showing a synonymous variant in the 
NEIL2 gene which associates with an increased number of mDNMs with motif lengths 
greater than one bp transmitted to offspring. The plot also shows the p-value for the 
MSH2 missense variant considering mDNMs with motif lengths greater than one bp. d) 
Region plot for a synonymous variant in the NEIL2 gene. No other markers at the locus 
reach genome wide significance.  
Chromosomes on Manhattan plots are marked with alternating colors and the threshold 
for genome wide significance was set as 1 · 10-9. 
 

Population Allele frequency of rs4987188 

Iceland 1.9% 

UKB 1.5% 

Fingen 3.0% 

Africa 0.2% 

Asia 0.0.% 

Table 30 Allele frequency of rs4987188 in different populations, it is most frequent in the Finnish 
population and not found in Asians.  
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Each copy of rs4987188[A] is associated (P = 3.6 · 10-10) with a 0.37 s.d. (95% CI: 0.26-

0.48) increase in the number of transmitted mDNMs, corresponding to 13.1 and 7.8 

mDNMs genome-wide per paternal and maternal copy, respectively. We tested each 

parental sex separately and rs4987188 was not genome-wide significant in either one 

and no significant difference in effect was found in the increase between the two 

parental sexes (P = 0.14). However, after correcting for parental age and carrier status 

we see a nominal association (P = 0.019) between paternal age and mutation count in 

offspring of male carriers, suggesting a possible interaction between paternal age and 

the effect of rs4987188[A]. 

The protein encoded by MSH2 forms two heterodimeric mismatch repair complexes. 

One predominantly required for repairing mismatched bp and the other mainly 

responsible for repairing insertion/deletion loops between one and twelve bp(71, 72). 

Multiple variants in MSH2 have been reported to cause Lynch syndrome (also known as 

hereditary non-polyposis colorectal cancer, HNPCC), which results in increased risk of 

endometrial, colorectal and other cancers(73). We tested rs4987188[A] for association 

with an increased risk of endometrial and colorectal cancer in both the Icelandic and 

combined meta-analysis data sets available at deCODE genetics, but found no such 

association. Functional studies of the yeast homologue of rs4987188 indicate that it 

results in a modest decrease in mismatch repair efficiency(74, 75). 

Homopolymers mDNM have a higher false positive rate than other mDNMs categories, 

to assess the robustness of our results, we reran the GWAS on mDNM counts per 

parent without homopolymer mDNMs. We recover our MSH2 and p.Gly322Asp 

association with a similar effect 0.39 s.d. (P = 1.3 · 10-10). Furthermore, we find a novel 

association between mDNM counts without homopolymers and two correlated 

(r2=0.988) SNPs, rs8191642 (P =5.6 · 10-10) a synonymous variant (Pro188), and 

rs8191649 (1.4 · 10-9), an intronic variant, in NEIL2, a glycolase involved in both 

transcription and replication associated base excision repair of DNA damaged by 

oxidation or by mutagenic agents(76). Using sequence annotation weighted Bonferroni 

corrected significance(68), we selected rs8191642[G], which has a 20.3% frequency as 

the lead marker for the association.  
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Testing rs8191642[G] on each parent separately revealed heterogeneity between the 

sexes (P = 1.2 · 10-3). Each copy of rs8191642[G] is associated with (P = 7.2 · 10-12) a 

0.21 s.d. (95% CI: 0.15-0.27) increase in the number of paternally transmitted mDNMs 

with motif lengths greater than one bp, corresponding to 4.4 mDNMs genome-wide per 

copy, but it did not associate with the number of maternally transmitted mDNMs (P = 

0.0149, effect=0.072). 

Somatic and germline mutations in mismatch-repair genes are known to cause 

microsatellite instability and hypermutator phenotypes in tumors of the colon and 

endometrium. Sequencing of large cohorts of tumors has revealed several mutational 

signatures associated with mismatch repair deficiency(77).  

These signatures show a strong correlation with somatic microsatellite instability. 

Mutations in components of the base-excision repair pathway, most notably NTHL1 and 

MUTYH, also cause distinct mutational signatures in tumors with these mutations 

(COSMIC signatures SBS30 and SBS36(77), respectively). Given the effects of 

rs4987188[A] and rs8191642[G] on the rate of mDNMs, we were interested in knowing 

if they also affect the mutational spectra of single-base-substitution DNMs, for example 

by altering the MMR/BER pathways in the testis.  

Using only phased DNMs, we compared the 96-class trinucleotide spectra of DNMs 

transmitted from carrier and non-carrier mothers and fathers. All spectra were highly 

similar (pairwise cosine similarities >0.95) and showed no hint of MMR deficient related 

mutational signatures (Fig. 9). This suggests that the effects of rs4987188[A] and 

rs8191642[G] are confined to microsatellite sites and they do not otherwise affect the 

fidelity of the mismatch or base-excision repair pathways. 
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Fig. 9 | sDNM mutation signatures for offspring of paternal and maternal carriers 

and non-carriers of both rs4987188 and rs8191642. The signatures are not different 
in any of the four comparisons so we assume that the variants do not affect the 
generation of sDNMs.   

51



Methods 

Identification of tandem repeats 

To generate a set of STR locations we ran version 4.09 of Tandem repeats finder(40) 

on the GRCh38(86) human reference genome with the following parameters: 

./trf409.linux64 genome.fa 2 7 7 80 10 22 100 –d –h –ngs > trf_out_100  

Purity computation 

We define the ratio between the observed repeat units in a STR and the number of 

expected repeat units in a perfectly pure STR as the repeat purity. 

𝑝𝑢𝑟𝑖𝑡𝑦 =  
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑒𝑝𝑒𝑎𝑡𝑠

𝐸[𝑟𝑒𝑝𝑒𝑎𝑡𝑠 | 100% 𝑝𝑢𝑟𝑒]
         Eq. 1 

Expected heterozygosity computation 

We compute expected heterozygosity using the following formula(41)  

𝑔𝑒𝑛𝑒 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =  [
𝑛

(𝑛−1)
] (1 − ∑ 𝑝𝑖

2𝑘
𝑖=1 )         Eq. 2   

where n is the total number of sequences, k is the number of alleles at the marker and 

𝑝𝑖 is the frequency of each allele. 

Genotype and marker filtering  

For a trio comparison we require all members of the trio to have a phred scaled 

genotype quality value higher than 60. We removed microsatellites which imputed to a 

0% frequency and ones that failed our best practices filters. These filters consider 

coverage, genotype quality, number of samples genotyped and fraction of reads not 

supporting the reported genotype and are described in(78).  

We further removed microsatellites outside the Tier 1 regions defined by GIAB(87) and 

microsatellites lying within CNV regions annotated by CNVnator(88). 

After using long range phased SNP genotypes to phase and impute our microsatellite 

genotypes into the Icelandic population(89), microsatellites with alleles showing a strong 
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deviation from the Hardy Weinberg equilibrium (P < 1 · 10-6) or a frequency weighted 

imputation information lower than 0.9 were removed(90). We also required the 

frequency weighted phasing information to be greater than 0.6 and the r2 for leave one 

out cross validation of phased genotypes to be greater than 0.5.  

We looked for probands with homozygous mDNMs less than 1Mbp apart, implying a 

haploid state, and checked them for large CNVs covering the region, causing 

autozygosity and spurious mDNM calls. Last, we crossed all mDNMs with deletions and 

duplications imputed into the proband(91) and removed the ones intersecting.  

De novo detection  

For marker-trio combinations where all conditions described above are met, we define a 

mDNM as a trio genotype combination satisfying neither of the following logical 

statements: 

(1) 𝑝𝑟𝑜𝑏𝑎𝑛𝑑𝐴1 ∈ 𝑀 𝑎𝑛𝑑 𝑝𝑟𝑜𝑏𝑎𝑛𝑑𝐴2 ∈ 𝐹 

(2) 𝑝𝑟𝑜𝑏𝑎𝑛𝑑𝐴1 ∈ 𝐹 𝑎𝑛𝑑 𝑝𝑟𝑜𝑏𝑎𝑛𝑑𝐴2 ∈ 𝑀 

where 𝑝𝑟𝑜𝑏𝑎𝑛𝑑𝐴1 and 𝑝𝑟𝑜𝑏𝑎𝑛𝑑𝐴2 refer to the two alleles carried by the proband and 𝑀 

and 𝐹 define the allele pairs carried by the mother and father, respectively.  

Microsatellite attribute regression on mDNM rate 

We performed a Poisson regression using the number of available markers per trio as 

an offset on the full data set and stratified by motif length to examine if the effects of 

other attributes on the mDNM rate remained consistent across motif lengths.  

The direction and statistical significance for both RRT length and repeat purity remain 

consistent for all motif lengths but the effect of GC content in repeat motif is positive for 

homopolymer repeats (Table 12).  

Obtaining confidence intervals for mDNM rate estimates 

We used the boot package for R(92, 93) to obtain confidence intervals for both our 

genome wide mDNM rate estimate and the motif length specific estimates. 100 

replicates were used in all cases and 95% confidence intervals extracted using the 
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resulting quantiles. 

Extrapolation from mDNM rate to expected number of mDNMs 

The per motif mDNM rate was determined from our set of high-quality microsatellite 

calls. We estimated the expected number of per motif mDNMs among all microsatellites 

by multiplying the mDNM rate and the number of microsatellites per motif length. The 

total expected mDNMs is the sum over all motif lengths  

𝐸[𝑚𝐷𝑁𝑀𝑠] =  ∑ 𝑟𝑖 · 𝑛𝑖

6

𝑖=1

 

where ri is the mDNM rate at motif length i and ni is the genome-wide number of 

microsatellites with motif length i. 

Construction of mDNM phenotypes  

We used maternal and paternal counts at each proband to construct phenotypes for the 

parents quantifying the number of mDNMs passed on to the proband. In addition to 

correcting for the parental gender (mother/father), we corrected for parental age at birth 

of proband, sequencing method, sample type and number of microsatellites available 

for de novo detection in the trio. For parents with more than one proband in our trio set, 

we used the average of all their offspring. After regressing out the coefficients, we used 

rank inverse normalization to normalize the phenotype. 

Microsatellite mDNM phasing 

We determined the parent of origin of mDNMs, using three distinct methods; read pair 

tracing, allele sharing and haplotype sharing in three-generation families. First, we used 

long range phased(89) SNP and indel genotypes available at deCODE genetics(89) to 

phase reads reporting mDNMs when possible. Read phases enabled us to assign a 

parent of origin to mDNMs according to the phase of the reads reporting the event since 

a read phased to one parent and reporting a mDNM indicates that the mDNM was 

transmitted from that parent. Not all mDNMs had supporting reads containing phased 

markers and for these, assigning a parent of origin was not possible (Fig. 10) 
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Second, for trios where the de novo allele was seen in neither parent and the other 

proband allele was only seen in one parent we phased the mDNM to the other parent 

(Fig. 11).  

 

Fig. 11 | Allele based phasing. If the de novo allele is present in neither parent and the 
other allele is present only in one parent we phase the de novo event to the other 
parent. Here we phase the de novo event to the father since a maternal allele is seen in 
the proband but neither of the paternal ones. 

Last, we used haplotype sharing in three generation families such that if the mDNM was 

transmitted from proband to its offspring, we phased the de novo to the parent sharing a 

De novo event 

Long range phased maternal marker 

Long range phased paternal marker 

Fig. 10 | Read pair phasing. We use read pairs which contain a long range phased 
marker and report an mDNM. Reads with long range phased markers covering the 
de novo site but supporting the other allele can also further give information on the 
parent of origin. An example of a maternal mDNM where three read pairs report a 
long range phased maternal marker and a de novo allele, one pair is not informative 
and one contains a long range phased paternal marker and not the de novo allele. 
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haplotype with the offspring, and to the parent not sharing a haplotype if de novo was 

not transmitted (Fig. 12). 

 

Fig. 12 | Haplotype sharing in three generation families. If the de novo is transmitted 
from the proband to its offspring we phase the de novo to the parent sharing a 
haplotype with the offspring, and to the parent not sharing a haplotype if de novo is not 
transmitted.  

Parental age effect regression 

We applied a Poisson regression model described in(49) on our data with the number of 

available markers in each trio as a covariate to determine the effect of parental age at 

childbirth on the number of transmitted mDNMs.  

To determine whether the coefficients were robust to the phasing method, we repeated 

the analysis(49) and split the phased markers by phasing method and performed the 

regression on each subset. Both maternal and paternal age remained significant in all 

subsets (Table 31). 
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Phasing method Paternal effect P Maternal effect  P 

Allele based  0.17 [0.15;0.18] 1.2 · 10-102 0.07 [0.05;0.08] 5.1 · 10-16 

Read back 0.16 [0.15;0.18] 3.6 · 10-101 0.07 [0.06;0.09] 7.1 · 10-21 

3 generation 0.18 [0.15;0.21] 9.8 · 10-34 0.05 [0.03;0.07] 1.7 · 10-6 

Table 31 Poisson regression coefficients and p-values for subsets of phased markers by each method 
applied. The effects for allele based phasing and read back phasing match but the three generation 
phasing subset gives a stronger paternal effect and a weaker maternal one.  

We compute the total predicted number of de novo mutations in a proband with an 

𝑋 year old father and a 𝑌 year old mother from the coefficients from our regression 

model: 

(𝐼𝐹 +  𝛽𝐹 · 𝑋 +  𝐼𝑀 + 𝛽𝑀 · 𝑌)/(
𝜇𝑚𝑎𝑟𝑘𝑒𝑟𝑠

1,394,292
)          Eq. 3 

Where 𝐼𝐹 is the paternal intercept, 𝛽𝐹 is the paternal age effect, 𝐼𝑀 is the maternal 

intercept, 𝛽𝑀 is the maternal age effect, 𝜇𝑚𝑎𝑟𝑘𝑒𝑟𝑠 is the mean value of available markers 

across our trios and 1,394,292 is the total number of microsatellites we detect. 

Verification 

PacBio HiFi data was available for four trios in our set. We were unable to verify 

homopolymer mDNMs as the PacBio sequencing error rate was too high(94) but we 

were able to verify the existence of 27 mDNMs with motif length >1. Out of these, 26 

were true positives and one was a false positive at a dinucleotide repeat, giving an 

expected false positive rate of 3.7% for motif lengths greater than 1.  

For mDNMs observed in probands with a monozygotic twin also present in our set, we 

checked whether the mDNM genotypes were concordant between both twins. We 

compared mDNM calls where the genotype was present in the monozygotic twin of the 

proband. We treated genotype calls of the other twin present if the genotype quality was 

higher than or equal to 30, which is half of the value we require for trio mDNM detection. 

Out of the 230 comparable MZ-twin mDNMs, 217 were found in both twins and 13 were 

discordant (Table 32). 
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Motif length (bp) Shared Not shared  Error rate 

1 47 6 11.3% 

2 108 6 5.3% 

3 16 1 5.9% 

4 44 0 0% 

5 2 0 0% 

6 0 0 0% 

Table 32 Sharing of mDNMs between monozygotic twins stratified on motif length. 

Discussion 

We generated two large microsatellite genotype sets. The microsatellite genotypes for 

the UKB samples are publicly available, they have been tested for association with 

various phenotypes and we have previously reported associations with disease (repeat 

expansions at DMPK and CACNA1A)(78). It is likely that these genotypes will be a 

valuable resource for further mining of associations with phenotypes.  

In the Icelandic set, we identified 76,987 mDNMs and found a correlation between the 

number of mDNMs and age at birth of both mothers and fathers and parental 

genotypes. We observed a previously unreported increase in the number of maternal 

mDNMs transmitted to offspring with maternal age, consistent with the increase of both 

SNP/indel DNMs(49) and recombination with maternal age(34, 79). mDNMs are often 

associated with replication adducts(23, 24, 80–83), however the maternal effect gives 

novel insight into the formation of mDNMs, as oocytes are in dictyate arrest compared 

to the actively dividing spermatogonia in aging fathers. The maternal effect indicates 

that, mDNMs can also occur outside of DNA synthesis during S-phase replication since 

DNA polymerases operate during most types of DNA repair on long tracts and in 

homologous recombination pathways(23). 

The observation of different frequencies of mDNM motif classes transmitted by older 

mothers and fathers allows us to deconvolve the mutational processes acting in the 

germlines. Since spermatogonia undergo a greater number of mitotic cell divisions than 

oocytes, we expect the enrichment of AC motif class mutations observed in paternal 

mDNMs to be due to out-of-register realignments during replication, resulting in 

mDNMs(82), whereas the maternal enrichment of mDNMs at pure GC repeats is likely 

to be a result of damage accumulated during the dictyate arrest of oocytes. 
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In vitro study of how repeat motifs affect the frequency of polymerase slippage during 

replication reported that motifs less likely to stall replication were more likely to mutate 

during replication. Of the dinucleotide repeat classes, microsatellites from the AC class 

had the lowest replication stall affinity(82). The higher mDNM rate of microsatellites in 

the AAT motif class could be a result of its low replication stall affinity(82). The two 

hydrogen bonds between A/T base-pairs compared to the three between G/C base-

pairs also makes A/T pairs more likely to disassociate from each other, enabling the 

formation of secondary structures and possible mDNMs. Finally, repeats with a high 

A/T-content also have a sequence composition similar to elements involved in DNA 

unwinding at replication origins(84) during mitosis. These repeats could therefore 

function as aberrant replication origins and cause a higher mDNM rate during replication 

in S phase(84). 

Sequence variants detected in humans that decrease sequence stability have for the 

most part been very deleterious and under strong negative selection(85). Interestingly, 

the variants presented here are both present in high frequencies and have large effects, 

thereby indicating that an increase in the mDNM rate across the genome is not 

sufficiently deleterious to sieve out the mutators at MSH2 and NEIL2. A missense 

variant, rs4987188, in MSH2 is associated with the number of mDNMs transmitted from 

parent to offspring with no significant difference in effect between mothers and fathers. 

The similar effect of rs4987188 across the sexes, indicates that gametes from both 

sexes are subject to the same sequence fidelity maintenance process. A synonymous 

variant, rs8191642, in NEIL2 is associated with the number of mDNMs transmitted from 

fathers to their offspring. NEIL2 has been reported to function in both transcription and 

replication coupled repair(76). Thus, it is likely that the association between the variant 

in NEIL2 and the number of paternally transmitted mDNMs is due to the more frequent 

replication of spermatogonia.  

We have identified the first germline variants, segregating at high frequencies, that 

directly affect the mDNM rate in humans. We have also demonstrated for the first time 

that the number of maternally transmitted mDNMs increases with maternal age. Last, 

we have generated a publicly available microsatellite genotype set for 150,119 samples, 
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a valuable resource for the scientific community in its efforts to better understand and 

define the many ways that microsatellites affect human phenotypes.   
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Chapter 5

Conclusions and Future Directions

5.1 Summary

During my work I have approached microsatellites from three different directions.
First, the focus was strictly on obtaining reliable microsatellite genotypes in a large
set of samples. The number of samples and consequently the amount of data available
for analysis presented an extra level of complexity on top of the error and mutation
rates. As a result, computational improvements were one of the two main objectives in
the next publication. The other objective represented the other end of the sample size
range and aimed at broadening the software’s application spectrum to accurate calling
of individual clinical samples. Clinical sequencing samples require an increased level
of sensitivity when looking for possible genetic causes of the diseases and syndromes
the individuals suffer from. Finally, combining the computationally efficient software
with the experience gained using the clinical approach of looking for something in
an offspring that is not present in its parents, we genotyped microsatellites in two of
the largest sample sets to date and shifted our scope to the source of variability in
microsatellites, de novo mutations.

5.2 Conclusion

A different set of conclusions can be drawn from each section of work presented here
but perhaps the most important one is how valuable microsatellites are to genetic
research and how looking at problems from different perspectives can increase the
overall quality of the solutions generated. By focusing first solely on determining
repeat counts while accounting for different sources of errors and noise in the data I
was able to lay the groundwork for algorithmic improvements. These improvements
then made it feasible to generate data sets on a scale larger than previously possible.
Collaboration with clinical sequencing experts allowed for a better understanding of the
requirements and the best course of action when confirming or rejecting the presence
of expanded repeats in affected individuals. No matter how deleterious and pathogenic
most mutations in humans are, we cannot deny the fact that they are also what drives
the evolution of all living things. Thus, it is imperative to increase our understanding
of the factors influencing their occurrence, and detecting mutations in offspring that
are not present in their parents is arguably the most powerful way to reach this goal.
The high mutation rate of microsatellites made it possible to apply the most stringent
filters to the mutations while still keeping the set large enough for drawing important
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and valuable conclusions from its elements. These results demonstrated for the first
time that the rate of mutations in the reproductive cells of humans is directly affected
by their genetic sequence, something that has been hypothesized but proven difficult
to show with mutations occurring at other types of genetic variants.

5.3 Future Directions
Long read sequencing methods are constantly increasing in quality and will likely soon
rival second generation sequencing with respect to error rates and cost. I would like to
extend my microsatellite genotyping to long read sequencing data and use the power
obtained by longer reads to increase sensitivity when identifying long microsatellite
alleles, such as repeat expansions and more accurately estimate their size. Further,
my aim is to increase the sensitivity and specificity of my mDNM detection to identify
both more differences between the mDNMs originating from each parent and other
genetic variants affecting the number of mDNMs transmitted from parent to offspring.
Building on the phenotypes I defined for the de novo mutation set I would like to define
more specific phenotypes, based on the number of bp affected by the mutations and
their direction among other things. As a surrogate phenotype for de novo mutation
counts I would also like to compare imputed and sequenced genotypes at high quality,
reliable microsatellites and count per individual how many times these disagree. These
counts could then be generated for all samples, not just parents in trios and would
hopefully replicate the previous associations while also greatly increasing power to
detect new associations.
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