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Abstract

Evaluation of surgical skills during minimally invasive surgeries is needed when recruiting

new surgeons. Although surgeons’ differentiation by skill level is highly complex, perfor-

mance in specific clinical tasks such as pegboard transfer and knot tying could be deter-

mined using wearable EMG and accelerometer sensors. A wireless wearable platform has

made it feasible to collect movement and muscle activation signals for quick skill evaluation

during surgical tasks. However, it is challenging since the placement of multiple wireless

wearable sensors may interfere with their performance in the assessment. This study uti-

lizes machine learning techniques to identify optimal muscles and features critical for accu-

rate skill evaluation. This study enrolled a total of twenty-six surgeons of different skill levels:

novice (n = 11), intermediaries (n = 12), and experts (n = 3). Twelve wireless wearable sen-

sors consisting of surface EMGs and accelerometers were placed bilaterally on bicep bra-

chii, tricep brachii, anterior deltoid, flexor carpi ulnaris (FCU), extensor carpi ulnaris (ECU),

and thenar eminence (TE) muscles to assess muscle activations and movement variability

profiles. We found features related to movement complexity such as approximate entropy,

sample entropy, and multiscale entropy played a critical role in skill level identification. We

found that skill level was classified with highest accuracy by i) ECU for Random Forest Clas-

sifier (RFC), ii) deltoid for Support Vector Machines (SVM) and iii) biceps for Naïve Bayes

Classifier with classification accuracies 61%, 57% and 47%. We found RFC classifier per-

formed best with highest classification accuracy when muscles are combined i) ECU and

deltoid (58%), ii) ECU and biceps (53%), and iii) ECU, biceps and deltoid (52%). Our find-

ings suggest that quick surgical skill evaluation is possible using wearables sensors, and

features from ECU, deltoid, and biceps muscles contribute an important role in surgical skill

evaluation.
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Introduction

Surgical skills and techniques are central components of a surgeon’s skill set and directly corre-

late with patient benefits [1]. It is critical to assess surgical skills among trainees in surgical spe-

cialties to identify their competence and confidence to practice independently [2]. Surgical

skills are influenced by decreasing work hours and increasing sub-specializations focusing on

minimally invasive surgeries (MIS). These changes impact residency training since there are

concerns for current surgery residents’ adequate operative experience and technical training

[3, 4]. To determine the level of surgical skills and clinical competency, a multitude of surgical

skill assessment tools, consisting of experts’ evaluation of surgical skill videos, which is often

costly and time-consuming [5, 6] are used.

Furthermore, evaluation by experts often lacks objective data and may sometimes be biased

by the reviewer [7, 8]. Thus, there is a lack of objective high-fidelity tools to evaluate surgical

skills in hospital environments. Previously researchers have estimated surgical skills using i)

kinematic data and convolutional neural network [9], ii) kinematic data as putative markers

and deep neural networks [10], iii) virtual reality spinal task and machine learning algorithms

(support vector machines, k-nearest neighbors, least discriminant analysis, naïve bayes and

decision tree) [11], iv) image processing and deep neural network during robotic surgery [12–

14], v) kinematic data from da Vinci robot and global rating score and machine learning

(kNN, logistic regression, SVM) [15]. Recently deep learning-based haptic guidance systems

have been used for surgical skill development [16]. Moreover, it is unknown which features

from wearable sensors such as EMG and accelerometers could contribute more to skill identi-

fication. It is also unknown which location on the upper extremity can be helpful for accurate

skill classification with minimal hindrance. Instead of evaluating surgical time, one needs to

assess objective trajectorial movement and muscle activity features for correct skill classifica-

tion and surgical ergonomics. In surgical skill evaluations, some studies evaluated the muscu-

lar workload during surgical procedures using surface electromyography (sEMG) (17–20) for

muscle activity. Other researchers have utilized wearable inertial sensors consisting of acceler-

ometers to determine efficiency between experts and trainees performing the same surgical

task [17]. To some extent, both movement accelerations and muscle activities have shown the

potential to distinguish subtle details on successfully identifying the skill level of surgeons.

EMG signals are a reliable measure for physiological stress detection in the laboratory [18],

and earlier studies have reported the upper trapezius muscle as an essential stress indicator

[19, 20].

Nonlinear movement variability features can quantify neuromuscular connections (feed-

back) and subtle movement changes [21–23]. Researchers have reported that entropy mea-

sures such as approximate entropy, sample entropy, and multiscale entropy can estimate

specific feedback mechanisms and spontaneous properties of interconnected neurons and are

characterized as regularity [24–26]. Both linear and nonlinear features can be extracted from

EMG and accelerometer sensors, respectively. Feature extraction is crucial for accumulating

information relevant to surgical skill evaluation. The selection of feature vectors from EMG

and accelerometer signals during surgical tasks needs careful consideration since many mus-

cles and features may contain redundant information [27, 28]. This study extracted muscle

work-related EMG features and linear and nonlinear movement variability features from

accelerometer signals. Appropriate features will result in higher classification accuracy with

maximum skill separability and robustness [27, 28]. With recent developments in machine

learning, we will explore critical objective biomarkers for identifying surgical skillsets with

high accuracy; however, there are multiple sites where wearable sensors such as EMG and iner-

tial sensors can be affixed. This study will consider the performance analysis for feature

PLOS ONE Surgical skill evaluation using wearable sensors

PLOS ONE | https://doi.org/10.1371/journal.pone.0267936 June 3, 2022 2 / 23

https://doi.org/10.1371/journal.pone.0267936


extraction and selection algorithms from two fundamental perspectives: 1) Which features var-

ied significantly among three surgical tasks and best differentiate surgical skillset? 2) Which

sensor position offers the skill classification. This study will attempt to establish the ground-

work for identifying i) important sites of sensor placement and ii) important linear and non-

linear features which can distinguish skill levels amongst residents, medical students, and

expert surgeons. Our results will help develop wearable devices integrated with machine learn-

ing technologies to evaluate surgeons’ performance during minimally invasive surgical tasks.

Materials and methods

Twenty-six participants categorized with experience from the Department of Urology at the

University of California, Irvine, (UCI) participated in this study. All participants signed the

written consent form approved by UCI (HS#: 2018–4407). The three groups were categorized

based on their surgical experience; i) novice (undergraduate or medical students without prior

surgical experience) (N = 10), ii) intermediate (urology residents postgraduate year 1–5)

(N = 11), and expert surgeons (urology physicians with more than five years experience)

(N = 5). Participants performed basic surgical tasks; i) pegboard transfer, ii) knot tying, and

iii) robotic suturing. At least three trials were conducted for each surgical task. The partici-

pants were asked to perform these tasks at their normal pace. To identify optimal locations for

surgical workload assessment, electromyography (EMG) sensors with in-built accelerometers

were used to estimate muscular activation level and timing. A total of twelve EMG surface elec-

trodes (DELSYS1 Trigno™ Wireless, Boston, MA) were attached bilaterally on bicep brachii,

tricep brachii, anterior deltoid, flexor carpi ulnaris (FCU), extensor carpi ulnaris (ECU), and

thenar eminence (TE) (Fig 1). Resting data was collected during sitting and standing postures.

These muscle groups were selected since previous studies on surgical ergonomics have

highlighted their importance and activations [29]. Deltoid was selected since the shoulder is

the most common site for musculoskeletal symptoms reported by laproscopic surgeons [30].

Muscle activities were normalized using Maximum Voluntary Contraction (MVC) of each

muscle group.

Surgical skills tasks

All participants performed four surgical tasks. i) Open knot tying: Two-handed surgeon’s knot

with other three-square knot throws was tied over two rubber bands mounted on a knot tying

practice board (Ethicon Inc., Somerville, NJ) (Fig 2). ii) Laparoscopic peg transfer: The task

aims to transfer the objects (rubber pegs) from one side of the board to the other and back

using two laparoscopic graspers. Six pegs are placed on the left side of the board; each peg is

picked with the left grasper, transferred midair to the right grasper, and then placed over a

post on the right side of the board. Once all pegs have been transferred, the process is reversed

(Fig 3). Laparoscopic peg transfer was completed on an SZABO-BERCI-SACKIER Laparo-

scopic Trainer (Karl Storz, Tuttlingen, Germany). iii) Robotic suturing: A needle is passed

through a rubber Penrose drain using da Vinci1 Si surgical system robotic needle drivers

(Intuitive, Sunnyvale, CA). The instrument knot is then reinforced with three additional

square knots (Fig 4). EMG data were recorded at 2000 Hz, and accelerometer data were sam-

pled at 100Hz. For EMG processing, raw signals were detrended to remove bias. EMG signals

were then band-pass filtered from 20–500 Hz followed by a notch filter of 60 Hz to attenuate

60Hz electrical noise. Filtered signals were rectified using Root Mean Square (RMS) utilizing a

window size of 6 data points and filtered using a fourth-order low-pass filter with a cutoff fre-

quency of 5 Hz.
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EMG preprocessing and feature extraction

i) Muscular workload-related features: Cumulative muscular workload represents the total

amount of work for each muscle group, normalized for MVC, as a function of time. The aver-

age muscular workload was computed as the total cumulative work done per second. ii) Time-

domain feature: The time-domain features are quick and easy to compute [31–33]. The EMG

Fig 1. Muscle sites for Delsys Trigno EMG sensor attachment. The muscle sites included deltoid, triceps, biceps,

Extensor Carpi Ulnaris (ECU), Flexor Carpi Ulnaris (FCU), Thenar Eminence (TE) for the left and right side.

https://doi.org/10.1371/journal.pone.0267936.g001

PLOS ONE Surgical skill evaluation using wearable sensors

PLOS ONE | https://doi.org/10.1371/journal.pone.0267936 June 3, 2022 4 / 23

https://doi.org/10.1371/journal.pone.0267936.g001
https://doi.org/10.1371/journal.pone.0267936


signals were rectified using windowed RMS and then low-pass filtered. The muscle activation

time was computed using a threshold from baseline data and five standard deviations, as

shown in Table 1 below. Total time of muscular activity was computed when muscle onset and

muscle cessation points were determined, iii) linear variability features: variability features

such as signal range and RMS were evaluated for quantifying muscle firing variability during a

Fig 2. Knot tying task performed by participants.

https://doi.org/10.1371/journal.pone.0267936.g002
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task. iv) frequency-domain feature: dominant muscle firing frequency was evaluated for each

muscle.

Accelerometer feature extraction

Both linear and nonlinear features were extracted from accelerometer data, as shown in

Table 2 below.

Fig 3. Pegboard transfer task performed by participants.

https://doi.org/10.1371/journal.pone.0267936.g003

Fig 4. (a) position of six muscles sites where surface EMG sensors were affixed (b)Pegboard transfer task (c)

Robotic suturing task using Da Vinci (d) Knot tying task (e) Ureteroscopy task.

https://doi.org/10.1371/journal.pone.0267936.g004

PLOS ONE Surgical skill evaluation using wearable sensors

PLOS ONE | https://doi.org/10.1371/journal.pone.0267936 June 3, 2022 6 / 23

https://doi.org/10.1371/journal.pone.0267936.g003
https://doi.org/10.1371/journal.pone.0267936.g004
https://doi.org/10.1371/journal.pone.0267936


Feature Selection (FS)

Feature selection algorithms are necessary since they can remove redundant or unnecessary

information from features that do not improve classification accuracy and help lower compu-

tational costs [41]. The best subset of features is associated with sensors placed at different

muscles. Feature selection was utilized to reduce the number of input features (dimension

reduction) or remove the redundant features. This dimension reduction allows lower comput-

ing speed and even reduces space complexity. We explored filter and wrapper feature selection

methods such as Correlation-based Feature Selection (CFS) and Recursive Feature Elimination

(RFE). CFS shows how well two features are correlated with a value ranging from -1 to 1,

whereas RFE provides a ranking of features by giving weights to a particular part.

Filter feature selection methods are usually the first choice as it is not computationally

expensive compared with wrapper and embedded feature methods. Filter methods are advan-

tageous since they prevent the model from overfitting solely depending on the dataset’s statisti-

cal distribution.

Correlation-based Filter Feature Selection (CFS)

CFS works well on supervised than unsupervised problems. It groups a subset of highly corre-

lated features with the target attribute(i.e., novice, intermediate, expert). CFS measures the

relationship between two variables with statistical data but is limited to identifying only the lin-

ear relationship between the features. It works on the principle that we could drop the features

with lower correlation coefficients if the predictor variables are correlated. We evaluated pair-

wise correlation among feature sets. The value of the correlation coefficient varies between +1

and -1. A value of ± 1 indicates a perfect degree of association between the two variables. As

the correlation coefficient value goes towards 0, the relationship between the variables is

Table 1. Temporal and frequency domain features extracted from EMG signals.

Features Feature Evaluation Method

Cumulative Muscular Workflow (CMW)

was computed through the integration of

normalized EMG data for time throughout

the task

Cumulative muscular workload ðCMWÞ ¼
Z t

0

Rectified EMG
MVC

Average Muscular Work done per second Average Work per Second ðAWSÞ ¼ CMW
Performance Time

Total Time: Total time was evaluated

utilizing a threshold; start time was

recorded when EMG activity was more than

the threshold.

Threshold = Mean + 5 X SD

RMS: Root means square measures linear

variability through quantifying fluctuations

in a signal, where n is the length of the

EMG signal.

EMGRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1

EMG2
i

s

Signal Range: Signal range was computed

as the difference between the maximum

and minimum EMG activity

Range = EMGmax − EMGmin

Signal Frequency: The dominant frequency

carries more energy to other frequencies on

the EMG spectrum.

• EMG signal is detrended

• zero-padded to the nearest higher power of 2

• Fast Fourier transform (FFT) was computed

• Modulus of signal FFT (complex number) is squared to get raw

power spectral density (PSD)

• The frequency with the highest amplitude in the PSD is the

dominant frequency of the EMG signal.

https://doi.org/10.1371/journal.pone.0267936.t001
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weaker. Pearson correlation coefficients provide a relationship among features and use infor-

mation about the mean and standard deviation from the data compared to nonparametric cor-

relation, which only uses the ordinal information and scores of pairs. It is limited since it can

only assess the linear relationship between the features. However, the correlation between the

categorical attributes and the target attributes cannot be determined.

Recursive Feature Extraction (RFE)

RFE is an external estimator and assigns weights to features. The principle is to select features

by recursively considering a smaller set of features. The model is trained on the initial set of

features, and with each iteration, we can calculate the feature coefficient. Then the least essen-

tial features will be removed, and then again, the model will be trained. Since it takes a lot of

iterations to complete the whole ranking process, the computational time is quite expensive.

Feature selection methods are performed on the entire muscle dataset, including different

independent features to evaluate the surgeon’s skill in that particular task. This dataset accu-

mulates data generated by six muscle sensors attached to the surgeon. Feature selection meth-

ods have been implemented in the Jupyter notebook with the help of pandas python library for

ML. Reducing the features from 26 to 10 has increased the accuracy by five and reduced

computational time.

Table 2. Linear and nonlinear features extracted from accelerometer data.

Features Feature Evaluation Method

Resultant Acceleration Timeseries: A time series was extracted from

each sensor using the resultant of 3-dimensional acceleration as given

by equation 1.

RAcc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Acc2

X þ Acc2
Y þ Acc2

Z

p
ð1Þ

Accx, Accy, and AccZ are acceleration in X, Y, and Z-directions.

Correlation Dimension: The correlation dimension was introduced

by Grassberger and Procaccia [34]. The correlation dimension was

computed from resultant acceleration and is a fractal dimension

unrevealing system’s complexity [35, 36] and quantifies inherent

dynamical behaviors with a single number.

For an m-dimensional phase space, the correlation function C(r) is given by equation 2 below.

CðrÞ ¼ lim
N!1

2

NðN � 1Þ

X

i; j
ð1 � i < j � NÞ

Hðr � jYi � YjjÞ ð2Þ

Where H is the Heaviside step function, with H(u) = 1 for u>0, and H(u) = 0 for u�0, where

u = r-|Yi-Yj|, r is the radius of a sphere centered on Yi or Yj, and N is the number of data

points.

Multiscale Entropy (MSE): Entropy techniques effectively quantify

the probability that neighboring points in the resultant acceleration

time series will be within a predetermined range. Entropy is a measure

of complexity in physiological systems denoting a highly adaptable

network of neuromuscular connections attained by regular practice

[37, 38]; increased MSE is indicative of a greater degree of complex

movement dynamics [38, 39].

Utilizing the coarse-graining process to time series, new time series is constructed by

averaging the data points within non-overlapping windows of increasing length, τ. Each time

series element yj
(τ), is given by equation 3.

yðtÞj ¼ 1

t

Xjt

i¼ðj� 1Þtþ1
xi ð3Þ

Where τ represents the scale factor and 1� j� N/τ. The length of each coarse-grained time

series is N/τ.

Rosenstein’s Lyapunov Exponent: Lyapunov exponents can detect

the presence of chaos in a dynamical system by quantifying divergence

in trajectories [40]. Resultant acceleration time series from sensors

were utilized to assess nonlinear variability and chaotic properties.

i) A delayed reconstruction Y1:N with embedding dimension ‘m’ and lag ‘τ’.

ii) For a point ‘i’, the algorithm finds the nearest point i� that satisfies min||Yi-Yi�|| such that |i-

i�|> ‘Minimum Separation,’ where ‘Minimum Separation,’ the mean period, is the

reciprocal of the mean frequency.

iii) The Lyapunov Exponent for the entire expansion range is calculated as in equation 4,

lðiÞ ¼ 1

ðKmax � Kminþ1Þdt

XKmax

K¼Kmin

1

K ln kYiþK � Yi�þKk

kYi � Yi�k
ð4Þ

Kmin and Kmax represent Expansion Range, ‘dt’ is the sampling time and divergence at ith

point is given by equation 5.

ldiv ¼ ln kYiþK � Yi�þK k
kYi � Yi�k

ð5Þ

iv) A single value for the Lyapunov exponent is then computed from the earlier step using

polynomial fit as given in equation 6

LyE ¼ polyfitð½Kmin Kmax�; lðiÞÞ ð6Þ

https://doi.org/10.1371/journal.pone.0267936.t002
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Model development

After feature selection, preprocessing techniques is used to transform the initial dataset to stan-

dardized values. Methods such as imputer and standardization are implemented to enhance

the dataset’s quality. We trained three supervised ML models to assess the dataset: Random

Forest Classifier (RFC) with 100 estimators, Naive Bayes classifier (NB) with kernel set to

Radial Basis Function (RBF), Support Vector Machine (SVM) with all the default parameters.

The objective of these models is to classify a surgeon’s skill based on the feature instances. For

all the three supervised machine learning models, both train and test sizes were kept at the

same ratio (70/30). We used 70% of the whole dataset for training and 30% for testing. Accord-

ing to the six muscle types, the entire dataset is divided into six sub-datasets. These six sub-

datasets are then trained on three ML models to investigate which muscle is vital to identify

the surgical skill. A few performance parameters were considered to evaluate the model to

determine which model has done better on a particular sub-dataset. These parameters include

precision, recall, f1 score (harmonic mean of precision and recall), true positive rate (TPR),

false-positive rate(FPR). A true positive (TP) is an outcome where the model correctly predicts

the positive class. Similarly, a true negative (TN) is an outcome where the model predicts the
negative class correctly. A false positive (FP) is an outcome where the model incorrectly pre-

dicts the positive class. A false negative(FN) is an outcome where the model incorrectly pre-

dicts the negative class. The accuracy, recall, specificity, precision, and F1-score were evaluated

using Eqs 7–11 below.

Accuracy ¼
TP þ TN

TP þ FPþ TN þ FN
ð7Þ

Recall ¼
TP

TPþ FN
ð8Þ

Specificity ¼
TN

TN þ FP
ð9Þ

Precision ¼
TP

TP þ FN
ð10Þ

F1 Score ¼
2XRecall X Precision
Recallþ Precision

ð11Þ

Supervised classifiers

Supervised learning algorithms are helpful in model correlation and the dependencies among

their input features to predict the output values for new data based on the relationships learned

from the training data sets. This study used supervised classification algorithms to classify

three distinct skill groups—Novice, Intermediate, Expert.

Feature selection process

Preprocessing was conducted to remove impurities for higher model classification accuracy.

Feature selection methods like CFS and RFE were used to identify features that could improve

model accuracy significantly. The feature subset was divided into six subsets as per the muscle

type. Each data subset was divided into training and testing sets (70/30), training data was
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used to train the 3 model types (SVM, RFC, and Naïve Bayes). The model parameters such as

precision, recall, and accuracy were evaluated (Fig 5).

This study investigated muscles that could potentially classify surgical skills with high accu-

racy. The muscles that achieved better statistical performance than others were chosen, and

others were dropped in evaluating the surgical skill. The priority of muscles from all models

was assigned equal importance and weightage, and finally, the muscles that showed the highest

significance for all three ML models were selected.

Random Forest Classifiers (RFC)

Random Forest is a machine learning algorithm based on decision trees. Initially, all root

nodes have different supervised classifiers, and each training data is predicted. The class

selected as output for most by the classifiers is regarded as the final output by the RFC. RFC

consists of multiple individual decision trees that operate as an ensemble. Each unique tree in

the random forest divides a class of predictions, and the class with the most votes becomes the

model’s prediction.

In this study, RFC was trained using input linear and nonlinear EMG and accelerometer

features to predict which target class is more suitable for the new instance. The hyperpara-

meters for the RFC are set to default parameters levels (Table provided in S1 Table). The fea-

ture data set was divided into 6 sub-datasets based on muscle attributes. In this dataset, we

have six different muscles groups. The performance test scores attained by this model for sur-

gical skill classification across these datasets were evaluated.

Naïve Bayes

Naive Bayes is a rapid classification algorithm best suited for a massive chunk of data. It oper-

ates on the Bayes theorem of probability for the prediction of a new instance. The classification

stage comprises two general phases: the learning and evaluation phases. The classifier trains its

model on a given dataset in the learning phase, whereas the evaluation phase tests the classifier

performance. This classifier is trained on our dataset and predominately predicts the probabil-

ity of a class (surgical skill level) in the target attribute. The class with the highest chance will

be considered for the particular instance. This model has been evaluated based on a few perfor-

mance metrics such as precision, recall, and f1score.

Support Vector Machines

Support Vector Machines(SVM) are efficient with smaller datasets compared to other super-

vised learning classifiers. SVM is beneficial when nonlinear features are involved; in such

cases, feature correlation with model output cannot be mapped. SVM distinguishes different

classes by constructing a hyperplane in a multidimensional plane. It maximizes the margin

between the classes so that there is probably less chance of a new instance overlapping two clas-

ses. SVM is considered in our approach because of the dataset being multi-dimensional (more

features). Confusion metrics have been used to evaluate our model’s performance. The results

suggest that the model accurately recalls the true positives (correctly predicting the positive

class). For further analysis, we have plotted the ROC curves to decide the suitability of this clas-

sifier with our dataset. It was inferred from the ROC curve that SVM classifiers outperformed

other classifier models.
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Statistical analysis

An initial MANOVA examined 1) Total Time, 2) RMS, 3) Range, 4) Frequency, 5) CMW, 6)

AWS as dependent variables, and 1) Skill Level (Expert, Intermediate, and Novice) and 2) Sur-

gical Test (Knot Tying, Pegboard, Robotic suturing) as independent variables. An overall 3 X 4

Fig 5. Flow chart of feature selection-based model development and identification of parameters of muscle

importance for skill classification.

https://doi.org/10.1371/journal.pone.0267936.g005
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(Skill Level X Surgical Task) multivariate analysis of variance (MANOVA) with repeated mea-

sures design was applied to all data to investigate skill level using EMG and accelerometry sig-

nals. The main and interaction effects were analyzed using JMP1 Pro (SAS Institute Inc.,

Cary, NC, 2020), with the significance level of p = 0.05.

Results

Six linear EMG features based on temporal and frequency domains (CMW, AWS, total time,

RMS, Signal Range, and dominant frequency) (Table 1) and eleven nonlinear variability fea-

tures were extracted from accelerometer data (Table 2). Feature selection attributed to impor-

tant features from the dataset, which enhanced the predictive model’s performance.

We found significant interaction effects among skill level and surgical test for total time(F

(4,24) = 218, p<0.01), RMS(F(4,24) = 2.97, p<0.05), Range (F(4,24) = 5.01, p<0.01), frequency

(F(4,24) = 337, p<0.01), CMW(F(4,24) = 14.8, p<0.01), AWS (F(4,24) = 2.49, p<0.05).

Fig 6 shows experts showed fewer fluctuations in muscle firing (RMS) in knot tying and

robotic suturing tasks. In contrast, there was somewhat higher variability during pegboard

tasks than intermediate skilled and novice surgeons.

Frequency profiles of experts, novice, and intermediate skilled surgeons (Fig 7) show EMG

signal dominant frequencies during the performance of three surgical tasks.

We found that the cumulative muscular workload was higher for the novice group (Fig 8).

Post hoc comparisons using the Tukey HSD test indicated that the CMW was significantly

higher for the novice group than the intermediate group for pegboard (M = 2494810,

SD = 149982 versus M = 1320467, SD = 143597) and robotic suturing (M = 3304601,

SD = 149980 versus M = 1528405, SD = 145634) Fig 7. We also found that the expert group’s

CMW (M = 669617, SD = 203076) was significantly lower than intermediate (M = 1528405,

SD = 145634) and novice (M = 3304601, SD = 149980) groups.

Post hoc comparisons using the Tukey HSD test indicated that the AWS was significantly

lower for the expert group than the intermediate group for the robotic suturing task

(M = 9400, SD = 2226 versus M = 18960, SD = 1596) (Fig 9).

We also found significant interaction effects among skill level and the three tasks for MSE

(F (4,24) = 19.3, p<0.01). Post hoc comparisons using the Tukey HSD test indicated that the

Fig 6. Linear variability as measured by RMS of EMG signals between groups of 3 skill levels.

https://doi.org/10.1371/journal.pone.0267936.g006
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MSE was significantly lower for the intermediate (M = 2.09, SD = 0.09) group compared to the

novice (M = 2.9, SD = 0.09) group for the knot tying task (Fig 10).

Feature selection methods as i) Correlation-based filters (CFS) and ii) recursive feature

elimination (RFE) identified important features with high accuracy. Both CFS (Fig 11) and

RFE algorithms (Table 3) were tested by implementing machine learning algorithms such as

Random Forest classifier, Naïve Bayes, and support vector machines. Inbuilt feature impor-

tance methods were utilized for forecasting for the most valuable variables and associated mus-

cles on the model. The models were built using inbuilt feature importance methods, where

only significant features are selected, and skill prediction results were evaluated. We found

that nonlinear features of complexity such as approximate entropy, multiscale entropy, and

sample entropy carried higher importance weightage for accurate classification of surgical

Fig 7. The dominant frequency of EMG signals during the performance of 3 surgical tasks (knot tying, pegboard

transfer, and robotic suturing).

https://doi.org/10.1371/journal.pone.0267936.g007

Fig 8. The cumulative muscular workload for completing surgical tasks (knot tying, pegboard transfer, and robotic suturing)

by three groups of different skill levels (expert, intermediate, and novice).

https://doi.org/10.1371/journal.pone.0267936.g008
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skill. We also found that nonlinear features such as complexity as measured by approximate

entropy (ApEn), sample entropy (SampEn), and multiscale entropy (MSE) were significantly

correlated (Fig 11). We also found long and short Lyapunov exponents were highly correlated.

Prediction accuracies for surgical skill were determined for all six muscles (biceps, triceps,

deltoid, ECU, FCU, and TE) for all three machine learning algorithms using selected features

(Table 4). Different ML algorithms utilized various muscle-derived features for higher surgical

skill classification. We found i) random forest classifier showed higher accuracies with ECU-

61%, Deltoid-55%, and TE-55%, ii) support vector machines showed higher accuracies with

Deltoid-57%, biceps-45%, ECU-41%, iii) Naïve Bayes showed higher accuracies with biceps-

47%, and ECU-43% (Table 4). Since TE location hinders surgical tasks, thus was excluded for

further analysis.

Since the three important muscles with the highest accuracies were found to be i) ECU, ii)

deltoid and iii) biceps. Our investigation of muscle combinations revealed that the combina-

tion of three muscles for skill evaluation resulted in high accuracies for RFC (52%), SVM

Fig 9. Average muscular work done per second and significant differences in the robotic suturing task.

https://doi.org/10.1371/journal.pone.0267936.g009

Fig 10. High complexity measured by multiscale entropy.

https://doi.org/10.1371/journal.pone.0267936.g010
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(50%), and naïve Bayes (40%) algorithm (Table 5). However, combining two muscle locations

for sensors such as ECU and deltoid resulted in higher classification accuracy for RFC (58%)

and SVM (50%). A combination of ECU and biceps resulted in higher accuracy for the naïve

Bayes algorithm (41%) (Table 5).

The receiver operating curves (ROC) evaluated models for their false positive and true posi-

tive rates for three surgical skill classifications (novice, intermediate, and expert). We found

the combination of i) ECU and biceps (Fig 12), ii) ECU and deltoid (Fig 13), and iii) ECU, del-

toid, and biceps (Fig 14) resulted in the best classification accuracy with minimum sensors on

Fig 11. A correlation matrix shows correlation coefficients between features.

https://doi.org/10.1371/journal.pone.0267936.g011

Table 3. Feature importance as determined by recursive feature elimination method.

Feature Priority Weights

Mean_Apen 0.0453

Mean_MSE 0.0475

Mean_Sample_Entropy 0.0477

Var_MSE 0.0049

Mean_Wolf_Lye 0.0509

Mean_Short_Lye 0.0524

Mean_Long_Lye 0.0544

Mean_Correlation_Dimension 0.0596

Mean_Generalized_Hurst_Exp 0.0635

https://doi.org/10.1371/journal.pone.0267936.t003
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upper extremities. Random forest resulted in the highest accuracy for skill classification

among surgeons. We also found muscle ECU and deltoid could achieve an accuracy of 58%

during classification.

Discussion

This work presents machine learning-based methods for selecting the best pairs of sensor fea-

tures and sensor locations for accurate skill classification during three different surgical tasks.

The primary goal of this study was to determine if i) EMG-derived variables such as total time,

CMW, AWS, RMS, Range, Frequency, and ii) motion sensor-derived nonlinear variables such

as Lyapunov exponent, MSE, correlation dimension can successfully distinguish surgical skill

Table 4. Performance metrics were evaluated by the three ML models (random forest classifier, SVM, and Naïve Bayes) with six muscle datasets. Highest accuracies

are heighted in the table as bold.

Random Forest Classifier Support Vector Machine Naive Bayes

Muscles Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

Biceps 0.40 0.27 0.33 0.29 0.45 0.46 0.39 0.37 0.47 0.46 0.45 0.45

Deltoid 0.55 0.40 0.43 0.41 0.57 0.39 0.45 0.41 0.28 0.3 0.25 0.26

ECU 0.61 0.73 0.53 0.51 0.41 0.30 0.35 0.30 0.43 0.40 0.41 0.39

FCU 0.45 0.31 0.37 0.32 0.35 0.25 0.30 0.24 0.35 0.25 0.26 0.25

TE 0.55 0.39 0.44 0.40 0.36 0.23 0.29 0.25 0.36 0.32 0.33 0.30

Triceps 0.51 0.36 0.41 0.37 0.53 0.35 0.42 0.38 0.31 0.31 0.28 0.28

https://doi.org/10.1371/journal.pone.0267936.t004

Table 5. This table shows the performance of a combination of muscles for surgical skill evaluation for each model separately. Accuracy, precision, recall, and F1

score are reported for all 3 classification models. Highest accuracies are highlighted in the table as bold.

Deltoid, ECU, and Biceps ECU and deltoid ECU and biceps

Algorithm Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

Random Forest 0.52 0.54 0.46 0.45 0.58 0.46 0.51 0.51 0.53 0.47 0.45 0.28

SVM 0.50 0.66 0.43 0.41 0.5 0.33 0.4 0.36 0.45 0.47 0.39 0.37

Naive Bayes 0.41 0.43 0.43 0.43 0.29 0.33 0.33 0.29 0.44 0.43 0.39 0.39

https://doi.org/10.1371/journal.pone.0267936.t005

Fig 12. ROC curves showing performance of two muscles (ECU and Biceps) for skill level classification among a) novice, b) intermediate, and

c) expert using three classifiers random forest (blue line), Naïve Bayes (orange line), SVM (green line).

https://doi.org/10.1371/journal.pone.0267936.g012
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levels. We utilized wearable sensors integrated with EMG and inertial sensors such as acceler-

ometers to classify skill levels in 26 surgeons of three different skill levels (novice, intermediate,

and expert). Our work suggests that EMG and accelerometer sensors and nonlinear variability

measures can capture the predictability and irregularity of movement fluctuations and thus

facilitate surgical skill assessment. Similar studies have adopted data fusion algorithms from

wearable inertial and surface EMG sensors to evaluate upper extremity motor function [42].

Our secondary goal was to select the best features and sensor locations for higher classifica-

tion accuracy. The quality of these selections was tested against features from both right and

left limbs and both 3-directional accelerometer and EMG sensors. Nonlinear movement vari-

ability features extracted from accelerometer data such as approximate entropy, sample

entropy, and multiscale entropy represent a high amount of information to classify skill groups

(novice, intermediate, and expert). We also found the most optimal location for sensors to be

i) ECU and deltoid, ii) ECU, deltoid, and biceps, and iii) ECU and biceps. These positions

resulted in higher accuracy of skill classification among surgeons. As shown in Table 5, for the

deltoid, ECU, biceps dataset, the accuracy for RFC is 52% which is 2% more than SVM and

Fig 13. ROC curves showing performance of two muscles (ECU and Deltoid) for skill level classification among a) novice, b) intermediate,

and c) expert using three classifiers random forest (blue line), Naïve Bayes (orange line), SVM (green line).

https://doi.org/10.1371/journal.pone.0267936.g013

Fig 14. ROC curves showing performance of two muscles (ECU, Biceps and Deltoid) for skill level classification among a) novice, b)

intermediate, and c) expert using three classifiers random forest (blue line), Naïve Bayes (orange line), SVM (green line).

https://doi.org/10.1371/journal.pone.0267936.g014

PLOS ONE Surgical skill evaluation using wearable sensors

PLOS ONE | https://doi.org/10.1371/journal.pone.0267936 June 3, 2022 17 / 23

https://doi.org/10.1371/journal.pone.0267936.g013
https://doi.org/10.1371/journal.pone.0267936.g014
https://doi.org/10.1371/journal.pone.0267936


11% more than the Naïve Bayes model. For ECU and deltoid datasets, the accuracy for RFC is

about 58% which is 8% more than SVM and 29% more than the Naïve Bayes model. Similarly,

for ECU and biceps dataset, the accuracy for RFC is about 53% which is 8% more than SVM

and 9% more than the Naïve Bayes model. We discarded the sensor at the TE position since it

produces hindrance during surgical tasks and may not be feasible for skill evaluation during

surgeries. Our study highlights the importance of nonlinear accelerometer variability measures

for skill classification since all accelerometer features showed higher priority using RFE

(Table 3).

Training highly skilled and competent surgeons are vital to ensure good quality of patient

care and minimize treatment disparities. Surgeons are required to master specific skills during

residency and surgical training. However, there is a lack of objective tools utilizing wearable

sensors and signal processing which can help differentiate the surgical level of expertise among

surgeons. Quantifying and documenting clinical competence and identifying peculiar muscle

and movement-based features associated with skill level is a challenging area of research. The

studies on clinical competence are limited due to the lack of wearable validated tools. Learning

surgical skills involves continuous skills and improvement through feedback from supervising

surgeons. Some medical schools have adopted tools like Objective structured assessment of

technical skills(OSATS) [5], which are graded by specific criteria like respect for tissue, time

and motion, instrument handling, flow in operation, and overall performance [43]. Some

other research groups have previously assessed surgical skills utilizing techniques to analyze

movement from videos [44–46] and wearable sensors [47–49].

Statistical differences in features among three skill groups

We found that the novice surgeon group took more time to complete the pegboard and robotic

suturing task, but not the knot-tying task (Fig 15). Post hoc analysis revealed that the novice

group took significantly more time than the expert and intermediate groups for pegboard and

robotic suturing tasks. These results suggest that knot tying is equally tricky or straightforward

for all groups, thus completing in somewhat similar total times. On the other hand, linear vari-

ability measures such as RMS revealed that the expert group had higher muscle firing fluctua-

tions during pegboard transfers, indicating higher adaptability (Fig 6) and task experience.

Fig 15. Total time taken for completing surgical tasks (knot tying, pegboard transfer and robotic suturing) by

three groups of different skill level (expert, intermediate and novice).

https://doi.org/10.1371/journal.pone.0267936.g015
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Experts are well trained and may have learned and practiced more than one strategy to transfer

cubes during pegboard transfer tasks. Such variability in muscle activations suggests a high

degree of freedom and an extensive range of muscle activations among the expert group. We

also found muscle firing frequency among surgeons decreased with fewer years of surgical

experience (Fig 7). We observed that the novice group had significantly lower muscle firing

frequency than the intermediate and expert groups for robotic suturing and knot tying tasks.

This could be potentially due to less practice or experience of novice group. Previously

researchers have reported that a lower firing rate is observed with impaired muscle function or

reduced neuromuscular recruitment [50]. Thus, muscle firing frequency was found to be

higher with a high level of surgical expertise. Muscular workload as measured by CMW was

significantly higher for the novice group compared to the intermediate group in pegboard

transfer. Thus, delineating more muscular work done by novice group compared to intermedi-

ate skill group for pegboard transfer task. Besides, CMW was also significantly higher than the

expert group in the robotic suturing task (Fig 8). There may be a change in activation patterns

after surgical training, with proximal becoming more relaxed and distal muscle groups becom-

ing more active [51], thereby reducing muscular workload or musculoskeletal strain in a surgi-

cal expert group compared to novice and intermediate skill groups. When comparing the

average rate of muscular work done (work units/s), we found that the intermediate group per-

formed robotic suturing significantly faster than the expert group (Fig 9). This high muscular

work rate in the intermediate group may lead to muscle fatigue, contributing to failed surgical

procedures.

Correlation-based filter feature selection suggested that nonlinear features such as complex-

ity were significantly correlated (Fig 11) and attained high importance when tested with the

recursive feature elimination method (Table 3). High variability in MSE in experts demon-

strates that experts can control motor strategies according to task requirements. Higher vari-

ability in the correlation dimension of time series is associated with more exchange of

dynamical system information among expert groups (Fig 10). Interestingly, previous studies

have reported that entropy-based features are more accurate for robotic suturing but not for

knot tying [43]. However, the entropy analysis was limited to a single scale using approximate

entropy [52]. In this study, we utilized MSE, which provides insights into the complexity of

fluctuations over a range of time scales. MSE is advantageous since the time scale of relevance

in the surgical task was unknown. MSE could differentiate knot tying skill levels among novice

and intermediate groups (Fig 10).

Using features from CFS and RFE allowed identifying important sensor locations that

could classify skill levels with higher accuracy. However, we discarded sensor data from the

thenar eminence (TE) muscle since it is impractical to conduct surgeries with the sensor at this

location due to hindrance. However, ECU, biceps, and deltoid showed the highest accuracy in

classification compared to other sites (Tables 4 and 5). These sensor locations are practically

feasible and expected to cause the slightest hindrance during surgical tasks-related movements.

Our future studies with sensors at these locations will be helpful to build machine learning

classification models for surgical skill assessment. An essential contribution of this study is to

present new quantitative predictors from muscle activity and movement accelerations to dif-

ferent skill levels in surgeons. This is important over the last decade since increasing sub-spe-

cializations and expanded use of MIS techniques have impacted residency training and raised

concerns about objectively evaluating residents’ surgical experience or skill level. One of the

significant limitations of this study is that it has primarily focused on the surgical task, ignoring

mental workload and the support from assistants. Surgical assistants help surgeons, and their

interaction is an additional passive task ignored in this study. Future studies are warranted to

assess clinical skills better and address these deficits.
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Surgical tasks are related to high stress, muscular workload, and variability in surgical task

performance. Although objective assessment tools for surgical competence such as EMG and

accelerometers are available, information is lacking on important sensor-based features and

attachment sites of these wearable systems, which could differentiate surgical skills with the

highest accuracy. This study recruited 26 surgeons with three different skill levels and utilized

wearable sensors, nonlinear movement variability features, feature selection methods, and

classifiers to identify sensor-sites that could distinguish skill levels with the highest accuracy.

Advancements in signal processing for movement variability and muscle activation parameters

can help develop further assessments. This research can potentially lead to wearable sensor-

assisted high fidelity simulation technology, which can evaluate technical training issues with

skill decay addressing specific training deficiencies in surgeons. These wearable sensor-based

simulation training can assess progress in skill learning or deficits in confidence.
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46. Sharma Y, Plötz T, Hammerld N, Mellor S, McNaney R, Olivier P, et al., editors. Automated surgical

OSATS prediction from videos. 2014 IEEE 11th International Symposium on Biomedical Imaging

(ISBI); 2014 29 April-2 May 2014.

47. Trejos AL, Patel RV, Naish MD, Schlachta CM, editors. Design of a sensorized instrument for skills

assessment and training in minimally invasive surgery. 2008 2nd IEEE RAS & EMBS International Con-

ference on Biomedical Robotics and Biomechatronics; 2008 19–22 Oct. 2008.

48. Nisky I, Che Y, Quek ZF, Weber M, Hsieh MH, Okamura AM, editors. Teleoperated versus open needle

driving: Kinematic analysis of experienced surgeons and novice users. 2015 IEEE International Confer-

ence on Robotics and Automation (ICRA); 2015 26–30 May 2015.

49. Ershad M, Koesters Z, Rege R, Majewicz A. Meaningful Assessment of Surgical Expertise: Semantic

Labeling with Data and Crowds. 2016; 9900:508–15. https://doi.org/10.1007/978-3-319-46720-7_59

50. Alway SE, Macgregor LJ, Hunter AM. High-threshold motor unit firing reflects force recovery following a

bout of damaging eccentric exercise. Plos One. 2018; 13(4):e0195051. https://doi.org/10.1371/journal.

pone.0195051 PMID: 29630622

51. Nowakowski MM, Trybek P, Rubinkiewicz M, Cegielny T, Romaniszyn M, Pędziwiatr M, et al. Upper

extremity surface electromyography signal changes after laparoscopic training. Videosurgery and

Other Miniinvasive Techniques. 2018; 13(4):485–93. https://doi.org/10.5114/wiitm.2018.78744 PMID:

30524619

52. Pincus SM. Approximate entropy as a measure of system complexity. Proceedings of the National

Academy of Sciences. 1991; 88(6):2297–301. https://doi.org/10.1073/pnas.88.6.2297 PMID:

11607165

PLOS ONE Surgical skill evaluation using wearable sensors

PLOS ONE | https://doi.org/10.1371/journal.pone.0267936 June 3, 2022 23 / 23

https://doi.org/10.1007/978-3-319-24553-9%5F53
https://doi.org/10.1007/978-3-319-46720-7%5F59
https://doi.org/10.1371/journal.pone.0195051
https://doi.org/10.1371/journal.pone.0195051
http://www.ncbi.nlm.nih.gov/pubmed/29630622
https://doi.org/10.5114/wiitm.2018.78744
http://www.ncbi.nlm.nih.gov/pubmed/30524619
https://doi.org/10.1073/pnas.88.6.2297
http://www.ncbi.nlm.nih.gov/pubmed/11607165
https://doi.org/10.1371/journal.pone.0267936

	Evaluation of Surgical Skill Using Machine Learning with Optimal Wearable Sensor Locations
	Evaluation of Surgical Skill Using Machine Learning with Optimal Wearable Sensor Locations
	Comments
	Creative Commons License
	Copyright


	Evaluation of surgical skill using machine learning with optimal wearable sensor locations

