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ABSTRACT 

Development of Machine Learning Models for Generation and Activity Prediction of the Protein 

Tyrosine Kinase Inhibitors  

by Ryan H. Kassab 

The field of computational drug discovery and development continues to grow at a rapid pace, 

using generative machine learning approaches to present us with solutions to high dimensional 

and complex problems in drug discovery and design. In this work, we present a platform of 

Machine Learning based approaches for generation and scoring of novel kinase inhibitor 

molecules. We utilized a binary Random Forest classification model to develop a Machine 

Learning based scoring function to evaluate the generated molecules on Kinase Inhibition 

Likelihood. By training the model on several chemical features of each known kinase inhibitor, 

we were able to create a metric that captures the differences between a SRC Kinase Inhibitor and 

a non-SRC Kinase Inhibitor. We implemented the scoring function into a Biased and Unbiased 

Bayesian Optimization framework to generate molecules based on features of SRC Kinase 

Inhibitors. We then used similarity metrics such as Tanimoto Similarity to assess their closeness 

to that of known SRC Kinase Inhibitors. The molecules generated from this experiment 

demonstrated potential for belonging to the SRC Kinase Inhibitor family though chemical 

synthesis would be needed to confirm the results. The top molecules generated from the 

Unbiased and Biased Bayesian Optimization experiments were calculated to respectively have 

Tanimoto Similarity scores of 0.711 and 0.709 to known SRC Kinase Inhibitors. With calculated 

Kinase Inhibition Likelihood scores of 0.586 and 0.575, the top molecules generated from the 

Bayesian Optimization demonstrate a disconnect between the similarity scores to known SRC 

Kinase Inhibitors and the calculated Kinase Inhibition Likelihood score. It was found that 
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implementing a bias into the Bayesian Optimization process had little effect on the quality of 

generated molecules. In addition, several molecules generated from the Bayesian Optimization 

process were sent to the School of Pharmacy for chemical synthesis which gives the experiment 

more concrete results. The results of this study demonstrated that generating molecules through 

Bayesian Optimization techniques could aid in the generation of molecules for a specific kinase 

family, but further expansions of the techniques would be needed for substantial results. 
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 1 Introduction 

Drug discovery applications seek to design small molecules that have specific targets. This 

typically requires extensive trial and error when creating and assessing molecules. Given the levels 

of success achieved in previous machine learning aided molecular design applications ( (Maziarka, 

et al., 2020) (De Cao & Kipf, 2018); (Kadurin, et al., 2017); (Yu, Zhang, Wang, & Yu, 2017)), we 

decided to see if the same idea could be applied to generate and alter molecules to display targeted 

properties and outcomes. Our goal was to create a framework in which we can generate molecules 

with the potential of being protein tyrosine kinase inhibitors specifically belonging to the SRC 

kinase inhibitor family.  

1.1 Protein Kinases for Oncological Applications 

Protein kinase inhibitors are small molecules that block the actions of enzymes called protein 

tyrosine kinases. Protein tyrosine kinases (PTK) are a class of proteins that contain tyrosine 

kinase activity and catalyze the transfer of phosphate groups on ATP to tyrosine residues on 

proteins, invoking phosphorylation and signal transferring in many cellular functions including 

metabolism, cell cycle regulation, survival, and differentiation (Kannaiyan & Mahadevan, 2018). 

Dysregulation of these protein kinases has been implicated in various carcinogenic processes 

(Kannaiyan & Mahadevan, 2018). The most common protein domains that are implicated in 

cancer are protein kinases and there are more than 500 kinase enzymes encoded in the human 

genome. Deregulation of these proteins leads to the development of cancer and other disorders. 

Many protein kinases have emerged as important therapeutic targets for combating diseases 

caused by abnormalities in signal transduction pathways. 
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Structurally, PTK's can be divided into two categories: Receptor PTK (RTK) and Non-receptor 

PTK (NRTK). The two categories further divide into multiple enzymes based on their structural 

homology. Analysis of human genome data shows that there are 518 kinase genes in the human 

body, of which 90 have been identified PTK, including RTK which contains 58 species and 

NRTK which contains 32 species. For example, RTKs include Epithelial Growth Factor 

Receptors (EGFR), a cell surface receptor that is pivotal in the regulation of survival and 

apoptosis of epithelial cells. Overexpression of EGFR can result in multiple epithelial cell-based 

tumors, such as lung cancer, breast cancer, and bladder cancer to name a few (Jiao, et al., 2018). 

The SRC Family is an important member of NRTK. The SRC Kinases play a huge role in the 

regulation of many cells through the extracellular binding of the ligand to the cellular receptor, 

inducing multiple signaling pathways that affect cell adhesion, mobility, proliferation, and 

angiogenesis. These include the RAS/RAF/MEK/ERK pathways, the PI3K/AKT/mTOR 

pathway, and the STAT3 pathway that regulates the expression of c-Myc and Cyclin D1 (Jiao, et 

al., 2018). In normal circumstances, the activity site of the SRC Kinase is closed, inhibiting its 

expression (Jiao, et al., 2018). However, under the activity of exogenous and endogenous 

carcinogen factors, the kinase becomes hyperactivated, leading to uncontrolled cell proliferation 

and differentiation and in turn, tumorigenesis (Jiao, et al., 2018). The specific family of SRC 

Tyrosine Kinase Inhibitors are important due to the association of SRC Tyrosine Kinases activity 

with cancer. Tyrosine Kinase Inhibitors (TKI) can compete with the ATP binding site of the 

tyrosine kinase with ATP and reduce tyrosine kinase inhibition, therefore inhibiting cancer cell 

proliferation.  
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1.2 Machine Learning in Computational Biology 

Advances in the machine learning field have driven the design of new computational systems 

that improve with experience and are able to model increasingly complex chemical and 

biological phenomena ( (Chen, Engkvist, Wang, Olivecrona, & Blaschke, 2018); (Dimitrov, 

Kreisbeck, Becker, Aspuru-Guzik, & Saikin, 2019); (Goh, Hodas, & Vishnu, 2017); (Korotcov, 

Tkachenko, Russo, & Ekins, 2017); (Mater & Coote, 2017); (Popova, Isayev, & Tropsha, 2018)). 

Machine learning techniques have been successfully applied to various computational chemistry 

challenges ( (Husic & Pande, 2018)), pharmaceutical data analysis, protein–ligand binding 

affinity prediction problems ( (Ballester & Mitchell, 2010), (Decherchi, Berteotti, Bottegoni, 

Rocchia, & Cavalli, 2015)), dissecting molecular determinants of protein mechanisms and 

biochemical reactions (Li, Kermode, & De Vita, 2015). Data-intensive machine learning 

modeling can be also applied for detection and classification of allosteric protein states. The 

integration of Markov modeling, simulations, and machine learning approaches into robust and 

reproducible computational pipelines with the experimental feedback can be explored for 

atomistic modeling and classification of allosteric states. Two key factors were necessary for 

them to see so much use. First, large amounts of rich data. We are generating more data today 

than ever before and the biochemistry field is no exception. Computational tools for molecular 

modeling (De Cao & Kipf, 2018), protein folding simulation, or mutation analysis have started to 

generate more data than can even be stored. Second, powerful computational tools like GPUs 

that augment our abilities to perform parallel processing allowing machine learning models to 

ingest these large datasets. This has allowed medicine to become more personalized, with current 

research catering solutions to specific genetic profiles rather than taking a one size fits all 

approach. Much of the benefit of these methods comes from their versatility: not only do they 
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both generate and analyze data, but often enhancements to machine learning techniques in one 

domain can be readily applied to techniques in any domain. For example, techniques designed 

for the image processing domain have been applied to molecular design (Maziarka, et al., 2020). 

In addition, deep neural network methods were successfully applied to predict intrinsic 

molecular properties such as atomization energy based on simple molecular geometry and 

element types. Deep learning models were recently used for structure-functional prediction of 

cancer mutations and functional hotspots of ligand binding in cancer-associated genes 

(Agajanian, Odeyemi, Bischoff, Ratra, & Verkhivker, 2018). The developed models can capture 

about 90% of experimentally validated mutational hotspots and yield novel information about 

molecular signatures of driver mutations. Other studies have shown that deep learning models 

can learn high importance features from raw genomic information and produce reliable 

recognition and classification of functionally significant cancer mutation hotspots. Moreover, 

these deep learning models can often outperform computational predictors of cancer mutations 

that are based on protein sequence and structure features (Agajanian, Oluyemi, & Verkhivker, 

Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for 

Classification and Biomolecular Modeling of Cancer Driver Mutations, 2019). The success of 

deep learning tools in deciphering important functional phenotypes directly from primary 

sequence information is encouraging as these models can bypass the need for many empirically 

derived functional and structural features. However, machine learning methods often result in 

"black box" models with limited interpretability. There has been an explosion of interest in 

transparent and interpretable machine learning models to enable more efficient data mining and 

scientific knowledge discovery (Holzinger, Dehmer, & Jurisica, 2014). Our investigations have 

also provided a roadmap how to combine deep learning predictions of functional sites with 
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subsequent biophysical analysis to aid in the interpretability of machine learning models and 

facilitate their applications in biological problems (Agajanian, Odeyemi, Bischoff, Ratra, & 

Verkhivker, 2018). 

1.3 Machine Learning and Drug Discovery 

By exploring the role of kinases and kinase inhibitors, it has not only helped advance the field of 

cancer biology but also led to the advent of ‘targeted therapy’ or ‘personalized medicine’ in cancer 

leading to a paradigm shift in cancer therapy (Kannaiyan & Mahadevan, 2018). This has led to 

excitement from the biochemical research community towards the creation of protein kinase 

inhibitors that can be used as anticancer therapeutic agents, and in recent times, utilizing 

computational tools such as Generative Machine Learning or Deep Learning models to achieve 

this goal.  

Generative deep learning models have excelled as tools to aid in navigating the large space of 

known molecules and in the creation of new molecules. These models are fed various 

representations of molecules as inputs and learn to perform a variety of things, such as the 

optimization of these molecules towards a targeted property. This task requires a large amount of 

data to perform successfully, which in turn requires non-trivial computational resources. An 

additional functionality that generative models provide is making alterations to inputs to yield 

transformed outputs.  An additional functionality that generative models provide is making 

alterations to inputs to yield transformed outputs.  
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1.3.1 Machine Learning Models Created for Drug Discovery 

This idea has been applied in the chemistry domain with the Mol-CycleGAN (Maziarka, et al., 

2020) and MolGAN (De Cao & Kipf, 2018). SeqGAN (Yu, Zhang, Wang, & Yu, 2017), created 

molecules one token at a time, which machine learning models had trouble doing before (Yu, 

Zhang, Wang, & Yu, 2017).  

JT-VAE (Jin, Barzilay, & Jaakkola) and Chemical VAE (Gómez-Bombarelli, et al., 2018) are two 

successful VAE approaches that have high potential for assisting a molecular generation task. 

These variational autoencoders are trained using the Simplified Molecular Input Line Entry 

System (SMILES) format and outperform traditional string encoding techniques while providing 

a continuous representation. Notably, druGAN combined GAN and VAE by training an 

adversarial autoencoder to efficiently sample molecules from the latent space (Kadurin, et al., 

2017).  

MolGAN was designed to create new molecules that optimize a portfolio of different properties 

that include drug likelihood (QED), synthesizability (SAS) and water-octanol partition coefficient 

(logP). This requires the model to learn a probabilistic pattern about molecular structure. The 

authors of this paper achieved state of the art performance in the optimization of all these selected 

properties, while maintaining almost 100 percent validity of generated molecules (De Cao & Kipf, 

2018). However, the MolGAN framework struggled with creating unique molecules, suffering 

from mode collapse since it could only sample nine atoms to create molecules (De Cao & Kipf, 

2018). Regardless of the mode collapse issues, MolGAN exhibited impressive performance 

learning a complicated task and proving that machine learning models can execute molecular 

design. Maziarka et al., proved that machine learning models trained in a reinforcement learning 
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paradigm could successfully make structural alterations to small molecules and maintain the 

validity of these altered molecules with Mol-CycleGAN (Maziarka, et al., 2020). 

These generative deep learning models allow us to build a bridge between the chemical and 

continuous space and understand the compromise between invoking small incremental changes to 

radical modifications to generate optimal molecules for therapeutic benefits. In our work, we create 

a platform of Machine Learning approaches to generate novel molecules with the goal of being 

Kinase Inhibitors. We will start by discussing the accumulation of data to use as a training set for 

our downstream Machine Learning processes and its representation in the continuous Latent Space 

created by ChemVAE. Once discussing our platform, we discuss our scoring metric of Kinase 

Inhibition Likelihood which will evaluate our generated molecules based on various structural and 

chemical-based characteristics. We use Bayesian Optimization approaches and the known SRC 

Kinase Inhibitors as a guide to generate novel molecules. We then use Similarity and drug-like 

metrics to analyze structural and chemical similarity of our novel compounds to those of SRC 

Kinase Inhibitors. 

 2 Accumulation and Representation of Molecular Data 

2.1 Accumulating Molecular Data 

2.1.1 Representations of Kinase Inhibitors  

There is a wealth of active research dedicated towards determining the optimal representation for 

molecules with respect to machine learning models. Each comes with its own set of pros and cons, 

and there isn’t a clear best choice. 3D molecules, in the form of voxels (Kuzminykh, et al., 2018), 

struggle with the invariance of their representations. Different rotations, translations, or 
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permutations of the atomic indexing can yield different 3D grids that all represent the same 

molecule. 2D representations cannot encode as much information as their 3D counterparts, but 

don’t suffer from as many of the same invariance issues. They typically are represented by an 

80x80 grayscale image, but RGB channel style representations have been attempted. 1D string 

representations, otherwise known as SMILES (Weininger, 1988), are the most widely used due to 

their simplicity and wide availability. SMILES strings can represent seven important 

characteristics of a molecule: atoms, bonds, rings, aromaticity, branding, stereochemistry, and 

isotopes. Another prominent representation is the Coulomb matrix (CM) introduced by (Rupp et 

al.), which is a square atom-by-atom matrix containing an approximate potential energy of the free 

atom along the diagonal and pair Coulombic potentials on the off-diagonal terms (Townshend, et 

al., 2020). An improvement over CM is typically observed using the Bag-of-Bonds (BoB) 

representation, where each atomic pair is placed in specific vectors (bags) based off the elemental 

pairs and sorted by value. Another representation of molecules is FCHL, a representation based on 

Gaussian distribution functions for the universal kernel ridge regression-based quantum machine-

learning models. In addition, the smooth overlap of atomic positions (SOAP) representation 

calculates the local density of atoms around all atoms in each chemical environment but suffers 

from an increased computational cost over the pairwise CM and BoB representations (Townshend, 

et al., 2020). 

Within numerous molecular modeling approaches, the consistent use of SMILES representations 

allows for an extensive dataset to be used during training.   
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2.1.2 Chemical Databases 

Typically, models learn how to create or alter molecules by training with as much data as possible 

and only successfully accomplish the task by iterating hundreds of thousands of times over large 

datasets. Numerous large databases are available that contain molecules in a variety of 

representations including SMILES, 2D, and 3D. From these databases we will need a large dataset 

of known protein kinase inhibitors to analyze and emulate. In addition, we will need a baseline set 

of random similar small molecules to understand what differentiates our protein kinase inhibitor 

set from any other molecule and to act as a control group. There is no shortage of publicly available 

biochemical databases, enumerating up to 166 billion molecules (Ruddigkeit, van Deursen, Blum, 

& Reymond, 2012) in some cases.  

These databases serve as catalogs to search through to choose molecules with desired properties. 

Examples of these databases include GDB (Ruddigkeit, van Deursen, Blum, & Reymond, 2012), 

PubChem (Kim, et al., 2019), ZINC (Irwin & Shoichet, 2005), CAS (Ruddigkeit, van Deursen, 

Blum, & Reymond, 2012), ChEMBL (Gaulton, et al., 2012), and DrugBank (Wishart, et al., 2008). 

GDB-17 (Ruddigkeit, van Deursen, Blum, & Reymond, 2012) was created by capitalizing on work 

previously performed on the GDB-13 (Ruddigkeit, van Deursen, Blum, & Reymond, 2012) 

database. The authors of the paper operated on the molecular graphs directly and enhanced the 

memory efficiency of their graph analysis to overcome the limitations of GDB-13 (Ruddigkeit, 

van Deursen, Blum, & Reymond, 2012). This allowed for the enumeration of much larger 

molecules, yielding the massive 166 billion molecules currently deposited in the database.  

GDB-17’s 166 billion molecule size is much larger than alternative options such as PubChem-17 

or CAS-17 (Ruddigkeit, et al., 2012). The authors compared the size and composition of their 

molecular database with public archives from PubChem (Kim, et al., 2016), ChEMBL (Gaulton, 
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et al., 2012), and DrugBank (Wishart, et al., 2008). GDB-17 was the leading dataset for compliance 

of reference datasets while having the highest percentage of molecules with at least one small ring 

out of all datasets (Ruddigkeit, et al., 2012). Another attractive component of GDB-17 

(Ruddigkeit, et al., 2012) is that it has a more uniform distribution of topologies than the other 

datasets. Notably, DrugBank-17 exhibited the most uniform distribution for the different 

categories (heteroaromatic, aromatic, heterocyclic, carboxylic, acyclic). This allows us to obtain a 

very large set of random small molecules to serve as the foundation for our molecular generation 

experiments that are sufficiently representative of the underlying distribution. We obtained a 

sample of this database corresponding to 163,953 random small molecules from a variety of 

domains. 

To complement our random baseline molecules found in GDB-17, we took around 20,000 kinase 

inhibiting small molecules across 10 Protein Kinase Inhibitor families from the ZINC (Irwin & 

Shoichet, 2005) database for our training dataset: SRC, ABL1, CSF1R, EGFR, FLT3, KDR, LCK, 

MAPK10, MAPK14, and MET. ZINC maintains an active list of known protein kinase inhibitors, 

which allow us to create a training set for any downstream machine learning processes used in our 

experiments. Additionally, ZINC specializes in commercially available drug compounds enhanced 

with properties about these molecules such as molecular weight, calculated logP, and number of 

rotatable bonds (Irwin & Shoichet, 2005). Other chemical metrics were calculated using RDKit, a 

framework that is a collection of cheminformatics and machine learning software for chemical 

data analysis (Landrum, 2013). All molecules collected have a molecular weight less than 700, 

calculated logP between -4 and 6, less than 6 rotatable bonds, and only contain a set of 10 atoms 

(C, N, O, F, S, P, Cl, Br, I). The GDB baseline and kinase inhibiting small molecules data will be 
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used by the Deep Learning framework ChemVAE (Gómez-Bombarelli, et al., 2018) for conversion 

into the kinase inhibitor latent space. 

2.2 Latent Space Representation 

Chemical Variational Auto-Encoder or ChemVAE is a deep learning framework that works to 

convert discrete representations of molecules to and from a multidimensional continuous 

representation (Gómez-Bombarelli, et al., 2018). The ChemVAE framework contains 2 deep 

networks: an encoder that converts each SMILE string to a fixed dimensional vector and a decoder 

that converts the fixed dimensional vector back into SMILE strings (Gómez-Bombarelli, et al., 

2018). The autoencoder works to minimize the error in reproduction of the original SMILE string, 

i.e. it learns the identity function (Gómez-Bombarelli, et al., 2018). The key of the autoencoder is 

attempting to map the SMILE string through an information bottleneck. The bottleneck forces the 

fixed length vector to learn the main statistically salient features in the data (Gómez-Bombarelli, 

et al., 2018). This vectorized representation is known as the latent space representation of the 

molecule.  

In addition to providing benefits, such as compression, autoencoders provide another key benefit: 

the creation of a continuous space that can be searched (Hinton & Salakhutdinov, 2006). In the 

SMILES domain, there are discrete changes from one string to another and no clear graphical 

representation that can be observed or searched. This leads to difficulty in experimenting with or 

optimizing candidate molecules. Autoencoders solve this problem by mapping these string 

representations into a numeric domain where much of the structural chemical properties are 

maintained.  
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Figure 1. Diagram of Process of Encoding Molecules into Latent Space Representations 

Chemical VAE tailored the variational autoencoder to the biochemical realm by simultaneously 

training the model to predict the QED, SAS, and logP values (Gómez-Bombarelli, et al., 2018).  

By optimizing the recreation objective function, the model is forced to learn information about the 

nature of the molecules causing the latent space to preserve important characteristics of their inputs 

(Gómez-Bombarelli, et al., 2018). Furthermore, this tool provides us with a complete and 

continuous representation of the known molecular landscape, where we can find any molecule 

with the right tools.   
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Figure 2. (A) 2-D latent space representation of the kinase inhibitor families and GDB 
small molecules, (B) 2-D density plot of latent space representation shown in (A), (C) 2-
D latent space representation of only the kinase inhibitor families, and (D) a 2-D density 

plot of the latent space representation shown in (C) 

To understand the multidimensional continuous representation of our molecules, we sampled a set 

of 100,000 random small molecules from GDB-17, 1883 ABL1 kinase inhibiting small molecules, 

3477 SRC kinase inhibiting small molecules, 662 CSF1R kinase inhibiting small molecules, 3971 

EGFR kinase inhibiting small molecules, 1058 FLT3 kinase inhibiting small molecules, 4252 

KDR kinase inhibiting small molecules, 1554 LCK kinase inhibiting small molecules, 859 

MAPK10 kinase inhibiting small molecules, 3659 MAPK14 kinase inhibiting small molecules, 

and 2081 MET kinase inhibiting small molecules all from ZINC and encoded them through the 
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ChemVAE framework. The 196-dimensional vectors representing these molecules were fed 

through principal component analysis (PCA) so that we could visualize the continuous space in 

two dimensions. The two-dimensional latent space representations and their respective density 

plots are shown in Figure 2. We assigned a different color for each data point so that they could 

be differentiated on the graph and saw that the kinase inhibiting molecules were heavily 

concentrated in one area. Our GDB small molecule dataset was in a different area, conveying to 

us there is regional difference between our GDB small molecule dataset and our kinase inhibiting 

families (Figure 2A and 2C).  However, it is important to note that the cluster of kinase inhibitors 

isn’t pure and there are molecules from GDB-17 present within them. This does not necessarily 

mean that the intersecting molecules are not kinase inhibitors. It is valid to assume that some of 

these might exhibit kinase inhibition potential because there are many molecules that might simply 

be undiscovered kinase inhibitors. The density plots display concentrations of our encoded 

molecules within various regions of the latent space. Areas with colors closer to or of yellow 

indicate higher density regions and areas with colors close to or of purple indicate the latter. The 

density plots emphasized the emergence of highly skewed clusters within the latent space by 

emphasizing highly concentrated regions and sparsely concentrated regions (Figure 2B and 2D). 

The organization of our molecules in the hyperplane and the emergence of these highly skewed 

clusters demonstrates potential for accurate classification and generation. To capitalize on this 

potential for molecular generation, we need to choose the best methods of generating molecules 

and assessing the generated molecules to determine the experiment’s success.  
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 3 Strategies for Generation of Novel Molecules 

3.1 Utilizing the SMILE String Molecular Representation 

The main objective of this experiment was to generate novel molecules using machine learning 

frameworks that would potentially be synthesized for chemical use. The process of discovering 

and creating new drugs before the adoption of machine learning techniques was a slow and 

expensive one. Machine learning approaches significantly increased the rate at which potential 

drugs could be synthesized due to its simulation abilities. By simulating thousands of molecules 

per second, only the molecules that showed significant potential for its designed purpose would 

be synthesized and tested which also greatly decreases the overall cost. In addition, the field of 

machine learning based drug design has expanded greatly in recent years due to the expansion of 

molecular data and the databases they are contained on.  

Before any molecules can be generated using machine learning techniques, the large amount of 

molecular data needs to be converted into a computer readable format. Determining which 

representation of the molecular data to use is the first choice to be made when constructing the 

architecture of the project. Although there are several different molecular representations that a 

molecule could be converted into before used in training a machine learning algorithm, the 

SMILE string representation is the best choice when conducting a computational drug design 

experiment. The SMILE string representation’s ability to encode several different chemical 

features while remaining a 1-dimensional object is its strongest aspect. While other molecular 

representation methods such as 2D or 3D modeling can encode a significantly larger amount of 

molecular data, the drawback is the decreased capability of a machine learning algorithm 
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designed to work with higher dimensional data. The number of computational resources required 

to run hundreds of thousands of 2D, or 3D objects is exponentially higher than the same amount 

of 1D strings. By utilizing the SMILE string representation, we can construct a machine learning 

framework that is able to utilize a large amount of molecular data and subsequently increase its 

performance. In addition, the expansion of the computational drug design field has allowed 

projects such as RDKit to be created. This collection of cheminformatics and machine learning 

software for chemical data analysis includes the ability to change the 1D SMILE string 

representation into a 2D representation of the molecule as well as a molecular fingerprint 

representation. By having the ability to change molecules into its higher dimensional 

representations, we can utilize the strongest aspects of the 1D SMILES representations, while 

foregoing the many of the downsides of the representation. The utilization of the SMILE string 

for molecular encoding allows for a greater amount of training for the machine learning 

frameworks. The increased amount of training consequently allows for a stronger machine 

learning framework which can produce more potential kinase inhibitors. To measure the success 

of each generated molecule, there needs to be a measurement method for determining a given 

molecule’s kinase inhibition likelihood.   

3.2 Developing a Measurement for Kinase Inhibitor Success 

There exists several metrics when determining different chemical or drug-like qualities of any 

given molecule. However, there is no one metric that encompasses all the qualities of a good 

kinase inhibitor. The lack of consistent measurement method is a significant problem when 

designing an experiment based around generating novel SRC Kinase Inhibitors. If there is no 

way of knowing if a generated molecule is a SRC Kinase Inhibitor without chemical synthesis, 

the advantage of utilizing machine learning techniques is minimized.  
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Kinase inhibitors are classified together due to their ability to inhibit either cytosolic or receptor 

tyrosine kinases; however, each class of kinase inhibitors have slight differences between their 

chemical features. Analyzing the chemical features of each family of kinase inhibitors for use as 

the measurement method for generated molecules would be a good idea; however, the 

differences in chemical features between each molecule is slight. One of the main reasons for 

this is due to the similar biochemical functions that each kinase family shares.  

By not having a concordant metric for analyzing the generated molecules, a novel method of 

measurement was developed for this experiment. To develop a new metric in determining kinase 

inhibition likelihood, a reliable architecture had to be used that could combine several parameters 

of each kinase inhibitor to produce a single score.  

3.3 Utilizing the Aggregation Techniques of Random Forest Models 

While there are several machine learning techniques that utilize an aggregation feature within its 

architecture, the decision tree aggregation and feature randomness aspects of the Random Forest 

model makes it the optimal choice in calculating a measurement metric. One of the main 

advantages the Random Forest model has over the single decision tree is its use of feature 

randomness. Feature randomness is the concept that generates a random subset of features which 

ensures a low correlation amongst the decision trees (Breiman, 2001). 

When creating a new measurement metric for kinase inhibitors, the feature randomness aspect of 

the Random Forest is important. The metric cannot be based on any single chemical feature or 

group of chemical features because otherwise the metric would already be in widespread use 

within computational kinase inhibitor discovery experiments. By utilizing the feature 

randomness aspect of the model, we can ensure that the features used as parameters for the 
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model will be given equal weighting. The aggregation of decision tree predictions also plays an 

important role. Aggregating the results from each tree normalizes the feature randomness aspect 

so no single feature will take a strong priority within the scoring mechanism.  

The Random Forest models aggregation of decision trees also allows for a greater understanding 

of the underlying decisions that constitute the predicted value. Many machine learning 

techniques have a “black-box” nature to them due to their complex architecture and 

mathematical foundations. Since the Random Forest model is an aggregation of several decision 

trees, each decision tree can be analyzed on their own. Every split of the decision tree as well as 

the feature and threshold determining the split can be assessed. Evaluating the features and 

thresholds of the decision can help foster a greater understanding of how the machine learning 

algorithm interprets the differences between each kinase family. This analysis can allow for a 

more reliable metric to be produced and inspire further study of how these chemical features 

impact the biochemical function of the kinase inhibitors.  

3.4 Applying Bayesian Optimization for Generating Molecules 

The Random Forest model’s aggregation of decision trees and feature randomness are not the 

only aspects of the machine learning technique that encouraged its implementation in our 

experiment. The simplistic underlying function and reduced resource cost allowed for its 

application as the scoring function for the Bayesian Optimizer that would generate the 

molecules.  

The Bayesian Optimization process is a hyperparameter tuning operation meant to further 

improve machine learning functions. Although the original goal of utilizing Bayesian 

Optimization was to improve the Random Forest model for better Kinase Inhibition Likelihood 
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predictions, its searching of the latent space inspired its use for the generation of novel 

molecules. By searching the molecular latent space for local optima, the Bayesian Optimizer 

discovers a significant amount of information about the encoding of kinase inhibitors. The 

capitalization of the new knowledge could help us improve similar machine learning based 

kinase inhibitor discovery experiments, while also demonstrating the potential for creating 

molecules belonging to a specific kinase family.  

Choosing the Bayesian Optimization process as the machine learning technique for generating 

molecules allows us to generate potential SRC Kinase Inhibitors, while at the same time 

improving the underlying scoring function and consequently the Kinase Inhibition Likelihood 

metric. This combination effect makes the Bayesian Optimizer the best learning method for this 

experiment.  

 4 Measuring Kinase Inhibition Likelihood 

4.1 Implementing Random Forest Learning Modeling  

The lack of consistent measurement method for determining a molecule’s kinase inhibition 

potential necessitates the creation of a new metric. In addition, the overlap of the chemical features 

of the kinase families further emphasized the need for a new measurement. By creating a metric, 

we could feasibly measure the potential the generated molecules have without having to rely on 

chemical synthesis or similarity testing methods. To develop this metric, we needed to pick a 

machine learning architecture that would maximize the accuracy, while minimizing the resource 

expenses.  
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The Random Forest model is a very popular classification methodology, especially in applications 

pertaining to biological and chemical systems. One of the reasons lies in the fact that it can cope 

with high dimensional data, which is beneficial in accurate predictions and classifications 

(Boulesteix, Janitza, Kruppa, & König, 2012). This also benefits in being applied to settings 

containing highly correlated predictors (Boulesteix, Janitza, Kruppa, & König, 2012). The 

Random Forest model is not based on a particular stochastic model, therefore allowing it to capture 

nonlinear association patterns between predictors and response (Boulesteix, Janitza, Kruppa, & 

König, 2012). Ultimately, it does not require the user to specify a certain distribution underlying 

the data (Boulesteix, Janitza, Kruppa, & König, 2012). All these characteristics provide a huge 

advantage as most biological and chemical data fall in one or more of these categories, containing 

high complexity and dimensionality. 

The Random Forest model combines the performance and output of several decision trees to reach 

a single result.  By reducing the correlation between decision trees, a Random Forest can increase 

its overall accuracy by ensuring that the decision trees contained within it will be determining how 

different features of the dataset interact with each other and their overall importance to the output.  
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Figure 3. The visual representation of one of the Trees in the Binary Chemical Feature-
Based Random Forest Model. 

In Figure 3 we can visualize a single decision tree within the Random Forest model. Visualizing 

the tree helps us to understand the features that play a significant role in classifying our binary 

labels and shows us the role the dataset plays in training the model for accurate classification. Each 

split within the decision tree occurs based on a certain feature and the value of that feature. At 

every split, we also see the number of samples for each binary label. These splits are also 

determined by the GINI impurity, which acts as a measure of purity at each split for classification.  

For classification tasks, decision trees will attempt to minimize or maximize a particular metric at 

every node in the tree. This metric is often the GINI impurity coefficient defined as: 

𝐺𝐺 =  �𝑝𝑝(𝑖𝑖) ∗ (1 − 𝑝𝑝(𝑖𝑖))
𝐶𝐶

𝑖𝑖=1
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Where C is the total number of classes and p(i) is the probability of picking a data point with class 

i. To optimize this metric, decision trees take a brute force approach to the problem and observe 

what the 𝐺𝐺 would like with every possible split value for every possible column. Once they have 

calculated the target metric for every possible point, they choose the split value/column pair that 

optimizes most. This process occurs in every tree of the Random Forest; however, due to the 

feature randomness of the Random Forest model, the feature that determines each split is different. 

The model combines all the decision trees into a more complete architecture that allows for a 

greater accuracy in its predictions.   

 

Figure 4. Diagram of Random Forest Model 

Figure 4 depicts the architecture of the Random Forest models used during the experiment. The 

model is initiated with the training set of molecules from all kinase families as well as GDB 
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molecules. Each molecule within the training set was processed through RDKit to calculate 

several chemical features. Binary Decision Trees are created, and the chemical attributes were 

used as parameters to determine the most important features in determining the target variable. 

Each decision tree makes a prediction on the value of the target variable and the predictions are 

then aggregated and averaged to get a value between 0 and 1. If there are more than two classes, 

the predictions are normalized and then averaged to maintain a predicted value between 0 and 1. 

This would ensure that a target value would still be between 0 and 1, while allowing for multiple 

classification variables.  

4.2 Binary and Multiclass Classification  

Due to our experiment containing eleven molecular classifications, ten kinase families and one 

GDB molecular set, there were two different Random Forest models we could have pursued: the 

Binary Classification model, and the Multiclass Classification model.  

4.2.1 Binary Classification Model 

The Binary Classification model would take all kinase families except our target family, the SRC 

Kinase Family, as well as the GDB molecules and assign them all a target value of 0. The SRC 

Kinase Family would have a target value of 1. By sacrificing some of its ability to distinguish each 

of the kinase families from each other within the Random Forest classification, the model 

emphasizes the overall accuracy of its predictions.  

One downside of the Binary Classification model is it is uneven in the weighting of the target 

variables. The Random Forest model does not utilize the entirety of the training data, but instead 

takes a proportional sample from each set to get a more even distribution of training data for more 

accurate decision tree training. The overwhelming amount of GDB molecules used in the training 
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set causes the model to predict a target value of 0 extremely well but becomes less accurate when 

predicting a target value of 1. This does not mean that the Binary Classification model cannot 

predict the SRC Kinase Inhibitors well, it only implies that the model will always be significantly 

better at identifying the non-SRC Kinase Inhibitors. The downsides of this uneven training data 

are outweighed by the overall accuracy in the model’s predictions.  

4.2.2 Multiclass Classification Model 

The Multiclass Classification model would take all kinase families used within training and assign 

each of them a different target variable value. The goal of this model would be to be able to identify 

the differences between the different Kinase Families for better isolation techniques during 

molecular generation. By increasing the amount of classification variables, the Random Forest 

model consequently sacrifices accuracy during the identification process.  

One of the downsides of using the multiclass classification model is the lack of distinction between 

many of the kinase families. In Figure 2C it is shown that within the latent space all kinase families 

have significant overlap, making it harder to distinguish between each of the families. Even by 

implementing a Random Forest model designed to find and predict the differences, the task is still 

extremely difficult. The number of classes ultimately lowers the model’s accuracy in its prediction 

of the target value, while maintaining a minimal amount of accuracy in distinguishing the different 

kinase families.   

Due to our experiment being focused on attempting to generate a novel molecule with the potential 

of being an SRC Kinase Inhibitor, the discernment between each of the Kinase Families was less 

important than the accuracy of the model’s ability to identify an SRC Kinase Inhibitor. For this 



 

25 

reason, we decided to pursue the Binary Classification Model to increase the confidence of the 

values the Random Forest model assigned to each generated molecule.  

4.3 Training on Latent Space Location and Chemical Features 

4.3.1 Using Latent Space Coordinates  

After deciding on the Binary Classification model over the Multiclass Classification model, the 

next decision was made on what data the model should be trained on. The first Random Forest 

model was trained on based on the coordinates of each molecule within the latent space. The model 

was trained with 25,032 molecules each with 197 feature variables: 196 latent space dimension 

variables and one classification variable. The initial reasoning behind using the latent space 

coordinates to train the Random Forest model was due to the differences between the latent space 

locations of the molecules of all the kinase families and the GDB molecules. By training a model 

to identify the differences in locations, the goal was to have an accurate model that can discern the 

differences between a Kinase Inhibitor and a non-Kinase Inhibitor molecule. While there were 

distinct clusters of molecules within the latent space, the GDB and Kinase Inhibitor clusters, the 

small overlap that did occur decreased the overall accuracy of the latent space location-based 

model.  In addition, the large number of features that each molecule had when converted to its 

latent space coordinates also decreased the overall accuracy. With 196 different parameters and 1 

target variable, a greater amount of decision trees was necessary for an accurate prediction. 

Although a greater amount of decision trees theoretically would be more useful, the larger number 

of trees decreases the importance of each individual tree due to the Random Forest’s aggregation 

of results. The large number of decision trees also significantly increases the resources needed to 

accurately run the model making it less feasible on large datasets.  
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4.3.2 Chemical Feature-Based Training  

Due to the disadvantages of implementing the latent space Random Forest model, we decided to 

calculate several chemical features of each molecule and train a Random Forest model on those. 

Since the differences between each kinase family are small, we needed to use many features to 

increase the accuracy of the Random Forest model. We calculated twenty chemical features for 

each molecule used during training and testing. The features are: number of rings, the exact 

molecular weight, the fraction of carbon Sp3, the HallKier alpha value, the Labute ASA value, the 

number of aliphatic carbocycles, the number of aliphatic heterocycles, the number of aliphatic 

rings, the number of amide bonds, the number of aromatic carbocycles, the number of aromatic 

heterocycles, the number of aromatic rings, the number of stereocenters, the number of bridgehead 

atoms, the number of H-bond acceptors, the number of H-bond donors, the QED value, the SAS 

value, and the logP value. The drug property measures QED, SAS, and logP, pertain to the 

molecules’ chances of not only being successfully synthesized, but their ability to be absorbed and 

used by the body. Notably, we ensure that the logP adheres to Lipinski’s rule of 5 (Lipinski, 2004) 

for maximum chance of success in synthesis. Apart from the QED value, the SAS value, and the 

logP value, all the features that were selected were selected at random. One of the main reasons 

for this random selection is due to the lack of a consistent metric that separates the kinase families. 

Even though each kinase family is separated based on how each molecule behaves when in the 

presence of either cytosolic or tyrosine kinase receptors, many molecules share several chemical 

features across different families. The random selection of features helps encourage a greater 

accuracy of the model due to the larger range of possible selection metrics. The randomization of 

features was also utilized for the possibility of discovering a chemical feature that was consistently 

shared amongst members of the same kinase family. That would allow for not only greater 
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accuracy in the Random Forest model, but any scoring function created for developing Kinase 

Inhibitors.  

4.4 Kinase Inhibition Likelihood  

The resulting score the Random Forest models output represents the probability or “likelihood” 

that a molecule can be deemed an SRC Kinase Inhibitor. Values closer to 0 indicate that the 

molecule has low Kinase Inhibition Likelihood whereas values closer to 1 indicate that the 

molecules have a high Kinase Inhibition Likelihood. We wanted to create an all-encompassing 

metric with both structural and drug-like properties to represent kinase inhibition likelihood. 

Adding on, we did not just want to represent Kinase Inhibition Likelihood in general, but more so 

in relation to SRC Kinase Inhibitor molecules. Our main objective was to develop novel SRC 

Kinase Inhibitors, so it was critical for us to create this metric as one of the measures to show how 

chemically similar our generated molecules from other families are to the SRC Kinase Inhibitor 

space.   

4.4.1 Measuring Accuracy of Kinase Inhibition Likelihood 

For the metric of Kinase Inhibition Likelihood to be a reliable one, it is important to establish the 

criteria needed to measure its usefulness. The Kinase Inhibition Likelihood score is dependent on 

the performance of the Random Forest models used during the implementation of the experiment. 

Thus, utilizing the metrics in determining the accuracy of each Random Forest model would be 

the most efficient way of measuring the accuracy of the calculated Kinase Inhibition Likelihood 

score. The three most common metrics used to measure the performance of Random Forest models 

are precision, recall and the F1-score.  
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The precision value of a model indicates the rate that the model accurately assigns a positive value 

to a given result.  

(1)  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃

𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃
 

As seen in equation (1), the precision value takes the true positive value and divides it by all 

positive values, both true and false. The precision value shows that out of those predicted positive, 

how many of them are truly positive which makes it a good measure of overall accuracy of the 

model.  

The recall value of a model indicates the rate the model accurately captures the true positive results. 

(2)  𝑅𝑅𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃

𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃 𝑁𝑁𝑃𝑃𝑁𝑁𝐹𝐹𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃
 

Shown in equation (2), the recall value takes the true positive value and divides it by the total 

positives, or the true positives plus the false negatives. This equation gives the rate at which the 

model is accurately registering a positive value as being positive.  

The F1-score seeks to combine the results of the precision and recall values into a single metric.   

(3)  𝐹𝐹1 = 2 ∗  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹

 

One of the benefits of utilizing the F1-score is that it was designed to work on imbalanced data. 

By averaging the mistakes the model made when predicting a positive value, the score provides a 

more objective view at the performance of the model.  



 

29 

The most used metric is the overall accuracy metric. It measures the percentage of correct 

predictions the model has made and divides it by the total amount of predictions made. However, 

this metric can be misleading when dealing with an imbalanced data set. With all the kinase 

families being very different in their quantities, our imbalanced data makes the accuracy metric 

functionally obsolete for our experiment.  

The F1-score seems to be the most promising measure to use when calculating the reliability of 

our model because it combines both the precision and recall values into a single metric. One of the 

problems is that the precision and recall values each have cases where they are more important. 

Recall works best when the cost of producing a false negative is high, while precision works best 

when the cost of producing a false positive is high. Due to our experiment being centered around 

generating new molecules, the cost of labeling a molecule as having a high SRC Kinase Inhibitor 

Likelihood when it in fact does not is much higher than labeling a good molecule as having no 

SRC Kinase Inhibition potential. When conducting drug design experiments, the end goal is 

always to synthesize a given molecule and test its viability in biological applications; however, the 

cost of synthesizing a molecule is high. By assigning a molecule that should have no Kinase 

Inhibition Likelihood with a high score, the chances of that molecule making into the synthesis 

stage is higher.  

When looking only at the metrics that pertain to the calculation of the Kinase Inhibition Likelihood 

score, the most important value would be the precision value. Though the recall value and the F1-

score are still useful and should not be discounted. Due to the importance of the Kinase Inhibition 

Likelihood score in our experiment, it is better to analyze multiple metrics to maximize the 

effectiveness of the developed metric.  
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4.5  Analysis of Random Forest Model Performance 

4.5.1 Latent Space Location Based Results 

Even though the latent space based Random Forest models were not utilized during the main 

molecular generation phase of our experiment, it is useful to include the results of these models 

to better understand why these models were not implemented.  

Table 1. Binary Latent Space-Based Random Forest Classification Report Results 
 Precision Recall F1-Score Support 
0 0.98 0.99 0.99 27032 
1 0.51 0.33 0.40 679 

Accuracy   0.98 27711 
Macro Avg 0.75 0.66 0.69 27711 

Weighted Avg 0.97 0.98 0.97 27711 

 

The classification report for the binary latent space-based model is shown in Table 1. In the macro 

averages, the precision score was 0.75, the recall score was 0.66, and the F1-Score was 0.69. In 

the weighted average, the precision was 0.97, the recall score was 0.98, and the F1-Score was 0.97 

(Table 1). One of the commonalities seen in both the binary latent space based Random Forest 

model and binary chemical-feature based Random Forest model is the large discrepancy in 

accuracy metrics in predicting a 0-target value and predicting a 1-target value. Although this model 

has a precision of 0.98, and a recall value of 0.99 when predicting a 0, the precision when 

predicting a target value of 1 being 0.51 demonstrates that the model is not good at determining if 

a molecule is an SRC Kinase Inhibitor (Table 1). In addition, the macro average F1-score of 0.69 

reinforces this conclusion as it shows its poor performance when given equal samples. The main 

purpose of utilizing a Random Forest model was to predict the potential any given generated 
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molecule would have at being an SRC Kinase Inhibitor making the poor performance of this model 

detrimental to our overall experiment.   

Table 2. Multiclass Classification Latent Space-Based Random Forest Classification 
Report Results 

 Precision Recall F1-Score Support 
ABL1 0.50 0.53 0.51 390 
SRC 0.56 0.51 0.53 669 

CSF1R 0.46 0.24 0.32 132 
EGFR 0.60 0.69 0.64 763 
FLT3 0.36 0.16 0.22 234 
KDR 0.42 0.59 0.49 888 
LCK 0.44 0.30 0.36 289 

MAPK10 0.73 0.30 0.43 178 
MAPK14 0.66 0.73 0.69 763 

MET 0.76 0.55 0.63 429 
Accuracy   0.55 4735 

Macro Avg 0.55 0.46 0.48 4735 
Weighted Avg 0.56 0.55 0.54 4735 

 

The classification report for the multiclass latent space-based model is shown in Table 2. In the 

macro averages, the precision score was 0.55, the recall score was 0.46, and the F1-Score was 

0.48. In the weighted average, the precision was 0.56, the recall score was 0.55, and the F1-Score 

was 0.54 (Table 2). The poor performance of this model was expected due to the significant overlap 

of kinase families in the latent space shown in Figure 2C. The only families that have an F1-score 

above 0.6 are EGFR, MAPK14, and MET which reinforces the idea that the model is not good at 

distinguishing the families from each other. With a macro average precision value of 0.55, the 

model has an overall poor performance of identifying the true positive values when given equal 

samples of each kinase family.  
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4.5.2 Chemical Feature Based Results 

By analyzing the results of the chemical feature-based Random Forest models, we can get a 

better understanding of the overall accuracy of the Kinase Inhibition Likelihood metric. In 

addition, the analysis of each chemical feature-based model can give more insight into how to 

improve the metric for future experiments. Starting the analysis with the classification reports 

can give more insight into the strengths and weaknesses of each Random Forest model.   

Table 3. Binary Chemical Feature-Based Random Forest Classification Report Results 
 Precision Recall F1-Score Support 
0 0.99 0.98 0.98 23530 
1 0.71 0.86 0.78 1502 

Accuracy   0.97 25032 
Macro Avg 0.85 0.92 0.88 25032 

Weighted Avg 0.97 0.97 0.97 25032 

 

The classification report for the binary chemical feature-based model is shown in Table 3. In the 

macro averages, the precision score was 0.85, the recall score was 0.92, and the F1-Score was 

0.88. In the weighted average, the precision was 0.97, the recall score was 0.97, and the F1-Score 

was 0.97 (Table 3). The precision, recall, and F1-scores are significantly better when predicting a 

0 over predicting a 1; however, this discrepancy is caused by the large difference in support, or 

number of molecules used for each classification (Table 3). The macro average precision score of 

0.85 reinforces the overall good performance of the model because it means that the model was 

accurate in predicting if a given molecule was an SRC Kinase Inhibitor 85% of the time. For 

classification models, an accuracy score of 0.85 is extremely strong. In addition, the macro average 
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recall score of 0.92 validates the excellent performance of the model that the precision value helped 

establish. All these metrics indicate good classification performance of the model.  

 

 

Figure 5. (A) Receiver Operating Characteristic Curve, (B) Feature Importance 
Histogram, and (C) Precision-Recall Curve of the Binary Classification Random Forest 

model 

Our Random Forest Model to determine kinase inhibition likelihood classified well, with an 

overall accuracy of being able to distinguish kinase inhibiting molecules around 97% (Table 3). 



 

34 

The AUC of the model was 0.97, indicating that the coverage of variation within the dataset is 

around 97% and that the model can distinguish both classes with 97% certainty (Figure 5A).  

The ROC-AUC or Receiving Operating Characteristic graph in Figure 5A represents the 

performance measurement of the Kinase Inhibition Likelihood Random Forest classifier that 

differentiates kinase inhibitor molecules from our small molecule baseline based on a variety of 

chemical, structural, and drug-like features. The AUC is a metric that measures how well our 

classifier model can distinguish the classes. Values close to 1 indicate good differentiation of 

classes by the model, and values close to 0 indicates poor differentiation of classes by the model. 

The Feature Importance graph in Figure 4B represents the Chemical Feature Importance of the 

Random Forest model. It will assign scores to input features to a predictive model that indicates 

the relative importance of each feature when making a prediction. This graph portrays which 

features fed into the random forest play a huge role in classifying and differentiating the kinase 

inhibitors from our small molecule baseline. The importance of features is listed in descending 

order, with the feature having the most importance on top and the feature with the least 

importance at the end. The top 10 features that contribute the most relative importance to the 

model’s prediction are the labute accessible surface area (labuteASA), weight, HallKier Alpha, 

the number of aromatic rings, aromaticity, the QED score, number of rotatable bonds, the logP 

score, the SAS score, and the number of hydrogen bond acceptors (Figure 5B). These are some 

of the chemical features and attributes that differentiate kinase inhibitors from the GDB small 

molecule dataset, and in turn, will play a huge role in determining kinase inhibition likelihood of 

our generated novel compounds. The Precision-Recall graph shown in Figure 5C gives a good 

idea of how accurate the model really is. Ideally, you would want to have both a high precision 

value and a high recall value. Although the model begins with a high precision value, it 
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eventually begins to trade precision for recall to reach an equilibrium between the two metrics. 

This helps support the idea that our model does perform well and can be trusted to have accurate 

predictions.  

Table 4. Multiclass Classification Chemical Feature-Based Random Forest Classification 
Report Results 

 Precision Recall F1-Score Support 
ABL1 0.51 0.58 0.55 409 
SRC 0.57 0.56 0.56 660 

CSF1R 0.69 0.54 0.61 142 
EGFR 0.69 0.74 0.71 795 
FLT3 0.55 0.46 0.50 194 
KDR 0.58 0.59 0.58 916 
LCK 0.47 0.41 0.44 313 

MAPK10 0.77 0.55 0.64 163 
MAPK14 0.75 0.80 0.78 722 

MET 0.74 0.72 0.73 421 
Accuracy   0.63 4735 

Macro Avg 0.63 0.59 0.61 4735 
Weighted Avg 0.63 0.63 0.63 4735 

 

The classification report for the multiclass chemical feature-based model is shown in Table 4. In 

the macro averages, the precision score was 0.63, the recall score was 0.59, and the F1-Score was 

0.61. In the weighted average, the precision was 0.63, the recall score was 0.63, and the F1-Score 

was 0.63 (Table 4). When comparing the classification report of the binary classification model in 

Table 3 to the one of multiclass classification model in Table 4, the reasoning behind utilizing the 

binary classification model throughout the experiment becomes clear. Due to the greater number 

of classification values in the multiclass classification model, the model does not accel for any 

single class or group of classes. The model had the greatest metric values when predicting kinase 
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inhibitors from the MAPK14 kinase family, with good metric values when predicting the MET 

kinase family as well. However, the other kinase families performed poorly in precision values, 

recall values or the F1-scores. In addition, the macro average F1-score of the multiclass random 

forest model is 0.61 compared to the 0.88 F1-score of the binary random forest model shown in 

Table 3. The metrics within Table 4 indicate that the multiclass random forest model performs 

poorly when distinguishing SRC Kinase Inhibitors which is important for use in the scoring 

function of our experiment.  

While the initial results shown in Table 4 indicate that the multiclass chemical feature-based 

Random Forest model is not feasible for our experiment, the ability to distinguish different kinase 

families is not without its uses. By improving on this model, we can utilize its differentiating ability 

to possibly classify generated molecules as different kinase inhibitors. Our experiment being 

focused on the SRC family makes this model unusable but extending the experiment to multiple 

classes could give greater feasibility to the multiclass models.  

Due to the binary chemical-feature based Random Forest model performing well in its 

predictions of an SRC Kinase Inhibitor, the experiment progresses with the implementation of 

the binary chemical feature-based Random Forest model into a generative learning method to 

generate novel molecules.  
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 5 Generating Molecules using Bayesian Optimization 

5.1 Introduction 

Bayesian Optimization is a technique for efficient sampling and testing of parameters with 

respect to a scoring function (Frazier, 2018). Heavily used in the hyperparameter tuning step of 

machine learning experiments (Snoek, Larochelle, & Adams, 2012), Bayesian Optimization is 

designed to learn information about how different parameters affect an observed function with 

minimal sampling. Bayesian Optimization incorporates prior knowledge about the objective 

function and updates it with random samples drawn from the objective function to better 

approximate it. Bayesian Optimization approaches use training a gaussian process to 

approximate a function that represents expected scores with respect to hyperparameters. In 

addition, Bayesian Optimization uses acquisition functions that helps direct the random sampling 

to areas with a higher chance of improving the objective function. The acquisition functions 

trade off exploitation and exploration. Exploitation means sampling where the surrogate model 

predicts a high objective and exploration means sampling at locations where the prediction 

uncertainty is high. Both correspond to high acquisition function values and the goal is to 

maximize the acquisition function to determine the next sampling point.  By repeating this 

process several thousand times, the Bayesian Optimization model can minimize the number of 

steps necessary for an objective function to reach an optimal accuracy level. Bayesian 

Optimizers have been shown to perform well in molecular generation applications as well (Jin, 

Barzilay, & Jaakkola). 
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Figure 6. Figurative Representation of the Exploration, (A) and (B), and Exploitation, 
(C), Processes of Bayesian Optimization 

A figurative representation of the exploration and exploitation processes of Bayesian Optimizers 

can be shown in Figure 6. Figure 6A represents the initialization of several points within the 

optimizer’s searching process. Towards the beginning, the points are initialized completely 

randomly to find any local optima that would increase the chances of molecular generation. The 

green points represent a successful molecule, whereas the red ones indicate a failure. Since the 

points are created randomly, the success rate of creating a valid molecule is very small and 
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improves slightly over time during an exploration phase. Figure 6B shows the continuation of 

Bayesian Optimizer’s exploration phase. The optimizer has learned a little more about the space 

its searching, so it begins to narrow the searching parameters around a potential local optimum. 

By searching around a potential optimum, the success rate of molecule generation increases. 

Figure 6C shows an exploitation phase of the optimizer. It discovered a local optimum during an 

exploration phase and now is creating points mainly around the optimum it found. The 

specificity of the searching parameters greatly increases the success rate of molecular generation 

compared to the exploration phases. To find the local optima during an exploration phase, the 

objective function of the optimizer needs to be as accurate as possible when predicting the 

scoring value.  

5.2 Objective Function 

The objective function, or “scoring function”, of the Bayesian Optimization process is normally 

predefined, with the goal being to improve the function for use in a separate learning model. For 

our experiment, our scoring function was based on the Random Forest models that we built to 

calculate the Kinase Inhibition Likelihood value of the molecules generated through 

perturbation. The optimization process began with the original Random Forest Binary Classifier 

that was trained on 196-dimension latent space data of each molecule. However, due to the high 

computational complexity of the Bayesian Optimization’s hyperparameter tuning process, it is 

usually run-on datasets with less than twenty features. The scoring function based on the latent 

space trained Random Forest Binary Classifier was too expensive in computational resources as 

well as having too large of a feature set to have a significant enough improvement to the quality 

of the generated molecules. To better improve our molecules, we needed to change the Random 

Forest model to be trained on a smaller feature set to get more meaningful optimizations.  
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5.2.1 Training the Objective Function 

To accomplish this, the Random Forest model was trained on the twenty chemical features of 

each inputted molecule. By compressing the feature set to twenty, we allowed the Bayesian 

Optimization process to make more impactful improvements in the hyperparameter tuning 

process.  

To train the Bayesian Optimization model, we needed to train the model on similar molecules we 

used during the Random Forest Binary Classifier model. We used the ABL1 and GDB molecules 

that were used for training the Random Forest model and converted all the molecules into their 

corresponding 196-dimension latent space locations. The SRC molecules were split into training 

and testing sets with a split of 0.67/0.33. The testing set was used to validate the results from the 

Bayesian Optimizer, and the training set was saved for future use. After encoding all the 

molecules into their latent space representations, the scoring function was established as the 

same function used to train the Random Forest Binary Classifier based on the chemical features 

of each molecule. Once the scoring function was in place, the Bayesian Optimizer function was 

created with 7,000 initial points, and 1,500 iterations, or sampling points. The initial points are 

used by the Bayesian Optimizer to sample random points with no regard for exploitation, record 

their reward functions, and warm up your prior distribution over the latent space. This is 

necessary so that the breadth of the parameter space can be searched without getting stuck in 

local optima due to scoring bias. Many pockets of high potential scoring values are found during 

this step to force the model to explore more areas of the search space rather than becoming too 

focused on one area. There is typically a relationship between the number of parameters to be 

optimized and the amount of exploration steps that need to be performed for sufficient training. 
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After all the exploration steps have been completed, the optimizer begins to exploit this 

information.  

5.3 Bias within the Optimization Function 

In addition to training the objective function, the initialization of the optimizer could play a 

significant role in the quality of the results. Creating a Bayesian Optimization function can be done 

in two different ways: as an Unbiased Optimization Function, or as a Biased Optimization 

Function. The main difference between an Unbiased Optimization Function and a Biased 

Optimization Function is the probing a Biased Optimization Function performs before initiating 

the iteration training. Probing is the process by which the optimizer takes known data points within 

the exploration phase to get more targeted information to exploit during the exploitation phase. By 

implementing a bias in the Bayesian Optimization process, the molecules generated from the 

model become a lot more in line with the target SRC kinase family; however, the model does lose 

the pure gaussian process of hyperparameter tuning because it is starting off with known molecules 

within the same family. For our biased optimization function, we did create it with 7,000 initial 

points as well as 1,500 iterations; however, we used the training set of the SRC Kinase Inhibitors 

to probe the model. When probing the model, the Bayesian Optimizer explores the latent space 

areas of the molecules in the training data before initiating any of the 7,000 points which allows 

the model to be a lot more accurate in its search for the optimal parameters.  

5.3.1 Utilizing a Multiclassification Random Forest Model as the Scoring 
Function  

In addition to the Binary Bayesian Optimizer listed above, another method that was implemented 

was utilizing the multiclassification Random Forest model as the scoring function for a potential 
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Multiclass Bayesian Optimizer. There were two different Multiclass Bayesian Optimizers created: 

an unbiased one and a biased one. The training for the multiple class Bayesian Optimizers were 

slightly different to the training of the binary Bayesian Optimizers. Unlike the binary optimizers, 

the multiple class optimizers were each created with 2,500 initial points and 500 iterations. The 

biased multiple class Bayesian Optimizer was probed using the same SRC Kinase Inhibitors that 

were used to probe the binary Bayesian Optimizer. Unfortunately, after each of the models finished 

running, the multiple class Bayesian Optimizers did not produce any valid molecules. I believe the 

main reason for this is due to the probabilistic nature of the Bayesian Optimizer. By introducing 

more than two classes for the Bayesian Optimizer to optimize for, the model could not accurately 

tune the hyperparameters to match the predictions of the underlying multiclassification random 

forest model. Since each of the multiclassification Bayesian Optimizers failed to produce any 

molecules, they will be omitted from the results and discussion portion of this chapter.  

5.4 Similarity Testing 

After the Bayesian Optimizers generate novel molecules, there needs to be a way to analyze 

them to filter the molecules with higher potential of being an SRC Kinase Inhibitor. While the 

calculated Kinase Inhibition Likelihood is the metric developed for this purpose, the high cost of 

producing a false positive necessitates an additional metric to be used in conjunction with the 

calculated Kinase Inhibition Likelihood.  

We utilized Tanimoto Similarity Testing as the additional metric to further evaluate these 

generated molecules to understand which molecules would have the highest potential of being 

SRC Kinase Inhibitors. The Tanimoto similarity coefficient is a metric that compares the 

molecular similarity of two compounds using Morgan fingerprint analysis. Molecules with 
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Tanimoto coefficient values that are above 0.75 are considered to have high similarity with the 

comparison molecule whereas values lower than that value are considered to have lower similarity.  

To calculate the similarity, we obtain the Morgan fingerprints of each molecule using RDKit and 

compute the Tanimoto coefficient between it and all the molecules within the SRC Kinase 

Inhibitor testing set. We then return the highest similarity value that is obtained and the SRC 

Kinase Inhibitor that the molecule is closest in similarity to.  

By using the similarity testing aspect of our experiment, the value of our calculated Kinase 

Inhibition Likelihood metric could be either validated or rejected. The extra layer of testing gives 

a stronger evidential background for the results of the experiment. While the calculated Tanimoto 

coefficient was not used as the sole determining factor for a molecule’s kinase inhibition, the 

coefficient was determined to have a greater significance than the calculated Kinase Inhibition 

Likelihood metric. 

5.5 Analysis of Generated Molecules 

To evaluate the performance of the different Bayesian Optimizers, we investigated the relationship 

between each optimizer and the molecules they produced in relation to the Kinase Inhibition 

Likelihood score, the calculated chemical features, and the Tanimoto similarity scores to known 

SRC kinase inhibitors. When looking at the quantity of molecules produced by each Optimizer, 

the biased optimizer produced 589 molecular smile strings and the unbiased optimizer produced 

440 molecular smile strings. Out of these molecules, several were discarded due to the inability to 

convert the produced smile strings into valid molecules. After conversion from the molecular smile 

strings to molecular image, the biased optimizer maintained 492 valid molecules, and the unbiased 

optimizer maintained 390 valid molecules. 
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5.5.1 Kinase Inhibition Likelihood Evaluation 

 

Figure 7. Bar Graphs of (A) the average Kinase Inhibition Likelihood scores of all 
generated molecules, (B) the max Kinase Inhibition Likelihood scores of all generated 

molecules from the Unbiased and Biased Bayesian Optimizers 

Due to the random nature of the Bayesian Optimizer a threshold calculated Kinase Inhibition 

Likelihood score of 0.5 was used to as the baseline for a generated molecule to have a higher 

Kinase Inhibition Likelihood. Out of the valid molecules produced from each Optimizer, 153 

molecules out of the original 492 molecules produced, or 31.10%, from the Biased Optimizer had 

a calculated Kinase Inhibition Likelihood value greater than 0.5. The Unbiased Optimizer 

maintained 145 of its original 390 valid molecules produced, or 37.18%, with a calculated Kinase 

Inhibition Likelihood value greater than 0.5. When analyzing the molecules with a calculated 

Kinase Inhibition Likelihood score greater than the 0.5 threshold, the Unbiased Optimizer had a 

higher average calculated Kinase Inhibition Likelihood of 0.5783 compared to an average of 

0.5639 for the molecules generated by the Biased Bayesian Optimizer (Figure 7A). The molecule 

with the highest calculated Kinase Inhibition Likelihood score was produced by the Biased 

Bayesian Optimizer with a score of 0.8425. The molecule with the highest calculated Kinase 
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Inhibition Likelihood score produced by the Unbiased Optimizer had a score of 0.7693 (Figure 

7B).  

5.5.2 Chemical Feature Evaluation 

After analyzing the calculated Kinase Inhibition Likelihood values of the molecules produced from 

each Bayesian Optimizer, the chemical features of the generated molecules were compared to the 

chemical features of the known SRC Kinase Inhibitors. Since the scoring function of the Bayesian 

Optimizers were based on the binary Random Forest model, we used the top five features 

determined by the feature importance graph from (Figure 5B) and compared the results from two 

Bayesian Optimizers to the same chemical features of the known SRC Kinase Inhibitors. The 

strategy was to use a histogram to analyze the distribution of each of the chemical features to 

determine chemical similarity to the known SRC Kinase Inhibitors.  
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Figure 8.  Histograms of the distribution of the LabuteASA values from the generated 
molecules of (A) the Unbiased Bayesian Optimizer, (B) the Biased Bayesian Optimizer, 

and (C) the set of Known SRC Kinase Inhibitors 

According to the Binary Random Forest model, the feature with the highest importance in 

determining whether a molecule is an SRC Kinase Inhibitor was the LabuteASA value. The 

LabuteASA value, or the accessible surface area (ASA), is the area of a molecule that is accessible 

to the solvent (e.g., water). The ASA is calculated by summing the surface area of each atom in a 
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molecule (Hemmerich, Troger, Fuzi, & Ecker, 2020). The Biased and Unbiased Bayesian 

Optimizers had a similar distribution of the LabuteASA values of their generated molecules, with 

the highest concentrations between 150 and 200. The optimizers did have a similar overall 

distribution of the LabuteASA values compared to the known SRC Kinase Inhibitors; however, 

the highest concentration of molecules for the known SRC Kinase Inhibitors was at a LabuteASA 

value around 200 (Figure 8). Even though the average LabuteASA values were different between 

the Bayesian Optimizers and the known SRC Kinase Inhibitors, their similar distributions of 

molecules reinforce the importance that the feature had when calculated through the 

hyperparameter tuning of the Bayesian Optimization function. 
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Figure 9. Histograms of the distribution of the molecular weights of the generated 
molecules of (A) the Unbiased Bayesian Optimizer, (B) the Biased Bayesian Optimizer, 

and (C) the set of Known SRC Kinase Inhibitors 

The molecular weight of each molecule was determined to have next highest importance in 

determining the kinase likelihood of a generated molecule. The Bayesian Optimizers had similar 

distributions of the molecular weights of the generated molecules as well as strong similarity in 

the areas with the highest concentration of molecules being around the molecular weight of 400.  
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The Bayesian Optimizers once again had a similar distribution pattern compared to the known 

SRC Kinase Inhibitors; however, the known SRC Kinase Inhibitors had the strongest concentration 

of molecules around a molecular weight of 500 (Figure 9). The Bayesian Optimizers also produced 

more molecules outside the range of the known SRC Kinase Inhibitors. The known SRC Kinase 

Inhibitors had a general range from 200 to 700, with some molecules having a weight greater than 

700, the Bayesian Optimizers produced most molecules within the weight range of 250 to 550, 

with some molecules generated having weights around 100. The narrower margin for the weights 

could suggest that the scoring function behind the Bayesian Optimizers is reducing the calculated 

Kinase Inhibition Likelihood score of the generated molecules after some percentage of the 

standard deviation of the mean weight of the known SRC Kinase Inhibitors.  



 

50 

 

Figure 10. Histograms of the distribution of the HallKier Alpha values of the generated 
molecules of (A) the Unbiased Bayesian Optimizer, (B) the Biased Bayesian Optimizer, 

and (C) the set of Known SRC Kinase Inhibitors 

The HallKier Alpha value had the next highest importance value according to the Binary Random 

Forest. The HallKier Alpha value represents the connectivity index of a given molecule (Kier & 

Hall, 2002). It utilizes the count of neighboring atoms bonded to an atom in the hydrogen-

suppressed graph to determine molecular connectivity (Kier & Hall, 2002). The Bayesian 
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Optimizers performed similarly to each other regarding the HallKier Alpha values of the generated 

molecules, both in distribution of values and area of the highest concentration of around -2; 

however, the optimizers did have different distributions and calculated areas of highest 

concentrations of the known SRC Kinase Inhibitors, which for the known inhibitors was around -

3 (Figure 10). The distributions of the values of the molecules generated through the Bayesian 

Optimizers had a wider range and was more symmetrical in its overall distribution of values, 

whereas, the known SRC Kinase Inhibitors had significant concentrations of molecules between -

3.5 and -2.5 but was not evenly distributed for the rest of the values within the calculated ranges 

(Figure 10). The similarities between shape of distribution and neighboring areas of highest 

concentrations imply that the HallKier Alpha parameter was a priority feature for the Bayesian 

Optimizer to tune. The differences of in these values could suggest that the Bayesian Optimizer 

weighted the tuning of the HallKier Alpha parameter incorrectly, or that the optimizer needed more 

iterations to find the global optima of the feature.  
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Figure 11. Histograms of the distribution of the number of aromatic rings of the 
generated molecules of (A) the Unbiased Bayesian Optimizer, (B) the Biased Bayesian 

Optimizer, and (C) the set of Known SRC Kinase Inhibitors 

After the HallKier Alpha scores, the next feature with the highest importance is the number of 

aromatic rings. Within the molecular structure, aromatic rings are hydrocarbons which contain 

benzene, or some other related ring structure (Polêto, et al., 2018). Aromatic rings are extensively 

used in drugs due to their well-known synthetic and modification paths (Polêto, et al., 2018). The 
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Bayesian Optimizers performed nearly identical in their distribution of values, as well as the 

highest concentrations. Most of the molecules generated from the Bayesian Optimizers had either 

0 or 1 aromatic rings with more molecules having 0 (Figure 11). The Bayesian Optimizers greatly 

differ from the known SRC Kinase Inhibitors regarding the number of aromatic rings. With the 

known SRC Kinase Inhibitors, the general distribution of molecules is even between values of 1 

and 6 for the number of aromatic rings, and the highest concentration of molecules has either 3 or 

4 aromatic rings (Figure 11). Neither of the Bayesian Optimizers produced any valid molecules 

with the number of aromatic rings being greater than 3, which suggests that the hyperparameter 

tuning calculations of both optimizers underperformed on the number of aromatic rings feature. In 

addition to the underperformance of tuning of the aromatic ring feature, the lack of valid molecules 

could imply the need for greater iterations of each Bayesian Optimizer.  
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Figure 12. Histograms of the distribution of the number of aromatic carbocycles of the 
generated molecules of (A) the Unbiased Bayesian Optimizer, (B) the Biased Bayesian 

Optimizer, and (C) the set of Known SRC Kinase Inhibitors 

The last feature that was compared between the Bayesian Optimizers and the known SRC Kinase 

Inhibitors was the number of aromatic carbocycles. Carbocycles are organic molecules that contain 

one or more rings. Aromatic carbocycles are carbocycles where the rings of the molecule are 

benzene rings (Hu, Li, Han, Min, & Li, 2020). The Bayesian Optimizers performed almost 
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identical in its overall distribution, as well as its area of highest concentration. Most of the 

molecules generated from the Bayesian Optimizer were calculated to have 0 aromatic carbocycles, 

with 1 being the next highest concentration (Figure 12). The known SRC Kinase Inhibitors had an 

even distribution of molecules between the values of 0 and 4 aromatic carbocycles; however, the 

number of aromatic carbocycles with the highest concentration of molecules was 2 (Figure 12). 

Although the Bayesian Optimizers underperformed in generating molecules with a similar number 

of aromatic carbocycles to the known SRC Kinase Inhibitors, the optimizers were more accurate 

in its calculations in comparison to the number of aromatic rings. The lack of similarity between 

the number of aromatic rings and number of aromatic carbocycles in the molecules generated from 

the Bayesian Optimizers and the known SRC Kinase Inhibitors could suggest that Bayesian 

Optimizers could not determine the best way to modify the latent space coordinates to affect these 

features in significant way. The extreme differences between the generated molecules and the 

known SRC Kinase Inhibitors also imply that simply modifying the iteration or initial point values 

of the Bayesian Optimizers would not be enough to improve the aromatic carbocycles of the 

generated molecules.  

5.5.3 QED, logP, and SAS Evaluations 

After analyzing the chemical features determined to be the most important by the chemical feature 

based Random Forest model, the calculations of the QED, logP, and SAS values were evaluated 

in the comparison to the known SRC Kinase Inhibitors. One of the main reasons for this is because 

of their importance in chemical synthesis and cellular absorption.  
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Figure 13. Bar Graphs of (A) the average QED scores, (B) the average logP scores, and 
(C) the average SAS scores of the molecules generated from the Biased and Unbiased 

Bayesian Optimizer, in comparison to the known SRC Kinase Inhibitors 

When determining the performance of the Bayesian Optimizers in relation to the chemical feature 

values of QED, logP, and SAS, the generated molecules from the optimizers had similar average 

SAS scores compares to the known SRC Kinase Inhibitors but had significant differences in the 

average QED and logP scores.  The average QED scores for the Unbiased and Biased Bayesian 

Optimizers’ generated molecules were 0.7499 and 0.7486 respectively, in comparison to the 
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known SRC Kinase Inhibitors’ average QED score of 0.5908 (Figure 13A). The average logP 

scores for the Unbiased and Biased Bayesian Optimizers’ generated molecules were 2.488 and 

2.439 respectively, in comparison to the known SRC Kinase Inhibitors’ average logP score of 

4.137 (Figure 13B). The average SAS scores for the Unbiased and Biased Bayesian Optimizers’ 

generated molecules were 2.742 and 2.772 respectively, in comparison to the known SRC Kinase 

Inhibitors’ average SAS score of 2.706 (Figure 13C). The general similarity of the scores of the 

generated molecules in comparison to the known SRC Kinase Inhibitors suggest that the metrics 

are being tuned as a part of the Bayesian Optimizers’ hyperparameter tuning process.  While there 

are differences between the generated molecules and the known SRC Kinase Inhibitors when 

analyzing the QED and logP scores, the scores imply that the molecules produced by the Bayesian 

Optimizers would be synthesizable and/or absorbable even with lower similarity metrics in other 

chemical features. This suggests that improving the Bayesian Optimizers to achieve higher quality 

molecules would be overtly beneficial as the higher quality molecules would retain the practicality 

of their synthesizability or bodily absorbability. To ensure that higher quality molecules would be 

produced, the molecules’ similarity metrics would also need to be tested against known SRC 

Kinase Inhibitors to ensure the feasibility of their relation to kinase families.  

 

 

 

 

5.5.4 Tanimoto Similarity Testing Evaluation 
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Figure 14. Bar Graphs of (A) the average similarity scores of all generated molecules, 
(B) the max similarity scores of all generated molecules, and (C) the average similarity 
scores of the generated molecules with a calculated Kinase Inhibition Likelihood score 

above 0.5 from the Biased and Unbiased Bayesian Optimizers 

To evaluate the similarity testing metrics, we investigated the performance of each of the Bayesian 

Optimizers based on average similarity scores of the generated molecules, as well as the maximum 

similarity score that each model produced. When analyzing all the molecules generated from each 

Bayesian Optimizer, the average Tanimoto similarity scores for the Unbiased and Biased Bayesian 
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Optimizers were 0.4656 and 0.4446 respectively (Figure 14). The maximum Tanimoto similarity 

scores for the Unbiased and Biased Bayesian Optimizers were 0.7115 and 0.7091 respectively 

(Figure 14). After removing all the generated molecules that had a calculated Kinase Inhibition 

Likelihood score below the baseline value of 0.5, the average similarity scores of the Unbiased 

and Biased Bayesian Optimizers were raised to 0.5635 and 0.5551 respectively (Figure 14). The 

maximum Tanimoto similarity scores did not change after removing all the generated molecules 

with a Kinase Inhibition Likelihood score below the baseline.  

The similarity scores produced by each Bayesian Optimizer indicate that the Optimizers require 

significant improvement before the desired quality of molecules are produced. In similar 

experiments, the threshold for determining the feasibility of generated molecules was a Tanimoto 

similarity score above 0.75. Neither Bayesian Optimizers produced a single molecule above the 

high similarity threshold. Although the cause of the generation of lower similarity scoring 

molecules could be the scoring function, it would be impossible to come to that conclusion at this 

time. This does not mean the experiment was not a success as there were molecules generated with 

a similarity score close to the threshold indicating some level of SRC Kinase Inhibition potential.  

5.5.5 Analysis of Top Generated Molecules and Bayesian Optimizers 

Through our targeted based experimentation of the computational space of kinase inhibitors, we 

were successful in generating novel molecules with the potential of being SRC Kinase Inhibitors. 

Using kinase inhibition likelihood, the drug-like property comparison, and similarity metrics, both 

the Unbiased and Biased Bayesian Optimizers performed similarly in the creation of molecules 

most resembling SRC Kinase Inhibitors. The Biased Bayesian Optimizer did generate a larger 

quantity of molecules compared to the Unbiased Optimizer; however, a larger percentage of 
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molecules the Biased Optimizer generated were removed when accounting for a baseline value of 

0.5 for the calculated Kinase Inhibition Likelihood. When comparing the Bayesian Optimizers on 

the chemical features and Tanimoto similarity score calculations, the two Bayesian Optimizers 

performed similarly with the Unbiased Optimizer having a slight advantage with respect to the 

Tanimoto similarity scores to known SRC Kinase Inhibitors. The Biased Bayesian Optimizer 

produced a molecule with a much higher calculated Kinase Inhibition Likelihood score than any 

molecule produced by the Unbiased Optimizer, but the Unbiased Optimizer’s generated molecules 

had a higher average calculated Kinase Inhibition Likelihood score. In addition, the Kinase 

Inhibition Likelihood score was used to determine a molecule’s potential feasibility of being a 

SRC Kinase Inhibitor; however, the Tanimoto Similarity scores to known SRC Kinase Inhibitors 

was given more significance in interpreting the results. The results from this experiment 

demonstrated that a bias within Bayesian Optimization functions may not be as impactful as 

originally thought. Even though the Biased Bayesian Optimization function was trained on 2258 

SRC Kinase Inhibitors, the biased and unbiased models performed very similar.  

Both the calculated Kinase Inhibition Likelihood and the Tanimoto similarity scores do not 

individually have a strong enough impact in determining the quality of the generated molecule. 

When used in conjunction, the two scores help give stronger evidence of a given molecule’s 

success as a novel kinase inhibitor; however, it is not until the chemical features are incorporated 

that a more concrete conclusion of a given molecule can be drawn. Since the specific chemical 

features of QED, logP, and SAS have been shown to play a role in a molecule’s drug like behavior, 

it is necessary to include those metrics along with the calculated Kinase Inhibition Likelihood, and 

the Tanimoto similarity scores with the generated molecules. Otherwise, a generated molecule 

could have high Kinase Inhibition Likelihood and Tanimoto similarity scores, but the chemical 
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features indicate the molecule would fail in either synthesis or fail to be absorbed by the body, 

making the molecule unsuccessful. 

 

Figure 15. The Top Three Molecules Generated from the Unbiased Bayesian Optimizer 
with the Closest Known SRC Kinase Inhibitors 

After initially analyzing the top molecules generated from the Unbiased Bayesian Optimizer 

shown in Figure 15, the molecules that were generated seem to be different from the known SRC 

Kinase Inhibitors they are most like. The Tanimoto similarity scores of the top molecules were not 

significant with the highest similarity score being only 0.71153 (Figure 15). In addition, the 

calculated Kinase Inhibition Likelihood scores were above the baseline threshold of 0.5; however, 

the scores were not as high as we would have liked them to be. Apart from the logP score of the 

third molecule being -0.15078, the other QED, logP, and SAS metrics were within the acceptable 
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range for and SRC Kinase Inhibitor, indicating that the molecules generated could be feasible if 

synthesized.  

The final molecule within the top three from the Unbiased Optimizer having a negative logP value 

is slightly concerning with the overall accuracy of the Optimizer. While the molecule did perform 

well with the Tanimoto similarity score and had an average calculated Kinase Inhibition likelihood 

score, the poor chemical metrics indicate that synthesis of this molecule would be infeasible. For 

this specific experiment, there are no plans for synthesizing any molecules; however, the high 

scoring molecule with poor metrics imply that the Unbiased Optimizer may need more iterations 

during training or an overall improvement to the scoring function used within it.  

The Unbiased Optimizer’s top generated molecules were diverse in their molecular structure which 

suggests that the Unbiased Optimizer performed well in its searching of the molecular latent space. 

By expanding its searching parameters, the Optimizer could better find the local optima and 

produce more diverse molecules each with high potential of being an SRC Kinase Inhibitor. With 

a greater number of iterations or initial points, the Optimizer could improve more and produce a 

set of molecules with Tanimoto similarity scores and calculated Kinase Inhibition Likelihood 

scores closer to 1.  
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Figure 16. The Top Three Molecules Generated from the Biased Bayesian Optimizer 
with the Closest Known SRC Kinase Inhibitors 

In the results of the Biased Bayesian Optimizer there was a pattern amongst the relationship 

between the generated molecules and the corresponding known SRC Kinase Inhibitor that they 

were most like (Figure 16). Of the top generated molecules, based on their Tanimoto similarity 

score to known SRC Kinase Inhibitors, there were two known SRC Kinase Inhibitors that were 

the most like the generated molecules. The same two known inhibitors score the highest in 

similarity until the nineteenth generated molecule in the list of all generated molecules. It could be 

that the bias within the Bayesian Optimizer had little effect on the overall outcomes due to the 

strong similarity of all the metrics used for testing the success; however, the repeated known SRC 

Kinase Inhibitors demonstrates that the bias ultimately skews the results. Since this pattern only 

occurred with the results from the Biased Optimizer, the repeated similar known molecules could 
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be the result of the probing before the optimizer was initiated. By probing in the areas of the known 

SRC Kinase Inhibitors, the Bayesian Optimizer potentially learned which areas of the latent space 

had the highest potential of valid molecular generation. It is possible that in the process of probing 

on the training set of known SRC kinase inhibitors that certain molecular motifs had a higher 

success rate of generation than others. This would cause the Bayesian Optimizer to focus on those 

areas of the latent space thereby generating more molecules with similar motifs. The generated 

molecules would all be similar to the same known SRC kinase inhibitors in the testing set because 

of their shared molecular motifs explaining the repeated known molecules. One of the downsides 

of this skewed searching of the latent space is regarding the local optima of the latent space. By 

staying within one of the local optima, the Optimizer fails to find a potentially higher scoring 

region. The similarity in scores to the Unbiased Optimizer suggests that the Biased Optimizer did 

find a local optimum but is hindered by the initial probing and does not properly search for more 

concentrated areas. By introducing less molecules for the Biased Optimizer to be trained on before 

initializing points, the Optimizer could start out with the knowledge of highly concentrated areas 

of the latent space, while also not being overtrained to stay within any given optimum. This would 

allow the Biased Optimizer to properly utilize the information given before training without the 

bias hindering the overall results.  

The results from the Biased Optimizer indicate that a bias within a Bayesian Optimization function 

does not necessarily increase the overall success of the optimization function. Bias within the 

optimization function seems to affect which parameters are most impacted during the 

hyperparameter tuning which causes only minor differences between the molecules generated. 

While the Biased Bayesian Optimizer did produce about 26.15% more valid molecules than the 
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Unbiased Bayesian Optimizer, the overall quality of the molecules was similar across both 

optimizers.  

Due to a grant by the Kay Foundation, we were able to send several molecules to Professor 

Keykavous Parang in the Pharmacy school during our experimentation process. I would like to 

extend my gratitude to him and the other Pharmacy collaborators for participating in this 

experiment. By providing monetary support, the Kay Family Foundation allowed us to not only 

conduct the initial experiments to generate the novel molecules using machine learning techniques, 

but also encouraged the collaboration with the School of Pharmacy which furthered our experiment 

with concrete results. The molecules that were sent to Dr. Parang and other Pharmacy School 

collaborators had simpler chemical structures allowing for a greater success rate with chemical 

synthesis. Along with that, the other chemical metrics used to calculate the Kinase Inhibition 

Likelihood score indicated that the molecules would be significant enough to propose for chemical 

synthesis.  
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Figure 17. Top Molecules Generated Through Bayesian Optimization Sent to Pharmacy 
School for Synthesis (Molecules 1-3)  



 

67 

 

Figure 18. Top Molecules Generated Through Bayesian Optimization Sent to Pharmacy 
School for Synthesis (Molecules 4-6) 
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Figure 19. Top Molecules Generated Through Bayesian Optimization Sent to Pharmacy 
School for Synthesis (Molecules 7-9) 

The molecules that were sent to Dr. Parang’s lab are shown in Figure 17, along with the known 

SRC Kinase Inhibitor each molecule is most similar, the Tanimoto Similarity score, and the 

calculated Kinase Inhibition Likelihood value. There was a total of 206 molecules generated 

through the Bayesian Optimization process that were sent to the School of Pharmacy for 

chemical synthesis. Due to the significance of synthesizing molecules generated from this 

experiment, more sample molecules with their most similar known SRC Kinase Inhibitor are 

shown through Figure 17. One of the noticeable aspects of this set of top molecules compared to 
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the top molecules from the Biased and Unbiased Bayesian Optimizers are the simpler chemical 

structures of the generated molecules. By having simpler chemical structures, the process of 

synthetization is easier and more cost effective. The top scoring molecule in terms of Tanimoto 

Similarity score to known SRC Kinase Inhibitors had a value of exactly 0.5 and a Kinase 

Inhibition Likelihood score of 0.649 (Figure 17). Although the Tanimoto similarity scores to the 

known molecules are not as high as some of the other generated molecules, these molecules 

being sent for chemical synthesis gives a greater amount of substance to this experiment. 

The distinct spread of the calculated Kinase Inhibition Likelihood score in comparison to the 

Tanimoto Similarity score is shown with the top molecule of this set having a similarity score of 

0.5 and Kinase Inhibition Likelihood score of 0.649, while the next top molecule having a 

similarity score of 0.4778, but a Kinase Inhibition Likelihood score of 0.406. The differences in 

scores of the generated molecules further emphasizes the room for improvement that the 

calculated metric has. The possible success of chemical synthesis of the generated molecules sent 

to Dr. Parang’s lab gives another potential feature to include in the scoring function of the 

calculated Kinase Inhibition Likelihood. The additional feature of chemical synthesis success 

could further improve the measurement metric leading to higher quality molecules in the future. 

By improving the developed metric, the significance of this set of molecules is expanded to not 

only giving a more concrete outcome of this experiment, but also allowing future experiments to 

benefit and produce molecules with greater potential of being SRC Kinase Inhibitors.   
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 6 Conclusion 

The field of computational drug discovery and development continues to grow at a rapid pace, 

with generative deep learning being at the forefront. Due to a generous grant from the Kay 

Foundation, we were able to motivate the progress of generating new compounds for potential 

synthesis and therapeutic benefits using data-driven methods and various Machine Learning tools 

and mathematical applications. Our dataset consisted of 10 different kinase inhibitor families and 

numerous small molecules, all taken from ZINC and the GDB-17 Small Molecule Database. After 

encoding and mapping our molecules in a continuous latent space representation, we implemented 

a chemical feature based Random Forest Binary Classifier and predictor model to create an all-

encompassing metric of kinase inhibition likelihood. The Random Forest Binary Classifier was 

then used as the scoring function for a Bayesian Optimization process that generated novel 

molecules through latent space search methods. 

Through our analysis, we found that the Bayesian Optimization process was successful at 

generating novel molecules and showing it has the potential to produce molecules that are SRC 

Kinase Inhibitors. When analyzing the top molecules from each Bayesian Optimizer implemented, 

the highest scoring molecules had a Tanimoto Similarity score of 0.711 and 0.709 to a testing set 

of known SRC Kinase Inhibitors. Those molecules had calculated Kinase Inhibition Likelihood 

scores of 0.586 and 0.575 respectively. These scores of the top molecules show that the Optimizers 

can create molecules with the potential of being SRC Kinase Inhibitors indicated by the Tanimoto 

Similarity scores; however, the disconnect between the similarity scores and the calculated Kinase 

Inhibition Likelihood scores demonstrates the necessity to improve the underlying scoring 

function. The highest scoring molecule in terms of the calculated Kinase Inhibition Likelihood 
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came from the Biased Bayesian Optimizer with a score of 0.842, but the Tanimoto Similarity score 

of the molecule was only 0.548 further emphasizing the disconnect between the two metrics.   

In determining the kinase inhibition potential of a generated molecule, the Tanimoto Similarity 

score and the calculated Kinase Inhibition Likelihood value are used in conjunction with respect 

to the baseline threshold of each metric. For Tanimoto similarity score, the threshold for 

determining high similarity to a known SRC Kinase Inhibitor is 0.75. For Kinase Inhibition 

Likelihood, the threshold for this experiment was 0.5, but in similar experiments the threshold was 

determined to be 0.75. While no generated molecule from either optimizer reached the 0.75 

threshold for Tanimoto Similarity score, there were a total of 7 generated molecules with a Kinase 

Inhibition Likelihood value above the unadjusted threshold of 0.75. The Unbiased Optimizer 

produced 4 molecules above the unadjusted threshold, and the Biased Optimizer produced 3 

molecules. These results show that the Bayesian Optimizer, in its current state, is not the best 

model for generating Kinase Inhibitors for a specific target family. If the scoring function were to 

be improved, the Bayesian Optimizer model could produce significantly better results; however, 

the Bayesian Optimizer’s learning process may be too inaccurate for molecular generation. By 

searching through the latent space of molecules to find local optima, the optimizers risk finding a 

shallow optimum and missing more concentrated areas of the molecular latent space. In this 

experiment, the Biased Optimizer experienced this problem during its training. After using known 

SRC Kinase Inhibitors to probe the model before initiating random points, the optimizer learned 

the locations of some local optima where molecules from the training set were located. The overall 

low similarity scores and Kinase Inhibition Likelihood scores indicate that the optimum the 

optimizer found during training was not the best location within the latent space. Due to the 

exploitation processes of the Bayesian Optimizers, the model stayed within the local optimum 
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rather than expanding its searching process for a potentially more concentrated area demonstrating 

the shortcomings of this model within molecular generation or drug discovery.  

This experiment also demonstrated that the Bayesian Optimization process would need to be 

improved prior to any continuation experiments for the generation of higher quality molecules. It 

was determined that training the Bayesian Optimization function before initiating the optimization 

process had little effect on the quality of the molecules generated. When conducting drug discovery 

experiments, creating diverse molecules is more important due to the chemical synthesis process. 

If all molecules generated are one atom or one bond off, if one fails to synthesize properly it could 

mean that the rest of the generated molecules would also fail during synthesis. By creating a more 

diverse set of molecules, the rate of success in the synthetization process could increase thereby 

causing the experiment to be a success as well. Though the Biased Bayesian Optimizer did produce 

similar molecules in terms of the similarity scores and Kinase Inhibition Likelihood scores, the 

repeated motifs of the known SRC Kinase Inhibitor most like the generated molecules indicate the 

optimizer’s lack of ability to generate diverse molecules. The experiment showed that the 

Unbiased Bayesian Optimizer would be the better optimizer to use in future experiments due to 

the diversity of molecular motifs found in the generated molecules. 

The additional set of generated molecules that were sent to Dr. Parang’s lab for chemical synthesis 

gives a better baseline set of models for the Bayesian Optimizers. Although the molecules sent to 

Dr. Parang’s lab were created earlier in the experiment’s lifespan, the success rate of the 

molecules’ chemical synthesis creates an opportunity to further improve the Kinase Inhibition 

Likelihood metric developed for this experiment. The top molecules from this set had Tanimoto 

Similarity scores of 0.5, 0.4778, 0.445 while their corresponding Kinase Inhibition Likelihood 

scores were 0.649, 0.406, and 0.719 respectively. Since the Tanimoto Similarity score metric is a 
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heavily utilized measurement method within the field of computational drug discovery, the 

similarity scores carry a stronger weight in determining the potential for a molecule to be an SRC 

Kinase Inhibitor. However, the structural or chemical makeup of a molecule is not a reliable sole 

factor in determining the kinase inhibition ability of a generated molecule. The chemical synthesis 

success of a generated molecule can be used in training of the Random Forest model to vastly 

improve the accuracy of the calculated score. By improving the accuracy of the score, the 

calculated Kinase Inhibition Likelihood value can become more valuable than the Tanimoto 

Similarity score in determining the potential of a given molecule to belong to a specific target 

kinase family. Due to the differences in structural motifs within a given kinase family, it would 

not be unreasonable to assume that molecules that demonstrate kinase inhibition properties, but 

that do not share structurally similarities could still belong to a target family. This shows one of 

the drawbacks of using the Tanimoto similarity score with greater emphasis than the calculated 

Kinase Inhibition Likelihood score which is based on a more diverse set of chemical features.  

6.1.1 Future Expansions 

Improving the scoring function to be more accurate at scoring molecules would be the next step in 

expanding our research. Currently the calculated Kinase Inhibition Likelihood score is a good 

metric at determining the general potential a generated molecule has, but it is not as all-

encompassing of a metric as we would have liked. One possible idea for improving the Random 

Forest function that is used as the basis for the scoring function is incorporating the Tanimoto 

similarity score into its calculations. By using the similarity score of any generated molecule as a 

possible feature for the Random Forest, the calculated Kinase Inhibition Likelihood score could 

become more accurate as it incorporates more knowledge of the SRC Kinase Inhibitors before 

producing a score.  
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The next step would be implementing a General Adversarial Network (GAN) into our experiment 

to improve the quality of the generated molecules. The GAN would take the scoring function used 

in the Bayesian Optimization process to make kinase inhibiting alterations to small molecules. By 

utilizing the scoring function, the GAN would make more targeted alterations than the Bayesian 

Optimizer which would allow for the greater production of high-quality molecules. To produce 

higher quality molecules, the scoring function would need to be improved to have more accurate 

predictions of the Kinase Inhibition Likelihood score.  
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