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Identifying causal estimates of peer-to-peer influence in networks is critical to marketing strategy, public 
policy and beyond. Unfortunately, separating correlation from causation in networked data is complicated. 
We argue that randomized experimentation in networks, made possible by the digitization of human 
interaction at population scale, can dramatically improve our understanding of the ebb and flow of market 
trends, product adoption and diffusion, the spread of health behaviors, the productivity of information 
workers and whether or not particular individuals in a social network have a disproportionate amount of 
influence on the system. We also discuss some of the complications that arise when conducting randomized 
experiments in networks by describing an experiment designed to test how different viral product design 
strategies affect peer influence and social contagion in new product diffusion. 
 
Key words: Peer Influence, Social Contagion, Social Networks, Endogeneity, Causality, Randomized 
Experiments. 
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Introduction 

 The recent availability of massive amounts of networked data generated by email, instant 

messaging, mobile phone communications, micro-blogs and online social networks is enabling studies of 

population level human interaction on scales orders of magnitude greater than what was previously 

possible (Lazer et. al 2009). One important goal of applying statistical inference techniques to large 

networked datasets is to understand how behavioral contagions spread in human social networks. More 

precisely, understanding how people influence or are influenced by their peers can help us understand the 

ebb and flow of market trends, product adoption and diffusion, the spread of health behaviors such as 

smoking and exercise, the productivity of information workers and whether or not particular individuals 

in a social network have a disproportionate amount of influence on the system. 

However, if we are to truly understand how social interaction and peer influence shape behavioral 

dynamics in large networked populations, we must be able to separate correlation from causation. By 

now, there is abundant empirical evidence that human behaviors tend to cluster in network space and in 

time. Recent studies have shown behavioral clustering for trends in obesity, smoking, product adoption, 

happiness, economic development and more. But, several alternative explanations besides peer influence 

and social contagion could also explain these patterns. For example, people tend to make friends with 

those that are like themselves, a social process called homophily. As a result, preferences and behaviors 

cluster in networks because we tend to choose friends who like the same things and behave in the same 

ways that we do. Peers are also more likely to be exposed to the same external stimuli. We tend to make 

friends with people we work with or who live nearby. As a result, our exposure to changes in health 

benefit plans at work or new restaurants opening in our neighborhoods is correlated with that of our 

friends. Our correlated exposure to such external stimuli can in turn drive patterns of correlation in our 

behaviors over time. 

Separating correlation from causation in patterns of networked behavior over time is important 

for two reasons. The causal structure of the underlying dynamic process that governs the spread of a 
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behavior implies 1) different diffusion properties for the behavior – where it is likely to spread next and 2) 

different optimal containment and promotion policies. Consider two hypothetical scenarios in which 

marketing data show that the adoption of a new product is significantly correlated amongst linked 

consumers. In one scenario 90% of this correlation is explained by peer influence – friends convincing 

friends to adopt the product, and only 10% is explained by correlated preferences. In an alternative 

scenario, 10% of the correlation is explained by peer influence while 90% is explained by correlated 

preferences. In the first scenario, a peer-to-peer marketing strategy that creates incentives for adopters to 

spread positive word-of-mouth (WOM) about the product may be quite effective. In the second scenario, 

a traditional market segmentation strategy based on observable characteristics of consumers may be much 

more effective and a peer-to-peer strategy may not work at all. The same logic applies to whether the 

National Institutes of Health should allocate substantial funding to peer-to-peer obesity prevention 

programs, whether the American Lung Association should focus on peer smoking prevention strategies 

and whether advertisements such as the Department of Transportation’s ‘Friends Don’t Let Friends Drive 

Drunk’ campaign are likely to succeed. Developing methods that robustly identify causal estimates of 

peer-to-peer influence in social networks will therefore have dramatic implications for marketing strategy, 

public policy and organizations. Recent scientific debates about the veracity of a series of high profile 

studies of contagion in networks (e.g. Christakis and Fowler 2007, Lyons 2011) serve to highlight both 

the scientific stakes and the public policy implications of this important area of inquiry. 

We discuss the difficulties of causal statistical estimation of peer influence in networks, review 

current approaches to establishing causality in observational data and propose methods based on 

randomized experimentation designed to control observable and unobservable confounding factors. We 

then present evidence from a randomized trial of peer influence in product adoption among 1.4 million 

friends on Facebook.com (Aral and Walker 2011a) which illustrates how randomized trials can be used to 

identify when and under what conditions influence propagates over network ties. 

 

Endogeneity and the Identification of Peer Influence in Networks 
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Several sources of bias in both cross sectional and longitudinal data on interactions and outcomes 

among peers can confound assessments of peer influence and social contagion in networks including 

homophily (Aral et al. 2009, Shalizi and Thomas 2011), simultaneity (Godes and Mayzlin 2004), 

unobserved heterogeneity (Van den Bulte and Lilien 2001), truncation (Van den Bulte and Iyengar 2010) 

and other contextual and correlated effects (Manski 1993). If uncorrected, theses biases can lead 

researchers to incorrectly attribute observed correlations to the influence of individuals on their peers 

resulting in misinterpretations of social contagion and the treatment effects of viral marketing campaigns, 

peer-to-peer behavioral interventions or viral product design strategies (Aral 2011). 

Several approaches to the identification of peer effects have been proposed including peer effects 

models (e.g. Bramoulle et al 2009), actor-oriented models (e.g. Snijders et al. 2006), instrumental 

variables methods based on natural experiments (e.g. Tucker 2008), dynamic matched sample estimation 

(Aral et al. 2009), structural models (e.g. Ghose and Han 2010) and ad hoc approaches (Christakis and 

Fowler 2007). However, randomized trials are believed to be the most effective way to obtain unbiased 

estimates of causal peer effects (Duflo et al 2006). 

 

Randomized Trials of Peer Influence 

 Randomized trials in networks create unique estimation challenges that require particular 

attention to experimental design. Two primary experimental designs have been used in network studies – 

network structure randomization and treatment randomization. Network structure randomization tests 

how particular network configurations affect behavioral dynamics by randomly assigning experimental 

subjects into different network structures or different positions within a network structure (Kearns et al 

2006, Centola 2010, Suri and Watts 2011). Treatment randomization designs on the other hand estimate 

the propagation of behaviors through peer influence by measuring the effect of a randomly assigned 

treatment on the behavior of peers of the treated (Duflo and Saez 2003, Leider et al 2009, Aral and 

Walker 2011 a, b). We focus here on the challenges inherent in creating successful treatment 
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randomization designs by considering a detailed example of an experiment that we conducted on the 

popular social networking website Facebook.com. 

 

Treatment Randomization – An Experiment Measuring Peer Influence in Product Adoption 

Experimental Design and Procedure 

 We designed a randomized field experiment on Facebook.com to test the effectiveness of 

different viral messaging capabilities in creating peer influence and social contagion in a product's 

adoption among the 1.4 million friends of 9,687 experimental users. We studied a commercial Facebook 

application which lets users share information and opinions about the film industry. The design enabled 

experimental group users to send broadcast notifications and personal invitations to their neighbors, while 

disabling these features for the baseline control group. The application then recorded data on the use of 

these viral features by experimental group users, as well as click stream data on recipient responses to 

viral messages, and their subsequent adoption and use of the application for all neighbors of experimental 

and control group users. This facilitated analysis of the average treatment effect of enabling notifications 

and invitations on peer adoption and network propagation as well as the mechanisms by which a 

particular viral channel influenced peer behavior. Below we outline several challenges and solutions to 

analyzing the results of field experiments that employ treatment randomization. 

 

Inside-Out Experimental Designs 

Randomized trials typically estimate the effect of a treatment on the treated. In contrast, 

measuring social influence requires experiments designed to measure the effect of a treatment on peers of 

the treated. The conventional approach to estimating peer influence and social contagion involves 

modeling individuals’ likelihood or rate of adoption of a behavior as a function of their own personal 

characteristics and their exposure to social influence from their peers. This is typically accomplished by 

estimating the influence of an individual’s social environment ‘inward’ on their own propensity to adopt 

the behavior or product. This conventional approach is infeasible in experimental settings because it is 
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difficult to comprehensively control the network environments of each user in the study. Fortunately, it is 

feasible to treat a user and observe the effect of treatment on the outcomes of their peers (illustrated in 

Figure 1). However, this approach creates two additional estimation challenges. First, it is unlikely that 

the baseline hazard of adoption remains constant from the first adopter to the second adopter to the third 

adopter in the local network around a recruited user. Second, peers of recruited users are not independent. 

 

Figure 1. Arrows indicate the potential flow of influence that the experiment is designed 
to detect. The solid blue circle in the center represents the treated user and the red 
outlines indicate measured treatment effects. 
 

We therefore measured the treatment effect of adding viral features to the applications of the 

treated on the adoption and usage behaviors of their peers by estimating the following variance corrected 

stratified proportional hazards model which accounts for the lack of independence among the multiple 

clustered failure times in the data and allows the baseline hazards to vary by adoption event across stages 

of the diffusion process: 

 

The model is stratified over the K adoption events. represents the baseline hazard of the 

kth adoption event (i’s kth friend adopting) and  represents a vector of covariates affecting the rate of 

adoption of i’s neighbors including i’s viral treatment status (whether they were assigned to active, 

passive, or baseline treatments). 

 

Preventing Selection Effects 
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Selection effects can occur during both the initial recruitment of subjects into the experiment and 

when subjects enter through subsequent peer recruitment (for example, in our experiment, when peers 

adopt in response to a viral message). Steps must be taken to mitigate and measure both possibilities. The 

recruitment campaign we employed was designed to reach a representative audience of Facebook users. 

Observable attributes of recruited peers were measured and compared to population distributions to test 

for selection effects that occur through peer recruitment. However, peer-recruited populations may still 

differ on unobservable dimensions. For example, in our study, it could be that users and peers of users 

who use the viral features are systematically different from randomly selected Facebook users. To avoid 

these sources of selection bias, peers of recruited users only contributed to the local network peer 

adoption of originally recruited users and were not themselves used as test subjects. 

 

Preventing Contamination and Leakage 

In randomized experiments in networks, users assigned to different treatment groups may not be 

strictly isolated from one another and information leakage through indirect network pathways may 

contaminate results. In traditional studies, whether or not the network is measured, relationships may still 

exist between treatment and control populations that create leakage. One benefit of randomized 

experiments in networks is that researchers systematically observe how individuals in the study are 

connected, enabling us to mitigate leakage. 

Since treatment is randomized, leakage will be uncorrelated with treatment assignment and 

cannot account for observed differences in responses to treatments. While it is possible that leakage will 

on average provide some common information to peers of treated users uniformly across treatment 

designations, this should only serve to make estimates across treatment groups more conservative by 

reducing differences between control and treatment groups. In addition, leakage is likely to decay with 

network distance (Aral et al 2007). Nonetheless, leakage could downward bias estimates of treatment 

effects and several measures can help prevent it.  
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First, in our social influence models, we only examined peers of initially recruited adopters. This 

helps avoid selection bias and also excludes individuals (and their potential adopter peers) that adopt in 

chains within a local neighborhood, lessening leakage effects. 

Second, we accounted for users with multiple treated peers. Users may be peers of multiple 

treated users from different treatment groups making it impossible to link their observed outcomes to a 

single treatment. Furthermore, while peers of multiple treated users belonging to the same treatment 

group are clearly classified, measurements of their response may be incorrectly estimated as a 

consequence of being subject to influence from multiple treated friends. 

  Peer treatment randomization prevents us from guaranteeing that all treated friends of a peer will 

receive the same treatment. Consequently we labeled peers with multiple treated friends as contaminated 

as soon as they become so and excluded them from our analysis by censoring them. This procedure could 

underestimate the effect of clusters of adoption on the time to adoption or the number of adopters in a 

local network, but if this is the case, it will do so identically across all treatment types. Furthermore, as 

treatment groups are randomized, there can be no systematic correlation between the treatment of a user 

and that of her adopter peer. 

The procedure we adopted for designating contaminated peers is detailed in Figure 2. In panel (a) 

for times t > t1, peer 2 has multiple treated peers (R and 1) who may have been assigned different 

treatments. Peer 2 is therefore considered contaminated for times t > t1. Panel (b) is identical, but no link 

exists between peers 1 and 2 and consequently neither user is considered contaminated. This procedure 

retains the maximal empirical support for hazard rate estimation and parameterizes our ignorance of what 

might happen subsequent to a user’s contamination. These procedures enable a tightly controlled 

randomized trial of peer influence that addresses potential selection and leakage effects. 
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Figure 2. The initially recruited adopter, labeled R, adopts at time t0. Two peers of user 
R, labeled 1 and 2, adopt at subsequent times t1 and t2 respectively. 

 

Results 

Local Peer Influence 

In our experiment, viral features that require more activity on the part of the user and are more 

personalized create greater marginal increases in the likelihood of adoption per message, but generate 

fewer total messages, creating countervailing effects on peer influence. On average, notifications, which 

are less personalized but also require less user effort, generated a 246% increase in local peer influence 

and social contagion while adding invitations, which are more personalized but require more user effort, 

only generated an additional 98% increase. Although invitations were more effective in encouraging 

adoption per message and were correlated with more sustained product use, they were used less often and 

therefore generated less total peer adoption in the network than passive-broadcast messaging. 

 

 Modeling Total Expected Adoption 

 Randomizing the treatment of peers of the treated enabled us to collect a greater number of 

subjects with randomized treatment status. On the other hand, maintaining consistency in the treatment 

amongst linked peers would have enabled us to directly estimate the total adoption and diffusion of a 

given version of the product in the population. Whether to randomize the treatment of peers of the treated 

or to maintain consistency in the treatment amongst linked peers is an important design choice in 

treatment randomization studies. This choice requires trading off the robustness of estimates of local peer 

effects with the ability to estimate the aggregate adoption of a behavior in the population. Randomizing 
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the treatment of recruited peers creates more randomized observations and mitigates the perpetuation of 

selection bias over successive stages of the diffusion process. On the other hand, maintaining consistent 

treatments for recruited peers enables direct estimation of total adoption and diffusion while reducing the 

chances of leakage from an adopter to a treated peer that receives a different treatment condition.  

 We randomized peer treatments to robustly estimate local treatment effects. However, one can 

model the total expected adoption of each type of application in the population by making a few 

reasonable assumptions. If we assume the average number of peer-recruited adopters of a given user 

depends only on that user’s viral state v and his distance s from an originally recruited user,1 we can 

model the total expected number of adopters of a given version of the product  as follows: 

 

  is the number of originally recruited users (adopter step ) who have been randomly 

assigned to viral treatment state .  is the average number of peers of a user with viral state  and 

distance  (the path length to an originally recruited user) who have adopted the application. One can then 

compare the total expected number of adopters under different treatment designations by assuming an 

equal number of originally recruited users for each treatment group, or comparing the ratios .  

We estimate the passive-broadcast treatment was associated with a 9.13% increase in total diffusion 

relative to the baseline treatment, while active-personalized treatment was associated with a 12.03% 

increase relative to the baseline.   

 

Conclusion 

 Understanding how behaviors spread through social networks is essential to marketing strategy 

and public policy. But, separating correlation from causation in estimates of social contagion is critical to 

                                                           
1 The reliance of average peer recruitment,  on the distance s from originally recruited subjects allows for the possibility 
that selection effects may exist and vary (e.g., be compounded) along chains of sequential user adoptions.  This method further 
assumes that peer recruitment is Markovian in treatment status and thus depends only on a user’s viral state and not on the viral 
states of users in the chain of adoptions that preceded and led to his own adoption.  
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designing successful policy interventions. Randomized trials in social networks are a promising strategy 

for understanding the dynamics of social influence at scale. But, such studies are not without their 

complications. Careful experiments, designed to maintain external validity while avoiding contamination, 

leakage, selection effects and the challenges of statistical estimation in datasets with complex 

interdependencies between observations is essential for our robust scientific understanding of social 

dynamics at scale and thus for informed policymaking. We therefore hope future research on human 

social dynamics in networks will make causal statistical inference a centerpiece of study design. 
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