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Uncertainty relation for mutual information

James Schneeloch,1,2 Curtis J. Broadbent,1,2,3 and John C. Howell1,2
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2Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA

3Rochester Theory Center, University of Rochester, Rochester, New York 14627, USA
(Received 25 April 2014; revised manuscript received 29 July 2014; published 15 December 2014)

We postulate the existence of a universal uncertainty relation between the quantum and classical mutual
informations between pairs of quantum systems. Specifically, we propose that the sum of the classical
mutual information, determined by two mutually unbiased pairs of observables, never exceeds the quantum
mutual information. We call this the complementary-quantum correlation (CQC) relation and prove its validity
for pure states, for states with one maximally mixed subsystem, and for all states when one measurement is
minimally disturbing. We provide results of a Monte Carlo simulation suggesting that the CQC relation is
generally valid. Importantly, we also show that the CQC relation represents an improvement to an entropic
uncertainty principle in the presence of a quantum memory, and that it can be used to verify an achievable secret
key rate in the quantum one-time pad cryptographic protocol.

DOI: 10.1103/PhysRevA.90.062119 PACS number(s): 03.65.Ta, 03.67.Mn, 42.50.Xa

I. INTRODUCTION

Between a pair of quantum systems, the classical correla-
tions (as quantified by the classical mutual information) never
exceed the total intrinsic correlations (as quantified by the
quantum mutual information) [1]. This idea is utilized exten-
sively in studies of quantum discord [2,3], i.e., a measure of
the correlations between a pair of quantum systems that cannot
be accessed through any set of local measurements. Because
quantum information leads to many useful applications, in-
cluding quantum computing [4], quantum cryptography [5,6],
and quantum superdense coding [7], understanding quantum
correlations is especially important. Finding tight bounds to
the quantum mutual information with classical measurements
is particularly useful since direct calculation of the quantum
mutual information requires complete knowledge of the
density operator, which is impractically difficult to obtain for
higher-dimensional systems. In addition, entanglement criteria
and security bounds in quantum cryptography often rely on the
strength of the fundamental quantum correlations given by the
quantum mutual information [6,8]; if one can provide a tight
lower bound to the quantum mutual information, then verifying
security in quantum key distribution (QKD) and witnessing
entanglement can become considerably easier.

In this article, we examine the relationship between the
quantum mutual information of a joint M ⊗ N system AB

before and after a set of joint local projective measurements,
say of observables Q̂A and Q̂B of systems A and B, respec-
tively. This postmeasurement quantum mutual information is
equal to the classical mutual information obtained from the
joint probability distribution of measurement outcomes [9],
P (qA

i ,qB
j ), where indices i and j run over all measurement

outcomes.
While it is known that the classical correlations between Q̂A

and Q̂B never exceed the total quantum correlations in AB [1],
we show that a tighter bound can be obtained in many cases,
and we provide evidence which suggests that the tightened
bound may be universally valid for M ⊗ N systems. In these
cases, the sum of correlations between one pair of observables
(say, Q̂A and Q̂B) and the correlations between a second

complementary (or mutually unbiased) pair of observables (R̂A

and R̂B) never exceeds the total quantum correlations [10] in
the bipartite quantum system. We call this relationship (1)
between the complementary correlations and the quantum
correlations the complementary-quantum correlation (CQC)
relation;

H (Q̂A :Q̂B) + H (R̂A : R̂B) � I (A :B), (1)

where I (A :B) is the quantum mutual information of density
operator ρ̂AB (the state of system AB before measurement),
I (A :B) ≡ S(A) + S(B) − S(A,B); H (Q̂A :Q̂B) is the classi-
cal mutual information obtained from the joint distribution
of measuring Q̂A of A and Q̂B of B; and H (R̂A : R̂B) is
similarly defined for observables R̂A and R̂B , respectively
mutually unbiased with Q̂A and Q̂B [11]. Note here that Q̂A

and Q̂B are an arbitrary pair of observables, and that we only
require that R̂A be mutually unbiased with Q̂A, and that R̂B be
mutually unbiased with Q̂B . In addition, the CQC relation can
be regarded as an uncertainty relation for mutual information
since, like every other uncertainty relation, it is a constraint on
the measurement probabilities of quantum systems.

In the following, we provide proofs of this CQC relation
for all pure discrete bipartite systems, for all discrete bipartite
systems in which one of the subsystems is maximally mixed,
and for all bipartite systems when one of the pairs of observ-
ables minimally disturbs the system [12]. In addition, we prove
the CQC relation by direct calculation for asymmetric Werner
states [13] of two-qubit systems. We then show evidence that
the CQC relation (1) is satisfied in general using Monte Carlo
simulations of random bipartite states of dimension up to
4 × 4. We then show that the CQC relation can be viewed
as an improvement on an entropic uncertainty principle in
the presence of a quantum memory [14] by demonstrating
its improvement using asymmetric Werner states. Finally, we
show that when coupled with the strong subadditivity of the
entropy [1], the CQC relation can be used to determine a lower
bound to the secret key capacity in the quantum one-time pad
cryptographic protocol [8].
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II. PROOF OF THE CQC RELATION FOR PURE STATES

Proving the CQC relation for pure discrete bipartite states
can be done using the work of Hall et al. [15] and Luo
et al. [16], who showed that for pure states, the quantum
mutual information is never less than twice the classical mutual
information,

I (A :B) = 2 max
{Q̂A,Q̂B }

I (Q̂A :Q̂B). (2)

Knowing this, the quantum mutual information for pure states
is never less than the sum of any two classical mutual
informations of any two pairs of observables (not just mutually
unbiased pairs),

I (A : B) � H (Q̂A : Q̂B) + H (R̂A : R̂B), (3)

proving our CQC relation (1) for all pure discrete bipartite
quantum systems. We note that it is readily seen that this CQC
relation cannot be applied to arbitrary observable pairs for
mixed states because the quantum mutual information is not
always larger than twice any classical mutual information [17].
In addition, the mutual information is neither convex nor
concave in the joint distribution or density matrix. This
prevents us from concluding that the CQC relation is valid for
mixed states from its validity for pure states. Finding similar
uncertainty relations which accommodate arbitrary pairs of
observables is the subject of ongoing investigation.

III. PROOF OF THE CQC RELATION FOR ZERO
RESIDUAL UNCERTAINTY

Proving that the CQC relation is valid for bipartite systems
with at least one maximally mixed subsystem, and when one of
the measurements is minimally disturbing, follows as a special
case of Berta et al.’s uncertainty principle in the presence of
quantum memory [14]. The uncertainty relation (for mutually
unbiased Q̂A and R̂A),

H (Q̂A|Q̂B) + H (R̂A|R̂B) � log(NA) + S(A|B), (4)

[where S(A|B) ≡ S(A,B) − S(B), and NA is the dimension-
ality of A] is a classical version of Berta et al.’s uncertainty
principle in the presence of quantum memory [14], already
known to be true. Note that here and throughout the paper,
all logarithms are base 2 unless otherwise specified. We can
then express our CQC relation in terms of the entropies seen
in Berta’s relation (4):

H (Q̂A|Q̂B) + H (R̂A|R̂B) � log(NA) + S(A|B)

+ [H (Q̂A) + H (R̂A) − log(NA) − S(A)]. (5)

Here, we see that the CQC relation represents an improvement
to Berta’s uncertainty relation by raising the uncertainty limit
by the amount of the last four terms in brackets. The sum in
brackets (which we define as the residual uncertainty of system
A) is always non-negative. It can be shown that the terms
in brackets are an expression of Berta’s uncertainty relation
when systems A and B are completely uncorrelated from one
another.

To show that the CQC relation is valid when a subsystem is
maximally mixed, or when a set of measurements is minimally
disturbing, we note that whenever the residual uncertainty of A
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FIG. 1. (Color online) The solid curve is a plot of the quantum
mutual information I (A : B) for the asymmetric Werner state (6) with
p = 3/4. The dashed curve is the CQC bound [i.e., H (σ̂ A

X : σ̂ B
X ) +

H (σ̂ A
Y : σ̂ B

Y )] to the quantum mutual information for this state, and
the dotted curve is the bound obtained from the classical version
of Berta’s uncertainty relation [i.e., S(A) + log(NA) − H (σ̂ A

X |σ̂ B
X )

− H (σ̂ A
Y |σ̂ B

Y )]. The shading highlights the difference between the
various quantities. For η near zero or unity, the CQC relation offers a
substantial improvement over Berta’s uncertainty relation.

is zero, our CQC relation is equivalent to Berta’s uncertainty
relation, and therefore valid. When system A is maximally
mixed, H (Q̂A), H (R̂A), and S(A) are all equal to log(NA),
making the residual uncertainty zero. When Q̂A (alternatively,
R̂A) minimally disturbs system A, H (Q̂A) [alternatively,
H (R̂A)] is equal to S(A), and H (R̂A) [alternatively, H (Q̂A)] is
equal to log(NA), which, again, makes the residual uncertainty
zero. Since we may switch parties A and B when writing
Eqs. (4) and (5), the CQC relation (already symmetric between
parties) is valid when either A or B is maximally mixed, and
when either Q̂A, Q̂B , R̂A, or R̂B is a minimally disturbing
measurement. These results extend the validity of the CQC
relation to a wide variety of states, including all Bell-diagonal
states, Werner states, and any maximally correlated mixed
states.

The CQC relation is also closely connected with informa-
tion exclusion relations, first described by Hall [18]. Indeed,
when one of the subsystems is maximally mixed and the
observables {Q̂A,Q̂B} and {R̂A,R̂B} are mutually unbiased,
the information exclusion relation proven in [19] as well
as the uncertainty relation in [20] both reduce to the CQC
relation [21].

In order to test the CQC relation for classes of states in
which the residual uncertainty is not zero, we first considered
the class of 2 ⊗ 2 asymmetric Werner states denoted by ρ̂ASW ;

ρ̂ASW ≡ p|ψ−
AS〉〈ψ−

AS| + (1 − p)
I
4
,

(6)
: |ψ−

AS〉 ≡ √
η |↑,↓〉 −

√
1 − η |↓,↑〉,

where p and η are real numbers between zero and unity. Here,
|↑〉 and |↓〉 are, respectively, the +1 and −1 eigenstates of the
Pauli σ̂Z observable. As a function of p and η, we calculated the
classical mutual informations H (σ̂ A

X : σ̂ B
X ) and H (σ̂ A

Y : σ̂ B
Y ) and

compared their sum to the quantum mutual information. As
illustrated in Fig. 1, the CQC relation is everywhere satisfied
for this class of states, and significantly tightens the bound
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(a) (b) (c)

2   2 systems 3   3 systems 4   4 systems

FIG. 2. (Color online) Scatterplots of the quantum mutual information as a function of the sum of the classical mutual informations
determined by a pair of unbiased measurement bases. (a)–(c) Plots for our randomly perturbed 2 ⊗ 2, 3 ⊗ 3, and 4 ⊗ 4 boundary
states, respectively. The sharp diagonal boundary illustrates that perturbing boundary states do not yield states that violate our CQC
relation.

obtained from the classical version of Berta’s uncertainty
relation (4).

IV. NUMERICAL INVESTIGATION OF THE CQC
RELATION FOR ARBITRARY STATES

To investigate the general validity of the CQC relation,
we simulated many random bipartite states in search of
counterexamples. We tested the CQC relation on a uniform
sampling of 107 random 2 ⊗ 2 systems, 2 ⊗ 3 systems, and
3 ⊗ 3 systems, as well as 106 random 2 ⊗ 4 systems, 3 ⊗ 4
systems, and 4 ⊗ 4 systems using the algorithm in [22].
For each bipartite state, we calculated the quantum mutual
information, and the classical mutual information in two
fixed pairs [23] of mutually unbiased observables. These
simulations yielded no counterexamples, and almost all
randomly generated states had nonzero residual uncertainties,
improving on Berta’s uncertainty relation (4). In addition, us-
ing randomly generated unitary transformations, we perturbed
N ⊗ N states known to saturate the CQC relation. These
boundary states include mixtures of the symmetric Bell state,
|�+〉 = 1√

N

∑N
i=1 |i,i〉, and the maximally correlated mixed

state, ρ̂MCM = 1
N

∑N
i=1 |i,i〉〈i,i|, as well as mixtures of the

maximally correlated mixed state with the maximally mixed
state, ρ̂MM = 1

N2

∑N
i,j=1 |i,j 〉〈i,j |. The resulting states showed

no violation. This provides strong supporting evidence for the
general validity of the CQC relation [24]. The plots in Fig. 2
show the results of the perturbed boundary state simulations,
where we see both the sharp boundary that is the CQC relation,
and the upper limit of the quantum mutual information.

V. APPLICATIONS OF THE CQC RELATION

If the CQC relation can be shown to be generally valid, it
will have applications sprouting from two improved abilities:
finding a lower limit to the quantum mutual information
with the complementary classical mutual information sum,
and providing an upper limit to the complementary classical
mutual information sum with the quantum mutual information.

From the first ability, the CQC relation allows us to witness
nonclassical values of the quantum mutual information, which
is impossible when comparing only one classical mutual
information to the quantum mutual information. Indeed, if
the classical mutual information sum is larger than the least
of the marginal classical entropies, then the joint system
must be entangled (i.e., the conditional quantum entropy
must be negative). This is an improvement over using Berta’s
uncertainty relation, where the mutual information sum would
need to be larger than the difference between the sum
[H (Q̂A) + H (R̂A)] and log(NA).

The latter ability allows us to place theoretical limits on our
ability to witness entanglement and Einstein-Podolsky-Rosen
(EPR) steering [25,26]. If the quantum mutual information
is less than the largest possible classical mutual information
[i.e., log(N ) in an N ⊗ N system], then we will not be able
to demonstrate EPR steering via the inequality in [27], even
with an optimal choice of complementary observables. This
improves upon the prior result [14], in which a quantum mutual
information less than either S(A) or S(B) is the limit which
prevents us from violating the symmetric steering inequality
in [27]. This does not, however, mean that I (A :B) must exceed
log(N ) in an N ⊗ N system to exhibit symmetric steering. As
has been proven [28], any pure entangled state is Bell nonlocal,
and so also symmetrically steerable, even for a quantum mutual
information near zero.

To explore other applications of the CQC relation, we
must consider the physical significance of the quantum mutual
information. Among other applications, the quantum mutual
information represents the channel capacity of the quantum
one-time pad [8], which is a secret quantum communication
protocol (independent of QKD) similar to superdense coding.
In the ideal implementation of the quantum one-time pad [8],
Alice and Bob share a pair of qubits whose joint state is the
Bell-singlet state [29]. To send a message, Alice performs on
her qubit one of an agreed-upon set (i.e., alphabet) of possible
unitary transformations. Alice’s choice of transformation
changes the joint state that she and Bob share to be any one
of the four Bell states Alice chooses. When she sends her
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qubit to Bob, he can perform measurements on both qubits
to identify the Bell state, and determine which transformation
Alice performed. To send a long message, Alice and Bob would
use many pairs of qubits since each pair’s entanglement would
be consumed in each use of the protocol.

The quantum one-time pad is more than simply quantum
superdense coding, as the manipulations Alice performs must
be restricted so that, on average, the quantum states she
sends to Bob are indistinguishable from one another. In fact,
the capacity for quantum superdense coding [30] exceeds
the capacity for the quantum one-time pad, since one can
optimize information transfer over all channel inputs without
any restrictions.

The quantum one-time pad is particularly useful for two
reasons. First, it offers an increased channel capacity similar
to superdense coding, making it more efficient than a classical
one-time pad. Second, no entangled pairs are discarded in a
key-sifting step (as in QKD), making it more economical in
terms of the physical resources required.

What makes the quantum one-time pad secure is that
the reduced density matrices of all four Bell states are
completely indistinguishable from one another. Thus, a third
party adversary with unlimited classical resources at their
disposal can do no better than random chance at guessing
the message (just as in a classical one-time pad). This notion
of security is distinct from the security in QKD protocols,
which rely on the ability to detect eavesdropping. In the
quantum one-time pad with a classical adversary, the worst
an eavesdropper can do is to prevent information from being
transmitted (i.e., a denial-of-service attack). The quantum
one-time pad’s security is similar to the security in the classical
one-time pad; without knowledge of the key string, all possible
ciphertexts are equally likely to be generated from the plaintext
message because all possible key strings are equally likely
(being randomly generated). In the quantum one-time pad, the
quantum key string can be thought of as the qubits that Bob
originally has that are entangled with Alice’s qubits. In this
way, the quantum and classical one-time pads share the same
strengths and vulnerabilities. As long as the “key” is shared
exclusively between Alice and Bob, both protocols are secure
against all cryptographic attacks.

In more realistic scenarios, the quantum mutual information
between Alice’s and Bob’s subsystems was shown [8] to be
an achievable asymptotic secret key rate between Alice and
Bob when a third party, Eve, has unlimited classical resources
at her disposal to intercept the subsystems and deduce Alice’s
manipulations, but has no additional side information. With
this application in mind, the CQC relation allows two parties,
Alice and Bob, to experimentally determine a lower limit to
their quantum mutual information, and thus to their maximum
key rate in the quantum one-time pad protocol with classically
equipped adversaries.

In more general scenarios, where a classical adversary
might actually have some information about the key string,
it was shown in [31] that an achievable secure key rate
between Alice and Bob is equal to the difference between the
mutual information between Alice’s message string and Bob’s
decryption of it, and the mutual information between Alice’s
message string and Eve’s best estimation of it [32]. As we shall
show, the CQC relation allows us to place a lower bound on

a secret key rate to the quantum one-time pad, even when the
adversary Eve has quantum side information (here meant as
quantum systems partially entangled with Alice’s qubits).

To find such a lower bound to the secret key rate in
the quantum one-time pad, we use that the CQC relation
allows Alice and Bob to experimentally determine (using
a small fraction of their total pairs) an upper limit to the
quantum mutual information that a third party, Eve, can share
with either of them. From a particular formulation of the
strong subadditivity of the entropy [1], one can arrive at a
weak monogamy inequality of nonclassical correlations. For
any tripartite system shared by parties Alice, Bob, and Eve,
described by density matrix ρ̂ABE ,

I (A :B) + I (A :E) � 2S(A) � 2 log(NA). (7)

Combining this with our CQC relation (1), we find that

I (A :E) � 2 log(NA) − H (Q̂A :Q̂B) − H (R̂A : R̂B). (8)

In other words, Alice and Bob’s measured mutual informations
give them a firm upper bound to Eve’s quantum mutual
information with Alice. If Alice and Bob’s mutual information
sum is larger than log(NA) [and log(NB)], then Alice and Bob
have not only demonstrated symmetric EPR steering [27], but
they have also verified that Eve’s mutual information with
either Alice or Bob must be less than log(NA) [and log(NB)].

By placing an upper limit on Eve’s mutual information with
both Alice and Bob, Alice and Bob can place a lower bound on
R, i.e., the minimum difference between the quantum mutual
information between Alice and Bob, and the quantum mutual
information that Eve has between either Alice or Bob:

R ≡ min
X={A,B}

[I (A : B) − I (X : E)]. (9)

If H (Q̂A :Q̂B) + H (R̂A : R̂B) � log(N ) + ε (where Alice and
Bob share N ⊗ N systems), then R � 2ε. R is a conserva-
tive asymptotic secret key rate for two-way communication
between Alice and Bob using the quantum one-time pad
protocol in which Eve may also possess quantum information
about Alice’s and Bob’s systems. This can be shown by using
Brandaõ et al.’s single letter formula for the quantum one-time
pad with an eavesdropper [33,34], where the secret key rate
is shown to be equal to the difference between the mutual
information relating Alice’s preparations to the joint states
that Bob and Eve receive through a symmetric side channel.
If the states Alice sends through the channel are classically
indistinguishable, as in Schumacher’s original quantum one-
time pad paper [8], then each mutual information reduces in the
asymptotic limit to the quantum mutual information between
Alice and Bob, and between Alice and Eve, respectively.

VI. CONCLUSION

Quantum entropies are harder to measure than classical
entropies since they require knowledge of the eigenvalue
spectrum of the density operator, which can only be found
by experimentally determining the entire density operator.
The quantum mutual information is particularly difficult to
determine for large-dimensional systems because of how the
number of measurements for tomography scales as N4 for
an N ⊗ N joint quantum system. We have shown promising
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evidence for, and proven many cases of, a new lower bound
to the quantum mutual information using significantly fewer
classical measurements than it would take to determine the
density operators. We have also shown that if the CQC
relation is generally valid, then two parties can bound the
mutual information that a third party might have with either of
them, which will be of practical use in quantum cryptography
applications.
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