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ABSTRACT Idiopathic toe walking (ITW) is a gait abnormality in which children’s toes touch at initial
contact and demonstrate limited or no heel contact throughout the gait cycle. Toe walking results in
poor balance, increased risk of falling, and developmental delays among children. Identifying toe walking
steps during walking can facilitate targeted intervention among children diagnosed with ITW. With recent
advances inwearable sensing, communication technologies, andmachine learning, new avenues ofmanaging
toe walking behavior among children are feasible. In this study, we investigate the capabilities of Machine
Learning (ML) algorithms in identifying initial foot contact (heel strike versus toe strike) utilizing wearable
body sensors. Thirty-six children (Age 9.4±2.8 years) diagnosed with ITW participated in this study. Six
ML algorithms, consisting of Support Vector Machines (SVM), decision tree (DT), random forest (RF),
K-nearest neighbors (KNN), Multi-layer Perceptron (MLP), and Gaussian process (GP), could successfully
classify initial contact walking patterns among ITW. We found that a simple KNN algorithm resulted in the
highest accuracy of 92.92% and an F1-score of 93.20% to differentiate toe walking gait versus best heel
strike when using all four body sensors. We also found that toe walking resulted in higher variability in the
sacral vertical accelerations among children diagnosed with ITW. Accurate quantification of toe walking
steps in clinical applications is critical for assessing rehabilitation progress and designing new interventions
for children diagnosed with ITW.

INDEX TERMS Best heel strike (BHS), gait, idiopathic toe walking (ITW), inertial measurement unit
(IMU), machine learning (ML).

I. INTRODUCTION
Toe walking is a gait abnormality described by clinicians
as toe-to-toe touch initial contact of the foot [1]. Persis-
tent toe-walking without treatment may lead to an increased
risk of tripping or falling [2], leg pain [3], impaired mus-
cle and motor coordination [4], and develop structural

The associate editor coordinating the review of this manuscript and
approving it for publication was Shunfeng Cheng.

abnormalities [5]. Children with autistic spectrum disorders,
cerebral palsy, muscular dystrophy, intellectual disabili-
ties, etc., are more likely to exhibit toe walking char-
acteristics. Still, toe walking is also observed in healthy
children with no signs of a neurological, orthopedic, or
psychological condition [6], [7] and is referred to as Idio-
pathic Toe Walking (ITW) [1]. At six years of age, approxi-
mately one out of every 20 children demonstrate ITW [7]–[9]
worldwide.
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Toe walking is usually identified visually by clinical
experts. Furthermore, gait analysis utilizing laboratory-
based motion capture systems provides accurate, objective
quantification of toe walking behavior [2], [10]. Standard
laboratory-based gait analysis protocols require specialized
laboratory equipment such as instrumented walkways, infra-
red camera-based motion capture systems, or treadmills with
embedded force plates. This laboratory assessment is expen-
sive and limited since it requires specialized personnel to
operate and analyze gait data. In addition, children with
ITW frequently modify their gait in a laboratory environ-
ment to a more normalized pattern. Thus, new systems that
detect toe walking in natural settings are needed. Currently,
no commercial technology exists to identify toe walking (gait
type) in real-world settings and intervene in real-time for
gait correction. Rehabilitation of children diagnosed with
ITW largely depends on clinicians’ visual observations of
the child’s gait pattern or collecting feedback from par-
ents for their gait [11], which are observational and rely
heavily on the clinicians’ experience and judgment [11]
and are error-prone. We have earlier reported that pressure
sensors [12] and machine learning algorithms [13] could
identify toe strike events, and smart-insoles can objectively
track toe strike gait [14] among children with ITW in their
natural settings.

Moreover, even after the rehabilitative intervention, there
is a tendency for these children to revert to toe walking gait.
Thus, accurate information on the number of toe strikes and
how long children walk on toes is critical. Hence, continuous
gait pattern monitoring is of high necessity to assist with
clinical decision-making and evaluate different treatment out-
comes. The emergence of embedded intelligence has recently
demonstrated great potential for continuous and real-time
decision-making in various fields [15]. The integration of arti-
ficial intelligence and embedded hardware such as wearable
devices enable increased operational efficiency, improved
products and services, and enhanced performance. Indeed,
driven by the advancement of sensing technology, several
wearable sensors, e.g., inertial measurement units (IMUs),
have been increasingly employed for convenient patient gait
data collection due to the high wearability, reduced cost,
and low power consumption [7]. The unprecedented data
availability provides excellent opportunities for precise and
efficient monitoring and diagnosis of ITW by using machine
learning (ML) algorithms to mine the hidden gait pattern
automatically. ML strategies for human movement recog-
nition, such as neural networks, support vector machines
(SVM), and decision trees (DT), have been extensively
investigated in a wide range of healthcare applications in
the recent decade due to their ability to deal with high-
dimensional and nonlinear data pattern, such as fall detec-
tion [16], Parkinson’s disease stage prediction and severity
assessment [17], [18], post-stroke patient gait pattern clas-
sification [19], human activity identification, e.g., walking
versus running [20] and others [21]–[23]. Ilias et al. [24]
proposed a combination of neural networks and SVM in

classifying the gait patterns of autistic children from nor-
mal gait. They found that the SVM model with a poly-
nomial kernel has the highest overall performance for
classifying normal gait among children with autism [24].
Trentzsch et al. [25] tested six machine learning algorithms
to differentiate gait between people with multiple sclerosis
and healthy controls. They found the SVMmodel with Radial
Basis Function (RBF) kernel could classify gait with the
highest accuracy. Chakraborty et al. [26] investigated several
regression modeling techniques to detect pathological gait.
They found multiple adaptive regression splines (MARS)
model (Accuracy=88.3%, Precision=0.89, Recall=0.87 and
F1 Score=0.88) outperformed SVM (Accuracy=84.8%,
Precision=0.85, Recall=0.83 and F1 Score=0.84) and logis-
tic regression models (Accuracy=68.5%, Precision=0.78,
Recall=0.51 and F1 Score=0.61) for gait classification.
Pendharkar et al. [27] differentiated ITW gait patterns from
normal ones. They achieved an accuracy of 87.5% using
SVM based on heel accelerometry data collected from five
children diagnosed with ITW and five normal healthy chil-
dren. Pendharkar and coworkers [28] developed an auto-
mated way to assess the gait in children diagnosed with ITW
through a threshold-value based statistical method using heel
accelerometer data. The algorithm had an accuracy of 98.5%.
However, the robustness of this algorithm is questionable
due to changing frequency and speed during toe walking.
Kim et al. [29] investigated the capabilities of ML algorithms
to detect and differentiate heel-toe gait versus toe-toe gait
using data from a single inertial sensor. They reported that
k-means clustering successfully differentiated toe-toe gait
and heel-toe gait signals with an 82% accuracy score.

This study’s primary objective is to investigate the tar-
geted ML approach to identify optimal sensor placements
on the body for accurate identification of toe walking in
children diagnosed with ITW. We hypothesize that sensors
at the trunk level with statistical and frequency features
would predict toe walking characteristics since the trunk
carries 2/3rd of body weight and represents the movement
of the body’s center of mass. A previous study has reported
that foot posture and function affect trunk kinematics and
lead to low back pain [30]. The secondary objective of this
study is to investigate if data inputs such as segmented gait
cycles could improve the classification accuracy of these
MLmodels. We plan to evaluate classifier performance using
six conventional ML classifiers, including SVM, Random
Forest (RF), DT, Multi-layer Perceptron (MLP) and Gaussian
process (GP) to classify typical toe walking versus best heel
strikes.

II. METHODS
A total of thirty-six children diagnosed with ITW (Age =
9.4 ± 2.8 years, Height=53.8 ± 6.6 cm, Weight = 75.0 ±
27.2 lbs) participated in this study. All participants signed a
written consent form before participation that Chapman Insti-
tutional Review Board (IRB) approved (Chapman Univer-
sity IRB-20-219). Four wireless sensor modules composed
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FIGURE 1. Representational picture a) participant with affixed sensors at
Trunk, Sacrum, Right and Left Shanks, b) Xsens Awinda sensor unit.

of Xsens MTw sensors packaged in a 47 mm × 30 mm
×13 mm plastic housing were used. The sensors contain
3D accelerometer and 3D rate gyroscopes to measure accel-
eration and angular velocities. The sensors weighed 16g,
including the battery. The tri-axial accelerometer had a±16g
capacity in full range, and the gyroscope had ±2000◦/s
with a bandwidth of 3200Hz, where g represents acceler-
ation due to gravity (1g = 9.8 m/s2). The accelerometer’s
sensitivity was 31.2 LSB/g and the gyroscope’s sensitivity
was 14.375 LSB/s. The sensors were affixed at the posterior
sacrum, a posterior trunk at T4, and left and right lateral
shank just proximal to the lateral malleoli. Figure 1a shows
the locations where the sensors were affixed to the body, and
Figure 1b shows the Xsens Awinda sensor unit.

Data was collected using Xsens MT Manager Software
suite. The sampling frequency was set to 75Hz. This is largely
sufficient for human movement analysis in daily activities
which occur in band-width [0.8-5 Hz] [31].

The participants were instructed to i) walk with Best Heel
Strikes (BHS), and ii) Toe Walk (TW) over a 15m long walk-
way as demonstrated in Figure 2. In a well-lit motion capture
laboratory, all walking trials were conducted at the preferred
walking speed. The walkway was embedded with two force
plates (Bertec, Columbus, Ohio 43219). Typical gait in chil-
dren with ITW may be affected due to white coat syndrome
in the new testing environment, and childrenmay consciously
present BHS during walking in clinicians’ presence. To cap-
ture the child’s typical toe walking, researchers asked parents
if typical toe walking trials were similar to the gait observed
at home. If parents reported it was not, researchers asked
child to relax. They verbally distracted the child participant
until the parent said the gait was more similar to what they

FIGURE 2. a) Typical or toe walking, b) Best Heel Strikes (BHS) among
children diagnosed with ITW

observed at home. We also instructed participants to mimic
best heel strikes (BHS), with all participants trying their best
to perform heel-to-toe gait. Each participant walked multiple
trials of each walking type barefoot. Ten trials of 10 m walk
were collected for each walk type (toe walking and Best Heel
Strike). Each 10 m walk trial consisted of 3 to 4 gait cycles.
Children with Idiopathic toe walking characteristics walk on
their toes but can make best heel strikes (BHS). Thus it is
essential to identify both toe walking and BHS among chil-
dren. The gait remediation for these children would involve
motor learning to produce BHS. In essence, this research
is innovative in identifying toe walking in children using
inertial sensors and could potentially help provide real-time
corrective feedback to children.

The trial was repeated if participants did not step at the cen-
ter of the force plate or failed to perform the instructed kind of
walk. Only complete walking trials of each category (typical
and BHS walking) were used for the analysis. Figure 3 shows
acceleration profiles during toe walking (TW) and best heel
strike (BHS) gait for a) anterior-posterior, b) medial-lateral,
c) vertical directions. The sensor was affixed at the sacrum.
The blue line represents BHS, the red line represents typical
TW for children with ITW.

To investigate the efficacy of ML algorithms in differ-
entiating TW versus BHS utilizing sensor signals, informa-
tive features were extracted from raw sensor data. Six ML
algorithms, i.e., SVM, DT, RF, KNN, MLP, and GP, were
tested for gait classification. Sensor data input was fed to ML
algorithms in two forms i) as 10-second walking data and
ii) as truncated gait cycle signals (Figure 3). The effects of
sensor node placement on gait classification accuracy were
evaluated from i) one site and ii) all sites. Both classification
scenarios used 10 s raw and truncated gait cycle signals. The
best sensor placement analysis is also presented, providing a
good reference for sensor placement prioritization.

A. FEATURE EXTRACTION
Feature extraction aims to extract informative features
from raw signals, which can improve ML algorithms’
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FIGURE 3. Acceleration profiles during best heel Strikes (BHS) and Toe walking (TW) presented by children with Idiopathic Toe Walking
characteristics in a) anterior-posterior direction, b) medial-lateral direction, c) vertical direction, d) directions sensed by sensor. The shaded area
represents standard deviation of acceleration curves for three trials of all subjects. The solid lines represent mean values of the acceleration
during gait cycle. The blue solid line represents Best Heel Strike and red solid line represents toe walking trials.

accuracy. Commonly used methods for feature extraction
from time-series signals are divided into two categories, sta-
tistical methods and transforming methods. The statistical
methods, such as mean, standard deviation (SD), kurtosis,
skewness, etc., measure the fluctuation of signals and do not
reflect the temporal characteristic of the signal, are the most
common feature extraction approaches in signal processing-
based applications.

Transforming methods aim at changing the signal into
a different domain (frequency domain) and visualize the
behaviors of data in that domain, i.e., discrete Fourier
transform (DFT) to convert the signal to the frequency
domain to characterize a signal with period/frequency, ampli-
tude, phase. Assume the data collected at time t from
each individual is denoted as Xt = [xt,1, xt,2, . . . , xt,J ],
where j = 1, 2, . . . , J , J is the total number of signals
(3D accelerometers and 3D gyroscopes). In this experi-
ment, four sensors are affixed to each participant. Each
3D-accelerometer and 3D-gyroscope of each sensor were
measured along three orthogonal axes, X, Y, and Z. Thus
J = 24 for four sensors and 6 channels of data. For each
channel signal, both statistical and transformed features were
extracted. The ten extracted statistical features in the time
domain are listed in Table 1, where T is the length of channel
data of each trial. Q1 and Q3 represent the first and third
quantiles of the signal, respectively. The area under the curve
was computed by integration using the trapezoidal rule [32].

Discrete Fourier transform (DFT) is applied to compute
frequency domain features from the raw channel signals.
DFT is a signal processing technique that transforms a signal
into a vector of complex Fourier coefficients, which is defined

by equation (1) below

Xk =
∑T−1

n=0
xne−

2π i
T kn (1)

where 0 ≤ k ≤ T − 1. The Xk represents the signal level
at various frequencies. To facilitate the efficient computation
of DFT, Fast Fourier Transform (FFT) is employed, which
is an optimized algorithm for the implementation of DFT.
The frequency components of a channel signal and its coeffi-
cients are determined using FFT. Figure 4 shows frequencies
observed at the sacrum level during TW and BHS from
accelerometers and gyroscope signals. It is clear that the TW
and BHS demonstrate obvious discriminative patterns. The
frequency-domain features extracted from all accelerometers
and gyroscope signals in this study include weighted mean
frequency (1 feature), the first 5 DFT coefficients (5 features),
and the first 5 maxima of DFT coefficients (5 features) and
their corresponding frequencies (5 features). In addition, the
statistical properties listed in Table 1 are also extracted from
the frequency domain, which yields 26 features for each
signal in total extracted from the frequency domain.

B. SEGMENTED GAIT CYCLES
Gait is a cyclic process, and the gait cycle is defined as the
movement between two same gait events. For example, heel
contact of one foot to next touch of the same foot. To gen-
erate a large number of data samples for better classification
performance, the raw signals can be segmented into strides,
that is, into gait cycles. The simplest way to identify the gait
cycle from IMU signals is to detect the peak (a gait event) of
a sensor signal, then, the signal data between two consecutive
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TABLE 1. List of time domain features extracted from the acceleration
signals.

similar peaks (similar gait events) can be considered as a
gait cycle [33]. We have previously reported that gyroscope
measurements in the sagittal plane are the best choice for gait
segmentation because themeasurements contain typical time-
series patterns such as ‘‘valleys’’, and ‘‘peaks’’ [34], [35].
Thus, we identified the local maximum as the segmentation
points (Figure 5). Some local maxima may not correspond
to gait cycles’ actual starting or ending points. We enhanced
the gait cycle detection method by constraining the minimum
horizontal distance between neighboring peaks as 50 data
points (usual gait cycle times are around 1s). A ‘2 degrees/s’
threshold could be set for gait cycle identification. In this way,
some incorrect peaks can be disregarded. Figure 5 demon-
strates the peak detection using the z-axis of the gyroscope
from the shank sensor. Red stars indicate the detected peaks
corresponding to a gait cycle’s starting and ending points.
The first and last peaks are the start and endpoints of a gait
cycle. In other words, the signals are discarded before the
first peak and after the last peak. Hence, gait initiation and
gait termination data are carefully removed, leaving us with
eight gait cycles (Figure 5). After the segmentation of the
z-axis of gyroscope signals, the other signals (Acceleration-
x, y, z, and gyroscope x, y) are segmented into gait
cycles.

C. MACHINE LEARNING ALGORITHMS
Support Vector Machine (SVM): SVM transforms input data
into a higher-dimensional space by a kernel function and
then learns a boundary called hyperplane in that transformed
space, which optimally separates data into two classes. SVM
has gainedwide popularity as a tool in pattern recognition and
data classification due to its low computational cost, small
memory occupation, and excellent performance in solving
small samples and local extreme value problems [22], [36].
Given a set of N samples (xi, yi), i=1,2, . . . , N, where xi is
a vectors including multiple features, yi is the true label for
each sample i, the goal of SVM is to learn a classification
function f (x) = wT x + b, The solution of the problem is a
vector ofw and b that defines a separating hyperplanewith the
largest separation, or margin, between the two classes. The
decision boundary can be found by minimizing the following
constrained optimization problem [37].

loss =
1
2
‖w‖2 + C

∑N

i=1
ξi

subject to yi
(
wT x− b

)
≥ 1− ξi, and ξi ≥ 0 for all i

(2)

where C is a tradeoff parameter between error and the mar-
gin. To generalize the linear decision classifier to nonlinear
situations, the features need to map to a higher-dimensional
space via some transformation ∅: x → ∅(x), then a kernel
K
(
xi, xj

)
= ∅

T (x)∅(x) offers a more efficient and less expen-
sive way to transform data into higher dimensions. Kernel
functions commonly include linear, nonlinear, polynomial,
radial basis function (RBF), and sigmoid.

1) DECISION TREE (DT)
DT is a non-parametric supervised technique that formulates
the classification model in a tree structure for regression
and classification [38]. The key idea of DT is to divide
the dataset into smaller subsets into nodes and branches.
A DT generally consists of one root, several branches, and
many interval nodes. Every path is from the root node to
a leaf node through the internal nodes. This path denotes a
classificationwith the different conditions of the components.
Every leaf node represents a response for regression or a class
label for classification. A decision tree is constructed from the
pre-classified data. The division of data into different classes
is based on the values of the features of the given data. The
commonly used method to determine which features to split
is to measure the impurity, which measures the homogeneity
of the labels on a node. This process is applied to all subsets
of data items recursively. The process terminates as all the
data items in the current subgroup belong to the same class.

2) RANDOM FOREST (RF) [39]
RF is a variant of DT. Unlike DT, which builds a single
tree on a whole dataset, RF creates a set of DTs using ran-
dom resampling on the training set. For classification tasks,
each DT then votes for a particular target class, and a class
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FIGURE 4. Representations of the signals of sacrum in the frequency domain

FIGURE 5. Peak detection and truncation of raw sensor walking signals to
segmented gait cycles (SGC).

selected by most DTs is the output of the RF. RF benefits
from two powerful techniques: bagging and random sub-
space selection. RF builds many DTs and allows each tree
to randomly sample from the original dataset with replace-
ment, resulting in different trees. Secondly, each tree picks
a subset of features randomly. This forces more variation
amongst the trees in the model, resulting in lower correlation
and more diversification across trees. The hyperparameters,
including the number of trees (n_estimators) and the number
of variables (max_features), must be optimized to improve
the classification accuracy.

3) K-NEAREST NEIGHBORS (KNN) [40]
KNN tries to predict outputs by calculating the distance
between the test data and training points, then selecting the
K number of points closest to the test data. A class label
is assigned based on a majority vote for classification prob-
lems. A good distance function will identify essential features
and discriminate between relevant and irrelevant ones. Com-
monly used distance functions include Euclidean,Manhattan,
and Hamming.

Euclidean distance is calculated as the square root of the
sum of the squared differences between a new point and an
existing point. It is theminimum distance between two points.
If points (x1, y1) and (x2, y2) are in 2-dimensional space, then
the Euclidean distance ‘d’ is represented as

d =
√
(x2 − x1)2 + (y2 − y1)2 (3)

Manhattan distance between two points a and bwith k dimen-
sions is defined as ‘D’ below

D =
k∑
j=1

∣∣aj − bj∣∣ (4)

Hamming distance is mainly used for categorical variables,
also called binary strings. For example, for the two points,
(0,1,1) and (0,1,0), the hamming distance is 1, since only one
value (last value) is different between the two variables.

4) MULTI-LAYER PERCEPTRON (MLP)
Multilayer perceptron (MLP) is one of the most commonly
used types of artificial neural networks. The standard archi-
tecture of an MLP artificial neural network consists of an
input layer, multiple hidden layers, and an output layer. Hid-
den layers learn representations of input data by using non-
linearity functions. The number of neurons in the input layer
equals the number of features, and the number of neurons
in the output layer equals the number of classes. In contrast,
the number of neurons in each hidden layer must be tuned to
find a suitable network with sufficient parameters and good
generalization for classification or regression tasks.

5) GAUSSIAN PROCESS (GP)
A GP is a stochastic process with a Gaussian distribution
kernel [41]. The GP assumes that the mapping from inputs
and outputs via a latent function f , which can be defined
mathematically as

f ∼ GP(m (x) , k(x, x ′)) (5)

where m(x) and k(x, x ′) are the mean and covariance func-
tions, respectively, denoted by

m (x) = E (f (x))

k
(
x, x ′

)
= E[(f (x)− m (x))

(
f
(
x ′
)
− m

(
x ′
))T ] (6)
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The output values are assumed to be independent when
conditioned on the latent function, i.e., p (y | x, f ) =∏N

i=1 p(yi|f (xi)).Kernel function k
(
x, x ′

)
is the critical ingre-

dient in using Gaussian processes, which determine the shape
of prior and posterior of the GP. The main advantage of GP
is probabilistic, so one can compute empirical confidence
intervals to quantify the uncertainty of the prediction. When
applying it to classification tasks, the posterior of the latent
function f no longer has a closed-form solution since a
Gaussian likelihood is inappropriate for discrete class labels.
Several approximation schemes have been suggested, includ-
ing Laplace’s method, variational approximations, mean-
field methods, Markov chain Monte Carlo and Expectation
Propagation.

a: Deployment of ML algorithms
All machine learning codes were deployed using Python,
and computations were performed on a 2.3 GHz Quad-Core
Intel Core i7 processor. The classification accuracywas deter-
mined for i) unsegmented 10 m walk dataset and ii) seg-
mented gait cycles (SGC). Four hundred ninety-two walking
samples are obtained from the experiment. The whole data
is randomly shuffled and split into training and test with a
ratio of 80%: 20%, corresponding to 393 and 99 samples,
respectively. For each sample, 36 features are extracted for
each signal, i.e., corresponding to 36∗24=864 features per
sample. Once we have extracted features, min-max scaling is
used to normalize the data to range between 0 and 1 to reduce
variation. Five-fold cross-validation is used on the training
data set for each classifier to select the best model for the test.
We used a grid search algorithm to optimize hyperparameters
when performing five-fold cross-validation for each classi-
fier; this tuning technique exhaustively generates candidates
from a grid of parameter values, then builds a model for every
combination of hyperparameters specified and evaluates the
accuracy of each model.

b: Hyperparameter Tuning
We conducted a grid search for each ML classifier, four
kernels of SVM, including linear, polynomial, radial basis
function (RBF), and sigmoid with a set of regularization
parameter C ∈ [0.01, 0.05, 0.1, 1, 10] are tuned. For the
DT, two attribute selection methods, entropy to calculate
information gain and ‘Gini index’ for the Gini impurity, are
tuned. For the RF, we adjust a wide range of values from 10 to
700 for the forest’s number of trees (n_estimators). For the
KNN, a grid search is performed over various values of K.
For the MLP, different numbers and sizes of hidden layers,
activation functions including Rectified Linear unit (ReLU),
tanh, logistic, and diverse learning rates are employed. For
the GP the best kernel is chosen from RBF, DotProduct,
Matern, RationalQuadratic,WhiteKernal. Themodel with the
highest validation accuracy is eventually selected for the test.
The best hyperparameters configuration for each classifier is
listed in.

TABLE 2. Best hyperparameters configurations for different ml algorithms
used for classification of Toe Walking (TW) versus Best Heel Strike (BHS).

Table 2. Classification performance was evaluated using
several performance metrics such as accuracy, precision, sen-
sitivity, specificity, and the Matthews correlation coefficient
(MCC). Accuracy is the ratio of correctly identified samples
out of all predictions. Sensitivity, or recall, also known as true
positive rate (TPR), refers to the proportion of true positives
to actual total positive predictions. It is a measure of howwell
a model can identify true positives. Specificity, or true nega-
tive rate (TNR), on the other hand, refers to the ratio of true
negatives to total negatives in the data. Precision is the ratio
of true positives to the combined number of true positives
and false positives, which measures the model’s accuracy in
classifying a sample as positive. F1-score is the harmonic
mean of the precision and recall. The Matthews correlation
coefficient (MCC) measures the overall association between
actual and predicted classes by calculating the correlation
coefficient. It is, in essence, a correlation coefficient value
between−1 and+1. A coefficient of+1 represents a perfect
prediction. Conversely, −1 represents the worst prediction
where a classifier labels all the positives as negatives and
all the negatives as positives. 0 indicates an average random
prediction. More concretely, the metrics are calculated using
the following formulas:

Accuracy =
TN + TP

TN + TP+ FN + FP
(7)

Sensitivity =
TP

TP+ FN
(8)

Specificity =
TN

TN + FP
(9)

Precision =
TP

TP+ FP
(10)

F1− score =
2TP

2TP+ FN + FP
(11)

TP, FN, FP, and TN represent true positive, false negative,
false positive, and true negative. TP and TN imply the num-
ber of the positive/negative classes that have been correctly
categorized; FN (false negative) are the reverses, indicating
the number of positive/negative samples categorized wrong.

III. RESULTS
Classification capabilities of six different classifiers to distin-
guish the toe walking (TW) and best heel strike (BHS) was
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TABLE 3. Performance metrics of the classification models with all four
body attached sensors. The highest performing classifier is highlighted
in bold.

evaluated. We found all of these six algorithms can classify
BHS and TW gait patterns from the data correctly with
an average prediction accuracy of 84.84%. We found KNN
showed the best classification accuracy of 92.92%, specificity
of 93.61% and sensitivity of 92.30%, F1-score of 93.20%,
MCC of 0.8585 to distinguish between TW and BHS, which
is significantly higher (6.9%) than GP (Table 3 and Figure 6).
Among 99 test samples, only 3 BHS and 4 TW samples are
misclassified. We found GP achieves satisfiable performance
with an accuracy of 86.86% when using Matern kernel with
smooth parameter ν = 1.5.

The Matern kernel is a generalization of the RBF. Com-
pared to RBF,Matern has an additional parameter ν to control
the smoothness of the estimated function. The smaller ν, the
less smooth the function gets. When ν →∞, the kernel gets
equivalent to RBF. MLP with 2-hidden-layers and SVMwith
a polynomial kernel achieve the same accuracy of 85.85%
with 14 samples misclassified.

Nevertheless, the specificity of MLP is slightly higher than
that of SVM. MLP and SVM perform better than RF and
far better than DT in toe walking classification accuracy.
We found that for all the classifiers except DT, the specificity
values are higher than those of sensitivity, indicating that
the BHS samples are more rarely misclassified than the Toe
walking samples.

Table 4 shows the performance results with four differ-
ent sensor locations, and the best performing metrics are
highlighted in bold. The comparison of receiver operating
characteristic (ROC) curves with varying sensor locations
using six classifiers in Figure 7. The ROC curve is created
by plotting the TPR against the FPR at various threshold
settings, which is a typical plot to characterize the diagnostic
ability [42]. The area under the ROC curve (AUC) is also
demonstrated in Figure 7.

The AUC summarizes the classification quality and is a
measure of accuracy, where anAUCof 0.5 indicates a random
classifier with no value. The best accuracy for all six clas-
sifiers is obtained using all four sensors for each algorithm.
The maximum AUC value (0.94) is achieved from KNN,
MLP, and RF when applied the algorithms to the data that

TABLE 4. Performance metrics of the classification models with different
sensor locations.

combines all sensors. Another phenomenon is that none of the
algorithms consistently outperformed the others in terms of
accuracy. For example, SVM performs best at trunk location
but does not perform well than GP when using the suitable
shank sensor. We found performance at left and right shank
locations is better than at sacrum and trunk. Sensor signal
segmentation into gait cycles resulted in a large number of
samples.

After the segmentation into gait cycles, the data size
increases to 4044 (3233 for training and 811 for the test),
close to 10 times the original size. The classification results
using the same feature extraction strategy were evaluated.
Figure 8 shows the confusion matrix for the six classifiers
using the gait cycle segmented data. The quantitative results
are provided in Table 5. We found SVM had an accuracy
of 85.69%. However, KNN yielded the best precision and
specificity but relatively low sensitivity. GP demonstrated
the best sensitivity, indicating the best diagnostic ability to
identify the TW patterns. Similarly, the DT showed poor
ability to distinguish the TW and BHS and had the lowest
accuracy of 68.06% and smallest MCC value of 0.3607. The
performance is still promising despite the lower average accu-
racy of 81.60% and F1-score of 82.23% than that of raw data.
The effects of the number of sensors and sensor placement are
explored, and the ROC curves and classification performance
are provided in Figure 9 and Table 5. The results show that
using all sensors gains the best classification results, implying
that richer information leads to better discriminative power.
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FIGURE 6. Confusion Matrix using all four body affixed sensors.

FIGURE 7. ROC curves and AUC values are presented for a) all four sensors, b) sacrum sensor, c) Trunk sensor, d) left shank
sensor, and e) right shank sensor for different ML algorithms.

This is consistent with classification results obtained using
raw signals. Figure 9 shows that except DT, all other
5 classifiers are comparable and could be good candidates
for the ITW monitoring system. In terms of the location of
sensors, configuring all four sensors together always per-
formed the best. Power spectral density evaluations were
conducted for anterior-posterior, medial-lateral and verti-
cal accelerations. Power in four frequency bands was com-
puted i) 0 Hz < f ≤ 2 Hz, ii) i) 2 Hz < f ≤ 4 Hz,

iii) 4 Hz < f ≤ 6 Hz, and iv) 6 Hz < f ≤ 8Hz (Figure 10).
The dominant frequencies for BHS and TW are presented
in Figure 11.

IV. DISCUSSION
This study aimed to determine optimal sensor location and
ML algorithms that can classify toe walking among children
diagnosed with ITW with high accuracy. Previous studies
have used the accelerometer to differentiate the toe-walking
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FIGURE 8. Confusion matrix for the six ML classifiers using all sensors’ gait cycle segmented data.

FIGURE 9. ROC curves and AUC values are presented for a) all four sensors, b) sacrum sensor, c) Trunk sensor, d) left shank sensor, and e) right shank
sensor for different ML algorithms.

stance from the normal stance [13], [28], [43], [44] among
children with ITW. In this study, we demonstrated the

influence of i) 15 m walk continuous timeseries versus
SGC, ii) body sensor locations (right and left shank, trunk,
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TABLE 5. Performance metrics of the classification models using segmented data.

and sacrum), and iii) various ML algorithms (SVM, DT, RF,
KNN, MLP, and GP) in accurately classifying toe walking
gait. This research provides a platform for ML-based auto-
mated classification of toe walking needed for intervention
among ITWchildren. The highest classification of 92.9%was
observed using all four sensors using KNN. This was fol-
lowed by GP (86.8%), SVM and MLP (85.8%), RF (82.8%)
and DT (74.7%).

ITW participants demonstrated reduced variability when
mimicking BHS, as shown in Fig. 3(a-c). Gait variability is
associated with the energy cost of walking in people with
multiple sclerosis [45]. Thus, more variability found during
toe walking could increase walking energetics [46]–[49].
Lower limb muscle fatigue is more commonly found
in children who walk than in typically developing
peers [50], [51].

We evaluated the effects of input time-series lengths for
ML classification. We utilized a simple yet effective peak
detectionmethod similar to our previous study to truncate raw
signals to gait cycles [35]. We tested the influence of input
timeseries by employing i) 15 m long walking timeseries sig-
nals versus SGC. Although the number of samples increased,
classification accuracy was not affected due to the truncation

of time series into gait cycles. We found increased number
of samples reduced overfitting of the classifier and boosted
classification performance.

We used both temporal and frequency domain features
(Table 1). The frequency components of accelerations at the
sacrum were analyzed at different frequency bins (0-2 Hz,
2-4Hz, 4-6Hz, and 6-8Hz). Paired t-test was carried out
to compare the median frequencies between BHS and TW.
We found BHS resulted in significantly higher frequencies
in medial-lateral (ML) and anterior-posterior (AP) directions,
whereas TW resulted in considerably higher accelerations
in the vertical direction (Figure 10). Specifically, vertical
accelerations produced during TW in the sacrum consist
mainly of high frequencies. TW could potentially lead to
low back pain among children diagnosed with ITW [52].
The dominant frequency during TW was higher than BHS
(28Hz versus 26.6) (Figure 11).

SixML algorithms are tested, and hyperparameter configu-
rations are tabulated in Table 2. To avoid the overfitting ofML
models, we used five-fold cross-validation techniques. The
confusion matrix using all four sensors among six ML algo-
rithms is provided in Figure 6. The accuracy of all six classi-
fiers was compared using Receiver Operating Characteristics
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FIGURE 10. Area under the power spectral density (PSD) curves were
computed for 4 frequency bands i) 0Hz < f ≤ 2Hz, ii) 2Hz < f ≤ 4 Hz,
iii) 4Hz < f ≤ 6 Hz, iv) 6 Hz < f ≤ 8Hz for all three directions of
accelerations.

FIGURE 11. Mean dominant acceleration frequencies during TW and BHS.

(ROC) curves (Figure 7), confusion matrices, and other
performance metrics like Mathews Correlation Coefficient
(MCC) (Table 5). We found KNN classified the TW
patterns with highest accuracy (92.9%), highest precision

(94.1%), sensitivity (92.3%), specificity (93.6%) with F1
score (93.2%) and MCC (85.8%).

We evaluated the effects of body sensor locations on the
accuracy of toe gait classification. Four sensors are affixed
at both shanks, trunk, and sacrum. To perform comparisons,
the same hyperparameter tuning methods were conducted.
We found a single sensor located at the shank could classify
TW versus BHS with an accuracy of 86.8%, followed by
sacrum (79.7%) and trunk (78.7%). Our results demonstrate
that sensors located at the shank have added advantages for
accurate gait classification. It may be attributed to knee and
hip joints that absorb or produce counteractive movements
peculiar to gait type, thus reducing classification accuracy.
We thus observed lower accuracies at sacrum and trunk posi-
tions. The ROC curves andAUCvalues are shown in Figure 9.

There is insufficient research on whether existing clinical
interventions are adequate ITW treatment options. We pro-
pose that if TW is accurately identified using sensors affixed
at the shank level, appropriate real-time feedback interven-
tions can be implemented. Gait classification accuracy may
be affected by intra-subject variability and severity of toe
walking. Thus, the heterogeneity in toe walking severity
among children diagnosedwith ITWmay challengeML algo-
rithms to classify gait accurately. In addition, the effects of
an environment may influence walking behavior in children.
For example, in the presence of an experimenter/clinician, the
children may present the best performance to maintain good
foot contact. Participants were asked to look forward at the
target (20 m far) while walking in laboratory settings. The
consistency was held in every trial during data collection.

Since the classification accuracy is also affected by the
sample size of the data. If the data size is small, even a few
misclassified samples will reduce the performance obviously
from a statistical perspective. However, a higher classification
performance can be achieved if more datasets are available.
Nevertheless, theML algorithms, especially SVM, KNN, and
GP, have good discriminative power for the gait classification
of ITW children and can potentially be integrated into an
expert gait system for monitoring and diagnosis. We found
that all ML algorithms showed reasonable specificity, indi-
cating that the ML algorithms can accurately identify BHS
patterns, so the number of false positives is low, which is
helpful from the treatment perspective. The children will be
less interrupted by the false alarm. Finally, this study provides
evidence that anML-enabled low-cost gait monitoring device
can give a good capability for monitoring without hindrance.

V. CONCLUSION
There is limited research on using automated algorithms to
identify TW in children diagnosed with ITW using wearable
sensors and providing real-time feedback for correcting gait.
In this study, we evaluated the performance of wearable
sensors located at four different body locations using six
ML algorithms to classify TW. ML algorithms successfully
classified the TW strides from BHS in the children with ITW.
This study demonstrates the significant potential of using
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low-cost wearable devices and ML algorithms to diagnose
and monitor the gait of ITW children and further inter-
vene using feedback. Accurate quantification of toe walking
steps is critical for designing new real-time interventions for
children diagnosed with ITW. Using wearable sensors and
ML, real-time TW stride detection can be integrated with
closed-loop control in assistive devices for intervention and
motor rehabilitation. This will reduce costs and the burden on
both clinicians and parents of the children. Future work will
include additional participants and model personalization to
improve performance. For parents and caretakers, keeping
track of their children during toe walking is more feasible
with wearable technology. Unlike smartphones, these sensors
can be created in small form factors and can be worn directly
on the body, making it difficult to lose them. These wearable
systems can synchronize with companion mobile apps and
display real-time gait parameters or logs of toe walking steps.
These sensors in small form factors will not cause annoyance,
damage, or any movement restrictions to the child. Our future
efforts in designing and developing innovative technological
solutions for children who toe walk will include user-centered
designs considering user perspectives from children and their
parents.

Moreover, the sensors will allow parents to monitor their
children’s toe walking behavior. Intelligent devices can use
machine learning to alert parents about the child’s abnormal
gait patterns (such as toe walking). In this regard, the wear-
able technologywill prove particularly useful to the child, and
parents in keeping track of toe walking steps and clinicians
for adequate dosage.
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