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We examine how firms can create word-of-mouth peer influence and social contagion by designing viral 
features into their products and marketing campaigns. Word-of-mouth (WOM) is generally considered to 
be more effective at promoting product contagion when it is personalized and active. Unfortunately, the 
relative effectiveness of different viral features has not been quantified, nor has their effectiveness been de-
finitively established, largely because of difficulties surrounding econometric identification of endogenous 
peer effects. We therefore designed a randomized field experiment on a popular social networking website 
to test the effectiveness of a range of viral messaging capabilities in creating peer influence and social con-
tagion among the 1.4 million friends of 9,687 experimental users. Overall, we find that viral product design 
features can indeed generate econometrically identifiable peer influence and social contagion effects. More 
surprisingly, we find that passive-broadcast viral messaging generates a 246% increase in local peer influ-
ence and social contagion effects, while adding active-personalized viral messaging only generates an addi-
tional 98% increase in contagion. Although active-personalized messaging is more effective in encouraging 
adoption per message and is correlated with more user engagement and sustained product use, passive-
broadcast messaging is used more often enough to eclipse those benefits, generating more total peer adop-
tion in the network. In addition to estimating the effects of viral product design on social contagion and 
product diffusion, our work also provides a model for how randomized trials can be used to identify peer 
influence effects in networks.  
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1. Introduction 

 It is widely believed that social contagion and word-of-mouth (WOM) “buzz” about products 

drive product adoption and sales, and firms increasingly rely on “network” and “viral” marketing strate-

gies (Hill et al 2006, Manchanda et al 2008, Nam et al 2010). Yet, two subjects central to the success of 

viral marketing efforts have been largely neglected in the WOM literature – the effectiveness of different 

viral product design strategies and econometric identification of peer influence effects. In order to address 

both topics we conducted a large-scale randomized field experiment to test the effectiveness of different 

viral product features in creating peer influence and social contagion in new product diffusion. 

Viral product design – the process of explicitly engineering products so they are more likely to be 

shared amongst peers – has existed at least since the first chain letter was sent in 1888.1 Today, products 

regularly use IT enabled features like automated broadcast notifications and personalized invitations to 

spread product awareness. Yet, although viral features have become more sophisticated and a central part 

of the design of products and marketing campaigns, there is almost no empirical evidence on the effec-

tiveness of such features in generating social contagion and product adoption. We therefore investigate 

two basic questions: Can firms add viral features to products so they are more likely to be shared amongst 

peers? If so, which viral features are most effective in inducing WOM and peer-to-peer influence in prod-

uct adoption?  

Unfortunately, evaluating the effects of viral product design features is difficult because peer ef-

fects and WOM are typically endogenous (Manski 1993, Godes and Mayzlin 2004, 2009, Hartmann et al 

2008, Aral et al 2009, Aral 2010). We therefore designed and conducted a randomized field experiment 

testing the effectiveness of two of the most widely used viral product features – active-personalized refer-

rals and passive-broadcast notifications – in creating peer influence and social contagion among the 1.4 

million friends of 9,687 experimental users of Facebook.com. The experiment uses a customized com-
                                                           
1 This earliest known example of a chain letter seems to have initiated by four women requesting donations for edu-
cation efforts in New Hampshire: http://www.silcom.com/~barnowl/chain-letter/evolution.html. 
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mercial Facebook application to observe user behavior, communications traffic and the peer influence 

effects of randomly enabled viral messaging features on application diffusion and use in the local net-

works of experimental and control population users. By enabling and disabling viral features among ran-

domly selected users, we were able to obtain relatively unbiased causal estimates of the impact of viral 

features on the adoption rates of peers in the local networks of adopters. Using detailed clickstream data 

on users’ online behaviors we also explored whether positive network externalities generated by addition-

al peer adopters inspired further product adoption and sustained product use. 

WOM is generally considered to be more effective at promoting product contagion when it is per-

sonalized and active. Surprisingly, we find that designing products with passive-broadcast viral messag-

ing capabilities generates a 246% increase in local peer influence and social contagion, while adding ac-

tive-personalized viral messaging capabilities only generates an additional 98% increase. Although ac-

tive-personalized messaging is more effective in encouraging adoption per message and is correlated with 

more user engagement and sustained product use, it is used less often and therefore generates less total 

peer adoption in the network. Overall, we find that viral product design features do generate econometri-

cally identifiable peer influence and social contagion effects and provide a model for how randomized 

trials can identify peer influence in networks. 

 

2. Viral Product Design 

Since the early work of Katz and Lazersfled (1955) there has been great interest in how WOM 

drives consumer demand, public opinion and product diffusion (Brown and Reingen 1987, Godes and 

Mayzlin 2004, Aral et al 2009) and how firms can create broad, systematic propagation of WOM through 

consumer populations (Phelps et al 2004, Mayzlin 2006, Dellarocas 2006, Godes and Mayzlin 2009). 

Many campaigns target “influential” individuals who are likely to propagate organic WOM most broadly 

(Katz and Lazersfeld 1955, Watts and Dodds 2007, Goldenberg et al 2009), using referral programs to 

create incentives for them to spread the word (Biyalogorsky et al 2001). Others use observational evi-

dence on viral campaigns to inform viral branching models of WOM diffusion (Van der Lans et al 2010). 
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However, to this point, studies of viral product design have remained conspicuously absent from the lite-

rature on viral marketing. 

Viral product design involves incorporating specific characteristics and features into a product’s 

design to generate peer-to-peer influence that encourages adoption. A product’s viral characteristics are 

fundamentally about its content and the psychological effects content can have on a user’s desire to share 

the product with peers (Stephen and Berger 2009, Berger and Heath 2005, Heath, Bell and Sternberg 

2001). A product’s viral features on the other hand concern how the product is shared – how features en-

able and constrain a product’s use in relation to other consumers. Viral features may enable communica-

tion, generate automated notifications of users’ activities, facilitate personalized invitations or enable 

hypertext embedding of the product on publicly available websites and weblogs. Two of the most widely 

used viral product features are personalized referrals and automated broadcast notifications. 

Personalized Referrals. Personalized referral features allow users to select their friends or con-

tacts from a list and invite them to adopt the product or service, with the option of attaching a persona-

lized message to the invitation.2 

Automated Broadcast Notifications. Automated broadcast notifications are passively triggered by 

normal user activity. When a user engages the product in a certain way (e.g. sends a message, updates his 

or her status), those actions are broadcast as notifications to the user’s list of contacts. Notifications build 

awareness among friends of new activities or products a user is adopting or engaging with, and can en-

courage those friends to eventually adopt the product themselves.3  

Referrals are more personalized and targeted than broadcast notifications. Users actively select 

the subset of their social network to receive them (targeting) and can include personal messages in the 

                                                           
2 Companies like Facebook enable users to ‘invite their friends’ to join the service through personalized referrals. 
When users send Gmail messages, an automated, pop-up hyperlink enables them to invite recipients to join Gmail. 
3 When a user of LinkedIn.com joins a new group, changes their profile information, connects to a new contact or 
takes a new job, their contacts are informed via email about the activity. Facebook notifies friends when a user 
adopts a new application or achieves some application milestone. 
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referral (personalization).4 WOM is generally considered more effective at promoting product contagion 

when it is personalized and active. When individuals choose to share information about products and ser-

vices with their friends, they tend to activate their strong-tie relationships (Frenzen and Nakamoto 1993, 

Aral & Van Alstyne 2009). Strong ties exhibit greater homophily (Jackson 2008), greater pressure for 

conformity (Coleman 1988) and deeper knowledge about one another. We tend to trust information from 

close “trusted” sources more and to respond more often to them due to reciprocity (Emerson 1962). In 

addition, the personalization of messages makes them more effective, especially in online environments 

in which we are bombarded with irrelevant information (Tam and Ho 2005, Tucker 2010).  

For these reasons, one might suspect that personalized referrals are more effective than broadcast 

notifications. But, although each personalized referral may be more persuasive (more effective per mes-

sage), the pervasiveness of broadcast messages may lead to greater overall peer adoption. The effort re-

quired by the user to actively select and invite peers to adopt the product could inhibit widespread use of 

the personalized referral and so limit its effectiveness in encouraging broad adoption. 

 Viral features can be broadly described using two dimensions: activity and personalization. Ac-

tivity is higher for features that require active user engagement and lower for passive features that gener-

ate automated actions on behalf of users. Personalization ranges from broadcast features that are unselec-

tive in their audience to personalized features targeted and tailored toward specific peers (see Figure 1). 

Active-personalized viral features are generally considered more persuasive, but the additional effort they 

require may curtail their use. The relative overall effectiveness of these viral features is therefore ulti-

mately an empirical question. 

*** Figure 1 About Here *** 

  

3. Empirical Methods 

                                                           
4 Targeting specifies whether the feature is directed at the broad population of potential consumers, a subset of con-
sumers like a current user’s social network, or a specific person. Customization specifies whether the content of a 
feature’s engagement with the recipient can be tailored to a group of friends or a specific individual with a persona-
lized message. 
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3.1. Identification of Peer Influence in Social Networks 

 The effects of viral product design features on social contagion are difficult to evaluate because 

peer effects and WOM are typically endogenous. Several sources of bias in analysis on interactions and 

outcomes among peers can confound assessments of peer influence and social contagion including simul-

taneity (Godes and Mayzlin 2004), unobserved heterogeneity (Van den Bulte and Lilien 2001), truncation 

(Van den Bulte and Iyengar 2010), homophily (Aral et al. 2009), time-varying factors (Van den Bulte and 

Lilien 2001), and other contextual and correlated effects (Manski 1993). If uncorrected, these biases can 

lead researchers to attribute observed correlations to peer influence, resulting in misinterpretations of the 

effectiveness of viral marketing or viral product design choices. 

Several approaches for identifying peer effects have been proposed, including peer effects models 

and extended spatial autoregressive models (e.g. Kelejian and Prucha 1998, Oestreicher-Singer and Sun-

dararajan 2008, Trusov et al 2009, Bramoulle et al 2009), actor-oriented models (e.g. Snijders et al. 

2006), instrumental variables methods based on natural experiments (e.g. Sacredote 2001, Tucker 2008), 

dynamic matched sample estimation (Aral et al. 2009), structural models (e.g. Ghose and Han 2010), and 

ad hoc approaches (Christakis and Fowler 2007). However, randomized trials are considered to be one of 

the most effective ways to obtain unbiased estimates of causal peer effects (Duflo et al 2006).  

 

3.2. Experimental Design and Procedures 

 We partnered with a firm that develops commercial applications hosted on the popular social 

networking website Facebook.com, and collected data on the peer influence effects of enabling viral fea-

tures on the diffusion one of their applications. This application provides users the opportunity to share 

information and opinions about movies, actors, directors and the film industry in general. We designed 

multiple experimental versions of the application in which personalized invitations and broadcast notifi-

cations were enabled or disabled, and randomly assigned adopting users to various experimental and con-

trol conditions. As users adopted the application, each was randomly assigned to one of the two treatment 

conditions or the baseline control condition. The application collected personal attributes and preferences 
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from users’ Facebook profiles, as well as data on their social networks and the personal attributes and pre-

ferences of their network neighbors.5  

The experiment enabled experimental group users to use passive-broadcast and active-

personalized viral messaging capabilities to exchange messages with their network neighbors, while dis-

abling those features for the baseline control group. The application then recorded data on the use of these 

viral features by experimental group users, as well as clickstream data on recipient responses to viral mes-

sages and their subsequent adoption and use of the application. When an individual adopted the applica-

tion as a result of peer influence, their treatment status was also randomized to ensure that the Stable Unit 

Treatment Value Assumption held. This facilitated analysis of the relative effectiveness of different viral 

messaging channels in generating peer adoption and network propagation. Randomization also enabled 

exploration of the mechanisms by which a particular viral channel influenced recipient behavior. Two 

primary viral features were examined: 

Automated Broadcast Notifications (Notifications). When enabled, notifications were generated 

automatically when an application user performed certain actions within the application, such as declaring 

a favorite movie or writing a movie review. When notifications were generated, they were distributed to a 

random subset of an application user’s peers and displayed in a status bar at the bottom of the peers’ Fa-

cebook environment. When a peer clicked on the notification, they were taken to an application canvas 

page where they were given the option to install the application. These notifications required no effort 

beyond normal use of the application, scoring low on the activity dimension. As they were randomly dis-

tributed to a Facebook user’s peers and were not accompanied by a personalized message, they also exhi-

bited low personalization. 

Personalized Referrals or Invitations (Invites). When enabled, invites allowed application users 

to send their Facebook peers personalized invitations to install the application. Peers received the invita-

tion in their Facebook inbox and could click on a referral link contained within the invitation. If they did 
                                                           
5 Facebook allows users to specify privacy settings that may restrict an application’s access to some or part of their 
profile.  This is unlikely to have a significant effect on the study, as it is estimated that less than 2% of Facebook 
users alter default privacy settings (Gross et al 2005). 
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so, they were taken to the application canvas page where they were given the opportunity to install the 

application. Each invite required a conscious and deliberate action from the user beyond typical applica-

tion use, requiring more effort (activity) than notifications. As invites were targeted to specific peers and 

allowed the inclusion of a personalized message, they exhibited greater personalization.  

The experimental design consisted of three treatment groups into which users were randomly as-

signed: baseline, passive-broadcast, and active-personalized. Users assigned to the baseline treatment 

group received a version of the application in which both notifications and invites were disabled. In the 

passive-broadcast treatment group (passive), only notifications were enabled. In the active-personalized 

treatment group (active), both notifications and invites were enabled. There were no other differences be-

tween baseline, passive and active applications. Throughout the experiment, each adopter of the applica-

tion was randomly assigned to a treatment group according to the proportions displayed in Table 1. The 

proportion of users assigned to the baseline was chosen in agreement with the application developer to 

obtain a population size sufficient to establish a comparative baseline, while limiting potential adverse 

effects on the overall diffusion of the product.6 

*** Table 1 About Here *** 

Detailed logs of application user activity, adoption times, viral feature use, peer response, and ap-

plication user and peer profile data were recorded, as were social network relationships for application 

adopters and mutual ties between peers of application users. Our experimental design allowed us to meas-

ure the effect of each of the viral features on the adoption response of peers as displayed in Figure 2. We 

took care to minimize contamination and leakage effects and describe our methods with regard to those 

and other considerations in detail in the Appendix. 

*** Figure 2 About Here *** 

                                                           
6 The developer feared too many baseline users could stunt the viral diffusion of the application and therefore in-
sisted that the number of baseline users be limited. Limiting baseline users should not bias results as the proportion 
of baseline users to either treatment group is constant across treatments and should only make our estimates more 
conservative in that analyses comparing a treatment group to the baseline group will have less power. 
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Recruitment. At the launch of the experiment, we designed an advertising campaign in collabora-

tion with a second Facebook advertising firm to recruit a representative population of Facebook users. 

Advertisements were displayed to users through advertising space within Facebook and within existing 

Facebook applications. The campaign was conducted in three waves throughout the duration of the expe-

riment and cost a total of $6000 to recruit 9687 usable experimental subjects, or 62 cents per recruit.7 The 

number of impressions, clicks, and installation responses are displayed in Table 2. Summary statistics of 

the recruited study population are described in § 4. Comparisons to published demographic statistics indi-

cate the sample is indeed representative of typical Facebook users (see Appendix). 

*** Table 2 About Here *** 

 

4. Analysis and Results 

4.1. Data and Descriptive Statistics 

The experiment was conducted over a 44-day period during which 9687 users adopted the appli-

cation with 405 users randomly assigned to the baseline control group, 4600 users randomly assigned to 

the passive-broadcast treatment group, and 4682 users randomly assigned to the active-personalized 

treatment group. Users in these groups collectively had 1.4M distinct peers in their local social networks 

and sent a total of 70,140 viral messages to their peers, resulting in 992 peer adoptions – 682 of which 

were in direct response to viral messages. Three main observations arise from consideration of the sum-

mary statistics of the resultant data displayed in Table 3. 

*** Table 3 About Here *** 

First, assignment to control and treatment groups was clearly random with no significant mean or 

distributional differences between users in terms of their age, gender, network degree (number of Face-

book friends), and level of Facebook activity (number of Facebook wall posts), confirming the integrity 

of the randomization procedure. 

                                                           
7 The cost per recruited user is several times smaller than the cost-per-user associated with recruitment for lab-based 
experiments.  The low cost of recruitment makes online experiments an excellent source of experimental data. 
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Second, while their demographics and Facebook activity patterns were the same, measures of 

peer response in the network neighborhoods of treated users differed significantly across the treatment 

and control populations. T-tests show that the number and percentage of peer adopters in a user’s local 

network are significantly higher for treated populations than for the baseline population. The number of 

peer adopters in a user’s local network is roughly seven times greater for users in the passive-broadcast 

treatment group and ten times greater for users in the active-personalized group. Similarly, in comparison 

to the baseline group, the percentage of adopters in a user’s local network is roughly 450% higher for us-

ers in the passive-broadcast group and 750% higher for users in the active-personalized group. Measures 

of the speed of adoption in a treated user’s local network, as indicated by the time to the first, second, 

third, and fourth adoption events, reveal that the treatments increased the rate of adoption in a treated us-

er’s local network. The time to the first adopter is roughly 200% shorter for users in the passive-broadcast 

treatment group and roughly 300% shorter for users in the active-personalized group. The extent to which 

the effect of the treatment leads to adoption beyond a user’s immediate local network can be measured by 

the maximal diffusion depth – the maximum network distance from a treated user to any peer adopter in a 

linked chain of adoptions. The average maximal diffusion depth is approximately 360% greater for the 

passive-broadcast treatment group and 450% greater for the active-personalized treatment group com-

pared to baseline users. T-tests reveal these differences are highly significant. 

Finally, the extent to which each treatment leads to increased application use is measured by us-

ers’ average application activity. Average application activity is roughly 130% higher in the passive-

broadcast treatment group and 140% higher in the active-personalized treatment group. We explore more 

formal models of peer influence and social contagion in the next three sections.  

 

4.2. Model Specification 

 Our main statistical approach uses hazard modeling, which is the standard technique for assessing 

contagion in economics, marketing, and sociology (e.g. Van den Bulte and Lilien 2001, Iyengar et al 
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2010, Nam et al 2010). This approach typically represents the hazard of adoption of individual i at time t 

as a function of individual characteristics and social influence: 

))(,)((),,,( tywtxfywxt jj iji ∑= βγλ , 

where )(tλ represents the baseline hazard of adoption; )(txi is a vector of variables unrelated to social 

influence that affect i’s adoption decision; ijw is the social exposure of i to peer j; )(ty j is the adoption 

status of peer j at time t; and γ and β are parameters to be estimated. However, our circumstances re-

quired a slightly different approach as we are interested in estimating the treatment effects of randomly 

assigned viral features on the adoption of peers in the local networks of focal experimental and control 

users, rather than the effects of focal users’ social environments on their own adoption decisions.  

We therefore estimate the peer effects of the treatment ‘outward’ from an individual to their peers 

rather than estimating the effects of an individual’s social environment ‘inward’ on their own adoption 

hazard. Controlled “treatments” of each user’s entire social environment are too complex and costly to be 

accomplished reliably in the field. Observation of the diffusion of the product also requires estimation of 

the adoption hazards of peers and the subsequent adoption hazards of peers of peers. An ‘inside-out’ 

strategy estimating the effects of treatment on adoption in a user’s social environment is therefore the 

most appropriate modeling approach (see Appendix). 

 Our approach compares the hazards of adoption in the social environments of users treated with 

passive and active viral applications to the hazards of adoption in the social environments of users treated 

with the baseline application. The analysis therefore involves multiple failure time data in which multiple 

failures can occur for the same subject over time. In our case, we want to estimate the hazard of multiple 

occurrences of peer adoption in the local networks of treated and untreated users as a function of their 

exposure to different viral features. In multiple failure data, failure times are correlated within cluster (in 

our case within users’ local networks), violating the independence of failure times assumption required in 

traditional survival analysis. The simplest way to analyze multiple failure data is to examine “time to first 

event.” Several studies in the contagion literature take that approach (Iyengar et al 2010). Other studies 
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estimate the time to the first event and each subsequent event separately, which by construction assumes 

the baseline hazards of sequential adoption events are equal (Anderson and Gill 1982). However, those 

specifications overlook potentially relevant information and fail to consider the cascading effects of mul-

tiple adoption events in a network, such as the presence of non-linear network effects in product adoption. 

We therefore employ a variance-corrected stratified proportional hazards approach which accounts for the 

lack of independence among the multiple clustered failure times in the data and allows the baseline ha-

zards to vary by adoption event to account for the possibility that adoption hazards vary across stages of a 

diffusion process. 

Failure times in our data are sequential. The first adoption in a local network precedes the time of 

the second adoption and so on. If ikt is the adoption time for the kth adoption in i’s network, adoption 

times are sequential such that 1−≥ ikik tt . As we observe time-stamped adoption of the application in mi-

nutes and seconds, no two events happen at the same time. As the social process of contagion can be af-

fected by prior adoptions in a local network, for instance if network externalities are present, we assume 

that the baseline hazard function varies over adoption occurrences. We therefore estimate the following 

variance-corrected stratified proportional hazards model: 

βλλ kiX
kkik etXt )(),( 0= , 

where stratification occurs over the K adoption events, )(0 tkλ represents the baseline hazard of the kth 

adoption event (i’s kth friend adopting); kiX represents a vector of covariates affecting the adoption of i’s 

neighbors (including i’s viral treatment status (active, passive or baseline), a measure of i’s level of activi-

ty on the application (Application Activity), peer notifications sent (Notifications), and invites sent (In-

vites)); and β is a vector of unknown parameters to be estimated. We assume i’s kth friend does not adopt 

until their 1−k friend adopts, as this is the case for all our data. Therefore the conditional risk set at time t 

for event k consists of all subjects under observation at time t who have experienced a 1−k  adoption 

event. We estimate β using standard maximum likelihood estimation and adjust the covariance matrix to 
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account for non-independence across individuals i using the following robust covariance matrix (where 

G is a matrix of group efficient residuals): 

11 −− ′= GIGIV  

Results are presented in Table 4. Robustness to different model specifications is shown in the Appendix. 

*** Table 4 About Here *** 

 

4.3. Effects of Viral Product Design on Peer Influence and Social Contagion  

Table 4, Model 1 displays the average treatment effects of passive-broadcast and active-

personalized viral treatments on peer influence and social contagion in the local networks of treated users 

above and beyond control group users who received the baseline application. Users of the passive-

broadcast application experienced a 246% increase in the rate of application adoption by peers compared 

to the baseline group, while adding active-personalized viral messaging capabilities only generated an 

additional 98% increase (active-personalized users experienced a 344% increase over the baseline group). 

Models 2-4 decompose the variance in local network adoption rates explained by these treatments by es-

timating how intermediate variables such as overall application activity, notifications and invites explain 

the resultant increases in peer adoption. Model 3 shows that a significant amount of the treatment effects 

are explained by correlated increases in users’ use of the application and the viral messages their use ge-

nerates. Users assigned to passive-broadcast and active-personalized applications use their applications 

more and send more messages (invites and notifications) that generate greater peer adoption in their local 

networks. Model 4 reveals that invites have a greater marginal impact on the adoption rate of peers than 

notifications. One additional personal invite increases the rate of peer adoption by 6%, while one addi-

tional notification increases the rate of peer adoption by only 2% on average, confirming that more perso-

nalized active features have a greater marginal impact on the rate of peer adoption per message than pas-

sive broadcast features. 
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The clickstream data, which record each time-stamped viral message and any response to it by 

peers, corroborate these results. Table 5 displays the number of invitations and notifications sent, the res-

ponses to those messages that resulted in click-through installations of the application and the resultant 

adoption rate per message. Invitations are the least used but the most effective per message in creating 

peer influence and social contagion. Notifications, which require the least effort and are automatically 

sent to randomly selected peers, generate more messages, but are less effective per message in converting 

new users. 

*** Table 5 About Here *** 

 These results together confirm the main findings of the study: viral product design features do in 

fact generate econometrically identifiable peer influence and social contagion effects. Features that re-

quire more activity on the part of the user and are more personalized to recipients create greater marginal 

increases in the likelihood of adoption per message, but also generate fewer messages resulting in less 

total peer adoption in the network. 

*** Figure 3 About Here *** 

Figures 3a) and 3b) plot the cumulative peer adoptions and the fractions of adopters in the local 

networks of baseline, passive and active treatment users, while 3d) plots the Kaplan-Meier survival esti-

mates for baseline, passive and active treatments respectively.8 Susceptible peers of users in the passive-

broadcast viral treatment group had an approximately seven-fold higher fraction of adopters in their local 

networks compared to baseline users. Susceptible peers of users in the active-personalized treatment 

group had over a ten-fold increase in adoption fraction compared to users in the baseline group, and an 

                                                           
8 Figure 3b) plots the fraction of susceptible peers that adopt the application t days after they become susceptible in 
active-personalized, passive-broadcast and baseline treatment and control groups, while Figure 3a) shows the cumu-
lative adoption in each group. To assess the effect of the treatment group on the adoption of application user’s peers 
through any influence-mediating channel, we identify the time of susceptibility to influence for all peers of buy-in 
users.  To account for fixed-time effects, we look at the adoption response of all susceptible peers t days after they 
first became susceptible. We define the adoption fraction as, )(tAf : 

esusceptibl becomingafterdaystesusceptiblstillarethatpeersofNumber
esusceptiblbecomingafterdaystadoptedhavethatpeersesusceptiblofNumber)( =tAf

 

and we plot the adoption fraction as a function of t for peers of buy-in users assigned to the baseline, passive, and 
active viral treatment groups. 

Electronic copy available at: https://ssrn.com/abstract=1564856



 Creating Social Contagion through Viral Product Design 

 14

additional 1.5-fold increase in adoption fraction over peers of users in the passive viral treatment group. 

These graphs confirm that viral feature design has an economically significant impact on the diffusion of 

product adoption.  

 

4.4. Mechanisms Driving Social Contagion 

Several social mechanisms could explain how viral features create product contagion. An unex-

pected result from the experiment enabled us to investigate these mechanisms. Interestingly, treated users 

not only had more peer adopters, but also used the application more than control group users (see Figure 

3c). As Figure 3c shows, active-personalized users used the application more than passive-broadcast us-

ers, who in turn used the application more than baseline users.  This result is surprising because users 

were randomly assigned to different applications and the versions were identical from users’ point of 

view apart from the invitation option included in the active-personalized application. Understanding why 

use differed across treatment groups (despite randomization) provides insight into how viral features 

create contagion and sustained product use. 

Viral feature inclusion, application use and peer adoption are correlated, as shown in Table 8, 

Model 1, and Figures 3a) and 3c).  The randomized trial confirms that viral features cause peer adoption. 

We also know that because features are randomized and not controlled by the user, no other covariate can 

drive the existence of features. 

While it may seem possible that omitted variables (such as unobserved user heterogeneity) could 

simultaneously drive application use and peer adoption, our data also rule out this possibility. Since fea-

ture inclusion is randomized, the distribution of any unobserved covariates must be the same across 

treatment groups and so, omitted variables cannot produce the discrepancy in peer adoption and applica-

tion use across treatment groups shown in Figures 3a) and 3c). There could be an unobserved covariate 

which must first be activated by the existence of a feature to drive peer adoption and application use; 

however, that too is unsupported by the evidence. As we observe correlation between adoption and use 

beyond that which is explained by use of the invite and notifications features themselves (see Table 7), it 
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seems unlikely that a user characteristic that simultaneously drives peer adoption and use would be acti-

vated by a viral feature that the user does not use.  Given these constraints, we depict the remaining poss-

ible causal relationships between feature inclusion, application use and peer adoption in Figure 4.   

***Figure 4 About Here*** 

Cases (a) and (b) in Figure 4 cannot explain the observed correlation between viral feature inclu-

sion and peer adoption.  Specifically, they are inconsistent with the discrepancy in application use be-

tween users in different treatment groups (Figure 3c and Table 7).   

Cases (c) and (d) represent a network externalities mechanism (Van den Bulte and Stremersch 

2004), in which peer adoption drives increased application use by the original adopter. If peer adoption 

creates more sustained product use, generating more viral messages and a greater likelihood of peer influ-

ence, positive network externalities could create a virtuous cycle of engagement and social contagion. The 

number of peer adopters a user has is positively associated with their own sustained use of the application 

even when controlling for their treatment status, degree and overall Facebook activity (Table 7, Models 

3). In addition, users of active-personalized and passive-broadcast applications exhibit more use (Table 7, 

Model 1) again controlling for observable differences in users’ overall Facebook activity (Table 7, Model 

2). These results are consistent with the existence of positive network externalities – as more of their 

peers adopted the application, users were more engaged and used the application more.9 The network ef-

fects explanation is supported by the evidence and seems plausible.  

However, there could be alternative explanations for these results. For instance, cases (e) and (f) 

in Figure 4 represent a demand effect explanation, in which the correlation between features and applica-

tion use is explained by an increased utility from the existence of viral features. In one variant of the de-

mand effects explanation, the features themselves make the application more interesting and therefore 

simultaneously drive application use and peer adoption, creating a spurious correlation between peer 

adoption and product use. If the mere presence of the invite and notification features was correlated with 
                                                           
9 Although passive-broadcast features are associated with more product use than the baseline early on, this associa-
tion disappears over time (see Figure 3c). That active-personalized features are associated with sustained product 
use while passive-broadcast features are not may suggest a direct network effect from interacting with specific peers. 

Electronic copy available at: https://ssrn.com/abstract=1564856



 Creating Social Contagion through Viral Product Design 

 16

both application use and peer adoption, and if peer adoption itself was not driving use, the correlation be-

tween the number of peer adopters and application use should disappear once we control for the use of 

invites and notifications. However, when we hold constant application use associated with both notifica-

tions and invites there is still a strong positive relationship between the number of peer adopters and ap-

plication use (Table 7, Model 3), implying that increases in application use, beyond that explained by use 

of the viral features themselves, are correlated with more peer adoptions. This suggests demand effects do 

not fully explain the correlation between peer adoption and use.  

It could still be that the viral state of the application itself makes the application more interesting - 

that the mere existence of features rather than their use increases users' utility. However, for that theory to 

be consistent with our data, users would have to derive utility from viral features they do not use. The da-

ta do not support this explanation either. When the viral states are entered into the regression they signifi-

cantly predict application activity in the expected directions and magnitudes (Table 7, Model 1). When 

the number of peer adopters is controlled, those relationships disappear completely (Table 7, Models 3 

and 4), indicating that the viral state of the application alone—or the utility from simply being able to no-

tify or invite friends—does not predict application use. 

An alternative explanation consistent with the causal relationships depicted in (e) and (f) is that 

there is a demand effects from the existence of viral features which inspires peer adoption – that peers’ 

expected utility from adopting the application is higher because they expect to have access to viral fea-

tures. For example, it could be that because a user received an invitation, they adopted the application 

because they valued the ability to invite others and expected to have this feature in the product they 

adopted, creating a demand effect from the expected utility of having viral features enabled. It seems un-

likely that a significant portion of the expected utility from adopting the application comes from the exis-

tence of the viral features rather than the functions of the application itself. However, to address this al-

ternative explanation we performed additional analysis. On average, application use by peer adopters is a 

reasonable proxy for their satisfaction with the product – the extent to which their expectations regarding 

the product conform to the product they actually received upon adoption. We therefore examined the ap-
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plication use of peers that adopted through response to a viral message and divided those peers into two 

groups: those that received (through random assignment) a version of the product with the ability to send 

viral messages of the type they received from their influencing peer and those who received a version of 

the product without the ability to send viral messages of the type they received from their influencing 

peer. T-tests show that the use of the application by those who received applications with the features they 

would expect to receive and those that were “disappointed” (so to speak) by not receiving an application 

with the features they would expect to receive show no significant differences in application use (t-

statistic = 0.9054; S.D. = 8.0377). Given this evidence it is unlikely that adoption and use are explained 

by the attractiveness of the applications with viral features.  These results imply demand effects alone 

cannot explain increased use of applications with viral features. We must therefore reject cases (e) and (f). 

The only remaining explanations are those depicted in (g) and (h), which capture both the demand 

effects arguments (features drive use) and network externalities (peer adoption drives use). Given these 

analyses, network externalities are at least in part responsible for driving application use. But, this is a 

conservative interpretation of the evidence. As we have ruled out most of the plausible demand effects 

explanations in (g) and (h) (that features drive use) it is likely that network effects are entirely responsible 

for the increased application use we observe among treated users. 

Another piece of evidence corroborating network effects is that the hazard rate of adoption is in-

creasing over adoption events, implying a reinforcement effect of prior adoptions on the likelihood of fu-

ture adoption (Van den Bulte and Stremersch 2004). The hazard rate of adoption increases faster than ex-

ponentially for the first several adoption events, then more slowly, suggesting that reinforcement is ap-

proximately constant over peer adoptions. Although we interpret these results with caution because “one 

cannot distinguish between contagion and heterogeneity only on the basis of statistical properties of the 

distributional form” (Taibleson 1974: 878), the fact that the hazard rate of adoption is increasing in the k 

adoption events is consistent with a reinforcement effect of prior adoptions on future adoption. 

***Table 6, Table 8 and Figure 5 About Here*** 
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Finally, Table 8 presents correlates of application diffusion which corroborate results of the ran-

domized trial. Models 4-6 confirm that peers of initial adopters also use the application because diffusion 

depth depends on peers’ (and peers of peers) application use. Active-personalized and passive-broadcast 

treatments significantly increase average diffusion depth and these effects are again explained by applica-

tion use and the viral features themselves (Model 6). Results in Model 3 also corroborate hazard model 

estimates, confirming that invitations are on average three times more effective per message in inspiring 

peer adoption than notifications. Taken together, evidence of a strong correlation between the number of 

adopter friends and application use and the distributional properties of the baseline hazards of adoption 

events suggest that network externalities accelerate contagion. As more of a user’s friends adopt, they use 

they application more, creating a positive feedback loop. 

 

5. Conclusion 

 We conducted a large-scale randomized experiment testing the effectiveness of viral product de-

sign features in creating social contagion. We found that viral product design has econometrically identi-

fiable impacts on peer influence and social contagion in new product diffusion. Results of our randomized 

trial suggest that designing viral features into products can increase social contagion by up to 400%. Sur-

prisingly, designing products with passive-broadcast viral messaging capabilities generates more total 

peer influence and social contagion than adding active-personalized viral messaging capabilities. Al-

though active-personalized messaging is more effective in encouraging adoption per message and is cor-

related with more user engagement and sustained product use, it is used less often and therefore generates 

less total peer adoption in the network. Data on the distributional form of the diffusion process and on 

product use are consistent with the existence of positive network externalities that reinforce peer adoption 

and create a virtuous cycle of engagement and contagion. These results have broad implications for man-

agers attempting to promote viral product diffusion and for theories of social contagion, opinion leader-

ship and viral product design.  

Electronic copy available at: https://ssrn.com/abstract=1564856



 Creating Social Contagion through Viral Product Design 

 19

First, our estimates imply that viral product design may be more effective in encouraging new 

product adoption than traditional marketing strategies alone. Although conversion rates (CR) are always 

significantly smaller than click-through rates (CTR), the CR for notifications and invitations even outper-

formed published statistics on CTR for traditional banner advertising, paid search advertising and email 

marketing campaigns. The 1% CR on notifications outperforms the CTR for traditional banner advertising 

(which range from .10-.20% in publicly available statistics) and invitations are ten times as effective at 

generating conversions as traditional banner ads are at generating click-throughs. Compared to email 

campaign CTR (which range from 2% to 6% in publicly available statistics), invitations are again more 

effective at a 10% conversion rate.10 Notifications and invites also vastly outperform the ad campaign 

used in our recruitment phase on Facebook, which produced .07% and .01% click-through and conversion 

rates respectively. As Facebook currently has the largest market share of display advertising on the Web, 

these comparisons are even more impressive (Tucker 2010). Notifications and invites also outperform 

CTR and CR in paid search advertising, which have been estimated at .15% and .02% respectively 

(Ghose and Yang 2009). These comparisons show viral channels to be more effective at generating higher 

response rates than traditional digital advertising channels on the Web and in Facebook.  

We also asked the directors of the firm with whom we partnered about their feature implementa-

tion and customer acquisition costs and learned that invites can be implemented for a total cost under 

$600. Since implementing viral features incurs a low one-time fixed cost and the expected return is pro-

portional to the increase in adopters the feature generates, viral product design may be a more cost-

effective strategy than increasing spending on traditional digital advertising (which incurs costs propor-

tional to impressions or clicks). It may be however that the success of viral product design efforts depends 

on traditional advertising to the extent that an initial base of users is needed to implement viral marketing. 

It is also important to consider the social cost of viral messages. Bombarding users with messages from 
                                                           
10 Click-through rates on banner ads have declined from 0.33% to 0.19%  from 2004 through 2008 (Forrester, Go 
Big or Go Home Advertising, 2009); DoubleClick reports that in 2008 average CTR in the US was 0.10% for banner 
ads (DoubleClick, Benchmark Report, 2009). For email campaigns, estimated CTR in 2008 and 2009 remained sta-
ble at 5.9%. (Epsilon, October 2009), while Mailer Mailer reports average CTR on email campaigns at 2.80% (Mai-
ler Mailer, June 2009) and Web Market Central reports a "2-3%" CTR (Web Market Central 2007). 
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peers may reduce the overall quality of the user experience. Future work should estimate the costs of viral 

product design more comprehensively and consider the implications of both marginal revenue and mar-

ginal cost on optimal product design. 

Second, given that active-personalized features are more marginally effective but less globally ef-

fective than passive-broadcast features, a natural question is how managers can optimize the effectiveness 

of these viral features. As the main limitation of active-personalized features is that high effort costs cur-

tail their use, one solution may be to couple active-personalized features with referral incentives that en-

courage their use (Biyalogorsky et al 2001). Optimally designed incentive strategies could encourage us-

ers to generate more personalized referrals and to target and personalize viral messages more effectively. 

It may also be possible to improve the low marginal effectiveness of passive-broadcast features by auto-

matically targeting and personalizing broadcast messages algorithmically. If there is a social cost to viral 

messages, product and platform developers could seek to limit impersonal messages in adaptive ways that 

are tied to the effectiveness of the messages themselves. 

Third, in the presence of viral features, network externalities drive a positive feedback loop in 

which product use drives peer adoption and peer adoption in turn drives product use. Managers should 

seek to enable this feedback loop by designing strong direct and indirect network externalities into their 

products. Maximizing engagement and minimizing churn may be obvious goals, but the effects of en-

gagement and churn on product diffusion are less obvious. Interactions between network externalities, 

sustained use and customer churn may change over a product’s lifecycle and may vary across products. 

More work on the relationships between social contagion, sustained use and customer churn over prod-

ucts and product lifecycles will help clarify when viral marketing is most effective. 

Our work also has implications for platform developers that seek to benefit from social interac-

tions taking place on their platforms. Platform developers can enable and constrain the viral features that 

operate in their ecosystem and engineer the user experience to increase sharing, interaction and the virali-

ty of products. If one considers the social cost of “spammy interactions,” continuous redesign of social 

features for the purpose of optimizing the user experience is likely a rational, profit maximizing strategy. 
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From the platform developer’s perspective optimization may take place over different variables and con-

straints, but improving the virality and use of applications available to users is likely an important goal.  

Understanding optimal viral product design strategies, taking into account factors such as sus-

tained product use, network externalities, social and economic costs, incentives and the marginal effec-

tiveness of different viral features, could enable firms to optimally create and manage social contagion. 

The difficulty however is in determining what works and what does not. Numerous statistical challenges 

prevent clean causal estimation of the relationships between interventions and outcomes and the likely 

effects of changes in product design and platform policy. Fortunately, IT-based products and platforms 

provide natural vehicles for randomized experimentation. Given the low cost of conducting experiments, 

the rapid development and testing of viral design features, and the winner-take-all nature of markets with 

network externalities, this type of experimentation is likely to increase in the future and eventually to be-

come commonplace in the development of many products and platforms. Our work sheds light on how 

viral products can be designed to generate social contagion, and offers a template for using randomized 

trials to identify peer influence in networks. 
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Tables and Figures 
Table 1. Stratification Across Treatment Groups 

Baseline 
Control 

Passive-broadcast
Treatment 

Active-personalized
Treatment 

5% 47.5% 47.5% 
 

Table 2. Recruitment Statistics Describing the Initial Advertising Campaign 
Wave  Impressions Clicks Advertising Related Installs Installs 
1 (Day 0) 18,264,600 12,334 3,072 3,714 
2 (Day 15) 20,912,880 25,709 2,619 3,474 
3 (Day 20) 19,957,640 7,624 3,219 4,039 

Total 59,135,120 45,667 8,910 11,227 
 

Table 3. Summary Statistics and Mean Comparisons of Active, Passive and Baseline Users 
 1 2 3 4 5 6 
 Baseline 

(N = 405) 
Passive 

(N = 4600) 
Active 

(N = 4682) 
t-statistic 

(B-P) 
t-statistic 

(B-A) 
t-statistic 

(P-A) 

 Mean 
(SD) 

Mean  
(SD) 

Mean  
(SD) 

t-statistic 
(SE) 

t-statistic 
(SE) 

t-statistic 
(SE) 

Age 31.51 
(13.80) 

30.81 
(13.31) 

29.94 
(13.27) 

.46 
(13.35) 

1.03 
(13.31) 

1.45 
(13.24) 

Gender (1=Male) .25 
(.44) 

.33 
(.47) 

.32 
(.47) 

-1.57 
(.47) 

-1.42 
(.46) 

.40 
(.47) 

Degree† 171.79 
(223.88) 

170.25 
(278.64) 

166.97 
(248.77) 

.09 
(275.13) 

.32 
(247.15) 

.55 
(263.82) 

Number of Facebook 
Wall Posts 

40.52 
(79.89) 

36.45 
(94.16) 

37.07 
(246.76) 

.46 
(93.11) 

.15 
(238.20) 

-.09 
(188.31) 

Number of Adopters in 
User’s Local Network 

.01 
(.12) 

0.07 
(.35) 

0.10 
(.44) 

-2.84*** 
(.34) 

-3.60*** 
(.43) 

-3.64*** 
(.40) 

Percentage of Adopters 
in User’s Local Network 

.02 
(.002) 

.09 
(.01) 

.15 
(.01) 

-1.92* 
(.01) 

-2.35** 
(.01) 

-2.83*** 
(.01) 

Maximum Diffusion 
Depth 

.01 
(.11) 

.04 
(.22) 

.05 
(.24) 

-2.53* 
(.21) 

-3.01*** 
(.24) 

-1.98*** 
(.23) 

Time to 1st Adopter 9.40 
(9.71) 

4.77 
(8.04) 

3.17 
(6.72) 

1.27 
(8.07) 

2.04** 
(6.77) 

2.45*** 
(7.30) 

Time to 2nd Adopter --- 5.23 
(8.17) 

4.43 
(6.97) --- --- 0.58 

(7.45) 

Time to 3rd Adopter --- 5.29 
(8.07) 

3.04 
(5.25) --- --- 1.08 

(6.33) 

Time to 4th Adopter --- 6 
(5.83) 

1.17 
(1.12) --- --- 2.84*** 

(3.58) 

Application Use 3.17 
(4.59) 

4.17 
(7.24) 

4.56 
(8.98) 

-2.54** 
(7.08) 

-2.89*** 
(8.73) 

-2.20* 
(8.16) 

Notes: This table reports means and standard deviations for demographic variables, peer adoption statistics and Facebook and appli-
cation activity statistics of Baseline (Column 1), Passive (Column 2), and Active (Column 3) control and treatment group users, as 
well as results of T-tests of mean differences between Baseline and Passive Users (Column 4), Baseline and Active Users (Column 
5) and Passive and Active Users (Column 6). Variables reported include: Age: Self-reported age on Facebook; Gender (1=Male): 
Self-reported gender on Facebook; Degree: Number of Facebook friends; Number of Facebook Wall Posts: Count of the number of 
‘wall posts’ posted to an individual’s Facebook profile recorded at the beginning of the study; Percentage of Adopters in User’s 
Local Network: The percentage of an individual’s Facebook friends who adopted the application calculated at the end of the obser-
vation period; Time to 1st, 2nd, 3rd, 4th Adopter: The time in days to the first, second, third and fourth adopters in the user’s friend 
network; Application Use: A continuous measure of application calls from a user’s account to the application server indicating the 
number of actions taken on the application. Statistical Significance of T-Tests: ***p<.001; **p<.05; *p<.10; † Kolmogorov-
Smirnov Tests of Degree Distribution Differences: Baseline-Passive: .04, p = .80, N.S.; Baseline-Active: .04, p = .79, N.S.; Passive-
Active:.01, p = .94, N.S. 
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Table 4: Variance-Corrected Stratified Proportional Hazards of Contagion in 
Networks of Baseline, Passive and Active Treatment Groups
 1 2 3 4 

 
Hazard 
Ratio 
(SE) 

Hazard 
Ratio 
(SE) 

Hazard 
Ratio 
(SE) 

Hazard 
Ratio 
(SE) 

Viral State = Passive 3.46*** 
(1.18) 

3.35*** 
(1.15) 

2.50** 
(.86) 

2.51** 
(.86) 

Viral State = Active 4.44*** 
(1.64) 

4.21*** 
(1.56) 

3.33*** 
(1.24) 

3.31*** 
(1.24) 

Application Use  1.02*** 
(.004) 

1.02*** 
(.003) 

1.02*** 
(.003) 

Notifications   1.02*** 
(.002) 

1.02*** 
(.002) 

Invites    1.06** 
(.028) 

Log  
Likelihood -4694.359 -4631.795 -4544.845 -4542.577 

X2 (d.f) 19.34*** 
(2) 

57.41*** 
(3) 

298.78*** 
(4) 

307.47*** 
(5) 

Observations 3929 3929 3929 3929 
Notes: The table reports parameter estimates and standard errors from the Variance-Corrected Stratified 
Proportional Hazards Model specified on page 13 with robust standard errors clustered around users’ 
local network neighborhoods. Variables reported include: Viral State = Passive: A dummy variable 
denoting Passive Viral Application users; Viral State = Active: A dummy variable denoting Active 
Viral Application users; Application Use: A continuous measure of application calls from a user’s 
account to the application server indicating the number of actions taken on the application; Notifica-
tions: Integer count of the number of notifications sent; Invites: Integer count of the number of invites 
sent; Statistical Significance of parameters is reported as follows: ***p<.001; **p<.05; *p<.10. 

 
Table 5: Clickstream Analysis of Responses to Viral Messages and Adoption 
 1 2 3 

 Messages Sent Adoptions via Click 
Through Installation 

Adoption Rate 
(Marginal Impact) 

Invitations 160 16 .10 
Notifications 69980 666 .01 

 
Table 6: Baseline Hazards Over k Events k0λ (k = 1…6) 
 1 2 3 4 
 Mean (SD) Min Max N 

01λ  .0002 
(.0001) .0001 .001 523 

02λ  .002 
(.001) .001 .013 128 

03λ  .015 
(.024) .005 .14 42 

04λ  .034 
(.010) .021 .054 20 

05λ  .046 
(.008) .037 .067 15 

06λ  .099 
(.044) .053 .14 7 

Notes: The table reports means, standard deviations, minimum and maximum values for 
baseline hazard lambda parameters of the kth adoption events in users’ networks, k = 1…6. 
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Table 7. Correlates of Application Use
 1 2 3 4 
 Application 

Use 
Application 

Use 
Application 

Use 
Application 

Use 

 Beta 
(SE) 

Beta 
(SE) 

Beta 
(SE) 

Beta 
(SE) 

Viral State = Passive .129* 
(.074) 

.112 
(.079) 

.062 
(.076) 

-.037 
(.074) 

Viral State = Active .190*** 
(.074) 

.171** 
(.079) 

.091 
(.076) 

-.006 
(.074) 

Degree -.0001 
(.0001) 

-.0001 
(.0001) 

-.0002** 
(.0001) 

-.0002** 
(.0001) 

Facebook Activity  .054*** 
(.016) 

.042*** 
(.015) 

.026* 
(.014) 

Notifications    .022*** 
(.001) 

Invites    .055** 
(.024) 

Number of Adopters   .607*** 
(.030) 

.360*** 
(.031) 

F Value 
(d.f.) 

3.51*** 
(3) 

4.87*** 
(4) 

83.54*** 
(5) 

128.92*** 
(7) 

R2 .002 .003 .07 .14 
Observations 6310 5766 5766 5766 
Notes: This table reports OLS parameter estimates for a linear estimating equation regressing Application Use (defined in Table 3) 
on the variables listed, including: Facebook Activity: The normalized sum of integer counts of the number of wall posts, activities, 
affiliations, groups, interests, pages, notes, favorite books, movies, music, and TV shows, calculated at the beginning of the study. 
For all other variable definitions see Tables 3 and 4. Models are estimated with robust standard errors clustered around users’ local 
network neighborhoods. Statistical significance of parameters is reported as follows: ***p<.001; **p<.05; *p<.10.  

 
Table 8. Correlates of Application Diffusion
 1 2 3 4 5 6 
 Number of 

Adopters 
Number of 
Adopters 

Number of 
Adopters 

Diffusion 
Depth 

Diffusion 
Depth 

Diffusion 
Depth 

 Beta 
(SE) 

Beta 
(SE) 

Beta 
(SE) 

Beta 
(SE) 

Beta 
(SE) 

Beta 
(SE) 

Viral State = Passive .078** 
(.031) 

.084** 
(.033) 

.020 
(.059) 

.045** 
(.0178) 

.048*** 
(..019) 

.020 
(.018) 

Viral State = Active .119*** 
(.031) 

.131*** 
(.032) 

.059* 
(.030) 

.057*** 
(.018) 

.063*** 
(.019) 

.033* 
(.018) 

Degree .0001*** 
(.00002) 

.0001** 
(.00003) 

.0001** 
(.00002) 

.0001*** 
(.00001) 

.00004** 
(.00002) 

.00003** 
(.00001) 

Facebook Activity  .019*** 
(.006) 

.006 
(.006)  .013*** 

(.004) 
.007** 
(.004) 

Application Use   .061*** 
(.005)   .021*** 

(.003) 

Notifications   .010*** 
(.0004)   .005*** 

(.0002) 

Invites   .035*** 
(.010)   -.003 

(.006) 
F Value 
(d.f.) 

12.20*** 
(3) 

11.18*** 
(4) 

157.94*** 
(7) 

9.36*** 
(3) 

10.11*** 
(4) 

85.13*** 
(7) 

R2 .006 .007 .16 .004 .007 .09 
Observations 8910 5766 5766 6310 5766 5766 
Notes: This table reports OLS parameter estimates for linear estimating equations regressing the Number of Adopters (defined in Table 
3) and Diffusion Depth: The maximum network distance from a treated user to any peer adopter in a linked chain of adoptions, on the 
variables listed. See Table 7 for all additional notes and variable definitions.
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Figures. 

 
Figure 1. The Viral Product Feature Space. Describes the space of viral features along two dimensions - activity and 
personalization. We expect greater marginal peer influence per message to be generated by features near the upper right corner of 
the space (e.g. Personalized Referrals), and more messages to be generated by features near the bottom left corner of the space 
(e.g. Automated Broadcast Notifications). The space is not limited to personalized referrals and automated broadcast notifica-
tions. For example, Slide.com and RockYou.com use hypertext embedding to allow users to create and embed slideshows of 
pictures or other content on their websites, weblogs and social networking profile pages. As other users browse those items, 
hyperlinks allow them to download the products themselves. Personalized hypertext embedding, such as profile box installations 
on Facebook are more personalized than generalized hypertext embedding because they target a user’s personal social network. 
Collaborative bookmarking sites like Delicious.com are personalized but also include an element of algorithmic activity. The 
automated targeted notifications box represents a feature that could exist if notifications were targeted toward specific individuals 
using collaborative filtering. 
 

 
Figure 2. Graphical Representation of the Experimental Comparison 
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Figure 3. Plots a) the cumulative number of peer adoptions, b) the fraction of susceptible peer adop-
ters, c) the average activity, and d) the Kaplan-Meier Survival Estimates over time for baseline, active 
and passive users. 
 
 

 
Figure 4: Possible causal relationships between the existence of application fea-
tures, peer adoption, and application use. Arrows indicate causal direction. 
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Figure 5. Baseline Hazards )( 0kλ for k = 1…6 fitted to an Exponential and a Power Function 

 
Appendix 

1. Inside-Out Design 

Randomized trials are traditionally used to estimate the effect of a treatment on the treated. To study 
the effect of viral feature incorporation on product adoption outcomes, we instead examine the effect of 
treatment on the peers of treated application users. The difference in these approaches is illustrated in 
Figure A1. Arrows indicate the potential flow of influence that the experiment is designed to detect. The 
solid blue circle in the center represents the treated user and the red outlines indicate measurements of 
treatment effects. In social network environments, a conventional approach is infeasible because it is dif-
ficult to comprehensively control the network environments of each user in the study population. It is 
feasible however to treat a user and observe the effect of treatment on the outcomes of their peers. 

The strength of our approach lies in its ability to capture 
effects of any form of influence-mediating communication 
channels between the treated user and her peers, including 
effects that arise through influence-mediating communica-
tion channels beyond those that can be explicitly recorded. 
For example, treated users could communicate with and 
influence their peers through offline interactions such as 
face-to-face communications or telephone conversations, as 
well as through unrecorded online communications such as 
email or external chat conversations. Because we measure 
the response of peers regardless of how they may or may not have been influenced by treated users, we 
are able to capture the effect of unrecorded influence-mediating communications on peer adoption. 
 
2. Preventing Selection Effects 

Selection effects could occur when a user chooses to adopt the experimental application through the 
recruitment campaign or when they adopt in response to a viral message. We took steps to mitigate and 
measure both possibilities. The recruitment campaign was designed to reach a representative audience of 
Facebook users and advertisements were displayed to users through advertising space within Facebook 
and within existing Facebook applications. Establishing to what extent the recruited population is repre-
sentative of the general Facebook population is somewhat challenging because Facebook does not offi-

k

k0λ

k

k0λ

Figure A1 
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cially publish demographic statistics of their user base. However, through the use of a recently released 
social targeting advertisement service provided by Facebook, it is possible to obtain some official demo-
graphic statistics. Age and gender demographics sampled through this API and published online by istra-
tegylabs.com are compared to the same demographic ranges for recruited study population users in Figure 
2. Though our sample has a slightly higher percentage of women than the Facebook population and users 
in our sample have a slightly higher average degree (150 compared with 130 in Facebook statistics), the 
demographics of our study population are comparable to that of the broader Facebook population and the 
published Facebook demographics fall within one standard deviation of study population sample means. 

In addition to issues of selection surrounding the population of recruited users, application users that 
adopt due to peer influence may be subject to selection effects and may be fundamentally different from 
application users that adopted via initial recruitment. It could be that users who use the viral features and 
peers of users who use viral features are systematically different from randomly selected Facebook users. 
We avoid these sources of selection bias in our analyses by only considering initially recruited users in 
the randomized treatment group to which they were assigned. Peers of recruited users only contribute to 
local network peer adoption of originally recruited users and are not themselves used as test subjects. 

 
 

Figure A2 
3. Preventing Leakage and Contamination 

In randomized trials in network environments, users assigned to different treatment groups may not 
be strictly isolated from one another. This raises the concern that information leakage through indirect 
network pathways may contaminate the results of the study. It is important to note that in traditional stu-
dies, whether or not the network is measured, relationships may still exist between treatment and control 
populations that create leakage effects. One benefit of our design is that we systematically observe how 
individuals in the study are connected, enabling us to measure and prevent leakage. 

Several factors reduce the likelihood that leakage is affecting our results. First, because treatment as-
signment is randomized, any leakage will be uncorrelated with treatment assignment and cannot account 
for the observed differences in responses to treatments. While it is possible that leakage will on average 
provide some common information to peers of treated users uniformly across the treatment designations, 
this effect should only serve to make our estimates across treatment groups more conservative as leakage 
should reduce differences between control and treatment groups. Second, information flows between in-
dividuals in a network typically decay rapidly with network distance (Wu et al 2004, Aral et al 2007). 
While all users may be connected through long friendship paths, leakage will diminish over successive 
hops in each path. 

Nonetheless, leakage effects could downward bias our estimates of treatment effects toward zero and 
we therefore take several steps to prevent leakage. First, in hazard rate models, we only examine peers of 
initially recruited adopters. In addition to avoiding potential selection issues mentioned above, this also 
excludes individuals (and their potential adopter peers) that adopt in chains within a local neighborhood 
lessening leakage effects. Such individuals are likely to share more and shorter indirect paths with exist-
ing adopters than a randomly chosen peer, as a consequence of clustering and mutuality (Newman 2003). 
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Second, we account for users with multiple treated peers (of similar and/or different treatments). Ex-
istence of peers of multiple treated application users leads to two potential complications. First, users may 
be peers of multiple treated users from different treatment groups making it impossible to link their treat-
ment effects to a single treatment. Second, peers of multiple treated users that belong to the same treat-
ment group are clearly classified as peers of either baseline, active-personalized or passive-broadcast us-
ers; however measurements of their response may be incorrectly estimated as a consequence of being sub-
ject to influence from multiple treated friends. A peer with multiple treated friends in a given viral treat-
ment group may exhibit an adoption outcome or time to adoption that is systematically different from 
those of peers with only one treated friend. These two scenarios are displayed in Figure A3. 

 

Figure A3 Figure A4 
The nature of treatment randomization does not allow us to simultaneously guarantee that all treated 

friends of a peer will receive the same treatment. Consequently we treat peers with multiple treated 
friends as contaminated as soon as they become so and exclude them from our analysis. This procedure 
could underestimate the effect of clusters of adoption on the time to adoption or number of adopters in a 
local network neighborhood, however if this is the case, it will do so in a manner that is the same for all 
treatment types. Furthermore, as treatment groups are randomized, there can be no systematic correlation 
between the type of treatment received by a user and that received by her subsequent adopter peer. 

The procedure that we adopt for designating a peer as contaminated is detailed in Figure A4. The in-
itially recruited adopter, labeled R, adopts at time (t0). Two peers of user R, labeled 1 and 2, adopt at sub-
sequent times t1 and t2 respectively. In panel (a) for times t > t1, peer 2 has multiple treated peers (R and 1) 
that may have been assigned different treatments. Peer 2 is therefore considered contaminated for times t 
> t1. In panel (b) a similar situation occurs, but no link exists between peers 1 and 2 and consequently nei-
ther user is considered contaminated. In our analysis, when a peer is designated as contaminated, she is 
removed from the hazard rate model for subsequent time periods. This procedure appropriately retains the 
maximal empirical support for hazard rate estimation and parameterizes our ignorance of what might 
happen subsequent to a user’s contamination. The right-censoring of contaminated subjects has become 
standard practice in randomized clinical trials where a patient in a randomized treatment group undergoes 
some characteristic change that is beyond the researcher’s control. Furthermore, by including right-
censored observations in our data rather than truncating the data, we avoid problems caused by data trun-
cation that could lead to spurious evidence of contagion (Van den Bulte and Iyengar, 2010). 

We note that the exclusion of peers with multiple treated friends does not preclude measurement of 
network externalities. Peers of treated users that become adopters but are not connected are considered 
uncontaminated and are included in our analysis. For two peers of a treated user that are connected and 
eventually become adopters, the initial peer adopter is included in our analysis and only the peer that sub-
sequently adopts is considered contaminated and excluded for all times subsequent to contamination. 
These procedures enable a tightly controlled randomized trial of peer influence that addresses the poten-
tial for selection and leakage effects. 
 
4. Robustness Checks for Different Hazard Model Specifications 
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There are a limited number of survival models that apply to contexts with multiple failures. Among 
these models, the variance-corrected stratified proportional hazards model reported in the paper is the 
most appropriate specification given the structure of our data and the parameters we estimate. However, 
we also checked multiple other hazard model specifications in order to test the robustness of our results to 
changes in model specification and estimation strategy. For good reviews of appropriate specifications of 
survival models in multiple failure data we recommend Wei and Glidden (1997) and Ezell et al (2003). 

Table A1 reports results of different hazard model specifications, all of which are similar to our own. 
We report the original variance-corrected stratified proportional hazards model specification detailed in 
the paper in Column 1. Column 2 reports an accelerated failure time model with a log-logistic survival 
distribution. Column 3 reports an exponential regression with log relative-hazard form. Column 4 reports 
results from a traditional Anderson-Gill model. Column 5 introduces a time-dependent covariate measur-
ing the number of prior adopters to the traditional Anderson-Gill specification to capture the dependence 
structure among recurrence times which in our original model is captured by the adoption event strata k. 
Column 6 reports a Prentice William and Peterson proportional hazards specification with time dependent 
strata. Finally, Column 7 reports results of a Wei Lin and Weissfeld marginal risk set model. We note that 
all specifications produce similar results. However, we are most confident in our original specification 
which is best suited to our context and data. 

 
Table A1: Robustness Checks for Different Model Specifications
 1 2 3 4 5 6 7 
Specification VCSPHM AFT EXP AG1 AG2 PWP WLW 
Viral State = 
Passive 

2.51** 
(.86) 

-2.41** 
(1.16) 

1.01*** 
(.35) 

2.60*** 
(.91) 

2.54*** 
(.87) 

2.51*** 
(.865) 

2.00* 
(.78) 

Viral State = 
Active 

3.31*** 
(1.24) 

-3.66*** 
(1.22) 

1.30*** 
(.39) 

3.51*** 
(1.36) 

3.30*** 
(1.26) 

3.31*** 
(1.24) 

2.62** 
(1.02) 

Application 
Activity 

1.02*** 
(.003) 

-.119*** 
(.039) 

.015*** 
(.003) 

1.02*** 
(.003) 

1.02*** 
(.003) 

1.02*** 
(.003) 

1.00 
(.002) 

Notifications 1.02*** 
(.002) 

-.115*** 
(.010) 

.025*** 
(.002) 

1.02*** 
(.002) 

1.02*** 
(.001) 

1.02*** 
(.002) 

1.01*** 
(.002) 

Invites 1.06** 
(.028) 

-.198 
(.259) 

.090** 
(.036) 

1.07* 
(.037) 

1.06** 
(.035) 

1.06** 
(.027) 

1.02 
(.018) 

Prior Adopters     1.50*** 
(.062)   

Time Dum-
mies NO YES YES NO NO NO NO 

Log  
Likelihood -4542.58 -2826.32 -4136.53 -5254.17 -5212.88 -4542.56 -4561.56 

X2 (d.f) 307.47*** 
(5) -- 1656.60*** 

(11) 
412.65*** 

(5) 
435.88*** 

(6) 
307.60*** 

(5) 
109.17*** 

(5) 
Observations 3929 3929 3929 3929 3929 3929 3929 
Notes: ***p<.001; **p<.05; *p<.10; Standard errors are clusters around users’ local network neighborhoods. “VCSPHM”: 
Variance Corrected Stratified Proportional Hazards Model as specified and reported in the paper; “AFT”: Accelerated Failure 
Time Model with Log-Logistic Survival Distribution; “EXP”: Exponential Regression with Log Relative-Hazard form; “AG”: 
Anderson-Gill Model; “PWP”: Prentice William and Peterson Proportional Hazards Model with Time Dependent Strata; 
“WLW”: Wei Lin and Weissfeld Marginal Risk Set Model. 
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