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ABSTRACT

TOTALLY MULTICOLORED RADO NUMBERS FOR THE EQUATION

x1 + x2 + x3 + ... + xm−1 = xm

SKYLAR HALVERSON

2022

A set is called Totally Multicolored (TMC) if no elements in the set are colored

the same. For all natural numbers t,m, let R(t,m) be the least natural number n

such that for every t-coloring of the set {1, 2, 3, ..., R(t,m)} there exist a solution

set {xi}mi=1 to L(m), x1 + x2 + x3 + ... + xm−1 = xm such that xi 6= xj for all i 6= j,

that avoids being Totally Multicolored. For all natural numbers t ≥ 1 and m ≥ 3

let h =
∑m−2

i=1 (i), j =
∑m−3

i=1 (i), s = b th−j−2
1+h
c, and s = d th−j−2

1+h
e. This paper shows

that,

R(t,m) =



(m−1)m
2

if t < m

(m−1)m
2

+ 2 if t = m

6t+5
5

if t > m, m = 3, and t ≡ 0mod(5)

6t+9
5

if t > m, m = 3, and t ≡ 1mod(5)

6t+3
5

if t > m, m = 3, and t ≡ 2mod(5)

6t+7
5

if t > m, m = 3, and t ≡ 3mod(5)

6t+6
5

if t > m, m = 3, and t ≡ 4mod(5)

max{j + 2s + 3, s + (t− s)h + 1} if t > m and m ≥ 4.
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INTRODUCTION

Defintion 1. Let [a, b] denote {n ∈ N : a ≤ n ≤ b}. A t-coloring is a function

∆ : [1, n] −→ [1, t].

Defintion 2. For every natural number m, let L(m) represent the system consisting

of

x1 + x2 + x3 + ... + xm−1 = xm

such that xi 6= xj for all i 6= j.

Defintion 3. A solution {xi}mi=1 to L(m) is monochromatic if and only if

∆(x1) = ∆(x2) = ... = ∆(xm).

Shur [19], in 1916, proved that for every t ≥ 2 there exists a least natural number

n = S(t) such that for every t-coloring of the set [1, n], there exists a monochromatic

solution to B(3) which is the same as L(m) without the condition that xi 6= xj for

all i 6= j. We call the natural numbers S(t) Shur numbers of which only S(2) = 5,

S(3) = 14, S(4) = 45, and S(5) = 160 are known [20].

R. Rado, in 1933, expanded this by generalizing the Shur numbers to arbitrary

systems of linear equations. Rado found conditions to determine if an arbitrary

systems of linear equations admits a monochromatic solution for every t-coloring

of [1, n] [11,12,13]. For a linear system L, if a least natural number n exist such

that for every t-coloring of [1, n] there exist a monochromatic solution to L then

n is call the t-color Rado number for the linear system L. If n does not exist, then

the t-color Rado number for the linear system L is infinite. Since then the Rado
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numbers for many families of equations have been found and this paper looks to

add another to that growing list [2,3,4,7,8,9,10,14,15]. One of these Families of

equations is the Beutelspacher equation B(m). In 1982, Beutelspacher found the

2-color monochromatic Rado number for B(m) as m2 − m − 1 for all m ≥ 3

[1]. The main results of this paper uses L(m) and we will show the t-color Totally

Multicolored Rado number for t ≥ 2 and m ≥ 3 using the definitions below.

Defintion 4. A solution set {xi}mi to L(m) is Totally Multicolored (TMC ) if

∆(xi) 6= ∆(xj) for all i 6= j.

Defintion 5. For every natural number m, let R(t,m) represent the t-color

TMC-Rado number for L(m). That is, R(t,m) is the smallest natural number such

that for all ∆ : [1, R(t,m)] −→ [1, t] there exist a solution set in [1, R(t,m)] to L(m)

that is not TMC.

Defintion 6. The set [a, b]odd is equivalent to {x ∈ [a, b] : x ∈ Z is odd}.
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BACKGROUND

Here we will prove what Beutelspacher found. That the 2-color monochromatic

Rado number for B(m) is m2 −m− 1 for all m ≥ 3.

Lower Bound:

Let ∆ : [1,m2 −m− 2] −→ [1, 2] be defined by

∆(x) =

{
1 if x ∈ [1,m− 2] ∪ [m2 − 2m + 1,m2 −m− 2]

2 if x ∈ [m− 1,m2 − 2m].

We will show ∆ : [1,m2 −m − 2] −→ [1, 2] contains no monochromatic solution

sets to B(m).

For any set {xi}mi=1 such that ∆(xi) = 2 for all i = 1, 2, ...,m we have

xi ∈ [m− 1,m2 − 2m] for all i = 1, 2, ...,m and,

x1 + x2 + x3 + ... + xm−1 ≥ (m− 1) + (m− 1) + ... + (m− 1)

= (m− 1)(m− 1) = m2 − 2m + 1 > m2 − 2m ≥ xm.

Thus {xi}mi=1 is not a solution to B(m).

Suppose there exist a set {xi}mi=1 that is a solution to B(m) such that ∆(xi) = 1

for all i = 1, 2, ...,m we have xi ∈ [1,m− 2] or xi ∈ [m2− 2m+ 1,m2−m− 2] for all

i = 1, 2, ...,m.
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If for all i = 1, 2, ...,m we have xi ∈ [1,m− 2], then we have,

xm = x1 + x2 + x3 + ... + xm−1 ≥ 1 + 1 + ... + 1 = m− 1 > m− 2

and xm 6∈ [1,m − 2] which gives us a contradiction. So let at least one of the

elements xi ∈ [m2 − 2m + 1,m2 −m− 2] for some i = 1, 2, ...,m.

If only xm ∈ [m2 − 2m + 1,m2 −m− 2] then,

xm = x1 + x2 + x3 + ... + xm−1 ≤ (m− 2) + (m− 2) + ... + (m− 2)

= (m− 1)(m− 2) = m2 − 3m + 2 ≤ m2 − 2m− 1 < m2 − 2m + 1.

Thus xm 6∈ [m2 − 2m + 1,m2 −m− 2] however this gives us a contradiction.

If there exist another xi ∈ [m2 − 2m + 1,m2 −m− 2] then,

xm = x1 + x2 + x3 + ... + xm−1 ≥ (m2 − 2m + 1) + 1 + 1 + ... + 1 =

(m2 − 2m + 1) + (m− 2) = m2 −m− 1 > m2 −m− 2.

Thus xm 6∈ [m2 − 2m + 1,m2 −m− 2] which contradicts what we had. Therefore

∆ : [1,m2 −m− 2] −→ [1, 2] as defined contains no monochromatic solution sets to

B(m).

Upper Bound:

First let ∆ : [1,m2 − m − 1] −→ [1, 2] be an arbitrary coloring. We will show

there exist a monochromatic solution to B(m).

Arbitrarily let ∆(1) = 1. If ∆(m − 1) = 1 then {1, 1, ..., 1,m − 1}, with m − 1

many 1’s, is a monochromatic solution to B(m). So let ∆(m− 1) = 2. If

∆(m2 − 2m + 1) = 2, then {m− 1,m− 1, ...,m− 1,m2 − 2m + 1}, with m− 1 many

(m− 1)’s, is a monochromatic solution to B(m).

So let ∆(m2 − 2m + 1) = 1. If ∆(m) = 1, then {1,m,m, ...,m,m2 − 2m + 1},
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with m − 2 many m’s, is a monochromatic solution to B(m). So let ∆(m) = 2. If

∆(m2 −m − 1) = 2, then {m − 1,m,m, ...,m,m2 −m − 1}, with m − 2 many m’s,

is a monochromatic solution to B(m). If ∆(m2 −m− 1) = 1, then

{m2 − 2m + 1, 1, 1, ..., 1,m2 − m − 1}, with m − 2 many 1’s, is a monochromatic

solution to B(m).

Therefore the 2-color monochromatic Rado number for B(m) is m2 −m − 1 for

all m ≥ 3.
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MAIN RESULTS

Lemma 1. For m = 3 and ∆ : [1, n] −→ [1, t] that has only TMC solution sets to

L(m), if there exist a, b ∈ [1, n] such that a < b and ∆(a) = ∆(b) then b is even and

a = b/2.

Proof. Suppose m = 3 and ∆ : [1, n] −→ [1, t], there exist a, b ∈ [1, n] such that

a < b and ∆(a) = ∆(b). Let c = b − a. If c 6= a then a + c = b and {a, c, b} is not

TMC. If c = a then 2a = b or a = b
2
. Which implies that b is even.

Lemma 2. For ∆ : [1, n] −→ [1, t] that is TMC, if there exist a, b ∈ [1, n] such that

a < b and b is odd, then ∆(a) 6= ∆(b).

Proof. Suppose for a TMC ∆ : [1, n] −→ [1, t], there exist a, b ∈ [1, n] such that

a < b and b is odd. If ∆(a) = ∆(b) then by Lemma 1 b is even. However, we

assumed b to be odd so we have a contradiction.

Lemma 3. For ∆ : [1, n] −→ [1, t], if there exist a, b ∈ [1, n] such that b > a ≥ m,

∆(a) = ∆(b), and b−a ≥
∑m−2

i=1 i = h then ∆ has a solution set to L(m) that avoids

being TMC.

Proof. Let ∆ : [1, n] −→ [1, t], such that there exist a, b ∈ [1, n] with b > a ≥ m,

b− a ≥
∑m−2

i=1 i, and ∆(a) = ∆(b). Also, let c1 = b− a−
∑m−3

i=1 i. Then,

b > c1 = b− a−
m−3∑
i=1

i ≥
m−2∑
i=1

i−
m−3∑
i=1

i = m− 2 > m− 3 > ... > 2 > 1.



7

If c1 6= a then,

m−3∑
i=1

i + c1 + a =
m−3∑
i=1

i + b− a−
m−3∑
i=1

i + a = b.

Thus {1, 2, ...,m− 4,m− 3, c1, a, b} ⊆ [1, n] is not TMC.

If a = c1 = b− a−
∑m−3

i=1 i let c2 = a− 1 ≥ m− 1. Then b = 2a +
∑m−3

i=1 i and,

a + c2 + 1 + 2 + ... + (m− 5) + (m− 4) + (m− 2) =

a + (a− 1) + 1 + 2 + ... + (m− 5) + (m− 4) + (m− 2) =

2a + 1 + 2 + ... + (m− 5) + (m− 4) + (m− 3) =

2a +
m−3∑
i=1

i = b.

Thus {1, 2, ...,m− 5,m− 4,m− 2, c2, a, b} ⊆ [1, n] is not TMC.

Therefore in both cases ∆ : [1, n] −→ [1, t] has a solution set to L(m) that is not

TMC.

Lemma 4. For m ≥ 4, t > m, h =
∑m−2

i=1 (i), j =
∑m−3

i=1 (i), s = b th−j−2
1+h
c, and

s = d th−j−2
1+h
e we have m− 1 ≤ s ≤ s.

Proof. Now with h =
∑m−2

i=1 (i), j =
∑m−3

i=1 (i), s = b th−j−2
1+h
c, and s = d th−j−2

1+h
e we

have h ≥ 6, t ≥ m + 1 and,

h < h +
h− 3

m
=

(m + 1)h− 3

m
≤ th− 3

m

j + (m− 2) + hm− h = h + hm− h = hm < th− 3

(m− 1)(1 + h) = m− 1 + hm− h < th− j − 2

m− 1 <
th− j − 2

1 + h
.

Further with m− 1 ∈ Z this implies that m− 1 ≤ s ≤ s.
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Theorem 1. For all integers t ≥ 1 and m ≥ 3 let h =
∑m−2

i=1 (i), j =
∑m−3

i=1 (i),

s = b th−j−2
1+h
c, and s = d th−j−2

1+h
e. Then we have

R(t,m) =



(m−1)m
2 if t < m

(m−1)m
2 + 2 if t = m

6t+5
5 if t > m, m = 3, and t ≡ 0mod(5)

6t+9
5 if t > m, m = 3, and t ≡ 1mod(5)

6t+3
5 if t > m, m = 3, and t ≡ 2mod(5)

6t+7
5 if t > m, m = 3, and t ≡ 3mod(5)

6t+6
5 if t > m, m = 3, and t ≡ 4mod(5)

max{j + 2s+ 3, s+ (t− s)h+ 1} if t > m and m ≥ 4.

Proof. Let t and m be integers such that t ≥ 1 and m ≥ 3. Also, let h =
∑m−2

i=1 (i),

j =
∑m−3

i=1 (i), s = b th−j−2
1+h
c, and s = d th−j−2

1+h
e.

Case 1: Suppose t < m, we will show that R(t,m) = (m−1)m
2

.

Lower Bound:

Let ∆ : [1,
∑m−1

i=1 (i) − 1] −→ [1, t]. Then for any solution set {xi}mi=1 ⊆

[1,
∑m−1

i=1 (i)− 1] we have xm =
∑m−1

i=1 xi ≥
∑m−1

i=1 (i)− 1 and xm 6∈ [1,
∑m−1

i=1 (i)− 1].

Therefore ∆ : [1,
∑m−1

i=1 (i)− 1] −→ [1, t] has only TMC solution sets to L(m).

Upper Bound:

Suppose there exist a coloring ∆ : [1,
∑m−1

i=1 (i)] −→ [1, t] that has only TMC

solution sets to L(m). Since t < m there exist a, b ∈ {1, 2, ...,m−2,m−1,
∑m−1

i=1 (i)}

such that ∆(a) = ∆(b). Thus ∆ : [1,
∑m−1

i=1 (i)] −→ [1, t] has a solution set

{1, 2, ...n − 2, n − 1,
∑n−1

k=1 k} to L(m) that is not TMC. Therefore if t < m then

R(t,m) = (m−1)m
2

.

Case 2: Suppose t = m, we will show that R(t,m) = (m−1)m
2

+ 2.

Lower Bound:
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Let ∆ : [1,
∑m−1

i=1 (i) + 1] −→ [1, t] be defined by

∆(x) =


x if x < m− 1

t− 1 if x = m− 1,m

t if x > m.

Now for if ∆(a) = ∆(b) then a, b ∈ [m−1,
∑m−1

i=1 (i)+1]. Then for any {xi}n−1
i=1 ⊆

[1,
∑m−1

i=1 (i) + 1] such that a, b ∈ {xi}m−1
i=1 we have,

xm =
m−1∑
i=1

xi ≥
m−3∑
i=1

(i) + a + b ≥
m−3∑
i=1

(i) + (m− 1) + m

=
m−3∑
i=1

(i) + (m− 2) + (m− 1) + 2 =
m−1∑
i=1

(i) + 2 >
m−1∑
i=1

(i) + 1.

Thus ∆ : [1,
∑m−1

i=1 (i) + 1] −→ [1, t] only has TMC solution sets to L(m).

Upper Bound:

Suppose there exist ∆ : [1,
∑m−1

i=1 (i) + 2] −→ [1, t] that only has TMC solution

sets to L(m). With
∑m−1

i=1 (i) + 2 > m = t, we have that there exist

a, b ∈ [1,
∑m−1

i=1 (i) + 2] such that a < b and ∆(a) = ∆(b).

Let a, b ∈ [1,m]. If b = m and a ≤ m− 1 let xm−1 = b, xm−2 = a, and xi = i for

i = 1, 2, ...,m− 3. If b 6= m let xi = i for i = 1, 2, ...,m− 1. Then,

xm =
m−1∑
i=1

(xi) ≤
m−3∑
i=1

(i) + m− 1 + m =
m−1∑
i=1

(i) + 2.

Thus, xm ∈ [1,
∑m−1

i=1 (i) + 2] and {xi}mi=1 is not TMC. Then for all a, b ∈ [1,m] we

have ∆(a) 6= ∆(b). Further, with t = m for all b ∈ [m+1,
∑m−1

i=1 (i)+2] there exactly

one a ∈ [1,m] such that ∆(a) = ∆(b).

Consider b =
∑m−1

i=1 (i) + 2. Then
∑m−3

i=1 (i) + (m − 1) + m =
∑m−1

i=1 (i) + 2. This

implies that ∆(b) 6∈ {{i}m−3
i=1 ,m− 1,m} and ∆(b) = m− 2.
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Now
∑m−2

i=1 (i) + m + 1 =
∑m−1

i=1 (i) + 2. Thus {{i}m−2
i=1 ,m + 1, b} is not TMC.

Therefore ∆ : [1,
∑m−1

i=1 (i) + 2] −→ [1, t] has a solution to L(m) that is not TMC.

Case 3: Let n = 3 and t > m.

Sub-Case 3a: Suppose t ≡ 0mod(5).

Lower Bound:

Let ∆ : [1, 6t
5

] −→ [1, t] be defined by

∆(x) =


x if x ≤ 4t+5

5

x
2

if x > 4t+5
5

and x is even

5x+4t+5
5

if x > 4t+5
5

and x is odd.

By the definition of ∆ there does not exist a, b ∈ [1, 4t+5
5

] such that a 6= b and

∆(a) = ∆(b). Let a, b ∈ [4t+10
5

, 6t
5

] then,

c = a + b ≥ 4t + 10

5
+

4t + 15

5
=

8t + 25

5
>

6t

5
.

Thus c 6= [1, 6t
5

].

Let a ∈ [1, 4t+5
5

] and b ∈ [4t+10
5

, 6t
5

]. If b is even then b = 2a and,

c = a + b ≥ 4t + 10

10
+

4t + 10

5
=

12t + 30

10
=

6t + 15

5
>

6t

5
.

Thus c 6= [1, 6t
5

]. If b is odd. Then, ∆(b) = 5x+4t+5
5

> 4t+5
5
≥ ∆(a). Therefore

∆ : [1, 6t
5

] −→ [1, t] as defined above has only TMC solution sets to L(m).

Upper Bound:

Suppose there exist a ∆ : [1, 6t+5
5

] −→ [1, t] that has only TMC solution sets to

L(m). Since t < 6t+5
5

there exist a, b ∈ [1, 6t+5
5

] such that a < b and ∆(a) = ∆(b).
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Part 1: Suppose a, b ∈ [1, 4t
5

]. By Lemma 1 a = b
2
, then

c = a + b ≤ 4t

10
+

4t

5
=

12t

10
=

6t

5
<

6t + 5

5
.

This implies there exist c ∈ [1, 6t+5
5

] such that a + b = c and {a, b, c} is not TMC.

Arbitrarily let ∆(x) = x for x ∈ [1, 4t
5

].

Part 2: Consider a, b ∈ [4t+5
5

, 6t+5
5

]odd and c ∈ [1, 4t
5

] such that c < a < b. By

Lemma 2, since a, b are odd we have ∆(a) 6= ∆(b) 6= ∆(c). From (Part 1) above,

∆(a),∆(b) 6∈ [1, 4t
5

] and ∆(a),∆(b) ∈ [4t+5
5

, t].

Now there are t− 4t+5
5

= t−5
5

colors in [4t+5
5

, t]. Further there are
6t+5

5
− 4t+5

5

2
+ 1 =

t+5
5

many elements in [4t+5
5

, 6t+5
5

]odd. So we have t−5
5

many colors to color t+5
5

many

elements. By the PHP, with t−5
5

< t+5
5

there exist a, b ∈ [4t+5
5

, 6t+5
5

]odd such that

∆(a) = ∆(b). This contradiction Lemma 2 and ∆ : [1, 6t+5
5

] −→ [1, t] has a solution

set to L(m) that avoids being TMC.

Sub-Case 3b: Suppose t ≡ 1mod(5).

Lower Bound:

Let ∆ : [1, 6t+4
5

] −→ [1, t] be defined by

∆(x) =


x if x ≤ 4t+1

5

x
2

if x > 4t+1
5

and x is even

5x+4t+1
5

if x > 4t+1
5

and x is odd.

By the definition of ∆ there does not exist a, b ∈ [1, 4t+1
5

] such that a 6= b and

∆(a) = ∆(b). Let a, b ∈ [4t+6
5

, 6t+4
5

] then,

c = a + b ≥ 4t + 6

5
+

4t + 11

5
=

8t + 17

5
>

6t + 4

5
.

Thus c 6= [1, 6t+4
5

].
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Let a ∈ [1, 4t+1
5

] and b ∈ [4t+6
5

, 6t+4
5

]. If b is even then b = 2a and,

c = a + b ≥ 4t + 6

10
+

4t + 6

5
=

12t + 18

10
=

6t + 9

5
>

6t + 4

5
.

Thus c 6= [1, 6t+4
5

]. If b is odd. Then, ∆(b) = 5x+4t+1
5

> 4t+1
5
≥ ∆(a). Therefore

∆ : [1, 6t+4
5

] −→ [1, t] as defined above have only TMC solution sets to L(m).

Upper Bound:

Suppose there exist a ∆ : [1, 6t+9
5

] −→ [1, t] that has only TMC solution sets to

L(m). Since t < 6t+9
5

there exist a, b ∈ [1, 6t+9
5

] such that a < b and ∆(a) = ∆(b).

Part 1: Suppose a, b ∈ [1, 4t+6
5

]. By Lemma 1 a = b
2
, then

c = a + b ≤ 4t + 6

10
+

4t + 6

5
=

12t + 18

10
=

6t + 9

5
.

This implies there exist c ∈ [1, 6t+9
5

] such that a + b = c and {a, b, c} is not TMC.

Arbitrarily let ∆(x) = x for x ∈ [1, 4t+6
5

].

Part 2: Consider a, b ∈ [4t+11
5

, 6t+9
5

]odd and c ∈ [1, 4t+6
5

] such that c < a < b. By

Lemma 2, since a, b are odd we have ∆(a) 6= ∆(b) 6= ∆(c). From (Part 1) above,

∆(a),∆(b) 6∈ [1, 4t+6
5

] and ∆(a),∆(b) ∈ [4t+11
5

, t].

Now there are t− 4t+6
5

= t−6
5

colors in [4t+11
5

, t]. Further there are
6t+9

5
− 4t+11

5

2
+1 =

t+4
5

many elements in [4t+11
5

, 6t+9
5

]odd. So we have t−6
5

many colors to color t+4
5

many

elements. By the PHP, with t−6
5

< t+4
5

there exist a, b ∈ [4t+11
5

, 6t+9
5

]odd such that

∆(a) = ∆(b). This contradiction Lemma 2 and ∆ : [1, 6t+9
5

] −→ [1, t] has a solution

set to L(m) that avoids being TMC.

Sub-Case 3c: Suppose t ≡ 2mod(5).

Lower Bound:
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Let ∆ : [1, 6t−2
5

] −→ [1, t] be defined defined as below.

∆(x) =


x if x ≤ 4t−3

5

x
2

if x > 4t−3
5

and x is even

5x+4t−3
5

if x > 4t−3
5

and x is odd

By the definition of ∆ there does not exist a, b ∈ [1, 4t−3
5

] such that a 6= b and

∆(a) = ∆(b). Let a, b ∈ [4t+2
5

, 6t−2
5

] then,

c = a + b ≥ 4t + 2

5
+

4t + 7

5
=

8t + 9

5
=

8t− 1

5
+ 2 >

6t− 2

5
.

Thus c 6= [1, 6t−2
5

].

Let a ∈ [1, 4t−3
5

] and b ∈ [4t+2
5

, 6t−2
5

]. If b is even then b = 2a and,

c = a + b ≥ 4t + 2

10
+

4t + 2

5
=

12t + 6

10
=

6t + 3

5
>

6t− 2

5
.

Thus c 6= [1, 6t−2
5

]. If b is odd. Then, ∆(b) = 5x+4t−3
5

> 4t−3
5
≥ ∆(a). Therefore

∆ : [1, 6t−2
5

] −→ [1, t] as defined above has only TMC solution sets to L(m).

Upper Bound:

Suppose there exist a ∆ : [1, 6t+3
5

] −→ [1, t] that has only TMC solution sets to

L(m). Since t < 6t+3
5

there exist a, b ∈ [1, 6t+3
5

] such that a < b and ∆(a) = ∆(b).

Part 1: Suppose a, b ∈ [1, 4t+2
5

]. By Lemma 1 a = b
2
, then

c = a + b ≤ 4t + 2

10
+

4t + 2

5
=

12t + 6

10
=

6t + 3

5
.

This implies there exist c ∈ [1, 6t+3
5

] such that a + b = c and {a, b, c} is not TMC.

Arbitrarily let ∆(x) = x for x ∈ [1, 4t+2
5

].

Part 2: Consider a, b ∈ [4t+7
5

, 6t+3
5

]odd and c ∈ [1, 4t+2
5

] such that c < a < b. By
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Lemma 2, since a, b are odd we have ∆(a) 6= ∆(b) 6= ∆(c). From (Part 1) above,

∆(a),∆(b) 6∈ [1, 4t+2
5

] and ∆(a),∆(b) ∈ [4t+7
5

, t].

Now there are t− 4t+7
5

= t−7
5

colors in [4t+7
5

, t]. Further there are
6t+3

5
− 4t+7

5

2
+ 1 =

t+1
5

many elements in [4t+7
5

, 6t+3
5

]odd. So we have t−7
5

many colors to color t+1
5

many

elements. By the PHP, with t−7
5

< t+1
5

there exist a, b ∈ [4t+7
5

, 6t+3
5

]odd such that

∆(a) = ∆(b). This contradiction Lemma 2 and ∆ : [1, 6t+3
5

] −→ [1, t] has a solution

set to L(m) that avoids being TMC.

Sub-Case 3d: Suppose t ≡ 3mod(5).

Lower Bound:

Let ∆ : [1, 6t+2
5

] −→ [1, t] be defined as below.

∆(x) =


x if x ≤ 4t+3

5

x
2

if x > 4t+3
5

and x is even

5x+4t+3
5

if x > 4t+3
5

and x is odd

By the definition of ∆ there does not exist a, b ∈ [1, 4t+3
5

] such that a 6= b and

∆(a) = ∆(b). Let a, b ∈ [4t+8
5

, 6t+2
5

] then,

c = a + b ≥ 4t + 8

5
+

4t + 13

5
=

8t + 21

5
>

6t + 2

5
.

Thus c 6= [1, 6t+2
5

].

Let a ∈ [1, 4t+3
5

] and b ∈ [4t+8
5

, 6t+2
5

]. If b is even then b = 2a and,

c = a + b ≥ 4t + 8

10
+

4t + 8

5
=

12t + 24

10
=

6t + 12

5
>

6t + 2

5
.

Thus c 6= [1, 6t+2
5

]. If b is odd. Then, ∆(b) = 5x+4t+3
5

> 4t+3
5
≥ ∆(a). Therefore

∆ : [1, 6t+2
5

] −→ [1, t] as defined above has only TMC solution sets to L(m).

Upper Bound:
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Suppose there exist a ∆[1, 6t+7
5

] −→ [1, t] that is TMC. Since t < 6t+7
5

there exist

a, b ∈ [1, 6t+7
5

] such that a < b and ∆(a) = ∆(b).

Part 1: Suppose a, b ∈ [1, 4t+3
5

]. By Lemma 1 a = b
2
, then

c = a + b ≤ 4t + 3

10
+

4t + 3

5
=

12t + 9

10
<

6t + 5

5
<

6t + 7

5
.

This implies there exist c ∈ [1, 6t+7
5

] such that a + b = c and {a, b, c} is not TMC.

Arbitrarily let ∆(x) = x for x ∈ [1, 4t+3
5

].

Part 2: Consider a, b ∈ [4t+8
5

, 6t+7
5

]odd and c ∈ [1, 4t+3
5

] such that c < a < b. By

Lemma 2, since a, b are odd we have ∆(a) 6= ∆(b) 6= ∆(c). From (Part 1) above,

∆(a),∆(b) 6∈ [1, 4t+3
5

] and ∆(a),∆(b) ∈ [4t+8
5

, t].

Now there are t− 4t+8
5

= t−8
5

colors in [4t+5
5

, t]. Further there are
6t+7

5
−
(

4t+8
5

−1
)

2
=

t+2
5

many elements in [4t+8
5

, 6t+7
5

]odd. So we have t−8
5

many colors to color t+2
5

many

elements. By the PHP, with t−8
5

< t+2
5

there exist a, b ∈ [4t+8
5

, 6t+7
5

]odd such that

∆(a) = ∆(b). This contradiction Lemma 2 and ∆ : [1, 6t+7
5

] −→ [1, t] has a solution

set to L(m) that avoids being TMC.

Sub-Case 3e: Suppose t ≡ 4mod(5).

Lower Bound:

Let ∆ : [1, 6t+1
5

] −→ [1, t] be defined as below.

∆(x) =


x if x ≤ 4t−1

5

x
2

if x > 4t−1
5

and x is even

5x+4t−1
5

if x > 4t−1
5

and x is odd

By the definition of ∆ there does not exist a, b ∈ [1, 4t−1
5

] such that a 6= b and
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∆(a) = ∆(b). Let a, b ∈ [4t+4
5

, 6t+1
5

] then,

c = a + b ≥ 4t + 4

5
+

4t + 9

5
=

8t + 13

5
>

6t + 1

5
.

Thus c 6= [1, 6t+1
5

].

Let a ∈ [1, 4t−1
5

] and b ∈ [4t+4
5

, 6t+1
5

]. If b is even then b = 2a and,

c = a + b ≥ 4t + 4

10
+

4t + 4

5
=

12t + 12

10
=

6t + 6

5
>

6t + 1

5
.

Thus c 6= [1, 6t+1
5

]. If b is odd. Then, ∆(b) = 5x+4t−1
5

> 4t−1
5
≥ ∆(a). Therefore

∆ : [1, 6t+1
5

] −→ [1, t] as defined above has only TMC solution sets to L(m).

Upper Bound:

Suppose there exist a ∆ : [1, 6t+7
5

] −→ [1, t] that is TMC. Since t < 6t+7
5

there

exist a, b ∈ [1, 6t+5
5

] such that a < b and ∆(a) = ∆(b).

Part 1: Suppose a, b ∈ [1, 4t+4
5

]. By Lemma 1 a = b
2
, then

c = a + b ≤ 4t + 4

10
+

4t + 4

5
=

12t + 12

10
=

6t + 6

5
<

6t + 7

5

This implies there exist c ∈ [1, 6t+7
5

] such that a + b = c and {a, b, c} is not TMC.

Arbitrarily let ∆(x) = x for x ∈ [1, 4t+4
5

].

Part 2: Consider a, b ∈ [4t+9
5

, 6t+7
5

]odd and c ∈ [1, 4t=4
5

] such that c < a < b. By

Lemma 2, since a, b are odd we have ∆(a) 6= ∆(b) 6= ∆(c). From (Part 1) above,

∆(a),∆(b) 6∈ [1, 4t+4
5

] and ∆(a),∆(b) ∈ [4t+9
5

, t].

Now there are t− 4t+9
5

= t−9
5

colors in [4t+9
5

, t]. Further there are
6t+7

5
−
(

4t+9
5

−1
)

2
=

t+1
5

many elements in [4t+9
5

, 6t+7
5

]odd. So we have t−9
5

many colors to color t+1
5

many

elements. By the PHP, with t−9
5

< t+1
5

there exist a, b ∈ [4t+9
5

, 6t+7
5

]odd such that

∆(a) = ∆(b). This contradiction Lemma 2 and ∆ : [1, 6t+7
5

] −→ [1, t] has a solution

set to L(m) that avoids being TMC.
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Case 4: Suppose t > m and m ≥ 4. Then let h =
∑n−2

k=1(k), j =
∑n−3

k=1(k),

s = b th−j−2
1+h
c, and s = d th−j−2

1+h
e and we will show that

R(t,m) = max{j + 2s + 3, s + (t− s)h + 1}.

Sub-Case 4a: Suppose j + 2s + 3 = max{j + 2s + 3, s + (t − s)h + 1} or s = s.

Then j + 2s + 3 ≥ s + (t− s)h + 1.

Lower Bound:

Let ∆ : [1, j + 2s + 2] −→ [1, t] be defined as below.

∆(x) =


x if x ≤ s⌈

x−s
h

⌉
+ s if x > s

Suppose ∆ avoids having only TMC solutions to L(m). Then there exist

a, b ∈ [1, j + 2s+ 2] such that a < b, ∆(a) = ∆(b), and a, b ∈ {xi}mi=1 ⊆ [1, j + 2s+ 2]

such that
∑m−1

i=1 (xi) = xm.

If a, b ∈ [1, s] then ∆(a) = a < b = ∆(b). So ∆(a) 6= ∆(b). If a ∈ [1, s] and

b ∈ [s + 1, j + 2s + 2] then ∆(a) = a ≤ s < d b−s
h
e + s = ∆(b). So ∆(a) 6= ∆(b).

If a, b ∈ [s + 1, j + 2s + 2] and b − a < h then for any {xi}m−2
i=1 ⊆ [1, j + 2s + 2]

such that a 6∈ {xi}m−2
i=1 we have

∑m−2
i=1 (xi) + a ≥

∑m−2
i=1 (i) + a = h + a > b, so

xm 6= b. Also, for any {xi}m−3
i=1 ⊆ [1, j + 2s + 2] such that a, b 6∈ {xi}m−2

i=1 we have∑m−3
i=1 (xi) + a+ b ≥

∑m−3
i=1 (i) + (s+ 1) + (s+ 2) > j + 2s+ 2, so xm 6∈ [1, j + 2s+ 2].

If a, b ∈ [s + 1, j + 2s + 2] and b− a ≥ h then,

∆(a) =
⌈a− s

h

⌉
+ s ≤

⌈(b− h)− s

h

⌉
+ s =

⌈b− s

h
− 1
⌉

+ s⌈b− s

h

⌉
− 1 + s <

⌈b− s

h

⌉
+ s = ∆(b).

So ∆(a) 6= ∆(b). Thus ∆ : [1, j + 2s + 2] −→ [1, t] has only TMC solution sets to

L(m).

Upper Bound:
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Suppose there exist a coloring ∆ : [1, j + 2s + 3] −→ [1, t] that has only TMC

solution sets to L(m).

Part 1: Consider a, b ∈ [1, s + 2].

If a, b ∈ [1,m − 1] let {xi}m−1
i=1 = {i}m−1

i=1 . If a ∈ [1,m − 1] and b 6∈ [1,m − 1] let

{xi}m−2
i=1 = {i}m−2

i=1 and b = xm−1. If a, b 6∈ [1,m− 1] let {xi}m−3
i=1 = {i}m−3

i=1 , a = xm−2,

and b = xm−1. In any of these cases we have,

xm =
m−1∑
i=1

(xi) ≤
m−3∑
i=1

(i) + (s + 1) + (s + 2) = j + 2s + 3

and xm ∈ [1, j + 2s + 3]. Thus for ∆ to have only TMC solution sets to L(m) it has

to be true that ∆(a) 6= ∆(b). For x ∈ [1, s + 2] arbitrarily let ∆(x) = x.

Part 2: Consider a ∈ [1, s + 2] and b ∈ [s + 2 + h, j + 2s + 3].

If a ≤ m− 2 then let {xi}m−2
i=1 = {i}m−2

i=1 and xm−1 = b−h ≥ s+ 2 > m− 2. Then∑m−1
i=1 (xi) =

∑m−2
i=1 (i) + (b− h) = b. If a = m− 1 then,

b− (m− 1) ≥ s + 2 + h− (m− 1) = s + 1 +
m−2∑
i=1

(i)− (m− 2)

= s + 1 +
m−3∑
i=1

(i) > s +
m−3∑
i=1

(i).

Which implies b−a−
∑m−3

i=1 (i) > s ≥ m−1 = a. So let {xi}m−3
i=1 = {i}m−3

i=1 , xm−2 = a,

xm−1 = c1 = b− a−
∑m−3

i=1 (i), and xm = b. Then it follows that,

m−1∑
i=1

(xi) =
m−3∑
i=1

(i) + (b− a−
m−3∑
i=1

(i)) + a = b.

If a ≥ m and a 6= c1 = b − a −
∑m−3

i=1 (i) then let {xi}m−3
i=1 = {i}m−3

i=1 , xm−2 = c1,

xm−1 = a, and xm = b. Then
∑m−1

i=1 (xi) =
∑m−3

i=1 (i) + (b− a−
∑m−3

i=1 (i)) + a = b. If

a ≥ m and a = c1 = b− a−
∑m−3

i=1 (i) then b = 2a +
∑m−3

i=1 (i). Now let

{xi}m−4
i=1 = {i}m−4

i=1 , xm−3 = m − 2, xm−2 = a − 1 ≥ m − 1, xm−1 = a, and xm = b.
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Then it follows that,

m−1∑
i=1

(xi) =
m−4∑
i=1

(i) + (m− 2) + (a− 1) + a =
m−3∑
i=1

(i) + 2a = b.

Thus if a ∈ [1, s + 2] and b ∈ [s + 2 + h, j + 2s + 3] we can find a set with a, b ∈

{xi}mi=1 ∈ [1, j+2s+3] such that
∑m−1

i=1 (xi) = xm. Therefor for ∆ to have only TMC

solution sets to L(m) if a ∈ [1, s+2] and b ∈ [s+2+h, j+2s+3] then ∆(a) 6= ∆(b).

Part 3: If s = s then s = th−j−2
1+h

> th−j−2−h
1+h

and,

s(1 + h) > th− j − 2− h

s + sh > th− j − 2− h

j + s− h + 2 > th− sh− 2h

j + s− h + 2

t− (s + 2)
> h.

If s 6= s then s + 1 = s, then again it follows that,

j + 2s + 3 ≥ s + (t− s)h + 1

j + 2s + 3 ≥ (s + 1) + (t− (s + 1))h + 1

j + s− h + 1 ≥ (t− (s + 1))h− h

j + s− h + 2 > (t− (s + 2))h

j + s− h + 2

t− (s + 2)
> h.

Now in [s+ 2 +h, j + 2s+ 3] there exist j + 2s+ 3− (s+ 2 +h) + 1 = j + s−h+ 2

many elements with only t − (s + 2) many colors to color those elements (Parts 1

& 2 of Sub-Case 4a). By the PHP there exist at least j+s−h+2
t−(s+2)

> h many elements

in [s + 2 + h, j + 2s + 3] that share the same color. So at least a0, a1, a2, ..., ah ∈

[s + 2 + h, j + 2s + 3] such that a0 < a1 < a2 < ... < ah and ∆(a0) = ∆(ah).
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By Lemma 3, we have ah > a0 ≥ s + 2 + h > m (Lemma 4), ah − a0 ≥ h,

and ∆(a0) = ∆(ah) which implies that ∆ avoids having only TMC solution sets to

L(m). Therefore if j + 2s + 3 = max{j + 2s + 3, s + (t − s)h + 1} or s = s then

R(t, n) = j + 2s + 3.

Sub-Case 4b: Suppose s + (t − s)h + 1 = max{j + 2s + 3, s + (t − s)h + 1} and

s 6= s. Then j + 2s + 3 ≤ s + (t− s)h + 1, s + 1 = s, and j + 2s + 2 ≥ s + (t− s)h.

Lower Bound:

Let ∆ : [1, s + (t− s)h] −→ [1, t] be defined as below.

∆(x) =


x if x ≤ s⌈

x−s
h

⌉
+ s if x > s

Suppose ∆ avoids having only TMC solutions to L(m). Then there exist a, b ∈

[1, s + (t − s)h] such that a < b, ∆(a) = ∆(b), and a, b ∈ {xi}mi=1 ⊆ [1, s + (t − s)h]

such that
∑m−1

i=1 (xi) = xm.

If a, b ∈ [1, s] then ∆(a) = a < b = ∆(b). So ∆(a) 6= ∆(b). If a ∈ [1, s] and

b ∈ [s + 1, s + (t − s)h] then ∆(a) = a < s < d b−s
h
e + s = ∆(b). So ∆(a) 6= ∆(b).

If a, b ∈ [s + 1, s + (t − s)h] and b − a < h then for any {xi}m−2
i=1 ⊆ [1, s + (t − s)h]

such that a 6∈ {xi}m−2
i=1 we have

∑m−2
i=1 (xi) + a ≥

∑m−2
i=1 (i) + a = h + a > b, so

xm 6= b. Also, for any {xi}m−3
i=1 ⊆ [1, s + (t − s)h] such that a, b 6∈ {xi}m−3

i=1 we have∑m−3
i=1 (xi) + a + b ≥

∑m−3
i=1 (i) + (s + 1) + (s + 2) > j + 2s + 2 ≥ s + (t − s)h, so

xm 6∈ [1, s + (t− s)h]. If a, b ∈ [s + 1, s + (t− s)h] and b− a ≥ h then,

∆(a) =
⌈a− s

h

⌉
+ s ≤

⌈(b− h)− s

h

⌉
+ s =

⌈b− s

h
− 1
⌉

+ s

=
⌈b− s

h

⌉
− 1 + s <

⌈b− s

h

⌉
+ s = ∆(b).

So ∆(a) 6= ∆(b). Thus ∆ : [1, s + (t − s)h] −→ [1, t] has only TMC solution sets to

L(m).
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Upper Bound:

Suppose there exist a coloring ∆ : [1, s + (t − s)h + 1] −→ [1, t] that has only

TMC solution sets to L(m).

Part 1: Consider a, b ∈ [1, s + 1].

If a, b ∈ [1,m − 1] let {xi}m−1
i=1 = {i}m−1

i=1 . If a ∈ [1,m − 1] and b 6∈ [1,m − 1] let

{xi}m−2
i=1 = {i}m−2

i=1 and b = xm−1. If a, b 6∈ [1,m− 1] let {xi}m−3
i=1 = {i}m−3

i=1 , a = xm−2,

and b = xm−1. In any of these cases we have,

xm =
m−1∑
i=1

(xi) ≤
m−3∑
i=1

(i) + (s) + (s + 1) = j + 2s + 1

= j + 2(s + 1) + 1 = j + 2s + 3 ≤ s + (t− s)h + 1

and xm ∈ [1, s + (t − s)h + 1]. Thus for ∆ to have only TMC solution sets to L(m)

it has to be true that ∆(a) 6= ∆(b). For x ∈ [1, s + 1] arbitrarily let ∆t,n(x) = x.

Part 2: Consider a ∈ [1, s + 1] and b ∈ [s + 1 + h, s + (t− s)h + 1].

If a ≤ m−2 then let {xi}m−2
i=1 = {i}m−2

i=1 and xm−1 = b−h ≥ s+1 = s+2 ≥ m−2.

Then
∑m−1

i=1 (xi) =
∑m−2

i=1 (i) + (b− h) = b. If a = m− 1 then,

b− (m− 1) ≥ s + 1 + h− (m− 1) = s +
m−2∑
i=1

(i)− (m− 2) = s +
m−3∑
i=1

(i)

which implies b − a −
∑m−3

i=1 (i) ≥ s > s ≥ m − 1 = a. So let {xi}m−3
i=1 = {i}m−3

i=1 ,

xm−2 = a, xm−1 = c1 = b− a−
∑m−3

i=1 (i), and xm = b. Then∑m−1
i=1 (xi) =

∑m−3
i=1 (i) + (b− a−

∑m−3
i=1 (i)) + a = b.

If a ≥ m and a 6= c1 = b − a −
∑m−3

i=1 (i) then let {xi}m−3
i=1 = {i}m−3

i=1 , xm−2 = c1,

xm−1 = a, and xm = b. Then
∑m−1

i=1 (xi) =
∑m−3

i=1 (i) + (b− a−
∑m−3

i=1 (i)) + a = b. If

a ≥ m and a = c1 = b− a−
∑m−3

i=1 (i) then b = 2a +
∑m−3

i=1 (i). Now let

{xi}m−4
i=1 = {i}m−4

i=1 , xm−3 = m − 2, xm−2 = a − 1 ≥ m − 1, xm−1 = a, and xm = b.
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Then we have,

m−1∑
i=1

(xi) =
m−4∑
i=1

(i) + (m− 2) + (a− 1) + a =
m−3∑
i=1

(i) + 2a = b.

Thus if a ∈ [1, s + 1] and b ∈ [s + 1 + h, s + (t − s)h + 1] we can find a set with

a, b ∈ {xi}mi=1 ∈ [1, s + (t − s)h + 1] such that
∑m−1

i=1 (xi) = xm. Therefore for ∆ to

have only TMC solution sets to L(m) if a ∈ [1, s+1] and b ∈ [s+1+h, s+(t−s)h+1]

then ∆(a) 6= ∆(b).

Part 3: Now in [s+1+h, s+(t−s)h+1] there exist s+(t−s)h+1−(s+1+h)+1 =

(t − (s + 1))h + 1 many elements with only t − (s + 1) many colors to color those

elements (Parts 1 & 2). By the PHP there exist at least,

(t− (s + 1))h + 1

t− (s + 1)
= h +

1

t− (s + 1)
> h

many elements in [s + 1 + h, s + (t− s)h + 1] that share the same color. So at least

a0, a1, a2, ..., ah ∈ [s + 1 + h, s + (t − s)h + 1] such that a0 < a1 < a2 < ... < ah

and ∆(a0) = ∆(ah). By Lemma 3, we have ah > a0 ≥ s + 1 + h > m (Lemma

4) ah − a0 ≥ h, and ∆(a0) = ∆(ah) which implies that ∆ avoids having only TMC

solution sets to L(m).

Thus if s + (t − s)h + 1 = max{j + 2s + 3, s + (t − s)h + 1} and s 6= s then

R(t, n) = s + (t− s)h + 1.
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Here is a table of the TMC-Rado numbers with t rows for t colors and m columns

for equation L(m). So, R(7, 5) is found in position (7, 5) which is 16. The cells

highlighted in green are where Sub-case 4b occur.

Table 1. TMC-Rado Numbers
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SUGGESTIONS FOR FURTHER RESEARCH

This problem could be expanded by adding a content integer c to the left side

of the L(m) equation. From what I saw a non-negative c may not be too difficult,

however when c is negative R(t,m) becomes less clear. Another change may be

instead using TMC we could use Totally Dualcolored or TDC, where a set {xi}mi is

TDC if and only if for any xi and xj such that ∆(xi) = ∆(xj) then ∆(xi) 6= ∆(xk)

for all k 6= i, j.



25

REFERENCES

[1] A. Beutelspacher, W. Brestovansky, Generalized Schur Numbers, Lecture

Notes Math., 969, Springer, Berlin-New York: (1982), 30-38.

[2] A. Bialostocki, D. Schaal, On a Variation of Schur Numbers, Graphs and

Combinatorics, 16 (2000), 139-147.

[3] C. Brady, R. Haas, Rado Numbers for the Real Line, Congressus Numerantium,

177 (2005), 109-114.

[4] S. A. Burr, S. Loo, On Rado Numbers I, preprint.

[5] S. Guo, Z.W. Sun, Determination of the Two-color Rado Number for a1x1 +

... + amxm = x0, Journal of Combinatorial Theory, Series A, 115 (2008),

345-353.

[6] B. Hopkins, D. Schaal, On Rado Numbers for
∑m−1

i=1 aixi = xm, Advances in

Applied Mathematics, 35 (2005), 433-441.

[7] S. Jones, D. Schaal, Some 2-color Rado Numbers, Congressus Numerantium,

152 (2001), 197-199.

[8] S. Jones, D. Schaal, Two-color Rado Numbers for x + y + c = kz, Discrete

Mathematics, 289 (2004), 63-69.

[9] W. Kosek, D. Schaal, Rado Numbers for the Equation
∑m−1

i=1 xi + c = xm for

Negative Values of c, Advances in Applied Mathematics, 27 (2001), 805-815.



26

[10] B. Martinelli, D. Schaal, On Generalized Schur Numbers for x1 +x2 + c = kx3,

Ars Combinatoria, 85 (2007), 33-42.

[11] R. Rado, Verallgemeinerung eines Satzes von van der Waerden mit Anwendungen

auf ein Problem der Zahlentheorie, Sonderausg. Sitzungsber. Preuss. Akad.

Wiss. Phys.- Math. Klasse, 17 (1933), 1-10.

[12] R. Rado, Studien zur Kombinatorik, Math. Z., 36 (1933), 242-280.

[13] R. Rado, Note on Combinatorial Analysis, Proc. London Math. Soc., 48 (1936),

122-160.

[14] K. Rendall Truman, D. Schaal, Three-color Rado Numbers for x1 +x2 +c = x3

for Negative Values of c, Congressus Numerantium, 183 (2006), 5-10.

[15] A. Robertson, D. Schaal, Off-Diagonal Generalized Schur Numbers, Advances

in Applied Mathematics, 26 (2001), 252-257.

[16] D. Schaal, On Generalized Schur Numbers, Congressus Numerantium, 98

(1993), 178-187.

[17] D. Schaal, A Family of 3-color Rado Numbers, Congressus Numerantium, 111

(1995), 150-160.

[18] D. Schaal, D. Vestal, Rado Numbers for x1 +x2 + ...+xm−1 = 2xm Congressus

Numerantium, 191 (2008), 105-116.
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