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Optical phase spaces represent fields of any spatial coherence and are typically measured through phase-retrieval
methods involving a computational inversion, optical interference, or aresolution-limiting lenslet array. Recently, a
weak-values technique demonstrated that a beam’s Dirac phase space is proportional to the measurable complex
weak value, regardless of coherence. These direct measurements require raster scanning through all position-
polarization couplings, limiting their dimensionality to less than 100 000 [C. Bamber and J. S. Lundeen, Phys. Rev.
Lett. 112, 070405 (2014)]. We circumvent these limitations using compressive sensing, a numerical protocol that
allows us to undersample, yet efficiently measure, high-dimensional phase spaces. We also propose an improved
technique that allows us to directly measure phase spaces with high spatial resolution with scalable frequency
resolution. With this method, we are able to easily and rapidly measure a 1.07-billion-dimensional phase space.
The distributions are numerically propagated to an object in the beam path, with excellent agreement for coherent
and partially coherent sources. This protocol has broad implications in quantum research, signal processing, and
imaging, including the recovery of Fourier amplitudes in any dimension with linear algorithmic solutions and

ultra-high-dimensional phase-space imaging.

DOI: 10.1103/PhysRevA.98.023854

I. INTRODUCTION

Phase-space representations of light are typically functions
of conjugate variables allowing the description of full optical
fields of any coherence [1-3]. This information has applica-
tions in lensless imaging [3] and beam shaping [4,5] as well as
imaging in scattering media [6]. While measuring a spatially
coherent beam’s amplitude and phase through well-established
techniques such as optical interference [7] or phase retrieval
[8] is relatively straightforward, tomographical measurements
of partially coherent beams at high resolution are a laborious
challenge, and many require a computational inversion [3,9]
or imprecisely scanning physical components to recover the
phase-space distribution. Fortunately, tomography is a stan-
dard tool in quantum research used for estimating quantum
states [10,11], and the language of quantum mechanics allows
us to develop new tools even for classical fields [12].

Recently, a new tomography method was introduced using
quantum weak-value techniques [13—15] to directly measure
physical states without optical interference or numerical in-
version. Unlike typical quantum tomographical methods that
estimate states in terms of the density matrix p [11] or
Wigner function [3,10], the simplest form of the weak-value
tomography measures the Dirac phase space, also known as
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the Kirkwood-Rihaczek distribution [16—18]. The Dirac phase
space is anon-Hermitian complex quasiprobability distribution
related to the Fourier transform of the density matrix [19,20].
When describing quasimonochromatic and stationary light,
optical phase spaces are functions of four transverse variables:
two spatial coordinates and two spatial frequencies. Explicitly,
if we have a system with density matrix p with transverse
positions x = (x, y) and spatial frequencies k = (ky, k), the
antistandard ordered Dirac representation [21] is

S(x, k) = Tr[|k) (k|x) (x| p] = (k[x)(x|p|k), (D
while the standard ordered distribution is
S(k, x) = Tr[|x){(x|k) (k| p] = (x|k)(Kk|p|x), 2

where Tr[x] is the trace. While these distributions are simply
complex conjugates, their measurement sequences are differ-
ent. As with the Wigner function, the marginals, taken by
summing over position or frequency variables, give the positive
intensity and spectrum of the field: (x|p|x) and (k|p|k).

The idea behind these weak-values tomographies is to
weakly couple the preselected state of interest (like the trans-
verse state) to another independent degree of freedom, a meter
state (such as polarization), and then filter the result by specific
measurement outcomes (postselection) in a basis conjugate to
the degree of freedom of the preselected state (the Fourier plane
of the preselected plane). For example, in the measurement
of (1), analysis of the meter state gives the complex weak

©2018 American Physical Society
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value [15]

(k%) (x| p k)
w=—-—"—~8KxKk 3
klplk) k) ©)

with measurable real and imaginary parts. This method allows
for direct measurement of the phase space, removing the need
for a computational inversion. Experimental demonstrations
of direct measurements of (1) were first performed measuring
transverse pure states [14,22] and later mixed (incoherent)
states [21]. Weak-value tomographies have also been per-
formed on polarization [23,24] and orbital angular momentum
states [25]. Weak-value direct measurements have also been
used to find the quantum process matrix of an arbitrary
operation [26].

Direct tomography, while reducing computational com-
plexity, does not necessarily reduce the number of required
measurements. Previous demonstrations required scanning
through all possible measurements, limiting tests to low-
dimensional systems. Here we circumvent previous limitations
by incorporating compressive sensing (CS) [27-29], which
allows us to reduce the resource requirements, especially for
high-dimensional states. CS is a numerical method that recon-
structs undersampled signals after sampling in a compressive
way. CS relies on the assumption of sparsity or approximate
sparsity, i.e., the signal of interest has few (or few significant)
nonzero components in a predefined basis. This assumption
works quite well for most signals, as signals of interest
usually have structure in some basis that set them apart from
random noise. CS has also shown promise in quantum systems
[30-32] and in the coupling interaction in weak-value wave-
front sensing [33,34].

In this work, we improve upon previous tests by com-
pressively measuring high-dimensional classical antistandard
Dirac spaces. In CS terms, we are using many low-dimensional
single-pixel cameras to recover the higher dimensional phase
space. Our method goes significantly beyond past incorpo-
rations of CS into weak-value measurements [33,34], in that
it works in the more general case of partially coherent light.
We then modify this method to measure the standard Dirac
phase space, allowing for faster acquisition of even larger phase
spaces. With this technique, we easily and efficiently measure
phase spaces of more than one billion dimensions. Addition-
ally, we expand on previous tests by using a strong polarization-
position coupling, which mitigates state-estimation errors [35].

II. THEORY

A. Imaging the antistandard Dirac space compressively

To introduce CS into the measurement of (1), we use the
experimental setup shown in Fig. 1. The light passes through
an i cutout and propagates freely to a polarizer to prepare
the meter state. Since we are interested in the transverse
distribution, we couple position to polarization by using a
spatial light modulator (SLM) to rotate the polarization by
an angle 6 at certain pixels. We apply M masks of N x N
random binary patterns f;(x), for i =1,2,..., M, to the
SLM, which couple random positions with polarization. As the
measurement is compressive, M < N2. The SLM’s operation

FIG. 1. Experimental setup: Light passes through an % paper
cutout before propagating 40 cm to a horizontal polarizer and SLM.
To make the source partially coherent, we insert a rotating glass
diffuser in the focal plane of the beam expander. The SLM rotates
the polarization at randomly chosen pixels to couple position and
polarization. After passing through polarization projection optics,
a lens Fourier transforms the light reflected off the SLM onto a
postselection camera. A separate camera acts as a normalizing bucket
detector on the reflected port of the beam splitter in front of the SLM.

is
U(fi(x),0) = f dx {I,[1 — fi(x)]+ fi(x)e ™ }|x)(x],
4

where o is the usual Pauli operator, 1, is the Pauli identity,
and n is the axis of rotation. The first term ensures pixels
where f;(x) = O stay horizontally polarized, while the second
term rotates the polarization of pixels where f; (x) = 1. For the
strongest possible coupling, we let 6 — /2, so these pixels
are rotated to vertical polarization. This operation is shown in
Fig. 2.

For simplicity, let the input state be a pure state |¥) =
|Y(x))|H). Applying the operation in Eq. (4), the input state
becomes

U(fi(x), 9)|‘P)=/dxw(X){[l — [i®OIH) + fix)[V)}Ix).
®)

FIG. 2. Polarization projections: (a) Poincaré sphere showing
the nearly orthogonal polarizations that each pixel occupies as the
light leaves our SLM. (b) An 7 pixelated into the two outgoing
polarizations.

023854-2
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Next, we postselect on different frequency components.
This postselection creates an interference between the position
and frequency projections of p that allows for transverse phase-
information retrieval. To postselect, a lens Fourier-transforms
the light reflected off of the SLM onto a camera, which takes
N x N pictures for each coupling mask on the SLM. The
unnormalized state at each camera pixel is

[Vps) ~ ¥(K)|H) — / dx f;(x)y (x)e X(H) — |V)),

(6)

where (k) is the Fourier transform of ¥ (x). Note that the
postselection is a pixelwise operation, meaning that there is a
strong frequency projection measurement at each pixel. Since
the transverse state is coupled to polarization, a polarization
analysis (we record an image for each mask of each polariza-
tion projection) determines the real and imaginary parts of the
transverse Dirac distribution.

For a pure state, the Dirac distribution (1) can be writ-
ten as S(x, k) ~ ¥ (x)¥*(k)e "** where y* is the complex
conjugate of . By performing the following polarization
projections [35], we can measure the partially compressed
real and imaginary parts of the Dirac distribution at each pixel
(ky, ky):

Vrea ik = / dx fi(ORe(S(, k) ~ (0, +2[V) (V]})y,..

Yimag,ik = — / dx f; OIm{S(x, K)} ~ (ay)y,, - 7

To more efficiently measure the non-Hermitian operator o, +
ioy, we reduced our number of measurements by decomposing
this into a complex sum of Hermitian operators as in [36]

2
4 .
o, tioy = 3 Zezmq/3|sq><5q|, (®)
q=0
where
1 .
—(|H) + e~*maB3|vy), ©)

|sq> = \/5

If we think of our four-dimensional Dirac phase space as a
two-dimensional (2D) space with indexed positions (x, y) as
rows and spatial frequencies (k,, ky) as columns, the combined
images of the polarization projections for a single coupling
mask correspond to a single row. That is, we measure an
M x N? compressed phase space, where each of the M
rows corresponds to a coupling mask. Essentially in this 2D
reshaping picture, the phase space is compressed in only one
dimension. Each column is then separately reconstructed from
the measurement matrix. Thus, reconstruction of the full phase
space comes from solving many smaller CS problems.

B. Standard Dirac phase space

To modify this experiment to measure (2), we insert a
lens after the object to focus the light onto the SLM. This
effectively reverses the domains of the previous test; the spatial
frequencies are coupled to polarization, and the postselection
camera captures the transverse positions. All of the previous

analysis applies with the appropriate changes. For example,
we now write the coupling interaction of the SLM as

U(fi(k),0) = / dk {11 — fi(K)]+ fi(K)e ™ HK)(K|.
(10)

The compressed real and imaginary components at each
camera pixel (x, y) then are

Yreal,ix = /dkfi(k)Re{S(k, X))~ (ox +2IV)(VI)y,,

Yimag.ix = — / dk fi ()Im{S(k, x)} ~ (0y)y,, . (11

While this is a simple experimental change, it offers sev-
eral practical advantages. First, we are now able to use the
high-resolution postselection camera to gather more spatial
dimensions. Since most practical applications do not require
such high-resolution spatial frequency information, we can
perform faster lower resolution CS scans on the SLM (see
below for data collection benefits). These lower dimensional
CS reconstructions also lower the computational burden, while
still acquiring a higher dimensional phase space faster than the
previous method.

III. CS RECONSTRUCTIONS

We reconstructed the real and imaginary parts of the Dirac
phase space separately, one component at a time. For our CS
solver, we use a total-variation-minimization solver TVAL3
[371], which searches for solutions to the problem

. n
agmin [IIDxll; + SlAx—yIE], (2

where D is the discrete gradient across x and || ||, is the
L? norm. Variable A is a matrix containing our projectors,
and variable y is a vector containing our measurement results.
By using this solver, we assume that the total variation of
each distribution is sparse across the SLM. We make this
assumption because TVAL3 has been shown to work well
in image processing; images are often well defined by their
edges, and an image’s gradient will emphasize edges. It is
not unreasonable to guess that it should work in a similar
way here. Beyond this, we do not make any assumptions
about the sparsity of the Dirac distribution and performed all
reconstructions in the pixel basis. Unfortunately, this algorithm
did not incorporate any of the physical constraints [20] on
the Dirac distributions, which left unphysical artifacts in the
reconstructions.

Next, we performed a Bayesian shrinkage denoising al-
gorithm with soft thresholding [38] followed by a low (1%)
hard thresholding to remove low-level high-frequency noise
from the Dirac distribution. With TV minimization identifying
the significant signal components and finding their quantity
to be less than the number of measurements, we then further
correct the phase-space elements using a least-squares fitting
algorithm on each reconstruction result that assumed Gaussian
noise in the signal [39].

023854-3
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IV. EXPERIMENT

In our first experiment measuring the antistandard Dirac
space, our source is a helium-neon (HeNe) laser with and
without a rotating ground glass diffuser for coherent and
partially coherent illumination. We use N = 128, so that
the measured phase-space dimensionality is 268 million (i.e.,
128%), and we use randomized Sylvester-Hadamard patterns,
which are composed of 1°s and —1’s. To perform this operation,
we split each pattern into a projection with 1’s and 0’s, and
subtract an inverse pattern with the 0’s and 1°s switched. The
coupling interaction uses a Meadowlark Optics XY spatial
light modulator (512 x 512 pixels with a pixel pitch of 15 um,
binnedinto 128 x 128 pixels). We calibrate our system through
a polarization tomography [11] so that the unrotated state is
| H), and the rotated state is as close to orthogonal (6 =~ 0.987)
as possible, such that we can reasonably approximate it as | V).

We Fourier transform the light on the face of the SLM
using a 250 mm lens onto a Thorlabs DCC1545M camera
(1280 x 1024 pixels with 5.2 um x 5.2 um pixels; we use
the center 512 x 512 pixel section binned into 128 x 128
superpixels). Unfortunately, the light quickly saturates the
camera since it is in the focal plane. This means that we have
to attenuate the light and average several images per pattern
in order to resolve the high-frequency components. For the
coherent illumination, we average 16 images taken with 6 ms
integration times, while for the partially coherent light, we
average 64 of these images. The pixels report 8-bit intensity
values; to remove background noise, we threshold away any
pixel value less than 1 bit. All images are normalized for power
fluctuations by using the bucket detector shown in Fig. 1.

The marginals of the measured distributions are displayed
in Fig. 3; these should be the probability distributions of
the light on the SLM and camera. To remove any remaining
unphysical negative and imaginary values, we show the real
part with negative values thresholded to zero. As expected
after the long free space propagation, we see blurry images
of the 7 and their diffraction patterns. In the coherent source
marginals, we can clearly see fringes on the % and a tight
diffraction profile. For the partially coherent light, the 7 is
simply blurred, and the diffraction pattern is quite broad. We
perform this measurement using a 20% sampling rate. That is,
the measurement uses approximately 3300 out of 1282 possible
coupling projections, recording an image for each pattern and
polarization projection.

To test the reconstruction’s accuracy, we numerically prop-
agate the reconstructions 40 cm back to the / cutout to
recover the light at the object. This is done by solving the
four-dimensional Bayesian propagation integral [20]

Sx',K) = /dxdk K, k;x', k)S(x; k), (13)

where K (x, k;x’,k’) is the Dirac phase-space propagator.
Since the propagation is through free space, the spatial
frequency integrals vanish leaving an integral that can be
easily evaluated with standard computational Fourier methods,
independent of the spatial coherence of the source. After
propagating the distributions back to the object plane, we find
sharp object images shown in Fig. 4. The position marginals
of the propagated distributions are in excellent agreement with
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FIG. 3. Marginals of the measured antistandard Dirac distribu-
tions: The top row shows the results from the coherent source; the
bottom row contains the marginals from the partially coherent source.
All probability distributions have been individually normalized to
the same scale for visual clarity. (a), (c) The position marginals
corresponding to the intensities on the SLM. (b), (d) The frequency
marginals, here in units k/2m, showing the diffraction patterns on the
camera. The insets show closer views of the center 64 x 64 pixels of
the diffraction patterns.

an image taken of the cutout. The partially coherent results
contain higher levels of background noise, but this is most
likely due to the weaker signal after the diffuser. Again we
remove unphysical values by showing the real positive part of
the marginals.

To measure the standard Dirac phase space, we use the same
configuration and data-processing steps as above except with a
250 mm focal length lens inserted before the SLM such that the
SLM is in the back focal plane. We switch our simple cutout
for a DLP Lightcrafter 3000 digital micromirror device (DMD)
displaying a crossed three-slit pattern. In this configuration, an
image of the front focal plane of the new lens now appears on
the camera as itis a4 f imaging system. We displace the DMD
10 cm from this front focal plane, severely blurring the image
of the object on the camera. We broadly illuminate this object
with partially coherent radiation from a red LED, frequency
filtered with a 633 nm line filter to work with the SLM. An
iris was placed just before the SLM to block the light from
reflecting off the metal edges, which would only add noise to
the signal.

We place 64 x 64 coupling patterns on the SLM and take
512 x 512 images on the postselection camera. Thus we
acquire a 1.07-billion-dimensional phase space (5122 spatial
dimensions and 642 spatial frequencies). Our measured and
propagated results are shown in Fig. 5 for a 20% sample rate.
The measured position marginal [Fig. 5(b)] corresponding to
the light on the camera barely has any recognizable structure
to it, and yet clearly after propagation [Fig. 5(c)] we can see a
sharp three-slit object. This altered setup has several practical
benefits that shift the required resources from experiment to
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FIG. 4. Comparison of numerical propagation with actual image: Plots have been normalized to be shown on the same scale. (a) The position
marginal of the propagated Dirac distributions showing the intensities as functions of distance from the SLM (0 cm) to the object (40 cm). The
upper row shows the partially coherent light, while the lower row shows the coherent light. (b) Actual image of the object. The propagation

data are in good agreement with the image for both sources.

computation. First, since the camera is now in an image plane
of the system, we avoid the saturation effects affecting the
previous scheme. Thus we can take single images, removing
the need for averaging. For this test, we use a 25 ms integration
time (due to the dimness of the light on the camera).

Since we are reconstructing the Dirac phase space’s real and
imaginary part at each camera pixel separately, theoretically we
require 2N? reconstructions. However, when measuring the
antistandard ordered Dirac matrix, the measurement matrices
y are quite sparse as many of the spatial frequencies are zeros,
so no reconstruction is needed for these components since there
is no signal. This is confirmed in Figs. 3(b) and 3(d). In total,
we have to perform only 4544 reconstructions for the coherent
illumination and 2871 reconstructions for the partially coherent
light of 128 x 128 pixel images. We would normally expect
that the partially coherent light requires more reconstructions
than the coherent light since its measurement vector should
have more frequency components. However, it is likely that the
weaker high-frequency components are too dim for the camera

—_
[}

= 0 A
X B
= 2 16 w g
g =~ T 3
2732 B2
NSCQ > o
%48 X
2 =
—

0 16 32 48
[z pixels

758.3m ™! /pixel

0 128 256 384
x pixels

1.04x10~°um /pixel

to see above the background noise. This is not quite the case
in measuring the standard ordered Dirac distribution, which
requires more than 200 K reconstructions for each the real and
imaginary due to the broad image distribution on the camera.
However, these are smaller 64 x 64 reconstructions, which
can be done quite quickly on modern computers. Furthermore,
since each reconstruction is independent, parallelized opera-
tions are used to significantly reduce processing time.

V. DISCUSSION

Our new method measuring the standard Dirac distribution
experiment significantly outperforms the compressed antistan-
dard test. For the lower-dimensional phase-space antistandard
test, the total time spent collecting light is 1.5 h for the
coherent illumination and 5.5 h of signal collection for partially
coherent, whereas in the high-resolution standard Dirac test,
it is only 2.8 min. The reduction in collection times is
due to the standard Dirac experiment avoiding the need for

£ 0 =

7 2

= 3

w =128 =
— —

= :

£ 7256 =

=

— Z

x 384 =

3 :

= <

0 128 256 384
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FIG. 5. Measurement of the standard ordered Dirac distribution: Plots have been normalized to be shown on the same scale. (a) The
frequency marginal of the Dirac distributions showing the intensities across the SLM. The circular outline is due to an iris blocking the light
from the highly reflective edges of the SLM. (b) Spatial marginal corresponding to the extremely out-of-focus image on the camera. (c) The
spatial marginal after propagation, clearly showing the well-defined object.
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image averaging (see Methods). Instead, it shifts the important
high-resolution spatial information from the slower SLM CS
acquisition to the faster camera. The actual experiment time
is much longer than the integration times, but fortunately this
is almost entirely due to overhead from equipment limitations.
For example, most of this extra time came from the cameras not
having internal storage and requiring each image acquisition
be transferred to a computer. Additionally, our SLM required
100 ms to stabilize for each coupling pattern. With additional
resources and better equipment this overhead time could be
virtually eliminated and could even reduce the time spent
collecting light. By performing the polarization projections
and 1’s and —1’s CS projections in parallel, we would reduce
the light collection time by a factor of 8, meaning that this
measurement could be done in seconds.

Also, by using a postselection camera combined with
compressive coupling, our required measurements scale only
as the resolution of our SLM N2, while measuring an N*
dimensional phase space. Thus our technique allows rapid
acquisition of these high-dimensional phase spaces. It also
handles the high-dimensional phase-space data in a computa-
tionally efficient way. Reconstructions and least-square fittings
are performed component-wise independently, limiting the
number of operations necessary on the full distribution.

Our demonstration here uses relatively simple scenes, and
our reconstructions assume only that total variation of the
beam across the SLM pixels would be sparse. However, total
variation has been shown to work well for natural images,
and in practice one would usually know something about the
signal of interest, allowing them to choose a basis for recon-
struction where the signal should have a sparse representation.
For example, natural images are known to also have sparse
representations in the discrete cosine and wavelet bases. Also,
as previously stated, the TVAL3 solver does not incorporate
any physical constraints [20] on the reconstructions, and so
experimental noise left unphysical artifacts in the phase space.
The denoising and least squares steps fix some of the values, but
the result is still slightly unphysical. This results in marginals
having complex and negative values when they should be
entirely positive since they are probabilities. From a practical
point of view, this does not strongly affect the propagation and
refocusing of the light, and by viewing the real positive part of
the marginals, we have good agreement in the data shown in
Figs. 4 and 5.

VI. CONCLUSION

We have shown that we can efficiently and rapidly acquire
high-dimensional optical phase spaces for light of any spatial
coherence. With this information, we can numerically prop-
agate the light to any plane for lensless imaging. This goes
significantly further than previous demonstrations that worked
in only one dimension and required scanning at every coupling
pixel [21]. Unlike other phase-space techniques, we did not
need to use lenslet arrays or moving components, and we were
able to directly measure the phase-space elements. Another
benefit to this method is that the measured Dirac distribution
scales as the product of the number of pixels in the coupling
interaction with the number of pixels in the postselection,
meaning that we can very easily measure extremely high-

dimensional phase spaces. In the future, customized algorithms
incorporating physical constraints could give better reconstruc-
tions and further reduce the number of measurements and the
numerical resources required.
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APPENDIX: PROPAGATION

Asnoted in Refs. [15,20], the Dirac distribution can be prop-
agated in a Bayesian manner. Therefore, using the definition
of the Dirac distribution [Eq. (1)], for S(x, k) we can find the
Dirac representation in the plane (x/, y’), S(x/, k'), through

S K) = /dX dk (K'|x')(x'[x) (x| p k) (k| K')

. (K'|x') (x'|x) (k|k')
— / dxdk Sk

where the propagator K (x, k; x'’k”) of Eq. (13) is immediately
identified. For free-space propagation over a distance z, the
terms in K simplify to

(Kx’)

(AL)

i(k-x—K'x')
9

(k|x)

(k|k/) _ e—im /kz_k’%_k’z‘a(k . k/),

[x) = e f AKX i O
/1

where the middle term shows that through free-space propa-
gation, momentum is conserved. Putting this all together and
rearranging terms results in the propagation equation

iz PR —ikx g1

k’—x

(A2)

S(X, k) = W@

x [ VEHKERT R RN S(x K]}, (A3)

where F (F~!) indicates a (inverse) Fourier transform. This
equation is very similar to Fourier optics field propagation
equations and can be easily evaluated with numerical Fourier
methods. However, (A3) works for any field regardless of
coherence. Also note that operationally for a discrete phase
space, if we reshape it into a 2D distribution (x, k), we are
propagating each spatial frequency column separately.

To propagate (2), we could follow a similar procedure as
above, first propagating the distribution from the SLM to the
lens, through the lens, and then to the object. However, we
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simply make the change p — UpUT, such that

k2+k2 2442 k2+k?
U =exp (if xzky exp (—ikx;}y )exp iz x2k) ,

(A4)

where 7z is the distance from the object to the lens and
f is the lens focal length. We then insert this into (2).
Unlike the propagation above, the spatial frequency in-
tegrals do not vanish, but standard Fourier propagation
methods are still used to find the distribution at the
object.
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