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ABSTRACT

GENOME-WIDE ASSOCIATION MAPPING AND GENOMIC PREDICTION FOR 

ENHANCING FHB RESISTANCE IN HARD WINTER WHEAT

JINFENG ZHANG

2022

Wheat is one of the most important staple crops providing 20% of energy for 35% of the 

world population. Fusarium head blight (FHB), primarily caused by the fugal Fusarium 

graminearum Schwabe, is a damaging disease in wheat that affects global wheat 

production every year and causes food safety issues. The disease not only reduces the 

grain yield and quality but also produces mycotoxin in the diseased kernels making them 

unsuitable for human consumption or as livestock feeds. Breeding FHB resistant cultivar 

is the most effective and economical approach to managing the disease. This study 

combines genome-wide association study (GWAS) and genomic approaches (GS) to 

identify resistance loci/markers and evaluate the efficiency of genomic prediction (GP) 

in hard winter wheat breeding lines in the South Dakota State University (SDSU) winter 

wheat breeding program. In the first study, we conducted a multi-locus genome-wide 

association study (ML-GWAS) with 9,321 high-quality single nucleotide polymorphisms 

(SNPs) and a panel of 257 elite breeding lines from the South Dakota State University 

(SDSU) breeding program to uncover the genetic basis of native FHB resistance in the 

US hard winter wheat. Marker-trait associations (MTAs) were identified with eight 

different ML-GWAS models, the most appropriate being Fixed and random model 
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Circulating Probability Unification (FarmCPU) for FHB disease index (DIS) and 

Fusarium damaged kernels (FDK). A total of six distinct quantitative trait nucleotides 

(QTNs) were identified for DIS on five different chromosomes 2A, 2B, 3B, 4B, and 7A, 

where five were considered ‘reliable QTNs’ as those were identified by multiple models. 

For FDK, a total of eight unique QTNs were identified on six different chromosomes 3B, 

5A, 6B, 6D, 7A, and 7B, where four QTNs were considered reliable. In the second study, 

we further evaluated the genomic prediction potential of advanced breeding lines in 

predicting FHB disease index (DIS), and the percentage of Fusarium damaged kernels 

(FDK) in early generation breeding lines. Advanced breeding lines evaluated in 2018, 

2019, and 2020 were used as training populations (TP18, TP19, and TP20, respectively) 

for genomic prediction (GP) of FHB traits. We observed moderate prediction accuracy 

(PA) using univariate models for DIS (0.39 and 0.35) and FDK (0.35 and 0.37) using 

TP19 and TP20, respectively, and slightly higher PA (0.41 for DIS and 0.38 for FDK) 

when TP19 and TP20 (TP19+20) were combined to leverage the advantage of a large 

training population. However, GP with a multivariate approach including plant height 

and days to heading as covariates further did not significantly improve PA for DIS and 

FDK over univariate models, PA for DON increased by 20% using DIS, FDK, and DTH 

as covariates using the multi-trait model in 2020. Finally, we used TP19, TP20, and 

TP19+20 in forward prediction to calculate genomic-estimated breeding values (GEBVs) 

for DIS and FDK in preliminary breeding lines at an early stage of the breeding program. 

We observed moderate PA of up to 0.59 for DIS and 0.54 for FDK, demonstrating the 

promise in genomic prediction for FHB resistance in earlier generations using advanced 
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lines. Our results demonstrate the potential of integrating genomic selection in hard 

winter wheat breeding to improve FHB resistance.  

Key words: Triticum aestivum, FHB, germplasm development, Phenotypic Selection, 

GBS, GWAS, Genomic Selection, GP, FHB resistance 
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Chapter 1. Introduction 

Wheat is one of the oldest and most widely grown food crops that is consumed 

worldwide (http://www.fao.ogr/faostat/). Further wheat leads in world trade among all 

crops and its annual production rank second behind maize, outnumbering other crops 

including rice, soybean, and potatoes (Lev-Yadun et al., 2002). However, wheat 

production has been challenged by the increasing abiotic and biotic stresses. Fusarium 

head blight (FHB), primarily caused by fungi Fusarium species, stands out as the most 

damaging wheat disease across the world. The lack of FHB-resistance in wheat cultivars 

leads to significant yield loss and grain quality degradation in an epidemic year and 

results in food safety concerns with mycotoxins produced by the pathogen in diseased 

grains (Ma et al., 2020).   

Applying fungicides to control FHB is effective but remains challenging because of the 

very short application window, potential environmental contamination, and increased 

cost of wheat production (Bai et al., 2018; McMullen et al., 2012).  Therefore, growing 

resistant cultivars is the most economic and effective approach to minimizing the damage 

caused by the FHB (Bai & Shaner, 2004; McMullen et al., 2012). The most stable and 

often employed resistant germplasms are of Asia origin. However, these germplasms are 

usually either un-adapted to growing conditions in most of North America due to late 

maturity, variation in vernalization requirement, or have poor agronomics such as tall 

plant heights with a tendency to lodge, and low grain quality and low yield (Somers et al., 

2003). Therefore, recent efforts have intensified to select and exploit native sources of 

resistance in locally adapted cultivars without negatively affecting other traits 

(Clinesmith et al., 2019; Hashimi, 2019; Jin et al., 2013; Thambugala et al., 2020). The 

http://www.fao.ogr/faostat/
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major native sources for FHB resistance in hard winter wheat have been cultivars 

Overland, Everest, Lyman, and Emerson, however, these cultivars provide only moderate 

control to FHB and have to be combined with fungicides under the epidemic condition 

for effective management of FHB. 

FHB resistance is a typical quantitative trait that is controlled by multiple quantitative 

trait loci (QTLs), especially for native resistance that is often governed by multiple minor 

effect QTLs. Due to the nature of QTL, the improvement of FHB resistance is 

challenging. Conventional phenotypic selection for FHB resistance is still the primary 

approach for the development of FHB resistant varieties in hard winter wheat breeding 

programs. However, FHB resistance is often influenced by environmental conditions 

(Buerstmayr et al., 2012; Miedaner et al., 2001) thus phenotypic selection is unstable and 

has low efficiency. With the advance in molecular marker technology and genomic tools, 

molecular marker-assisted selection (MAS) and genomic selection (GS) provides 

opportunities to improve the efficiency of phenotypic selection for FHB resistance 

breeding.  

Genome-Wide Association Studies (GWAS) is a mapping strategy that identifies marker-

trait associations in a panel assembled using a diverse set of accessions/individuals and 

has been used extensively in human and animal genetic analysis where large segregating 

populations are not available (Varshney et al., 2007). GWAS has several advantages over 

linkage mapping including the potential for increased QTL resolution and without the 

requirement of developing a segregation population (Arruda et al., 2016).  GWAS has 

been used to identify markers/QTLs for biotic and abiotic stress resistance and agronomic 
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traits that can be used in MAS to develop disease-resistant genotypes in breeding 

programs (Arora et al., 2017). Further, genomic selection (GS) is another alternative to 

conventional phenotypic selection. GS captures the total additive genetic variance using 

genome-wide molecular markers and predicts genomic estimated breeding values 

(GEBV) in an un-phenotyped population for difficult quantitative traits using molecular 

markers (Poland & Rutkoski, 2016), thus bypassing the identification of QTL and 

measurement of its effect. With the genotypic information, GS has made it possible to 

predict plants’ performance at the early stage in the breeding program that can help 

advance superior lines to the next generations based on their GEBVs. Thus the prediction 

of phenotypes can substitute the phenotype-dependent laborious field evaluation and 

effort and investment in assessment for phenotypes can be substantially reallocated to 

enhance the efficiency of the breeding program (Kuti et al., 2012).  

Thus the goal of my study was to implement advanced techniques in the South Dakota 

winter wheat breeding program to select hard winter wheat germplasm with enhanced 

FHB resistance, the specific objectives of this study were to: 

To characterize the genomic regions associated with FHB resistance in hard winter wheat 

breeding lines using genome-wide association analysis. 

To optimize genomic selection/prediction for FHB resistance in the hard winter wheat 

breeding program. 
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Chapter 2. Literature review 

2.1 Wheat production 

Wheat is a staple food crop and is consumed worldwide. It is the most widely grown crop 

(216 million hectares worldwide in 2020), outnumbering any other food crops in the 

world (https://apps.fas.usda.gov/psdonline/circulars/production.pdf).  Wheat can be 

grown in a wide range of environments and conditions, including cool, hot, dry and wet 

areas (Dupont & Altenbach, 2003). Its annual production of over 700 million tons, 

ranking second amongst all crops behind corn, provides about 20% of the calories and 

protein for over 2.5 billion people in the world (Ma et al., 2020). Wheat grain is also an 

excellent energy source for farm animals and up to 16.7% of worldwide wheat production 

has been used as animal feed (Aviles, 2019). Broad adaptability, high yield potential, 

abundant nutrition, the simplicity of growing, and the ease of handling, transport, storage, 

and processing, have contributed to its widely cultivation and sustained usage throughout 

history (Kislev, 1984). Mainly, wheat production distributes in five major regions of the 

world: Asia, Europe, North America, South America, eastern Africa, and Australia.    
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 Figure 2.1 U.S. wheat production and area from 1961-2020. Data source: USDA 

In the United States (U.S.), wheat ranks the third largest crop in planted acreage and 

production behind corn and soybean. Wheat planting in the U.S. has a long-term 

downward trend after peaking in1981 (https://www.ers.usda.gov/topics/crops/wheat/). The 

planting area reached its top peak of 35 million hectares (Mha) in 1981 with the 

production of 75.8 million tons then keeping downward especially in the planted area 

until now (Figure 2.1). Many challenges contribute to the change. International 

competition might be one of the major reasons for decreasing in U.S. wheat production. 

Due to foreign competition in the global wheat market, farmers’ profitability for planting 

wheat in the U.S. has declined relative to other crops, which has encouraged some 

farmers to reduce wheat planting. In addition, the flexible policy that allows farmers to 

choose the crops for growing by eliminating the requirement of maintaining the base 

acreage of a crop also encourages the swinging of wheat planting and production. 

Besides, the fact that genetic improvement has been slower for wheat due to the crop’s 

significantly more complex genetics and lower potential returns from research 

investments may be technically an additional reason. Although it has been challenged by 

many factors, the U.S. wheat production ranks the fifth after European Union, China, 

India, and Russia (https://apps.fas.usda.gov/psdonline/circulars/production.pdf).  

2.2 Wheat classes  

Wheat can be classified into different categories based on various criteria. Wheat 

(Triticum spp.) in fact includes several species, the economically important is common 

wheat (T. aestivum L. 2N=6X=42) with more than 90% of planting area, comprising 95% 

https://www.ers.usda.gov/topics/crops/wheat/
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of global wheat production, and durum (Triticum durum L. 2N = 4x = 28) with around 6-

7% of sowing acreage (Márta Molnár-Láng, Carla Ceoloni, 2015). Common wheat can 

be further separated into spring and winter wheat regarding the ecotypes. Winter wheat 

typically require a relatively cold vernalization process. Vernalization is a period of low 

temperatures necessary in order to induce flowering and complete the life cycle in certain 

varieties. Winter wheat varieties are sown in the fall and get established before cold 

weather arrives and complete vernalization during winter. It is necessary to expose to a 

low temperature near 5°C for 2 to 10 weeks for vernalization depending on different 

varieties.  Based on the difference in duration of vernalization requirements, winter wheat 

cultivars are categorized into three types: a weak winter type which requires brief 

exposure to low temperature, a semi-winter type that requires 2-4 weeks of cold exposure 

to induce flowering, and a strong winter type that needs more than 4 weeks of cold 

exposure (Crofts, 1989). Studies have shown that there are 4 groups of Vrn genes (Vrn1-

Vrn4) associated with the vernalization response (Crofts, 1989; Guedira et al., 2014). 

Vernalization is considered an evolutionarily adaptive mechanism for winter wheat to 

delay flowering for survival in the harsh winter climate. The variation of winter and 

spring ecotype enable wheat to adapt to a wide range of growing environment from 

tropical zone to within the Arctic cycle (Guedira et al., 2014). 

Wheat can also be categorized depending on the seed color, texture and growing habits. 

In the U.S., wheat varities grown are divided into six classes: hard red winter wheat 

(HRWW), hard red spring wheat (HRSW), soft red winter wheat (SRWW), soft white, 

hard white wheat, and durum (https://www.ers.usda.gov/topics/crops/wheat/). Compared 

with red color grain, white wheat generally has a higher milling yield and produces whole 
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wheat flour without the needs for discoloration.  The differentiation of grain texture (soft 

or hard) results in a very pronounced difference in the uses of wheat.  Hard wheat 

contains a higher level of gluten and protein than soft wheat (https://flour.com/types/). 

The high level of gluten, an elastic substance, is capable of retaining gas in the dough, 

thus causing the baked product to expand or rise to form a stronger structure, thus 

suitable for bread baking. On the other hand, soft wheat (with relatively less protein) is 

usually used for products requiring minimal structure, such as cakes, crackers and 

piecrusts. Wheat varieties grown in dry climates are generally hard types, while the wheat 

types in humid areas are softer, with weak gluten. HRWW in the U.S. accounts for about 

40 percent of total production and is usually grown in the Great Plains (Colorado, 

Kansas, Oklahoma, Nebraska, Texas, South Dakota, and Montana), whereas the HRSW 

is mainly grown in Northern Plains (South and North Dakota, Montana, Minnesota), 

contributing about 25 percent of production. Soft red winter (SRW) wheat accounts for 

about 15 percent of total production and is grown primarily in States along the 

Mississippi River and in eastern States 

(https://www.ers.usda.gov/topics/crops/wheat/wheat-sector-at-a-glance/#classes).  

2.3 Wheat breeding 

Since the “Green Revolution” in the 20th century, wheat has experienced a spectacular 

yield increase in total production from 303 million tons in 1966 to 766 million tons in 

2019 (Paux, 2012). From the early 1960s, there has been little increase in the area sown 

to wheat, but over the same period, yields have increased almost 3-fold (Marshall et al., 

2001) (Figure 2.2). Much of the yield increase has been through improved agricultural 
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practice, largely due to the release of new improved varieties (Marshall et al., 2001). 

Therefore, the breeding of new varieties has been crucial.  

 

Figure 2.2 Wheat production worldwide compared with the area from 1961 to 2000. 

(From Marshall et al., 2001) 

However, growth in wheat yields has stagnated at around 0.9% per year over the past 

decade — by contrast, maize (corn) yields grow by almost double that at approximately 

1.6% per year. Compared with corn, wheat gets less investment. The total global spend 

on wheat breeding and research (around US$500 million per year) is one-quarter of that 

spent to improve maize (anonymity, 2014). One reason for this discrepancy is that wheat 

is a self-pollinating crop thus farmers can replant seeds from several successive harvests 

and seed companies get no such annual income as corn, therefore they do not have much 

motivation to increase the investment in wheat breeding.   

Wheat breeding relies long termly on conventional approaches and mostly on “classical” 

phenotypic selection. Currently, breeding for improved varieties still relies on a 10-year 

cycle (Table 2.1). From the selection of crossing parent and do cross at the first year, 
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flowing F2, F3, head row, early observation trial (EOT), Preliminary yield trial (PYT), 

Advanced yield trial (AYT), elite yield trial (EYT), and Crop performance trial (CPT), 

each trial needs one year. The cycle repeats year by year. And different trials require the 

tests in different locations in candidate planting areas.  

Table 2.1: Wheat breeding pipeline and cycles 

Year Gen. Entry Cycle 

      1 2 3 4 

0 P Parent selection P 
   

1 F1 Crossing (~700) F1 P 
  

2 F2 F2 (~600) F2 F1 P 
 

3 F3 F3 (~350) F3 F2 F1 P 

4 F4 Head row (15000) F4 F3 F2 F1 

5 F5 EOT*(~2000) F5 F4 F3 F2 

6 F6 PYT*(~700) F6 F5 F4 F3 

7 F7 AYT*(126） F7 F6 F5 F4 

8 F8 EYT*(36) F8 F7 F6 F5 

9 F9 CPT*(10) F9 F8 F7 F6 

10 F10 … … … … … 

*EOT: Early observation trial; PYT: Preliminary yield trial; AYT: Advanced yield trial; 

EYT: Elite yield trial; CPT: Crop performance trial; Number in the bracket is the 

combination number or lines number.  

On the other hand, with the advance in molecular marker technology and genomic 

technology, high throughput SNP markers can be available and affordable, and marker- 

assisted selection (MAS) can improve the efficiency of breeding by permitting the 

selection of target traits or pyramiding various effective genes using associated or linked 
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molecular markers. Genomic selection (GS) provides an alternative option to improve the 

efficiency of MAS by capturing small-effect loci that might be missed in MAS and is 

considered a promising method to increase the selection accuracy and breeding efficiency 

for the complex traits in wheat breeding (Poland & Rutkoski, 2016). 

2.4 Fusarium Head Blight in wheat 

Fusarium head blight (FHB) or scab is a fungal disease that occurs on wheat, barley, oats, 

and other small-grain crops and corn. The disease mainly affects heads and grains, 

leading to bleached or pink color spikelets in premature heads. Diseased grains appear 

discolored or pinkish, shrived, and are lightweight. These grains sometimes are called 

“tombstones” because of their chalky, lifeless appearance. FHB causes not only 

considerable yield losses but also quality concern that is associated with damaged kernels 

and mycotoxins accumulated in the infected kernels (Bai & Shaner, 2004). 

Grains contaminated with mycotoxins, particularly deoxynivalenol (DON), can be a 

serious safety issue for the health of human and domestic animals for consumption 

(Ferrigo et al., 2016; Pestka, 2010). 1-3 ppm of DON can cause reduced feed intake and 

lower weight gain in animals, especially in swine. Vomiting and feed refusal may occur 

when levels of intaking DON exceed 10 ppm 

(https://extension.psu.edu/downloadable/download/sample/sample_id/180/). Therefore, 

the strict upper limits on levels of DON allowed in food and feed have been set in many 

countries. For example, the maximum DON content in European Union (EU) is 1.25 ppm 

in unprocessed bread wheat, 0.5 ppm in bread and bakeries, and 0.2 ppm in baby food 

(Anonymous 2005). In 1993, the Food and Drug Administration (FDA) of the USA 
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announced the acceptable levels of 1 ppm DON on finished wheat products 

(http://www.cfsan.fda.gov/~dms/graingui.html). Health Canada has set limits for DON in 

soft wheat of 2 and 1 ppm for non-staple foods and baby foods, respectively 

(http://www.hc-sc.gc.ca/fn-an/securit/chem-chim/contaminants-guidelines-

directives_e.html). 

Epidemics of FHB have had a significantly deleterious impact on global wheat 

production. In the USA, after firstly being reported by Arthur (1891) in Indiana, FHB 

epidemics have spread to all major wheat-growing states, including North Dakota, South 

Dakota, Minnesota, Ohio, Michigan, Missouri, Kansas, and Arkansas (McMullen et al., 

2012). Recently, the frequency of FHB epidemics has increased because of the change in 

climate conditions (frequent summer rains) and farming practices change (less or no 

tillage and the increased acreages of corn providing rich sources of inoculum) (Bai et al., 

2018). Epidemics of FHB result in severe losses through directly reducing the grain yield 

and increasing grain cleaning costs. Estimated losses to growers, grain handlers and 

industries that utilize wheat-related products exceeded $ 1 billion in North Dakota, 

Minnesota, and South Dakota during 1993 alone (Mcmullen et al., 1997).  

Several Fusarium species such as F. graminearum, F. avenaceum, F. culmorum and 

F.poae. can cause FHB, but predominated species for FHB is F. graminearum (sexual 

stage – Gibberella zeae) in the U.S. (H. Buerstmayr et al., 2009).   In warm (75 to 85 F) 

and humid environments, flowering spikelets can be easily infected. For effective 

infection, warm and moist conditions need to prolong to 72 hours. However, in cooler 

temperatures when high humidity persists for longer than 72 hours, the infection does 

also occur (Friskop, 2018). Because FHB development depends on favorable 



15 
 

 

 

environmental conditions, disease occurrence and severity may vary depending on the 

years. A combination of factors that may lead to an FHB outbreak are: abundant 

inoculum, repeated periods of rain and high humidity during flowering through kernel 

development, and the use of susceptible cultivars.  

2.4.1 Life cycle of Fusarium species 

Fusarium species have a complex life cycle including sexual and asexual stages. And 

basically, there are two types of spores produced for Fusarium species. In the asexual 

stage, conidia are produced, whereas in the sexual stage ascospores are produced (Figure 

2.3). Conidia are typically transported by raindrops. Because these conidia are usually 

entrapped in raindrops, they can not be easily delivered by wind. On the other hand, 

ascospores are light and can be easily picked up by the wind and delivered over long 

distances.  Studies have reported that spores of G. zeae (Ascospores) can be transported 

not only significant vertical distances from 50m to 1 kilometer in the air but also 

significant horizontal distances nearly 3 km over the surface of the earth (Maldonado-

Ramirez et al., 2005; SA Isard, 2001). Wheat crops are susceptible to infection from the 

flowering period up to the hard dough stage of kernel development but are most 

vulnerable at flowering. During moist weather, spores of the fungi are windblown or 

splashed onto the flowering spikelets, infecting susceptible wheat heads. After the 

colonization of the wheat heads with Fusarium, mycelia spread to other spikelets through 

vascular bundles of the rachilla in certain susceptible varieties under wet conditions (Bai 

& Shaner, 2004). Infected florets often fail to produce grain, or the grain is poorly filled 

and shriveled. The fungus starts to produce and accumulate DON as soon as the infection 

occurs, which helps F. graminearum enter wheat florets (Hernandez Nopsa, 2010). After 
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harvesting the crops, the mycelium of Fusarium species overwinters in crop residues 

including wheat, barley, corn, and rice, or on the grasses or in the soil. FHB has 

commonly one cycle per year.  However, early infections may produce air-borne spores, 

which can incite the secondary spread of the disease, especially if the crop has uneven 

flowering due to late tillers (Figure 2.3). 

 

Figure 2.3 Life cycle of Fusarium species (From Eeckhout et al., 2013) 

2.4.2 Management of FHB 

FHB management is achieved using integrated pest management practices that combine 

the use of multiple tools. Using a single strategy often fails when the environment favors 

disease development. Practical measurements include: applying resistant cultivars, seed 

treatment, crop rotation, tillage if possible, and using fungicide (Friskop, 2018).  
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The use of resistant cultivars is the most effective and economical method to reduce the 

FHB damage (Bai & Shaner, 2004; McMullen et al., 2012). Although none of the 

available commercial cultivars are completely resistant to Fusarium infection, differences 

in reaction to FHB do occur. Certain varieties have moderate levels of resistance, and the 

selection of these less susceptible varieties can have a significant impact on disease 

severity and grain quality. Additionally, plan to plant several different varieties that vary 

in flowering date (maturity) or stagger planting time. The variation in flowering date 

decreases the risk that the entire wheat crop will be at vulnerable growth stages when 

weather conditions favor disease development.  

Crop rotation is an effective practice in reducing FHB levels. The key to success for crop 

rotation is to plant nonhost crops. Thus, planting the wheat crop in a field that previously 

was planted with a broadleaf crop is a good option. In some regions, a wheat-corn 

rotation is practiced with zero or reduced tillage together, which has a high risk of FHB 

by providing rich sources of inoculum for initial infection (Dill-Macky & Jones, 2000; 

Vogelgsang et al., 2011). Even in this case, the selected wheat variety with resistance had 

the greatest effect on FHB, as well as the treatment of maize residues with a field 

shredder (Vogelgsang et al., 2011). Rotation to a legume crop between corn and wheat 

crops is a suggestion that will provide time for the residues to break down and the 

pathogen population to decline. 

Applying the fungicide is necessary when the forecasting model suggests a high risk of 

FHB during the growing season. The most effective fungicides labeled for FHB are 

triazole and pydiflumetofen, active ingredients containing prothioconazole, metconazole, 

tebuconazole and pydiflumetofen (Á. Mesterházy et al., 2003; Paul et al., 2008; Saldago 
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et al., 2018). All of these active ingredients, except pydiflumetofen, are in the sterol 

biosynthesis inhibitor class of fungicides and are site-specific to inhibit the biosynthesis 

of ergosterol, which is a component of fungal cell walls, but absent in animal and plant 

cell membranes (Kuck & Scheinpflug, 1986). Studies showed that applying fungicides 

containing prothioconazole at the beginning of anthesis greatly suppressed FHB disease 

(Haidukowski et al., 2012; Willyerd et al., 2012). Applying a fungicide four to seven 

days after early flowering in wheat (full head in barley) still can suppress FHB.  

In addition, seed treatment by using fungicide will not protect against FHB, but it can 

reduce seedling blight if the scabby seeds are used. If a scabby seed source is used, 

consider using a fungicide seed treatment and adjusting planting density. And biological 

control has been explored as an additional strategy to manage FHB. Biocontrol agents 

can be antibiosis, mycoparasitism, and competition (Legrand et al., 2017). 

2.5 Host plant resistance to FHB 

Host resistance is the most economically effective and environmentally sustainable 

approach to managing FHB. The success of breeding programs aiming at improving host 

resistance is largely dependent on the availability of resistant germplasm, and genetic 

variation in breeding lines. So far, no complete resistance to FHB in wheat is reported 

(Ma et al., 2020; Parry et al., 1995), therefore, the current strategy for developing 

resistant cultivars is to accumulate or pyramid of available resistance genes or major 

quantitative trait loci (QTL) that confer moderate resistance into one genotype without 

detriment of agronomic traits. The challenge of developing resistant cultivars is the 

resistance to FHB in wheat is a quantitative trait that is controlled by a large number of 
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genes or QTLs with moderate heritability, which is mostly influenced significantly by 

environmental conditions (M. Buerstmayr et al., 2012; Miedaner et al., 2001).  

There are several resistance types proposed: type I (resistance to initial infection), type II 

(resistance to fungal spread in the spike), type III (resistance to DON accumulation) (A 

Mesterhazy, 1995; Miller et al., 1985); Morphological and phenological traits such as 

tallness, absence of awns, anther retention/extrusion, loose spikelet distribution and 

staggered flowering time could contribute to Type I resistance (A. Mesterházy, 1995). 

Type II resistance is extensively studied because it is the most stable and easy to be 

evaluated in greenhouse (Bai & Shaner, 2004). Recent studies showed that the Type II 

resistance might be attributed to the cell wall thickening of rachis nodes and mycotoxin 

decomposition (Jansen et al., 2005; X. Li et al., 2017). Mesterházy (1995) proposed Type 

IV resistance to kernel damage and Type V is the tolerance to yield loss because some 

cultivars had significant differences in kernel infection rate and yield performance even at 

almost the same levels of FHB. Type IV resistance can be measured using the percentage 

of Fusarium damaged kernels (FDK) (Rudd et al., 2001). Recently, type III and type IV 

resistance received more attention in wheat breeding practice because they are types of 

resistance that end-use or growers are mostly concerned (Mesterhazy, 2020; Verges et al., 

2020).  The distinction of resistance type or component is to facilitate the evaluation of 

FHB resistance and may help to understand the mechanism of FHB resistance in wheat 

(Venske et al., 2019).  

Apart from the complexity of resistance evaluation and the underlying genetic basis of 

resistance, disease phenotyping is a process of labor and time consuming, and resources 

requirement. In addition, combining the different types of resistance into one cultivar, 
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which breeders expected, is another challenge. Therefore, with the advance in molecular 

and genomic technology, researchers are working to use molecular or genomic methods 

for assisting the selection and identification of resistance sources. The mapping of QTLs 

and the use of marker-assisted selection (MAS) provide researchers with tools that assist 

to identify and combine of major QTLs or resistance genes in a shorter period of time 

(Snijders, 2004). Applying molecular markers to breed for FHB resistance helps breeders 

to select target genes/QTL in earlier generations on large sets of populations and make 

sure not losing some lines with elite FHB resistance (Snijders, 2004). Molecular markers 

can also be used to identify and pyramid several QTLs in advanced lines. 

2.6 Resistance sources and QTLs 

In common (hexaploidy) wheat, genetic variation for FHB resistance is large and the 

resistance sources can be generally categorized as exotic and native germplasm based on 

their origins (Steiner et al., 2017). Exotic germplasms especially from Chinese sources 

such as Sumai-3 and its derivative Ning7840 and Wangshuibai have been widely used as 

resistance donors. From these resistance sources, several major QTLs have been 

identified and formally named: Fhb1, Fhb2 from Sumai-3, Fhb4, and Fhb5 in 

Wangshuibai (Bai et al., 1999; Cuthbert et al., 2006, 2007; Waldron et al., 1999; Xue et 

al., 2010, 2011). Fhb1, the well-known and the strongest QTL, has been cloned 

independently by several groups, even arguably (G. Li, Zhou, Jia, Gao, Fan, Luo, Zhao, 

Xue, Li, & Yuan, 2019; Rawat et al., 2016; Su et al., 2019). According to Rawat et al. 

(2016), a gene encoding pore-forming toxin-like (PFT) was responsible for the Fhb1-led 

resistance. However, the conclusion was disputed by other researchers based on the cases 

in which many lines from a large collection of wheat samples with the functional PFT 
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allele are susceptible. Li et al. (2019) and Su et al. (2019) independently reported that the 

his or HRC gene encoding a histidine-rich calcium-binding protein, around 50 kb away 

from PFT, might be the candidate for Fhb1. Fhb1 located on the short arm of 

chromosome 3B, confers stable mainly type II (resistant to spread) resistance. Fhb1 has 

been widely used in wheat breeding programs worldwide, particularly in spring wheat 

(Bai et al., 2018; H. Buerstmayr et al., 2009; Ma et al., 2020; McMullen et al., 2012). To 

remove the poor agronomics of linkage drag in Fhb1 carrying Chinese landraces, 

recently, the US Department of Agriculture Central Small Grain Genotyping Laboratory 

has transferred Fhb1 to 16 locally adapted hard winter wheat cultivars or breeding lines 

from five hard winter wheat states using marker-assisted backcross. One of the selected 

lines, ‘OverlandFHB-10‘, has been promoted to the 2017 and further Northern Regional 

Performance Nursery for yield trails (Bai et al., 2018). Diagnostic markers either gel-

based or Kompetitive allele specific PCR (KASP) protocols have been developed and 

available (Su et al., 2018), which facilitates marker-assisted selection (MAS) in the 

breeding program.  

Fhb2 is also a major QTL identified in Chinese spring wheat germplasm Sumai-3 

(Cuthbert et al., 2007). This QTL, on chromosome 6BS, explained a wide range of the 

phenotypic variation (4.4-23%) for type II and III resistance (low DON accumulation) 

(Bai et al., 2018; T. Li et al., 2011; Waldron et al., 1999). Fhb2 QTL is also present in 

other germplasm from different regions, including Arina and Apache from Europe, 

Patton from USA, and DH181 from Canada (Bai et al., 2018; Semagn et al., 2007).  

Fhb4 is one major-effect QTL first mapped in the Chinese landrace Wangshuibai (Lin et 

al., 2006), which confers type I resistance. Fhb4 is located on the long arm of 
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chromosome 4B, tightly linked to SSR markers Xgwm149 and Xgwm6 (Cai et al., 2016; 

Xue et al., 2010). Several other studies have been repeatedly mapping QTL on the Fhb4 

interval, indicating that this QTL is present at a relatively high frequency in wheat 

germplasms from different sources (Cai, 2016; Clinesmith et al., 2019; Liu et al., 2009). 

Fhb5 is another large-effect QTL found in Wangshuibai and is associated with type I 

resistance (Xue et al., 2011), but also associated with type II resistance in some 

populations (Liu et al., 2009). According to Liu et al. (2009), Fhb5 is present in many 

populations including the resistance germplasm from China (‘Wangshuibai’), Japan 

(‘Nyu Bai’), Europe (‘F201R’) and America (‘Frontana’ and ‘Ernie’).  This QTL is 

located in the close centromeric region of 5AS flanked by the SSR markers Xgwm304 

and Xgwm415 (Xue et al., 2011).  

Besides, some alien species such as tetraploid or hexaploidy wild relatives of wheat Ae. 

ventricosa, Ae. Speltoides, Thinopyrum ponticum, Th. elongatum, Th. intermedium, 

Dasypyrum villosum, Leymous racemosus, and Elymus tsukushiensis, are also used as 

resistance sources of FHB (Bai et al., 2018; Cainong et al., 2015; Oliver et al., 2005; Qi 

et al., 2008).  Cytogenetic approaches have been used to transfer resistance genes from 

these alien sources to generate substitution, translocation or recombinant lines by 

backcrossing with adapted common wheat varieties. Three alien FHB resistance 

fragments successfully introgressed into common wheat, are denominated as Fhb3 (from 

species Leymus racemosus (Qi et al., 2008), Fhb6 (from species Elymus tsukushiensis 

(Cainong et al., 2015), and Fhb7 (from Thinopyrum ponticum (Guo et al., 2015), 

respectively, all of which showed a high level of FHB resistance in the wheat background 

(Bai et al., 2018). The germplasm KS14WGRC61 (containing Fhb6 in Chinese Spring 
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background) (TA5660) and TA5093 (Fhb6 in Kansas winter wheat cultivar Everest 

background) were released and available (Cainong et al., 2015; Friebe et al., 2013). 

Recently, Fhb7, on chromosome 7D, has been cloned as a glutathione S-transferase 

(GST) gene, which confers broad resistance to Fusarium species by detoxifying 

trichothecenes through de-epoxidation. Fhb7 introgression in wheat confers resistance to 

both FHB and crown rot in diverse wheat backgrounds without yield penalty, providing  

germplasm for Fusarium resistance breeding (H. Wang et al., 2020). 

In addition, many native germplasms were used as FHB resistance sources. Due to the 

linkage drag of undesirable traits that comes from Fhb1-containing cultivar, Sumai 3, and 

other exotic sources of resistance, incorporating major-effect QTL into the regional 

breeding program is not always easy or successful. Many studies pay attention to 

discovering and utilizing native FHB resistance. Fortunately, there are still some local 

cultivars showing moderate resistance to FHB in many regions (Aviles, 2019; Bai et al., 

2018; Clinesmith et al., 2019). For example, several moderately FHB resistant cultivars 

without Fhb1 have been released in US soft winter wheat (SWW) regions, such as 

‘Truman’, ‘Massy’, ‘Bess’, ‘Ernie’, ‘Roane’ and ‘Freedom’ (Bai et al., 2018; Rudd et al., 

2001). And some regional hard winter wheat (HWW) varieties: ‘Everest’, ‘Overland’, 

‘Lyman’, ‘Heyne’, ‘Century’, and ‘Hondo’ have been reported of possessing moderately 

FHB resistance (Bai et al., 2018; Clinesmith et al., 2019; Jin et al., 2013) and native 

resistance QTLs have been identified in cultivar Art, Everest and Lyman (Clinesmith et 

al., 2019; Hashimi, 2019). Resistance QTLs reported include: 2B, 3B, 4B and 5A from 

Ernie (S. Liu et al., 2007); 2A from Freedom (Gupta et al., 2001); 1A, 2B, 3B, 4D, and 

5D from Bess (Petersen, 2015); 1A, 1B, 3A, 4A and 6A from Lyman; 1A, 1B, 5A, and 
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6A from Overland (Eckard et al., 2015); 2D, 4B, 4D from ‘Art’ (Clinesmith et al., 2019); 

4A, 4D, 5B, and 4DL from ‘Overland’(Fatima, 2016). Those QTLs can be easily 

incorporated into U.S. HWW cultivars due to the good adaptation of these donor parents. 

Besides, some cultivars from Europe including Arina, Renan, and Dream show moderate 

resistance to FHB (H. Buerstmayr et al., 2009). A spring wheat variety Frontana from 

Brazil shows a high-level type I and type II resistance, in which the major QTL on 

chromosome 3A and 5A explained collectively 25% of the phenotypic variation were 

reported (Steiner et al., 2004).  

2.7 QTL mapping strategy 

Basically, there are two strategies for QTL mapping: linkage and association mapping. 

Genetic mapping by linkage is based on genetic recombination events for a specific trait 

in a segregation population (F2, Double Haploid, or Recombinant inbred lines), using 

statistical analysis to locate all possible loci responsible for the trait variation (Gómez et 

al., 2011). The development of segregating population needs various times or resources 

depending on population type. An F2 population is easy and quick to produce, but each 

individual is a single genotype and phenotype and cannot be repeated in different 

environments. Recombinant inbred lines (RILs) consisting of homozygous lines derived 

from continuously selfing from F2 require several growing seasons of selfing and can be 

used repeatedly but are time-consuming. Doubled haploid (DH) population by 

regenerating plants from haploid tissue through chromosome doubling can significantly 

reduce the time of population development while requiring specific skills (Chen et al., 

2006; Hashimi, 2019). Molecular markers are used to separate the segregation population 

into different groups depending on the genotype of a specific marker. Then QTL analysis 
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determines whether there is a significant difference between the genotypic groups based 

on the phenotypic trait of interest (Paterson, 1996). If there is a significant difference in 

the phenotypic means between the genotypic groups, indicating that the marker used to 

partition the population into different groups is linked to a QTL affecting the trait. A test 

of likelihood is used to determine the linkage between a marker and the QTL (Aviles, 

2019). Single marker analysis (SMA), simple interval mapping (SIM), composite interval 

mapping (CIM), and multiple interval mapping (MIM) can be used for mapping analysis. 

The statistical methods applied for single-marker analysis include t-tests, analysis of 

variance (ANOVA), and linear regression. CIM is more precise and commonly utilized 

because it considers other QTL effects thus reducing the background “noise” (Zeng, 

1994).  

Although the linkage mapping provides a simplistic and powerful tool for QTL 

identification, it has obvious shortcomings, including limited genetic variation and the 

presence of only one or few meiotic generations resulting in low resolution of QTL 

mapping, and segregation population development is time-consuming and resources 

requirement sometimes deviated from breeding efforts for cultivar development (Arruda 

et al., 2016; Eckard et al., 2015). Association mapping, also called genome-wide 

association study (GWAS), appeared as an alternative to surpass the drawbacks of 

linkage mapping and is a promising method particularly due to the advance in high 

throughput SNP genotyping.   
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2.8 Genome Wide Association Study (GWAS) 

GWAS, initially developed for human disease studies in the early 2000s, was generally 

applied in plant genetics studies (Scherer & Christensen, 2016). GWAS has the 

advantage of exploiting naturally accumulated recombination events from diverse panels, 

without the additional cost of time, and resources associated with population 

development (Korte & Farlow, 2013). Standard GWAS test statistics assume that all 

samples in the analysis are unrelated and selected from a uniform, random-mating 

population. Therefore, unbalanced populations and relatedness among individuals can 

lead to false marker-trait associations, so it is necessary to use statistical models that fit 

the population structure and the kinship matrix of genetic effects as covariates to reduce 

the false discovery rate of genetic markers (Yu & Buckler, 2006). Related statistical 

methods have been developed and tested to minimize these confounding effects while 

optimizing computing speed. Among them, the mixed linear model (MLM) incorporating 

both the fixed effects and the random effects to control population structure and family 

relatedness, is the most popular method used in GWAS and also is a conservative model 

because of the stringent Bonferroni correction for multiple tests (Wang et al., 2016; Yu & 

Buckler, 2006).  

Several studies have been reported to identify significant marker-trait associations with 

FHB resistance in wheat using GWAS (Arruda et al., 2016; Kollers et al., 2013; R. Wang 

et al., 2017; Zhu et al., 2020). Arruda et al. (2016) identified significant QTL on 

chromosomes 1D, 3B, 4A, 4D, 6A, 7A, and 7D in US Midwest and eastern winter wheat 

breeding lines using Genotyping by sequencing (GBS) SNP markers. Wang et al. (2017) 

and Zhu et al. (2020) respectively studied the Spring wheat lines from Pacific Northwest 
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and CIMMYT and the Chinese Elite wheat lines using 90K SNP array by GWAS, 

identifying significant SNP trait association on chromosome 1B, 2B, 4B, 5A, 5B, 6A and 

1AS, 2DL, 5AS, 5AL, 7DS, correspondingly.  

Although with the increasing application, GWAS still has some limitations such as 

spurious associations and missing some rare variants. MAS based on GWAS also has the 

problem that any QTL mapping method has, only considering partially the effect of 

markers associated with QTLs and missing some heritability. Fortunately, there is one 

alternative technology that utilizes genome-wide predictions to overcome these 

limitations (Silva, 2018). 

2.9 Genomic selection/prediction 

Genomic selection (GS) can be considered as an extension form of marker-assisted 

selection. Meuwissen et al. (2001) developed a method of using genome-wide dense 

markers to predict the total breeding value of animals or plants population and selection 

on predicted breeding value could substantially increase the rate of genetic gain in 

simulated animal and plant breeding populations. The intent was not to detect QTL but to 

predict the breeding value that counts the total genetic additive variance from all markers 

across the whole genome for selection, a modified version of marker-assisted selection. 

With genome-wide markers, every trait locus is likely to be in linkage disequilibrium 

(LD) with at least one marker in the target population (Dreisigacker et al., 2016). As 

result, GS is more capable of capturing small-effect loci associated with complex 

quantitative traits such as FHB and yield (Poland & Rutkoski, 2016).  



28 
 

 

 

GS uses a population that has been both genotyped and phenotyped as a ‘training set’ for 

traits of interest in a target environment to develop a model to predict the phenotypic 

performance of a genetically related ‘testing set’ that only has been genotyped (Silva, 

2018). GS estimates marker effects across the entire genome of the breeding population 

(BP) based on the prediction model developed with the training population (Xu, 2013). 

This procedure produces genomic estimated breeding values (GEBV), which can be used 

as a selection criterion.  

2.9.1 Genomic selection model 

Many statistical models can be used to calculate GEBV. Here we introduce several 

classical models. First, rrBLUP and a software package based on R, have been developed 

primarily for genomic prediction with a mixed linear model that considers random effects 

for markers and assumes that each marker locus contributes equally to the phenotypic 

value (each locus explains an equal amount of variance) (Meuwissen et al., 2001; 

Endelman, 2011). The rrBLUP model was often chosen because it was more efficient 

(lower computational time and equal or higher accuracies) than other models (Hoffstetter 

et al., 2016). Bayesian estimation: Bayes A means that all markers have effect variances 

and are distributed normally, but different markers have different effect variances that 

follow the scaled inverted chi-square distribution. Bayes B is partly labeled with effect 

variance, but also with different effect variances that have the inverted chi-square 

distribution (Meuwissen et al., 2001). In reality, there are many loci with no genetic 

variance and some of them with genetic variance. Bayes B is a model that is more likely 

to meet the realistic situation. The Random Forest (RF) is a machine-learning algorithm 

capable of capturing non-additive effects. Predictions from this model are based on a 
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multiple decision trees where the tree structure allows the effect of markers to vary 

depending on other markers’ genotypes, indicating capturing nonadditive effects (Poland 

& Rutkoski, 2016). Although RF sometimes generates high prediction accuracies, it is 

not clear how much of the additive genetic variation is captured relative to nonadditive 

genetic information (Rutkoski et al., 2012).  

In addition, A Multi-trait (MT) model is developed and implemented to improve the 

prediction ability for complex traits when other traits correlated to the target trait are 

available (Jia & Jannink, 2012; Larkin et al., 2020; Schulthess et al., 2018). A few studies 

showed that the multi-trait model did significantly improve prediction accuracy for 

complex traits like FHB especially when there was a strong correlation between the 

covariate traits and the predicted trait and correlated traits had higher heritability than the 

predicted trait (Larkin et al., 2020; Schulthess et al., 2018). In multiple trait models, 

correlated traits are as covariates conjoined into mixed linear modes (Jia & Jannink, 

2012).   

2.9.2 Training population (TP) optimization 

The composition of the TP, its size, and its relatedness to the breeding population (BP) 

are crucial to determining the prediction accuracy of GS (Bassi et al., 2015). Isidro et al. 

(2015) also described the most important factors that affect prediction accuracy are the 

TP size, the number of molecular markers of training the model, and the relationship 

between the training and validating populations.  

The size of TP has been investigated in many studies and there is a general agreement 

that larger TP increases the prediction accuracy (PA) within a special range and further 
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increases in size do not affect PA again. Asoro et al. (2011 ) evaluated a maximum of 300 

individuals in Oats and found that PA for five different traits increased with the increases 

in TP size. In wheat, Isidro et al. (2015) evaluated TP size from 25 to 300 individuals and 

observed that maximum PA for five traits was reached with the larger TP (300). Similar 

results were found in one evaluation of TP size from 50-350 for grain yield, test weight, 

heading date, plant height, and powdery mildew resistance, and the highest PA was 

achieved at TP size from 300 to 350 for five different traits (Sarinelli et al., 2019). 

However, for complex traits including FHB, increases in TP size do not always improve 

the PA significantly due to the composition of TP and the relatedness between TP and the 

validation population (Adeyemo et al., 2020; Verges et al., 2020).  

Higher PAs were obtained when closely related individuals were found in TP and VP 

both in animal and plant breeding (Clark et al., 2012; Herter et al., 2019b; Hoffstetter et 

al., 2016). In animals, simulated and real data showed that PAs are closely associated to 

the maximum level of relatedness between the training set and the particular predicted 

individual (Clark et al., 2012). In wheat, Herter et al. (2019) reported two experimental 

winter wheat populations derived from six and eight bi-parental families, the prediction 

between the two half-sib families (with one common parent) resulted in the highest 

prediction accuracies for all four traits, while prediction accuracies were lowest between 

unrelated families. The study also suggests that the composition of the training 

population is of utmost importance in genomic selection for FHB and Septoria tritici 

blotch resistance (Herter et al., 2019).  
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2.9.3 Cross prediction 

It is certainly that forward prediction of non-phenotyped elite lines using a built GP 

model from a training set is an important application of GS. The GP tool could be also 

applied for cross prediction to help predict which patents or combinations would produce 

the most promising progeny when crossed (Silva, 2018). Given a typical wheat breeding 

program that includes ~100 elite lines in the crossing list from where around 700 crosses 

are made every year. This crossing number represents only 14% of the total number of 

the 4950 possible combinations, indicating that the majority of possible combinations are 

not tested or missing.  

Cross prediction refers to the ability to estimate or predict a cross from a set of elite 

parents aiming to identify which ones are more likely to generate a superior progeny. 

Although cross prediction does not guarantee sufficient genetic variance is involved, it 

could estimate the desired population mean, and simulating study had been proposed to 

predict the performance of the progeny population (Bernardo, 2014). Following this idea, 

the related R package ‘PopVar’ that is capable of estimating the genetic variance in 

simulated populations depending on phenotypic and genotypic data from a list of 

potential parents was developed (Mohammadi, 2015). Cross-predictions have been 

applied in wheat crosses aiming for superior grain yield and baking quality in INIA 

Uruguay and CIMMYT (Lado, 2017), as well as FHB resistance in barley (Mohammadi, 

2015). 

Generally, although there have been some progress cited in the literature, more 

validations are needed for cross predictions. In addition, a more diverse and complex 

cross design should be considered because the majority of cross combinations in wheat 
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breeding programs is three-way or four-way other than the biparental cross on which the 

current prediction model focuses (Silva, 2018).  
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Chapter 3 Multi-locus genome-wide association studies to characterize Fusarium 

head blight (FHB) resistance in hard winter wheat 

3.1 Abstract  

Fusarium head blight (FHB), caused by the fungus Fusarium graminearum Schwabe is 

one of the most devastating diseases of wheat that can cause severe yield losses along 

with quality and food/feed safety concerns due to the accumulation of mycotoxins in the 

grains. Incorporating the resistant alleles from wild relatives, landraces or exotic 

materials remain challenging and have limited success. Therefore, a better understanding 

of the genetic basis of native FHB resistance in hard winter wheat and combining it with 

major QTLs can facilitate development of FHB resistant cultivars. In this study, we 

evaluated a panel of 257 elite breeding lines from the South Dakota State University 

(SDSU) breeding program to uncover the genetic basis of native FHB resistance in the 

US hard winter wheat. We conducted a multi-locus genome-wide association study (ML-

GWAS) with 9,321 high-quality single nucleotide polymorphisms (SNPs) covering all 21 

wheat chromosomes. Marker-trait associations (MTAs) were identified with eight 

different ML-GWAS models, the most appropriate being Fixed and random model 

Circulating Probability Unification (FarmCPU) for FHB disease index (DIS) and 

Fusarium damaged kernels (FDK). A total of six distinct QTNs were identified for DIS 

on five different chromosomes such as 2A, 2B, 3B, 4B, and 7A, where five were 

considered ‘reliable QTNs’ as those were identified by multiple models. For FDK, a total 

of eight unique QTNs were identified on six different chromosomes 3B, 5A, 6B, 6D, 7A, 

and 7B, where four QTNs were considered reliable. The additive effect of favorable 

alleles of reliable QTNs was found to be significant as the mean DIS and FDK score 

decreased with the accumulation of resistant alleles. This current study sheds light on the 
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genetic basis of native FHB resistance in hard winter wheat germplasm from the US 

Great Plains region and the QTNs identified in this study would be useful resources for 

FHB resistance breeding via marker-assisted selection.  

Keywords: FHB resistance; GBS; multi-locus GWAS; hard winter wheat; winter wheat 

breeding  for scab  
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3.2 Introduction 

Fusarium head blight (FHB), also known as wheat scab or scab, is one of the most 

devastating diseases of wheat primarily caused by the fungus Fusarium graminearum 

Schwabe. FHB can cause severe losses in yield due to the shriveled grains and quality 

concerns due to lower test weight (Gilbert and Tekauz, 2000; Bai and Shaner, 2004). 

Further, Fusarium sp. produces harmful mycotoxins such as deoxynivalenol (DON) that 

can accumulate in the infected grains and poses a serious threat to food and feed safety, 

and negatively impact the wheat trade (Pestka, 2010; Ferrigo et al., 2016). In the USA, 

FHB was first reported by Arthur (1891) in Indiana and since then, FHB has expanded its 

horizons to all major wheat-growing states in the US. This expansion of FHB is likely 

due to a suitable climate, increased acreage under no-till cultivation, and adoption of 

maize-wheat rotations over the last several decades, causing huge economic losses 

(Nganje et al., 2004; McMullen et al., 2012; Wilson et al., 2017). For instance, wheat 

producers suffered revenue losses worth $850 million due to FHB outbreaks in the US 

(Wilson et al., 2017).  

Although fungicides are used for FHB prevention and control, the development of FHB 

resistant varieties is still the most effective and economical approach to minimize the 

losses caused by this disease (Bai and Shaner, 2004; Gilbert and Haber, 2013).  Genetic 

resistance to FHB is complex and controlled by multiple quantitative trait loci (QTLs) 

with small to medium effects. Further resistance expression is also significantly 

influenced by environmental conditions (Miedaner et al., 2001; Buerstmayr et al., 2012). 

Several types of resistance mechanisms have been proposed and commonly evaluated, 

including resistance to the initial infection (Type I), resistance to the spread of infection 
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within the spike (Type II), resistance to accumulation of mycotoxins such as 

deoxynivalenol (DON) (Type III), and resistance against damaged kernels (Type IV) (Bai 

and Shaner, 2004; Gilbert and Haber, 2013), with type II resistance being more stable and 

utilized in many wheat breeding programs. Nevertheless, type III and type IV resistance 

have also received attention in wheat breeding because of being associated with end-use 

quality, which is the biggest concern of the growers (Mesterhazy, 2020; Verges et al., 

2020).  The genetic analysis of FHB resistance in wheat has been extensively reported, 

and a large number of QTLs were identified on 21 wheat chromosomes (Liu et al., 2009; 

Venske et al., 2019), including seven cataloged FHB genes, Fhb1 to Fhb7 (Liu et al., 

2009; Su et al., 2019; Venske et al., 2019; Ma et al., 2020), with most of these originating 

from Asian germplasm such as the Chinese wheat variety ‘Sumai-3’ and ‘Wahgnshuibai’ 

or landraces (Bai et al., 1999; Anderson et al., 2001; Buerstmayr et al., 2009; Xue et al., 

2010; Steiner et al., 2017) and wild relatives (Fhb3, Fhb6) (REF). Nevertheless, the 

transfer of resistance from wild relatives, landraces or exotic materials is challenging and 

leads to linkage drag and adaptability issues. Thus, only a few QTLs, in particular Fhb1, 

with a major effect on FHB resistance are successfully employed by wheat breeding 

programs mostly by spring wheat programs (Bai et al., 2018). Contrarily, majority of the 

germplasm from hard winter wheat region of the US relies upon the variation in FHB 

resistance from native sources including cultivars like ‘Everest’, ‘Overland’, ‘Lyman’, 

and ‘Expedition’ (Clinesmith et al., 2019; Zhang et al., 2022). However, identification of 

genomic regions underlying native resistance and the development of reliable markers is 

needed to pyramid an effective level of resistance in required backgrounds. Thus, it is 
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important to determine the genetic basis of native FHB resistance from this region and 

exploit it in the regional breeding programs.  

Though numerous QTLs for FHB resistance have been identified using traditional 

linkage mapping, this approach can encompass limited diversity. Genome-wide 

association studies (GWAS) provide a good alternative by providing a much higher 

resolution to capture insights into the genetic architecture of complex traits because of 

historically accumulated mutations or recombination events (Francioli et al., 2016; 

Scherer and Christensen, 2016). GWAS has been successfully used to dissect several 

traits of economic importance in wheat (Sukumaran et al., 2014; Sidhu et al., 2020; 

AlTameemi et al., 2021), including a few studies for FHB resistance analysis (Kollers et 

al., 2013; Arruda et al., 2016; Wang et al., 2017; Zhu et al., 2020). However, none of 

these studies have been performed in the US hard winter wheat. Furthermore, recent 

developments in multi-locus GWAS (ML-GWAS) models have improved the power and 

reliability of this approach to identify causal loci for complex traits. For instance, more 

powerful methods like FarmCPU and BLINK have improved the ability of GWAS to 

detect smaller effects loci (Liu et al., 2016; Huang et al., 2019). Apart from these models, 

several important ML-GWAS models that have been reported to outperform conventional 

GWAS models include the multi-locus random-SNP-effect mixed linear model 

(mrMLM), fast multi-locus random-SNP-effect mixed linear model (FASTmrMLM), fast 

multi-locus random-SNP-effect efficient mixed-model analysis (FASTmrEMMA), 

iterative modified-sure independence screening Expectation-Maximization-Bayesian 

least absolute shrinkage and selection operator (ISIS EM-BLASSO), polygenic-

background-control based least angle regression plus empirical Bayes (pLARmEB), and 
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pKWmEB (Wang et al., 2016; Tamba et al., 2017; Zhang et al., 2017; Ren et al., 2018; 

Wen et al., 2018). The ML-GWAS models are not merely more reliable and efficient, 

they also overcome the requirement of multiple testing corrections that always results in 

false negatives (Zhang et al., 2019).  

Majority of the GWAS studies make use of assembled diversity panels or landraces in 

various crop species (Ward et al., 2019). However, several studies effectively used the 

panels consisting of elite breeding lines to dissect the genetic basis of various traits of 

economic importance (Sukumaran et al., 2014, 2018), however, none of these studies 

have explored FHB resistance in the US hard winter wheat breeding germplasm. This 

approach permits identification, mapping and the direct transfer and pyramiding of 

identified QTLs to the new backgrounds in the breeding programs without any linkage 

drag. For this study, we envisaged using a panel of elite lines from the South Dakota 

State University (SDSU) breeding program to uncover the genetic basis of native FHB 

resistance in our program and exploit that for the development of improved FHB 

resistance varieties. The panel of elite lines was phenotyped for FHB resistance in a 

controlled FHB field nursery over two years and genotyped using genotyping-by-

sequencing (GBS) approach. The specific objectives of this study were to (i) evaluate the 

genetic basis of FHB resistance in hard winter wheat elite breeding material and identify 

associated markers to facilitate marker-assisted selection; (ii) identify candidate genes in 

the regions significantly associated with FHB traits. 
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3.3 Materials and method 

3.3.1 Plant materials and FHB screening 

A set of 257 breeding lines from the SDSU winter wheat breeding program was used in 

this study. The SDSU winter wheat breeding program evaluates a set of advanced and 

elite breeding lines for FHB resistance in a mist irrigated field nursery each growing 

season. Most of the breeding lines are evaluated at either F4:7 or F4:8 filial generation. The 

257 lines used in the current study were evaluated in the growing season of 2019 and 

2020. Among these lines, 169 were screened in the 2019 nursery and 154 in the 2020 

nursery, with an overlap of 58 lines between the two seasons. Owing to the missing 

genotype data or inconsistent replications, a total of eight and one lines were removed 

from 2019 and 2020, respectively, leaving 257 unique lines for downstream analysis. 

The FHB nurseries were planted at Brookings, South Dakota (44.3114°N, 96.7984°W) 

during the growing seasons of 2019 and 2020. A randomized complete block design with 

2 or 3 replicates for different sets of lines was used to design the experiment. The 

resistant and susceptible checks genotypes for FHB resistance were included in each 

nursery, where cultivars ‘Lyman’ and ‘Emerson’ were used as resistant checks while 

‘Flourish’ was the susceptible checks. Each experimental unit consisted of a 1-meter-long 

row plot with an inter-row spacing of 20 cm. The experiments were managed using the 

regional standard cultural practices for the proper growth and development of wheat 

plants. Days to heading (DTH) were recorded by calculating the Julian date when 50% of 

the plot had completely emerged heads. Plant height (PH) was measured from the soil 

surface to the top of spikes excluding awns at maturity.  
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The FHB nurseries were inoculated using corn spawn and inoculum spraying with F. 

graminearum isolates (SD-FG1) as described in (Halder et al., 2019). Briefly, the 

Fusarium-infected corn kernels (scabby corn inoculum) were scattered in the field first 

boot stage (Feekes 10), and followed by another round at the heading (Feekes 10.1) 

stages to ensure maximum infection in the FHB nursery. In addition, direct spray 

inoculation was used at 50% anthesis using a conidial suspension containing 100,000 

spores/ml to avoid any disease escape. The sprinkler head irrigation system was used to 

mist  the nurseries every night (19:00–7:00) for 2 minutes (every 15 minutes) to promote 

a humid micro-environment for disease development. FHB disease incidence (INC) and 

disease severity (SEV) were scored after 21 days of inoculation following the scale 

described by Stack and McMullen, 2011. These traits were scored using 20 spikes per 

replicate/genotype. The FHB disease index (DIS) was used for resistance evaluation and 

calculated as (INC × SEV)/100. The percentage of Fusarium damaged kernels (FDK) was 

evaluated after the rows were harvested utilizing low air-speeds to prevent the loss of 

shriveled kernels. The grain samples were visually scored for FDK by using a set of 

known FDK standards (https://agcrops.osu.edu/newsletter/corn-newsletter/2015-

21/rating-fusarium-damaged-kernels-fdk-scabby-wheat) two replications per sample. 

3.3.2 Statistical analysis 

The phenotypic data from two seasons was analyzed to obtain the best linear unbiased 

estimates (BLUEs) for FHB traits using the following model: 

yijk = µ + Ei + Rj(i) + Gk + GEik + eijk 
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where yijk is the trait of interest, μ is the overall mean, Ei is the effect of the ith environment, 

R j(i) is the effect of the jth replicate nested within the ith environment, Gk is the effect of the 

kth genotype, GEik is the effect of the genotype  environment (G  E) interaction, and eijk 

is the residual error associated with the replication and genotype effects. The broad-sense 

heritability (H2) of a trait of interest in a combined environment analysis was assessed 

based on the variance estimates from the linear mixed model as follows: 

𝐻2 =  
𝜎𝑔

2

𝜎𝑔
2 + 𝜎𝑔𝑒

2 / 𝑛𝐿𝑜𝑐 + 𝜎𝑒
2/(𝑛𝐿𝑜𝑐 x 𝑛𝑅𝑒𝑝)

 

where 𝜎𝑔
2 and 𝜎𝑒

2 , are the genotype and error variance components, 𝜎𝑔
2 is the G × E 

interaction variance component and nLoc is the number of environments in the analysis. 

The analysis was performed in META-R (Alvarado et al., 2019) which is based on LME4 

(Bates et al., 2015) R package. The summary statistics, correlations, visualization, and 

comparison tests were performed in R (R Core Team, 2014). 

3.3.3 Genotyping and quality control 

The genotyping of the plant material was performed at USDA Central Small Grain 

Genotyping Lab, Manhattan, KS, using the Genotyping-by-sequencing GBS procedure 

(Poland et al., 2012). Briefly, the genomic DNA was extracted from young leaf tissue for 

each line using a Cetyl  Trimethylammonium Bromide (CTAB) method (Bai et al., 1999). 

GBS libraries were prepared by double restriction digestion with HF-PstI and MspI 

enzymes (Poland et al., 2012) and sequenced using an Ion Proton sequencer (Thermo 

Fisher Scientific, Waltham, MA, USA). The Chinese Spring wheat genome reference 

RefSeq v2.0 (IWGSC, 2018; Zhu et al., 2021) was used to align the GBS reads using the 
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default settings of Burrows-Wheeler Aligner v0.6.1 and the single nucleotide 

polymorphisms (SNPs) were called using the GBS v2.0 discovery pipeline in TASSEL 

v5.0 (Bradbury et al., 2007). For quality control, SNPs with more than 30% missing calls, 

minor allele frequency (MAF) of less than 5%, and unmapped on any chromosome were 

filtered out, leaving 9,321 high-quality SNPs for downstream analysis. The high-quality 

SNPs were imputed using BEAGLE v4.1 (Browning and Browning, 2007) for further 

analysis. 

3.3.4 Population Structure and linkage disequilibrium analysis 

The principal component analysis (PCA) of the filtered and imputed genotypic data was 

conducted to analyze population structure in 257 breeding lines in R (R Core Team 2014) 

and visualized using ‘ggplot2’ (Wickham, 2016). Further, we analyzed the population 

stratification using a Bayesian model-based clustering program, STRUCTURE v2.3.4 

assuming an Admixture model (Pritchard et al., 2000). STRUCTURE analysis was 

performed by assuming ten subgroups (K = 1 - 10) with ten independent runs for each 

subgroup using a burn-in period of 10,000 iterations followed by 20,000 Monte-Carlo 

iterations. The analysis was implemented in parallel using StrAuto v1.0 on the SDSU 

high-performance computing (HPC) cluster (Chhatre and Emerson, 2017; Tange, 2018). 

An ad-hoc statistic (DeltaK) was used to infer the most likely number of subgroups using 

STRUCTURE HARVESTER (Evanno et al., 2005; Earl and vonHoldt, 2012). The 

Linkage disequilibrium (LD) parameter r2 for the whole genome as well as each sub-

genome was estimated separately in TASSEL v5.0 (Bradbury et al., 2007) by computing 

r2 values for all pairwise markers using a sliding window size of 50 markers. LD decay 
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over genetic distance was visualized by fitting a non-linear model using the modified Hill 

and Weir method (Hill and Weir, 1988) in R (Team, 2014).  

3.3.5 Multi-locus genome-wide association analysis 

We used ML-GWAS to identify marker-trait associations (MTAs) using BLUEs for FHB 

traits obtained using the mixed effect model and 9,321 high-quality SNPs. For association 

analysis, we compared a total of eight ML-GWAS models. Two models, Fixed and 

random model 

Circulating Probability Unification (FarmCPU) and the Bayesian-information and 

Linkage-disequilibrium Iteratively Nested Keyway (BLINK), were implemented in 

Genomic Association and Prediction Integrated Tool (GAPIT) v3.0 (Wang and Zhang, 

2021) in the R environment. In addition, we used six recently developed ML-GWAS 

methods including mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, ISIS EM-

BLASSO, and pkWmEB. All these six models were implemented in the R package 

‘mrMLM v4.0.2’ (Zhang et al., 2020) using default parameters. The ML-GWAS models 

included the estimated kinship (K) and the first two principal components from PCA as 

covariates to account for relatedness and the population structure. Based on the 

comparison using quantile-quantile (QQ) plots for all the models, we decided to report 

the results using the FarmCPU model as it showed better control of false positives and 

false negatives. Furthermore, we used a strict threshold based on False Discovery Rate 

(FDR, alpha = 0.05) correction for multiple testing. Though final results were reported 

from a single best model (FarmCPU), we used the results from the other seven ML-

GWAS models to validate the FarmCPU MTAs as reliable, if they were also identified by 
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other models. The Manhattan plots and QQ plots were generated using the R package 

‘CMPlot’ to visualize the results from the FarmCPU analysis.  

We also used a pairwise t-test to compare differences in trait means for different alleles 

of significant MTAs. For each MTA, mean trait values for two groups of alleles (resistant 

v/s susceptible) were compared using a t-test and visualized using boxplots with R 

package ‘ggplot2’ (Wickham, 2016). Furthermore, the allelic frequencies of significant 

MTAs were analyzed to compare the effect of the combination of resistant alleles for DIS 

and FDK. The 257 accessions were grouped based on the resistant alleles carried for each 

trait. These groups were compared using an FDR-adjusted pairwise t-test.  

3.3.6 Candidate gene analysis 

Two highly significant QTNs for FDK were subjected to candidate gene analysis to 

identify genes with putative functions of interest. Linkage blocks harboring these two 

QTNs were deduced using the confidence interval method in Haploview (Barrett et al., 

2005). These MTAs were physically mapped to Chinese Spring RefSeq v2.1 using 

marker sequences of significant SNPs (IWGSC, 2018; Zhu et al., 2021). The high 

confidence (HC) genes from IWGSC v2.1 RefSeq annotation were extracted from a 

flanking window around each MTA based on the LD decay in the respective region. The 

HC genes were annotated manually using Blast2GO (Conesa et al., 2005) for the 

identification of genes of interest. Further, a gene expression browser (http://www.wheat-

expression.com/) and a thorough review of literature were used to exclude the unlikely 

candidates. For the gene expression browser, we used expression data from several 
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studies related to Fusarium infection to narrow down the genes of interest (Borrill et al., 

2016). 

3.4 Results 

3.4.1 Observed variation for FHB traits 

The BLUE values across two seasons exhibited a significant genotypic variation (P < 

0.001) for DIS and FDK in the panel of 257 breeding lines. The distribution for DIS and 

FDK is presented in Table 1. The variation for DIS ranged from 12.6 to 90.3, while the 

FDK ranged from 13.6 to 97.6 (Table 1). We observed a high broad-sense heritability 

(H2) for DIS (H2 = 0.85), whereas a moderate heritability for FDK (H2 = 0.76). Based on 

the BLUE values across seasons, the disease indices (DIS) for two moderately resistant 

checks namely ‘Emerson’ and ‘Lyman were 36.3 and 31.6, respectively, whereas the 

susceptible check ‘Flourish’ was 77.1. Similarly, the FDK percentage for ‘Emerson’ and 

‘Lyman was 48.9% and 31.5%, whereas ‘Flourish’ was rated 84.5%. Pearson correlation 

coefficients estimated using the phenotypic BLUEs for DIS and FDK were significant (P 

< 0.001), showing a positive correlation value of 0.44 (Figure 1). Furthermore, we also 

estimated Person correlation among the FHB traits, PH, and DTH. A significant negative 

correlation was observed between DIS and DTH (r = 0.24, P < 0.001) as well as FDK 

and DTH r = 0.17, P < 0.01). Intriguingly, FHB traits (DIS and FDK) were not 

significantly correlated with PH (Figure 1).  

3.4.2 Genotyping, population structure, and linkage disequilibrium 

The genotyping using the GBS approach yielded a total of 9,321 high-quality SNPs 

which were used for downstream analysis. Among 9,321 SNPs, the numbers of SNPs 
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from the A and B sub-genomes were comparatively higher than the D sub-genome, with 

the B sub-genome (4,202; 45.1%) having the highest and the D sub-genome (1,418; 

15.2%) having lowest SNP density (Supplementary Table S1). The highest SNPs were 

found on chromosome 7A (796) whereas chromosome 4D had the lowest number (36 

SNPs). The LD analysis revealed a different pattern of LD decay among the three 

subgenomes, with the whole genome LD decay being around 3.5 Mbp (Supplementary 

Figure S1). Further, sub-genomes A and B showed a smaller LD decay distance 

compared to sub-genome D (Supplementary Figure S1). The population structure among 

257 accessions was inferred using PCA and STRUCTURE analysis (Figure 2). The 

DeltaK statistic was used to estimate optimal subgroups based on STRUCTURE analysis 

and it showed a major peak at K = 2, suggesting only two major groups in the panel 

(Figure 1a). The principal component analysis also showed considerable admixture in the 

population, indicating the presence of two subgroups within 257 accessions (Figures 1b 

and 1c), with the first two principal components explaining around only 6.5% and 3.4% 

of the total variance, respectively. 

3.4.3 Genomic loci associated with FHB traits 

Association analysis was initially performed using eight different ML-GWAS methods. 

Overall, these eight ML-GWAS models identified 52 quantitative trait nucleotides 

(QTNs) for DIS and 53 QTNs for FDK (Supplementary Table S2). Nevertheless, we 

compared all these models based on QQ plots and FarmCPU was found to fit best for 

both the traits suggesting better control of false positives and false negatives. Thus, we 

used this model to report final QTNs for DIS and FDK (Figure 3). 
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A total of six distinct QTNs were identified for DIS using FarmCPU on five different 

chromosomes based on FDR corrected threshold (Table 2, Figure 3A). The most 

significant QTN was identified on the short arm of chromosome 4B (S4B_40315424) 

physically mapped at 40 Mbp. The second most significant QTN (S3B_773516625) was 

found on chromosome 3B located at 773 Mbp. Of the six QTNs for DIS, five were 

considered ‘reliable QTNs’ as these were identified by at least one another ML-GWAS 

model except one QTN on chromosome 2B (S2B_725552556) (Table 2). For FDK, a 

total of eight unique QTNs were identified using FarmCPU located on six different 

chromosomes (Table 2, Figure 3B), with one QTN each on chromosomes 3B, 5A, 6D, 

and 7B, two QTNs on 6B and three QTNs on 7A. Among the eight QTNs for FDK, four 

were considered reliable as these were identified by another ML-GWAS model. The four 

reliable QTNs for FDK were located on chromosomes 3B (S3B_768314878), 5A 

(S5A_619020400), 6B (S6B_718194425), and 7B (S7B_707550430) (Table 2).  Out of 

the 14 QTNs identified for DIS and FDK, two QTNs (S3B_768314878 and 

S4B_647586119) were found to be pleiotropic for both the traits (Supplementary Table 

S2). 

Further, we compared trait values for DIS and FDK among the two alleles of the 

identified reliable QTNs (Figure 4). Of the five reliable QTNs for DIS, four exhibited a 

statistically significant difference in mean DIS score (Figure 4a). The mean DIS score of 

the lines with resistant allele (43.4) of QTN represented by S3B_773516625 was 25.6% 

lower than those with susceptible allele (58.3). Similarly, QTN on 4B (S4B_40315424) 

showed a decrease of 25.8% in the mean DIS score from susceptible (47.3) to resistant 

(35.1) alleles. For FDK, all four reliable QTNs showed statistically significant differences 
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in mean FDK percentage among the two alleles (Figure 4b). Intriguingly, favorable 

alleles for two QTNs (S6B_718194425 and S7B_707550430) exhibited a decrease of 

around 13% in mean FDK percentage over the unfavorable allele. 

3.4.4 Additive effect of identified QTNs 

We investigated the effect of accumulating favorable alleles for reliable QTNs on DIS 

and FDK. The panel of 257 accessions was categorized into groups based on the number 

of favorable or resistant alleles carried by accessions. For DIS, five groups were 

identified carrying one, two, three, four, or five resistant alleles. We observed a 

significant decrease in the mean DIS score as the number of resistant alleles increased 

(Figure 5a). The mean DIS for the group of accession having only ‘1’ resistant allele was 

62.1, while the mean DIS for the group with ‘5’ resistant alleles was 31.5 (Figure 5a). 

Similarly, five groups were observed based on the resistant alleles for FDK (Figure 5b). 

A significant reduction was observed in mean FDK with an increase in resistant alleles 

(Figure 5b). 

3.4.5 Relationship between FHB and height genes 

The most significant QTN for DIS (S4B_40315424) was identified on the short arm of 

chromosome 4B physically mapped at 40 Mbp, the region which harbors wheat dwarfing 

gene Rht1. We used the PH data for 257 accessions to identify marker-trait association 

for this trait. Interestingly, we identified the most significant QTN for plant height at 40 

Mbp on chromosome 4B (Supplementary Table S3), suggesting the same loci linked to 

both traits.  
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3.4.6 Candidate gene analysis for important QTNs 

The candidate gene analysis was performed for two QTNs (S6B_718194425 and 

S7B_707550430) associated with FDK, as we were able to define a narrow region based 

on LD decay for these QTNs. For the QTN located on chromosome 6B 

(S6B_718194425), a 1.7 Mbp linkage block was identified harboring significant SNP 

(Supplementary Figure S3a). Similarly, we identified a 2.3 Mbp long linkage block 

harboring QTN S7B_707550430 (Supplementary Figure S3b). Based on Chinese Spring 

RefSeq v2.1, 28 and 20 high-confidence genes were retrieved for the 6B and 7B QTNs, 

respectively. Further analysis using the wheat expression browser (http://www.wheat-

expression.com) with Fusarium specific studies, and comparison with literature removed 

32 genes (Supplementary Table S4), leaving only 16 genes with putative functions of 

interest (Table 3). Among these 16 genes, five genes from 6B region 

(TraesCS6B02G448800, TraesCS6B02G448900, TraesCS6B02G450000, 

TraesCS6B02G450200, and TraesCS6B02G450500) and three genes from 7B region 

(TraesCS7B02G417000, TraesCS7B02G429800 and TraesCS7B02G430000) were  

of specific interest as they exhibited a differential expression between mock and 

Fusarium inoculated spikes in Chinese Spring (Supplementary Figures S4 and S5). 

3.5 Discussion 

The utilization of host resistance to develop FHB resistant wheat cultivars is the most 

economical and sustainable approach to manage FHB. This necessitates the continuous 

identification and validation of novel sources of FHB resistance and their utilization in 

breeding programs using marker-assisted selection. Thus, research efforts have resulted 
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in the identification of several major and minor genes for FHB resistance including Fhb1, 

and their pyramiding across various breeding programs, particularly in spring wheat 

(Steiner et al., 2017; Bai et al., 2018; Ghimire et al., 2020). Nevertheless, using wild 

introgression (Fhb3, Fhb6) or exotic resistance sources, such as Sumai3, leads to the 

linkage drag or undesirable agronomic traits, making it difficult to incorporate these 

genes into regional breeding programs. Thus, breeders rely on identifying and utilizing 

native FHB resistance for improving the FHB resistance. 

Majority of the hard winter wheat (HWW) cultivars from the Great Plain region of the 

US, including the SDSU winter wheat program, do not carry Fhb1 likely due to yield 

drag with only one HWW variety (TAM 205) carrying Fhb1 has been released to date 

(Zhang et al., 2022). Fortunately, there are several cultivars including ‘Everest’, 

‘Overland’, ‘Lyman’, ‘Heyne’, ‘Century’, and ‘Hondo’ that exhibit moderate resistance 

to FHB but do not carry Fhb1 have been released in the US  hard winter wheat region 

(Jin et al., 2013; Bai et al., 2018; Clinesmith et al., 2019; Zhang et al., 2022), showing the 

importance of the native FHB resistance in the regional programs. Further, various 

studies have successfully identified QTLs for native resistance using cultivars like ‘Art’, 

‘Everest’, and ‘Lyman’ (Clinesmith et al., 2019; Hashimi, 2019). Thus, we used a set of 

advanced and elite breeding lines from the SDSU program to identify genomic regions 

associated with FHB resistance, which could be readily employed in developing 

improved cultivars. 

Two FHB traits, DIS and FDK percentage were used to evaluate FHB resistance in a 

panel of advanced breeding lines. We observed a significant variation for both the traits, 

with DIS scores ranging from 12.6 to 90.3% and FDK from 13.6 to 97.6%. As the 
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majority of our material did not have Fhb1 based on the parentage, the significant 

genotypic variation observed for both the traits suggests a presence of underlying sources 

for native resistance. Furthermore, we observed a moderate to high heritability for DIS 

and FDK, which was in corroboration with several previous studies (Larkin et al., 2020; 

Xu et al., 2020; Zhu et al., 2020).   

ML-GWAS using the FarmCPU algorithm identified a total of six and eight QTNs 

associated with DIS and FDK, respectively (Table 2). As previous studies used various 

types of marker systems to map FHB resistance and are currently mapped to Chinese 

Spring RefSeq 1.0, it is difficult to precisely compare the QTNs from the current study  

(mapped using Chinese Spring RefSeq 2.0) with previously identified regions. Therefore, 

we identified the approximate physical locations of previous QTLs and QTNs from the 

current study on Chinese Spring RefSeq 1.0 to facilitate the comparison and validation of 

the genomic regions (Supplementary Table S5) (IWGSC, 2018; Zhao et al., 2019).  

Out of the six QTNs identified for DIS (Table 2), four were found to be located in 

genomic regions previously reported to have QTLs for various FHB traits. We identified 

a QTN on the long arm of chromosome 2A (718 Mbp), which corresponds to a stable 

QTL for FHB resistance (~709 Mbp) identified in US Soft Red Winter Wheat Breeding 

Line ‘VA00W-38’ (Liu et al., 2012). Another QTN (S3B_773516625) was identified for 

DIS on chromosome 3B which mapped to 753 Mbp on RefSeq v1.0. This QTN was 

found in similar location (753 Mbp) to that of a recently identified genomic region for 

type-III FHB resistance from Canadian spring wheat cultivar ‘AAC Tenacious’, 

validating the importance of this region (Dhariwal et al., 2020). Further, a QTN identified 

on 7AS (S7A_48708273) was present in the genomic region (~28 – 68 Mbp) reported to 
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harbor QTLs for FHB resistance (Zhang et al., 2010; Jiang et al., 2020; Thambugala et 

al., 2020).  

Several studies have reported a co-localization of QTLs for FHB resistance with dwarfing 

genes such as Rht-B1 and Rht-D1, with dwarfing alleles at these loci related to FHB 

susceptibility (Miedaner and Voss, 2008; Srinivasachary et al., 2008; Liu et al., 2012; 

Dhariwal et al., 2020; Thambugala et al., 2020; Goddard et al., 2021). In the current 

study, we identified a strong QTN for DIS on the short arm of chromosome 4B (37 Mbp), 

which co-localized with the Rht-B1 region. Intriguingly, we did not observe a strong 

association based on plant height and any of the FHB traits based on Pearson’s 

correlation (Figure 1). Further, we conducted a GWAS for PH using 257 accessions and 

identified the most significant QTN for plant height at the same location as DIS QTN (37 

Mbp) (Supplementary Table S3). In corroboration with previous studies (Srinivasachary 

et al., 2008; Buerstmayr and Buerstmayr, 2016), our results suggest that the susceptibility 

associated with dwarfing allele of Rht-B1 might be caused by a potential linkage of 

susceptible genes with the dwarfing genes. Thus, it will be beneficial to either evaluate 

other reduced height genes, such as Rht24, or identification of recombinants where the 

linkage between Rht genes and susceptible gene(s) has been broken. Except for these four 

QTNs for DIS, we did not find any previously reported QTN in the proximity of QTNs 

on chromosome 2BL (S2B_725552556) and 4BL (S4B_647586119). Thus, these two 

QTNs could likely represent novel genomic regions for native FHB resistance in hard 

winter wheat. 

Apart from DIS, we identified a total of eight QTNs for FDK (Table 2). Comparison with 

previous studies revealed that six QTNs were found in the genomic regions associated 
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with FHB resistance. The QTN identified for FDK on chromosome 3B (S3B_768314878) 

co-localized with the QTN for DIS (S3B_773516625) in the same region, showing a 

pleiotropic effect on both traits. As discussed earlier, Dhariwal et al. (2020) also 

identified a stable QTL for DON at similar position, suggesting it is an important region 

for FHB resistance. Similarly, the QTN identified on 5A (S5A_619020400) at 617 Mbp 

for FDK was found in the proximity of two previously reported QTLs, one mapped at 

~596 Mbp for FDK in soft red winter wheat varieties AGS 2060 and AGS 2035 (Castro 

Aviles et al., 2020), whereas the second QTL for DON mapped at 621 Mbp in Canadian 

spring wheat cultivar ‘AAC Tenacious’ (Dhariwal et al., 2020). Further, we identified 

two QTNs (S6B_320696398 and S6B_718194425) for FDK on chromosome 6B at 314 

Mbp and 708 Mbp, respectively (Table 2). QTN at 708 Mbp was found to align within 

the confidence interval of a meta-QTL for FHB resistance on chromosome 6BL (Venske 

et al., 2019). However, we did not find any previous QTL around 314 Mbp. Another 

QTN (S6D_110313864) from this study was mapped on the short arm of 6D. Though few 

studies reported QTLs for FHB resistance in this region, we were unable to compare the 

exact location due to different marker systems. 

Two QTNs (S7A_713432647 and S7A_738859192) for FDK identified in this study 

correspond to 707 Mbp and 731 Mbp on CS RefSeq v1.0 (Table 2). Several studies have 

identified QTLs for different FHB traits in this genomic region. An interval of 611 to 724 

Mbp was delimited for a Fusarium-damaged kernels QTL in ‘Nanda 2419 × 

Wangshuibai’ population (Li et al., 2008). Apart from this, QTLs were reported for 

different FHB traits in the 7A region but could not be compared precisely based on 

physical position (Li et al., 2012; Lu et al., 2013; Guo et al., 2020). Further, we identified 
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a significant QTN on chromosome 7B mapped at 698 Mbp. Castro Aviles et al. (2020) 

also mapped a QTL for DON at ~ 718 Mbp in soft red winter wheat. Similarly, a QTL for 

FHB resistance was mapped at ~683 Mbp from a cross between Ningmai-9 and 

Yangmai-158 (Jiang et al., 2020). Overall, we identified 14 QTNs associated with DIS 

and FDK in the current study. Out of these, ten QTNs co-localized with previously 

reported genomic regions for different FHB traits. Our study validated the previous QTLs 

in hard winter wheat and with higher marker coverage compared to the majority of 

previous studies, we identified more tightly associated SNPs with these QTLs. Further, 

identified SNPs associated with these QTLs could be used to develop KASP markers, 

which can be effective in tracking and pyramiding these reliable QTLs for native FHB 

resistance in required backgrounds using marker-assisted selection (Gill et al., 2019). 

Apart from the validated regions, we also identified four likely novel genomic regions 

associated with FHB resistance that could be subjected to further investigation. 

Further, we performed candidate gene analysis for two important FDK QTNs 

(S6B_718194425 and S7B_707550430) to identify candidate genes with putative 

functions of interest. In wheat, the majority of disease genes that have been cloned are 

reported to encode intracellular immune receptors of the nucleotide binding-site–leucine-

rich repeat (NBS-LRR) family, receptor-like kinases (RLKs), or wall-associated kinases 

(WAKs) as the protein product (Keller et al., 2018). However, two recently characterized 

FHB resistance genes, Fhb1 and Fhb7, were reported to have different mechanisms. 

Several candidates for Fhb1 have been reported including a pore-forming toxin-like 

(PFT) gene encoding a chimeric lectin with two agglutinin domains; a mutation of a 

histidine-rich calcium-binding protein gene (Rawat et al., 2016; Bai et al., 2018; Li et al., 



82 
 

 

 

2019; Su et al., 2019). Nevertheless, none of these genes did share any conserved 

domains related to the disease-resistance gene cloned in plants (Li et al., 2019; Su et al., 

2019). Recently, a gene encoding a glutathione S-transferase (GST) was determined as 

the Fhb7, which can detoxify pathogen-produced toxins by conjugating a glutathione 

(GSH) unit onto the epoxide moieties of the pathogenic molecule (Wang et al., 2020). 

Based on this information, we were able to identify several putative candidate genes for 

two QTNs (Table 3). We found several genes encoding putative disease resistance 

proteins including LRR receptor-like serine/ threonine-protein kinase, or nicotinate N-

methyltransferase 1-like proteins (Table 3), that may play a role in the process of 

intracellular detection of pathogen-derived molecules and signal transduction (Zhou et 

al., 1995) in the candidate region. Further, we used a wheat expression browser (Borrill et 

al., 2016) using expression data from Fusarium infected spikes. We identified a few 

genes in 6B and 7B QTN regions that showed differential expression among mock-

inoculated, and Fusarium inoculated spikes (Supplementary Figures S4 and S5). It could 

be interesting to further investigate the role of these genes in FHB resistance.  

In summary, the current study provides new insights into the genetic basis of native FHB 

resistance in hard winter wheat germplasm from the Great Plains region of the US. The 

study validates the role of ten QTLs in regulation of FHB resistance in wheat including 

hard winter wheat. Further, four potential novel QTN and the associated markers for 14 

QTN can facilitate the deployment of these QTLs through marker-assisted selection. 

Further, the information on genomic regions associated with FHB resistance could be 

useful for the breeders to improve the genomic selection models to select breeding lines 

with improved FHB resistance. 
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3.7 Appendix 

List of tables and figures: 

Table 3.1. Phenotypic variation, variance estimates, and broad-sense heritability for 

studied FHB traits. DIS, FHB disease index; FDK, fusarium damaged kernel percentage; CV, 

coefficient of variation; H2, broad-sense heritability. 

Trait Genotypic 

variance 

Mean Min Max CV H2 

DIS 109.1*** 45.4 12.6 90.3 20.7 0.85 

FDK 156.2*** 70.6 13.6 97.6 16.3 0.76 

aStatistically significant differences are denoted by an asterisk (*) where * P ≤ 0.05, ** P ≤ 0.01, and *** P 

≤ 0.001. 
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Table 3.2. Significant marker-trait associations (MTAs) identified by genome-wide 

association studies (GWAS) using the FarmCPU model for DIS and FDK. The MTAs 

were declared significant based on FDR corrected P-value threshold of 0.05. 

 

Trait SNP Chr Posa MAFb SNP 

effect 

P value FDR-adj P 

value 

Another modelc 

DIS S2A_722857568 2A 722,857,568 0.17 3.70 2.72E-05 0.046 1,2,3,6 

S2B_725552556 2B 725,552,556 0.18 3.98 2.94E-05 0.046 - 

S3B_773516625 3B 773,516,625 0.14 -5.47 2.29E-07 0.001 1,2,3,6,7 

S4B_40315424 4B 40,315,424 0.16 -7.00 5.46E-14 0.000 1,2,3,4,5,6,7 

S4B_647586119 4B 647,586,119 0.26 3.51 2.37E-06 0.007 1,4,5 

S7A_48708273 7A 48,708,273 0.07 -4.74 1.96E-05 0.047 7 

FDK S3B_768314878 3B 768,314,878 0.40 3.61 8.23E-08 0.000 1,2,3,4 
 

S5A_619020400 5A 619,020,400 0.13 4.63 7.83E-07 0.000 1,2,7 
 

S6B_320696398 6B 320,696,398 0.12 4.05 7.41E-06 0.012 - 
 

S6B_718194425 6B 718,194,425 0.23 3.64 5.98E-07 0.001 1,2,3,4,5,6,7 
 

S6D_110313864 6D 110,313,864 0.06 -7.50 4.09E-08 0.000 - 
 

S7A_713432647 7A 713,432,647 0.12 -4.44 1.13E-05 0.015 - 
 

S7A_738859192 7A 738,859,192 0.34 2.87 3.51E-07 0.001 - 
 

S7B_707550430 7B 707,550,430 0.30 -2.86 3.7E-05 0.043 1,2,6 

aThe physical position is based on IWGSC RefSeq v2.0 (IWGSC, 2018) 

bMAF refers to minimum allele frequency for the corresponding MTA 

cThis column enlists ML-GWAS model(s), which identified the corresponding MTA in addition to 

FarmCPU. The QTN was referred to as ‘reliable’ if identified by at least two ML-GWAS models. Various 

ML-GWAS models are: 1, mrMLM; 2, FastmrMLM; 3, FastmrEMMA, 4, pLARmEB; 5, pKWmEB; 6, 

ISIS EM-BLASSO; and 7, BLINK. 
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Table 3.3. Candidate genes identified for two QTNs for FDK, S6B_718194425 and 

S7B_707550430, with putative functions of interest and their functional annotation. 

Gene IDa Previous IDb Start 

positionc 

Annotation 

TraesCS6B03G1248600 TraesCS6B02G449300 718084520 FHA domain-containing protein 

DDL-like 

TraesCS6B03G1248900 TraesCS6B02G449400 718124729 nicotinate N-methyltransferase 

1-like 

TraesCS6B03G1249200 TraesCS6B02G449500 718134558 disease resistance protein RGA5-

like 

TraesCS6B03G1249300 TraesCS6B02G449600 718142603 disease resistance protein RGA5-

like isoform X1 

TraesCS6B03G1249800 TraesCS6B02G450000 718403799 aquaporin PIP1-5-like 
 

TraesCS6B03G1250200 TraesCS6B02G450200 718437357 aquaporin PIP1-5-like 
 

TraesCS6B03G1250700 TraesCS6B02G450500 718634434 50S ribosomal protein L9, 

chloroplastic 

TraesCS6B03G1251200 TraesCS6B02G450700 718948307 acyl-CoA-binding domain-

containing protein 4-like 

TraesCS6B03G1252500 TraesCS6B02G451300 719516962 NAC domain-containing protein 

78-like 

TraesCS7B03G1160200 TraesCS7B02G417000 706703917 hypothetical protein 

CFC21_105377 

TraesCS7B03G1160400 TraesCS7B02G417100 706707637 NBS-LRR disease resistance 

protein 

TraesCS7B03G1161500 TraesCS7B02G417300 706844055 putative disease resistance 

protein RGA3 

TraesCS7B03G1162000 TraesCS7B02G417400 706905895 probable LRR receptor-like 

serine/threonine-protein kinase  

TraesCS7B03G1166000 TraesCS7B02G429700 708194926 hydroquinone 

glucosyltransferase-like 

TraesCS7B03G1167100 TraesCS7B02G429800 708341181 uncharacterized 

methyltransferase At2g41040,  

TraesCS7B03G1167600 TraesCS7B02G430200 708568667 putative disease resistance 

RPP13-like protein 1 isoform X1 

aGene ID based on the IWGSC RefSeq Annotation v2.1 (IWGSC 2018; Zhu et al. 2021) 
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bPrevious IDs for respective genes to the IDs used in IWGSC RefSeq Annotation v1.1 (IWGSC 2018) 

cPhysical position of start points for respective genes are based on IWGSC RefSeq v2.0 (IWGSC 2018) 
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Figures 

Figure 3.1 Correlation coefficients among investigated FHB traits, PH, and DTH 

calculated by using the best linear unbiased estimates (BLUEs) obtained from a 

combined analysis of two years. DIS, FHB disease index; FDK, Fusarium damaged 

kernel percentage; PH, plant height; and DTH, days to heading. The diagonal of the pair 

plot elucidates the frequency distribution for four traits. Statistically significant 

differences are denoted by an asterisk (*) where * P ≤ 0.05, ** P ≤ 0.01, and *** P ≤ 

0.001. 
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Figure 3.2 Population structure analysis in 257 accessions based on the 9,321 SNPs, (a) 

Evanno plot of Delta-K statistic from the STRUCTURE analysis. (b) Scree plot for first 

ten components obtained from principal component analysis (PCA). (c) Scatterplot for the 

first two components (PC1 and PC2) from PCA. 
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Figure 3.3 Multi-locus marker trait association for DIS and FDK using the FarmCPU 

model. Manhattan and QQ plot for (a) DIS and (b) FDK showing the distinct peaks for 

identified QTNs. The significant associations (FDR P < 0.05) are elucidated using solid 

pink vertical lines. 
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Figure 3.4 Boxplots showing the effect of two alleles (favorable v/s unfavorable) of the 

reliable QTNs (enlisted in Table 2) on the trait means for (a) DIS (b) FDK. Statistically 

significant differences are denoted by an asterisk (*) where * P ≤ 0.05, ** P ≤ 0.01, and 

*** P ≤ 0.001. 
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Figure 3.5 Boxplots comparing the trait performance of the lines carrying different 

numbers of resistant alleles for (a) DIS and (b) FDK, compared using an FDR adjusted 

Least Significance Difference (LSD) test. Different letters on top of the boxplots denote 

statistically different groups. The mean trait value for DIS and FDK for the corresponding 

group is given using red text. 
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Supplementary Table S1. The distribution of 9,321 SNPs across 21 wheat chromosomes 

in the panel of 257 accessions. 

Sub-genome Chromosome Number of SNPs % SNPs 

A 1 532 
 

 
2 447 

 

 
3 518 

 

 
4 391 

 

 
5 508 

 

 
6 509 

 

  7 796   

Subtotal A 3,701 39.71 

B 1 588 
 

 
2 689 

 

 
3 749 

 

 
4 221 

 

 
5 617 

 

 
6 743 

 

  7 595   

Subtotal B 4,202 45.08 

D 1 202 
 

 
2 357 

 

 
3 276 

 

 
4 36 

 

 
5 191 

 

 
6 162 

 

  7 194   

Subtotal D 1,418 15.21 

Total (A, B, and D) 9,321 100 
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Supplementary Table S2. Summary of all the QTNs for DIS and FDK identified using 

eight ML-GWAS models. For FarmCPU and BLINK, the threshold to declare an 

association as significant was FDR adjusted P < 0.05. For other six models, the 

associations were declared significant based on LOD > 3. 

Trait Model SNP Chromosome Positiona 

DIS BLINK S2B_173523267 2B 173523267 
 

BLINK S3B_773516625 3B 773516625 
 

BLINK S4B_40315424 4B 40315424 
 

BLINK S5A_621373206 5A 621373206 
 

BLINK S6B_658140124 6B 658140124 
 

BLINK S7A_42614676 7A 42614676 
 

BLINK S7A_510433772 7A 510433772 
 

FASTmrEMMA S2A_722857568 2A 722857568 
 

FASTmrEMMA S3B_773516625 3B 773516625 
 

FASTmrEMMA S4B_40315424 4B 40315424 
 

FASTmrEMMA S7A_27378888 7A 27378888 
 

FASTmrMLM S2A_722857568 2A 722857568 
 

FASTmrMLM S2B_662259821 2B 662259821 
 

FASTmrMLM S3B_773516625 3B 773516625 
 

FASTmrMLM S4B_40315424 4B 40315424 
 

FASTmrMLM S7A_27378888 7A 27378888 
 

FarmCPU S2A_722857568 2A 722857568 
 

FarmCPU S2B_725552556 2B 725552556 
 

FarmCPU S3B_773516625 3B 773516625 
 

FarmCPU S4B_40315424 4B 40315424 
 

FarmCPU S4B_647586119 4B 647586119 
 

FarmCPU S7A_48708273 7A 48708273 
 

ISIS EM-BLASSO S2A_722857568 2A 722857568 
 

ISIS EM-BLASSO S2B_662259821 2B 662259821 
 

ISIS EM-BLASSO S3B_773516625 3B 773516625 
 

ISIS EM-BLASSO S4B_40315424 4B 40315424 
 

ISIS EM-BLASSO S5D_551464583 5D 551464583 



107 
 

 

 

 
ISIS EM-BLASSO S6B_96579342 6B 96579342 

 
ISIS EM-BLASSO S7A_27378888 7A 27378888 

 
mrMLM S2A_722857568 2A 722857568 

 
mrMLM S2B_662259821 2B 662259821 

 
mrMLM S3B_773516625 3B 773516625 

 
mrMLM S4B_40315424 4B 40315424 

 
mrMLM S6B_96579342 6B 96579342 

 
mrMLM S7A_27378888 7A 27378888 

 
mrMLM S7A_3972877 7A 3972877 

 
pKWmEB S2B_789008561 2B 789008561 

 
pKWmEB S4B_40315424 4B 40315424 

 
pKWmEB S4B_642604572 4B 642604572 

 
pKWmEB S6B_663525758 6B 663525758 

 
pKWmEB S6D_70342 6D 70342 

 
pKWmEB S7A_27378888 7A 27378888 

 
pKWmEB S7A_510433772 7A 510433772 

 
pLARmEB S2B_662259821 2B 662259821 

 
pLARmEB S2B_789008561 2B 789008561 

 
pLARmEB S4B_40315424 4B 40315424 

 
pLARmEB S4B_642604572 4B 642604572 

 
pLARmEB S5D_551464583 5D 551464583 

 
pLARmEB S6B_634018818 6B 634018818 

 
pLARmEB S6B_663525758 6B 663525758 

 
pLARmEB S7A_27378888 7A 27378888 

 
pLARmEB S7A_510433772 7A 510433772 

FDK BLINK S5A_39854554 5A 39854554 
 

BLINK S5A_619020400 5A 619020400 
 

BLINK S6B_718194425 6B 718194425 
 

FASTmrEMMA S2A_748396092 2A 748396092 
 

FASTmrEMMA S3A_568391268 3A 568391268 
 

FASTmrEMMA S3B_771956508 3B 771956508 
 

FASTmrEMMA S6B_716336898 6B 716336898 
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FASTmrMLM S2A_748396092 2A 748396092 

 
FASTmrMLM S3A_12668487 3A 12668487 

 
FASTmrMLM S3A_568391268 3A 568391268 

 
FASTmrMLM S3B_771956508 3B 771956508 

 
FASTmrMLM S5A_618308582 5A 618308582 

 
FASTmrMLM S6B_716336898 6B 716336898 

 
FASTmrMLM S7B_707550430 7B 707550430 

 
FarmCPU S3B_768314878 3B 768314878 

 
FarmCPU S5A_619020400 5A 619020400 

 
FarmCPU S6B_320696398 6B 320696398 

 
FarmCPU S6B_718194425 6B 718194425 

 
FarmCPU S6D_110313864 6D 110313864 

 
FarmCPU S7A_713432647 7A 713432647 

 
FarmCPU S7A_738859192 7A 738859192 

 
FarmCPU S7B_707550430 7B 707550430 

 
ISIS EM-BLASSO S2A_748396092 2A 748396092 

 
ISIS EM-BLASSO S3A_530215377 3A 530215377 

 
ISIS EM-BLASSO S5A_39854554 5A 39854554 

 
ISIS EM-BLASSO S6B_716336898 6B 716336898 

 
ISIS EM-BLASSO S7B_472484704 7B 472484704 

 
ISIS EM-BLASSO S7B_707550430 7B 707550430 

 
mrMLM S2A_748396092 2A 748396092 

 
mrMLM S3A_12668487 3A 12668487 

 
mrMLM S3A_568391268 3A 568391268 

 
mrMLM S3B_771956508 3B 771956508 

 
mrMLM S5A_618308582 5A 618308582 

 
mrMLM S6B_716336898 6B 716336898 

 
mrMLM S7B_707550430 7B 707550430 

 
pKWmEB S2A_748396092 2A 748396092 

 
pKWmEB S3A_13811558 3A 13811558 

 
pKWmEB S3A_528989206 3A 528989206 

 
pKWmEB S5A_39854554 5A 39854554 
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pKWmEB S6B_716171099 6B 716171099 

 
pKWmEB S7B_472484704 7B 472484704 

 
pLARmEB S1A_10439185 1A 10439185 

 
pLARmEB S1B_595397803 1B 595397803 

 
pLARmEB S2A_748396092 2A 748396092 

 
pLARmEB S2A_781672337 2A 781672337 

 
pLARmEB S2B_662259821 2B 662259821 

 
pLARmEB S3A_568391268 3A 568391268 

 
pLARmEB S3B_621303861 3B 621303861 

 
pLARmEB S3B_771956508 3B 771956508 

 
pLARmEB S4B_642901115 4B 642901115 

 
pLARmEB S5A_11637897 5A 11637897 

 
pLARmEB S6B_716336898 6B 716336898 

 
pLARmEB S7A_50507497 7A 50507497 

aPhysical position is based on IWGSC RefSeq v2.0 (IWGSC, 2018) 
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Supplementary Table S3. Table summarizing the GWAS results for plant height (PH) 

using the FarmCPU model. The threshold used to declare an association as significant 

was FDR adjusted P < 0.05. 

SNP Chromosome Positiona P value MAF FDR adjusted P value 

S2A_614445772 2A 614,445,772 4.8E-06 0.15 1E-02 

S4B_40019966 4B 40,019,966 8.76E-13 0.18 8E-09 

S5B_295150730 5B 295,150,730 1.23E-06 0.46 6E-03 

S7B_9558646 7B 9,558,646 2.21E-06 0.38 7E-03 

aPhysical position is based on IWGSC RefSeq v2.0 (IWGSC, 2018) 
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Supplementary Table S4. Table enlisting all high-confidence genes identified in the 

flanking region of two QTNs, S6B_718194425 and S7B_707550430 along with their 

annotation. 

Gene IDa Previous Gene IDb Startc Annotation 

TraesCS6B03G1247100 TraesCS6B02G448800 717691663 cytochrome P450 714C2-like 

TraesCS6B03G1247900 TraesCS6B02G448900 717933372 zinc finger protein ZAT5-like 

TraesCS6B03G1248300 TraesCS6B02G449000 718038855 serine/threonine-protein phosphatase PP1-like 

TraesCS6B03G1248400 TraesCS6B02G449100 718072499 hypothetical protein CFC21_090362 

TraesCS6B03G1248500 TraesCS6B02G449200 718081314 rop guanine nucleotide exchange factor 3-like 

TraesCS6B03G1248600 TraesCS6B02G449300 718084520 FHA domain-containing protein DDL-like 

TraesCS6B03G1248900 TraesCS6B02G449400 718124729 nicotinate N-methyltransferase 1-like 

TraesCS6B03G1249200 TraesCS6B02G449500 718134558 disease resistance protein RGA5-like 

TraesCS6B03G1249300 TraesCS6B02G449600 718142603 disease resistance protein RGA5-like isoform X1 

TraesCS6B03G1249400 TraesCS6B02G449700 718193470 NEP1-interacting protein-like 1 

TraesCS6B03G1249500 TraesCS6B02G449800 718194677 predicted protein 

TraesCS6B03G1249600 TraesCS6B02G449900 718351170 lysine-specific histone demethylase 1 homolog 3-

like 

TraesCS6B03G1249800 TraesCS6B02G450000 718403799 aquaporin PIP1-5-like 

TraesCS6B03G1249900 TraesCS6B02G450100 718408744 laccase-15-like 

TraesCS6B03G1250200 TraesCS6B02G450200 718437357 aquaporin PIP1-5-like 

TraesCS6B03G1250500 TraesCS6B02G450300 718537206 peptidyl-prolyl cis-trans isomerase-like 

TraesCS6B03G1250600 TraesCS6B02G450400 718550171 peptidyl-prolyl cis-trans isomerase-like 

TraesCS6B03G1250700 TraesCS6B02G450500 718634434 50S ribosomal protein L9, chloroplastic 

TraesCS6B03G1251100 TraesCS6B02G450600 718946263 4-coumarate--CoA ligase-like 3 

TraesCS6B03G1251200 TraesCS6B02G450700 718948307 acyl-CoA-binding domain-containing protein 4-

like 

TraesCS6B03G1251400 TraesCS6B02G450800 718975754 hypothetical protein CFC21_090380 

TraesCS6B03G1251500 TraesCS6B02G450900 718995041 hypothetical protein CFC21_090381 

TraesCS6B03G1251800 TraesCS6B02G451000 719407030 csAtPR5, putative, expressed 

TraesCS6B03G1251900 TraesCS6B02G451100 719416172 signal peptide peptidase-like 4 

TraesCS6B03G1252300 TraesCS6B02G451200 719509971 phosphatidylinositol 4-phosphate 5-kinase 9-like 

TraesCS6B03G1252500 TraesCS6B02G451300 719516962 NAC domain-containing protein 78-like 
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TraesCS6B03G1252600 TraesCS6B02G451400 719562411 probable mitochondrial saccharopine 

dehydrogenase-like oxidoreductase At5g39410 

TraesCS6B03G1252700 TraesCS6B02G451500 719564065 predicted protein 

TraesCS7B03G1159300 TraesCS7B02G416700 706566583 uncharacterized protein LOC123161760 

TraesCS7B03G1159800 TraesCS7B02G416800 706617114 hydroquinone glucosyltransferase-like 

TraesCS7B03G1160000 TraesCS7B02G416900 706684670 hypothetical protein CFC21_105376 

TraesCS7B03G1160200 TraesCS7B02G417000 706703917 hypothetical protein CFC21_105377 

TraesCS7B03G1160400 TraesCS7B02G417100 706707637 NBS-LRR disease resistance protein 

TraesCS7B03G1161400 TraesCS7B02G417200 706838899 hypothetical protein CFC21_105379 

TraesCS7B03G1161500 TraesCS7B02G417300 706844055 putative disease resistance protein RGA3 

TraesCS7B03G1162000 TraesCS7B02G417400 706905895 probable LRR receptor-like serine/threonine-

protein kinase At3g47570 

TraesCS7B03G1163500 TraesCS7B02G429100 707818550 NADH-ubiquinone oxidoreductase chain 1 

TraesCS7B03G1163700 TraesCS7B02G429200 707819633 ribosomal protein S13 

TraesCS7B03G1164100 TraesCS7B02G429300 707825040 ribosomal protein L16 

TraesCS7B03G1164800 TraesCS7B02G429400 707834318 cytochrome c biogenesis protein ccmFC 

TraesCS7B03G1165100 TraesCS7B02G429500 707836552 Cytochrome c biogenesis Fc 

TraesCS7B03G1165200 TraesCS7B02G429600 707836902 39 kDa protein in mitochondrial S-1 and S-2 DNA 

TraesCS7B03G1166000 TraesCS7B02G429700 708194926 hydroquinone glucosyltransferase-like 

TraesCS7B03G1167100 TraesCS7B02G429800 708341181 uncharacterized methyltransferase At2g41040,  

TraesCS7B03G1167200 TraesCS7B02G429900 708370570 AAA-ATPase ASD, mitochondrial-like 

TraesCS7B03G1167300 TraesCS7B02G430000 708543954 uncharacterized protein LOC119341039 

TraesCS7B03G1167400 TraesCS7B02G430100 708558030 uncharacterized protein LOC123162851 

TraesCS7B03G1167600 TraesCS7B02G430200 708568667 putative disease resistance RPP13-like protein 1 

isoform X1 

aGene ID based on the IWGSC RefSeq Annotation v2.1 (IWGSC 2018; Zhu et al. 2021) 

bPrevious IDs for respective genes to the IDs used in IWGSC RefSeq Annotation v1.1 (IWGSC 2018) 

cPhysical position of start points for respective genes are based on IWGSC RefSeq v2.0 (IWGSC 2018) 
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Supplementary Table S5. Marker sequences for the significant SNPs associated with DIS and FDK along with the physical 

position corresponding to Chinese Spring RefSeq v2.0 and RefSeq v1.0 (IWGSC, 2018). 

SNP Sequence RefSeq v2.0 RefSeq v1.0 

S2A_722857568 GTTCTAACCTCTAGTGTAAGGTTACATCCTTACAGGGCAGAGCACGTTGTTCATCACAAGGTT

TATAACTCACATACTCATTAAACCTACAAGGTTTTGAGCGCGCAACACTGTGTGGCAATTTGG

AAACATCATGAAAAACTGAAGAATCTTGGCAGCTGCAGGGAAACAAACACACATTCATGCA

AATGTAAGGATACGCCCCCGCGTCGCCCCCGCTCGGGCGACTCGGGCGGGATCTAAAACCCT

AGCCGCCAGGGGTCCCCATCCGTCCTCCCCTCCCTCCGCCGCTGCCGAAGGACGCCGCCGGCT

ATAGGCCAGGGCCAGGGGTGGATCCAGAATTGAGCCTCGCCCCGGGCCCCAAGCTTACTACA

GTGTCAGCTCAGTGCTAAACAGTATC 

722857568 718979885 

S2B_725552556 ACTGAAGTGACTCCGTGAGGCACAGCCGAATCGTTGGGCCGTTCGAATTTGGAACCGTGTGT

GGCGTCTACCAACACGAGTATGTTCGCGCTTGACACGCGCGTACGTATGTCCACGGCCGGTA

ACTGAGATGTTGTCCCGATCGACGCGTCCACGCACGCACGTACCAAGCTAGCTGTTGAATTA

ATGATCGGGTGCCGCTGCGCTGCTTTATATGTAGAGTATTCGTGTACGTACAGGACAACACA

ATGGCTGCAGATTCAGTTATGCAAAAAAAAGGGTGAACTTTTCCTCTGTTGCGGTGGTATCCG

CGAGATGGAGGTGGGTACGATCTGGTGCACGACGCGAAAGCGACCGTTGGCTTCACTAATCA

TGTGATGATGAAAACGTGTGCAGTACA 

725552556 717127511 

S3B_773516625 AGGGTGATCTAGATTACGTCCGGTACTATGACGAGATGTCAAGTGAAATAAAGGTAGGCATG

ATGTGATCAGCTTTTGAATTAAACTGCTAATCATGTACTAGCATATTGGTATAACAGTGTTCT

TATCATGTGACAGTGGATTGAAGATAAGGTTGGACTATACAAGAAGGAGGTAAGCATCCCCT

TTTGGTTAACTATTAAACAATATCTGCAGGTTCTGTAATGTCTAACATCACACATGACAATTA

ACTATGTATTTTCATCATATAGTGACGGAAATACGAGAGCAGGGCTTTTCTTCAAGCAATGAA

GATTGGATCAGGGTTTCATAATCTATTCAGACATTCAGTTACGAGAGCCTACAACGTATTGCG

CCATGCCCCTCCCTCGCCCATAAA 

773516625 758202918 

S4B_40315424 TAGTAGTATCATCTTGATTCTTGAGCCTAGAGCAGCAAAGTTTGAAGTTGAAAGTCTGCCTGG

AAACTACGCGTGTCCCCTCTGTCCGGCCGTGTCTGGCATGACAAACATGCATGCAGCACATGT

CGGCGAATGGTTTTGTAGTACACCGTATCCTCTATACTACTCGTAACACGTGAACCATCTTGC

GAAGAAGATATACTACCACTGCAGTCTACAGTAGTATAGGAGTATCAAGGATTTGCTGAGCT

GTAAAAGTGCTGCATCTCCTAGTAGCTTGCAAAGTAGCATATATACAATGGGCAGCTGGTGG

TCGGGGCCAGAGCACACAAGTTTCTTCATGTTCACACTGCATGCATGCAGAGTTGGTTCGTCA

CCCCTTTCATGCATATACATATAC 

40315424 37575130 

S4B_647586119 TACTCGACTACTGCGCGGCCAATCAAGTTCCCCTGTGGAAGCACATAATGTTTATGTTTAGTA

GAAGAACAACACATTTCATAGATTGCGTTATATTTTTTTCACAGGTTGTGTTGTAGAAAAATG

CCAACAGCATATATATACTTATATACCTGCGACAGACCAACAATGTTATAGCCGCCGCTTAGC

TCTTTCATCTCCTTTACCTGCAGAAACAAATTAGCAAGCAGGCATGGATGATGAATATCTATC

647586119 648502365 
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TATCTTCTCAGCGTACAGCAGAGGAAAAGGCATCATCATCGCCCAAAGCGCCGAACCGATCA

CCTTGTTGCACATGATATCAGCCTGTTCCTGTAGAGGCATGAGCCAGGAGTCCCGTGCCCCGT

TTCCAATTTCTCTGAACACAAGC 

S7A_48708273 GGATTTTTTAAATGAATTGCTTAGTCCAGGATCTCTGGCCTCAAATAATTAGCGATTTTATGC

AGAGGCCGGGTGTGTGCTCATTGTGTTTGTATTCCTTTGATGCTCCATTCTGAGCAAATAAAA

TCCACCATTTATCTAAGGAAAAAACTAATTAGCGATTTTAGCAAGTCCAACATGTCCAACAAT

GTTAAAATTTCACTTATTCTCTGCCTCGATAGACAGTGGCTGCTGCAGCATCAGGACACGCAG

AAGAAGCATCGTCCATATTCAGGTTCAAACATGCAAAAACACCTTTCTACTTTGGTCATAATA

GTCTTCGAAAAGAACAGAACCATCCCAGCGATCTAGCATGTGGTTTTCACTTTTCACAGAGA

GGCACCAACGAAATCCTTGCTCC 

48708273 46257001 

S3B_768314878 TAATATGATCATGAACATGGGTGACCAAAATTCAAGAAATCCAAATAGTACACTGAATCAAT

AGTAGCACGTCAGTTGTGTACATGTTACGATGAAGATTTATCATCGAAAACAAAAAAAAAAT

CTCATTAGGAGAAAGCTTAGCTGCAGAACTCACATAGGCCTTACCAAAGGTTAGTGGACTTC

ACAACCCTTGGACCAACCTCATGTCACAAGGCGCTGCATTTGGACATTATGTAGTTAGTGTGC

GGCGAGTTAGTACTGGACACATGTGAAGAACCGTGAGACGTGAATCAATAGCACACTGAATC

AATGTATCAAACCTGAAGCAGCACGTCATTGTGTGAAGAAAGACCTCCGGCCTCGCGCATGC

GTGCGTGAAGGTGGCCTGTCCCCTGAC 

768314878 752885972 

S5A_619020400 CCGGAGACGAAGCAGAAGATGCGTGCGGTTCGACATCGCGCGGGGCTCTCAGACCTCCCTCT

CGTGTGCCGCGGACCACCTGCTCAGGAGACCTGCATCTGTTTTATAGGAAGCAATCCATTCCA

CGACCACGACGTCCGAAGAAAACAAAGGAGAAACAACCCAGGAGTGCAACCCAAGGAAAAT

GTACATGACATCAGAGCTGCAGAGGAAAACGCCCTGAACTTCCCAGCGCCCAATGCTTCTGC

ATCAGCCTTGATCTGATCAATGACACAATTATCTTGACCGATTGGAGCAATCAACAGGTGTTA

ATGCAACCAGTCAATCAACCAGGTTTTGATGGGGTTTTGGAAATGTAATCGGAGGGAGACTT

GGAAAGAGTCGGGTCTTCGACGGGGAT 

619020400 617251477 

S6B_320696398 CTCCAGAGGGGAGTAATCAATCATATTAATTACAAGAATATTTCCAAGTTTGGTCTTGCCTGT

TTATCTGGTGAACCTACTAACTTCCGTGAAGCCCTTGGTGATGCTCGCTGGAAACAAGCAATG

AGGAGGAATATTCTGCCCTGCAGAAAAATAAGACCTGGCATTTGGTTCCTCGTCAGGGAGGT

AAAAACTTGATCGATTGCAAATGGGTCTATAGGACTAAGAGAAAATCAGATGACACGGTTGA

TCGTTATAAAGCAAGGCTCGTCACAAAGGGATTTAAGCAAAGATACGGGATTGGTTATGAGG

ACAATTTTAGTCCGGTTGTCAAAGCAGCATCCATTCGTCTTATGTTATCCATTGTTGTTTCCAG

GGGATGGAGTCTCAGACAGCTAGA 

320696398 314551477 
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S6B_718194425 TGTCGCTCCTCTTCTGCTGGAGCCACCGCGTTCCTCAAGAACCTTACCCTAAGCAATCCCTGC

AAAACCAGACAATTTTCAGACCGGCACCCTCGACATTTCTGATAGCTCATTCCTGTAATGCAA

CACGGTCAGCTTCACATCTCACCTGAATGCGGCTGCGGCTGCGCTGGGGGAACTGCGACACA

ATGTGGTACCCCGATAGCCCCTGCAGCTCGCGCTGACGCTCCCGGGACATCCGAGTGATGAC

ATCGGTGCGCGCCTGCCGGCCACGGAGCCGGGGAGGCTCCCCTCGCCTCTCCCTCTCCGCGG

CGGTCGGCTCCTCCCTGCGGGAGGCCGCGCGGGCGTCGCGCGGCTGGCTGGCCATCTGCACC

CACTCCCTGACGAGCCTGACCCTCTG 

718194425 708786003 

S6D_110313864 AACATATTTTTTTATGCGTACTTTTTTTGAAAAAACAATTATCCCACAGCGAGCTAATTAGCT

CCACCCACAGTGGGCCGACAGGGGCCAGTCGGCCAGCTGTAGGCCGACTGGAGTCCAATCGG

CCTGTTGTGGGCCGACTAGGCCCAGTCGGCCTGCAGCGGGCCGACGGTGTATTATTTTTGAAA

AAAATTATCCAGCGTAATATTTATGAAAATTAATAAAAAAAGCATTATTTAAAAAAAATTAG

CCCCGCCTCGCGACTTACAGCCAACTGACATAATTTGGACTGACAGCCCCCGGTTTGACCGA

ATTAATTACTAGTAGAGTATTATTTTTCTTTTGCGAATGAGAGAATAAATTGCCTTTAACCAC

TAATCTACTATTATTTCACGTTCCA 

110313864 88831444 

S7A_713432647 GCGGTCCTTGCACAGTTAATGAGGTCACGTCCATGGCATACGCTACCCCTCTTTGCTTGCCAG

CCTTGTCTGCGCGAGTGCAGCAGAGGTGCAGTCCGTCCATGAGAGCCCGGTATTGCGCCGAT

GGCTGGACCAAAGACGAAACCACTGTGTTGGCCTGGTGTTCCCAACGTCTTTCCCCGCACCA

AGTTTGGATTCCGTTGTGGATTTCATTACTCTACTCGCTTATGTTGTTTGCTGCTGCTGCTGCA

GCAGCAGAGGGAGGGTGAGAGAGACCCAGCCAAGCCAAGGCGCCGGGTTCCCACGTTACCA

AGAACCTGTAAATATTTGCCATCACCCATCACTATACATGCCATTGCTTTGTTTGTCCTCGTAT

ATTCAGTCTAACAAACAACAAATT 

713432647 707834631 

S7A_738859192 TTTGAGAAATCCTAACTCCGCCTCTGGTGATGAGGACCGGCACGAACGGTGGCGTCCTCGCG

CCTAGGGAGGCAGCGCCACGCATACCACATAAAAGTCGACGCGTCGGGACGGCGGAGTGGA

CCACGCGCCGCGACGCTACGGCCTGAAGGGGCGACGCAGCGGCAGCGCGCGGGTCGGGGCG

ACGGCGAGGAAAACCACTGGGCGGCTGCAGGGACCATGTGCTACGCTCGCTAGCGCCCGAC

GAGGCGACGCAGCGGCAGCGTGAGGGTCGGTGCAGCCTCGGGGACGGCCGGAAGCGGACGG

CCTCGGGGCGGTGGTTGGCCGCGGGCTGCGGCACTACAGCCCGAAGGAGCATGCAGTGCCAG

CATGCGGGTTGGTGCAACCACGGGAACGGCCT 

738859192 731888363 

S7B_707550430 CACCTTGCCCTAGCCGCCGCCCCCCTTCTTCTCCCTCGCGACGGCGCCAACACGCCGGAGCCG

CCGCCCTCGCCCCCAACCCTCGCTGTTCTGCCCGTATAACCTACGGAGTAGAGCCGGTAGGA

ACCCTAGTCCTACCATAGCCAGACAGAGGCAAGTCGCCATAATGAAAAGAGACGTGAAAAA

CTGAAGTAATACTGAATTGGTACCTTTGTGCTGCAGGAGTCCTTATACTAGTAGTATATATAG

CAGTATAACAAAATCCTAACTTAATAAGAAGAAAGAAACTCAAAGGTATTGGTAGTGAGAA

CCAACATACTAGCTGCTTTCTTCCATCCTAGTACAAAAACGATGCACAAAAAAGGAAGGGGG

GAAAACTGGGTGCCCCCTCAACTTCATC 

707550430 698229993 
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Supplementary Figure S1. Intra-chromosomal linkage disequilibrium (LD) in the panel 

of 257 lines. 
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Supplementary Figure S2. QQ plots comparing the model performance of various ML-

GWAS traits. The upper panel compares different ML-GWAS models for DIS, where (a) 

QQ plot using FarmCPU for DIS, (b) QQ plot using BLINK for DIS, and (c) a combined 

QQ plot for DIS obtained from six ML-GWAS models including mrMLM, FastmrMLM, 

FastmrEMMA, pLARmEB, pKWmEB, and ISIS EM-BLASSO. The lower panel shows 

the comparison of QQ plots for FDK, where (d) QQ plot using FarmCPU for FDK, (e) 

QQ plot using BLINK for FDK, and (f) a combined QQ plot for FDK obtained from six 

ML-GWAS models including mrMLM, FastmrMLM, FastmrEMMA, pLARmEB, 

pKWmEB, and ISIS EM-BLASSO. 
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Supplementary Figure S3. Local linkage disequilibrium (LD) block for region 

harboring QTNs for FDK, (a) S6B_718194425 and (b) S7B_707550430. 
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Supplementary Figure S4. Gene expression analysis for high confidence genes in the flanking region of QTN 

S6B_718194425 across several studies for time courses of Fusarium infection. Gene expression is presented as a heatmap with 

Gene IDs based on IWGSC RefSeq v1.1 are listed on the top and the stages/tissues of expression on the side. 
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Supplementary Figure S5. Gene expression analysis for high confidence genes in the flanking region of QTN 

S7B_707550430 across several studies for time courses of Fusarium infection. Gene expression is presented as a heatmap with 

Gene IDs based on IWGSC RefSeq v1.1 are listed on the top and the stages/tissues of expression on the side.  
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Chapter 4. Genomic prediction of Fusarium head blight resistance in early stages 

using advanced breeding lines in hard winter wheat 

4.1 Abstract 

Fusarium head blight (FHB), also known as scab, is a devastating fungal disease of wheat 

that causes significant losses in grain yield and quality. Quantitative inheritance and 

cumbersome phenotyping make FHB resistance a challenging trait for direct selection in 

wheat breeding. Genomic selection (GS) to predict FHB resistance traits has shown 

promise in several studies. Here, we used univariate and multivariate genomic prediction 

models to evaluate the prediction accuracy (PA) for different FHB traits using 476 elite 

and advanced breeding lines developed by South Dakota State University hard winter 

wheat breeding program. These breeding lines were assessed for FHB disease index 

(DIS), and percentage of Fusarium damaged kernels (FDK) in three FHB nurseries in 

2018, 2019, and 2020 seasons (TP18, TP19, and TP20) and were evaluated as training 

populations (TP) for genomic prediction (GP) of FHB traits. We observed moderate PA 

using univariate models for DIS (0.39 and 0.35) and FDK (0.35 and 0.37) using TP19 

and TP20, respectively, and slightly higher PA (0.41 for DIS and 0.38 for FDK) when 

TP19 and TP20 (TP19+20) were combined to leverage the advantage of a large training 

population. Although GP with multivariate approach including plant height and days to 

heading as covariates did not significantly improve PA for DIS and FDK over ST 

models, PA for DON increased by 20% using DIS, FDK, DTH as covariates using MT 

model in 2020. Finally, we used TP19, TP20, and TP19+20 in forward prediction to 

calculate genomic-estimated breeding values (GEBVs) for DIS and FDK in preliminary 

breeding lines at an early stage of the breeding program. We observed moderate PA of up 
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to 0.59 for DIS and 0.54 for FDK, demonstrating the promise in genomic prediction for 

FHB resistance in earlier stages using advanced lines. Our results suggest GP of 

expensive FHB traits like DON and FDK can facilitate the rejection of highly susceptible 

materials at an early stage in a breeding program. 

Keywords: FHB, GBS, genomic selection, multi-trait models, winter wheat, wheat scab   
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4.2 Introduction 

Several fungal pathogens continuously constrain global wheat production and food 

security. Fusarium head blight (FHB), also known as scab, is a devastating fungal disease 

of wheat that causes significant losses in grain yield and quality (McMullen et al., 2012). 

FHB is expanding its horizons throughout major wheat-producing areas due to climate 

change, an increased wheat-growing area under no-till cultivation, and adoption of 

maize-wheat rotations (Zhang et al., 2014; Singh et al., 2016). Though several Fusarium 

species can cause FHB, Fusarium graminearum is the prominent pathogen for FHB in 

the United States, Canada, China, and some European countries (Trail, 2009). In addition 

to grain yield losses, FHB results in reduced quality and contamination by mycotoxin, 

primarily deoxynivalenol (DON) that poses serious health consequences to humans and 

animals if ingested in certain quantities (Trail, 2009; Sobrova et al., 2010). In 2014, the 

revenue losses for hard wheat were estimated to be around $600 million in the Great 

Plains region of the US (Wilson et al., 2017). 

Even though fungicides are frequently used to reduce FHB damage, the utilization of 

resistant varieties is considered the most effective and economical approach to combat 

diseases like FHB (Bai and Shaner, 2004; Gilbert and Haber, 2013). Being quantitative in 

nature, resistance to FHB is governed by multiple quantitative trait loci (QTLs) and 

highly influenced by changing environments. Resistance to FHB has been categorized as 

type I (resistance to initial pathogen penetration), type II (resistance to spread of FHB 

symptoms within a spike), or type III (low mycotoxin accumulation) (Bai et al., 2018). 

However, type II resistance is more stable and utilized in breeding programmes as 

compared to type I and III FHB resistance (Bai and Shaner, 2004; Bai et al., 2018). 
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Conventional QTL mapping and genome-wide association study (GWAS) have been 

used to dissect the genetic basis of FHB resistance and a large number of QTLs have 

been identified across all the wheat chromosomes, including seven named QTLs, Fhb1 to 

Fhb7 (Liu et al., 2009; Halder et al., 2019; Su et al., 2019; Venske et al., 2019). However, 

only a handful of QTLs have a major effect on type II resistance (resistance to FHB 

symptom spread in a spike) and have been effectively utilized in wheat breeding globally, 

in particular Fhb1 (Steiner et al., 2017; Bai et al., 2018). In the US hard winter wheat 

region, most of the variation in FHB resistance are from native sources including 

cultivars ‘Everest’, ‘Overland’, ‘Lyman’, and ‘Expedition’. Furthermore, phenotypic 

selection for FHB resistance in both field and greenhouse is very complicated and some 

of the measurements such as DON content can only be obtained after harvest and are 

costly. Thus, genomic selection (GS) could be a promising approach to improve FHB 

resistance in wheat with reduced phenotyping efforts and costs. 

GS is an approach that employs linkage disequilibrium (LD) and estimates the genetic 

worth of an individual using genome-wide markers (Meuwissen et al., 2001; Heffner et 

al., 2009). GS addresses the primary limitation of QTL mapping and marker-assisted 

selection by using a joint estimate of all marker effects (Bassi et al., 2015). Thus, GS is 

useful for predicting and selecting complex traits controlled by several minor QTLs that 

are difficult to map using QTL mapping (Lorenz et al., 2011). The genomic prediction 

(GP) models are developed by using genotypic and phenotypic data in a training 

population (TP) to predict the genomic-estimated breeding value (GEBVs) of individuals 

in the breeding population (BP) (Meuwissen et al., 2001). GS has shown immense 

potential in plant breeding, and several studies have reported successful implementation 
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of these strategies in different crops in recent years (Poland et al., 2012; Bhat et al., 2016; 

Juliana et al., 2017). GS is particularly useful for these traits where phenotyping is 

cumbersome or costly (Battenfield et al., 2016; Gill et al., 2021). 

Predictive ability (PA) of the GS model refers to the correlation between estimated 

GEBVs and the actual phenotypic values of the individuals in the validation set. The PA 

mainly depends on heritability of the traits, TP nature and size, and choice and 

optimization of the statistical models (Ali et al., 2020; Gill et al., 2021). Several studies 

have evaluated the GP models for predicting different FHB traits including disease index 

(DIS), fusarium damaged kernels (FDK), and DON in wheat. Most of these studies 

employed a cross-validation approach to evaluate the PA of GP in spring and soft winter 

wheat using various prediction models and strategies (Rutkoski et al., 2012; Arruda et al., 

2015; Mirdita et al., 2015; Hoffstetter et al., 2016a; Dong et al., 2018; Larkin et al., 

2020). However, the focus of these studies was limited to improving the PA within the 

TP being evaluated, rather than validating the improved models in forward prediction. 

Unlike other traits, such as yield, only a few studies reported the implementation of GP to 

select preliminary breeding lines for FHB resistance (Schulthess et al., 2018; Verges et 

al., 2020). So far, the potential of GS in improving the FHB resistance in early 

generations of a hard winter wheat breeding program has not been examined. 

Most of the previous studies compared univariate GP approaches, including ridge-

regression best linear unbiased prediction (rrBLUP), and genomic best linear unbiased 

prediction (GBLUP), LASSO, Random Forest (RF), and several Bayesian approaches 

(Rutkoski et al., 2012; Arruda et al., 2015; Dong et al., 2018). In most cases, the 

performance of these GP models varied with FHB traits and cross-validation schemes 
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used in the analyses. On the other hand, multi-trait (MT) approaches are used to improve 

the prediction ability for a primary trait, when secondary traits genetically correlated to 

the primary trait are available (Jia and Jannink, 2012). MT models are of particular 

importance when the primary trait is difficult or expensive to phenotype and has low 

heritability. Plant height (PH) and days to heading (DTH) are often associated with FHB 

resistance in bread wheat and durum wheat (Schulthess et al., 2018; Larkin et al., 2020). 

Thus, several studies have used PH and DTH as covariates to predict FHB resistance 

(Steiner et al., 2017; Schulthess et al., 2018; Larkin et al., 2020; Moreno-Amores et al., 

2020), and only two studies suggested improvement in PA using PH or DTH as 

covariates (Schulthess et al., 2018; Larkin et al., 2020). Furthermore, different FHB traits, 

including DIS, FDK, and DON are known to have moderate positive genetic correlations 

(Gaire et al., 2021). Recent studies have evaluated the use of different combinations of 

FHB traits along with DTH and PH as secondary traits to utilize this genetic correlation 

for improving prediction ability of MT models (Larkin et al., 2020). For instance, FHB 

traits like DIS and FDK can be used as secondary traits for improving the prediction of 

DON, which is cumbersome and costly to phenotype. Thus, there is a need to evaluate the 

usefulness of these covariates or to figure out the best combinations of secondary traits in 

MT models to predict FHB traits, especially in hard winter wheat. 

Another aspect of the successful application of GS in a breeding program is establishing a 

training population. Previous studies have evaluated strategies to optimize training 

populations using advanced breeding lines to predict GEBVs of preliminary breeding 

lines for various traits in wheat, including FHB (Hoffstetter et al., 2016a; Belamkar et al., 

2018; Adeyemo et al., 2020; Verges et al., 2020). The application of GS in this scenario 
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can be handy as it is challenging to phenotype a large set of preliminary lines in 

expensive FHB nurseries. 

The primary objective of this study was to use different sets of advanced breeding lines 

as training populations to predict FHB traits in preliminary breeding lines of our hard 

winter wheat breeding program. Secondly, we wanted to evaluate the performance of MT 

models to predict FHB traits, including DIS, FDK, and DON, using different 

combinations of secondary traits. For this, we evaluated FHB nurseries comprising 

advanced breeding lines from three years for their usability as training populations to 

predict these traits. Thus, our specific objectives for this study were to (a) evaluate the 

usability of FHB nurseries comprising advanced breeding lines for predicting FHB traits 

and assessing the improvement in predictive ability if the best-performing TPs from 

individual years were combined based on the lines shared among the FHB nurseries over 

years, (b) compare predictive abilities of MT models when different combinations of 

secondary traits are used to predict DIS, FDK, and DON, and (c) to validate the selected 

models and TPs in a forward prediction scheme to calculate the GEBVs for FHB traits in 

an independent breeding population comprising the preliminary breeding lines.  

4.3 Materials and Methods 

4.3.1 Plant materials 

A panel of 476 wheat breeding lines from the winter wheat breeding program at South 

Dakota State University was used in this study. A set of breeding lines that is tested every 

year in the advanced yield trial (AYT) and the elite yield trial (EYT) was evaluated for 

FHB resistance in a mist irrigated field nursery. Among the  476 breeding lines, 153 were 
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evaluated in the 2018 nursery, 169 in the 2019 nursery, and 154 in the 2020 nursery to 

optimize a training population for predicting preliminary breeding lines. Further, 65 lines 

were shared between the 2018 and 2019 nurseries; and 58 lines were shared between the 

2019 and 2020 nurseries. The majority of the breeding lines were either F4:7 or F4:8 filial 

generation. Lines without genotypic data and lacking consistency between replications 

were excluded and the final analysis was conducted on 152, 161, and 153 lines from 

2018, 2019, and 2020 nurseries, respectively. In addition, a set of 200 breeding lines from 

the preliminary yield trial (PYT) was used as a breeding population (BP) for the 

prediction of FHB indices (independent validation) using the optimized training 

population. A random set of 60 lines was selected from the BP and evaluated in the 2020 

nursery to validate the prediction accuracy (PA) in forward selection. 

4.3.2 Experimental design and studied characters 

Plant materials were planted in the FHB nurseries at Brookings, South Dakota (44.3114° 

N, 96.7984° W) during the 2018, 2019, and 2020 growing seasons (Supplementary Table 

S1) using a randomized complete block design with 2 or 3 replicates for different sets of 

lines with corresponding checks. We used cultivars ‘Lyman’ and ‘Emerson’ as resistant 

checks while ‘Overley’ and ‘Flourish’ were used as susceptible checks. The experimental 

unit was a single-row plot (40 plants/1 meter row) for each line. FHB resistance and 

related traits were evaluated in 2018, 2019, and 2020. Heading date (DTH) was recorded 

using Julian date when 50% of the main tillers in the row had completely emerged heads. 

Plant height (PH) was measured from the soil surface to the top of main tiller spikes 

excluding awns when the plant materials matured.  
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All FHB nurseries were artificially inoculated using both corn-spawn and spraying a 

spore suspension of F. graminearum isolates (SD-FG1) as described in Halder et al. 

(Halder et al., 2019). Briefly, Fusarium-infested corn kernels were scattered on soil 

surface twice with one at boot (Feeks 10) and another at heading (Feekes 10.1) stages to 

enhance the chances of maximum spore production in the field. At anthesis, a conidial 

suspension containing 100,000 spores/ml was sprayed on the heads of each line at 50% 

anthesis to avoid any escape. The nursery was misted using sprinklers every night (7 pm-

7 am) to maintain the humidity for disease development. Disease incidence and severity 

was recorded by scoring FHB symptoms on 20 heads/replication/line 21 days post-

flowering using a visual scale described by Stack and McMullen  (Robert W. Stack and 

Marcia P. McMullen, 2011). The FHB disease index (DIS) was calculated as (Incidence 

(INC) × Severity (SEV))/100. Percentage of Fusarium damaged kernel (FDK) was 

evaluated using grain samples harvested by a low airspeed harvester. Sampled kernels 

were compared against a set of known FDK standards 

(https://agcrops.osu.edu/newsletter/corn-newsletter/2015-21/rating-fusarium-damaged-

kernels-fdk-scabby-wheat) to estimate the FDK values in two replications per sample. 

We used DIS data from three seasons, whereas FDK from 2019 and 2020 seasons for 

evaluating GP. For DON estimation, the samples were analysed Department of Plant 

Science at North Dakota State University using gas chromatography–mass spectrometry 

method. As limited number of unreplicated samples were analysed for DON during 2018 

and 2019, we used DON data from 2020 season only. 

 

https://agcrops.osu.edu/newsletter/corn-newsletter/2015-21/rating-fusarium-damaged-kernels-fdk-scabby-wheat
https://agcrops.osu.edu/newsletter/corn-newsletter/2015-21/rating-fusarium-damaged-kernels-fdk-scabby-wheat
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4.3.3 Genotyping-by-sequencing 

Fresh leaf tissues were taken from each line for DNA isolation using the 

hexadecyltrimethylammonium bromide (CTAB) method (Doyle and Doyle, 1987). The 

seedlings for each line in advanced or elite trials in their respective season were grown in 

small pots/cones for tissue sampling and DNA extraction. A genotyping-by-sequencing 

(GBS) library was constructed using the PstI and MspI restriction enzymes (Poland et al., 

2012) and sequenced in an IonTorrent Proton sequencer (Thermo Fisher Scientific, 

Waltham, MA, USA) at the USDA Central Small Grain Genotyping Lab, Manhattan, KS, 

USA. DNA sequence data was used to call single-nucleotide polymorphisms (SNP) using 

the previously described approach employing TASSEL v5.0 (Trait Analysis by 

aSSociation, Evolution and Linkage) (Bradbury et al., 2007). After removal of SNPs with 

more than 30% missing genotypes, minor allele frequency (MAF) of less than 0.05 and 

unmapped on any chromosome, 9,321 high-quality SNPs were imputed using BEAGLE 

v4.1 (Browning and Browning, 2007) for further analysis. 

4.3.4 Phenotypic data analysis 

The phenotypic data for FHB DIS and FDK was analyzed as best linear unbiased 

estimates (BLUEs) for individual nurseries. The following model was used to estimate 

the BLUEs: 

 

yij = µ + Ri + Gj + eij 

where yij is the trait of interest, μ is the overall mean, Ri is the effect of the ith replicate, Gj 

is the effect of the jth genotype, and eij is the residual error effect associated with the ith 
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replication and jth genotype. The lines shared between 2019 and 2020 seasons were used 

to combine the DIS and FDK data, BLUEs was estimated across environments using the 

following statistical model: 

 

yijk = µ + Ei + Rj(i) + Gk + GEik + eijk 

where yijk is the trait of interest, μ is the overall mean, Ei is the effect of the ith 

environment, R j(i) is the effect of the jth replicate nested within the ith environment, Gk is 

the effect of the jth genotype, GEik is the effect of the genotype x environment (G x E) 

interaction, and eijk is the residual error associated with the ith replication and jth genotype.  

 

The broad-sense heritability (H2) for DIS and FDK was estimated for independent 

nurseries as follow: 

𝐻2 =  
𝜎𝑔

2

𝜎𝑔
2 +  𝜎𝑒

2/ 𝑛𝑅𝑒𝑝
 

 

where 𝜎𝑔
2and 𝜎𝑒

2 , are the genotype and error variance components, respectively. We used 

META-R (Alvarado et al., 2020) based on the LME4 R-package (Bates et al., 2015) for 

the linear mixed model analysis and heritability estimation. The Pearson correlations 

among traits and environments were estimated based on the BLUEs for each trait using R 

environment (R Core Team, 2018).  
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The principal component analysis (PCA) was conducted using the genotypic data from 

457 lines (257 lines from 2019 and 2020 nurseries and 200 lines from the breeding 

population) to study the relationship between the training and breeding populations. The 

‘prcomp’ function in R was selected to perform PCA using 9,321 SNP markers, and the 

first two principal components were used for the scatterplot. 

4.3.5 Genomic prediction models 

The univariate genomic prediction for DIS and FDK was performed using four different 

algorithms. The ridge regression (rrBLUP) model (Endelman, 2011) is the widely used 

GS model in plant breeding. In rrBLUP, we assume a normal distribution of marker 

effects with equal variance. The GEBVs for DIS and FDK were estimated for each 

training population using the trait BLUEs. A linear mixed model was implemented using 

the following model: 

y = 1µ + Zu + e 

where y is the vector (n × 1) of adjusted means (BLUEs) from n genotypes for a given 

trait; µ is the overall mean; Z is the design matrix (n × p) with known values of p markers 

for n genotypes; u is a genotypic predictor with u ~ N (0, Gnxn𝜎𝑔
2), where G is positive 

semidefinite matrix, obtained from markers using ‘A.mat’ which is an additive relation 

matrix function and 𝜎𝑔
2 is the additive genetic variance; ε is the residual error with e ~ N 

(0, 𝜎𝑒
2). The model was implemented in the ‘rrBLUP’ R package (Endelman, 2011) for 

one trait at a time. 
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The rrBLUP model assumes common variance across the marker effects, which causes an 

underestimation of the large-effect QTLs. However, the Bayesian method assumes 

unequal variances across marker effects and uses different priors to estimate these 

variances to overcome the limitations of rrBLUP (Meuwissen et al., 2001). We used two 

Bayesian algorithms, BayesA (BA) and BayesB (BB), to estimate GEBVs for given 

traits. BA assumes that all markers have a non-zero effect by treating the proportion of 

markers with no effect (π) as zero. The markers are included in the model after shrinking 

their estimates to a normal distribution. BB is an extension of BA, which employs an 

inverse chi-square distribution for marker effects and assumes that some markers have no 

effect, which are excluded from the model. Thus, BB considers the presence of some 

large effect QTLs controlling the given trait (Meuwissen et al., 2001; Habier et al., 2011). 

A detailed description of Bayesian models can be found in Pérez and de los Campos 

(Pérez and De Los Campos, 2014). The Bayesian models were implemented in the 

‘BGLR’ package using a Gibbs sampler with 5,000 burn-in and 15,000 iterations for each 

run (Pérez and De Los Campos, 2014). Random Forest (RF) is an ensemble method that 

uses a collection of classification or regression trees to conduct prediction. The idea is 

that by combining a large number of smaller decision trees, RF can reduce the variance of 

prediction. The bias of RF models converges to a limiting value in the limits. RF methods 

have been applied for both genetic association studies and phenotype predictions (Bureau 

et al., 2005). In this study, we extended the method used in Grinberg et al.  (Grinberg et 

al., 2020) with 1000 iterations and 64 random states. The algorithm was implemented in 

Python using Sklearn library. 
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A multivariate model was used to predict DIS and FDK by including days to heading 

(DTH) and plant height (PH) as secondary traits in the model. Furthermore, we evaluated 

the performance of multivariate model to predict DON content using different 

combinations of secondary traits including DIS, FDK, DTH, and PH. A Bayesian 

Multivariate Gaussian model with an unstructured variance-covariance matrix was used 

for the multi-trait (MT) model (Lado et al., 2018). The MT model predicts 

FDK/DIS/DON using the secondary traits as described in the following: 

y = 1µ + Zu + ε 

where y is the vector with a length of n × t (n genotypes and t traits); µ is the means 

vector; Z represents the incidence matrix of order [(n × t)p], ; u[(n x t)p] is genotypic 

predictor for all individuals and traits with u ~ N (0, ∑ ⊗ G). The matrix G represents the 

positive semidefinite matrix obtained from markers. The residuals of the MT model are 

represented by the vector ε, with ε ~ N (0, R ⊗ I). The matrices ∑ and R are the variance-

covariance matrices for depicting the genetic and residual effects for each individual in 

all traits, respectively. ∑ was estimated as an unstructured matrix and R as a diagonal 

matrix following Lado et. al., 2018. The variance-covariance matrices were estimated 

using a Gibbs sampler with 15,000 iterations, where the first 5,000 iterations were used 

for burn-in. The MT model was implemented in R package ‘MTM’ (de los Campos and 

Grüneberg, 2016). 

4.3.6 Training population design and cross-validation 

We evaluated the breeding lines from 2018, 2019, and 2020 nurseries as training 

populations (TP) to predict the performance of preliminary breeding lines. Furthermore, 
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we combined and evaluated the lines from 2019 and 2020 as one training population. 

Though the data for these two nurseries come from different years, a set of 58 lines that 

were common between the two nurseries was used to obtain the trait BLUEs. The 

resulting TPs were referred to as TP18, TP19, TP20, and TP19+20 for further genomic 

prediction. 

We first used each of these TPs for predicting single-year DIS and FDK. Briefly, each TP 

was randomly divided into five sets of equal size. Four of the five sets (80%) were used 

as a training set (phenotyped and genotyped) to train the model, and the remaining set 

(20%) was used as a testing set (genotyped only) for prediction (Supplementary Figure 

S1). Predictive ability was estimated as Pearson’s correlation between the GEBVs and 

observed phenotypes for the testing set. The predictions were assessed using five 

different models, as discussed earlier. The cross-validation process was repeated 500 

times for rrBLUP and 100 times for Bayesian models, where each iteration included 

different lines in the training and testing sets. Cross-validation was used to evaluate the 

ability of four TPs using different models to estimate GEBVs for DIS and FDK. 

For the MT model, the lines were randomly split into a training set (80%) and a testing 

set (20%). To train the model, we used phenotypic data of secondary traits (PH and DTH) 

from both the training and testing sets, but the phenotypic data of the target trait (DIS or 

FDK) from the training set only (Supplementary Figure S1). 

As mentioned earlier, we used phenotypic data for DON from 2020 season to evaluate 

the performance of MT models and compare it with standard ST model (rrBLUP). The 

lines were randomly split into a training set (80%) and a testing set (20%) as in earlier 
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case (Supplementary Figure S1). In this case, we evaluated the inclusion of different 

secondary traits (DIS, FDK, DTH, and PF) in different combinations to evaluate the 

predictive ability of MT model for DON. For instance, we used a MT model which 

included all four secondary traits to predict DON, then only three traits as secondary 

traits, and overall evaluating eight such combinations. 

4.3.7 Forward prediction of breeding lines for DIS and FDK 

Based on cross-validation analysis, we selected TP19, TP20, and TP19+20 for 

independent prediction of DIS and FDK in the preliminary lines from the breeding 

population (BP). TP18 was not used for forward predictions as we did not observe a good 

PA for DIS and FDK in cross-validation. As all the prediction models yielded 

comparable results for DIS and FDK using cross-validation, we selected rrBLUP over 

other models for independent predictions based on its easy and less-intensive 

implementation. The model was trained using genotypic and phenotypic data from TP19, 

TP20, and TP19+20 in the ‘rrBLUP’ package to predict the GEBVs of 200 individuals in 

the breeding population. To assess the predictive ability, we randomly selected 60 lines 

of the BP, phenotyped these lines for DIS and FDK in the 2020 nursery, and used the 

observed phenotypic values to compare to the GEBVs from the TPs.  

4.4 Results  

4.4.1 Phenotypic analysis 

A significant genotypic variation in DIS and FDK (p < 0.001) was observed in FHB 

nurseries from three seasons (Supplementary Table 2). The largest variation in DIS was 

observed in 2019 ranging from 16.0 to 91.2 with a mean DIS of 49.1 (Table 1), while the 
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smallest variation was observed in 2018, ranging from 21.0 to 59.7 (Table 1, Figure 1). 

The mean percent FDK were also different between 2019 and 2020, with 80% in 2019 

and 58.6% in 2020. Despite high mean FDK values, sufficient phenotypic variation was 

observed among evaluated lines in both years (Table 1). Overall, 2019 had the highest 

disease occurrence and 2018 the lowest.  

Significant phenotypic correlations (0.45 and 0.46) were observed between DIS and FDK 

in both 2019 and 2020. DIS and FDK exhibited negative correlations with plant height in 

all three nurseries (Supplementary Figures S1, S2 and S3). A negative correlation was 

observed between DIS and days to heading in 2018. However, both DIS and FDK 

showed weak but positive correlations with days to heading in 2019 and 2020 

(Supplementary Figure S2). As DON was also estimated in 2020, we observed significant 

positive phenotypic correlations for DON with DIS (0.34), FDK (0.33), and DTH (0.33) 

(Supplementary Figure S4). Broad-sense heritability for both FHB traits were moderate 

(Table 1) with the highest heritability for DIS (0.77) in 2020, and for FDK (0.75) in 2019. 

4.4.2 Relatedness between TP and BP 

The principal component analysis (PCA) was conducted using 9,321 SNP markers and 

457 lines. The first two principal components (PCs) explained 6.9% (PC1) and 5.0% 

(PC2) of the genetic variance (Figure 1). The PCA revealed two primary clusters for the 

457 lines, including 257 unique lines from the training populations (TP19 and TP20) and 

200 lines of the breeding population (BP). The mixed distribution of the lines from both 

TPs and BP in the two clusters suggested a close relationship between the two 
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populations, therefore it will be useful to use the TP for forward prediction in a breeding 

program.   

4.4.3 Cross-validation within TPs for DIS and FDK 

Various GP models were used to evaluate the prediction accuracy within each TP using a 

cross-validation approach. We masked the observed phenotype in 20% of the lines in 

each TP, and treated them as untested new lines. The PA of DIS and FDK was measured 

as the Pearsons correlations between the predicted and the observed phenotypes of the 

masked lines. A general comparison of DIS and FDK prediction using different models is 

presented using boxplots in Figures 2 and 3. TP18 provided a low mean predictive ability 

of 0.20 for DIS, ranging from 0.15 to 0.23 using different GP models (Table 2). The 

TP20 provided a moderate mean predictive accuracy of 0.35 for DIS, and the TP19 

yielded the highest mean prediction accuracy (0.39) for DIS, ranging from 0.37 to 0.41 

using various models. Furthermore, for FDK, the mean predictive ability was 0.35 

ranging from 0.32 to 0.37 in TP19, whereas, in TP20 mean predictive ability was slightly 

higher ranging from 0.34 to 0.40 with a mean of 0.37 (Table 2). Among four different ST 

models, rrBLUP outperformed other models in all the TPs for predicting DIS and FDK 

(Figures 2 and 3).  

4.4.4 Combining two TPs into a large TP 

To improve prediction accuracies for different traits, we combined two individual 

populations (TP19 and TP20) into one large population (TP19+20). The BLUE values 

based on the shared set of lines evaluated in both years were used to assess PA for DIS 

and FDK using a cross-validation procedure. TP18 had poor performance in the cross-
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validation, therefore, it was excluded from the combined TP. The resulting population 

produced a slightly higher average PA of 0.41 for DIS and 0.38 for FDK using different 

GP models (Table 2; Figures 3 and 4) than for either TP19 or TP20. Besides a slight 

increase in the PA using larger TP, we observed that PA of all the models was quite 

similar, indicating a stable PA irrespective of the models. 

4.4.5 Univariate v/s multivariate prediction models for DIS and FDK 

PA also varied with types of GP models used for predicting DIS and FDK. Among four 

univariate models used for both DIS and FDK predictions, the rrBLUP model performed 

slightly better than BayesA (BA), BayesB (BB), and Random Forest (RF) models in all 

TP scenarios (Table 2). When the univariate GP models were compared with a multi-trait 

(MT) model with plant height and days to heading as covariates, the MT model did not 

show much improvement in DIS predictions than univariate models using TP18, TP19, 

and TP19+20. However, the prediction accuracy of MT was improved by 20% (0.35 to 

0.42) for DIS in TP20 when two secondary traits (DTH and PH) were included in the 

model (Table 2). Improvement using the MT model in TP20 can be attributed to the 

moderate correlation between DIS and secondary traits in the model (Supplementary 

Figure S4). For FDK, the MT model did not improve prediction accuracy in any of the 

TPs (Table 2) as FDK seemed to be less correlated with DTH or PH in any of the 

growing seasons. 
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4.4.6 Evaluating MT model to predict DON using different combinations of secondary 

traits 

The lines from 2020 nursery were also evaluated for DON along with other FHB traits. 

As DON is a costly trait to phenotype and a smaller number of samples are analyzed for 

DON each year, we were interested to see if we can use other FHB traits in MT models to 

predict DON. For this, we used the MT model with different combinations of DIS, FDK, 

DTH, and PH as covariates to predict DON. We used ST rrBLUP model as a benchmark 

to compare the performance of MT model (Figure 4). Using TP20, the rrBLUP model 

yielded a predictive accuracy of 0.49 for DON, which is higher as compared to DIS and 

FDK using the same model. The MT model showed an improvement of up to 20%, 

yielding PA ranging from 0.54 to 0.59 with different combinations of secondary traits 

(Supplementary Table S3). The MT model having DIS, FDK, DTH, and PH as covariates 

had PA of 0.56, whereas the MT model with DIS, FDK, and DTH had the highest PA 

(0.59) among all the combinations (Supplementary Table S3). We also evaluated the MT 

model if only single trait (DIS, FDK, or DTH) is used as covariate to predict DON. 

Interestingly, the MT model with only FDK as covariate had PA of 0.56, which is 

comparable to the combination having all traits as covariates (Supplementary Table S3).  

4.4.7 Accuracy of independent predictions for DIS and FDK in forward breeding 

To validate usefulness of different FHB nurseries as possible TPs, GEBVs for DIS and 

FDK of a random set of preliminary breeding lines from PYT were predicted using TP19, 

TP20, and TP19+20 with the rrBLUP model. Moderate prediction accuracies (Table 3) 

were observed for DIS and FDK using the three TPs. The TP19 provided the highest 

prediction accuracy (0.59) for DIS, following the trend observed in our cross-validation. 
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The TP19+20 produced the highest prediction accuracy of 0.54 for FDK, followed by 

TP19 and TP20 (0.50 and 0.49, Table 3). Overall, independent predictions provided 

better PA than the cross-validation. Furthermore, we used a scatterplot to compare the 

breeding lines which were rejected based on estimated GEBVs but retained based on 

observed data (Figure 5; Supplementary Figure S5). Interestingly, we observed there was 

low probability of rejecting lines with lower DIS or FDK ratings as most of lines rejected 

based on GEBVs were having an moderate DIS or FDK observed value in both 2019 and 

2020 (refer to top-left quadrant of scatterplots in Figure 5 and Supplementary Figure S5). 

These results demonstrate that the genomic prediction can be implemented to improve 

FHB resistance in wheat breeding programs. 

4.5 Discussion 

Several studies have evaluated the inclusion of GS in wheat breeding programs to predict 

FHB resistance in recent years (Rutkoski et al., 2012; Arruda et al., 2015; Dong et al., 

2018; Verges et al., 2020); however, most of these studies were done in soft winter 

wheat. The current study used a cross-validation strategy to evaluate the potential of hard 

winter wheat breeding lines as training populations for GS of FHB resistance. The multi-

trait GP model was also evaluated for predicting different FHB traits. Finally, the current 

study demonstrates the use of different sets of advanced breeding lines as training sets to 

predict preliminary breeding lines in a forward prediction scheme.  

4.5.1 Phenotypic response to FHB 

We used an FHB disease index (DIS) estimated based on incidence and severity, and 

FDK percentage to evaluate FHB resistance in advanced breeding lines. We observed a 
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wide variation for FHB resistance in the advanced breeding lines from the South Dakota 

State University winter wheat breeding program in three disease nurseries from 2018-

2020. For example, variations for DIS were from 16.0 to 91.2% and FDK from 38.1 to 

99.0% in the 2019 nursery (Table 1). A similar trend was observed in two other nurseries 

(Table 1). The majority of the advanced and elite breeding material from our program 

does not carry Fhb1 likely due to yield drag and negative agronomic potential, suggesting 

minor genes from native sources predominantly govern FHB resistance in our breeding 

program. This is similar to other hard winter wheat breeding programs in the region as 

only one variety (TAM 205) carrying  Fhb1 has been released till date. Therefore, GS 

seems to be a suitable approach to breed for the FHB resistance. 

Although the FHB nursery had a controlled mist system, the prevailing environment in 

respective years is believed to play a significant role in varying disease pressure. The 

2018 season was very dry in South Dakota, but it was reasonably wet in 2019. These 

environmental factors lead to fluctuations in the disease pressure affecting the spread of 

the data over the years, consistent with previous studies (Hoffstetter et al., 2016a; 

Adeyemo et al., 2020; Larkin et al., 2020; Verges et al., 2020). However, these 

fluctuations did not alter the ranking of different check genotypes over different 

nurseries. For instance, the DIS indices were 27.2, 29.8, and 32.6 in 2018, 2019, and 

2020, respectively, for resistant check ‘Lyman’, and 84.6 and 72.4 in 2019 and 2020, 

respectively, for susceptible check ‘Overley’. The consistent performance of checks 

shows uniformity and reliability of phenotyping across nurseries, which is supported by 

higher heritability for DIS (0.54 – 0.77) and FDK (0.66 – 0.75) (Table 1). The moderate 

H2 estimates were in similar range as that of related studies using different types of 
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population in spring- or winter wheat (Hoffstetter et al., 2016b; Adeyemo et al., 2020; 

Larkin et al., 2020; Xu et al., 2020; Zhu et al., 2020).  

4.5.2 Within-population cross-validation for DIS and FDK 

Several studies successfully used advanced or preliminary breeding lines from a breeding 

program (Hoffstetter et al., 2016a; Belamkar et al., 2018; Adeyemo et al., 2020) and from 

unrelated regional nurseries (Verges et al., 2020) as training populations to predict 

various traits in wheat. We evaluated advanced breeding lines in three FHB nurseries as 

three possible training sets for genomic prediction using cross-validation (Supplementary 

Table 1), and obtained moderate prediction accuracies when TP19 and TP20 were used to 

predict DIS (up to 0.41 using TP19 and 0.42 in TP20) and FDK (up to 0.37 in TP19 and 

0.40 in TP20) (Table 2), consistent with several previous studies in soft winter or spring 

wheat (Hoffstetter et al., 2016a, Dong et al., 2018, Verges et al., 2020, Adeyemo et al., 

2020). Similarly, prediction accuracies for FDK in our study were also similar to 

Rutkoski et al., (2012) and Adeyemo et al., (2020), but lower than those reported by 

Arruda et al. (2015) and Verges et al. (2020). The poor performance of TP18 for DIS 

prediction could result from low disease pressure and phenotypic variation observed in 

the 2018 nursery, hence, such a nursery is not recommended for a forward genomic 

prediction. Overall, based on mutliple years of data our study demonstrates the usefulness 

of advanced breeding lines as TPs for genomic prediction, given that the quality of 

phenotyping is robust.  
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Training population size is another crucial factor that affects the PA of GP models. 

Previous studies have reported an increase in PA with an increased TP size (Lorenz et al., 

2012; Michel et al., 2017; Sarinelli et al., 2019). Lorenz et al. (2012) and Arruda et al. 

(2015) obtained higher PA for FHB traits in barley and wheat when the TP size contained 

250 to 300 lines. In the current study, the three populations, each with around 150 lines, 

were used as independent TPs for FHB trait prediction. Also, the performance of a larger 

TP (TP19+20) developed by combining two TPs (TP19 and TP20) were evaluated. 

Although TP19 and TP20 were phenotyped in two independent nurseries, they shared a 

subset of 58 breeding lines. Thus the large TP (TP19+20) was formed with 265 unique 

lines. The higher PA were observed for DIS (0.41) and FDK (0.38) when TP19+20 was 

used as the TP. Apart from improvement in PA using TP19+20, we observed that all 

prediction models yielded similar results which was not the case when using smaller TPs 

(Table 2). Furthermore, a lower standard deviation for PA based on several repeats of 

cross-validation suggests consistency of prediction when using a large TP (Figures 3 and 

4). The results of this study suggest that selection of the right TP is crucial to improve 

PA. TP19+20 showed the best PA due to the large TP size and correction of BLUEs for 

DIS and FDK across two different nurseries/years, thus it can be used as the TP in 

forward genomic prediction of preliminary breeding lines. 

4.5.3 Model comparison for DIS and FDK 

We compared the PA for DIS and FHB using four univariate and one multivariate GP 

model. Among the univariate models, rrBLUP outstripped the other three models for 

predicting DIS and FDK in all individual TPs (Table 2). Further, rrBLUP is preferred 

model for predicting FHB traits owing to its better performance and computational 
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advantage. Previous studies have also reported that rrBLUP has better PA than Bayesian 

models (Rutkoski et al., 2012; Arruda et al., 2015) is one of the most often used methods 

in GS for FHB resistance.  

Using a multi-trait (MT) GP model is another approach to increase the PA for FHB traits. 

This model includes correlated secondary traits such as PH and DTH as covariates to 

predict DIS and FDK. Schulthess et al. (Schulthess et al., 2018) and Larkin et al. (Larkin 

et al., 2020) reported an increase in PA by including PH or DTH in the GP model. In the 

current study,  PH and DTH were included as secondary traits in a MT-GBLUP model to 

predict DIS and FDK, however, improvement of PA were not considerable except for 

DIS in TP20  where the PA was improved by at least 20% over the other univariate 

models (Table 2). The better PA using MT model in the TP20 resulted from the moderate 

correlation of DIS with PH and DTH (Supplementary Figure S1). In other TPs, a lower 

correlation was observed among evaluated traits. The MT models have been used to 

improve the PA of low-heritability traits by using the information from correlated traits 

with high heritability (Calus and Veerkamp, 2011; Jia and Jannink, 2012; Gill et al., 

2021). However, moderate to high heritability estimates for DIS and FDK in this study 

could be another reason for MT models showing no advantages over univariate models. 

Thus, our results suggest that the MT models could be useful and employed in forward 

prediction in early generation nurseries if the observed correlations between FHB traits 

and the covariates are moderate to high.  
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4.5.4 Optimization of MT model with different combinations of secondary traits to 

predict DON 

DON is an important and primary FHB trait; however, most of the winter wheat breeders 

across the US are unable to make decisions based on DON estimates. For instance, the 

SDSU winter wheat program harvests FHB nursery in August and then plants the next 

cycle in September, making the turnaround cycle very short. Contrary to this, 

phenotyping for DON is mostly outsourced and it takes several months before the breeder 

gets the data. Thus, it will be of great importance if we can predict DON and utilize the 

predictions to forward resistant lines. Furthermore, previous studies have suggested the 

use of different pre-harvest traits, such as DIS, FDK, DTH or PH, in MT models to 

predict DON with better accuracy (Larkin et al., 2020). We used DON estimates 

available for TP20 to evaluate the predictive ability for DON using ST and different 

versions of MT model based on cross-validation. The ST (rrBLUP) model predicted 

DON with PA of 0.49, which is better than DIS and FDK using any of the models 

(Supplementary Table S3). Further, we compared MT model having different 

combinations of traits as covariates. We observed that using trait combinations of DIS, 

FDK, DTH (0.59) and FDK, DTH (0.58) had the highest PA (Fig. 4), similar to the 

results reported by Larkin et al. (Larkin et al., 2020). Interestingly, it was found that using 

FDK as ‘only’ covariate in the MT model had high PA (0.56), suggesting that using FDK 

can improve the performance of MT model over the ST model. Overall, the results 

suggest that we can use GP for predicting DON in earlier stages and the PA can be 

further improved by using secondary traits such as FDK. 
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4.5.5 Genomic predictions in forward breeding 

Relatedness among the individuals in TP and BP is considered crucial for getting higher 

PA in genomic prediction. In this study, we aimed to evaluate the usefulness of advanced 

breeding lines as TPs to predict earlier generations lines  (PYT) from our breeding 

program. The PCA showed a good association between the lines from TP and BP (Figure 

2). Hence, we obtained moderate prediction accuracy for DIS and FDK in an independent 

BP (Table 3), comparable to the other reports (Jiang et al., 2017; Herter et al., 2019; 

Verges et al., 2020). Though a moderate PA for DIS and FDK were achieved in the 

current study, the phenotypic data of advanced lines evaluated from FHB nurseries could 

be used to predict GEBVs for the early generation breeding lines in wheat breeding 

programs (Table 3). The predicted GEBVs can be used to discard susceptible lines at the 

earlier stages of the breeding cycle (Figure 5, Supplementary Figure 3). For instance, we 

achieved a PA of 0.59 for DIS using TP19 and discarded 50% of the most susceptible 

lines based on the TP19 based GEBVs and selected the remaining 50% lines for further 

selection (Table 3). Among these discarded lines, 87% were highly susceptible based on 

their observed disease index in the mist irrigated inoculated FHB nursery, and only 13% 

susceptible genotypes were carried forward based on GEBVs (Figure 5). Similar results 

were observed for FDK (Supplementary Figure 3), which suggests that the estimated 

GEBVs from the TP can be used to discard the most susceptible lines at an early stage to 

reduce phenotyping costs. Our results also suggest that these lines discarded based on 

GEBVs had an extremely low chance to be highly resistant in terms of DIS and FDK.  
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In summary, our study demonstrated that advanced breeding lines evaluated in the FHB 

nurseries can serve as TPs and predict GEBVs for untested earlier generation lines in the 

breeding programs. Further advanced lines from several years can be combined to 

increase the PA in the forward breeding. However, we recommend evaluating the 

performance of individual advanced breeding nurseries through cross-validation before 

pooling multiple nurseries to develop larger TPs for forward prediction. Furthermore, the 

MT models using secondary traits as covariates could be useful in predicting 

cumbersome FHB traits (DON and FDK). Finally, our results suggest genomic prediction 

can be successfully applied in a wheat breeding program in discarding the most FHB 

susceptible lines at an early stage as opposed to laborious phenotypic selection in most 

years and especially in abnormal years when phenotypic evaluation is unreliable or 

unavailable due to environmental conditions. 
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4.7 Appendix: Figures and tables 

Figures 

Figure 4.1 The scatterplot for principal component analysis (PCA) of 457 lines based on 

9,321 SNP markers. The 457 breeding lines include 257 lines from training populations 

(TP19 and TP20) and 200 lines of the breeding population (BP) used in the forward 

prediction. The blue triangles represent the lines from TPs, and the green circles 

represents lines from BP. The first two PCs explained 6.9% and 5.0% of the total 

variation, respectively. 
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Figure 4.2 The predictive ability (PA) for Fusarium head blight (FHB) resistance disease 

index (DIS) in different sets of training populations (TPs) used in the study. Boxplots 

compare the PA using five genomic prediction models: rrBLUP, ridge-regression best 

linear unbiased prediction; BayesA, BA; BayesB, BB; Random Forest, RF; and Multi-

trait model, MT. Training population based on 2018 FHB nursery, TP18; Training 

population based on 2019 FHB nursery, TP19; Training population based on 2020 FHB 

nursery, TP20; Training population combining 2019 and 2020 FHB nurseries, TP19+20. 
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Figure 4.3 The predictive ability (PA) for Fusarium‐damaged kernels (FDK) in different 

sets of training populations (TPs) used in the study. Boxplots compare the PA using five 

genomic prediction models: rrBLUP, ridge-regression best linear unbiased prediction; 

BayesA, BA; BayesB, BB; Random Forest, RF; and Multi-trait model, MT. Training 

population based on 2019 FHB nursery, TP19; Training population based on 2020 FHB 

nursery, TP20; Training population combining 2019 and 2020 FHB nurseries, TP19+20. 
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Figure 4.4 Boxplots comparing the predictive ability of ST model and the MT model 

with different combinations of secondary traits. DIS, FHB disease Index; FDK, fusarium 

damaged kernel percentage; DTH, days to heading; PH, plant height; DON, 

deoxynivalenol content. 
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Figure 4.5 Scatterplots showing observed v/s predicted values for FHB disease index 

(DIS). The observed DIS estimates were based on phenotypic evaluation of 60 

independent lines, and the predicted values are GEBVs using (A) TP19, (B) TP20, and  

(C) TP19+20. The red dashed line represents the cutoff (50%) to discard genotypes based 

on the observed data and estimated GEBVs. Genotype to the right side of the red dashed 

line would be discarded based on observed phenotype, and genotype above the red 

dashed line would be discarded based on GEBVs. 
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Tables 

 

Table 4.1. Descriptive statistics of two Fusarium head blight (FHB) resistance traits, 

disease index (DIS), and Fusarium‐damaged kernels (FDK) for advanced winter wheat 

breeding lines evaluated in three independent FHB nurseries from 2018, 2019, and 2020. 

Trait Year of 

valuation 

Na Mean Min. Max. H2 

DIS (%) 

(0-100)  

 

2018 153 42.9 21.0 59.7 0.54 

2019 169 49.1 16.0 91.2 0.76 

2020 154 42.0 12.0 81.5 0.77 

FDK  

(%) 

2019 169 80.0 38.1 99.0 0.75 

2020 153 58.6 22.2 89.5 0.66 

a The number of advanced breeding lines evaluated in each nursery is represented by N; 

Min. and Max. refers to the Minimum and Maximum trait values; H2 is the broad-sense 

heritability for the respective trait. 
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Table 4.2. Mean prediction accuracy and standard error for two Fusarium head blight 

(FHB) resistance traits, disease index (DIS) and Fusarium‐damaged kernels (FDK) with 

cross-validation in different Training Populations using different genomic prediction 

models. rrBLUP, ridge-regression best linear unbiased prediction; BayesA, BA; BayesB, 

BB; Random Forest, RF; and Multi-trait model, MT. 

 

Trait 

 

TPa 

Genomic prediction model 

rrBLUP BA BB RF MT 

DIS TP18 0.23 ± 0.01  0.22 ± 0.01 0.20 ± 0.01 0.15 ± 0.01 0.22 ± 0.02 

TP19 0.41 ± 0.01 0.38 ± 0.01 0.37 ± 0.02 0.38 ± 0.01 0.41 ± 0.02 

TP20 0.35 ± 0.01 0.32 ± 0.02 0.32 ± 0.01 0.32 ± 0.01 0.42 ± 0.02 

TP19+20 0.42 ± 0.01 0.41 ± 0.01 0.41 ± 0.01 0.40 ± 0.01 0.41 ± 0.01 

FDK TP19 0.37 ± 0.01 0.35 ± 0.01 0.36 ± 0.01 0.32 ± 0.01 0.34 ± 0.02 

TP20 0.40 ± 0.01 0.37 ± 0.01 0.37 ± 0.01 0.37 ± 0.01 0.34 ± 0.02 

TP19+20 0.38 ± 0.01 0.37 ± 0.01 0.35 ± 0.01 0.38 ± 0.01 0.41 ± 0.02 

aDifferent training populations used in cross-validation analysis. Training population 

based on 2018 FHB nursery, TP18; Training population based on 2019 FHB nursery, 

TP19; Training population based on 2020 FHB nursery, TP20; Training population 

combining 2019 and 2020 FHB nurseries, TP19+20.  
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Table 4.3. Prediction accuracy for two Fusarium head blight (FHB) resistance traits, 

disease index (DIS) and Fusarium‐damaged kernels (FDK) in forward prediction scheme. 

Three different training populations were used to predict 200 untested preliminary yield 

trial lines using rrBLUP model. The prediction accuracy was estimated by phenotyping a 

random set of 60 untested lines for given traits. 

Trait Training population 

 TP19 TP20 TP19+20 

DIS 0.59 0.42 0.50 

FDK 0.50 0.49 0.54 
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Supplementary Table S1. Information of the three SDSU FHB nurseries evaluated in 

the growing seasons of 2017-18, 2018-19, and 2019-20. 

Training 

population 

Year of 

evaluation 

Location of 

FHB nursery 

Date of 

Planting 

Date of 

Harvesting 

Lines 

evaluated 

Lines used 

for GS. 

TP18 2018 Brookings, SD 10/15/2017 08/18/2018 153 152 

TP19 2019 Brookings, SD 10/08/2018 08/13/2019 169 161 

TP20 2020 Brookings, SD 10/03/2019 08/17/2020 154 153 
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Supplementary Table S2. Analysis of variance for FHB traits from the linear mixed 

model analysis for individual FHB nurseries. DIS, FHB disease Index; FDK, fusarium 

damaged kernel percentage; CV, coefficient of variation. Statistically significant 

differences are denoted by an asterisk (*) where * denotes P ≤ 0.05, ** denotes P ≤ 0.01, 

and *** denotes P ≤ 0.001. 

Trait Year of evaluation            Mean square 

  Genotype Residual CV 

DIS 2018 21.72*** 36.08 13.97 

 2019 170.02*** 103.21 20.69 

 2020 153.74*** 84.12 21.84 

FDK 2019 94.64*** 59.84 9.66 

 2020 151.77*** 149.89 20.88 
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Supplementary Table S3. Mean prediction accuracy along with standard deviation (SD) 

and standard error (SE) for deoxynivalenol content (DON) with cross-validation in TP20 

using the ST (rrBLUP) and MT genomic prediction models.  

Model Trait Combinationsa Predictive Ability SD SE 

rrBLUP - 0.49 0.13 0.01 

MT DIS, FDK, DTH, PH 0.56 0.10 0.01 

MT DIS, FDK, DTH 0.59 0.13 0.02 

MT DIS, FDK 0.54 0.11 0.02 

MT DIS, DTH 0.55 0.12 0.02 

MT FDK, DTH 0.58 0.11 0.02 

MT DIS 0.54 0.11 0.01 

MT FDK 0.56 0.11 0.02 

MT DTH 0.55 0.13 0.02 

a Trait combinations refers to a different set of trait(s) used as secondary trait(s) in the 

MT model for prediction of DON. DIS, FHB disease Index; FDK, fusarium damaged 

kernel percentage; DTH, days to heading; PH, plant height. 
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Supplementary Figure S1. Representation of the different cross-validation (CV) 

schemes used in this study. The Single trait (ST) Model was evaluated using a 80:20 CV 

scheme where four sets were used to train the model and the remaining set was used as a 

testing/validation set. The multi-trait (MT) model was used to predict DIS/FDK by using 

DTH and PH as secondary traits. For DON predictions, we used different combinations 

of secondary traits including DIS, FDK, DTH, and PH. The MT model used the 

genotypic and phenotypic information (primary and secondary traits) of individuals in the 

training set. DIS, FHB disease Index; FDK, fusarium damaged kernel percentage; DTH, 

days to heading; PH, plant height; DON, deoxynivalenol content. 
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Supplementary Figure S2. Correlation coefficients among different traits in FHB 

nursery of  2017-18. DIS, FHB disease Index; DTH, days to heading; PH, plant height. 

Statistically significant correlations are denoted by an asterisk (*) where * denotes P ≤ 

0.05, ** denotes P ≤ 0.01, and *** denotes P ≤ 0.001. 
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Supplementary Figure S3. Correlation coefficients among different traits in FHB 

nursery of 2018-19. DIS, FHB disease Index; FDK, fusarium damaged kernel percentage; 

DTH, days to heading; PH, plant height. Statistically significant correlations are denoted 

by an asterisk (*) where * denotes P ≤ 0.05, ** denotes P ≤ 0.01, and *** denotes P ≤ 

0.001. 
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Supplementary Figure S4. Correlation coefficients among different traits in FHB 

nursery of 2019-20. DIS, FHB disease Index; FDK, fusarium damaged kernel percentage; 

DTH, days to heading; PH, plant height; DON, deoxynivalenol content. Statistically 

significant correlations are denoted by an asterisk (*) where * denotes P ≤ 0.05, ** 

denotes P ≤ 0.01, and *** denotes P ≤ 0.001. 
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Supplementary Figure S5. Scatterplots showing observed v/s predicted values for 

fusarium damaged kernel (FDK) percentage. The observed DIS estimates were based on 

phenotypic evaluation of 60 independent lines, and the predicted values are GEBVs using 

(A) TP19, (B) TP20, and  (C) TP19+20. The red dashed line represents the cutoff (50%) 

to discard genotypes based on the observed data and estimated GEBVs. Genotype to the 

right side of the red dashed line would be discarded based on observed phenotype, and 

genotype above the red dashed line would be discarded based on GEBVs. 

 


	Genome-Wide Association Mapping and Genomic Prediction for Enhancing FHB Resistance in Hard Winter Wheat
	Recommended Citation

	tmp.1656514553.pdf.lbFjO

