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Complementary weak-value amplification with concatenated postselections
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We measure a transverse momentum kick in a Sagnac interferometer using weak-value amplification with two
postselections. The first postselection is controlled by a polarization-dependent phase mismatch between both
paths of the interferometer, and the second postselection is controlled by a polarizer at the exit port. By monitoring
the dark port of the interferometer, we study the complementary amplification of the concatenated postselections,
where the polarization extinction ratio is greater than the contrast of the spatial interference. In this case, we find
an improvement in the amplification of the signal of interest by introducing a second postselection to the system.

DOI: 10.1103/PhysRevA.94.043825

I. INTRODUCTION

Weak measurements were introduced by Aharonov, Albert,
and Vaidman [1] and have proven to be a valuable tool
for observation of quantum phenomena [2–8]. Weak-value
amplification, a metrological technique for parameter esti-
mation [9–16], has been shown to saturate the shot-noise
limit [11] by imparting the precision of N photons into a
small subset of postselected photons [17,18]. The weak-value
amplification technique has also been shown to exploit the
geometric configurations of the experiment to reduce technical
noise [17,18].

The weak-value amplification protocol starts with a well-
defined initial state of a system |ϕi〉, followed by an interaction
given by Û = exp(−igÂx̂) that couples the system Â to a
continuous degree of freedom or a meter, given by x̂. The
interaction strength between the system and meter is given
by parameter g, which we assume to be small. The system
is then postselected to state |ϕf 〉, which is near orthogonal to
the preselected state |ϕi〉. The benefits for signal amplification
and technical-noise mitigation require a weak system-meter
interaction and a strong postselection or data discarding on
the meter. The mean value of the postselected outcomes in the
meter is shifted by an amount proportional to the weak value
given by

Awv = 〈ϕf | Â |ϕi〉
〈ϕf |ϕi〉 . (1)

Weak-value amplification gives a metrological benefit
based on an amplification of the signal relative to the technical-
noise floor of the experiment [17,18]. Spatial interference ex-
periments using a Sagnac interferometer as in Refs. [10–13,16]
have been limited to postselection angles of slightly under 5◦,
which is the equivalent of discarding about 99% of the input
photons in the interferometer. Others have studied regimes to
maximize the amplification benefit of the technique by using

*Present Address: Intel Corporation, Hillsboro, Oregon 97124,
USA.
†Corresponding author: jmarti41@ur.rochester.edu

a full theory without the linear approximation and finding a
nonlinear regime for very small postselection angles [19–22].
Here we explore the complementary amplification by con-
catenating a second postselection to decrease the effective
postselection angle to measure a beam deflection.

In this work, we utilize the which-path information from
a Sagnac interferometer and a polarization-dependent phase
offset between paths to measure a beam deflection. We
concatenate two postselections: the first with spatial inter-
ference and the second with polarization interference. By
monitoring the dark port of the sequence of postselections
we record the beam shift proportional to the weak value.
We study the complementary amplification behavior between
the spatial contrast and the polarization extinction contrast
to the measured weak value. We evaluate the technical
difficulties of an imperfect interferometer by modeling the
output of the interferometer for the single and concatenated
postselection cases with a background parameter. We optimize
the concatenated postselection and demonstrate a region
of parameter space where the concatenated postselection
provides an enhancement in the signal.

This paper is organized as follows. In Sec. II we start
with the theory for single and concatenated postselection for
weak-value amplification to measure beam deflection with a
model that includes spatial interference imperfections. Then
in Sec. III we describe the experimental setup. In Sec. IV,
we present the result of the weak-value techniques. In Sec. V
we include a brief description of the theory of the relative
Fisher information from the interferometer. Last, we discuss
the results and conclude in Sec. VI.

II. THEORY

A laser beam with a TEM00 mode and 1/e2 beam radius
2σ enters a Sagnac interferometer through a piezo-actuated
50:50 beam splitter (see Fig. 1). The reflected beam receives
a transverse momentum kick k upon both entering and exiting
the interferometer. We monitor the spatial beam shift of the
beam exiting the dark port. The quarter-half-quarter (QHQ)
wave-plate combination [23] gives a Pancharatnam-Berry
phase [24] of ±φ/2 to each counterpropagating (|�〉 , |�〉)

2469-9926/2016/94(4)/043825(7) 043825-1 ©2016 American Physical Society
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FIG. 1. We send antidiagonal polarized light (Pol 1) through a
Sagnac interferometer. Inside the interferometer are three wave plates
arranged quarter-half-quarter (QHQ) designed to control the phase for
clockwise and counterclockwise propagation (see Appendix A). The
counterclockwise-propagating beam receives a transverse momentum
kick k from the piezo-controlled 50:50 beam splitter. When the beam
recombines, it destructively interferes at the dark port. The beam
is then postselected a second time with polarizer 2 (Pol 2). The
half-wave plate after the first polarizer (Pol 1) is used for independent
calibration of the horizontal and vertical polarization components.

beam (details are given in Appendix A). The interaction with
the meter system is given by exp(−ikÂx̂), where the ancillary
system operator is Â = |�〉 〈�| − |�〉 〈�|.

For the remainder of the paper, we will describe the
experiment in the classical matrix formalism [25]. For input
antidiagonal polarized light the output electric field takes the
form

Eout(x; β,α) = E0

2
√

2
e−x2/4σ 2

(
β eiα − e−i2kx−iφ

β eiα − e−i2kx+iφ

)
(2)

in the horizontal [H = (1,0)T ] and vertical [V = (0,1)T ]
polarization bases. We introduce a spatial interference back-
ground using the relative amplitude β and the relative phase α.
The constant β describes the relative transmission amplitude
through both arms in the interferometer, which limits the
spatial contrast from reaching the perfect zero output from
the dark port and the perfect input power in the bright port.
The introduction of the phase α allows us to make a correct
estimate of φ, which accounts for the effective amplification
in the parameter k. The free parameters β and α in the theory
account for background light due to imperfect alignment,
imperfections of the optical elements in the experimental setup,
and systematic errors in the estimates of k. These parameters
are expected to take values β = 1 and α = 0 in a perfect
interferometer. The difference in sign for φ in Eq. (2) for H

and V polarization comes from the asymmetric response of the
QHQ combination inside the interferometer (see Appendix A).

A. Theory: Single postselection

First, we assume the ideal case of β = 1 and α = 0. The
polarization degree of freedom will be used for the second
postselection, so we assume here that the input light is either
horizontally or vertically polarized. Using the modulus square

of one component of the electric field from Eq. (2), we arrive
at the intensity profile. With the intensity profile we assume
the momentum kick is small for the weak-interaction approx-
imation, k2σ 2 cot2(φ/2) � 1. We expand the trigonometric
functions up to first order in k and reexponentiate the quantity.
Then we combine the two exponentials by completing the
square to arrive at the dark-port intensity profile,

Is(x) = I0 sin2

(
φ

2

)
exp

[
− 1

2σ 2
(x − δxs)

2

]
. (3)

The subscript s in Eq. (3) refers to the single postselection,
where δxs = ±2kσ 2 cot(φ/2) is the beam shift from a hori-
zontally or vertically polarized input light. This is the standard
result from the beam deflection experiment [10], with a weak
value of Awv = ±i cot(φ/2) (see Appendix B).

For realistic experimental implementations when φ is small
we assume the case of β < 1 and α �= 0 in Eq. (2). Integrating
the square modulus of the electric field of either |H 〉 or |V 〉 of
Eq. (2) yields the normalization factor

Ns = β sin2

(
α ∓ φ

2

)
+

(
1 − β

2

)2

. (4)

The mean beam shift on the detector is then given by

〈x〉s = 1

Ns

∫
x
∣∣Eout

H,V (x; β,α)
∣∣2

dx = βkσ 2 sin(α ∓ φ)

Ns

.

(5)

Note that the mean shift in Eq. (5) has two solutions that
depend on the different components of Eq. (2).

B. Theory: Concatenated postselection

The second part of the theory is to take advantage of
the polarization-sensitive phase φ/2 by inputting antidiagonal
polarized light as in Eq. (2). For the ideal case of β = 1
and α = 0, the orthogonal components of polarization will
spatially separate at the dark port by 2|δxs | since the horizontal
and vertical components have opposite weak values (see
Appendix B). The electric field exits the Sagnac interferometer
and passes through a polarizer with a Jones matrix given
by

P(θ ) = 1

2

(
1 + sin(2θ ) cos(2θ )

cos(2θ ) 1 − sin(2θ )

)
. (6)

The polarizer angle θ is aligned to be nearly orthogonal to the
polarization of the exit beam from the interferometer.

We assume the momentum kick is small for the weak-
interaction approximation, k2σ 2 cot2(φ/2) cot2(θ ) � 1. We
expand the trigonometric functions up to first order in k and
reexponentiate the result. We then combine the exponentials
by completing the square to arrive at the dark-port intensity
profile,

Ic(x) = I0 sin2

(
φ

2

)
sin2(θ ) exp

[
− (x − δxc)2

2σ 2

]
. (7)

The beam shift after the concatenated postselection is given by
δxc = 2kσ 2 cot(φ/2) cot(θ ) = δxs cot θ . The subscript c refers
to the concatenated postselected case.

043825-2
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We now assume the realistic case where β < 1 and α �= 0.
After the polarizer we have a new normalization term,

Nc = 1 + β2

8
[1 + cos(2θ ) cos φ] + β

4
[sin α sin φ sin(2θ )

− cos α(cos(2θ ) + cos φ)], (8)

and a new mean shift of the beam on the detector,

〈x〉c = 1

Nc

∫
x|P(θ )Eout(x; β,α)|2dx

= βkσ 2

2Nc

[sin α(cos(2θ ) + cos φ) + cos α sin(2θ ) sin φ].

(9)

Note that by setting β = 1 and α = 0 we recover the
expressions Nc → sin2(φ/2) sin2(θ ) and 〈x〉c → δxc as in
Eq. (7).

III. EXPERIMENT

The experimental setup shown in Fig. 1 starts with a
grating feedback laser with a 780-nm center wavelength. Two
objectives and a 50-μm pinhole are used to create a collimated
Gaussian beam with radius 2σ , and a polarizer (Pol 1) selects
the antidiagonal linear polarization for the experiment. The
beam enters the Sagnac interferometer through a 50:50 beam
splitter on a piezo-actuated mount that provides a transverse
momentum kick k at each reflection. The interferometer has
three wave plates, QHQ, that give a phase difference between
paths. The quarter-wave plates are set to +45◦ and −45◦. The
half-wave plate sets the added phase of ±φ/2 to each path (see
Appendix A). When the beams recombine, they destructively
interfere at the dark port. We monitor the beam shift of the
light exiting the dark port with a split detector. In the second
part of the experiment, we add a polarizer before the detector
for the concatenated postselection (Pol 2 in Fig. 1).

We use a beam radius of 2σ = 1100 μm with a polarization
extinction ratio of 25 000:1. The polarization quality of
the interferometer is limited to 5000:1 by the wave-plate
combination inside the interferometer (QHQ in Fig. 1). The
traverse momentum kick k is driven by a piezo stack calibrated
separately for 100 Hz with a response of α ≈ 63.9 nm/V. For
all the measurements, we apply a 100-mV sinusoidal wave
to the piezo stack which corresponds to a momentum kick
k = 2.74 m−1. The first postselection angle φ/2 is determined
by the ratio of the measured power at the dark port Pφ/2

to the power of the bright port Pbright,1, given by Pφ/2 ≈
sin2(φ/2)Pbright,1. The second interference postselection angle
θ is determined by the ratio of the power after the output
polarizer dark port Pθ (Pol 2 in Fig. 1) to the power of
the polarization interference bright port Pbright,2, as in Pθ ≈
sin2(θ )Pbright,2.

IV. RESULTS

A. Single postselection

In Fig. 2, we plot (red circles for single postselection) the
absolute mean value of the beam shift versus the generalized
postselection angle 	. The generalized postselection angle
for the single-postselection case is given by 	 = φ/2. The

FIG. 2. The average beam shift as a function of postselection
angle 	. The variable 	 is a generalized postselection angle; for the
single-postselection case, 	 = φ/2 (red circles), but for the concate-
nated postselection case it is the product of both postselection angles
	 = θφ/2 (green squares). The label PS refers to postselection. The
theory (dashed blue line) is labeled δxs = 4kσ 2/	 as in the mean
beam shift of Eq. (3) with generalized postselection angle 	. Fit:
SPS (solid teal line) is the fit of the single-postselection data, and Fit:
CPS (solid purple line) is the fit to the concatenated postselection data
as in Eqs. (5) and (9), respectively. We present here the concatenated
data set from the third row in Table I.

data consist of both horizontal and vertical polarized input
light with dark-port contrast of 1400:1. From Eq. (4), the
dark-port contrast ratio is given by (1 − β)2/(1 + β)2, so a
value of β ≈ 0.95 is expected. However, we numerically fit
the data to Eq. (5) and label β and α as free parameters.
The fit to the single postselection data is labeled as Fit: SPS
(solid teal line) and takes on the positive values of δxs as
in the horizontal polarized case of Eq. (5). From Fit: SPS
we extract the optimal postselection angle 	opt, where the
weak-value amplification shows the largest shift before the
signal is overcome by the background for small postselection
angles. From Fit: SPS we observe that the largest signal is
found with a postselection angle of φ/2 = 2.6◦. We also see
that the relative transmission amplitude parameter is given
by β = 0.9543(8). The data differ slightly from the theory
of Eq. (3) (dashed blue line) because of a systematic error
in calibration of the piezo-actuated beam splitter. This theory
of Eq. (3) is the beam shift δxs = 2kσ 2 cot(φ/2) without the
spatial interference imperfection consideration.

We note that as the alignment improved, the quality
of the dark port also improved and the optimal angle for
greatest amplification decreased. The results from the single-
postselection case of Fig. 2 show that the relative amplitude
transmission β < 1 limits the weak-value amplification from
the theoretical upper bound [20,26] and limits the benefit over
technical noise [17,18].

B. Complementary behavior between postselections

We note the complementary behavior of the two degrees of
freedom used for postselection, which-path and polarization.
For example, if one postselects the spatial interference to
resolve maximum amplification of the single postselection
(the peak of Single PS in Fig. 2), then there cannot be any
polarization improvement because we observe an extinction
contrast close to 10:1 for polarization. To understand this lim-
itation we first note that if the first postselection output power
is Pφ/2, the contrast ratio is Pφ/2:Pin, and our case of maximum
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amplification in the Single PS gives Pφ/2:Pin ≈ 500:1. Then
we observe the second postselection to have a contrast of about
10:1 at best for a total effective contrast of 5000:1. The effective
contrast of both postselections cannot exceed the contrast of
either the spatial or polarization extinction contrast. In this
particular scenario, we are not in the small-angle (because
of 10:1 in the polarization extinction contrast) regime, so the
configuration is suboptimal. We note that with a maximum
polarization extinction contrast of 10:1 we can expect the
location of the peak to be slightly close to θ ≈ 0.5 rad ≈ 29◦.
This angle will not provide an enhanced beam shift of δxc, as
the angle is outside the small-angle approximation and will
not follow the optimal theory of Eq. (7). For our experiment,
the spatial interference contrast is 1400:1, and the polarization
contrast is 5000:1. Therefore, we present the results of the
optimized case in the next section.

C. Concatenated postselection

When the single postselected beam’s shift is compared to
the concatenated case, we see from Eq. (7) that the beam shift
is amplified by cot(θ ) at the cost of a fraction cos2(θ ) of fewer
measurements.

We point out that the theory of Eq. (7) does not assume
any limitations to the contrast for either spatial or polarization
interference. In the case of infinite contrast there is no benefit
to adding a second postselection. Since this is an idealization,
therefore, we explore the case of having one degree of freedom
with a higher contrast than the other. In this experiment,
the spatial interference contrast is 1400:1, and polarization
contrast is 5000:1; thus, there exists an optimal configuration
for the complementary amplification.

Now we focus on the concatenated postselection data (green
squares) in Fig. 2. We plot the absolute value of the mean
beam shift |〈x〉| from Eq. (7) as a function of the generalized
postselection angle 	, which takes the form 	 = θφ/2 for
the concatenated postselection. The product of postselection
angles is a valid approximation for the small-angle regime.
The plot shows the benefit of introducing the polarization
degree of freedom to the experiment, which allows us to
achieve smaller effective postselection angles 	 and larger
shifts 〈x〉. From Fit: CPS (solid purple line) from Eq. (9), the
optimal postselection angle for the concatenated postselection
is about 1.6◦. From the fits shown in Fig. 2 the improved
beam shift with the concatenated postselection has increased
by a factor of approximately 50.64/35.425 ∼ 1.4 over the
single-postselection beam shift. The fit of the concatenated
weak-value case gives a background interference parameter
β = 0.968(1) [27].

Now we compare the spatial interference background
parameter β of the single and concatenated cases. The fitting
of Eqs. (5) and (9) to the data reveals β ≈ 0.9543(8) and
β ≈ 0.968(1), respectively. The error is from the fit of the data
with 95% confidence. By introducing the second postselection
the parameter β is increased, showing the advantage of the
concatenation for interference improvement. We note that such
an increase is present even after the introduction of a nonideal
optical element (Pol 2 in Fig. 1) which could, in principle,
reduce the spatial interference.

V. FISHER INFORMATION

In this section, we theoretically compare the efficiency of
the concatenated weak-value technique in the ideal noiseless
case. We use the Fisher information formalism of the parameter
of interest k given by

I(k) =
∫

dxP (x; k)

[
∂

∂k
ln P (x; k)

]2

, (10)

where P (x; k) is the probability distribution of the photons
arriving on the detector.

We consider the probability function of the optimized
concatenated weak-value technique

Pc(x; k) =
Nc∏
i=1

1√
2πσ 2

exp

[
− (xi − δxc)2

2σ 2

]
, (11)

where δxc = 2kσ 2 cot2(φ/2) cot2 θ , as in Eq. (7), is the com-
plementary amplification of the concatenated postselection.
The probability function of the concatenated case has Nc

independent measurements, which is less than the total number
of possible measurements that are thrown away by the bright
port.

We also study the amount of Fisher information that is
collected out of the dark port of each technique. We note the
total available Fisher information is the sum of the Fisher
information from the dark port (D) and the bright port (B) of
the single-postselection case, Is,D + Is,B = 4Nσ 2. The Fisher
information from the dark port of the single postselection and
the concatenated postselection is written as

Is,D(k) = 4Nσ 2 cos2(φ/2) (12a)

and

Ic,D(k) = 4Nσ 2 cos2(φ/2) cos2(θ ), (12b)

respectively. The subscripts s and c refer to the single and
concatenated cases, respectively. The total number of possible
measurements is N ; however, the single and concatenated
techniques are limited to N sin2(φ/2) and N sin2(φ/2) sin2 θ

measurements, respectively. The fractional Fisher information
for the single-postselection and concatenated cases is given by

Is(k)frac = Is,D

Is,D + Is,B

= cos2(φ/2) (13a)

and

Ic(k)frac = Ic,D

Is,D + Is,B

= cos2(φ/2) cos2(θ ), (13b)

respectively.

Results of the comparison

In Table I, we present the data from the single and the
concatenated postselections. The first column is the output
power of the spatial interference contrast. The first row is
the single-postselection case where all postselected values
are measured. The single-postselection case has no entry
in the first or second column because it uses only spatial
interference, where 	 = φ/2. The concatenated results are
in the bottom four rows. The second column is the first
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TABLE I. Results of concatenated postselection for weak-value
amplification. The results of the last three columns come from
numerically fitting the data where the nonlinear fit has a 95%
confidence and a goodness measure r2 > 0.86. The first column is
the contrast of the first postselection. The second column is the first
postselection angle φ/2. 	opt. in the third column is the product θφ/2
with the highest signal from the fit. The fourth column is the relative
transmission amplitude parameter β from the fit. The quantityIc(k)frac

in the fifth column is the fraction of Fisher information with respect to
the total Fisher information considering both bright and dark ports of
the first postselection. For the fifth column, we consider Eq. (13b) for
the second through fifth rows. The first row in the fifth column has
Is(k)frac ≈ 1, which corresponds to the fraction Fisher information
of one postselection as in Eq. (13a). The proximity to 1 means that
there is no loss of Fisher information when monitoring the dark port.
This should not be confused with shot-noise-limited measurements
because this is fractional Fisher information.

Pbright,1:Pφ/2 φ/2 	opt. β Is,c(k)frac

2.66◦ 0.9543(8) ≈1.0
177 : 1 4.33◦ 2.0◦ 0.962(1) 0.79
106 : 1 5.56◦ 1.6◦ 0.968(1) 0.91
53.2 : 1 7.88◦ 1.6◦ 0.965(1) 0.94
26.6 : 1 11.2◦ 2.0◦ 0.964(1) 0.93

postselection angle φ/2. The third column is the generalized
postselection angle 	opt. of the largest beam shift δxc from the
fits. The fourth column is the spatial interference background
parameter β from the fits. The fifth column is the fractional
Fisher information I(k)frac with respect to the total Fisher
information of the system. For the first row of the fifth column
we consider the Fisher information as in Eq. (13a), and for the
bottom four rows of the fifth column we consider Eq. (13b).

From Table I, the complementary amplification of the
concatenated postselection is presented. We plot in Fig. 2 the
optimized experimental run, given in the third row of Table I.
This optimized case shows not only the greatest amplification
for the smallest postselection angle but also the lowest amount
of spatial interference background, given by large β in the
fourth column.

The first row of Table I has fractional Fisher information
given by Eq. (13a). The proximity to 1 of the fractional Fisher
information in the first row means there is no loss in Fisher
information due to only monitoring the dark port. This should
not be confused with a shot-noise-limited measurement be-
cause this is a fractional description of the Fisher information
meant to describe the efficiency of the postselected events.

Looking at the third and fourth rows of Table I, the largest
beam shift is found with a postselection angle of 	opt = 1.6◦.
The single-postselection angle 	opt = 2.66◦ has therefore
improved with the optimized concatenated case (third and
fourth rows). We note that there exists an optimized case
because the polarization degree of freedom has a greater
extinction efficiency than the spatial degree of freedom in
this experiment. The concatenated postselection could not
be optimized any further because of limitations on our
polarization extinction ratio of 5000:1.

An example of a nonoptimized case for the second
postselection is the second row in Table I, where the angle for

the first postselection φ/2 is small (4.33◦). Such a selection for
φ forces a large selection of θ ∼ 25.8◦, which does not allow
for greater peak amplification and decreases the idealized
Fisher information by 21%. The loss of the available Fisher
information is less than 9% (5% loss in sensitivity) for the
optimized region. The optimized case can only exist when one
interference contrast is higher than the other. Polarization is
an example of a large extinction efficiency where polarizers
can have extinction ratios of 106:1. The introduction of a
nonideal optical element (second polarizer in Fig. 1) reduces
the maximum number of photons reaching the detector. For
a maximum transmission of (typical) 85% in the polarizer
the shot-noise is increased by 8.5% with respect to the single
postselection scenario. This disadvantage is overshadowed by
the amplification of 40% obtained in the shift due to the second
postselection in our technically limited setup.

In this experiment, we postselect with spatial interference
to produce two opposite weak values (see Appendix B), each
of which carries half of the available Fisher information.
Then we use the higher extinction contrast degree of freedom
of polarization to postselect a second time to explore the
complementary amplification between the two postselections.
We find an optimized region of parameter space such that the
complementary amplification is realized and provides some
benefit with a smaller effective postselection angle 	 and a
decrease of the spatial interference imperfection (increase of
parameter β).

It is worth pointing out the optics used in our experiment
limited the polarization extinction contrast to 5000:1. This
is consistent with our measurements of the concatenated
postselection in Table I. We note that with higher-performing
optics we will amplify the signal and circumvent spatial
interference background. We also note this work should not
be confused with Ref. [28], where they propose an entangled
ancillary system to improve the precision of a measurement.
In our experiment, the best precision possible is bounded by
the shot-noise limit.

VI. CONCLUSION

In this paper, we have explored a complementary am-
plification of the concatenated postselection for weak-value
amplification to measure a beam deflection. We used a Sagnac
interferometer with spatial interference to measure a transverse
beam deflection and then introduced a second postselection to
the system with polarization. The concatenated postselection
angle θ and the first spatial interference postselection angle
φ/2 are complementary, bounded by the highest interference
contrast. Only when one of the two interference contrasts is
larger than the other can there be an optimized regime in
parameter space to observe the complementary amplification.

In general, it is better to do one postselection, but in the
case of low-contrast spatial interference we can incorporate
a higher-contrast degree of freedom such as polarization for
improvement. Thus, from the optimized case the complemen-
tary amplification of concatenating postselections can lead
to a more idealized interferometer according to a greater
value of β. With higher-quality optics we could have greater
discrepancy between spatial and polarization extinction ratios
and further increase postselection contrast in an optimized
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case. This condition would lead to greater reduction in
technical noise [17,18], which would help us reach the
shot-noise limit with greater ease. It is worth noting that
a concatenated postselection for weak values is beneficial
only when the additional degree of freedom has a higher
interference contrast than the first interference.

A new weak-value technique without postselection has
recently been developed where the undesirable decay of the
signal for small angles in Fig. 2 is not observed [29–31].
This new technique produces an amplification to the signal
of interest without the cost of reduced photon counts.
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APPENDIX A: QUARTER-HALF-QUARTER:
PANCHARATNAM-BERRY PHASE

Inside the Sagnac interferometer the polarization-
dependent phase is controlled by the wave-plate combination
of quarter-, half-, and quarter-wave plates. The quarter-wave
plates are set to ±45◦, denoted as Q̂ matrices, and the
half-wave plate is denoted by the Ĥ matrix. We denote the
product of the three-wave-plate combination as the Ĉ matrix.
We will represent the wave-plate matrices in the Jones matrix
formalism in the polarization basis of H and V .

Ĉ|�〉,|�〉

(
±φ

4

)
= Q̂(45◦)Ĥ

(
±φ

4

)
Q̂(−45◦)

= 1

2

(
1 −i

−i 1

)(
cos(φ/2) ± sin(φ/2)

± sin(φ/2) − cos(φ/2)

)

×
(

1 i

i 1

)

=
(

0 −e∓iφ/2

e±iφ/2 0

)
. (A1)

We note that this configuration of wave plates gives a geometric
phase that depends on the polarization of the beam.

We note the symmetry in Ĉ(±φ/4) is broken by the
beam propagation direction either clockwise (|�〉) with +φ/4
or counterclockwise (|�〉) with −φ/4 as the half-wave-
plate angle. The wave-plate combination Ĉ(±φ/4) changes
the state as follows: Ĉ(φ/4)|�〉 ⊗ |H 〉 = eiφ/2|�〉 ⊗ |V 〉,
Ĉ(−φ/4)|�〉 ⊗ |H 〉 = e−iφ/2|�〉 ⊗ |V 〉, Ĉ(φ/4)|�〉 ⊗ |V 〉 =
−e−iφ/2|�〉 ⊗ |H 〉, and Ĉ(−φ/4)|�〉 ⊗ |V 〉 = −eiφ/2|�〉 ⊗
|H 〉.

APPENDIX B: WEAK-VALUE QUANTUM DESCRIPTION

The preparation of state for this experiment deals with
joint space between the which-path and polarization degrees
of freedom. The input state is first linearly polarized to the
antidiagonal state 1√

2
(|H 〉 − |V 〉). Then the state enters the

beam splitter of the Sagnac interferometer. We define the state

after the beam splitter as

|ξ 〉 = 1
2 [(|�〉 + i |�〉) ⊗ (|H 〉 − |V 〉)]. (B1)

To write the input state before the interaction we include the
polarization-dependent phase φ/2 described in Appendix A:

|ϕ〉1 = Ĉ(±φ/4) |ξ 〉
= 1

2 [(|�〉 eiφ/2 + i |�〉 e−iφ/2) ⊗ |V 〉
+ (|�〉 e−iφ/2 + i |�〉 eiφ/2) ⊗ |H 〉]. (B2)

The interferometer has an interaction given by Û = exp(ikÂx̂)
such that the transverse momentum k is coupled by the
ancillary operator Â to the meter x̂. The ancillary system
operator Â is given in the which-path basis by Â = |�〉 〈�| −
|�〉 〈�|. The parameter of interest is the transverse momentum
kick k that the beam of light receives on the reflected port of
the beam splitter. Then the first postselection is conducted with
spatial interference. The postselection is nearly orthogonal to
the input state and is given by

|ϕ〉2 = 1√
2

(|�〉 − i |�〉). (B3)

We assume the interaction is weak such that we can expand
to O(k1) and can define a weak value for both horizontal and
vertical polarizations. The postselection is only for the spatial
degree of freedom, so we have two weak values given by

AH
wv = 〈H | 〈ϕ2|Â|ϕ1〉

〈H | 〈ϕ2|ϕ1〉 = i cot(φ/2) (B4a)

and

AV
wv = 〈V | 〈ϕ2|Â|ϕ1〉

〈V | 〈ϕ2|ϕ1〉 = −i cot(φ/2). (B4b)

We have two weak values of opposite signs; thus, the
separation between the two polarization components becomes
2|δxs | = 4|kσ 2 cot(φ/2)|, and the signal on the detector is null.
Then we introduce a second postselection in the polarization
basis.

The second postselection is through polarization interfer-
ence, and the postselected state is given by

|ϕ〉3 = 1√
2

[(sin θ − cos θ ) |H 〉 − (sin θ + cos θ ) |V 〉]. (B5)

The angle θ is a small angle that determines the orthogonality
between the pre- and postselections in the polarization basis.
With the concatenated postselection we have a total effective
weak value given by

AC
wv = 〈ϕ3| 〈ϕ2|Â|ϕ1〉

〈ϕ3| 〈ϕ2|ϕ1〉 = i cot(φ/2) cot(θ ). (B6)

With this concatenated configuration we amplify the visibility
of the weak value and improve the contrast of the spatial
interference by adding the polarization degree of freedom.
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