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The more information a measurement provides about a quantum system’s position statistics, the less
information a subsequent measurement can provide about the system’s momentum statistics. This
information trade-off is embodied in the entropic formulation of the uncertainty principle. Traditionally,
uncertainly relations correspond to resolution limits; increasing a detector’s position sensitivity decreases
its momentum sensitivity and vice versa. However, this is not required in general; for example, position
information can instead be extracted at the cost of noise in momentum. Using random, partial projections in
position followed by strong measurements in momentum, we efficiently determine the transverse-position
and transverse-momentum distributions of an unknown optical field with a single set of measurements. The
momentum distribution is directly imaged, while the position distribution is recovered using compressive
sensing. At no point do we violate uncertainty relations; rather, we economize the use of information we
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Measurements on quantum systems are always con-
strained by uncertainty relations. Localizing a particle in
one observable, such as position, imparts a disturbance
that makes a following measurement of a complementary
observable, such as momentum, unpredictable. Such strong,
projective measurements are often said to “collapse” the
quantum wave function. For example, in Young’s double slit
experiment, it is not possible to detect through which slit
particles pass (position) while also observing interference
fringes in the far field (momentum) [1].

Consequently, the statistics of complementary observ-
ables are usually measured separately; an ensemble of
identically prepared particles is directed to a position
detector and a different, similarly prepared ensemble is
directed to a momentum detector. If a detector instead
measures both observables simultaneously with strong
measurements, its position resolution A, and momentum
resolution A, are bounded by Heisenberg’s uncertainty
relation, A A, > 1/2. In its most basic form, a Shack-
Hartmann wave-front sensor is an example of this kind of
detector [2].

Though this resolution limitation applies to strong
measurements, it is not true in general. Here, the uncertainty
principle implies an information exclusion principle [3,4];
the more information a detector gives about position, the
less information it can provide about momentum and vice
versa. With a single, carefully designed experiment, one
can simultaneously recover the statistics of both observ-
ables at arbitrary resolution. This has been demonstrated,
albeit very inefficiently, with weak measurement [5—7].

In this Letter, we efficiently obtain the transverse-
position and transverse-momentum distributions of optical
photons from a single set of measurements at high
resolution. We sequentially perform a series of random,

0031-9007/14/112(25)/253602(5)

PACS numbers: 42.50.Xa, 03.65.Ta, 03.65.Wj, 89.70.Cf

253602-1

partial projections in position followed by strong projective
measurements of the momentum. The partial projections
efficiently extract information about the photons’ position
distribution at the cost of injecting a small amount of noise
into their momentum distribution. This allows the momen-
tum distribution to be directly observed on a charge-
coupled device (CCD) camera. The position distribution
is recovered using a computational technique called com-
pressive sensing (CS) [8].

Consider an optical field in the plane z =z, with
transverse, complex amplitude w(X), where z is the
propagation direction and X = (x, y) are transverse, spatial
coordinates. The field also has momentum amplitude
w(k),_which is related to w(X) by a Fourier transform,
with k = (k,, k).

To measure the position field intensity |y (X)|?, one could
raster scan a small pinhole through the transverse plane at
Z = zp. The fractional power passing through the pinhole as
a function of its position reveals the image. From a quantum
perspective, this process constitutes a strong projective
position measurement; the pinhole localizes the position of
photons passing through it and their subsequent momenta
are random. From a classical optics perspective, the pinhole
acts like a spatial filter; light passing through the pinhole
diffracts evenly in all directions. In either case, information
about the original field’s momentum y (k) is lost. Note that
one could instead choose to measure the momentum
distribution |1,z/(k)|2 by performing a similar scan in the
focal plane of a Fourier transforming lens. Here, position
information would instead be forfeit.

In our approach (Fig. 1), we perform a series of partially
projective measurements of position followed by strong
measurements of momentum. We first prepare a transverse,
photonic state y(X) by illuminating an object mask with a

© 2014 American Physical Society
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FIG. 1 (color online). Experimental setup for simultaneous
position and momentum imaging. A state is prepared by
illuminating an object mask at z = z, with a plane wave from
an attenuated HeNe laser. The field is imaged at z = z, where it is
sequentially filtered by a series of M 256 x 256-pixel, random
binary filters F;. Each filter partially projects the state by blocking
about half of the position elements. A cooled CCD array in the
focal plane z = z; of a Fourier-transforming lens records the
momentum distribution for each filtered state. Position informa-
tion is mapped to the total optical power passing each filter; this
measures the correlation between the position intensity distribu-
tion at z, with the current filter. Because the filters do not strongly
localize the photons’ position, the momentum distribution is
directly recovered by averaging the CCD images. The position
distribution is reconstructed using compressive sensing tech-
niques such that an N-pixel position image requires M < N
filters.

collimated laser. We image this field in the plane z = z, witha
4f imaging system. Here we sequentially perform partial
projections of y(X) by filtering it with a series of M binary
amplitude masks f;(x). Each mask consists of a random,
N-pixel pattern, where each pixel either fully transmits or
fully obstructs with equal probability. Note that the total
optical power passing the ith filter gives the correlation
between that filter and the position intensity distribution
ly(X)|*. In this way, a small amount of information about the
position distribution is extracted without localizing the field.
The filtered state ;(x) = w(X)f;(x) then passes through a
Fourier transforming lens to a CCD array in the lens’ focal
plane at z = z;. The CCD records M images of the momen-
tum distribution of the filtered field [y7,;(k)|’, one for each
filter. This set of images contains information about both
y’s position and momentum.

The momentum distribution is recovered directly from
the CCD images \np(k)|2 by simple averaging such that

(k) [F = (s (k). (1)

where angled brackets indicate an average over all filters.
This is made possible by the surprising fact that |y; (k) |2 isa

good approximation to |y/(%)|2, even though |yr;(X)|? is
missing half of its coefficients.

By the convolution theorem of Fourier optics [9], the
filtered ith momentum distribution is found by convolving
the Fourier transforms of y(X) and f;(X) such that

7 (K = w(k) ® f:(k)], (2)

where ® dengtes convolution. To understand the filter’s
effect on w(k), we must consider its Fourier trans-
form (Fig. 2).

At high resolution, each transmitting filter pixel is
approximately a displaced Dirac delta function [Fig. 2(a)]
with unit amplitude. The Fourier transform of each delta
functionis a plane wave propagating at an angle proportional
toits displacement from the origin. Atk = (0, 0), these plane
waves add in phase, producing a sharp peak. For k # (0, 0),
each plane wave is equally likely to provide a negative or
positive contribution. The coefficients therefore follow a
random, complex Gaussian distribution [10]. A filter’s
Fourier transform is approximately a Dirac delta function
at zero momentum riding a small noise floor that is a factor

v/2/N weaker [Fig. 2(b)],

fik) o« (k) + \/%qsi@). (3)
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FIG. 2 (color online).  Discrete Fourier transform of a 256-pixel,
one-dimensional random binary pattern. Panel (a) gives a
random, binary one-dimensional filter function where a value
1 is fully transmitting and a value O is fully obstructing. Panel
(b) shows the relative power spectrum of its Fourier transform,
where the zero-momentum term is scaled to unity. The noise floor
is a factor 4/2/N weaker in amplitude in both its mean and
standard deviation. The same relationship holds for a two-
dimensional filter.
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Values for ¢,~(%) follow a random, complex Gaussian white
noise distribution, with real and imaginary parts of zero mean
and standard deviation 1/+/2.

Because a convolution with a delta function simply
returns the original function, we expect y; (k) ~ w(k) with a
small amount of noise (Fig. 3). From Egs. (2) and (3), we
find

2v2
VN

2@ OP (@)

7 (k)|* = N{ (k) [y (k) (w (k) * i (k)]

where A is a normalizing constant. The first term is the
desired outcome; the following two terms add noise. For
large N, these terms vanish. In the worst case, the signal-to-
noise ratio scales as v/N. At typical imaging resolutions—
such as N = 256 x 256 pixels used in this Letter—these
terms are weak. When averaged over many patterns, the
second term vanishes and the third term approaches a very
small constant value. Equation (1) is therefore recovered up
to a constant offset. The noiseless case is asymptotically
approached for increasing M and N. Rigorous derivation of
Egs. (3,4) can be found in the Supplemental Material [11].
This analysis is closely related to similar problems in
wireless communication [12].

Because the filtered momentum distribution is only
lightly perturbed, very little information about the position
distribution can be extracted from each CCD image. To
maximize the usefulness of this information, we turn to

Object Filtered Object
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1
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FIG. 3 (color online). Partial projections of y. The figure
simulates the effect of filtering a triple slit object with a
128 x 128-pixel random binary pattern. The momentum images
are given as relative powers, where their maximum value is scaled
to unity. A square-root color mapping emphasizes weaker
momentum values. The filtered momentum distribution is a
slightly noisy version of the true momentum distribution.

Position
Domain

Momentum
Domain

compressive sensing [13—15]. Compressive sensing [8] is
an extremely efficient measurement technique for recov-
ering an N-dimensional signal from M <« N measure-
ments, provided the signal can be compressed in a
known way. The use of outside information—the prior
knowledge that a signal is compressible—is a powerful tool
for economizing measurement. In the past decade, com-
pressive sensing has taken the signal processing world by
storm with applications ranging from magnetic resonance
imaging [16] to radio astronomy [17]. More recently, CS
has made inroads into the quantum domain with compres-
sive tomography [18-20] and entanglement characteriza-
tion [21]. When used for imaging, compressive sensing is
closely related to computational imaging [22,23].

Together, the filters and CCD implement a single-pixel
camera for the position distribution. The single-pixel
camera is the textbook example of compressive sensing
and has been extensively investigated [14,24]. Consider the
total power Y; striking the CCD while filtering with_f;,
obtained by integrating the ith momentum image |y; (k)|
over all CCD pixels. The CCD now acts as a single-element
power meter. The value Y; is a correlation between the
position intensity |y (X)|? and the ith filter.

These correlations are concisely represented by the series
of linear equations

Y = FX. (5)

Here, F is an M x N sensing matrix whose ith row is a one-
dimensional reshaping of the ith filter function. X is an
N-dimensional vector representing a one-dimensional
reshaping of the unknown position distribution |y (X)|?,
discretized to the same resolution as the filters.

The correlations can be used to iteratively recover X by
taking a weighted sum of the filter functions,

1 M
xX=-Y YF, 6
Mélll (6)

but many measurements are required (M > N) [25].
Instead, given some reasonable assumptions, compressive
sensing dramatically reduces the requisite number of
measurements (M < N).

When M <« N, Eq. (5) is underdetermined; there are
many possible X consistent with Y. CS posits that the
correct X is the one which is sparsest (has the fewest
number of nonzero elements) in a representation where X is
compressible. This X is found by solving the regularized
least-squares optimization problem

2
min2|Y - EX||” + TV(X), (7)
X 2 2

where, for example, ||¢||3 is the #, norm (Euclidean norm)
of ¢ and p is a constant. The first penalty is a least-squares
term that is small when X is consistent with the correlation
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vector Y. The second penalty TV (X) is the signal’s total
variation,

TV(X) = ) |X; - X;
adj.i,j

: (8)

where indices i, j run over all pairs of adjacent pixels in X
so that TV (X)) is just the #; norm of X’s discrete gradient.

If a signal’s total variation is large, values of adjacent
pixels vary wildly, indicating a noisy, unstructured signal.
Conversely, when a signal’s total variation is small, values
for adjacent pixels are strongly correlated, indicating
structure consistent with a real image. Put more plainly,
we seek the signal with the fewest edges consistent with our
measurements; this leverages compressibility in X’s gra-
dient. Total variation minimization has proven extremely
effective for compressive imaging; exact recovery of X is
possible with M as low as a few percent of N [26]. In
addition to sub-Nyquist sampling, CS has been shown to
give a higher signal-to-noise ratio than raster or basis
scans [27].

We tested our technique on four objects: a double slit, a
triple slit, the character %, and the University of Rochester
logo (Fig. 4). The object and filter masks were introduced
using computer controlled spatial light modulators, which
can change patterns at typical video speeds up to 60 Hz.
The filter spatial resolution was N = 256 x 256 pixels. The
random filter functions were rows of a randomly permuted,
zero-shifted Hadamard matrix [28]. This allows Y = FX to

Mean Momentum
CCD Image

Reconstructed Position
Plane Image

Single Filter
Momentum CCD Image

1
Relative

Relative |2
Power Power

0.5

FIG. 4 (color online). Recovered position and momentum
images for four objects. A double slit, triple slit, and 7 were
reconstructed at N = 256 x 256 resolution from only M = 6553
filters; the university logo used M = 32768 filters. No additional
post-processing has been performed; position images are those
returned by the reconstruction algorithm and momentum images
are the recorded single or mean CCD images.

be efficiently computed by a fast transform when solv-
ing Eq. (7).

The CCD was a cooled, 12-bit, 1376 x 1040-pixel
sensor. The exposure time for each CCD image was
10 ms. The average optical power incident on the CCD
was of order 10 pW. For a 10 ms exposures, each CCD
pixel had dark noise 50 = 10 in arbitrary power units of O to
4096. When integrating the CCD image to produce the
correlation vector Y, this value was subtracted. Momentum
images are those recorded directly by the camera; no post-
processing is performed beyond averaging over all images.

For the double slit, triple slit, and character objects,
M = 0.1N = 6553 filters were used; for the university
logo, M = 0.5N = 32768 filters were used. These corre-
spond to total exposure times of 65.5 sec and 327.7 sec,
respectively. Note that Nyquist sampling would require N
measurements; for most objects we undersample by an
order of magnitude. The requisite M depends both on
object complexity and the chosen objective function
[Eq. (7)], sensing matrix, and solving algorithm. We have
chosen a conservatively large M to produce high-quality
images. The dependence of image quality on M is exten-
sively researched; for example, see Refs. [14,15,27].

The position distributions were reconstructed by solving
Eq. (7) using the TVAL3 solver [29]. Values of u ranged
from 2! to 2'4. Such large u strongly favors the least-
squares penalty of Eq. (7) such that it is effectively a
constraint.

In all cases, our technique recovered high-fidelity posi-
tion and momentum distributions. Even momentum images
for a single filter are good approximations to the true
distribution; these are further improved by averaging.

To show the accuracy of our technique, Fig. 5 gives the
mean-squared errors (MSEs) of the momentum images for
100 simulations of the objects used in the experiment as a
function of increasing M. Even for a single pattern, the
MSE is at least of order 10~7. Averaging over an increasing
number of patterns, the middle term of Eq. (4) vanishes and
the MSE approaches a constant. This occurs within a few
hundred patterns, well before the requisite M for recovering
the position image.

We have demonstrated an efficient technique for meas-
uring the probability distributions of complementary
observables from a single set of measurements. Beyond
fundamental interest, we anticipate that our approach will
be useful for a wide variety of quantum and classical
sensing tasks, including continuous quantum measurement
[30], high-dimensional entanglement characterization [21],
wave-front sensing, and phase retrieval [31]. We strongly
emphasize that our technique does not violate the uncer-
tainty principle; at no point does a single detection event
give precise information about both position and momen-
tum. Instead, each detection event gives some information
about both domains. Our approach economizes the use of
this information. More broadly, our system exemplifies a

253602-4
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FIG. 5 (color online). Simulated momentum MSE: The simu-
lated momentum MSEs of the four objects used in the experiment
are given as a function of the number of random patterns M. The
shaded region encloses one standard deviation above and below
the average MSE for 100 trials. The MSE rapidly approaches a
small constant value as the second term of Eq. (4) vanishes. Even
for a single pattern, the MSE is at least of order 1077

trend in sensing away from traditional strong projective
measurements and raster scans which scale poorly to large
dimensions. Novel techniques based on compressive sens-
ing, weak measurement, and other unorthodox strategies
are necessary to overcome these limitations.

This work was supported by AFOSR Grant No. FA9550-
13-1-0019 and DARPA DSO InPho Grant No. W911NF-
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